
slf: Users Manual and Theory Book
Nicholas N. Gibbons

July, 2025

Abstract
slf is a program for simulating steady flamelets using the GDTk gas models and kinetics files. This
document will explain how it works and present a number of usage examples, but is neccessarily brief.
Details of the implementation and API can be found in gdtk/src/slf.

Quick Start
Install the program using the following terminal commands:

cd gdtk/src/slf
make FLAVOUR=fast install

You should also install the optional gas library from GDTK, which can be done with the instructions
available here. Once installed, test the code using the following example:

cd gdtk/examples/slf

cp $DGD_REPO/examples/kinetics/hydrogen-ignition-delay/Jachimowski-1992-species.inp ./
cp $DGD_REPO/examples/kinetics/hydrogen-ignition-delay/Jachimowski-1992.lua ./

prep-gas gm-jach92-air13.inp gm.lua
prep-chem gm.lua rr-jach92-air13.inp rr.lua

slf hydrogen.yaml

You should get the following output:

Called slf.run(): Target Global Relative Residual=1.000000e-10
iter 0000 dt 1.000000e-06 GRmax 3.098193e+08 GR 3.098193e+08 GRR 1.000000e+00
iter 0050 dt 1.000000e-06 GRmax 3.098193e+08 GR 3.099558e+07 GRR 1.000441e-01
iter 0100 dt 1.000000e-06 GRmax 3.098193e+08 GR 1.569775e+07 GRR 5.066743e-02
iter 0150 dt 1.000000e-06 GRmax 3.098193e+08 GR 1.049509e+07 GRR 3.387489e-02
iter 0200 dt 1.000000e-06 GRmax 3.098193e+08 GR 8.873138e+06 GRR 2.863973e-02
iter 0250 dt 1.000000e-06 GRmax 3.098193e+08 GR 6.059617e+07 GRR 1.955856e-01
iter 0300 dt 1.000000e-06 GRmax 3.098193e+08 GR 2.443113e+07 GRR 7.885606e-02
iter 0350 dt 1.000000e-06 GRmax 3.098193e+08 GR 1.298824e+07 GRR 4.192199e-02
iter 0400 dt 1.000000e-06 GRmax 3.098193e+08 GR 8.080834e+06 GRR 2.608241e-02
iter 0450 dt 1.000000e-06 GRmax 3.098193e+08 GR 5.446319e+06 GRR 1.757902e-02
iter 0500 dt 1.000000e-06 GRmax 3.098193e+08 GR 3.839074e+06 GRR 1.239133e-02
iter 0550 dt 1.203723e-06 GRmax 3.098193e+08 GR 2.753937e+06 GRR 8.888852e-03
iter 0600 dt 2.781427e-06 GRmax 3.098193e+08 GR 1.618075e+06 GRR 5.222642e-03
iter 0650 dt 1.943555e-04 GRmax 3.098193e+08 GR 9.177269e+03 GRR 2.962137e-05
Reached target residual 1.000000e-10 (1.529302e-11), stopping...
Done simulation in 16 seconds.

1

https://gdtk.uqcloud.net/docs/python/loadable-library/

You can view the convergence of the calculation using the residuals script:

python3 residuals.py hydrogen.log

0 100 200 300 400 500 600
iters

10 −10

10 −8

10 −6

10 −4

10 −2

10 0

G
R

R

Global Relative Residual

0 100 200 300 400 500 600
iters

10 −6

10 −5

10 −4

10 −3

dt
 (s

ec
)

Timestep

or the final steady solution with the solution script:

python3 solution.py hydrogen.sol

0.0 0.2 0.4 0.6 0.8 1.0
Mixture Fraction

400

600

800

1000

1200

1400

1600

1800

2000

Te
m

pe
ra

tu
re

 (K
)

0.0 0.2 0.4 0.6 0.8 1.0
Mixture Fraction

10 −10

10 −8

10 −6

10 −4

10 −2

10 0

M
as

s
Fr

ac
tio

n

<N2

<O2

<H2

<H2O

<OH<HO2

<NO

<HNO

<H

<O

Theory
slf solves the steady-state 1D reaction diffusion equations in mixture fraction space, using a finite-
difference method and an fixed analytic expression for the scalar dissipation. This method was originally
proposed by Ref. [1], which should be consulted for mathematical details. Following the implementation
of Ref. [2], the equations are formulated in terms of temperature and species mass fractions as follows.

𝑑𝑌𝑠
𝑑𝑡

= 𝜒
2
𝜕2𝑌𝑠
𝜕𝑍2 + �̇�𝑠𝑀𝑠

𝜌
(1)

𝑑𝑇
𝑑𝑡

= Le 𝜒
2
𝜕2𝑇
𝜕𝑍2 + 1

𝑐𝑝
∑
𝑠

ℎ𝑠�̇�𝑠𝑀𝑠
𝜌

(2)

2

Note that Equation 1 is a vector equation, there is one instance of it for each species 𝑠 in the reaction
mechanism. In contrast, Equation 2 is a scalar equation. The index 𝑠 here is used in the summation sign
to add up the species production rates to get the effect of heat release on the temperature.

The scalar dissipation 𝜒 is computed using the following expression.

𝜒 = 𝐷exp(−2 erfc−1(2𝑍)2) (3)

Where erfc−1 is the inverse complementary error function, which is approximated using an expression
from Ref. [3]. The parameter D is a constant that can be adjusted by the user to increase or decrease
the strain rate that the flame is experiencing.

Numerical Method
Equation 1 and Equation 2 are the time dependent unsteady reaction diffusion equations. We wish to
seek the values of temperature and mass fractions that minimise these time derivatives over the entire
domain 𝑍 = 0 → 1. To do this, first we construct the semi-discrete equations using central differences at
𝑁 finite difference points, which are labeled using the index 𝑖.

𝑑𝑌𝑠
𝑑𝑡

𝑖
= 𝜒𝑖

2
𝑌 𝑖+1
𝑠 − 2𝑌 𝑖

𝑠 + 𝑌 𝑖−1
𝑠

(𝑑𝑍)2
+ �̇�𝑖

𝑠𝑀𝑠
𝜌𝑖 (4)

𝑑𝑇
𝑑𝑡

𝑖
= Le 𝜒𝑖

2
𝑇 𝑖+1

𝑠 − 2𝑇 𝑖
𝑠 + 𝑇 𝑖−1

𝑠
(𝑑𝑍)2

+ 1
𝑐𝑖
𝑝
∑
𝑠

ℎ𝑖
𝑠�̇�𝑖

𝑠𝑀𝑠
𝜌𝑖 (5)

The number of indices here is becoming somewhat unreasonable, for which I apologise. Keep in mind that
the index 𝑖 tends to run over the spatial dimension of the problem, and that 𝑠 runs over the collection
of species. Note that the central differences require values from either side of the given node 𝑖. At the
boundaries of the calculation, we assume that the unknown 𝑇 or 𝑌 outside the domain is specified as a
boundary condition.

Implicit Time Advancement
In what follows we are going to construct a numerical method for seeking the steady-state concentrations
and temperature. To do this, it will be helpful to consider all the unknown variables in a node as members
of the vector 𝑼𝑗 = [𝑌0, 𝑌1, 𝑌2,…𝑇]. We then consider stacking up all of the equations from all of the
nodes, (over both 𝑖 and 𝑗), to create a large system of coupled nonlinear equations. The right-hand side,
or time-derivatives, of these equations is called the residual 𝑹.

𝑹𝑖
𝑗 =

𝑑𝑈𝑗

𝑑𝑡

𝑖

=

(
(((
(((
(((
(((
(((
(((
(((
(((
(((
(((
(((
(((
(𝑑𝑌0

𝑑𝑡
0

𝑑𝑌1
𝑑𝑡

0

⋮
𝑑𝑇
𝑑𝑡

0

𝑑𝑌0
𝑑𝑡

1

𝑑𝑌1
𝑑𝑡

1

⋮
)
)))
)))
)))
)))
)))
)))
)))
)))
)))
)))
)))
)))
)

(6)

Inside the slf program, both 𝑼 and the residual vector 𝑹 are stored as a single contiguous block of
numbers with the species and temperature for each node packed together. We will want to think about
𝑹 as a block vector, or a vector of vectors, where each node’s packed data is like a mini vector making up

3

the elements of the larger one. The numerical method is developed using a kind of implicit timestepping
approach, where the values of 𝑼 at the next timestep 𝑼𝑛+1 are evaluated using the residual at the next
timestep 𝑹𝑛+1.

𝑹 = 𝑑𝑼
𝑑𝑡

(7)

𝑼𝑛+1 = 𝑹𝑛+1 dt + 𝑼𝑛 (8)

Since 𝑹𝑛+1 is not known, it is evaluated using a first-order linearisation that introduces the Jacobian
matrix 𝜕𝑹

𝜕𝑼 .

𝑼𝑛+1 = [𝑹𝑛 + 𝜕𝑹
𝜕𝑼

(𝑼𝑛+1 − 𝑼𝑛)] dt + 𝑼𝑛 (9)

This matrix equation can be rearranged as follows, to create the following linear system problem for the
unknown change Δ𝑼 = 𝑼𝑛+1 − 𝑼𝑛.

[1
dt

𝑰 − 𝜕𝑹
𝜕𝑼

]Δ𝑼 = 𝑹𝑛 (10)

Construction of the Jacobian
At this stage an important property of the 1D reaction diffusion equations comes into play: That is, the
Jacobian matrix is block tridiagonal. What this means is that most of the matrix is occupied by zeros.
Only the central diagonal block, and the blocks on either side have any entries that are non zero. This
means that the entire matrix can be constructed and stored relatively cheaply, and then inverted exactly
using the block version of Thomas’s algorithm.

Constructing the Jacobian proceeds using the complex-step finite differencing method. The algorithm
is similar to a colour-mapping scheme, where a small imaginary component 𝜀 is added to the first mass
fraction 𝑼0 in every fourth node. Every fourth node because the stencils we use are three nodes wide,
and we want to compute the influence of each 𝑼 on the surrounding nodes’ 𝑹 without contaminating
influences. We then compute the residual and get the derivative as follows.

𝜕𝑹
𝜕𝑼

= ℑ(𝑹(𝑼 + 𝜀𝑖))
𝜀

(11)

These derivatives are inserted into the correct column of the Jacobian matrix, then the imaginary
components are cleared, then a new set of imaginary perturbations are applied to every fourth node but
shifted one node over, and the process is repeated twice more to get all of the matrix filled out for variable
𝑌0. Then the other mass fractions, and finally the temperature are treated with the same process.

Solution and Convergence
Solution of the flamelet equations begins with an backward-Euler timemarching scheme that constructs
and then solves the following linear system using a default timestep of dt = 1𝑒 − 6.

[1
dt

𝑰 − 𝜕𝑹
𝜕𝑼

]Δ𝑼 = 𝑹𝑛 (12)

4

After solving for Δ𝑼 , the field variables are corrected with no under-relaxation, and the loop repeats
until convergence. To assess this, at each step we compute a scalar quantity called the Global Residual
GR, which is defined as the L2 norm of the residual vector.

GR = √∑
𝑗

∑
𝑖

𝑹𝑖
𝑗𝑹𝑖

𝑗 (13)

The global residual at the beginning of the calculation is recorded, and at subsequent steps, we keep
track of the reduction in residual relative to its starting value. This quantity, the GR divided by the
initial GR is sometimes called the Global Relative Residual GRR. The user may set a target GRR to
stop the calculation at, or a default of 1e-10 is used.

Timestep Growth
slf borrows the timestep growth algorithm as the steady state solver in Eilmer. That is, once the Global
Relative Residual drops below a prespecified threshold (by default, 1e-2), the timestep begins to grow as
the residual drops further using the following relationship.

 double dtnew = dt*pow(GRRold/GRR, 1.6);
 dtnew = fmin(dtnew, 1.2*dt);
 dtnew = fmax(dtnew, 0.5*dt);
 dtnew = fmin(dtnew, 1.0);
 return dtnew;

As the residual drops further, this increases the timestep up to a maximum value of 1.0, and the identity
matrix term in Equation 12 becomes smaller relative to the Jacobian term. Eventually the equation
approaches a Newton’s method with quadratic convergence, and the steady-state is approached extremely
rapidly.

Anatomy of an Input File
An example input file for slf is shown below. These are in yaml format.

gas_file_name: "gm.lua" # GDTk gas model file
reaction_file_name: "rr.lua" # GDTk reactions model file

p: 49767.1 # Constant pressure over the domain
N: 64 # Number of finite-difference nodes
D: 2000.0 # Strain rate parameter

T0: 1400.0 # Left side temperature boundary condition
T1: 400.0 # Right side temperature boundary condition

Y0: {'N2': 0.767, 'O2': 0.233} # Left side species boundary condition
Y1: {'N2': 0.70, 'H2': 0.30} # Right side species boundary condition

Glossary of Variables

T Temperature (K)

p Pressure (Pa)

N Number of finite difference nodes

Z Mixture Fraction

5

GR Global Residual: GR = √∑𝑗 ∑𝑖 𝑅
𝑖
𝑗𝑅𝑖

𝑗

GRR Global Relative Residual: GR
GR0

dt Timestep for Implicit Time Advancement (sec)

𝑌𝑠 Mass fraction of species 𝑠

𝜒 Scalar Dissipation

𝐷 Strain Rate Parameter

�̇�𝑠 Molar Production Rate of species 𝑠 (mol/m³/s)

𝑀𝑠 Molar mass of species 𝑠 (mol/kg)

𝜌 Mixture density (kg/m³

Le Lewis Number

𝑐𝑝 Mixture specific heat at constant pressure (J/kg)

ℎ𝑠 Specific enthalpy of species 𝑠 (J/kg)

𝑼 Vector of unknown field quantities to be solved for: [𝑌0, 𝑌1, 𝑌2,…, 𝑇]

𝑹 Rate of change in time of unknown field quantities: 𝑹𝑗 = 𝑑𝑼𝑗
𝑑𝑡

Δ𝑼 Increment in U over an implicit time step

ℑ Function that returns the imaginary component of a complex number

𝜀 Perturbation sized used in estimating derivatives

𝑰 Identity Matrix

T0 Left side boundary condition temperature (K)

T1 Right side boundary condition temperature (K)

Y0 Left side boundary condition composition

Y1 Right side boundary condition composition

Explanation of Commonly used Index Quantities

i i refers to a specific node in the domain. It runs from zero to 𝑁−1.

j j refers to an entry in the individial node unknowns 𝑼 or 𝑹. It runs over the
number of species + 1 to include the temperature

s s refers to a species, typically in the mass fractions 𝑌 . It runs over the number
of species in the chemistry mechanism

n n is used to refer to the timestep in the section on implicit time advancement

References
[1] H. Pitch and N. Peters, “A Consistent Flamelet Formulation for Non-Premixed Combustion Consid-

ering Differential Diffusion Effects,” Combustion and Flame, vol. 114, pp. 26–40, 1998.
[2] R. A. W. M. J. M. S. Lapointe Y. Xuan, “A computationally-efficient method for steady-state flamelet

calculations,” LLNL-JRNL-807545, Mar. 2020.
[3] S. Winitzki, “A Handy Approximation for the Error Function and Its Inverse.” [Online]. Available:

https://scholar.google.com/citations?user=Q9U40gUAAAAJ&hl=en

6

https://scholar.google.com/citations?user=Q9U40gUAAAAJ&hl=en

	Abstract
	Quick Start
	Theory
	Numerical Method
	Implicit Time Advancement
	Construction of the Jacobian
	Solution and Convergence
	Timestep Growth

	Anatomy of an Input File
	Glossary of Variables
	Explanation of Commonly used Index Quantities

	References

