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Abstract

Impulse facilities provide a unique capability in being able to reproduce aspects
of the hypersonic flight environment in the laboratory. The usefulness of these
facilities is limited by non-ideal aspects of their operation and by significant gaps in
our understanding of these flows. In this thesis, simulations have been performed
of a reflected shock tunnel facility, operated at the University of Queensland, with
the aim of providing a better understanding of the flow through these facilities. In
particular, the analysis of the simulations focuses on the premature contamination of
the test flow with driver gas and the generation of the high levels of noise experienced
in the test flow. The substantial computational effort required by these calculations
has, in the past, meant that only parts of a facility have be modelled in any one
simulation. The assumptions associated with modelling only part of the facility has
meant that these simulations have not been successful in predicting either driver gas

contamination or noise levels.

The multi-block Computational Fluid Dynamics (CFD) code MB_CNS, which
is based on a finite-volume formulation of the compressible Navier-Stokes equations
was used in the calculations. As an alternative numerical technique, Smoothed Par-
ticle Hydrodynamics (SPH) was investigated for advantages that it may provide in
modelling flows involving gaseous interfaces. It was determined that this technique
is limited in its applicability to shock tunnel flows due to problems including the

treatment of solid boundary conditions.

The computational requirements of simulating a complete shock tunnel have
been approached with the use of large parallel supercomputers. Both MB_CNS and
the SPH code were parallelised using the shared memory approach of OpenMP and
the distributed memory approach of MPI. The performance of the parallel codes
are examined on various computers, including the APAC National Facility and the
QPSF Facility, located at the University of Queensland.

The shock wave induced deformation of bubbles, of both a light and heavy gas, is
examined as a test case for the shock tunnel modelling. This case has experimental
photographs that can be compared directly with the simulations. These simulations
demonstrate that MB_CNS can accurately model the shock induced instability and

deformation of interfaces between different gases.
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The simulations presented here assume an axisymmetric flow and mesh the com-
plete facility, from the driver section to the dump-tank. By doing this, the current
simulations eliminate many of the assumptions previously made in shock tunnel sim-
ulations. The simulations incorporate an iris-based model of the rupture mechanics
of the primary diaphragm, an ideal secondary diaphragm and account for turbulence
in the shock tube boundary layer with the Baldwin-Lomax eddy viscosity model.
Supporting these simulations are three sets of experiments, with different operat-
ing characteristics, that were conducted by Dr. D. Buttsworth in the Drummond
Tunnel facility. The results from these experiments are used as validation for the

simulations.

Through the shock tunnel simulations, a better understanding of the mechanisms
leading to driver gas contamination has been developed. It has been shown that the
contamination is driven by a complex interaction between the reflected shock and
the incident gases, which result in the generation of vorticity in the driver gas.
In the tailored case that was simulated, a vortex ring was shown to form at the
head of the driver gas, which moved along the centreline of the shock tube into the
test flow resulting in the observed contamination. Due to the complex, transient
nature of this process, it could not be predicted using simplified models, or even
numerical simulations using only a part of a facility. The instability resulting from
the interaction between the reflected shock and the contact surface is driven by the
same mechanisms that are studied in the simulations of the shock wave interaction
with the bubbles.

It is shown that the simulations performed in this thesis can provide an esti-
mate of the noise levels experienced in the test flows produced by shock tunnels.
This estimation is possible since the simulations include some of the noise produc-
ing mechanisms occurring throughout the facility. The generation of this noise is
demonstrated, along with its propagation into the test flow. The noise levels mea-
sured in the simulated test flow were in agreement with noise levels measured in the

test low of the Drummond Tunnel.
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CHAPTER 1

Introduction

Over the past 100years of aeronautics, the reproduction of the flight environment
in wind tunnels has played a fundamental role in the development of flight vehicles.
Wind tunnels have been used in the development of vehicles across a range of flight
conditions and flow regimes, including the Wright brothers flyer, the Bell X-1 and
the Space Shuttle Orbiter [85]. The most demanding flow regimes are those relating
to hypersonic flight. These high speed flows are experienced by vehicles travelling
to and from orbit. Research in this regime is required for the development of future
forms of aerospace propulsion, such as the Scramjet engine [181]. Physical exper-
iments on these vehicles can be carried out using models placed in ground based
impulse facilities such as shock tunnels and expansion tubes. Characterised by high
test flow speeds, of up to 13km/s, and short test times, of the order of 10 us to 10 ms,
impulse facilities are uniquely capable of generating high energy flows. Continuous
wind tunnels are not viable for use in the hypersonic flow regime due to their high
power requirements and the prolonged exposure of tunnel material to the extreme

temperatures that are generated during the processing of the test gas [105].

Griffith et al. [85] described the technical problems experienced during the first
re-entry flight of the Space Shuttle Orbiter. One problem resulted from a significant
difference between the predictions of hypersonic pitching moment measured in wind
tunnel tests of sub-scale models and the moment experienced in actual flight. As a
result of this difference, a body flap deflection of twice that predicted was required
in order to maintain the stability of the orbiter during re-entry. The design of the
orbiter was based on data obtained in wind tunnels, which could not reproduce all
of the real-gas effects present in the flight environment. Combining numerical simu-
lation with wind tunnel test data provides an effective method of extrapolating the
available test data to the design of vehicles. This approach was shown to be suc-
cessful in further research conducted on Space Shuttle re-entry aerothermodynamics
combining experimentation and numerical simulation [80, 241, 81]. Computer based
simulations have an important role to play in the interpretation of wind tunnel data

in the context of the flight environment.
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Much of the hypersonic test data used in aerospace research is obtained in free-
piston driven reflected shock tunnels. Full scale facilities around the world include:
T4 (The University of Queensland) [41], T3 (Australian National University, Can-
berra) [178], T5 (GALCIT, California Institute of Technology) [83], HEG (DLR,
Germany) [61], the Large Energy National Shock (LENS) tunnel (Cornell Aero-
nautical Laboratory) [34], Von Karman Gas Dynamics Facility (Arnold Engineering
Design Center (AEDC), Tennessee) [6], and HIEST (NAL, Japan) [163]. Research
in these facilities is often augmented with numerical simulations of the flows using
Computational Fluid Dynamics (CFD). An important component of the research
conducted relates to the relationship between numerical simulation and the physical
experiments. Numerical simulations aid in the interpretation of experimental results
and can be used to extend results obtained in impulse facilities to the real flight en-
vironment. Conversely, physical experiments in impulse facilities provide the data

required to validate the numerical techniques used in aerospace vehicle design.

In this thesis, numerical simulations of the flow through the Drummond Tunnel
facility have been developed. The Drummond Tunnel is a relatively low enthalpy
reflected shock tunnel facility and is one of the impulse facilities operated within
the Centre for Hypersonics at the University of Queensland [7, 54]. The simulations
aim to provide a better understanding of the performance of shock tunnel facilities.
In particular, the simulations focus on the premature contamination of the test flow
with driver gas and the generation of the high levels of noise experienced in the test

flow.

The shock tunnel simulations in this thesis use the multi-block CFD code MB_CNS
[114]. It is based on a finite-volume formulation of the compressible Navier-Stokes
equations. An alternative numerical technique, known as Smoothed Particle Hydro-
dynamics (SPH), was also investigated for the advantages that it may provide in
modelling flows involving gaseous interfaces. A CFD code based on the SPH tech-
nique was developed in order to assess the abilities of the technique in modelling

two dimensional compressible flow problems.

The substantial computational effort required by detailed simulations of shock
tunnels has meant that only parts of a facility could be modelled in previous studies
[43, 247, 240]. The simulations presented in this thesis use an axisymmetric mesh
covering the whole facility, from the driver section to the dump-tank and, in doing
so, eliminate many of the assumptions previously made in simulations of shock
tunnels. The simulations incorporate an iris-based model of the rupture mechanics
of the primary diaphragm, an ideal secondary diaphragm, and they also account
for turbulence in the shock tube boundary layers. The computational requirements

of solving transient flow fields on such large meshes have been approached with
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the use of large parallel supercomputers. Both MB_CNS and the SPH code have
been parallelised using the shared memory approach of OpenMP and the distributed
memory approach of MPI. The performances of the parallel codes are examined on
various computers, including the APAC National Facility and the QPSF Facility

located at the University of Queensland.

In support of the current numerical work, three sets of experiments, with differ-
ent operating characteristics, were conducted by Dr. D. R. Buttsworth in the Drum-
mond Tunnel facility. Measurements recorded throughout these experiments can be
compared directly with corresponding values from the simulations. In addition to
this, the shock wave induced deformation of bubbles, of both a light and heavy gas,

is examined as a multi-component gas test case for the CFD code MB_CNS.

1.1 Shock Tunnel Flow Characteristics

Although the shock tube concept was proposed in 1889 by Vieille, it was not until
the 1940s that a group at Princeton University laid down the foundations of modern
shock tube practice [98]. These facilities were operated by expanding a high pressure
reservoir of driver gas into a lower pressure test gas, thereby forcing a shock wave
through the test gas. This shock-accelerated gas, which is quasi-steady, is then
passed through the test section. This straight through configuration could produce
test flow stagnation temperatures of up to 600 K for typical durations of between
20 pus and 40 us [203].

In 1950, at the Cornell Aeronautical Laboratory (CAL), the addition of a simple
divergent nozzle to the end of a shock tube saw the creation of the first shock tunnel.
By expanding the supersonic flow behind the shock wave through this diverging
nozzle, the range of test Mach numbers was extended into the hypersonic range.

The trade off for the higher Mach numbers was a reduction in test times.

The shock tunnel was developed further by adding a convergent section to the
nozzle, thereby reflecting the shock back through the oncoming test gas. The re-
flected shock tunnel stagnates the test gas, forming a high temperature, high pres-
sure reservoir, which can then be expanded through a nozzle to produce the test
flow. This increased the energy of the gas in the nozzle reservoir, extending the
range of test Mach numbers achievable to 24 and extending the test flow duration
to 15ms [203]. Operation in the tailored interface mode enabled the flow duration
to be extended even further [248]. Further improvement in the operation of re-
flected shock tunnels was achieved through the addition of a free piston driver [219].

The free piston driver works by adiabatically compressing and heating the driver



4 Introduction

gas, thereby increasing the shock Mach number that can be achieved in the shock

processing of the test gas [220)].

The development work that has been carried out on the designs of shock tunnel
facilities has, over time, resulted in a significant increase in the range of test con-
ditions available to experimenters; however, there remains significant concerns over
the quality and usefulness of the test flows produced [105]. These flow quality issues
manifest themselves in differences between the test flows produced in shock tunnels
and the real flight environment. Further research into the operation of shock tun-
nel facilities is necessary to ascertain the causes of these differences and to develop

methods of reducing their effect.

At the University of Queensland, the Hyshot test programme has been conducted
in order to quantify the differences between the test flow produced in the T4 shock
tunnel, and atmospheric flight conditions [108]. This test programme aims to com-
pare the performance of the same prototype scramjet engine in the T4 shock tunnel
and in atmospheric flight on board a Terrior-Orion Mk70 sounding rocket. Numer-
ical modelling of shock tunnel flows can be used to approach the investigation of
these differences from another perspective, that is by investigating the non-ideal

processes that occur within shock tunnel facilities.

Shock tunnels, and impulse facilities in general, can only generate test flows of
very short durations. Therefore, careful consideration of the experimental conditions
are required in order to ensure that a steady flow can be established and maintained
for a sufficient duration to take measurements [130]. Depending on the operating
characteristics of the facility, the test flow may be limited by different mechanisms:
pressure changes due to tailoring waves or the reflected expansion, or driver gas
entering the test flow [212].

The test flows produced by high-performance reflected shock tunnels are also
affected by thermochemical effects. This results from the high temperatures in the
stagnated gas at the end of the tube, which is subsequently expanded to become
the test low. When this high temperature gas is expanded through the nozzle it is
effectively frozen at nonequilibrium conditions. The Drummond Tunnel experimen-
tation, and corresponding simulation, do not contain temperatures above 1600 K
and so issues associated with these effects are not addressed in this thesis. These ef-
fects would otherwise need to be accounted for in the numerical simulation through

the use of models for thermochemical nonequilibrium.

The quality of data obtained in impulse facilities for the purpose of studying
high-speed transitional flows may be compromised by the strong influence of laminar-

turbulent transition on the noise experienced in the test flow [172]. The test flow
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noise levels are often more than an order of magnitude larger than flows experienced
during flight [202]. Noise appears as fluctuations in the properties of the test flow
from the mean flow values, which occurs throughout the test time. This noise is
generated by non-ideal processes occurring throughout the operation of the facility,
including the growth of turbulent boundary layers and reflected shock interaction

processes, and propagates into the test flow.

The stagnation of the test gas with the reflected shock is an essential part of
the operation of reflected shock tunnel facilities. Many of the problems experienced
through the operation of these facilities result from the non-ideal interactions that
occur during this process. The reflection of the shock from the contoured nozzle
entrance results in the generation of flow fluctuations in the nozzle supply region and
the generation of vorticity near the nozzle centreline [111]. As the reflected shock
moves back upstream, the energy deficient boundary layer does not have enough
energy to cross the normal shock, and instead boundary layer material builds up at
the foot of the shock and is carried with it. This causes the flow to separate, and the
shock to bifurcate into a lambda structure [141]. As this structure moves upstream,
the flow through this bifurcated foot can be projected downstream relative to the
flow which is stagnated by the normal shock [240]. Further upstream, the reflected
shock reaches the incident contact surface. The subsequent interaction results in
the generation of a significant amount of vorticity in the driver gas at the interface.
In addition to introducing fluctuations to the nozzle supply region, these interaction

processes also result in the jetting of driver gas towards the test flow.

The full potential of free piston driven reflected shock tunnels in high enthalpy
operation has not been reached in practice due to the premature contamination of
the test flow with driver gas [221]. As a result, a significant amount of research,
both experimental and numerical, has been conducted into this phenomenon [228].
Skinner [212] obtained experimental evidence of driver gas contamination in the T4
shock tunnel using a mass spectrometer in the test flow. This data has proven diffi-
cult to interpret, although the experimental study was not supported by numerical
simulations. The mechanisms which were believed to contribute to the premature
contamination of the test flow with driver gas were outlined. Skinner concluded
that the jetting of driver gas through the initial opening of the diaphragm was the
driving mechanism and the reflected shock interaction processes were not thought
to be responsible. The simulations performed in this thesis aim to investigate the

mechanisms that lead to driver gas contamination.
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1.2 Numerical Modelling of Shock Tunnels

If impulse facilities are to be used to their potential in the reproduction of hypersonic
flight conditions, a greater understanding of their operation is required. Numerical
simulations have the potential to significantly improve our understanding of shock
tunnel flows, allowing the investigation of the causes of present limitations and the

development of improvements to the facilities.

Computational modelling of these facilities provides a useful method for investi-
gating the problems associated with the operation of shock tunnels since they are not
subject to the experimental difficulties experienced with the real facilities. Such dif-
ficulties include the short flow durations and the extreme properties of the gases. In
addition to this, numerical simulations can provide information on the flow through-
out the whole facility, including the development of the flow along the inside length
of the shock tube. In physical experiments, measurements can only be recorded at
particular points in the flow where probes are located and, for practical reasons,
only a limited number of these probes can be used in the flow in any experiment.
Experimental results are complicated as the presence of the probes themselves has
an effect on the flow and their measurements are affected by experimental noise.
The simulations can aid in the interpretation of experimental results by providing
information on other flow properties at the location of experimental probes and can

be viewed in the absence of experimental noise.

Numerical simulations allow fine details of the operation of the shock tunnels
to be investigated and, since numerical simulations are not limited by the physical
arrangement of the facilities, they can be used to consider variation in the operating
conditions outside of those already prescribed. They can also be used to investigate
the effect of modifications to the facilities, thus reducing the associated expense and

risk of experimental development [44].

Further, numerical simulations can be used to bridge the gap between the test
flows produced by shock tunnels and the real flight environment. By producing
a virtual shock tunnel, and thereby virtual test flows, experimental results can be
compared with a simulated test flow, rather than an idealised representation. The
differences between the simulated shock tunnel test flow and the simulated flight

environment can then be identified and studied.

A demonstration of a virtual shock tunnel flow is shown in Figure 1.1. The
upper half of the frame shows a shadograph image of an Apollo re-entry vehicle
model during free flight in a wind tunnel at the Arnold Engineering Development
Center. The lower half of the frame shows the same vehicle in a virtual shock tunnel

test flow. The end section of the shock tunnel nozzle can be seen in the frames.
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Figure 1.1: Demonstration of a virtual shock tunnel flow. The upper half of the figure
shows shadograph image a model of an Apollo reentry vehicle in a wind tunnel (reproduced
from AEDC Photo #67-0441 [6]) and the lower half of the figure shows a similar model in
a virtual shock tunnel test flow. The left side shows the model during flow development
and the right side shows the model during the steady test period.
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Limitations of Previous Modelling

Detailed analytical and empirical based models of the flow of gases in impulse fa-
cilities have been developed. An outline of these models is provided in Sudani and
Hornung [228]. These models have included attempts at the prediction of driver
gas contamination, but they have never been successful across a range of operating
conditions. The investigation of these facilities through more complex and detailed
numerical simulation has been made viable through the combination of computers
with sufficient capability and the development of suitable numerical algorithms. A
significant volume of research has since been published based on the numerical sim-
ulation of shock tunnel facilities. To date, this modelling has predominantly been
in one of two categories: quasi-one dimensional simulation and axisymmetric simu-
lation. Full, three-dimensional flow simulation of a complete facility remains at the

limit of present computing technology.

Quasi-one dimensional simulations model an entire shock tunnel facility, with the
assumption that the flow properties vary only along the length of the tube. Mass
loss models must be used to model the effect that the boundary layers have on the
core flow [64]. They are computationally efficient and have been shown in previous
studies to be effective in predicting the performance of shock tunnel facilities [113];
however, since the variation of flow properties across the radius of the facilities is
neglected, they cannot be used to investigate fundamentally multi-dimensional flow

features, including driver gas contamination and noise generation mechanisms.

Attempts at the axisymmetric simulation of reflected shock tunnels have typically
only modelled particular parts of a facility and, in doing so, usually focused on one
flow process in isolation. Typically the very end of the shock tube and the nozzle
are modelled and an inflow condition derived from empirical relations is used at
the upstream end of the flow domain [206, 246, 45]. The results obtained in the
simulations are heavily dependent on these assumptions. In the past, this has been

necessary due to the lack of computing power available.

A large proportion of axisymmetric simulations have aimed specifically at mod-
elling the interaction of the reflected shock with the boundary layer, with the aim
of interpreting its effect on driver gas contamination [246, 8]. These simulations
have been unable to reproduce the experimental measurements of driver gas con-
tamination with any certainty. The complexity of the driving mechanisms and the
dependence on the flow development through the whole facility are thought to be

responsible for this.
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Numerical Modelling in This Thesis

The simulations presented in this thesis extend the numerical study of shock tunnel
facilities by modelling a complete facility, from driver section to dump tank. By
making fewer assumptions, the simulations are expected to be more effective at
predicting the changes in the performance of the facility caused by modifications to

the operating conditions or the facility itself.

Simulation Using MB_CNS

The main shock tunnel simulations performed in this thesis use the multi-block CFD
code, MB_CNS [114]. This code is based on a finite-volume formulation of the com-
pressible Navier-Stokes equations. It has a shock-capturing capability through the
use of a limited reconstruction scheme and an adaptive flux calculator. The adap-
tive flux calculator switches from AUSMDYV [238] to the Equilibrium Flux Method
(EFM) [139] where large compressive velocity gradients are detected. The numerical

details of this code are discussed in Chapter 3.

There are a number of additions to MB_CNS that have been included in this
study to specifically address the simulation of shock tunnel facilities. The Baldwin-
Lomax eddy viscosity model [11] was used to model the effect of turbulence in
the boundary layers. Coefficients used in the model were first obtained from the
literature [121] and then were adjusted using the experimental results. Multiple gas
components were modelled by solving additional conservation equations for each
of the components. An iris based diaphragm rupture model was included for the
primary diaphragm, which defined the opening according to the profile measured
experimentally by Rothkopf and Low (1974) [197]. An ideally rupturing secondary

diaphragm was also included.

Simulation Using SPH

The characteristics of the contact surface between the driver and driven gases can
have a significant effect on the operation of a shock tunnel. This interface has
complicated properties and can be susceptible to hydrodynamic instabilities. A
computational technique that is based on the Lagrangian description of fluid flow
may provide advantages in modelling these flows, where fluid interfaces are impor-
tant. As a result, the Smoothed Particle Hydrodynamics (SPH) method, being
Lagrangian in nature, may be effective in shock tunnel modelling. In this method
fluid interfaces are maintained through the movement of the elements of fluid, which
are referred to as particles. The particles move with the flow and so the particles

representing the fluid on one side of the interface will remain on that side.
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Quasi-one dimensional CFD codes based on the Lagrangian description, such
as L1d [111], have been shown to be effective in shock tunnel simulation and are
computationally efficient. The investigation of the SPH method for its applicability
to the simulation of shock tunnel flows aimed to extend these qualities to multi-
dimensional modelling. The method is suitable to implementation in parallel and
so the code will also be discussed further in the context of parallel computing. Even
though a lot of effort was expended on the the SPH code, it was found to not be

suitable for the main shock tunnel simulations discussed in Chapter 7.

Solution of the Flow Field in Parallel

In order to model an entire shock tunnel facility with sufficiently fine detail, large
computational meshes are required. The fine mesh simulations of the complete
Drummond Tunnel facility used in Chapter 7, require one month of CPU time,
even on the fast processors of the APAC National Facility. Running the solution
in parallel on four processors reduces this time to one week, which is a much more
practical time frame using these simulations. If these simulations were run in parallel
using 24 processors they could be reduced to the period of about one day. As a result
of exploiting parallelism in the solution, the grid resolution achieved across the entire
facility is comparable to, or better than, the grid resolution achieved for any previous

numerical studies which simulated only a part of the facility.

Additional work, known as overheads, are incurred in managing the parallel
execution and results obtained by each of the processors must be shared with the
others. When sections of the code must be solved on a single processor, additional
processors remain idle. These factors introduce work that would not otherwise have
to be done and although the turn-around time may still be reduced, the parallel

solution can be inefficient and the time advantage of parallelism greatly reduced.

1.3 Experimentation and Validation of the Simu-

lations

In order to achieve a reliable representation of the flows, numerical simulations of
shock tunnel facilities must be validated using experimental results. This is essential
since there are many factors that can affect the accuracy of the simulations, including
applicability of the gas models, the correct representation of the geometry of the

facility and the validity of the assumptions that are made.

MB_CNS has been validated using many test cases outlined by Jacobs [111, 114].

In addition to this, the code has been used in many previous numerical studies, for
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example, the simulation of expansion tube flows [113], which further demonstrates its
ability with a range of compressible flow problems. Two further pieces of validation
of the numerical techniques used are provided in this thesis: the interaction of
shock waves with cylindrical bubbles and the experimental results obtained from

experiments conducted in the Drummond Tunnel facility.

The Drummond Tunnel

This study uses the Drummond Tunnel to establish modelling techniques because it
is relatively simple in operation, using a single, mechanically pierced diaphragm. It
is also small in size, meaning that fine resolution of flow features can be achieved.
The Drummond Tunnel operates in a regime in which the limited stagnation tem-
peratures mean that the simulations are not dependent on the modelling of the
thermochemical effects of molecular excitation, ionization and dissociation. Oper-
ating at relatively low enthalpy, the facility appears less susceptible to driver gas

contamination than the larger T4 free piston shock tunnel.

Three series of experiments were performed in this facility. These experiments
used two different operating conditions, one roughly tailored and the other over-
tailored. The experiments provide sets of measured data which can be used to
validate the numerical simulations. The simulations are provided with only the
geometry of the facility and the initial operating conditions. This means that,
in order to reproduce the observed experimental results, the modelling techniques
implemented must be accurate, the assumptions made must be appropriate and all

of the relevant physics must be included.

Shock Induced Deformation of Bubbles

The accurate modelling of the interfaces separating multiple component gases is
essential to the shock tunnel flow simulations. The interaction of shock waves with
bubbles of light gas and heavy gas is studied as a test case for the ability of the
code in modelling the shock induced deformation and instability of these interfaces.
Unlike the interface interactions occurring in a shock tunnel, this case has detailed
experimental photographs, obtained by Haas and Sturtevant [89], which can be

compared directly with the simulations.
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1.4 Outline of the Thesis

The primary motivation for this thesis is to provide a better understanding of the
flows in shock tunnel facilities through the development of numerical simulations.

Towards this, the specific aims of this thesis are:

1. To develop time dependent simulations of a reflected shock tunnel facility
operated at the University of Queensland, covering the complete facility, from

the driver section through to the dump-tank.

2. To use these simulations to investigate the non-ideal flow phenomena that
occur in shock tunnel facilities. This investigation focuses on the premature
contamination of the test flow with driver gas and the generation of the high

levels of noise experienced in the test flow.

3. To develop efficient parallel versions of the CFD code MB_CNS, using OpenMP
and MPI, in order to use the large computational meshes that are required to

simulate the complete facility with sufficient resolution.

4. To investigate the applicability of the numerical technique known as Smoothed
Particle Hydrodynamics (SPH) by developing a full CED code based on the
technique and applying it to compressible flow test cases. As this technique is
computationally expensive, it is also necessary that this code be able to solve

the flow field in parallel.

The thesis is arranged as follows:

Chapter 2 discusses the operation of a reflected shock tunnel, first assuming ideal
operation and then examining the non-ideal processes occurring during the
operation of a real shock tunnel. The premature contamination of the test
flow with driver gas is discussed in detail because the investigation of this
phenomenon is one of the principal subjects of the simulation and discussion
covered in Chapter 7. Chapter 2 also describes the experiments that were
performed in the Drummond Tunnel by Dr. D. R. Buttsworth and the results

obtained by these experiments.

Chapter 3 describes the numerical methods used by both MB_CNS and the SPH
code. It is demonstrated that, although the MB_CNS uses a finite volume Fu-
lerian formulation and SPH uses a particle-based Lagrangian formulation, the
two approaches model what are fundamentally the same equations describing
the motion of a compressible fluid. A review of previous numerical models of

reflected shock tunnel facilities is also provided in this chapter.
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Chapter 4 provides a review of parallel computing technology, in the context of
CFED applications, both in software and hardware. This review provides a
basis for the selection of the most suitable methods for compressible CFD ap-
plications. The importance of stable standards in computing is demonstrated
and, as a result, OpenMP (using shared memory computers) and the Message
Passing Interface (MPI) (allowing the use of distributed memory) are selected

for use in this thesis and are investigated in Chapter 5.

Chapter 5 discusses the implementation of parallelism. A simple program for cal-
culating 7 is used to introduce the concepts. The parallelisation of the CFD
codes (MB_CNS and the SPH code) is then described in detail. Following this,
the performance of MB_CNS in parallel using the QPSF SGI Origin 3400 and
the APAC Compaq Alphaserver SC is examined. As the SPH code is not used
in the shock tunnel simulations, the parallel performance of the SPH code is

discussed in Appendix A.

Chapter 6 describes simulations of the interaction of shock waves with cylindrical
bubbles of light and heavy gases, which is used as a test case. The simulation
of multiple component gases, in which the interface between the gases experi-
ence hydrodynamic instability, is demonstrated. With the aid of experimental
photographs, simulating this interaction process provides a means of validat-
ing the numerical techniques used in the shock tunnel simulation in Chapter 7.
Unlike the shock tunnel flows, this case has experimental data in the form of
Shadowgraph images, which can be compared directly with the simulations.
MB_CNS is shown to provide accurate models of the shock-induced instability
and deformation of interfaces between different gases. This interaction process

also provides an interesting transient fluid dynamics case in its own right.

Chapter 7 describes simulations of the Drummond Tunnel facility. The details of
the setup of the simulations in MB_CNS are described. Following the valida-
tion of the simulations with the experimental results described in Chapter 2,
the simulations are used to investigate the flows through the shock tunnel. The
simulation results are analysed in the context of particular processes occurring
in the facility, focusing on the mechanisms leading to the contamination of the
test flow with driver gas and the generation of the high levels of noise observed

in the real facility.

Chapter 8 provides conclusions, outlines the contributions and the limitations of
the simulations presented in this thesis and provides suggestions for future

work in this area.
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Introduction




CHAPTER 2

Shock Tunnel Theory and

Experimentation

The development of reflected shock tunnels has been driven by the requirement
for producing high speed, high temperature flow in a ground based facility. The
early history of impulse facilities, leading to the development of the reflected shock
tunnel was described briefly in Chapter 1. Despite the development work that has
taken place over time, aspects of the operation of reflected shock tunnels are not
fully understood and the potential for significant development work remains. This
chapter will begin by discussing the operation of a reflected shock tunnel. Following
this, Section 2.2 will continue by describing experiments that were conducted in
the Drummond Tunnel, a small reflected shock tunnel operated at the University of

Queensland.

2.1 Shock Tunnel Operation

In this section, the operation of a shock will be described, first using idealised
descriptions and then examining some of the non-ideal flow phenomena that affect
their operation. Particular attention will be given to the processes that are thought

to contribute to the premature contamination of the test flow with driver gas.

2.1.1 Ideal Operation

The starting condition for an idealised shock tunnel is shown in Figure 2.1. A high
pressure driver gas is separated from a low pressure driven gas by the primary
diaphragm. The shock accelerated driven gas becomes the test gas, which flows
through the test section. The secondary diaphragm is used to separate the driven

gas from the initially evacuated test section.

The operation of these facilities is initiated by the rupture of the primary di-
aphragm releasing the high pressure gas into the low pressure gas. Once released,

the driver gas expands into the driven gas. This sends a shock wave through the
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driver section shock tube nozzle and test section

] &

primary diaphragm secondary diaphragm

Figure 2.1: Initial conditions and layout for an idealised shock tunnel.

driven gas, compressing and heating it. The shock accelerates the driven gas to-
wards the downstream end of the shock tube. Following the shock wave along the
tube is the contact surface (or interface) between the driver and driven gases. This
state is shown in Figure 2.2, in which the incident shock and the contact surface are

moving along the tube.

expansion contact surface shock

=

Figure 2.2: Idealised shock tunnel with the incident shock and contact surface travelling
downstream. The unsteady expansion is seen eminating from the primary diaphragm
location.

Under ideal conditions, such as flow without wall boundary layers or real gas
effects, the shock wave and contact surface would be planar, moving at constant ve-
locity, and the flow between the two waves would be uniform. Without the influence

of boundary layers, the flow is one-dimensional.

Once the shock reaches the end of the tube it reflects off the end wall and travels
back upstream through the tube and into the oncoming test gas; this reflected shock
brings the test gas to rest. This stationary, high temperature, high pressure gas is
then expanded through a converging-diverging nozzle into the test section, providing
a high velocity, high Mach number test flow. This state is shown in Figure 2.3, in
which the test gas supply is stagnated at the end of the tube and is being expanded
through the nozzle as the test flow. Ideally the test time is limited by the finite

mass of the test gas, lasting until the driven gas is exhausted.

expansion contact surface shock

2

Figure 2.3: Idealised shock tunnel with the incident contact surface, the reflected shock
travelling back upstream and the test gas being expanded through the nozzle into the test

section.
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At a later time the reflected shock crosses the contact surface. This is an im-
portant interaction in the operation of the shock tunnel. Depending on the initial
conditions, additional waves may be generated by this interaction, known as tailor-

ing waves, which will be described in Section 2.1.2.

In the x-t diagram, the upstream end of the unsteady expansion of the driver
gas can be seen to reflect from the upstream wall of the driver section and travel
rapidly down the tube as a u+a wave. These waves can arrive at the stagnated test

gas early enough to end the test time for some operating conditions.

In an idealised shock tunnel, the test flow is steady and lasts from the time that
the shock reflects from the end wall of the tube until either [248]:

1. all of the stagnated test gas has expanded through the nozzle
2. tailoring waves propagate into the test flow

3. the reflection of the unsteady expansion reaches the test flow

2.1.2 Tailoring

The use of tailored conditions in a shock tunnel was first described by Wittliff [248].
The conditions of the driver and driven gases are said to be tailored if no additional
waves are created by the interaction of the reflected shock with the incident contact
surface. Tailored conditions are characterised by the ability to produce a steady
nozzle supply pressure and an interface that is stationary following the passage of
the reflected shock. If the reflected shock is to pass through the interface without
generating any additional waves, the driver and driven gases must be at equal pres-
sure and velocity behind the reflected shock [27]. This means that the condition for
tailoring is that the pressure and velocity change across the reflected shock should

be the same in the two gases [248].

When the reflected shock reaches the oncoming contact surface, at tailored con-
ditions the momentum change imparted by the shock on both the driver gas and the
driven gas is the right amount to stop both of them. With over-tailored operation,
the driver gas has too much momentum after the interaction and continues forward
into the stagnated driven gas. With under-tailored operation, the driver gas does
not have enough momentum to come to rest and is pushed back, ending up with
backward velocity after the passage of the shock. Figure 2.4 shows x-t diagrams for

the three tailoring cases.

In the over-tailored mode of operation, a series of reflected shocks are produced
which move into the nozzle supply region. This mode of operation allows the con-

tact surface to continue to move towards the nozzle, increasing the likelihood of
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contamination. In the over-tailored case, the reflected waves quickly propagate into

the stagnated test gas, and end the test time early.

In the under-tailored mode of operation, the interaction results in expansion
waves being propagated into the nozzle supply region. This causes the nozzle supply
pressure to decrease, but does cause the contact surface to move back upstream,

potentially reducing the chance of driver gas reaching the test flow.

(a) Undertailored case (I, > Ij) (b) Tailored case (I, = I;) (c) Overtailored case (I, < I3)

Figure 2.4: x-t diagrams showing under-tailored, tailored and over-tailored conditions at
the reflected shock, contact surface interaction. Reproduced from Matsuo [144].

Until around 1992 it was believed that running a shock tube with the driver
undertailored would help to prevent driver gas contamination. Causing the contact
surface to receed after the passage of the reflected shock was thought to prevent the
driver gas from being able to penetrate the bifurcated reflected shock and contam-
inate the test flow. This is now not believed to help the problem significantly and

most shock tunnels are run with tailored conditions.

2.1.3 Non-ideal Operation

The test times produced by real shock tunnel facilities are a fraction of those pre-
dicted by idealised models of their operation. This reduction in test time is caused
by non-ideal processes that occur during the operation of a shock tunnel. These pro-
cesses are predominantly driven by the formation of viscous boundary layers on the
walls of the shock tube. These boundary layers are formed as the shock propagates

along the tube.

The theory of Mirels [148] has been used extensively to estimate the effect that
viscous losses have on shock tunnel operation [206, 240]. This theory estimates the
amount of test gas lost to the boundary layer as a function of the shock Mach num-
ber, the test gas density and the tube geometry. The theory of Mirels is supported

by the experimental observations of Glass and Patterson [79)].

The contact surface can be thought of as a piston driving the shockwave. In

this analogy, the contact surface would be a leaky piston, in that mass is being
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removed into the boundary layer at the contact surface [148, 138]. The boundary
layer material moves more slowly than the contact surface and so, this driven gas
is overtaken by the driver gas. This flow of material from the test gas, around the

contact surface and into the driven gas causes the contact surface to accelerate [255].

The separation distance is the distance between the shock and contact surface.
In an ideal shock tunnel, the separation distance increases as a linear function of the
distance from the wall. The effect of the viscous boundary layers, acts to reduce the
separation distance through the attenuation of the shock and the acceleration of the
contact surface. Mirels [147] showed that, at some limiting distance, the test mass
flowing into the boundary layer would be equal to the test gas flowing across the
shock, resulting in a steady separation distance. As the length to diameter ratio of
the shock tube is increased and as the initial pressure in the shock tube is reduced,

the boundary layer effects become more pronounced [65, 147].

This attenuation results in a loss of test time as the separation distance is de-
creased. Hooker [104] provides that, as a general rule, the actual test flow is about
one-third to one-quarter of the theoretical prediction. It also causes total enthalpy
to be lost and the flow conditions in the test section to become unsteady [248]. The
growth of this boundary layer, in the region between the shock and the contact
surface, results in a slight increase in the pressure through this region as a function
of the distance from the shock [198].

Skinner [212] states that the loss of test gas is predominantly from near the
upstream end of the test gas slug. As a result of this Skinner believed that the test

gas lost to the boundary layer is likely to be unusable in the test section.

The non-ideal operation is depicted in the x-t diagram in Figure 2.5. Like the
idealised x-t diagram, the motion of the shock and the contact surface can be seen;
however, in this figure the shock is shown to decelerate and the contact surface is
shown to accelerate and mix as the flow propagates along the tube. The resulting

decrease in the separation distance, and therefore test time, is evident.

Turbulence in the Boundary Layers

The boundary layers in the Drummond shock tunnel resulting from the flow condi-
tions studied in this thesis are almost completely turbulent. Assuming a transition
Reynolds number of 1 x 105, the boundary layers undergo transition at a distance of
15mm from the incident shock position. Turbulence in the boundary layers along

the shock tube have a significant effect on the operation of the facility.

The effect of turbulent boundary layers on shock tunnel flows was investigated

by Mirels [148]. Turbulence in the boundary layer increases transfer rates to the
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Figure 2.5: x-t diagram of a non-idealised shock tunnel, showing the attenuation of the
shock and acceleration of the contact surface. The mixing at the contact surface is also
shown. Reproduced from Dewey and Anson [57].

boundary layer increasing these effects. Mirels demonstrated cases in which the
influence of turbulent boundary layers reduced the test time flow duration achieved

to a fraction between 0.1 and 0.5 of the theoretical value.

The theory of Mirels [148], commonly applied to laminar boundary layers, can
be applied to turbulent boundary layers. A later study by Fuehrer [72] measured
the test time obtained in both hydrogen and air in a high pressure shock tunnel
to be considerably less than that predicted by Mirels’ turbulent boundary layer
theory. This conclusion was also reached by the experimental study of Jacey, Jr.
[117]. Fuehrer [72] proposed modifications to the theory of Mirels to account for this
difference. Other studies of the effect of turbulent boundary layers were conducted
by Bazhenova et al. [12] and Dumitrescu, Brun and Sides [66].

A laser-induced fluorescence image of an incompressible turbulent boundary layer
is shown in Figure 2.6. This figure qualitatively demonstrates the significant differ-

ences between a turbulent boundary layer and the laminar boundary layer.

2.1.4 Diaphragm Rupture

In almost all shock tunnels and expansion tubes, the diaphragm initially separating
the driver gas from the driven gas is made of metal. The use of a metal diaphragm
means that the initial conditions in these facilities are very different to an instanta-
neous removal of the separation between the two gases. The actual opening process

is gradual and is dependent on the complex manner in which the metallic diaphragm
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»

Figure 2.6: A laser-induced fluorescence image of an incompressible turbulent boundary
layer. The flow is from left to right. The Reynolds number based on momentum thickness
is 700. Reproduced from Wilcox [244].

deforms and ruptures.

It is a common practice to score the diaphragm material. In the experiments
used in this study, the rupture of the diaphragm was initiated with the piercing
of the diaphragm with an acuated spike. Scoring and piercing are used in order
to produce a more repeatable and symmetrical rupture process. The diaphragm
eventually tears along lines of natural or enforced weakness, folding outwards as

petals of diaphragm as the driver gas spills through it.

The rupture of the primary diaphragm has a significant effect on the resulting
flow. For this reason, simulations of the complete shock tunnel facility should include

a model that accounts for the effect of the rupture process.

The diaphragms that were used in this study are 1 mm thick aluminium, separat-
ing a 59 mm driver section from a 62.2 mm shock tube and are pierced to initiate the
rupture process. The literature review is limited to the characteristics of diaphragms
similar to these. Used diaphragms from the Drummond Tunnel were investigated,
indicating that the rupture process is roughly symmetric, resulting in petals that
are roughly the same size and the opening process leaves a circular cross-section

averaging 57 mm in diameter.

With almost all shock tube flows being initiated with the rupture of a metal
diaphragm, and little being known about, not only the mechanics of the process,
but its effect on the resulting shock tube operation, experimental studies aimed
to provide an understanding of the process. Experimental studies attempting to
understand, and quantify, the process, included: White [243]; Campbell, Kimber
and Napier [36]; Simpson, Chandler and Bridgman [209]; Rothkopf and Low [197];
and Hickman, Farrar and Kyser [99]. An aim of these studies was the development
of simplified analytical models of the effect of the rupture process on the flow.
These models were often inaccurate when applied across a variety of diaphragm

characteristics and flow conditions.
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In the most relevant study, Rothkopf and Low [197] performed an experimental
study of the opening process of various types of diaphragms. Their study included
a qualitative analysis of how diaphragms with different characteristics ruptured and
a quantitative study of the change in projected area through the open aperture as
a function of opening time. The projected area was measured by continuously mea-
suring the amount of light passing through the diaphragm using a photomultiplier.
Their study considered the rupture of various thicknesses of diaphragms made of
aluminium, copper and brass, using a 54mm square shock tube section. Figure 2.7
shows the profiles of diaphragm opening times that were obtained by Rothkopf and
Low [197]. In the figures, both the areas and times are normalised by their final
values. The similarity of the effect of the different diaphragms is evident in this
figure, as all of the profiles have the same general shape: at first there is a slow
increase in the open area, but after the area has opened to around 20% of the final
area, the rate of opening is roughly linear. The rate at which the opening occurs
varies between diaphragm materials, thicknesses, and the shape of the aperture. For
a given size, the rupture process is similar, except that the process is slower than for
an equivalent square cross section. Towards the end of the opening process, the rate
of opening again slows. Of particular interest to this study is the profile of ruptured
area versus time of the aluminium diaphragms observed in their study. This profile

is shown in Figure 2.8, along with the profile for the copper diaphragm.
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Figure 2.7: Normalised opening time curves for square aluminium, copper and brass
diaphragms of varying thicknesses and apertures. The graph shows the similarity of the
profile of open area versus time for diaphragms with different characteristics. Reproduced
from Rothkopf and Low [197].

The results of Rothkopf and Low [197] indicate that, being relatively brittle, very
little bulging of the diaphragm is observed with the aluminium diaphragms. The
behaviour of copper and brass diaphragms is very different and significant bulging

of these diaphragms was observed. The thickness of the diaphragm determined
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Figure 2.8: Normalised profile of open area versus time for aluminium diaphragms. Re-
produced from Rothkopf and Low [197].

the pressure at which the diaphragm ruptured, but did not have an affect on the
amount of bulging observed. The aluminium diaphragm, unlike the other metals,

was observed to rupture in a symmetric manner.

In a later paper Rothkopf and Low [196] examined the period of shock formation
and the resulting initial shock speeds in detail. The initial shock speeds were low and
approached the ideally predicted level over a distance quoted as the shock formation
distance. This distance was found to be proportional to the effective opening time

of the diaphragm and inversely proportional to the average of the sound speeds of

the driver and driven gases.

In a real shock tube, as with the ideal representation, the primary shock becomes
planar very quickly. This distance is a function of the opening time [209], but is
usually within two tube diameters of the diaphragm [35]. The development of the

primary shock following the rupture of the diaphragm has been described by Petrie-
Repar [176].

The contact surface is also initially distorted due to the way the gas spills through
the slow opening diaphragm. The majority of the distortion occurs as the driven
gas and the driver gas spills through the diaphragm opening. The contact surface
is also affected by its interaction with the spherical parts of the shock, which reflect
back and forth across the tube. The dynamics of the metal material fragments
broken from the diaphragm also cause distortion of the contact surface. Unlike the
shock, the contact surface is not stable and does not inherently become planar with
time. The development of the contact surface as it progresses along the shock tube
is discussed in Section 7.3.6.

In addition to the experimental studies, further insight into diaphragm rupture
mechanics was sought in numerical simulations. Early simulations were performed

by Satofuka [201] and Outa, Tajima and Hayakawa [169], who modelled the opening
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diaphragm as an iris.

Later, Cambier, Tokarcik and Prabhu [35] performed axisymmetric simulations
of the flow resulting from a gradually opening diaphragm. Their simulations demon-
strated that: the primary shock becomes planar very quickly; the contact surface
forms a complex shape distorted by the rupture process; and showed the complicated
wave structure behind the contact surface dominated by a Mach disk. It was noted
that that contact surface did not become planar with time, but would continue to

evolve along the shock tube.

Petrie-Repar [176], and Petrie-Repar and Jacobs [177], solved the mechanics of
the rupturing diaphragm using an unstructured, finite-volume code. The simulations
achieved a high resolution through the use of an adaptive mesh. The simulations
were inviscid and were only concerned with the early development of the flow fol-
lowing the rupture of the primary diaphragm. This study investigated the effect
of varying the initial pressure ratios and the diaphragm opening time. A sequence

from a simulations is shown in Figure 2.9.

20 ps 140 us

40 us

i -

55 27 2.9 25 57 29

Figure 2.9: Figure reproduced from Petrie-Repar [176] demonstrating the flow resulting
from the iris based diaphragm rupture model used.

Additional simulations were performed in Petrie-Repar [176]; however, these
simulations were based on the rupture of the thin secondary diaphragms made from
Mylor. These simulations are made around two assumptions: the first model as-
sumes that the diaphragm vaporises immediately after the arrival of the incident
shock, and the second model assumes that the diaphragm shatters into a number of

pieces which can be treated as rigid bodies.
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Rothkopf and Low [197] made experimental observations using similar diaphragms
to the ones used in the Drummond Tunnel (aluminium material; Imm thickness;
54mm square section instead of a 62.2mm circular section; pre-scored instead of
pierced). It is thought, based on their observations that the characteristics of the
rupturing process can be captured relatively well with an iris based model. The rup-
ture is relatively symmetric, does not involve a significant bulging of the diaphragm,
and with this small amount of deformation, a small amount of energy taken out
of the flow. In effect the diaphragm folds outward gradually increasing the cross
sectional area through which driver gas can flow through, much like the iris model

predicts.

Zeitoun, Brun and Valetta [254] account for the effect of the rupture of the
primary diaphragm in their one dimensional model, stating that it results in a

strong acceleration of the gas, followed by a slow deceleration.

The implementation of the iris based model is described in Section 7.1.4 and the

flow resulting from the used of this model is described in Section 7.3.1.

2.1.5 Shock Reflection

When the shock reaches the end of the shock tube it reflects from the end of the tube
back into the test gas. This means that the shock must reflect from the upstream
end of the nozzle. Some facilities, such as the Drummond Tunnel, have a smooth
convergent upstream section to the nozzle, while others have a flat end wall. The
requirement, for the nozzle on the end of the shock tube means that the shock
reflection process is a complex process; however, the inherent stability of the shock

means that it will rapidly coalesce and become planar.

Many numerical studies examining the shock reflection process have been con-
ducted, including Lee [129], Cambier et al. [35], Jacobs [111], Craddock [53] and
Nishida and Kishige [164]. The details of the shock reflection process are discussed
in these studies. These studies have achieved agreement with experimental pho-

tographs.

The reflection process has been observed to produce a vortex in the stagnated
flow near the centreline [35, 111]. This vortex has been observed to form during
the reflection from different types of nozzles. He [127] observed the production of

significant levels of noise in the stagnated gas resulting from this reflection process.

In most facilities, the ratio of the nozzle throat area to the shock tube cross
sectional area is small enough that the effect of the air going into the nozzle is not
significant and the shock is almost completely reflected, creating an almost stagnant,

compressed gas at the end of the shock tube. The strength of the shock adjusts itself
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to provide a constant pressure at the nozzle entrance, even though gas is flowing
out of the shock tube [248].

Lee [129] simulated the process of shock reflection from Amann’s reflection nozzle
[4]. This nozzle is two dimensional and has a flat surface at the end of the shock tube,
with a small anulus into the nozzle; this makes the reflection process more simple
than in the Drummond Tunnel. These simulations only modelled the last 40 mm
of the shock tunnel, which causes problems at later times as the shock reflected
from the downstream wall, containing the nozzle anulus, reach the upstream inflow
boundary. Before this time, the simulations compared well with the experimental

shadowgraphs of Amann [4].

2.1.6 Interaction of the Reflected Shock with
the Boundary Layer

As the incident shock moves along the tube it grows a boundary layer on the wall
of the shock tube behind it. When the shock reflects from the nozzle at the end
of the tube, it must travel back upstream through this boundary layer. Soon after
reflection, the shock forms a Mach interaction near the wall of the tube. This process

is caused by its interaction with the boundary layer.

The energy deficient boundary layer material does not have enough energy to
cross the normal shock and instead builds up at the foot of the shock. The stagnation
pressure of the boundary gas is less than that of the free stream gas. This causes
the shock to bifurcate and the core flow to separate as it passes around the foot
material and through the oblique shock structure that is built up. Due to the
entropy difference between the gas that has passed through the normal shock and
the gas that has passed through the oblique shocks, a shear layer is formed. This

shear layer is unstable and has been shown to form discrete vortices [240].

This interaction phenomenon was first described by Mark [141]. Mark demon-
strated that for incident shock Mach numbers between a certain range the stagnation
pressure of the fluid in the boundary layer is exceeded by the pressure behind the
reflected shock. For the experimental conditions investigated by Mark, the range
within which the material would build up at the foot of the shock was incident shock
Mach numbers of 1.3 to 6.4. Mark also showed that the gas emerging from the two

oblique shocks has a higher velocity than the free stream gas.

Mark developed a generalised model of the phenomena, capturing what the au-
thor thought were the important features of the flow. This model was developed
further by other authors, including Sanderson [200]. Figure 2.10 shows a schematic

of the interaction process used in Sanderson.
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Figure 2.10: A schematic of the modified version of Mark’s [141] representation of the
shock boundary layer interaction used in Wilson, Sharma and Gillespie [247].

Wall jetting of the driver gas leading to early contamination of the stagnated
region and therefore of the test gas. Also the driver gas is relatively cold and
therefore, as well as contamination of the test gas, the driver gas cools the test gas
prematurely. While the gas being jetted through the shock is also driven gas, the
heat added to the gas from its interaction with the two oblique shocks is negligibly
smaller than the heat added through the normal shock [27]. This means that this
process, although imparting velocity on the gas jetted along the walls, does not
introduce significant temperature fluctuations in the region behind the reflected
shock; however, when the reflected shock reaches the contact surface, cold driver

gas material can be jetted through the shock foot into the hot test gas.

Another important contribution by Mark [141] was the identification of a limit
on Reynolds number for the effect to be recorded experimentally. Mark stated that
the picture gradually changed as the Reynolds number was increased until the effect
disappeared almost completely. This was presumed to correspond to the boundary
layer becoming turbulent. A Reynolds number of 900,000 was identified in two sets
of experiments as the limit for the observation of the bifurcated shock foot. This
Reynolds number was stated as the transition Reynolds number for the flows used in
the sets of experiments. With the turbulent boundary layers, experimental results
were reported to have shown a normal shock propagating along the tube, with slight
forward concavities at the walls of the tube. It was believed that the same shock
bifurcation was occurring as with the laminar boundary layer, but on a smaller
scale so as not to show up on the photograph. Rudinger [198] also noted that the
bifurcation of the foot of the reflected shock does not occur for turbulent incident
boundary layers, with the reflected shock tending to remain as a planar shock front.

Davies and Wilson [55] extended Mark’s model by accounting for the effect of the
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growth of the interaction region.

Bull and Edwards [27] investigated the interaction processes in a blanked end
shock tube by tagging driver gas, by making it infrared active, in order to obtain
direct evidence of its arrival at the end wall. A H, driver gas was tagged by mixing it
with small quantities of C'Os, which is an infrared active permanent gas. Various test
gases were used. The results obtained evidence of the premature arrival of driver gas
at the end wall following the reflection of incident shock waves in the Mach number
range from 2 to 6, in a Nitrogen test gas. These results pointed to a strong shock
bifurcation process in this gas. The durations before the arrival of driver gas in
the stagnated test gas were in agreement with theoretical analyses based on Mark’s
model. They showed that for a monotomic test gas, such as with Argon used in their
study, little or no shock bifurcation occurs, and the period before the arrival of the
test gas was considerably longer than those observed in Nitrogen. The arrival times
in Argon corresponded with the predicted arrival times of the reflected expansion
from the driver end of the shock tube. Bull and Edwards believed that their results
gave support for the primary cause of contamination being the shock bifurcation
and jetting, rather than contact surface instability or the mechanics of the primary

diaphragm opening.

Taylor and Hornung [233] investigated the effects of real gas effects and shock
tube wall roughness on the interaction process. The experiments were conducted at
sufficiently high shock speed to produce vibrational excitation and dissociation of
the Nitrogen and Carbon Dioxide test gases. The experimental results were shown
to be in reasonable agreement with a modified version of Mark’s model for the
Nitrogen experiments; however, there were large discrepancies for the Argon and

Carbon-Dioxide gases.

Numerical simulations of the shock boundary layer interaction process occurring

in a shock tunnel will be described in Section 3.3.

2.1.7 Development of the Contact Surface

The contact surface is heavily dependent on the mechanics of the rupturing di-
aphragm [176]. Tt is also dependent on its stability properties as it moves along the
shock tube [20]. Despite the importance of the contact surface shape and charac-
teristics on the resulting flow, the difficulty in obtaining experimental data on the
contact surface has meant that publications in this area are limited in comparison

to other areas.

Experiments on the contact surface were performed by Hooker [104] in a low

pressure, small diameter shock tube. This combination of low pressure and small
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diameter increases the importance of viscous effects [65]. A rake of heat flux probes
inserted into the flow was used to determine the shape of the contact surface, as
was done in this study. These measurements indicated that the contact surface was
turbulent, but had an essentially planar profile. This planar profile was observed
at 1.05m up to at least a distance of 4.7m. The contact surface was described
as a region of widely varying composition and temperature, the extent of which is
almost solely a function of the tube geometry. These observations are believed to
be influenced by the low pressure, small diameter conditions studied. They also
neglect the stability of the contact surface and, therefore, the operating conditions

as a factor.

Experiments show that by the time the shock has made it to the end of the shock
tube and the test flow begins, the interface between the driver gas and the driven
gas is turbulent. This turbulent region, along with boundary-layer effects and other
effects, usually engulfs a significant part of the heated driven gas; in some cases up
to half of the total driven gas [206]. Cambier, Tokarcik and Prabhu [35] discussed
the effects that the Rayleigh-Taylor instabilities may have on the development of the
actual contact surface in a shock tunnel. Cambier et al. took into account viscous
effects which slowed down the contact surface at the walls, but the jetting of the

contact surface near the walls relative to the centre of the tube was evident [176].

Zuev, Vasilieva and Mirshanov [255] studied the contact surface in a shock tube
over a range of Mach numbers from 3.5 to 13.5 using X-ray diagnostic techniques.
The authors stated, based on their experimental observations that the loss of test
gas to the mixing region at the contact surface is more significant than the loss to

the boundary layer as observed by Mirels [148].

Houwing et al. [106] observed the contact surface in the T3 shock tunnel using
differential interferometry. The instability of the contact surface was observed and,
for regions in which the contact surface was decelerating, long tongues of gas were

measured to penetrate from the heavy driver gas into the light test gas.

2.1.8 Interaction of the Reflected Shock with the Contact

Surface

The interaction of the reflected shock with the contact surface occurs between the
reflected shock, following its interaction with the boundary layer, and the contact
surface that has evolved along the length of the shock tube. Significant amounts of
vorticity can be generated at this interaction process, as a product of the Richtmyer-
Meshkov instability [26]. The interaction of the reflected shock with the contact

surface has received less attention that the interaction with the boundary layer. The
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Richtmyer-Meshkov instability was described and demonstrated, for the interaction

of a planar shock wave with a cylindrical bubble, in Chapter 6.

Dumitrescu, Popescu and Brun [67] discussed the interaction of the reflected
shock with the contact surface, following its interaction with the boundary layer.
In order to investigate the effect of the reflected shock interaction processes on the
nozzle supply region they conducted a study of the shape of the incident contact
surface and the influence of the shape of the boundary layer on it. A hot-wire probe
was used, which was placed at various distances from the diaphragm, to detect
the arrival of the contact surface. The boundary layer remain laminar through
their study. The experimental studies conducted in two facilities, using various
combinations of driver and driven gases, operating with ranges of pressures. These
facilities are blanked end shock tubes, with sensors places at locations on the tube

walls and the end plate.

Dumitrescu, Popescu and Brun were unable to provide detailed explanations
of the flow features indicated in their results and it was concluded that detailed
visualisation of the flow in the region between interaction process and the end wall
would be useful. Tt was demonstrated that, even when the interaction process was
occurring on the shock tube wall, no disturbances reached the centre of the end
plate. This conclusion could indicate that these disturbances would not reach a
nozzle entrance in an equivalent shock tunnel; however, with the stagnated gas
flowing out through a nozzle, this flow would likely promote these disturbances in

reaching the test flow.

The authors conclude that the temperature fluctuations detected at the end wall,
soon after the reflection of the shock wave, are due to the jetting of gas through
the bifurcated foot of the shock. In certain cases, and in contrast to the pressure
measurements, temperature rises are detected for a range of tailoring conditions
and was believed to be due to the instability of the contact surface. The degree
of stability of the contact surface, and therefore the susceptibility to this effect
depended on the gases used in the operation while at tailored conditions. A pressure
gauge on the end wall detected the arrival of tailoring waves from the interaction
of the reflected shock with the contact surface. A heat transfer gauge showed a
disturbance corresponding to a increase in wall temperature either below of above
tailoring; this disturbance was even shown to occur when the tube was operated at
roughly tailored operating conditions (with a shock Mach number of 3.65). The end

wall pressure was shown to be practically constant, as would be expected.

The possible explanation provided by the authors for this effect is the arrival
of cold driver gas at the end plate, arriving there due to the instability at the

interaction with the reflected shock. This gas has a high density and a residual
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velocity at the end plate and may have resulted in the temperature rise. Gauges
near the wall of the tube at the end plate showed that this disturbance reaches
the centre of the end plate significantly before (about 3ms) the outer part of the
end plate. This indicates that the disturbance moves along the centre of the tube.
Above tailoring, the duration of the undisturbed flow at the end plate coincides for
the heat transfer gauges at the centreline and end plate edge, and for the pressure
sensor. This indicates that for the over-tailored conditions, the disturbance is the

tailoring wave, rather that the unstable driver gas.

2.1.9 Driver Gas Contamination

In a real shock tunnel only a fraction of the test gas is used before waves from other
sources enter the test flow. As a result of this, the period of steady pressure in the
test flow has been used as the measure of test time [12]. Stalker and Crane [221]
showed that the arrival of driver gas in the test flow, and with it the end of the test
time, can occur earlier than the loss of steady pressure. The arrival of driver gas in
the test flow causes the end of the test time as it renders the test flow unusable for
testing. Even if the driver gas is the same type of gas as the test gas, the driver gas
is significantly colder than the test gas and, therefore, the driver gas cools the test

gas prematurely, affecting the expanded test flow properties [228].

Under certain conditions, driver gas is projected forward through the test gas by
processes occurring at the end of the shock tube, entering the test flow well before the
supply of test gas is exhausted. This process is known as driver gas contamination.
It results from many complex flow phenomena occurring in the shock tube, including

interactions between the reflected shock and the boundary layer and contact surface.

The predominant approach that has been taken to the investigation of driver gas
contamination is the detection of its driver gas in the test flow. This data can be
used for either the investigation of trends in the data, or to identify the degree of

contamination for the particular conditions used in the experiments.

Skinner [212] designed and constructed a time of flight mass spectrometer. This
device was used in the test section of the T4 shock tunnel to record time histories
of all species concentrations in the test flow. The detection of the premature arrival
of driver gas in the test flow was the primary concern. The results shows that
contamination of the test flow occurred for nominal enthalpies above 10 MJ /kg, with
the degree of contamination becoming progressively larger for higher enthalpies.
Skinner discussed many mechanisms which could have lead to the contamination
observed; however, no certain conclusion as to the cause of the contamination was

reached in the study.
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Jenkins, Stalker and Morrison [115] provided one of the first trends that could
be used in the prediction of contamination. A qualitative relationship between the

constancy of the stagnation pressure and the arrival of the driver gas was suggested.

A gasdynamical detector, consisting of a small duct and a wedge was constructed
by Paull and King [174] and Paull [173]. The duct and wedge were arranged so that
the duct would choke for any test flow in which the contamination reached a certain
level. This device was used in the T4 shock tunnel and could be used in conjunction
with an experimental model in the test section. Sudani and Hornung [227] designed
similar detectors based on this concept, with modifications that provided greater
sensitivity to the degree of contamination. A two dimensional duct detector was

designed which allowed for visualisation of the flow through the duct.

Methods of extending the test time by postponing, or preventing, the driver gas
from reaching the nozzle throat have been proposed. The utility of these devices
generally assumes that the driver gas is jetted along the wall. Dumitrescu [68]
proposed a device with a slit opening at the corner of the end plate. Chue and
Dumitrescu [44] showed, both numerically and experimentally, that this device had
no effect in preventing driver gas contamination. In addition to this, Sudani and
Hornung [226] showed that such a device actually advances the arrival of driver gas
in the test section. Cordoso et al. [37] proposed the same type of device, except
positioning it further upstream. Numerical simulations indicated that this device

would work; however, in experimental trials, it was ineffective.

Driver gas contamination is the primary cause of the end of the test time in high
enthalpy operation in facilities such as T4 [221]. With the low enthalpy Drummond
Tunnel, any driver gas detected in the test flow for the operating conditions used in
this study is after the test flow is already ended; however, this facility can still be

used to investigate the mechanisms leading to driver gas contamination.

2.1.10 Test Time and Flow Quality

A rigid definition of test time permits no variation of flow properties; however, noise
from the development of the flow through the facility means that there will be fluc-
tuations even during the test flow. The test time is usually defined as the duration

for which the variation in the flow properties is within an acceptable tolerance [212].

Test time limits the size of models that can be used in these facilities due to
the requirement on flow establishment time. Depending on the type of model being
tested, the test flow length is required to be 3 times the length of the model, in
order for a steady flow to be established during the test [212, 115]. The short test
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times are also important for practical reasons, by preventing damage to the models

or the facilities themselves, caused by high temperature gases being produced.

In an ideal shock tunnel the test time is ended by the exhaustion of the driver gas
slug, or the arrival of tailoring waves or the reflected expansion in the test flow. In
the operation of a real shock tunnel facility, the test flow duration is further limited

by non-ideal effects, including;:

1. the reduction of the separation distance caused by the viscous attenuation of

the shock and acceleration of the contact surface.
2. transient waves as the nozzle test flow starts and break down

3. the premature arrival of the driver gas in the test flow (driver gas contamina-

tion)

Thermochemical Effects

High temperatures are caused by the stagnation of the test gas with the reflected
shock. As a results of these high temperatures, the thermal energy of the gas can
be sufficient to excite the rotational and vibrational states of the molecules, cause

dissociation and ionization and promote chemical reactions.

This gas remains effectively frozen at non-equilibrium conditions during its ex-
pansion through the nozzle. This thermochemically modified gas then flows through
the test section. Due to the relatively low stagnation temperatures experienced in
the Drummond Tunnel (below 1600 K) these effects are not significant in this study.
This type of effect must be given consideration in larger facilities such as the T4 free
piston driven reflected shock tunnel, which experiences significantly higher stagna-

tion temperatures in its operation. These issues are not addressed in this thesis.

Noise in the Test Flow

Even during the time period that is relatively steady and is used as the test time,
significant fluctuations in flow properties are still present in the test flow. Noise
levels in shock tunnels are significantly higher than those in free flight. These fluc-
tuations can impact on results by affecting, for example, boundary layer transition
on the experiment [127, 202]. In a reflected shock tunnel, noise would be expected
to originate through the non-ideal processes that occur throughout the flow devel-

opment.

Paull and Stalker [175] studied the generation of noise and and its effects in an

expansion tube flow. Paull observed that noise first appeared in the driver gas and
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was then transmitted into the test gas, as the two gases propagate along the tube.
The majority of this noise generated in the driver gas originates from the oblique
shocks that form due to the finite rate of the primary diaphragm opening. The
noise that was transmitted into the test gas was shown to remain in the test gas as
it entered the test section. It was shown that only the high frequency components
of the noise in the driver gas gas could penetrate the interface between the driver
gas and the test gas. The penetration of the noise into the test gas was found to be
limited by a sufficient increase in sound speed across the interface from the driver
gas to the test gas. These observations are also applicable to noise in a reflected
shock tunnel and the contact surface separating the driver gas from the driven gas

in these facilities.

In addition to the transmission of noise from the driver gas, significant levels of
noise are generated directly in the test flow gas. Noise is generated by the growing
boundary layer in the test gas. The reflection of the shock from the end of the shock
tube introduces significant noise into the stagnated test gas. He [127] recorded
pressure traces in the stagnated test gas in the T4 shock tunnel. Large acoustic
waves were observed in these traces, which were believed to result from the shock
reflection process. As the shock travels back upstream it causes noise to be generated

through its interaction with the boundary layer and the contact surface.

Noise is also introduced directly into the test flow through turbulence in the noz-
zle boundary layers [202]. The rupture of the secondary diaphragm should not have
a significant effect on noise levels in the test flow as the affected flow is dominated

by the nozzle startup waves.

Although a number of transition experiments have been performed in these fa-
cilities [93, 76, 1], little data is available on the effect of free stream noise in the test
flow [202].

To address the issue of noise levels affecting the test flow, a number of ‘quiet’
supersonic and hypersonic wind tunnels have been developed [15]; however, it is also
known that enthalpy can have a significant effect on boundary layer transition [1]
and that these quiet facilities do not correctly simulate the high enthalpy associated

with hypersonic flight.
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2.2 The Experimental Study

Over the period from 1998 to 2000, Dr. David Buttsworth performed a series of
experiments in the a shock tunnel located at the University of Queensland. These
experiments were designed to investigate the flow development through a shock
tunnel. The results from these experiments provide experimental data with which
numerical simulations can be compared, ensuring that the numerical techniques and
assumptions are appropriate. No test article was placed in the test section in these
experiments (apart from the probes) as they were designed specifically with the aim
of investigating the flow development within the shock tunnel. This section outlines

the equipment used and the data obtained in these experiments.

2.2.1 The Drummond Tunnel

The experiments were conducted in the Drummond Tunnel facility, also known as
the Small Shock Tunnel (SST) Facility, which is operated within the Centre for
Hypersonics at the University of Queensland. It is a relatively low enthalpy shock
tunnel, constructed by the Department of Defence in the 1970s in order to study
chemical reactions occurring in shock heated gases [102]. It was originally operated
in a straight-through configuration, but was re-developed into a reflected shock

tunnel.

The details of the design and its operation as a reflected shock tunnel are de-
scribed in two Department of Mechanical Engineering Reports: Austin et al. [7] and
Craddock et al. [54]. The layout of the Drummond Tunnel is shown in Figure 2.11
and two photographs of the facility are shown in Figure 2.12. The whole tunnel is
shown on the left, with the facility running from the bottom left of the picture to
the test section and dumptank at centre right. A close-up of the nozzle and test

section shown on the right from the same angle.

The facility consists of a cylindrical tube made up of a driver section, a shock
tube section and an exchangable nozzle. The test section and dump tank enclose the
downstream end of the nozzle. The driver section is 59 mm in diameter for 770 mm of
length and is 74 mm in diameter for a further 230 mm. It is initially separated from
the shock tube by a 1mm thick Aluminium diaphragm. The driver section contains
a pneumatic cylinder with a shaft running along the centre-line of the driver which
has a spike on the end. The shaft and spike is actuated with the pneumatic cylinder
and is used to pierce the diaphragm, initiating the rupturing process and starting
the experimental shot. The pneumatic cylinder fits inside 74 mm diameter part of
the driver section and is surrounded by a volume occupied by additional driver gas.

The shock tube is 62.2 mm diameter and is 3013 mm in length. Three nozzles are
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Figure 2.11: The layout of the Drummond Tunnel facility. Reproduced from Craddock
et al. [b4].

Figure 2.12: Photographs of the Drummond Tunnel facility taken during July 2002.

used in the facility, a conical Mach 4 nozzle, a conical Mach 7 nozzle and a contoured
Mach 7 nozzle. The test section has optical access through four 100 mm diameter
quartz windows. A dimensioned cross-sectional view of the Drummond Tunnel, with

the detail of the driver section and spike, is shown in Figure 2.13.

The driver section is filled from bottled Helium or Nitrogen to a maximum ab-
solute pressure of 6 MPa. The shock tube is filled with the test gas, which is usually
Nitrogen or air. The test section and dump tank, initially containing atmospheric
air, are evacuated before a test. A secondary diaphragm, made of cellophane or
thin plastic, is used in the nozzle throat to separate the test gas from the shock
tube. Under typical operating conditions, with He at 6 MPa driving Air at 20 kPa,
the tunnel produces a supply enthalpy of 2MJ/kg and a supply pressure of 2.2 MPa
[242].

The Drummond tunnel provides a useful test-bed for investigating the flow de-

velopment in a shock tunnel facility that:

1. is relatively simple, using a single diaphragm which is mechanically pierced,
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Figure 2.13: Cross section of the Drummond Tunnel facility with dimensions shown.
The Mach 7 nozzle and the details of the driver section and piercer are shown. The
Mach 4 nozzle used in the experiments is exchangable with this nozzle. Reproduced from
Craddock et al. [54].

making the firing predictable, and its geometry is fully documented and ac-
cessible (including the nozzle profiles). It does not have a free-piston driver

such as the larger T4.

2. is small in size, meaning that fine resolution of flow features can be achieved
using a mesh with much fewer cells than would be required to model a large
facility such as T4; mesh resolution is critical to accurate modelling of the

boundary layers and shock interaction processes.

3. has accurate and reproducible experimental results that are available in this
study. The experiments were conducted with a range of operating conditions,

utilising an array of data acquisition equipment in the shock tunnel.

4. operates in a regime in which the limited stagnation temperatures reduce the
dependency on other forms of molecular excitation, ionization, dissociation and
other thermochemical effects [242]. Temperatures in the nozzle supply region
are limited to below 2000 K. Although the numerical code used in this thesis is
capable of modelling high temperature flows, the dependency on implementing
finite rate chemistry models are removed. Modelling is also not hindered by the
extreme pressure ratios found in some facilities, such as super-orbital expansion

tubes.

5. is of interest in other research. For example, it is being used to develop new
optical techniques and in rarefied flow research [242]). Being able to simulate

this facility accurately will be of benefit to these projects.
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The modelling techniques developed in this study can be extended to larger,
more complicated reflected shock tunnel facilities, such as T4, and expansion tubes.
It is also believed that the conclusions reached through simulations of this relatively

low enthalpy facility are applicable to the flows in high enthaply facilities.

2.2.2 Operating Conditions

Three sets of experiments were performed using producing two different levels of
tailoring: one resulting in over-tailored operation and the other in roughly tailored
operation. Nitrogen was used as the test gas for all experiments. The over-tailored
case used Nitrogen as the driver gas and the tailored case used Helium as the driver
gas. Nitrogen driver experiments were conducted using a conical Mach 4 nozzle and
also with the end of the shock tube blanked off. The Helium driver experiments were
performed using a conical Mach 4 nozzle attached to the end of the shock tube. The

three operating conditions are listed in Table 2.1.

Table 2.1: Drummond tunnel operating conditions.

Driver gas Driven gas  Test section Condition Test attachment
3.25MPa N, 30.0kPa N, 0.4kPa air over-tailored Mach 4 conical
3.20MPa N, n/a 0.4kPa air  over-tailored blanked end

5.60 MPa He 61.4kPa N, 0.4kPa air approx. tailored Mach 4 conical

The use of Nitrogen simplifies the modelling by remaining closer to the calorically
perfect gas approximation over the range of temperatures used in these experiments.
The use of Helium as a driver gas increases the driver to driven gas sound speed

ratio. This is done in order to maximise the shock strength in the shock tube.

The ambient temperature during the experiments was usually around 23°C,
which was assumed to be a constant through all of the experiments; however, the
actual driver gas and test gas temperatures in the experiments were not measured
at the time. The driver and test gases are filled from high pressure gas bottles.
The driver section is filled to high pressures and, due to throttling and heat transfer
processes in the filling pipes, this process can result in significant temperature rise
in the driven gas. A series of filling trials were used to investigate the temperature
of the driver gas that was used in the tailored experiments. The driver section was
filled with Helium, varying the speed at which the section was filled from the gas
bottle. It was found that the process of filling the driver section with Helium to
5.60 MPa caused the driver gas to reach a peak temperature of around 44°C at the
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completion of filling. There was a delay between the end of the filling process and
when the shot was fired and during this time heat was conducted away from the
hot driver gas to the ambient driver tube walls, decreasing the temperature of the
driver gas over time. The driver temperatures decreased to about 37°C during this

delay.

The temperatures used in the experiment were not known exactly and the sim-
ulated pressures were varied, for both driver gas conditions, over the range from
30°C to 40°C to obtain the temperatures ultimately used in the simulations. This

selection procedure is described in Section 7.2.

The Nitrogen test gas in the shock tube was filled slowly and to only modest
pressures and so any temperature rise would be negligible. Additionally, the driven
section was filled before the driver meaning a substantial delay before the experiment

took place. In the simulations, this gas was assumed to be at ambient conditions.

2.2.3 Experimental Data Acquisition

For the experiments conducted in this study, the Drummond Tunnel was operated
with no test article in the test section; however, operational and test flow data was
recorded with the aim of investigating the flow development process. More details of
the experimental data acquisition procedures are provided in Buttsworth and Jacobs
(31, 32].

Schematics of the end region of the shock tunnel, with the locations of the data

acquisition equipment, are shown in Figure 2.14.
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Figure 2.14: Schematic of the end region of the shock tunnel with the locations of the
data acquitition equipment : Mach 4 nozzle attached (left) and blanked shock tube end
(right). Reproduced from Buttsworth and Jacobs [32].

For all experiments, data was recorded at two positions on the wall of the shock
tube:
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1. a piezoelectric transducer located 68 mm upstream from the nozzle attachment.
This transducer provides a time accurate record of pressures in the nozzle
supply region. The incident shock and reflected shock (stagnation) pressures
are recorded, as well as the times of arrival of other waves, such as the reflected

expansion and tailoring waves.

2. a thin film transient heat flux gauge located 285mm from the nozzle attach-
ment. This gauge records a detailed history of the characteristics of the bound-
ary layer and can be used to identify the arrival of the incident shock, the con-
tact surface and the passage of the reflected shock after its interaction with

the contact surface.

The time of arrival of the incident shock at the two positions is used to determine
the shock speed as it approaches the end of the shock tube. This is an important
factor for comparison with the simulations as it demonstrates the ability of the
simulations to reproduce the level of viscous attenuation of the shock as it progresses

along the tube.

For the experiments conducted with the end of the tube blanked off, a rake of
heat flux probes on a sting was inserted into the tube through the blanked end.
This sting and rake are shown in Figure 2.15. This rake can be positioned at
various axial positions along the tube for different experimental shots. These heat
flux probes were used to detect the arrival of the driver gas, through the change in
stagnation point heat flux, at points across the diameter of the tube. Geometrically,
this rake represents a ten percent blockage of the shock tube flow. This rake allowed
measurement of the shape of the contact surface at these axial and radial positions,
and assuming the reproducibility of the shots, was used to quantify the evolution
of the contact surface along the tube length. The speed of the contact surface as it

moves along the tube was also found from its time of flight between these stations.

For the experiments with the nozzle attached, data was recorded in the test flow

using:

1. a piezoelectric pressure transducer (of a similar type to the supply pressure
transducer) mounted on the centreline of the nozzle exit. This probe measured
the pitot pressure on the centre-line of the test flow for the duration of the
test. For the experiments with the Nitrogen driver, the pitot probe utilised
a pneumatic cavity to shield the pressure transducer from the shock tunnel
flow, whereas for the experiments with the Helium driver the pitot pressure
transducer was protected from the flow using a thin layer of RTV rubber [32].

The Helium driver pitot probe configuration yielded pitot pressure measure-
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Figure 2.15: Diagram of the rake of heat flux gauges inserted on a sting through the
blanked end of the tube. Reproduced from Buttsworth [30].

ments to a much higher bandwidth than the Nitrogen driver and with resonant
frequency of 230 kHz.

2. arake of five thermocouple probes (three of which produced meaningful data)
across the radius of the nozzle exit flow. This rake was used to measure details

about the test flow, and its variation, across the radius test flow.

3. a stagnation temperature probe at the nozzle exit for the Nitrogen driver case.
This probe was mounted 14 mm from the centreline and was simultaneously
with the pitot probe. which is interchangable with the pitot probe and was

used for Nitrogen driving Nitrogen experiments.

This arrangement is shown in Figure 2.16. For the Helium driver case, these probes
were axially located on the plane of the nozzle exit and for the Nitrogen driver case,

were located 14mm downstream from the nozzle exit plane.

2.2.4 Experimental Results

The results obtained from these experiments are documented and described here,
and are used in Section 7.2 for validation of the numerical simulations. The times
for the experimental and simulated traces were all set at zero at the point in time

of the arrival of the incident shock at the supply pressure transducer.
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Figure 2.16: Centre-line pitot probe and thermocouple rake which was located in the
nozzle test flow. Reproduced from Buttsworth and Jacobs [32].

Supply Pressure Transducer

This transducer measures the pressure in the region which acts as the reservoir for
the test flow and so correctly predicting the properties of this region is vital to the

model.

1. Nitrogen driving Nitrogen. Blanked end (Figure 2.17)
The pressure is initially at the driven gas fill pressure. The pressure rises rapidly due
to the passage of the incident shock and rises straight to the post shock pressure.
The pressure behind this shock is steady until the reflected shock arrives, travelling
upstream. The pressure rise due to this shock has a slight kink in it. This is due
to the passage of the bifurcated foot of the reflected shock over the transducer.
For 850 us, the test gas at the transducer is largely stagnated; however, during this
time there is a slight steady rise in pressure caused by the interaction between the
reflected shock and the boundary layer. Noise is evident in the trace during this

region, at a higher level to that behind the incident shock.

In this mode of operation, the shock tunnel is over tailored and the arrival of
the tailoring waves resulting from the interaction of the reflected shock with the
contact surface appear as the steady increase in pressure at the end of the steady
period. Two distinct waves are evident, with a small plateau between ; these are the
tailoring wave, and its reflection from the blanked end. This reflected tailoring wave
further increases the pressure. With this over-tailored mode of operation, the driver
gas continues to move downstream after its interaction with the reflected shock.
This means that the driver gas passes this transducer, appearing on the trace as a
significant increase in noise around 1.7 ms after the incident shock. The expansion

reflected from the upstream end of the driver section is seen as the final gradual
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decrease in the gradient in pressure, arriving around 4 ms after the incident shock.
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Figure 2.17: Experimentally measured trace from the supply pressure PCB transducer
for the Nitrogen driving Nitrogen case with the blanked shock tube end.

2. Nitrogen driving Nitrogen. Mach 4 Nozzle (Figure 2.18)
The operating conditions for this case are approximately the same as for the blanked
end case. The difference in this case is that the Mach 4 nozzle is attached to the
end of the shock tube. The reflection from the throat of the nozzle results in a more
complicated reflection process than from the blanked wall, and once the secondary
diaphragm ruptures, the test gas is drained through the nozzle from the stagnated
region. This case shows a significantly more defined kink in the pressure rise and a
step at the arrival of the reflected shock. For 350 us, the test gas at the transducer
is stagnated, which is a much shorter period than for the blanked end case. During
this time there is also a steady rise in pressure. The plateau between the tailoring
wave and its reflection is more defined and contains a dip in pressure. No significant

amount of the reflected expansion had arrived by the end of the recorded time.

3. Helium driving Nitrogen. Mach 4 Nozzle (Figure 2.19)
The pressure is initially at the driven gas filling pressure. The pressure rises rapidly
due to the passage of the incident shock to the post shock pressure. There is an early
dip in pressure and noise evident in the flow behind the shock. The pressure behind
this shock is steady until the reflected shock arrives upstream. There is a noticeable
kink followed by a step in the pressure trace from this shock, indicating the passage
of the bifurcated foot of the reflected shock over the transducer. For 340 us, the
test gas at the transducer is stagnated. In this tailored mode of operation, the

majority of the driver gas is stopped by the reflected shock before this transducer.
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Figure 2.18: Experimentally measured trace from the supply pressure PCB transducer
for the Nitrogen driving Nitrogen case with the Mach 4 nozzle.

The tailoring waves are weak and do not appear on this trace. This steady period
is ended by the arrival of the reflected expansion from the upstream end of the
driver section. This expansion arrives in the stagnated gas as a gradual decrease in

pressure.
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Figure 2.19: Experimentally measured trace from the supply pressure PCB transducer
for the Helium driving Nitrogen case with the Mach 4 nozzle.
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Heat Flux Gauge

This gauge measured the amount of heat transferred from the gas to the wall,
through the boundary layer. The gauge was not calibrated and so the heat flux has

an arbitrary scale.

1. Nitrogen driving Nitrogen. Blanked end (Figure 2.20)
Both the gas in the driven section and the walls are initially at ambient conditions
and, therefore, there is initially zero heat flux at the gauge. This gauge is upstream
of the pressure transducer and, with the zero time aligned with the arrival of the
incident shock at the pressure transducer, it can be seen to arrive before the zero
time. The arrival of the incident shock is seen as a sharp increase in heat flux. The
heat flux from the gas behind the incident shock is roughly steady. This steady
heat flux is ended by the arrival of the contact surface travelling behind the shock.
The driver gas behind the contact surface is colder than the driven gas and so as
the contact surface arrives, the heat flux deceases gradually as the concentration of
driver gas increases. As the contact surface is still passing over the heat flux gauge,
the reflected shock arrives at the gauge. This shock is responsible for the sharp jump
in heat flux, after which the heat flux continues to decrease, as before, with more
of the contact surface arriving. The tailoring waves, resulting from the interaction
of the reflected shock with the contact surface, can be seen as the waves following
the arrival of the contact surface. Being overtailored, the tailoring waves are quite
strong and result in the significant fluctuations seen in this trace for the remainder
of the time. The heat flux returns towards zero as the gases in the tube approach

ambient temperature.

2. Nitrogen driving Nitrogen. Mach 4 Nozzle

The heat flux trace from this case was unusable due to excessive experimental noise.

3. Helium driving Nitrogen. Mach 4 Nozzle (Figure 2.21 )
Both the gas in the driven section and the walls are initially at ambient conditions
and, therefore, there is initially zero heat flux at the gauge. The arrival of the
incident shock is seen as a sharp increase in heat flux; this shock arrives before the
zero time. The heat flux from the gas behind the incident shock is roughly steady.
This steady heat flux is ended by the arrival of the contact surface travelling behind
the shock. The driver gas behind the contact surface is colder than the driven
gas and so as the contact surface arrives, the heat flux deceases gradually as the
concentration of driver gas increases. As the contact surface is still passing over the
heat flux gauge, the reflected shock arrives at the gauge. This shock is responsible
for the sharp jump in heat flux, after which the heat flux continues to decrease, as

before, with more of the contact surface arriving. The tailoring waves can be seen
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as the peaks in heat flux following this. These wave have much less energy than the
reflected shock and so these peaks are small. As the gas in the shock tube settles
and the remaining test gas mixes into the cold driver gas, the heat flux tapers away

to zero.
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Figure 2.20: Experimentally measured heat flux from the heat flux gauge for the Nitrogen
driving Nitrogen case with the blanked shock tube end.
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Figure 2.21: Experimentally measured heat flux from the heat flux gauge for the Helium
driving Nitrogen case with the Mach 4 nozzle.
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Test Flow Pitot Probe

The pitot pressure probe which was positioned on the centreline of the test flow
provides valuable information about the test flow. As well as allowing identification
of the test time and the mean flow pitot pressure, this probe is also used to record
the fluctuations in the flow. In the Helium driving Nitrogen case the high band-
width configuration was used. The experimental traces were filtered using a moving

average.

1. Nitrogen driving Nitrogen. Mach 4 Nozzle (Figure 2.22)

With no flow through the nozzle, the pitot pressure is initially zero. The nozzle flow
starting process begins with the rupture of the secondary diaphragm, resulting in an
initial flow of the test gas through a series of transient shocks and a contact surface
that moves through the nozzle. The nozzle startup waves arrive at the transducer,
recorded by the probe as they focus on the centreline. These waves took 368us to
pass the transducer. After the startup waves have passed, the test time begins, with
the steady expansion of the stagnated test gas through the nozzle. The test time was
measured to have a duration of 724 us. The tailoring waves, from the interaction of
the reflected shock with the contact surface, arrive in the nozzle reservoir region, as
recorded in the supply pressure transducer. These compression waves travel through
the nozzle and result in the pressure increase which ends the test time. There is
a dip in the pitot pressure, followed by a rapid rise to a higher level as the driver
gas arrives. After this time, the pitot pressure remains constant. The arrival of the
driver gas in the test flow is indicated by a significant increase in the noise level in
the test flow.

2. Helium driving Nitrogen. Mach 4 Nozzle (Figure 2.23)
The pitot pressure is initially zero. The nozzle startup waves can be seen to arrive
at the transducer, taking 378 us to pass the transducer. The test time was measured
to have a duration of 356 us and begins as the startup waves gradually taper off.
The test time is ended by the arrival of the reflected expansion from the driver
section into the test flow. This expansion can be seen as the gradual decrease in
pitot pressure as the pressure in the nozzle supply region decreases. The arrival of
driver gas seems to be indicated by a decrease in the noise level, unlike the Nitrogen

driver case.
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Figure 2.22: Experimentally measured trace from the nozzle exit centreline pitot probe
for the Nitrogen driving Nitrogen case with the Mach 4 nozzle.
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Figure 2.23: Experimentally measured trace from the nozzle exit centreline pitot probe
for the Helium driving Nitrogen case with the Mach 4 nozzle.
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Shock Tube Heat Flux Rake

The heat flux rake on a sting was inserted through the blanked end of the shock
tube and, therefore, recorded data for the Nitrogen driving Nitrogen case. The rake
records the stagnation point heat flux at five positions across the tube. Measure-
ments were obtained at four axial stations; however, only the two upstream stations
provided data on the contact surface because the reflected shock interferred with
measurements at the two downstream stations. An example trace, from the most
upstream position, is shown in Figure 2.24. In this plot, the arrival of the incident
shock can be seen as the jump in heat flux. The heat flux from the flow behind
the shock gradually increases in the time before the contact surface arrives. The
contact surface arrival can be seen as the decrease in heat flux resulting from the
colder driver gas. The noise increase associated with the arrival of driver gas can be
seen during this time. The heat flux decreases back to approximately zero with the

arrival of the cold driver gas.
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Figure 2.24: Heat Flux data for the contact surface arrival at the 524 mm position.

This data is used to find the 10% and 90% values for the decrease in stagnation
point heat flux associated with the contact surface arrival. These values are used for
the arrival times of the start and the end of the contact surface at their relative axial
and radial positions. This data not only provides a record of the arrival time of the
contact surface along with its shape, but also a measure of the amount of diffusion
that has occurred at the interface along the tube. The data for the contact surface

arrival at the 524 mm position is shown in Figure 2.25 and the 1015 mm position in
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Figure 2.26. Points are shown for the experimental data, and smooth bezier curves

have been fitted through each of the traces to provide a better indication of the

shape.
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Figure 2.25: Contact surface shape for the 524 mm axial position.
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Figure 2.26: Contact surface shape for the 1015 mm axial position.
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Test Flow Stagnation Probe

Figure 2.27 shows the stagnation temperature recorded by the stagnation probe
located on the nozzle exit plane, 14 mm radially from the centreline. This trace was
recorded for the Nitrogen driving Nitrogen case. This trace is useful in that the
large change in temperature recorded between 2 ms and 2.5 ms indicates a change in
gas entropy associated with the arrival of driver gas in the flow. The segment of the

recorded trace that is associated with the driver gas arrival is shown in the figure.
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Figure 2.27: Experimentally measured trace from the nozzle exit centreline stagnation
heat flux gauge for the Nitrogen driving Nitrogen case with the Mach 4 nozzle.



CHAPTER 3

Numerical Formulation for Compressible

Flow Simulation

Computational Fluid Dynamics (CFD) is based on the numerical solution of the
continuity equation (describing the conservation of mass), the momentum equation
(describing Newton’s Second Law) and the energy equation (describing the conser-

vation of energy). These governing equations can be obtained in various different
forms [116].

The analytical study of fluid mechanics often uses two descriptions of fluid flow:
the Eulerian description and the Lagrangian description. Methods based on the Eu-
lerian description discretise the geometry of the flow domain into stationary compu-
tational elements through which the fluid flows. Methods based on the Lagrangian
description discretise the fluid itself. This means that the computational elements
move with the fluid through the domain. The majority of computational methods
that have been used for multi-dimensional modelling of impulse facilities are Fi-
nite Volume methods based on the Eulerian description; however, the Lagrangian
description could provide certain advantages in the representation of the contact
surface. Figure 3.1 shows an example problem of a circle of one fluid entering an-
other fluid. The Eulerian representation of this scenario is shown on the left and

the Lagrangian representation is shown on the right.

Numerical methods based on the Eulerian description may be susceptible to
numerical forms of diffusion, especially noticeable in regions with large gradients.
When a flux of material enters a cell, its characteristics are uniformly mixed with
those of the cell that it enters [165]. When a fluid interface crosses through the
interior of cell, the properties of the gases on either side of the interface occupy
the same cell. Numerical diffusion in Eulerian methods can be reduced through the
use of techniques such as Flux Corrected Transport (FCT) [22] and is minimised
in modern high resolution schemes. On the other hand, numerical methods based
on the Lagrangian description may provide advantages in modelling flows in which

interfaces are important by providing a more natural representation of these inter-



54 Numerical Formulation for Compressible Flow Simulation

Figure 3.1: A comparison of an Eulerian mesh and a Lagrangian mesh for an example
of a circle of fluid entering another fluid. Reproduced from Zukas [256].

faces. In the Lagrangian description, elements of fluid on one side of an interface

remain on that side of the interface as the fluid moves.

This chapter will discuss the implementation of CFD in two numerical tech-
niques. The CFD code MB_CNS [114] is based on a finite volume formulation of
the Navier-Stokes equations. These equations are in the form based on the Eulerian
description of fluid motion. As an alternative technique, the Smoothed Particle Hy-
drodynamics (SPH) [78, 137] will be investigated. This numerical technique uses a
particle based approach to modelling the Lagrangian form of the governing equa-
tions. Despite the fact that the two descriptions and their implementations are very
different, they are both still modelling the same equations and in doing so perform-
ing the same role. It is shown in Anderson [116] that the two methods solve different

forms of the same equations.
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3.1 Finite-Volume Eulerian Methods

cThe discretisation of the flow using the Eulerian description mcns that the compu-
tational mesh must be fitted to the geometry containing the fluid. In the numerical
techniques used in this section, the flow is discretised using a body-fitted computa-

tional mesh.

3.1.1 Multi-Block Compressible Navier-Stokes Solver

This section is based on the Department of Mechanical Engineering Technical Report
10/96 [114]. The program MB_CNS is a CFD tool for the simulation of transient
compressible flow in two-dimensional (planar or axisymmetric) geometries. The code
is intended primarily for the simulation of the transient flows experienced in shock
tunnels and expansion tubes and many features are included in the code specifically

for this aim.

The present code is a development of the single-block Navier-Stokes integrator
CNS4U [110] with the primary difference being the ability to handle a relatively
complex flow geometry by decomposing it into several non-overlapping blocks. The
name MB_CNS is an acronym for Multiple-Block Compressible Navier-Stokes solver.

Further details on the code are available in Jacobs [114].

MB_CNS is based on a cell-centred finite-volume formulation of the Navier-Stokes
equations and has a shock-capturing capability through the use of a limited recon-
struction scheme and an upwind-biased flux calculator. The governing equations
are expressed in integral form over arbitrary quadrilateral cells with the time rate of
change of conserved quantities in each cell specified as a summation of the fluxes (of
mass, momentum and energy) through the cell interfaces. Subject to grid resolution
and numerical diffusion issues, the code is capable of modelling flows that include

shocks, expansions, shear layers and boundary layers.

The code is written in C and uses data structures such that entire blocks of cells
are packaged in single data structure. The functions were then written so that they
operated on the flow data contained within that data structure without the need for
other information. The multi-block formulation of MB_CNS allows solution of the
flow field in separate blocks in parallel. Parallelisation in MB_CNS is described in
Chapter 5.2.2. The flow domain is specified as a Bezier polyline description of the

block boundaries.

In MB_CNS, simulations are assigned a case specific identification number, which
allows code to be included that performs tasks specific to that simulation. This code

is included in the files mb_special_init.inc and mb_special_step.inc, which are
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included in the mb_cns.c. Code used to set up special conditions specific to a case
identification number is written in the file mb_special _init.inc and code that is
used at the start of each time step is written in the file mb_special_step.inc. This

files are provided in Appendix C.

3.1.2 Formulation

The formulation of the governing equations, the flow field discretisation as a single
block of cells and the time-stepping scheme used to integrate the discrete equations is
described in Jacobs [110]. Some details of the numerical techniques used in MB_CNS

are discussed in this section.

Governing Equations

The starting point for the governing equations encoded within MB_CNS is the set

of Navier-Stokes equations which, in integral form, can be expressed as:

%/VUW=—/S(E—E)-MA+/VQW , (3.1)

where V' is the cell’s volume, S is the bounding (control) surface and n is the
outward-facing unit normal of the control surface. For two-dimensional flow, V' is
the volume per unit depth in the z-direction and A is the area of the cell boundary

per unit depth in z. The array of conserved quantities (per unit volume) is:

p
Py
U= pu, : (3.2)
pE
pfis |

These elements represent mass density, z-momentum per volume, y-momentum per
volume, total energy per volume and mass density of species is. The flux vector
is divided into inviscid and viscous components. The inviscid component, in two

dimensions, is:

i PUy - - Py -
pui +p PUg Uy
F; = | puyu, i + puz 4 p i (3.3)
pEu, + pu, pEuy, + pu,
| Pfists | | pfisty
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The viscous component, is:

[0 1 o }
Txx X Ty X
Fo=1 Ty i+ | Ty J o, (3.4)
Trals + Tyely + @z TayUz + TyylUy + Gy
i pfis,ux,is ] i sz'sﬁby,is |

where the viscous stresses are:

ou ou ou
— 9 T T y
T arr +)\<6:L' 8y> ’
B Oy Ou, — Ouy
Tyy = 2M8y +)\(8x 6y> ,
Ou, — Ouy
Toy = Ty = H ( ay + %) ) (35)

and the viscous heat fluxes are:
oT
r — k— his isMais
q o + 0 his fistta,

aT

Currently, the code convects species without considering their diffusion (i.e. fis =
0, f4y,is = 0). For flow without heat sources or chemical effects, the source terms in

Q) are set to zero.

The conservation equations are supplemented by the equation of state giving

pressure as a function of density, specific internal energy and species mass fractions:

p=0pp.e, fis) - (3.7)

The coefficients of viscosity p, A and heat conduction k are also allowed to vary
with the fluid state.

Axisymmetric Geometries

The shock tunnel simulations used in Chapter 7 use an axisymmetric representation
of the geometry of the shock tunnel. For axisymmetric flow, the geometry is defined
such that z-axis is the axis of symmetry and y is the radial coordinate. The governing

equations are modified such that:

e dA is now computed as interface area per radian;
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e dV is now cell volume per radian;

e The shear stresses 7,,, 7, have a extra term so that:

ou ou ou U
k M8x+ <8x+8y+y> ’
ou ou ou U
= 2u—2 4\ T4 44 Y 3.8

e and there is a pressure and shear-stress contribution to the radial momentum

equation which can be expressed as an effective source term:

Ay /V , (3.9)

o O

~—

Q=1 (p—To

0]

where A, is the projected area of the cell in the (z,y)-plane and:

U ou ou U
=22 + )\ LR A~ i 3.10
o “y+(8x+6y+y> (3.10)

Discretised Equations and Flux Calculation

The conservation equations are applied to each finite-volume cell for which the
boundary, projected onto the (x,y)-plane, consists of four straight lines. These
lines (or cell interfaces) are labelled North, East, South and West and the integral
equation is approximated as the algebraic expression:
dU 1 S —
— = —— Z (F;—F,)-ndA+Q (3.11)
dt V NEsw
where U and ) now represent cell-averaged values. The code updates the cell-

average flow quantities each time step by:

1. applying inviscid boundary conditions or exchanging data at boundaries of

each block as appropriate;

2. reconstructing (or interpolating) the flow field state to both sides of each in-

terface;

3. computing the inviscid fluxes at interfaces as (F; - 7)using a one-dimensional
flux calculator such as a Riemann solver [112], the equilibrium-flux method
(EFM) [180, 139] or AUSM [135];
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4. applying viscous boundary conditions at solid walls;
5. computing the viscous contribution to the fluxes as (F, - 7); and finally
6. updating the cell-average values using equation (3.11).

This whole process is applied in two stages if predictor-corrector time stepping is

specified.

When computing the inviscid fluxes at each interface, the velocity field is rotated

into a local (n, p)-coordinate system with unit vectors:

n o= ngit+ngj ,

Paitpy ] (3.12)

S
I

normal and tangental to the cell interface respectively. We have chosen the tangen-

tial direction p, = —n, and p, = n,. The normal and tangential velocity compo-
nents:

Up = Ng Uy + Ny Uy

Up = Py Uy +Dy Uy (313)

are then used, together with the other flow properties either side of the interface, to

compute the fluxes:

[ Fass W [ pu, |
Fo—momentum PUptUp + P
Fymomentum | = | Punty , (3.14)
Fenergy pun, E + pu,

| Fipecies—is | | pun fis

in the local reference frame. These are then transformed back to the (x,y)-plane as:

F, mass W F, mass
Fx—momentum Fn—momentumnac + Fp—momentumpx
F-n= Fy—momentum = Fn—momentumny + Fp—momentumpy : (315)
Fenergy Fenergy
L Fspeciesfis L Fspeciesfis ]

Flux Solvers

A range of inviscid flux calculators are available in MB_CNS; however, the adaptive

flux calculator was used throughout the simulations in this thesis. This flux calcula-
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tor uses a switching function to choose between using the AUSMDYV flux calculator
of Wada and Liuo [238, 135] and the Equilibrium Flux Method of Macrossan [139].
This switching function sets the flux calculator to EFM where large compressive
gradients in velocity are detected, otherwise, the flux calculator defaults to using
the AUSMDYV flux calculator. This adaptive flux calculator uses the good stabil-
ity properties of EFM in regions, near discontinuities in the flow, that can cause

problems with some flux calculators, as described by Quirk [182, 183]

Gas Properties

The gases simulated in MB_CNS may consist of several components (or species).
Specific gas models can be included in MB_CNS through the use of the gas.c
module. Access is provided by the function that calculates the equation of state,
which uses values for p, e and f;; to compute the other thermodynamic properties

T, p, a, and the viscous transport coefficients p and k.

In chapter 6, the gas models used in MB_CNS are: an ideal gas mixture of
Helium and air, and an ideal gas mixture of Refrigerant-22 and air. In chapter 7,
the gas models used in MB_CNS are: an ideal mixture of Helium and Nitrogen, and
a look-up table model of Nitrogen gas properties produced using the CEA program
[39].

Ideal air is modelled as a perfect gas, having the equation of state:
p=pe(y=1) Pa, (3.16)

where v = C,/C, = 1.4 is the ratio of specific heats, density p is given in kg/m?
and specific internal energy e is given in J/kg. Temperature and speed of sound are

also determined as:

T = — °K |, (3.17)

a = (YRT)* m/s , (3.18)
where:

R = 287 J/(kgK),

C, = = 717.5 J/(kg.K), and
01 / (kg .K)
C, = C,+R=100451/(kg.K) .

=




3.1 Finite-Volume Eulerian Methods 61

The viscous transport coefficients are computed as:

6 T3/2
= 1458 x 10 °——+—— Pa. 3.19
" Ty (3.19)
—2
A= i Pas (3.20)
C
ko= “P—: W/(mK) | (3.21)

where Pr = 0.72 is the Prandtl number. The properties of the other ideal gases
used in these simulations, such as the Helium, Nitrogen and Refrigerant-22, can be
specified and used with these equations. A finite-rate chemistry module [52] is being
developed, which will extend the applicability of MB_CNS into thermochemically

active regimes.

A Sutherland’s law viscosity model [230] is used in calculating the viscous fluxes.
For the Helium driving Nitrogen case, Wilke’s law [245] is used to calculate the
viscous fluxes where mixtures of different gas species are present. This model uses
the relative mass fractions of each of the component gases in the computational

cells.

Mixtures of Two Perfect Gases

The thermodynamic properties of a mixture of two perfect gases are computed using
effective gas constants and specific heats, which are based on the mass fractions of

the gases present in each cell:

R = f,R.+ fo Ry , (3.22)
CU = fa Cva + fb va , (323)
Cp - fa Cpa + fb Cpb ) (324)

where f, and f, are the mass fractions of the gas components. The viscosity of
the gas in the cell is estimated using Wilke’s method, with the Herning-Zipperer

approximation, as described in Reid, Prausnitz and Poling [189].
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3.2 Lagrangian Particle Methods

This section will discuss numerical methods based on the Lagrangian description of
fluid motion. These methods may provide advantages in simulating flows in which
fluid interfaces are a key component. Flows in which interfaces are important include
shock tunnel flows, in which the contact surface between the driver and driven gases

plays an important role in many of the processes that occur.

A numerical method based on the Lagrangian description that relied on the
use of a mesh would suffer problems caused by mesh distortion. As fluid elements
moved around one another, the mesh elements would overlap and become tangled.
This mesh distortion is evident in Figure 3.1. It is possible to continually remap the
Lagrangian mesh, but this would introduce numerical diffusion and, therefore, would

negate the advantage of being able to advect fluid interfaces with little diffusion.

The problem of mesh distortion can be avoided by not using meshes at all. What
is required for this is a method of interpolating fluid properties without relying on
a mesh joining computational points. One such method is the Smoothed Particle
Hydrodynamics (SPH) method [78, 137].

Meshes are used to join computational points for the purpose of interpolating
fluid properties. With the aid of a computational mesh, interpolating fluid properties
is straight-forward; however, interpolation is more complicated without the aid of a
mesh. In SPH, continuum fluid properties at a particular location are interpolated
as weighted sums of the properties of surrounding particles in a process known as

kernel interpolation.

Some aspects of the SPH technique will be described in this section. The parallel
implementation of a code based on the SPH technique is described in Chapter 5.

The parallel performance and efficiency of this code are discussed in Appendix A.

3.2.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a mesh-less, purely Lagrangian numer-
ical method for the transient solution of the Euler equations. The Euler equations
describe the motion of an inviscid, Newtonian fluid. The continuum fluid is rep-
resented by a collection of fluid pseudo-particles; however, these particles are more
precisely thought of as merely interpolation points for fluid properties, rather than
actual particles of fluid. The Lagrangian form of the conservation equations of fluid
flow become the equations of motion of these interpolation points as they move with
the flow. As a result the method is completely deterministic. These interpolation

points move with the flow and as they do, they interact with one another and carry
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with them all of the computational information about the fluid. Fluid properties
are then interpolated between the particles by kernel interpolation, which will be

described later.

The SPH technique is described in two major reviews: Benz [19] and Monaghan
[156]. Another review on the subject of particle methods, which focuses on SPH, is
Monaghan [151],

An actual fluid is made up of molecules with empty space between them. SPH is
based on the continuum model of a fluid which assumes that the fluid is a continuous
medium over all length scales. The fluid properties are known as a discrete, arbitrary
set of points, that is the set of interpolation points. Through kernel approximation
[73], the properties of the fluid at the discrete points are smoothed out over the flow
domain, producing a smoothed field of fluid variables. The properties of the fluid
at a particular point in space can then be calculated using the sum of all of the

smoothed contributions from particles near the point.

The smoothing function applied to each of the particles is referred to as the ker-
nel. These particles do not represent a singular point in space, but rather the space
surrounding them according to the kernel function. Mass is maintained by particles,
while momentum and energy are exchanged between them. The kernel function and
a characteristic smoothing length parameter, referred to as the smoothing length

define the domain over which the properties of a particle are smoothed.

Artificial viscosity is used to introduce dissipation into the technique in order
to resolve shocks [159]. The use of switches to control the addition of this artificial
viscosity have been discussed by Morris and Monaghan [160] and an improved form
of the artificial viscosity was described by Watkins et al. [239].

Background of the Technique

Particle methods have been used since the 1960s in plasma physics and N-body
problems. These N-body problems were largely self-gravitating astrophysical simu-
lations. The first use of particle based methods for solving fluid dynamics problems
was the Particle In Cell (PIC) method Harlow [91]. This method used particles to
advect physical quantities and then used a grid to calculate spatial derivatives by
finite differences. The PIC method used large amounts of computer memory due to
its need to store two sets of data, from the particles and from the mesh. The main
limitations of the PIC method were excessive numerical noise and inadequacies in

the representation of viscosity and heat conduction [18].

The problems with the PIC method were mainly as a result of the requirement

for a mesh as well as the particles. A method by which spatial derivatives could
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be calculated over the particles would remove the requirement of a mesh. This was
achieved with the SPH technique, which was first described in 1977, concurrently
by Lucy (1977) [137] and Gingold and Monaghan (1977) [78]. The application that
was described by both publications was the simulation of the fission of a rapidly
rotating star. As with previous particle methods, particles carry physical quanti-
ties with them, but what was new with this method is that spatial derivatives are
calculated analytically from approximate interpolation formulae which refer only to
particle properties. A significant advantage of this is that removing the require-
ment for remapping onto a grid meant that SPH was significantly less diffusive than
previous methods, such as the PIC method. The method was applied primarily to
astrophysical and cosmological problems throughout the 1980s but, in recent times,

other applications of the method have been realised.

Reviews of the applicability and suitability of SPH to particular problems have
been provided by Steinmetz and Muller [222], Belytschko, Krongauz, Dolbow and
Gerlach [16], and Hernquist [96]. Randles and Libersky [185] described the im-
provements that have been made to the SPH technique over the period from 1991
to 1996. Belytschko, Krongauz, Organ, Fleming and Krysl [17] provided a similar
description of the developments over the same period, extending their discussion to

other particle methods.

Modifications to the basic SPH technique are being developed, which make im-
provements to aspects of the technique. These modifications include the Corrective
SPH (CSPH) technique, which was developed by Chen, Breaun and Carney [42], and
the Normalised SPH technique described by Randles and Libersky [186]. The Mov-
ing Least-Squares Particle Hydrodynamics (MLSPH) technique has been described
by Dilts [59, 60] and the Moving Least Squares Reproducing Kernel (MLSRK) tech-
nique has been described by Li and Liu [134]. These modifications to SPH demon-
strate both the early stage of development that SPH has reached and the significant

amount of research that is being conducted in improving the technique.

The Adaptive SPH technique has been described by Shapiro, Martel Villumsen
and Owen [205, 170]. This modified technique provides many improved qualities
over the traditional SPH technique; the most important of these is the use of a

smoothing length that is solution adaptive.

The SPH technique exhibits a natural parallelism. This aspect of the technique
will be discussed further in Chapter 5.
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Interface Modelling with SPH

Provided that enough particles are used in a simulation, fluid interfaces should be
maintained as with a grid-based Lagrangian method; that is, material from each
side of the interface will remain on that side of the interface and will not cross over
or mix at the interface. As a result of this fluid interfaces should remain sharply

defined throughout a simulation.

Figure 3.2 compares the modelling of an fluid interface using a fixed Eulerian
mesh and using moving computation points which are not joined using a mesh,
such as with SPH. In the Eulerian mesh representation it can be seen how the fluid
interface crosses through the centres of the cells. In any of these cells, the fluid
properties from either side of the interface are mixed in these cells. This process
continues through time, as the interface crosses more cells, increasing the mixing.

Interface moves with
the particles

Interface must move
gas 1 through the cells

gas 2
Finite Volume Method Meshfree Particle Method

Figure 3.2: Interface modelling with finite volume and mesh-free particle methods

In modelling a fluid interface with SPH the sharp interface is smeared out by
the interpolating function. This reduces the detail around the interface; however,
since these smoothed computational elements move with the interface, an improved
representation may still be obtained. A further problem, which will be discusses
later, is the that of the unphysical penetration of particles through the interface
[154].

Applications of SPH

Applications of SPH to compressible fluid mechanics problems comprise only a small
sub-set of the application studies that have been conducted with SPH. SPH has quite
a wide range of potential applications. The properties of different materials can be
specified through the use of a suitable equation of state [157]. As a result of its
origins, to date the majority of applications that SPH has been applied to have
been in astrophysical domains [218, 187, 18, 24].

Another large sub-set of applications come from incompressible, free-surface fluid

mechanics problems. SPH can be extended to the simulation of incompressible
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fluids, through the use of a suitably stiff equation of state, and being Lagrangian
in nature, SPH is suitable for free surface applications [155]. SPH has been applied
to the injection and casting of metals by Cleary and Ha [47] and Ha, Ahuja and
Cleary [88], to surface coating techniques by Reichl, Morris, Hourigan, Thompson
and Stoneman [188]. Multi-phase applications have also been studied, including

under-water explosions by Swegle and Attaway [231].

The application of SPH to compressible flows has been described by Monaghan
[150]. Monaghan [152] describes the application of SPH to hypersonic flow; how-
ever, no reference is made to the simulation of the real gas effects associated with
real hypersonic flows. Monaghan [158] discusses the similarities between SPH and

solutions of compressible flows using Riemann solvers.

The application of SPH to shock tunnel flows has been investigated by Robinson
[193]. This study focused on the simulation of the rupture mechanics of the primary
diaphragm. The SPH technique was thought to provide the potential for a more
complete description of diaphragm rupture, including the ability of modelling the
fluid structure interaction with the fragments of the ruptured diaphragm. One
and two dimensional models of the diaphragm rupture process were developed. The
simulations demonstrated a qualitative view of the rupture process, although the use

of boundary particles meant that the flow in the vicinity of walls was unphysical.

Morris [160] studied the interaction of planar shock waves with cylindrical bub-
bles. This is the same type of simulation that is described in Chapter 6. The
simulations that were performed incorporated a new switch for the artificial viscos-
ity term in the momentum and energy equations. The results were compared with
simulations performed using a CFD code with a finite-volume formulation and no

comparison with experimental results was provided.

Henneken and Icke [95] used SPH to simulating the forward facing step test case
as descibed by Woodward and Colella [249]. These simulations are discussed later

in this section.
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Details of the SPH Technique

An SPH simulation is started by placing the particles in the domain such that the
density of the fluid is represented by the relative density of the particle positions.
To interpolate the information that we have at particle positions the information
stored at a point in space is numerically distributed over the surrounding area by a
kernel function, W(r). The degree of smoothing is defined by a parameter known as
the smoothing length and can be either constant for all particles or vary depending
on the local density.

The state vector describing particle properties is {r, v, e}, where r is the position

vector, v is the velocity vector, and e is the specific internal energy. The derivatives

of the state vector are given by {v, ?i—;’, % .

Equation 3.25 shows this summation used for some fluid property, A, being
interpolated at the sample point r using the kernel smoothing function W (r —ry, h).
The contributions to the properties from all particles b in the domain are summed

to produce the result.
A0 =% Ab%W(r — 1y, h) (3.25)
b b

Graphically this process is represented for a one dimensional case in Figure 3.3,
where the masses of a series of particles in the r axis have been smoothed and the

property p has been interpolated to a continuous function.

14

interpdl ated Function

Kernel Interpolated Function

Position

Figure 3.3: Gaussian kernel interpolation of density in one dimension from five particle
positions.

where my, is the mass of fluid assigned to the particle b and py is the density of
the particle b. An important aspect of kernel interpolation is that, with the right
choice of kernel, the gradient of fluid properties can be interpolated directly using the

gradient of the kernel. With the Gaussian kernel this gradient is known analytically



68 Numerical Formulation for Compressible Flow Simulation

and, therefore, can be used to interpolate these gradients in the same way that fluid
properties are calculated. In the case of the Euler equations the gradient of pressure

is required:
D —10p

Ft:78x

where v is the velocity vector of the fluid and x is the coordinate vector, p is the

(3.26)

density of the fluid and p is the pressure of the fluid. This equation is solved using
the gradient of the kernel interpolant, resulting in Equation 3.27. This equation
determines the acceleration experienced by the particle, a, using the pressure and
density properties of the surrounding particles, denoted by b. The symmetric nature

of this equation ensures that particle interactions are equal and opposite [153].

dv, u
; == <p—2 + p-;) VW(r, — 1y, h) (3.27)
t b o Pb

The rate of change of specific internal energy is calculated using:

deo 1 Pa pb>

==Y my| =+ = | Ve VW(r, —1p,h) (3.28)
dt 2 zb: (pZ ph

Dissipation in the form of two types of artificial viscous pressures are usually added

to Equations 3.27 and 3.28: a Von Neumann-Richtmyer artificial viscosity and a

bulk viscosity. Pseudo code for the SPH technique is shown in Figure 3.4.

assign particles to flow domain according to initial density
assign initial properties to particles

calculate densities at particle positions

calculate particle pressures and local sound speeds
calculate particle accelerations

calculate rate of change of internal energy

integrate particle properties forward through time step
check if solution time has been reached

T T
v
W NO O W

Figure 3.4: Pseudo code for the SPH method

Although the SPH tecnique can be computationally expensive, there are tech-
niques for increasing its efficiency and, therefore, the size of simulations that can be
run in practice. These include the use of efficiently structured code and compiler
optimisations, particle sorting methods, such as cells and hierarchical trees [97], and

overall parallelisation of the algorithm.

There are optimisations specific to the SPH method that significantly impact
performance. Polynomials are often used for the interpolating kernels instead of
Gaussian functions as they are less costly to evaluate. This has a significant effect
on performance as the kernel function must be calculated for every particle’s con-

tribution to the summations used. Forces between particles are equal and opposite
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and so the number of interactions actually calculated in the solution can be reduced
by a factor of two. This optimisation is easily realised with a sequential solution,

but care must be taken when implementing this in parallel.

Particles that are a long distance from the particle being updated will provide
a negligible contribution to the summation. Special interpolating kernels recognise
this and provide compact support [74]: outside of a certain radius the contribution
is zero. This means that only nearby particles, usually within a radius of two times
the smoothing length, need to be considered. Particles can then be sorted in order
to quickly find their neighbours. For simulations in which the smoothing length does
not vary, particles can be assigned to fixed-size cells. For a specified location, the
nearest, cells and, therefore, nearest particles are easily found. Figure 3.5 shows a
particle, marked by a cross, and the circular region in which other particles will have
a significant contribution. The cell (m,n) in which the particle lies is shaded and
the surrounding cells that are included in the calculation by the sorting technique
are lightly shaded. Hierarchical trees [97] can be used for simulations in which the

smoothing length varies between particles.

AN

m+1

m
/

n-1 n n+1

Figure 3.5: Cell sorting used for finding neighbouring particles to those in cell (m,n)
with constant smoothing length.
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The SPH Code

A CFD code based on the SPH technique was developed and applied to several test
cases. Initial conditions can be specified in the code using either regular cartesian
initial arrangments of particles or an implementation of a quasi-random sequence
generator, which would assign particles to an arbitrary geometry in a quasi-random
manner [23]. The code can interpolate the density of the particle field using either
the summation density algorithm or the continuity equation. A constant smoothing
length was used throughout a simulation. The cell based selection of neighbouring
particles was included, which resulted in significant improvements in the speed at
which a particular flow field could be solved. Generalised inflow and outflow bound-
ary conditions were developed. These boundary conditions were applied successfully
to the test case in the following section. Reflected boundary conditions, representing
solid slip walls were also developed. These boundary conditions were extended to
piecewise-linear boundary conditions and were applied to some cases. The code was

implemented in parallel and its performance is described in Appendix A.

The Riemann problem has been studied using the SPH method by many authors
[136, 193]. This test case was modelled with the SPH code developed in this thesis.
Since this case has been described extensively, it will not be described in detail in this
section apart from some general observations of the solutions obtained: The shock
and contact discontinuities are smeared over approximately three smoothing lengths.
Significant post shock oscillations, resulting from the use of artificial viscosity, are
evident. A large oscillation in pressure is evident at the position of the contact

surface and a small dip is evident near the end of the expansion.

Test Case: Forward Facing Step

The forward facing step is a test case used to investigate the ability of CFD codes
to reproduce a standard flow field from another CFD code. The flow situation
being modelled is two-dimensional, inviscid, supersonic flow (at a Mach number of
3) along a duct over a forward facing step. This test case is described by Woodward
and Colella [249] and is used as a test case that includes supersonic and subsonic flow
regions, strong shocks and expansions. The test case can be used for the comparison
of CFD codes only and is not a physically realisable case, since the flow is impulsively

started and is inviscid.

This case had been attempted perviously using SPH by Henneken and Icke [95].
Their simulations were limited by the inflow boundary conditions. The simulations
used a constant number of particles, with particles being introduced to the upstream

boundary as they passed through the downstream boundary. The result of this is
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that the mass flux at the upstream boundary is dependent on the downstream mass
flux, which is unphysical. Being a transient flow problem, the flow through the duct
would not be expected to be constant. As the density is increased behind the shock
and its reflection, the rate at which particles leave the flow field varies strongly over
time. In addition, the particles are added to the upstream boundary at random

heights, which introduced significant noise into the flow field.

In these simulations, the number of particles is allowed to vary through the
simulation. This allows a steady inflow condition to be maintained. In addition,
a significantly larger number of particles is used in the simulations in this section:
greater than 24,000 rather than 600 particles. Being an inviscid test case, the solid

walls of both the duct and the step are modelled using reflected boundaries.

Figures 3.6 and 3.7 show a sequence of the simulation of the forward facing step.
Vectors at the position of each particle are shown in the frames. The initial con-
ditions are specified as regular cartesian arrangements of particles. The upstream
inflow boundary condition introduces particles into the flow field in regularly ar-
ranged rows. The first frame is shown soon after the reflection of the shock from
the step. The regular arrangement of the particles is broken up as the particles
pass through the shock. The particles near the top of the step have a definitely less
ordered arrangement than that particles further out in the flow field. The increased
numbers of particles in the high density regions behind the shock and its reflection
can be seen throughout the sequence. Post shock oscillations are evident behind the

shock in all of the frames.

Figure 3.8 shows a comparison of the results from Woodward and Colella [249]
with the results from the SPH code simulation. Contours of the density field are
shown in the frames. The SPH simulation achieves reasonable agreement with the
results from Woodward and Colella; however, some significant differences are evi-
dent. The SPH results appear slightly behind in time from the results of Woodward
and Colella and the effects of the post shock oscillations are apparent. In the last
frame an additional bend in reflection of the shock from the top wall of the duct (in
the segment between the Mach stem and the reflection from the top of the step) is
evident. The origin of this bend is not known and the SPH simulations of Henneken
and Icke [95], which did not resolve the shear layer behind the Mach stem, did not
exhibit this problem. In addition, despite the relatively large number of particles
used in the simulation the resolution of the SPH simulation is inferior to the simu-
lation of Woodward and Colella, which was performed almost twenty years ago. An
advantage of the SPH simulation is that it does not require the entropy fix that is
applied to finite volume simulations of this test case [249], in order to remove the

singularity at the top corner of the step.
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Figure 3.6: Part one of a sequence of the simulation of the forward facing step test case
using SPH. Velocity vectors at the position of each particle are shown.
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shown.

Figure 3.7: Part two of a sequence of the simulation of the forward facing step test case
at the position of each particle are

using SPH. Velocity vectors
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Figure 3.8: SPH Modelling of Forward Facing Step. Comparison of the results of Wood-
ward and Colella (1984) with the results from the SPH code.
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Limitations of SPH in Simulating Shock Tunnels

After the test cases were developed, a decision was made not to continue develop-
ment of the SPH code, but to continue the shock tunnel simulation exclusively with
MB_CNS. SPH is not a commonly used numerical technique and many of the prob-
lems associated with the use of SPH are a product of the relative lack of development
of the technique and of the code. As an example of this, some of the problems which
were observed were due to the implementation of a constant smoothing length. A
method that incorporated a smoothing length that was varied as a function of the
local density [205] would improve the applicability of the technique. This thesis is
intended as an application study and a significant amount of time spent on the fur-
ther development of numerical techniques would detract from the application side
of the study. The code that was developed provided a useful test bed for parallel

computing methods and so will be discussed further in this thesis in that context.

The development of test cases allow the code to be assessed in the context of
what would be required in order to use the code in the simulation of complete shock
tunnels. Some of the issues that were identified that would prevent the application
of the SPH code were:

Use of Artificial Viscosity The requirement for an artificial viscosity means that
SPH resolves shocks poorly in comparison to contemporary methods. Shocks
are typically resolved over three smoothing lengths. In a constant smoothing
length simulation, such as those in this thesis, the smoothing length, is based
on the largest particle spacing in the simulation. This leads to an inefficient
use of particles in most regions of the flow. This is in addition to the relatively
low resolution of the SPH technique in general. The use of artificial viscosity

also results in post shock oscillations.

Solid Boundaries The treatment of solid boundary conditions has always been a
significant limitation of the SPH technique. Flat, slip boundaries can be im-
plemented in a straight-forward manner with reflected boundary conditions.
Curved, slip boundaries can be represented in a piece-wise linear manner with
the same reflected boundary conditions. The complex geometry of the nozzle
would not be represented satisfactorily with a piecewise linear profile. Re-
flected boundary conditions also do not provide for non-slip boundaries and
the use of boundary particles to represent non-slip boundaries [48] is consid-
ered to be non-physical. Attempts to extend the simulations to the inclusion of
curved boundaries with Lennard-Jones potentials [103] were unsuccessful. The
potential at the wall would repulse any approaching particles with a constant

exponential force. This repulsive force, although keeping the particles inside
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the wall, was not physical. Discussion of boundary conditions are provided in
Dilts and Haque [60]. Reflected boundary conditions were used for the forward

facing step test case.

Boundary Layers Numerical techniques applied to the simulation of shock tunnels
must be able to reproduce the shear stress and heat fluxes at the shock tube
walls. This means that the techniques must be able to accurately predict the
gradients of velocity and temperature, amongst other variables, at the wall. It
is believed that many of the application studies, through their use of boundary

particles, do not deal with solid wall boundaries in a way that would allow this.

Turbulence Models The Baldwin-Lomax eddy viscosity model [11] was used in
the simulations using MB_CNS in this thesis. There are no equivalent im-
plementations of this, or any other turbulence models that are usable in the
SPH code. Sub-particle-scale scale turbulence models are feasible and have
been proposed by Gotoh, Shibahara and Sakai [82]. This model has not been
compared with any experimental results or tested in any extensive way. In
addition, the model is not directly applicable to the SPH code that has been
developed in this thesis. The simulation of turbulent boundary layers was also
discussed in Cleary and Monaghan [48]; however, the treatment of turbulence

in the boundary layer was not rigorous.

Interface Modelling There are significant complications with the way that inter-
faces are modelled in SPH. These problems include the non-physical penetrac-
tion of particles through the interface. Arranging particles in regular patterns,
such as lattices, can result in lines of particles having artificial stiffness. This
artificial stiffness can promote the unphysical penetration of particles through
fluid interfaces. This penetration is also unpredictable. The issue of particle
penetration has been discussed by Monaghan [154] and Latanzio, Monaghan,
Pongracic and Schwarz [125]. These publications propose methods of prevent-
ing penetration; however, these methods are dissipative and this phenomenon
in an undesirable feature of the SPH technique in general. This presents an
important problem since the purpose of investigating SPH was for advantages
that may have been provided in the low diffusion modelling of fluid interfaces.
On the other hand, it is shown in Chapter 7 that the representation of the
contact surface in MB_CNS is in fact sharper than the real contact surface.
As a result of this, some additional, physical form of diffusion, would be re-
quired in the simulations, rather than a method of maintaining an even sharper

interface.

Multiple Component Gases The simulation of mixtures of gases in SPH is still
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relatively unstudied. The effect on kernel interpolation of simulations involving
mixtures of particles representing different gases is not clearly understood.
In addition, physical species diffusion models have been used extensively in
Eulerian based methods. The particle based nature of SPH causes difficulty

in formulating physical diffusion models at fluid interface.

Specification of Initial Conditions Specifying initial conditions on regular lat-
tice like arrangements makes SPH susceptible to particle penetration. In addi-
tion, the assignment of particles to lattice arrangements near solid boundaries
leaves voids where the boundary and the lattice do not align. The quasi-
random sequence generator, described by Bratley and Fox [23], was imple-
mented in the code, thus allowing a general method of filling the flow field
with particles; however, the use of this type of initial condition led to ex-

tremely noisy flow fields.

Tension Instability Tension instability results from the use of peaked kernels.
The gradient of the kernel reaches a maximum value at a finite distance from
the particle position. This means that particles will experience an increasing
pressure as they approach a particle to the location of this maximum kernel
gradient; however, the pressure begins decrease as they continue to approach
past this point. This can result in unphysical particle behaviour, such as
particles stacking on one another. This problem can be solved through the use

of conservative smoothing or moving least squares interpolants [186].
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3.3 Previous Numerical Simulation of Shock Tun-

nels

Numerical simulations of shock tunnels are used to determine the operating condi-
tions required to produce required test flow conditions and to investigate problems
with the operation of the facilities. Previous numerical simulation studies can be
generally divided into two categories depending on the way in which they approach

the modelling:

1. quasi-one dimensional simulations of the entire facility

2. axisymmetric simulations of part of the facility (usually the end of the shock
tube and the nozzle, with the conditions upstream of this section of tube

assumed from theoretical profiles)

The quasi-one dimensional simulations are used to model the flow development
through complete shock tunnels, assuming that the flow properties vary only along
the length of the tube. Mass loss models must be used to account for the effect that
the boundary layers have on the core flow [64]. Quasi-one dimensional simulations
provide a computationally efficient method of studying the transient nature of shock
tunnel flows. Examples of simulations of shock tunnels using quasi-one dimensional
simulation techniques are provided in Zeitoun, Brun and Valetta [254], Jacobs [113]
and Doolan and Jacobs [64].

Due to the computational requirements, few fully three dimensional modelling
of shock tunnel flows have been conducted. Given the inherently axisymmetric
nature of shock tunnels flows, studies have chosen to focus their computational
effort on fine grid resolution in axisymmetric simulations. The literature was not
found to contain any references to improvements obtained through the use of three

dimensional simulations over axisymmetric simulations.

3.3.1 Axisymmetric Models

Burtschell, Brun and Zeitoun [29] performed numerical simulations of the, then
proposed, TCM-2 free piston shock tunnel. The aim was the prediction of operating
conditions for the proposed facility and the investigation of the unsteady phenomena,
which were thought to restrict the performance of the proposed facility in high
enthalpy operation. Quasi-one dimensional simulations of the piston compression
process were performed. They attempted to simulate the whole shock tunnel with

an axisymmetric simulation, but were restricted by the limited computing power
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available at the time. Their mesh, although covering a representative geometry
of the whole facility, only allowed for ten cells across the diameter of the tube;
certainly not enough to resolve flow features such as boundary layers, or regions of
shock interaction adequately. An explicit, unsteady method for solving the Euler
equations with a Van-Leer decomposition was used in the solution. Conclusions
were reached regarding the unsteady processes occurring the facility. This paper

represents the first attempt at axisymmetric simulation of a shock tunnel facility.

Badcock [8] simulated the propagation of a shock along a shock tube to investi-
gate the effects by which these flows deviate from the inviscid solution. The unsteady
evolution of gas properties as the shock propagated along the tube were examined.
A mixture of Roe’s method and central difference schemes were used. The flow was
modelled in two dimensions, with the scheme being implicit in the radial spatial
dimension. The thermodynamics were assumed to be described by a perfect gas
law. Comparisons were made with experimental data and with analytical solutions
obtained via boundary layer equations. The effect of varying parameters, such as
a uniform viscosity term, the heat conductivities and the boundary layer thickness

were examined.

Lee and Lewis [130, 129] presented a numerical study of unsteady, viscous, hyper-
sonic flows in two dimensional shock tunnel nozzles. The two dimensional Navier-
Stokes equations were solved with an upwind TVD scheme. The simulations inves-
tigated the flow development time around aerodynamic models in the test section.
The simulations modelled only the flow through the nozzle, and did not address the
nature of the flow in the shock tube, assuming it to provide a steady reservoir for
the nozzle. Lee and Nishida [131] also simulated the startup flows in hypersonic

nozzles to investigate the flow establishment times.

Wilson, Sharma and Gillespie [247] performed time dependent, quasi-one dimen-
sional and axisymmetric simulations the flow through the NASA Ames electric-arc
driven shock tube facility. The simulations focused on the interaction of the reflected
shock with the boundary layer, as evidence of this interaction was clearly evident
in the experimental data. The operating conditions considered were over-tailored.
This experimental data was used in comparison with the simulations. Some limita-
tions were evident in the ability of the simulations to reproduce the experimental
traces through the region of the interaction of the reflected shock with the boundary

layer.

Figure 3.9 shows the interaction of the bifurcated reflected shock with the contact
surface as simulated by Wilson, Sharma and Gillespie [247]. The top frame shows
the flow before the interaction and the bottom frame shows the flow shortly after

the interaction. Evident in the frame before the interaction is the jetting, which
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results from the movement of gas through the oblique shocks at the foot of the
reflected shock, and the approaching planar contact surface. In the frame after the
interaction, the driver gas moving through the shock foot can be seen to be ahead

of the driver gas moving along the centreline.
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Figure 3.9: The interaction of the reflected shock with the boundary layer from the
simulations performed by Wilson, Sharma and Gillespie [247]. The process before the
interaction of the reflected shock structure with the contact surface is shown on the top
and shortly following the interaction on the bottom.

Figure 3.10 shows the flow evolved later in time, including the late time evolution
of the contact surface as it emerges from the shock structure. The driver gas can be
seen to be moving along the wall of the shock tube, far ahead of the driver gas near
the shock tube centreline. The pseudo shock train, following the reflected shock, is
also evident. Large vortices are shown to form in the shear layer between the gas
that has moved through the oblique shocks and the gas that has moved through the

normal shock.

Tokarcik-Polsky and Cambier [234] investigated the process of shock reflection
from the end wall of a shock tunnel and the resulting startup flow through the nozzle.
The simulations were inviscid and focused on the formation of a vortex system which
was believed to form along the centreline of the shock tube. The nozzle geometries
used had a flat downstream face, and varying degrees of contour through the nozzle
mouth. A non-physical jetting of gas along the nozzle centreline was observed for
certain ratios of mesh resolution in the axial and radial directions. It was determined

that including the effect of viscosity on the reflected shock tube flow would reduce



3.3 Previous Numerical Simulation of Shock Tunnels 81

Relflecied Pseudo-Shock or Shock Train _ Contact

S s’

Separated Region c i o .
; ontams
(Comtains Driven Gas) wig'\agorir:/gr' 82;8" Gas End

Figure 3.10: The flow field from the simulations performed by Wilson, Sharma and
Gillespie [247] shown later in time from the frames in Figure 3.9.

this effect. The simulations showed that no vortex structure existed in the shock
tube as was thought. The simulations were compared to experimental visualisation
and showed a good correlation. The experimental results also failed to show a vortex

structure in the shock tube.

Sharma and Wilson [206, 207] conducted axisymmetric simulations of the de-
velopment of the flow along the length of a shock tube. Their study was aimed
at extending the analytical studies of Mirels [149], Roshko [195] and Hooker [104]
with simulations of a shock tube with viscous boundary layers. The axisymmetric
flow through a shock tube was modelled using the thin layer Navier-Stokes equa-
tions. The gas model used accounted for finite-rate chemical processes and included
a separate equation for vibrational energy. The flow conditions were chosen so that
Mirels’ correlations [149] were valid. Sections of the shock tube were modelled, with
the contact surface assumed to be initially planar. The simulations were performed
in the shock reference, with the section of tube between and around the shock and
the contact surface modelled. The flow entered the domain from the upstream side
of the shock. The boundary layers were assumed to remain laminar. The simula-
tions modelled the temporal evolution of the boundary layer, mass leakage through
the boundary layer, the acceleration of the contact surface and the deceleration of
the shock. Some boundary layer parameters calculated in the simulations matched
Mirels’ correlations; however, some boundary layer parameters did not. The sim-
ulations did not address the reflection of the shock and the resulting interaction
processes and, therefore, the test times from this study provide ideal limits for the
test times of real shock tubes. The trends observed in the test times produced by the
study were closely related to the trends based on Mirel’s correlations, demonstrating

the strong dependence of this study on this assumption.

Wilson [246] simulated the flow through the acceleration tube section of the HY-
PULSE expansion tube. These simulations extended the simulations of Sharma and

Wilson [206, 207] by accounting for the effect of turbulence in the boundary layers
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using the model of Cebeci and Smith [40]. Even though this study was of an ex-
pansion tube flow, it still has relevance to shock tunnel simulation. Two operating
conditions were modelled, one producing flow with laminar boundary layers and the
other with turbulent boundary layers. A grid refinement study confirmed that the
solution converged to Mirels correlation. Experimental pressure traces were com-
pared with traces from the simulations for both the laminar and turbulent operating
conditions. In the traces, the overall characteristics of the pressure traces compared
well. The simulations were limited to lower Reynolds numbers by the computational
requirements of grid resolution in the boundary layer. The authors suggested the
implementation of more advanced models, using larger grids and the modelling of
more processes occurring in the operation of the facility, such as diaphragm rupture

mechanics.

Weber et al. [240] studied the shock bifurcation resulting from the interaction of
the reflected shock with the boundary layer and the effect of this interaction on the
surrounding flow. Flow conditions resulting from shock Mach numbers of 2.6, 5.0
and 10.0 were simulated. Only the end region of the shock tube was included in the
simulations in order to achieve sufficient resolution in this region. The shock tube
was modelled as two dimensional. The boundary layer profile used in the reflected
shock interaction simulations was obtained from a separate simulation of the prop-
agation of the shock along a flat plate. These simulations provided a demonstration
of the complex, transient flow field that results from the reflected shock interaction
with the boundary layer. The effect of heat transfer, Reynolds number and incident
shock strength were studied. Figure 3.11 shows contours of density and velocity vec-
tors in the region of the interaction (on the left), and the profile of pressure through
the interaction, for two different resolution grids (on the right). The stepped profile
of pressure through the shock structure obtained in the simulations is evident in the

image on the right of the figure.
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Figure 3.11: The interaction of the reflected shock with the boundary layer as simulated
by Weber, Oran, Boris and Anderson, Jr. [240].
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Chue [43] performed axisymmetric simulations of the end section of a shock
tube in order to investigate the interaction of the reflected shock with a turbulent
boundary layer. The Baldwin-Lomax eddy viscosity model [11] was used to account
for the effect of turbulence in the boundary layers. This interaction was shown to
promote the transport of boundary layer material towards the end of the shock tube.
Tailored and off-tailored operating conditions were investigated. The computational
domain covered only the region of the shock tube, with the turbulent boundary layer
correlations of Mirels being used for the upstream boundary conditions. In addition
to investigating the jetting of gas through the bifurcated shock foot, Chue also noted
the generation of vorticity in the interaction of the reflected shock with the contact

surface.

Hannemann et al. [90] conducted an earlier study of the shock tunnel operation
in the same facility as this study. Simulations were compared to experimental results.
This study modelled the transient flow through the whole facility using a quasi-one

dimensional flow code, and the multi-dimensional flow through the nozzle.

The simulations of Petrie-Repar and Jacobs [176, 177] were discussed in Sec-

tion 2.1.4 in the context of diaphragm rupture process.

Chue and Eitelberg [45] performed simulations of the HEG shock tunnel. These
simulations were a progression from the simulations of Chue [43] and they also
focused on the flow features occurring in the shock tube subsequent to the reflection
of the shock. In the simulations of the shock tube flow, the computational domain
covers the last 710 mm of the 17 m length of the shock tube. The initial conditions
for the simulations were at the instant before the reflection of the shock. The initial
flow conditions behind the incident shock were calculated from the boundary layer
theory of Mirels [148]. All of the analyses conducted used a tailored operating

condition.

The authors examined the interaction of the reflected shock with the boundary
layer and contact surface in order to investigate their contribution to driver gas
contamination and the generation of flow disturbances. The contact surface was
assumed to initially be a planar, discontinuous interface between the driver and
driven gases. The influence on the contact surface from the diaphragm rupture
mechanics, mixing and instability was not modelled. These simulations assumed
that the nozzle entrance acted as a mass sink, at which the flow was axial and
choked.

Following the interaction with the contact surface, significant vorticity was ob-
served in the contact surface, which resulted in the driver gas being broken up in a

complex swirling motion and travelling downstream. This was identified as a form
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of Richtmyer-Meshkov instability. The vortical structure generated at the contact
surface was shown to have a counter-clockwise motion, which retarded further leak-
age of driver gas towards the end-plate in the short term. The bifurcated shock
structure was shown to weaken as the reflected shock transmits through the contact
surface and wall jetting was not apparent as the shock propagated into the driver
gas region. The generation of vorticity, and the resulting reduction in the jetting
through the shock foot indicated that the evolution of the flow following the contact
surface interaction may be driven by the resulting mixing, rather than the shock

foot jetting.

Simulated pressure traces were compared with experimental traces. The simula-
tions were shown to achieve agreement with the experimental traces. The average
pressure behind the reflected shock structure was lower than the ideally predicted
pressure behind the reflected shock. Chue and Eitelberg proposed a theoretical
model for the reservoir pressure behind the reflected shock. Pressures measured

experimentally in HEG agreed with the predictions of this theory.

Figure 3.12 shows the flow field evolution resulting from the interaction between
the reflected shock and the boundary layer and contact surface in the simulations
performed by Chue and Eitelberg [45]. Temperature contours are shown on the left
side of the figure and driver gas mass fraction contours are shown on the right side
of the figure. The generation of significant amounts of vorticity can be seen in the
frames at the later times. This includes, what appears to be, a vortex at the head
of the driver gas. The time evolution does not run to times that would indicate any

movement of this vortex.
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Figure 3.12: The flow field following the interaction of the reflected shock with the bound-
ary layer and the contact surface, in the simulations performed by Chue and Eitelberg [45].

A particularly important geometric feature included in these simulations was
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the ‘particle stopper’ that is used in HEG. The effect of this device on the flow field
was examined. In separate simulations, the flow through the nozzle, including the

start-up transients, was modelled assuming a steady inflow condition.

Kaneko, Men’shov and Nakamura [118] modelled the flow field of a nozzle starting
process in two high enthalpy shock tunnels: the shock tunnel of Nagoya University
and T5 at the California Institute of Technology. The computational domain covered
the final 3cm of a 9m shock tunnel of radius 5 cm, with the full 198 cm length of the
nozzle in the Nagoya case and the first 30 cm of the T5 nozzle from the secondary
diaphragm. With such a small physical computational domain fine grid resolution
was achieved. Their simulations use an axisymmetric, compressible Navier-Stoker
solver which employs a hybrid scheme of implicit and explicit methods, along with
AUSM to evaluate inviscid fluxes. The simulations focuses on the thermal and
chemical non-equilibrium characteristics of the flow at the nozzle inlet in the initial
stages of the nozzle starting process. The thermochemistry of the flow was modelled
using a five species chemical reaction model for air and a two temperature model

for thermal non-equilibrium.
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CHAPTER 4

Review of Parallel Computing

The limit on resolution and complexity in Computational Fluid Dynamics (CFD)
simulations of high speed compressible flows is determined by the available com-
puting power. From the early 1950s to the present, the peak performance of the
fastest computers available has increased approximately two orders of magnitude
every decade [119]. This has meant that simulations of ever increasing detail have
become possible as technology has improved. Despite the rapid and continuing
improvements in performance of single processor computers, the high performance
computing community has recognised that combining processors to work in parallel

is a way of obtaining significantly more computing power.

The use of fast processors and efficient algorithms is not always sufficient to
produce the simulations that are required in an reasonable time. In addition, as
the development of computers continues, the performance of sequential computers
may reach limits imposed by physical barriers such as the transmission speed of
electrical signals and the physical spacing of the components on a computer or

circuit, thermodynamic constraints and the high financial cost of production [63].

Combining computer processors to work together on a single simulation is way
of obtaining more computing power. This is known as parallel computing. The
increase in performance obtained is ideally proportional to the number of processors
employed on the task. Parallel computing has developed to the stage where the
efficient solution of compressible flow fields in parallel is now realistically possible;
however, parallel computing remains a complex area and getting the theoretical

performance out of an algorithm in practice is not always an easy task [101].

The concept of solving flow fields in parallel is nothing new. The first attempt at
numerical simulation of fluid mechanics was described by Richardson [191]. In this
book Richardson described his attempts at weather predictions using a mechanical
calculator. Realising the inadequacies in these calculations, Richardson envisaged a
room with 64,000 people seated in galleries in a large spherical room; each person

would be responsible for a grid zone on a map of the world. The group would be
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conducted from a person in the centre of the room, as the group marched through

time and updated weather predictions were sent to cities around the world [119].

As the word supercomputer is used to refer to the most powerful computers of the
time, this rapid rate of development has meant that the list of computers referred to
as supercomputers is constantly changing over time, and, at present, the term refers
exclusively to parallel computers. A Cray X-MP, released in 1982, and capable of
just under 1 Gflops (peak), is now far beyond obsolete when compared to modern
supercomputers, such as the APAC National Facility (a Compaq Alphaserver SC),

with a performance of over 1 Tflops (peak).

Simulations performed in this thesis aim to simulate a complete shock tunnel,
from the driver section to the dump-tank. Previous simulations of shock tunnels
have, in the past, been limited by assumptions associated with only modelling part
of a facility; this has been necessary due to the limitations of the computing power
available. In order to model a complete shock tunnel facility with sufficient detail,
large computational meshes are required. The fine resolution mesh simulations per-
formed in Chapter 7, require one month of CPU time, even on the fast processors of
the APAC National Facility. If this simulation was solved using four processors then
this solution time would be reduced to one week. Running the solution on thirty
processors would reduce the waiting time to around one day. These are much more

practical time frames in which to conduct engineering research.

This chapter provides a survey of aspects of parallel computing hardware and
software. The focus will be on general purpose parallel systems and the application
of simulating of compressible fluid dynamics. Section 4.1 will cover the history of
computing, concentrating on the high end of performance. Special importance will
be given to the introduction and development of the parallel computer. Section
4.2 will outline the most commonly used classifications for computing hardware.
Sections 4.3 and 4.4 will deal with software and programming models of parallel
computers. These models identify particular features of computers of relevance to
software developers. The aim of this chapter is to select a standard approach that
can be used in compressible CFD code development. Chapter 5 will investigate the
implementation of parallelism in the CFD codes MB_CNS and the SPH code.

4.1 Implementations of Computer Architectures

The digital computer had it’s conceptual foundations with mechanical devices such
as Charles Babbage’s Difference Engine which was first produced in 1822 [119]. The
use of mechanical devices for computational work had severe limitations in that

the device could perform only addition and multiplication, and the numbers had to
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be entered by hand - something greatly limiting large calculations. It was not until
1937 that George Stibitz realised that electronic logic gates could be used to perform
arithmetic operations using binary numbers much more effectively than mechanical
devices. World War IT brought about the need for ballistics tables for artillery
shells, and the large amounts of calculations required to write them. In 1943, six
years after the first electrical relay was conceived, the technology had developed
to a stage where the first electronic computer, the Mark I, went into operation to
compute ballistic tables [119].

The World War II provided much impetus to the development of the digital com-
puter and by the end of the war, probably the most famous of the early computers,
ENTAC, was being built. This computer was followed by many other prototype
computers throughout the late 1940’s and 1950’s, including EDSAC, BINAC and
SEAC [250]. The designs of these early computers was along four lines of develop-
ment, depending on which type of memory they used, either Acoustical Delay Line
(ADL), Cathode Ray Tube (CRT), Core or Drum. Other notable computers of this
period were UNIVAC I, the IBM 701 and the UNIVAC 1103. Core memory technol-
ogy, which replaced CRT memories with ferrite cores, was the only type of memory
to persist beyond 1957. Software was relatively undeveloped and was limited to

assembly languages [119].

The history of digital electronic computing technology has been grouped into
five generations of development [107]. Software technology has developed alongside
hardware technology and so both are considered together. The early computers

represented the first generation of computers (1946-1956) in this classification.

The second generation (1956-1967) is characterised by the introduction of dis-
crete transistors. Memory technology was improved through the improved use of
core memory and the high level languages Algol and Fortran were introduced. Rep-
resentative computer systems of this period include the IBM 7030 and the Univac
LARC.

The third generation (1967-1978) saw the introduction of (Small Scale) integrated
circuit technology. The C language was introduced [120]. Raw computational per-
formance was the focus for the development and the reason for the success of vector
computers during the 1970s. Computers of this period included the PDP-11 and
the IBM 360/370. [224].

The forth generation (1978-1989) saw a paradigm shift in the use of computers:
the introduction of the IBM PC, and its compatibles, to the home user market. Very
Large Scale integrated (VLSI) Circuits were developed as well as solid state memory.
The first parallel computers appeared around 1978, and included the CDC6600 and
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the IBM360/91. Also, during this period the first concerted effort to implement
multiple processor and vector technology in supercomputing was attempted. Sym-
metric multiprocessing computers were first developed, an example being the Cray
Y-MP. On the software side, message passing libraries were introduced as well as
parallelising compilers [210]. Supercomputers of this period include the Cray X/MP
and Vax 9000, but by far the greatest impact on computing during this period was
the advent of the PC. Many people now had access to significant computing re-
sources. During the 1980s, the availability of standard development environments
and application software packages became more important. Figure 4.1 shows the
relative speeds and the time frame of the development of computing technologies
from the 1920s to the 1990s. The figure’s vertical axis is the computing power (in
operations per second), divided by the cost of the computer and is plotted with a

logarithmic scale against the horizontal axis of years.
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Figure 4.1: The increasing speed of early computing technology. Reproduced from Kauf-
mann IIT and Smarr (1993) [119].

The fifth generation (from 1990 to the present) featured the impact on gen-
eral computing brought about by the introduction of the Internet. The importance
of scalability [13] and portability [56] in parallel computers was realised. Object-
oriented languages such as C++ were introduced, as well as the platform inde-
pendent language Java [14]. The potential of combining workstations into clusters
for cheap and efficient parallel computations was made a reality as mass market
processor, I/O and networking technology improved at an unprecedented rate [33].

Processor technology extended to the use of Ultra Large Scale Integrated (ULSI)
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circuits. Characteristic supercomputers of this period include the IBM SP-2 and
the Cray/SGI Origin 2000. Massively Parallel Processor (MPP) systems became
more popular during the 1990s due to their better price to performance ratios and
seemingly limitless scalability. In the medium performance markets; however, MPPs
were replaced by the easier to program Symmetric Multi-Processor (SMP) systems

as the decade progressed [224].

Despite the rapid increase in computational power of computers even in the mid-
range, the CFD practitioner’s insatiable appetite for computing power means that

they are primarily interested in the supercomputers of the day.

4.1.1 A Short History of Supercomputing

It is generally accepted that modern supercomputing began with the delivery of
the first vector computer, the Cray 1, to the Los Alamos Scientific Laboratory in
1972 [119]. Vector computers process arrays (vectors) rather than single data items
(scalars), using arrays of fast registers and pipelining of data and instructions. Before
the Cray 1, supercomputers were still scalar systems and did not differ significantly
in their architecture from main stream computers. The Cray 1 architecture gave it a
performance advantage of over an order of magnitude above the fast scalar systems
of the time [224]. Three Japanese computer manufacturers (Fujitsu, Hitachi and
NEC) entered the high performance vector computer arena at the end of the 1970s.
These systems were, at first, sold only in Japan, but were later exported to the USA
and Europe [224].

The Cray X-MP was released in 1982 and contained two processors, making it the
first Parallel Vector Processor (PVP). The system was enlarged to four processors
in 1984. At first the use of multiple processors was aimed more at increasing the
throughput of computing centres with independent jobs running on each processor,
but the development of parallelisation within a single program soon followed. The
Cray 2, first delivered soon after, in 1985, offered a peak performance more than
twice that of a four processor Cray X-MP. The Japanese manufacturers preferred to
concentrate on chip technology and multiple pipelining, but soon followed the trend
and introduced multiple processor versions of their computers [224]. These PVP

computers enjoyed great commercial success during the 1980s.

The 1980s were also the period in which parallel computing became wide spread,
with many different companies developing their own architectures, models and lan-
guages. Vector computers were being produced by Cray, Control Data Corporation
(CDC) (later ETA), Fujitsu, Hitachi, NEC and Convex. Other Single Instruction,
Multiple Data (SIMD) systems were being produced by the Thinking Machines Cor-
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poration and MasPar [208]. Parallel languages included CSP [216], Occam [216],
NIL, Ada, Concurrent C, Distributed Processes, SR, Emerald, Argus, Aeolus, Par-
Alfl, Concurrent PROLOG, Linda and Orca, all of which are described in Bal et
al. (1989) [10]. Many of these languages were specific to a particular architecture
and many featured implicit forms of parallelisation in which the programmer was
less involved in how the job was distributed amongst the processors. Vectors pro-
cessors had been successfully programmed via vectorising compilers for some time,

but parallelising compilers were not nearly as successful [123].

Implicit parallelisation was a very attractive option from the programmers point
of view; however, the success of these languages was limited by a few very important
factors [210]. The promise of reliable and automatic parallelisation of sequential al-
gorithms remained far off and programmers were reluctant to take the gamble of
moving away from mainstream languages, such as C and Fortran. This feeling was
compounded by the apparent comings and goings of computer companies experi-
menting by releasing new and untested technologies [123]. For users, investing large
amounts of time in a language that was developed for parallel execution on a specific
architecture, which may not prove useful in the long run, seemed too much of a risk.
This meant that many of these languages failed to attract the large user base that
they needed for survival. Many of these specialised languages seemed promising,

but soon faded away, only adding to the uncertainty facing programmers [10].

In 1984, a standard UNIX operating system, UNICOS, was introduced to all
Cray systems. This innovation, coupled with the availability of vectorising compil-
ers, meant that more software vendors started porting their applications to Cray
systems. The obvious commercial benefits soon followed with Cray selling a large
number of systems in the automotive and oil industries. This made an important
contribution to Cray dominating supercomputing for more than a decade. UNICOS

is still available today in Cray/SGI supercomputers [204].

The success of Cray showed that the importance of standard development en-
vironments, across and between ranges of computers, cannot be understated [250)].
Raw computational performance drove the development and resulting success of
vector computers during the 1970s. Portability and scalability, today seen as two
essential qualities for computing systems, were not nearly as important at that time
[224]. At the start of the 1980s, as users gained more experience with parallel sys-
tems and found that they were wasting time moving even simple programs between
systems, people’s attitudes began to change. When an obsolete system was being
replaced with a new system, the availability of standard development environments
and application software packages became very influential in the decision of which

computer to purchase. The importance of portability in computing systems began
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to make its mark; systems that did not provide compatibility with other systems did
not survive. Of the 14 major manufacturers in the early 1990s, only four survived,
that is the three Japanese manufacturers and IBM (which at this stage was still
only just entering the high performance market). Around this time, SGI, Hewlett-
Packard (HP), Sun and Compaq also entered the supercomputing market, mainly
by buying smaller companies [224]. In addition, HP and Compaq have recently

merged.

In the second half of the 1980s, parallel computers began to appear with dis-
tributed memory, these were known as Massively Parallel Processors (MPPs) [107].
This design removed the limitations on the scalability of the shared memory de-
signs of parallel vector processors. The first MPPs were developed by the US De-
fense Advanced Research Agency (DARPA), wanting to build computers as large
as possible as part of the Strategic Computing Initiative (SCI). Soon there were
many companies developing and producing MPPs, including Intel, nCube, Floating
Point Systems (FPS), Kendall Square Research (KSR), Meiko, Parsytec, Telmat,
Suprenum and BBN [224]. The list of the fastest 500 supercomputers in the world
is available at online [235] and is updated every six months. In June 1993, the first

MPP systems began to appear on the top 500 list.

MPPs made their debut at a time when the importance of portability and
scalability were becoming more obvious. In terms of portability, using “explicit-
everything” parallelisation, in which the programmer specifies all aspects of com-
munication between processes, started to stand out as the only practical solution
available. Algorithms based on the explicit-everything approach can be executed on
far more systems as there is little ambiguity in the code and therefore reliance on
details of the platform being used. The down side is that this approach requires sig-
nificantly more work to develop a high performance code. The scalability of MPPs
was, and still is, unmatched; by physically distributing the memory, and by using
message passing libraries, the systems could be scaled to thousands of independent

processors [210, 38].

These MPP systems provided another important advantage in that, unlike the
PVPs available at the time, they were produced using largely commodity processors
and networking hardware. This meant that, by taking full advantage of mass pro-
duction of its components, the cost of the systems could be greatly reduced. Intel
produced the Paragon/XP series based on its i860 chips and technologies which were
being developed for desktop PCs. IBM produced the SP1 and SP2, based on their
popular RS6000 workstations [224].

This trend of using commodity components, driven by the potential decrease

in cost, has led to a subclass of MPPs, known as workstation clusters. Clusters
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use actual workstations, connected together by standard networking components.
Parallelism is most commonly achieved through message passing. Clusters, by def-
inition, use completely Commercial Off The Shelf (COTS) components, meaning
that a cluster can be built entirely from hardware purchased at a local computer
store - a very different approach to the proprietary PVP systems popular in the
1980s [223].

As architectures moved away from PVPs and toward MPPs, software became
the limiting factor in scalability. An answer to the problem of finding a suitable
parallel language is to use parallel languages actually built around the widely used
sequential languages, C and Fortran. These new languages include Fortran 90, High
Performance Fortran (HPF) [100], Parallel C++ and Parallel Computing Forum
(PCF) Fortran. These languages attempt to open up the field of parallel computing
to many more users, but are still limited in portability by architecture related issues.
To achieve acceptable performance, the programmer must still address the data
layout problem and data motion problems, as well as other issues of portability
[123].

Parallel languages still did not have the attraction to draw people away from the
main stream sequential languages. An extension to the idea of parallel languages
built around the mainstream sequential languages is to provide libraries that can be
called from what would normally be sequential C or Fortran code which specify the
parallel functionality. The structure of explicit message passing is well suited to the
use of these libraries. The first parallel library which ran with C and Fortran was
the Parallel Virtual Machine (PVM) [75]. Message Passing Interface (MPI) libraries
[161] and variations, such as the super-step communication of Bulk Synchronous
Parallel (BSP) libraries [171], followed. MPI libraries have been by far the most
widely used form of parallelisation for high performance applications since the early
1990s.

A third approach, based on specialised hardware, is to physically distribute the
memory, but enable programs to appear as if they are using a single memory space.
An example of this type of architecture is the SGI/Cray Origin 2000, which imple-
ments a Cache Coherent, Non Uniform Memory Architecture (CC-NUMA). This
approach still requires the use of parallel libraries, such as OpenMP [168]. The pro-
grammer tells the compiler which sections of the algorithm should run in parallel
and provides prompts as to how this should be done - it is not necessary to provide
all details of the parallelism as with the explicit-everything approach. Currently
the performance of distributed shared memory libraries, such as Treadmarks [5], for

other than specially designed hardware is somewhat limited.

It was thought by many people that parallel computing would take over from
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sequential computing, but, despite its promise, this has clearly not happened. For
parallel computing to be a practical solution for the needs of high performance
computing in the future, much work still remains to be done in the formalisation
of models, the standardisation of programming languages and the development of
hardware. Improvements in processor technology are starting to show signs of reach-
ing fundamental physical limits and this will only raise the importance of parallelism

in future computer architectures.

It appears that evolutionary rather than revolutionary development of technolo-
gies have been the basis of development in the supercomputing industry; revolution-
ary changes have rarely been able to make an impact on the market. In recent years
only companies that have participated in the markets for massive database manage-
ment and financial applications have been able to maintain enough business to be
able to develop specialised hardware for the numerical high performance market as
well [224].

At present, the upper end of the top 500 list [235] is dominated computers built
for the Accelerated Strategic Computing Initiative (ASCT), which aims at simulating
nuclear weapon tests. ASCI Red was installed at the Sandia National Laboratory
in 1997, and with its 9472 Intel Pentium Xeon processors was the first to exceed
the 1 Tflops mark on the LINPACK benchmark. ASCI Blue Mountain, a cluster of
SGI Origin 2000 systems containing 6144 processors, achieved 1.6 Tflops. The next
computer in the series, ASCI Blue Pacific, built by IBM, ran at 3.87 Tflops. The
recently installed ASCI White, also built by IBM, incorporating 8,192 processors,
runs at 12.3 Tflops. That makes White three times faster than Blue Pacific, installed
one year before. Projections for the ASCI program call for a 100 Tflops system by
April 2003 [224].

The vast scale of numerical simulations capable of simulating weather patterns
is realised to a greater extent today than in the time that Richardson proposed his
weather predicting room [191]. The first machine thought to be capable of such simu-
lations has recently been constructed. This machine, known as the Earth Simulator,
consists of 640 NEC SX-7 VPP nodes, each with eight vector processors and runs
with a maximum performance of 35.86 Tflops (peak performance is 40.96 Tflops).
The computer was funded by the Japanese Government and it is aimed at simu-
lating the global weather environment. To put this computer in the perspective
of Richardson’s weather prediction room, the average (numerically skilled) person
requires around 100 seconds to perform one floating point calculation with two thir-
teen digit numbers. This corresponds to a maximum performance of 1072 flops [119].
This means that it would require the whole room of 64,000 people working together

for over 1800 years to reproduce the number of operations performed by the Earth
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Simulator each second [69].

Figure 4.2 shows a graph of the peak computing speed achieved by supercomput-
ers over past thirty years. The same general trend of computer speed through time
is evident throughout the graph. The speeds of these computers are still consistent

with the two orders of magnitude per decade trend.
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Figure 4.2: The peak performance of computers over the past 30 years. Reproduced from
the Earth Simulator computer internet page [69].
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4.2 Architectures for Parallel Hardware

4.2.1 Flynn Taxonomy

In 1966, Flynn [70] divided computers into four basic classes based on parallelism
in both the flow of data and instructions to the processors. These classifications
(known as Flynn Taxonomy) are still useful today; however, there has been signifi-
cant diversification in the areas described and many systems do not fit neatly into

any one category.

SISD (Single Instruction stream, Single Data Stream) describes any sequen-
tial processing single processor computer. This class includes any computer
with a single scalar processor, such as standard desktop PC’s. This style of
computer is also known as a von Neumann computer which is characterised
by the division of a task into separate sequential elements such as fetching a
piece of data followed by performing some operation on that data and then

storing the result.

SIMD (Single Instruction stream, Multiple Data stream) describes a model
of parallel execution in which all processors must execute the same operation in
the same clock cycle, but acting on different data. Vector processors are a form
of SIMD computer in which vectors of data are operated on by processors spe-
cially designed for processing whole vectors simultaneously. SIMD computers
use data parallelism meaning that the parallelism is achieved through acting on
difference segments of the data set simultaneously. The processors are usually
mesh connected and communication tends to be efficient because the opera-
tions on each processor are inherently synchronised. SIMD computers include

the MASPAR, the Connection Machine and Vector processing computers.

MIMD (Multiple Instruction stream, Multiple Data Stream) describes an
assembly of processing elements which are more free in their operation than
SIMD processors. The degree to which the processors are independent in their
operation is not specified by the MIMD model, nor are details of the interpro-
cess connectivity. The processors are free to perform their operations, which
are followed by communication and a global synchronisation. The granular-
ity of parallelism describes the relative amount of computation that is done
between synchronisation. The granularity can range from the extreme fine
grained parallelism of SIMD computers to coarse grained parallelism, in which
large amounts of data is processed before the results are shared between the

processors.
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MISD (Multiple Instruction stream, Single Data Stream) There are no known
implementations of this type of computer [28], although, it can be argued that
pipelining data is an example of MISD parallelism. Pipelining increases com-
putational efficiency by directly connecting the output of a specialised compu-
tational unit to the input of another in a line. As a result of its basic structure,

a single piece of data is not being acted on simultaneously by the elements and

therefore it is not generally accepted as SIMD parallelism [166].

SPMD (Single Program, Multiple Data) describes an extension of the MIMD
class and is an addition to the basic four areas that Flynn described. SPMD
programs consist of a series of homogeneous processes, that is, it is the same
piece of code being executed on different segments of a data set; however, there
is not the level of synronisation seen in SIMD computers. This class is the
one of particular interest to CFD as it allows parallelisation through domain
decomposition; several processes using the same algorithm can work on the

data describing different sections of the flow field.

4.2.2 Physical Machine Models

Currently used large scale computer systems are grouped into six physical machine
models, SIMD machines (which were described earlier) and five types of MIMD
machines [107]:

PVP (Parallel Vector Processor) systems differ from other types of systems in
that they comprise a number of powerful vector processors, that simultane-
ously apply the same arithmetic operations to different data. Many of the
building blocks of the machine are custom made, particularly the specialised
vector processors themselves. A high-bandwidth crossbar switch is used to
connect these vector processors to a number of shared memory modules. PVP
machines generally do not need to use memory caches as their whole memory
is fast. Data and instructions are usually buffered before reaching the vector
registers. PVP systems include the Cray C-90 and T-90 and the NEC SX-5.

SMP (Symmetric Multi-Processor) systems utilise commodity processors with
both on-chip and off-chip caches. The processors are connected to a shared
memory through a high speed bus and a crossbar switch. The basis of the SMP
architecture is that all processors must be symmetric, that is, all processors
must have equal access to the shared memory, known as Uniform Memory Ac-
cess (UMA), the I/O devices and the operating system services. SMP systems
include the Sun E10000 and the Intel SP2.
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MPP (Massively Parallel Processor) systems utilise commodity processors as
computational nodes and memory physically distributed over these nodes in
private address spaces. The MIMD processors execute asynchronously, and
interconnection between the nodes is achieved through high bandwidth, low
latency networks. One of the main reasons for using MPP systems is that they
can be scaled up to an arbitrarily large number of nodes, with processors being
synchronised, and communication being achieved through message passing
operations. MPP systems include the Intel Paragon and the IBM SP-2. The
scalability of MPP systems has led to their extensive use in the ASCI project;
ASCI White is an MPP system made up of 8,192 processors.

DSM (Distributed Shared Memory) systems differ from SMP systems in that
the memory is physically distributed and that, in general, individual processors
do not have equal access to all sections of the memory, known as Non-Uniform
Memory Access (NUMA). Although the memory is physically distributed, spe-
cialised hardware and software create what is, to the programmer, a shared
memory system with a single address space. These systems have become very
popular over recent years as they provide an extremely usable platform for par-
allel code development whilst maintaining good performance and scalability.
DSM systems include the SGI Origin 2000 and the Convex Exemplar.

Workstation Clusters are similar to MPP systems, except that the nodes are
actually workstations with any unnecessary peripherals, such as keyboards
and monitors, removed. The modular nature of the PC has exemplified the
potential of scalable computers because their individual components can be
upgraded whilst maintaining the rest of the system [33, 2]. Examples of this
are that memory can be added to sockets on the motherboard and network
interface circuitry can be upgraded simply by replacing a card together with
some packaged software. One of the first examples of a workstation cluster
was the Beowulf Cluster developed in 1994 by Sterling et al. [223].

During the 1980s, when PVP systems were most popular, there were great dif-
ferences in price, performance and technology between so called supercomputing
hardware and the hardware that was released on workstations. These differences
have decreased dramatically over the last decade and, at present, most large super-
computers are built from components that are comparable to, or even interchangable
with, commercial off the shelf (COTS) components available for workstation comput-
ers. This mass development of high performance computing hardware has benefits
at both ends of the computing spectrum, increasing low-end performance, and re-

ducing high-end costs. The performance of COTS networking and I/O components
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is also increasing rapidly, offering the prospect of an even less well defined distinc-
tion between traditional supercomputing and what can be built with commodity

hardware.

Figure 4.3 shows the numbers of different architectures in the top 500 list over the
1990s. This was the period during which MPPs began to dominate high performance
computing. An increase in the number of MPPs in the list is evident as well as the
absence of any single processor or SIMD architectures after 1997. Workstation
clusters entered the list in 1998 and have their number has increased steadily since
then. These computers are evident in the top right corner of the plot. The ordering
of the architectures does not imply a ranking in speed for the machines; however,
SMPs and SMP Clusters are placed side by side to show how SMP clusters are

replacing the singular machines in the list.
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Figure 4.3: Cumulative plot of the number of each type of architecture in the Top 500
list over the period from 1993 to 2000. The type of architecture is labelled in, or near, its
area.
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4.3 Models for Parallel Computers

Abstract machine models are used in the design and analysis of algorithms. They
are conceptual models that allow details about the physical design of the machine
to be ignored. Abstract parallel models characterise those capabilities of a parallel
computer that are fundamental to parallel computation. The abstraction does not
actually provide any structural information or explicit implementation details, but
should allow a relatively precise representation of the performance of the system
and the relative time costs of parallel computation. An effective parallel model
must provide three fundamental properties: scalability, portability and predictability
[107]. Actual computer architectures are based on these abstract models for all but

the most specialised computer systems.

The aim of abstract parallel models is to provide programmers, software de-
velopers and computer designers a model that represents the fundamental issues
associated with high level parallel implementation. An abstract parallel model can
be characterised by several semantic attributes and performance attributes. The

semantic attributes recognised are [107]:

Homogeneity indicating how alike the processors of a parallel computer behave
when executing a program in parallel. Using Flynn Taxonomy, most models
utilise a Multiple Instruction stream, Multiple Data stream (MIMD) setup. If
at each cycle all processors must execute the same instruction (that is there
is only one instruction stream) the system will be a Single Instruction stream,
Multiple Data stream (SIMD) machine.

Synchrony indicating how tightly synchronised the processors are. The tightest
level of synchrony is at instruction level, meaning that at each cycle, all mem-
ory read operations from all processors must be performed before any pro-
cessor can perform a memory write or a branch. Real MIMD machines are
asynchronous, that is, each processor executes at its own pace, independent of
the speed of the other processes and if a process has to wait for other processes,

additional synchronisation operations must be executed.

Interaction mechanism indicating how parallel processes may interact to affect
the behaviour of one another. Commonly, this is either through shared vari-
ables (or shared memory), where all processors can access the same shared
variables or though message passing in which the variables of all processes are
invisible to other processes and, when required, must be explicitly sent and

received between them.
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Address space is the set of memory locations accessible by the processes. In
some systems, all memory locations reside in a single address space (from the
programmers point of view), while in others each process has its own memory
address space. A relationship between interaction mechanism and address
space exists, in that, for a system with a single address space, shared memory
is much more conveniently implemented and for a system with multiple address

spaces, message passing is more convenient.

Memory model specifies how the system deals with shared memory address ac-
cess conflicts. Consistency rules are used to resolve these conflicts. The most
strict of these is the Exclusive Read, Exclusive Write (EREW rule) by which
a memory location can be read or written by at most one processor per cy-
cle. The Concurrent Read, Exclusive Write (CREW) and Concurrent Read,
Concurrent Write (CRCW) rules allow more flexible management in allowing
memory locations to be accessed by multiple processors, but introduce the

need for conflict resolving policies.

4.3.1 Parallel Performance and Overheads

Performance attributes are of direct interest to the CFD programmer, but are highly
platform dependent. Commonly used performance attributes include [107]: the
number of processors, the clock rate (in MHz), the sequential and parallel execution
time and various ratios including the speedup and efficiency due to parallelisation.
These parameters are tightly coupled to another attribute, the scalability of a par-

allel system.

Although many people regard clock speed as the defining factor in processor
speed, especially in the home computer market, there are many aspects of processor
design that define the actual rate at which useful calculations can be done. The use
of memory hierarchy is a very important aspect of efficient processor design. The
peak speed at which modern processors can process information is much faster than
the currently available general memory. To cope with this speed difference data is
retrieved from the slow main memory in chunks and is buffered in very fast caches.
This allows the processor to have a much more consistent flow of data supplied to
it.

The aim of executing an algorithm in parallel is to divide the work up between
the processors. Thus, for parallelism with an efficiency of one, two processors would
run an algorithm twice as fast. This is never the case as there are always “over-

heads” associated with running the algorithm over multiple processors. Overheads



4.3 Models for Parallel Computers 103

are defined as any extra work that must be done, in addition to the useful work,

purely to achieve parallelism. Overheads include:

Communication overhead the work required to share updated variables between

processors

Synchronization overhead the work required to align the processors at a partic-

ular point in the algorithm which depends on all variables being up to date

Parallelism overhead which accounts for miscellaneous overheads including as-
signing new processors to do work, dealing with the operating system and

closing connections to processors after being used

Another overhead which may be a factor in reducing parallel efficiency is the
load imbalance overhead. It is due to processors having an unequal amount of work
to do. Commonly this may also be due to the use of processors of differing speed,
but given the same amount of work to do. Load balancing techniques can be used to
ensure that the work is shared appropriately and that at all times processors have
useful work to do. Static load balancing can be used when the relative amounts of

work that should be assigned to each processor is known before hand.

4.3.2 Scalability

A computer system is said to be scalable if processors, memory and I/O components
can be added to facilitate an increase in performance and functionality. Ideally this
increase should be proportional to the increase in system resources [107]. The most
obvious way of scaling a parallel system to achieve greater performance is by adding
more processors; however, there is a trade-off in that increasing the number of pro-
cessors also increases the overheads associated with communication and synchroni-
sation. This means that the increased amount of work that can be done may not all
be useful work. Parallel efficiency is the actual speedup divided by the theoretical
speedup from running on multiple processors. Efficiencies of around ninety percent
can be obtained with efficient codes, running on MPP systems. An inefficient use of
parallelism is a waste of computing power and in many cases, an excessive number

of processors will often severely impede performance.

Scaling a computer by increasing the number of processors alone is insufficient
to achieve an increase in performance. A more accurate way of thinking of this
type of scaling is in an increase in actual machine size as the resources used by
the processors must also be scaled appropriately. The communication subsystem

(including the interconnection, the interface and the associated software) may often
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have to be improved to handle the increased load. Another key resource that must
be scaled is memory, including cache memory. Some systems scale better than
others due to their architectures; the SGI Origin 2000, being a Distributed Shared
Memory (DSM) system is limited to 128 processors [204], whereas Massively Parallel
Processor (MPP) systems are can be scaled to an unlimited number of processors
due to their more straight forward interconnection network. ASCI White which

consists of 8,192 processors is an example of these systems.

A second form of scalability, technology scalability, refers to the ability to replace
components of a computer with newer, more advanced, versions. This scaling is not
limited to parallel computers, but is common to any component based system. An
example of this are the processors on the Origin 2000; an SGI Origin 2000 computer
purchased in 1997 would have featured the R10000 processor, which in 2001 was up-
graded to the R12000 processor, offering improved performance. Another example,
relevant to a workstation cluster is the upgrading of 10 Mbit /s Ethernet networks to
100 Mbit /s Fast Ethernet networks by upgrading network cards, switches and cables,

whilst being able to retain all hardware not directly involved in the networking.

Software scalability is, in many ways, just as important as hardware scalability.
Software scalability includes adding new versions of operating systems, drivers and
applications, especially better compilers and libraries. Software scalability not only
allows a system to keep abreast of the current level of software development, but
also to take advantage of system improvements resulting from hardware scaling,
although, software should not become obsolete with the introduction of newer gen-
eration hardware. In contrast to the fast pace of hardware technology, application
software often moves much more slowly. For example, Fortran 77 is still widely used,

although new compilers are released every few years.

The aim of a scalable system is to provide a flexible, cost effective computational

tool that will be able to handle ever increasing problems and applications over time
[107].

4.3.3 Parallel Random Access Machine (PRAM)

The most general abstract parallel computer model is the Parallel Random Access
Machine (PRAM) model, proposed by Fortune and Wyllie [71]. The PRAM model is
the parallel computer analogy to the von Neumann model for sequential computing.
A system based on the PRAM model will access multiple instruction streams and
multiple data streams. It consists of an arbitrarily large number of processors in
parallel, all accessing a shared memory space. The PRAM model is synchronous

at instruction level, that is, tightly synchronous. At each cycle, all memory read
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operations from all instructions must be performed before any processor can perform
a memory write. At each cycle each processor executes exactly one instruction, which
may be a null instruction in the case where the processor is idle in that cycle. A
single instruction can be either one of three operations: fetch one or two words from
the memory as operands, perform an arithmetic logic operation on loaded data or

store the result back into a memory address [119, 77].

The interaction mechanism of the PRAM model is through shared memory,
with all memory locations residing in a single address space. Additional to this
all processors must be able to access all memory locations in the same amount of
time, known as Uniform Memory Access (UMA). Machines that do not satisfy this
condition are known as Non Uniform Memory Access (NUMA) machines. Memory
address conflicts in PRAM machines are resolved by the Exclusive Read, Exclusive
Write (EREW) rule. The PRAM model does not take into account overheads: due
to the cycle level synchrony the synchronisation overhead is assumed to be zero
and the communication and parallelism overheads are ignored. This means that the
only overhead that is included in the PRAM model is the load imbalance overhead,

accounted for in the fact that at a cycle, a processor may execute a null instruction.

The PRAM model is idealised and, although computers are based on the model,
only some of its features are ever used in any one system [126]. The Origin 2000
is an example of a computer based on the PRAM model that does not meet the
specification fully. Tt consists of a number of symmetric processors accessing a
common memory space, but the system does not provide UMA. This is because the
shared memory space is physically distributed amongst the processors, known as
Distributed Shared Memory (DSM), and memory on the local processors is faster
to access than memory stored on other processors. With this approach, processors
can write to different copies of variables to one another, so the validity of the data
in each processor’s cache must be ensured. This is done through a Cache Coherency
(CC) protocol, thus the Origin 2000 a called a CC-NUMA system.

4.3.4 Bulk Synchronous Parallel (BSP)

The Bulk Synchronous Parallel (BSP) model was introduced to overcome the short-
comings of the PRAM model, while attempting to maintain its simplicity [237]. The
aim of the BSP model is to build on the PRAM model by introducing additional
parameters to capture the overheads associated with the execution of a program
in parallel. Like the PRAM model, the BSP model is based on a MIMD system
as all processes can execute different instructions on different data within the same

time step. A BSP system consists of a set of processor and memory pairs that are
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connected by an arbitrary interconnection network.

Although the basic unit of time is still the cycle, the program executes as a strict
sequence of “super steps”. During each super step, computation occurs and at
its completion there is a communication operation between the processors followed
by a barrier synchronisation. Both of these operations introduce overheads which
can be easily quantified. This barrier causes all of the processors to complete the
current, super step before any can proceed to the next superstep. This means that
the BSP model is loosely synchronous (at the super step level), compared to the
instruction level, tight synchrony of the PRAM model [194]. Within each of the
super steps, different processes execute asynchronously. The implication of this is
that the BSP model is closely related to the SPMD class of computers and more

closely approximates the behaviour of some real parallel machines.

The BSP model uses a single address space in which a processor can access not
only its own local memory, but also any remote memory local to another processor.
The model does not explicitly require any specific form of interaction mechanism,
but usually implements a shared memory and message passing. Within a super step
a processor can access only data in its own local memory except for at the barrier
synchronisation. This means that on each processes computation occurs indepen-
dently of the other processes and that the writing of all data must be completed

before any data is read (during the computation of the next super step).

The BSP model presents a more realistic representation of a real computer sys-
tem, because it accounts for all overheads except that for process management [126].
The execution time of a super step is the sum of three components: the computation
time, the synchronisation overhead and the communication overhead. The compu-
tation time is the maximum number of cycles spent on computation operations by
any processor, also accounting for load imbalance (this was the only overhead ac-
counted for in the PRAM model). The synchronisation overhead is then the time
taken to align the processes, forming a barrier up to where all work which must be
completed before any process can continue. The synchronisation overhead has as its
lower bound the network latency (that is the time for a word to propagate through
the physical network). The communication overhead is related to the time taken for
each node to send a series of words to various nodes and for these nodes to receive
the words. The BSP model does not allow for the overlapping of these overheads.
A further refinement to the PRAM and BSP abstract parallel models is the Phase
Parallel model, but BSP model is sufficient for analysing the parallel performance

of SPMD applications such as most CFD applications [107].

The concepts described by the BSP model form the basis for its own special
library, BSPlib [171], developed at Oxford University. As well as this, BSP as
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a parallel computing model can also be used as a basis for the structure and the
analysis of parallelisation with other libraries, including MPI. These are the software
models, along with OpenMP, that will be used to build the parallel CFD codes
described in Chapter 5.
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4.4 Parallel Programming Software Models

4.4.1 Explicit parallelisation

Ezxplicit parallelisation means that it is the programmers responsibility to use lan-
guage constructs, compiler directives and library functions to specify all aspects of
the parallel execution of the program; the parallelising procedures must be explicitly

specified in the source code. The three most dominant explicit models are:

Data parallel involves executing the same instruction on different data streams in
the same clock cycle on multiple processors; this is the SIMD model. Paral-
lelism is exploited at the data set level with a single instruction stream and
loosely synchronous operations. Although specifying the data layout, the par-
allelism is often implicit in the applications through loop parallelisation. Lan-
guages using this approach include Fortran 90 and High Performance Fortran
(HPF) [190, 133].

Message passing involves a program executing with multiple processes in which
the programmer is responsible for almost all aspects of the parallelisation such
as data handling, communication and synchronisation operations. The indi-
vidual processes may execute asynchronously, with barrier and blocking com-
munication processes to ensure correct execution order when necessary. The
processes all use different address spaces so that data variables local to one
process are not directly available to other processes. The processes cannot
read from, or write directly to, each other’s address spaces and all commu-
nication is by message passing operations. As well as this, both work load
and data must be explicitly allocated by the programmer. Applications in-
tended for message passing systems usually exploit coarse grained parallelism
to minimise the effect of latency. The two standard libraries implementing this
model are the Parallel Virtual Machine (PVM) [229] and the Message Passing
Interface (MPI) [87, 215], which can be implemented on nearly all types of

parallel computers.

Shared memory programs feature multiple threads (the shared memory analogy
of a process), all accessing a single shared address space. Threads operate
asynchronously, and the workload can allocated either explicitly or implic-
itly. Communication is done implicitly through shared reads and writes of
variables. Explicit synchronisations can be performed to maintain the correct
execution order between the threads. For a long time the shared memory
model lacked a widely accepted standard (comparable to MPI). OpenMP has
recently emerged as a firm standard [168]. The OpenMP standard is backed by
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the major manufacturers of shared memory machines including SGI, IBM, In-
tel and Compaq. The shared memory model is a programming model and can
be implemented on any MIMD system. Some recent attempts at implement-
ing the model on MPP systems, where software transparently performs the
communication of variables between threads, have met with inefficient results
[51]. In contrast, DSM systems running OpenMP, in which the communi-
cation is performed transparently by a sophisticated hardware and software

combination, have been very successful.

4.4.2 Implicit Parallelisation

Implicit parallelisation is when the programmer does not specify to the compiler
the particular aspects of parallelism is achieved, but rather, at most prompts the
compiler as to where to exploit it. The most popular approach to achieving implicit
parallelisation is by the use of automatic parallelising compilers on sequential pro-
grams that have already been written. The compiler first performs a dependency
analysis on the sequential program, this involves both data dependence and control
dependence. If an operation in one process requires data from another process then
the latter process must be completed before the former can continue; however, if
two processes are determined to be independent, then they can be scheduled to be
executed in parallel. Most techniques for automatic parallelisation focus on restruc-
turing techniques for exploiting parallelism in Fortran “do” loops and C “for” loops.
One major advantage of implicit parallelisation is that it allows previously written
sequential programs (which may have been developed and verified at large cost) to
be used on parallel systems. This also means that the programs are theoretically
portable between different systems [210]. An examples of a commercially available

implicit paralleliser is the KAP automatic parallelising compiler [124].

The efficiency of parallel code generated from sequential code by automatic par-
allelisers has often been questioned. Manually transformed codes can generally show
significant improvement over those generated automatically, even by current state-
of-the-art parallelisers [21]. Automatic parallelisers have significant potential for
improvement as the majority of transformations that are normally applied manu-
ally should be able to be automated. Ideally transformations should be completely
derivable from the source code, without requiring any information about the appli-
cation. In 1992, Blume and Eigenmann [21] conducted a study of the effectiveness of
the technology implemented by automatic parallelisers and showed that particular
aspects had not reached a level of maturity such that effective parallel efficiency
could be achieved reliably. There has been limited success since that time in finding

answers to these inadequacies and the focus of development has shifted to explicit
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methods of parallelisation [87].

With some automatic parallelisers, the programmer can give “directives” to the
compiler by providing it with more information. For example, if all iterations of a
complex loop are known to be independent, the programmer can provide this in-
formation to the compiler. These directives can allow the compiler to do a much
better job of parallelising the sequential code, and so in this way, the distinction
between explicit and implicit parallelisation has become blurred. OpenMP is con-
sidered explicit parallelisation even though all aspects of the parallelisation need not

be specified to the compiler.
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4.5 The Choice of Parallel Methods.

Using processors in parallel gives the user access to computing power that would
not otherwise be currently available. Parallel computing is an essential aspect of
modern CFD development, requiring much effort to successfully utilise in a code,

but giving performance benefits as a result.

The rapidly changing parallel computing marketplace has contributed to the fact
that, until recently, no particular method of parallel computing has managed to gain
mainstream acceptance. The vast number of choices available to the consumer in
the past has now settled into what is basically a choice between shared memory and

distributed memory computers.

The review in this section discussed the benefits of explicit parallelisation. In
Chapter 5 the implementation of the explicit everything approach to parallelisation
will be explored. This approach is thought to be most suitable to compressible CFD

as it allows greater control and portability than implicit methods.

Implicit parallelisation has benefits in ease of programming; however, compiler
technology is not yet at the stage where portable, efficient code is reliably generated.
Explicit parallelisation, although requiring significantly more work in development,

can provide efficient code that can be run on different types of platforms.

MPI is the standard for message passing libraries on distributed memory comput-
ers and OpenMP is the standard for parallel libraries on shared memory computers.
OpenMP relies on having specialised shared memory hardware to run. Message
passing libraries can be used on almost all types of computers, including the emerg-
ing class of cheap and powerful parallel computers based on workstation clusters.
These methods work with standard programming languages, such as C or Fortran.
This makes them suitable to developing parallel versions of CFD codes that have

already been developed.
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CHAPTER 5

Implementation of Parallel Computer
Codes

Chapter 4 provided an overview of parallel computing, an historical perspective and
an outline of the classifications applied to parallel computing hardware and software.
The benefits of explicit parallelism, using parallel libraries that are built on top of
traditional languages, such as C and Fortran, were discussed. These librares define,
or prompt the compiler as to, how the parallelism is achieved. Benefits in using
these libraries are based on improvements in the portability and predictability of
the resulting code, and the convenience in continuing to use C and Fortran in parallel
code development. It was decided through this review, and given the computers that
are available, to use both OpenMP and MPI in the development of the CFD codes

discussed in this thesis.

This chapter will investigate the implementation of parallelism in actual Com-
putational Fluid Dynamics (CFD) codes. Before the discussion on the CFD codes,
a simple application will be described to illustrate the overall structure of a paral-
lel program in each of the parallel methods. The parallel codes were implemented
using three methods: OpenMP is a compiler directive based approach using the
shared memory model, MPI is based on the distributed memory model with mes-
sage passing constructs and BSP is based on message passing constructs, like MPI,
but imposes a more restrictive structure to the parallel code. These three methods
make up the vast majority of the code use for parallel programming on distributed
and shared memory parallel computers. Vector computers generally use platform-

specific automatic vectorising languages and will not be discussed in this chapter.

OpenMP [168] is the newly established programming standard for shared mem-
ory computers and the Message Passing Interface (MPI) [161] is the well-established
standard for message passing on distributed memory computers. The success of
MPI for distributed memory computers is largely seen to be due to the fact that for
the first time a great priority was given to establishing it as a standard right from

the outset [87]. This success prompted the developers of shared memory computers
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to establish their own standard in OpenMP. The push for firm standards in par-
allel computing is important because it promotes portability. In contrast to these
two programming models we will also investigate the Bulk Synchronous Parallel
(BSP) [171] method, which is seeking to establish itself as a standard by providing

advantages over the other two methods.

The fine resolution mesh simulations of the Drummond Tunnel, performed in
Chapter 7, require one month of CPU time on the APAC National Facility. If
OpenMP directives were used to divide this solution amongst four processors, then
this solution time could be reduced to one week. The architecture of the APAC
National Facility, being made up of four processor SMP boxes, means that the
shared memory approach of OpenMP cannot be used between these boxes. The
message passing approach of MPI can be used between these boxes and a solution
on 30 processors, using MPI, would take around one day. This demonstrates the
importance in using parallel computing in obtaining the large simulations in this

thesis.

The implementation of a simple code, used for calculating = based on a random
sampling of points around a circle, is used to provide an example of how paral-
lelism is achieved with the three methods. The implementation of parallelism of two
CFED codes, based on the numerical techniques that were described Chapter 3, are
then described. The implementation of the SPH code is described in detail using
OpenMP, MPT and BSP. Then the implementation of MB_CNS, using OpenMP and
MPI, is described. Following the discussion of the implementation, the performance
and efficiency of parallel versions of MB_CNS will be discussed. The performance

and efficiency of the parallel versions of the SPH code are discussed in Appendix A.



5.1 Parallelisation 115

5.1 Parallelisation

Whilst parallel speedup is achieved by dividing up the computational work, this
sharing of work has its penalties or overheads: information must be communicated
between the processes and, as well as this, the processes must be regularly synchro-
nised and managed. These overheads represent work that would not otherwise have
to be done in a sequential code. The goal of parallel computing is the division of
work amongst multiple processors without incurring significant overheads brought

about by that division.

The process of dividing the work for parallel execution in CFD applications is
known as domain decomposition as it is the fluid domain itself that is distributed.
There are different methods, of varying complexity and resulting efficiency, used to
achieve this division. Domain decomposition in MPI and BSP requires that the
developer specify particles to be assigned to processes from the array as a function
of the process number in the rank. This process is automatic in OpenMP and allows

dynamic allocation of the work to the threads.

Data dependency analysis must be performed before parallelisation of an algo-
rithm is attempted. By this, it must be ensured that processes, or threads, are
not reading data that is being written to memory by another process, or thread, in
the same block of computation. This would result in a race between the two as to
whether the new data is written first or the old data is read first. Race condition is a
term used to describe this situation. OpenMP performs a data dependency analysis
before allowing a segment of code to be executed in parallel; however, in MPI and

BSP this responsibility is with the developer.

As a parallel program proceeds, the point will be reached at which processes
will require information from other processes. This requires the results to be com-
municated between the two. This can be achieved in different ways depending on
the parallel hardware and software being used. Communication may be performed
concurrently with computation through the use of communication buffers; however,
for the most part they are separate and communication forms a distinct break in
computation. This is particularly the case with explicit CFD codes which work

through a sequence of time steps.

Communication usually makes up a significant proportion of the extra work
incurred through parallelisation. Communication time is made up of two parts:
latency and the actual data transfer time. Latency is the delay in which the link
between the two sides of the data transfer is established. The smaller the amount of
data being transferred, the more significant the effect of latency; this makes it usually

more efficient to transfer larger blocks of data when communication is performed.
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The interprocess communication latency on the SGI Origin 2000 is 15 us, and the
communication bandwidth is 80 MB/s. Interconnection networks used on Beowulf
clusters vary; however, latencies are usually higher, being from 19 us and 30 us, for
a switched fast ethernet based interconnection [199], and bandwidths are usually

smaller.

Synchronisation, usually tightly coupled with communication, involves ensuring
that the units are all up to the same stage in the algorithm before allowing any of
them to continue, at any point where this is critical. Synchronisation can be an

expensive operation when many processors are used.

Distributed memory inter-process communication may be either blocking or non-
blocking. Blocking communication means that processors that complete the commu-
nication routines first are stopped from proceeding with new computation until all
processors have reached the same stage. MPI collective communications are block-
ing, forcing all processes to suspend until all communication is complete. This means
that after a collective communication call, an MPI_Barrier call is not necessary and
would only result in a second synchronization, thus doubling the overhead. BSP
collective communications are non-blocking and explicit synchronisation is required.

Both procedures achieve the same result.

The granularity of parallelism refers to the relative size of segments that the code
can be broken into to be run in parallel. The finer grained the parallelism is, the more
regularly communication and synchronisation, bounding regions of computation,
is required. CFD applications are generally formulated to allow coarse grained
parallelism. This is often more efficient because it reduces the significance of system

latencies.

Load balancing ensures that each process spends the same amount of time doing
the work assigned to it. The issue of load balancing may be more complicated than
simply sharing equal numbers of computational cells or points between processes.
Where processors of differing speed are used, load balancing may mean giving more
work to faster processors accordingly. Dynamic allocation of work in OpenMP

programs can be conveniently used for load balancing.

When running an algorithm in parallel, sections of the algorithm may be funda-
mentally not parallelisable. This means that while most of the algorithm is processed
in parallel, some parts of the code can only be solved sequentially. These regions
have a serious impact on parallel efficiency. For example, in the SPH code, the
sequential work that cannot be parallelised includes stacking any new particles in
the array as they are created; this action cannot be performed independently with

different particles on the same array. All processes, or threads, perform the work
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in sequential regions redundantly, which may seem wasteful, but in fact increases
efficiency. When a parallel program is running, any processors that are not work-
ing on the problem, for instance during a sequential region, are not released to the
system and so are still charged to the program (if CPU usage time is recorded for
users on the system). If only one process worked on the sequential region its re-
sults would need to be communicated to the other processes introducing additional

communication overhead without saving any processor time.

The same basic principle of parallelism is common to OpenMP, MPI and BSP;
however, the three methods are quite different in respect of their details. A simple
example of a naturally parallel program will be used in the following sections to

illustrate how parallelism is achieved with each method.

MPI and BSP use the distributed memory model and OpenMP uses the shared
memory model. The implementation using both approaches will be described later,
using the simple parallel model as a basis. With the shared memory model, all
processors access the same global memory space, and so, in the case of a CFD code,
there is a single copy of the whole flow field stored in this memory. In the distributed
memory model each process stores data in its own memory space making it more like
the simple parallel model, which is described later, than the shared memory model.
If processors require updated data that is being stored by another process then this
information must be transferred to it by message passing. With message passing,
discrete blocks of information are requested and then sent and received explicitly by

the two participating processors.

5.1.1 A Simple Application

A simple Monte Carlo simulation to estimate the value of 7 will be used to demon-
strate the parallelisation of an algorithm using the approaches of OpenMP, MPI and
BSP. The algorithm randomly generates points within a unit square where the frac-
tion of points that lie within a quarter circle of unit radius can be used to estimate
m. The area of the quarter circle is /4 and the area of the square is 1. Thus, with
a random distribution of points, the fraction of points that lie within the quarter
circle would be approximately 7. The sequential code, written in C, for this algo-
rithm is shown below and features a single main loop in which points are generated
and checked to see if they lie within the circle. This section of the program is nat-
urally parallel as different processes, or threads, can sample points independently
and the results can be combined at the end. The sequential implementation of the

7 calculating program is shown in Figure 5.1.
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/* file:picalc.c */
#include <stdio.h>
#include <stdlib.h>

int main() {
float pi_estimate;
float x, y, r_squared;
long i, total_points=10000, inside_count = O;
for (i=1; i<=total_points; i++) {
x = rand()/RAND_MAX;
y = rand () /RAND_MAX;
r_squared = X*X+y*y;
if (r_squared < 1.0) inside_count++;
}

pi_estimate = 4.0%(double)inside_count/(double)total_points;
printf ("Estimate of PI = %g for total points = )1d\n", pi_estimate, total_points);

return 0;

Figure 5.1: Sequential implementation of the 7 calculating program.

Shared Memory (OpenMP)

OpenMP is a specification for a set of compiler directives, library routines and envi-
ronment variables that can be used to specify shared memory parallelism in Fortran
and C programs. Standardisation efforts in shared memory parallel programming
are focusing on the development of OpenMP. Before OpenMP, each vendor produced
its own set of constructs for shared memory parallel computing. For example, on
SGI computers such as the Origin series of computers, OpenMP has replaced SGI-
PowerC. A previous attempt at a standard specification for shared memory, ANSI
X3H5 was never formally adopted. OpenMP is far more advanced than its predeces-
sor on SGI computers, PowerC, being much more than a loop paralleliser. OpenMP
allows the parallelisation of general regions of code, the nesting of parallel regions

inside one another and more control over the details of the parallel execution.

As the SGI-OpenMP library used on the SGI Origin 2000 and 3400 is tuned to
these systems, good performance would be expected. On these computers, under-
lying hardware and software takes care of any data transfer between threads trans-
parently giving the impression, to the programmer, that they are using a shared
memory computer. The level of usage of OpenMP is likely to increase with the use

of CC-NUMA type DSM computers as it is very effective on this type of computer.

At present OpenMP does not run on distributed memory computers because it
is based on using a shared memory space. Such an implementation would probably
have to be built on top of MPI and would therefore incur significant performance

penalties.

OpenMP directives are prompts given to the compiler; they do not explicitly
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specify parallelisation. Compiler directives intended for OpenMP will not be un-
derstood by other interpreters and, as pragmas in the C programming language,
will be ignored when not in use. With an OpenMP capable compiler a tag, such as
-omp on the SGI Origin 2000, will cause these pragmas to be read and acted upon.
Regions of the code that the programmer wants to run in parallel are bounded by

the directive:

#pragma omp parallel
{

}

Within this parallel region, the compiler can be prompted that the main loop of the
7 calculating program can be run in parallel. This is demonstrated in the OpenMP

parallel implementation of the 7 calculating program, shown in Figure 5.2.

/* file:picalc_omp.c */
#include <stdio.h>
#include <stdlib.h>

int main() {

double pi_estimate, x, y, r_squared;

int i, total_points=10000, inside_count = 0;
#pragma omp parallel
{

srand (omp_get_thread_num()) ;
#pragma omp for private(x, y, r_squared) reduction(+:inside_count)
for (i=1; i<=total_points; i++) {

x = (double)rand()/RAND_MAX;

y = (double)rand()/RAND_MAX;

r_squared = X*X+y*y;

if (r_squared < 1.0) inside_count++;

}

pi_estimate = 4.0%(double)inside_count/(double)total_points;
printf ("Estimate of PI = %g for total points = %d\n",
pi_estimate, total_points);

return 0;

Figure 5.2: OpenMP implementation of the 7 calculating program.

This example shows that the structure of the code is not changed by the addition
of OpenMP parallelism for this simple, naturally parallel program. The two pragmas
have prompted the compiler that the calculations in the following loop can be run in
parallel. The number of threads used in an OpenMP is specified as the environment
variable OMP_NUM_THREADS and changing this number does not require the code to
be recompiled. OpenMP parallel code for the pi example is shown. The OpenMP
pragma statement prompts the compiler as to the locations of potentially parallel
regions. In this case the loop is divided amongst multiple threads and the reduction

clause is used to sum each of the threads contribution to the total inside_count.
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The call to srand () seeds the random number generator, using the thread num-
ber, so that each thread is working with a different set of random numbers; the
threads using different sets of random numbers is essential for the parallel compu-

tation.

This code would be compiled and run, using four processors, on the SGI Origin
series computers with the following commands:
cc -03 -mp picalc_omp.c -o picalc_omp.exe —-1m

setenv OMP_NUM_THREADS 4
./picalc_omp.exe

Message Passing Interface (MPI)

The Message Passing Interface (MPI) was proposed in 1993 by a committee, formed
at the Supercomputing '92 conference, known as the MPI forum. MPI was intended
to become the standard specification for communication protocols in MIMD dis-
tributed memory parallel computers [3]. This has largely come to be a reality with

almost all modern supercomputers having MPI libraries available.

The basis of message passing is that all processes store only a local memory, but
are able to communicate with the other processes by sending and receiving messages.
One of the defining features of message passing is that the sending and receiving of

messages are separate operations [87].

One of the primary reasons for the success of MPI is that, from the very begin-
ning, computer manufacturers, Universities, government laboratories and industry
have all contributed to the standard. MPI is largely seen to have taken over from
PVM and has used features and notation from that standard to build upon. A lot of
the development of MPI has been with workstation clusters in mind, as discussed in
Chapter 4, and with future trends in supercomputing almost certainly being focused

towards these types of architectures, the use of MPI seems set to increase.

The MPT libraries used in this paper complied with version 1.2 of the standard.
Three of the most widely used libraries, LAM-MPT [236], MPICH [86] and MPI/Pro
[162] were used in the tests on the beowulf cluster, and the SGI Message Passing
Toolkit (MPT) was used on the Origin 2000. The MPT is a library based on the
standard that is specially tuned for the Origin 2000 architecture. The MPICH and
MPI/Pro libraries originated from Argonne National Laboratory and the University
of Chicago, with MPI/Pro only differing in that it is marketed on a commercial
basis and comes with technical support. The two libraries are specially targeted for
workstation clusters, and there was no discernable difference in the performance of

the two libraries in the tests, as would be expected.
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The complexity of MPI can range from simple send and receive commands to
collective communication procedures involving structures of data. MPI can be de-
scribed as being as large as the user decides, where an entire algorithm can be
written using the basic six commands, out of an available 125, incorporating all of

the functionality available in the standard.

MPI continues to be developed with the MPI-2 standard, whose definition was
completed in 1997. The new standard includes significant extensions to the MPI-
1 programming model and the introduction of new functions, such as one sided
communication, and the replacement of some functions with more efficient imple-

mentations [215].

A program using MPI must include the MPI header file mpi.h. In MPI the
number of processes to be used is specified from the command line at execution
time. The two arguments must be added to the main() function to account for the

two command line arguments that specify the number of processors to mpirun:

main(int argc, char **argv) {

Processes cannot be created and destroyed during execution and will be used through-
out, regardless of whether they are doing useful work; however, these processes

cannot, be given any MPI specific commands until MPI is initialized, with:

MPI_Init(&argc, &argv);

MPIT communications are conducted within groups. The most broad group for MPI
communication is MPI_COMM_WORLD, which will be used for all communications due
to the simple nature of our communication needs. The number of processes, Py,

specified to mpirun is constant throughout the solution procedure.

The total number of processes used is stored in the local variable num_proc and
each processes is given a identification number (from 0 to Pyyq—1), stored locally as
mpi_pid.

MPI_Comm_size(MPI_COMM_WORLD, &num_proc);
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_pid);

The MPI parallel implementation of the 7 calculating program is shown in Fig-
ure 5.3. This implementation is more complicated than would normally be needed in
that each process simply could work through indices 1 to total_points/p; however,
this implementation does assign points to be calculated in the same way as the SPH
code described in Section 5.2.1, and so is a useful example. Specifically, this means
that points are treated as if they come from the same list of indices numbered from

1 to total_points.
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/* file:picalc_mpi.c */
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

int main(int argc, char **argv) {
double pi_estimate, x, y, r_squared;
int total_points = 10000, inside_count = 0;
int i, num_proc, mpi_pid, start, end;

setbuf (stdout, (char *)0);

MPI_Init(&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &num_proc);
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_pid);

srand (mpi_pid) ;
start = mpi_pid*(int) ((double)total_points/(double)num_proc);
if (mpi_pid == num_proc-1) end = total_points;
else end = (mpi_pid+1)*(int) ((double)total_points/(double)num_proc);
printf("... process %d has %d to %d\n", mpi_pid, start, end);
for (i=start; i<=end; i++) {
x = rand() /RAND_MAX;
y = rand()/RAND_MAX;
r_squared = X*X+y*y;
if (r_squared < 1.0) inside_count++;

MPI_Reduce(&inside_count, &inside_count, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Finalize();

pi_estimate = 4.0*(double)inside_count/(double)total_points;
printf ("estimate of PI = Jg for total points = %d\n",
pi_estimate, total_points);

return 0;

Figure 5.3: MPI implementation of the 7 calculating program.

The call to MPI_Init initialises the MPI parallelism taking the number of pro-
cessors to use as input from the command line. MPI_Comm_size and MPI_Comm_rank
stores how many processes are active and which number they have been individually
assigned. For simplicity the number of points to be tested is truncated, making it di-
visible by the number of processes with no residual. In MPI, division of the problem
is done manually in MPT and is achieved by specifying the indices that will be used
in the main for loop as a function of mpi_pid and num_proc. The variables start
and end are stored separately by each process, and then each process independently
runs on its fraction of the points and stores the number of points that lie within the

quarter circle.

The reduction operation MPI_Reduce takes the values stored at the address
&inside_count from each process and performs the MPI operation MPI_SUM, which
sums all of the values stored by the threads. The result is stored at the address of

inside_count on the root process, process zero. The one refers to the number of
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data values on each thread that are being summed. MPI_INT is the data type that
is being summed, which is equivalent to type INT. MPI_COMM_WORLD is the communi-
cation group being used. The call to srand() seeds the random number generator

for each process differently, using the process number.

This code would be compiled and run, using four processors, on the SGI Origin

series computers with the following commands:

cc -03 picalc_mpi.c -o picalc_mpi.exe -1lm —lmpi
mpirun -np 4 ./picalc_mpi.exe
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Bulk Synchronous Parallel (BSP)

The Bulk Synchronous Parallel (BSP) model of parallel computing was first pro-
posed in 1990 by Valiant [237]. Since then the model has been implemented by a
research group at Oxford University [171] producing BSPlib which is a library of
BSP communication and synchronisation primitives. These primitives are callable
from both Fortran and C and the library includes performance analysis, bench-
marking and debugging tools. The aim of BSP is to produce a parallel library that
is architecture independent, provides scalable parallel performance and yet is con-
ceptually simple. These objectives have largely been achieved in BSPlib; however,
results were only obtained for the Origin 2000 since the installation of the library

on the Beowulf cluster failed.

Within a superstep each process performs its independent computations, followed
by a global computation phase and then a barrier synchronisation. In this way BSP
imposes a more strict, but simple underlying structure on the parallel code, allowing
parallelisation to be achieved with less complication and effort, and greatly aiding in
the analysis of the performance of the code. The superstep-based structure of BSP
corresponds well with the time step structure of explicit CED codes and so provides

a useful model.

Unlike MPI, BSP threads are created at the time that BSP is initialised, using
bsp-begin(), and therefore any commands before then are only executed by the
first thread, which is effectively sequential code. BSP code must include the BSP
header file bsp.h. The BSP parallel implementation of the 7 calculating program

is shown in Figure 5.4.

A program using BSP can accept the number of processors to be used as input
from the command line, as with MPI. BSP does not feature a dedicated reduce
function, as was used in the MPI version of the code. For this reason malloc is
used to create an array with an element for each process running; when processes
are finished doing their part of the calculation, their local copy of inside_count is
sent to the master process and put in an element of this array. The result is then

summed by the master process to obtain the answer.

The memory space used by the receive_buffer array is written to by the other
processes using Direct Remote Memory Access (DRMA) and must be made available
to the other processes by using bsp_push_reg; it is released after the processes have
written to it using bsp_pop-reg. Again, the call to srand() seeds the random

number generator for each process differently, using the process number.
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/* file:picalc_bsp.c */
#include <stdio.h>
#include <stdlib.h>
#include <bsp.h>

int main(int argc, char **argv) {

double pi_estimate, x, y, r_squared;

int i, num_proc, start, end;

int total_points = 10000, inside_count = 0, ;
int *receive_buffer;

num_proc = atoi(argv[2]);

receive_buffer = malloc(num_proc*sizeof (int));
bsp_begin (num_proc);

bsp_push_reg(receive_buffer, num_proc*sizeof (int));

srand (bsp_pid());
start = bsp_pid()*(int) ((double)total_points/(double)num_proc);
if (bsp_pid() == num_proc-1)

end = total_points;

else
end = (bsp_pid()+1)*(int) ((double)total_points/(double)num_proc) ;
printf("... process %d has %d to %d\n", mpi_pid, start, end);

for (i=start; i<=end; i++) {
x = rand()/RAND_MAX;
y = rand () /RAND_MAX;
r_squared = X*X+y*y;
if (r_squared < 1.0) inside_count++;

}

bsp_put (0, &inside_count, receive_buffer, bsp_pid()*sizeof (int), sizeof(int));
bsp_sync();

bsp_pop_reg(receive_buffer);
bsp_end () ;

for (i=1; i<num_proc; i++) inside_count += receive_buffer[i];

pi_estimate = 4.0%(double)inside_count/(double)total_points;

printf ("estimate of PI = Yg for total points = J%d\n",
pi_estimate, total_points);

return 0;

Figure 5.4: BSP implementation of the 7 calculating program.
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This code would be compiled and run, using four processors, on the SGI Origin

series computers by the following commands:

bspcc -flibrary-level 2 -03 picalc_bsp.c -o picalc_bsp.exe -1m
./picalc_bsp.exe -np 4
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5.2 Parallel Implementation

This section will describe the implementation of parallelism in the SPH code and in
MB_CNS. The SPH technique exhibits a natural parallelism and MB_CNS utilises a
multi-block parallelism. The parallelism in the SPH code will be described in more
detail.

The accepted notation for referring to each of the separate instances of an SPMD
program operating in parallel is a thread when using a shared memory space, and a
process when using a distributed memory space. For this reason, OpenMP threads
and MPI (or BSP) processes will be referred to. These are distinct from the term
processors which refers to the hardware that threads and processes run on. In this
chapter, it can be assumed that each thread or process is run on its own processor

unless explicitly stated.
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5.2.1 Parallel SPH

The Smoothed Particle Hydrodynamics (SPH) technique was described in Sec-
tion 3.2.1. The SPH technique is naturally parallel as the solution procedure can
be divided up in a straight forward manner. The majority of the work in the SPH
method is in calculating particle interactions and these interactions are independent
of one another. This natural parallelism is demonstrated in Figure 5.5 where the
effect of particle A on B can be calculated independently of the interaction of C and
D.

Figure 5.5: Using kernel interpolation, the calculations for any particles A with B are
independent of C with D.

The class of parallelism implemented in most CFD codes is described using
Flynn taxonomy [70] as Single-Program Multiple-Data (SPMD) parallelism. With
the SPMD model of parallel computation each process works on a different segment
of the same data set; in the case of CFD the same flow domain. As seen in the simple
7 calculation program in Section 5.1.1, the distribution of work is done automatically
in OpenMP, but must be specified explicitly with MPI and BSP. OpenMP gives a

number of options in how the division is done to allow for load balancing.

The most simple method of dividing up the work in an SPH code is to arbitrarily
assign 1/p of the particles, where p is the number of processes being used, to each
process. This will be referred to as the simple parallel model. This model is the
basis for the shared memory model and is one of the two main choices for distributed

memory programs.

Figure 5.6 shows the division of work in the simple parallel model for the SPH
method. A simulation using four processes is shown. Each process stores its own
copy of the array of particles which may, or may not, be accessible by the other
processes. During a time step each process updates the properties of the particles
assigned to it, with each process being assigned a different segment of the data. The
segment assigned to each process is shown as shaded in the Figure. This is a logical
partitioning of the data set according to how the array is stored by the program. At

the end of a time step, each process has updated information for its section of the
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array (at time ¢) and out of date information for the other sections (at time t — §t).

array of particles

p0 pl p2 p3

Figure 5.6: Logical decomposition for the simple parallel model for SPH programs.

In order to carry out new calculations using this simple parallel model, each
process must have a complete copy of the particle array. The calculation of properties
for any particle may involve particles from anywhere in the array depending on their
physical locations in the simulation; this is not related to their logical position in the
particle array. This means that, once each process is finished updating its segment
of the data, the new data must be shared amongst the other processes. This data

transfer is shown in Figure 5.7 for the particles associated with process zero.

Ao

array of particles

Figure 5.7: Communication for the simple parallel model for SPH programs.

It is an important feature of the SPH method, given its explicit nature, that
the calculation of any property can not result in race condition. This is because for
any calculation being performed the same variable is never being read as is being
calculated; for example, even the calculation of density, using kernel interpolation,

only requires particle positions to proceed.

The OpenMP version of the SPH code achieves parallelism through all threads
using a shared memory space. Shared memory parallelism with the SPH method
only differs from the simple domain parallel method described in Figure 5.6 in the

way that data is stored and shared. Since all processors access the same global
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memory space there is only the need for one copy of the particle array; the simple

model had a copy of the array for each processor.

The basic shared memory model is shown in Figure 5.8, where process 0 is reading
the properties of particles from anywhere in the data structure and writing updated
results to the section of the global array assigned to it. The rest of the array is

updated by the other processes concurrently.
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Figure 5.8: Shared memory parallelism for process 0.

The whole particle array must be up to date before any threads can start the
new time step since, as with the simple model, updating a particle may require
information from anywhere in the array. With the shared memory model there is
still only copy of the data; this means that, unlike the simple parallel model, it
does not suffer from the storage problems with multiple copies of the array. With
the shared memory space, communication occurs concurrently with computation
since updated results are written to the globally accessible array; however, with
SPH, race conditon will not be incurred because no variable is ever read from and
written to the particle array in the same region of computation. The shared memory
model, although being very effective for limited numbers of processors, is limited in
scalability by the need for all processors to practically be able to access the same

memory space.

The MPIT and BSP versions of the parallel SPH code use the distributed memory
model. In this model, each process stores data in its own memory space which is not
directly accessible to other processes. This makes it more like the simple parallel
model described in Figure 5.6 than the shared memory model. All processors must
receive all updated particle information before the start of a new time step since,
as with the simple model, updating a particle may require information from any
other particle. This results in a large amount of data storage and a large amount
of communication that must be performed to keep this data up to date. This

method is, however, relatively simple to implement and analyse. If processors require
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updated data that is being stored by another process then this information must
be transferred to it by message passing. This is based on the communication style
shown for the simple parallel model in Figure 5.7. With message passing, discrete
blocks of information are requested and then sent and received explicitly by the two
participating processors. Group communication routines can be used to perform

specific types of communications between assigned groups of processes.

With a code based on the Lagrangian description of fluid motion, such as SPH,
the computational elements enter and leave the flow domain during each time step.
This means that particle array must be re-partitioned at the start of every time step

regardless of the model of parallelism used.

Load balancing is particularly an issue in SPH simulations. Particles in regions
of higher density have more neighbours and, therefore, each particle require more
computational work. If equal numbers of particles are given to each process then
those working in regions of higher density will have more work to do and, therefore,
will take longer to do it. This is a problem in simulations involving discontinuities
in density, as with shock tube simulations. OpenMP allows dynamic allocation of
work to threads to account for this type of effect. An answer to load balancing, also
applicable to MPI and BSP, is to randomly assign particles to processes so that each
would have a roughly the same number of particles from any high density regions.
This would lead to problems with memory access and cache utilisation, potentially

degrading overall performance.

The simple parallel model, although providing a convenient structure, is ineffi-
cient for the purpose of large simulations. In terms of storage, the entire array of
particles must be stored on each process; this is 972Mb of memory that must be
regularly accessed for a one million particle simulation. One important aspect of
parallelisation of a CFD code is the reduction in memory space that each process
must work within. In terms of communication, transferring the entire array of par-
ticles to every process is inefficient and, as well as this, the amount of data that

must be transferred increases proportionally with the number of processes.

Multi-block parallelism, which is described with MB_CNS in Section 5.2.2, is
made possible in an SPH code through the use of compact support in the interpo-
lating kernel. The blocks that divide the domain could be made up of the sorting
cells used to find neighbouring particles, as was described in Section 3.2.1. An im-
plementation based on multi-block parallelism would result in significant savings in
memory usage (by not having to store the whole particle array in each process).
Any savings in communication time would likely be offset by a significant amount

of extra work in accounting for the continuous movement of particles between the
blocks.
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Shared Memory (OpenMP)

The structure of the OpenMP parallel version of the SPH code is, for the most part,
the same as the sequential version. The difference lies in that when a particular task
is performed, such as the calculation of density using kernel interpolation, multiple
threads are spawned which update information for a section of particles assigned
to them in the shared memory space. For these sections of the code, the compiler
arranges multiple threads to be used in the calculations. There are sections of the
code that are not executed in parallel, the most significant of which is assigning

particles to the boxes used for sorting the particles to find neighbours.

Particle properties are updated by for loops, executed in parallel, which cycle
through the list of particles. OpenMP spawns the new threads and automatically
distributes the particles amongst them. In the following example the compiler is
prompted by the omp for pragma that the following for loop should be run in

parallel:

#pragma omp parallel{
#pragma omp for private(i, x_ij, y_ij) shared(ptc, total_ptc, h)
for (i=0; i<total_ptc; i++) {

}
}

This loop would be used in the code to update the properties; in the case of step
4 in the pseudo code, density is updated by taking as input each particles position
and the smoothing length, h. These properties can be evaluated independently,
and, therefore, in parallel. The loop will be run in parallel with each thread using
its own, private, copy of the loop index, i, and the relative positions of the two
particles, x_ij and y_ij. The same copy of the particle array, ptc, the total number
of particles, total_ptc, and the smoothing length, h, are used by all threads; these
are specified as shared variables in the pragma. OpenMP relies on shared memory
to achieve communication since the particle array is shared, the threads are all

reading from and, later, writing to the same array.

At the end of a loop, the parallel region ends and there is an implicit synchroni-
sation of the threads. This is important as no threads can move on to calculations
that require data that has not been updated by another thread. This process is
repeated for each new property calculation and are repeated for each time step in
the simulation. The for loop, if it were being run sequentially, would run from
0 to total_ptc. This structure is important as, if the pragmas were ignored, the

sequential loop would still work correctly.
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The way that elements from the loop, particles in our case, are assigned to the
threads can be specified by the developer. These options include dynamic scheduling

in which more work is assigned to threads as they complete work.

The performance of OpenMP will be used as the benchmark for parallel perfor-
mance of the parallel SPH code as it is aimed at being easy to implement and still

perform well on the Origin 2000.

Message Passing Interface (MPI)

The MPT parallel version of the SPH code, although aiming for the same result
as the OpenMP version, must include more of the detail of how the parallelism is
achieved. The pseudo code for the MPI version is shown in Figure 5.9. The structure
of the pseudo code is not changed from the sequential version, however, the blocking
group communications at steps 5a and 8a are added. The densities, pressures and
sound speeds calculated at 4 and 5 are required by the calculations at 6 and 7 and
so communication is required at 5a. When the particle’s properties are integrated
in time, at 8, this information must be communicated to the other processes, at
8a, before the next time step can commence. With the simple parallel model used,
particle information may be required from any position in the particle array and so
each process must update the information stored in the arrays on other processors.
The broadcast performed by each process is a blocking communication routine. This

eliminates the need for an explicit barrier synchronisation at these points.

1. assign particles to flow domain according to initial density
2. assign initial properties to particles
-> 3. assign particles to cells
| 4. calculate densities at particle positions
| 5. calculate particle pressures and local sound speeds
| ba. blocking group communication to update particle array
| 6. calculate particle accelerations
| 7. calculate rate of change of internal energy
| 8. integrate particle properties forward through time step
| 8a. blocking group communication to update particle array
-- 9. check if solution time has been reached

Figure 5.9: Pseudo code for the MPI version of the parallel SPH method.

On each time step, domain decomposition is performed by distributing the parti-
cles amongst the processes. In keeping with the simple parallel model, each process
must have access to the whole particle array. The particles are distributed for
computation by specifying the indices of the particles that bound the region to be
calculated: start and end. This is done for each process as a function of mpi_pid.
The number of remainder particles is also stored as extra_particles; these parti-

cles are handled by the last process. These extra particles being updated by the last
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process will lead to a load imbalance; however, this is insignificant since the number
of extra particles is at most num_proc-1.

start = mpi_pid * (int) (total_ptc/num_proc);

if (mpi_pid == num_proc-1) end = total_ptc;

else end = (mpi_pid+1) * (int) (total_ptc/num_proc);
extra_particles = total_ptc - num_proc * (int) (total_ptc/num_proc);

Once the computations have been performed and the data has been updated, the
data must be shared; this occurs at at the end of both steps 5 and 8 in the pseudo
code in Figure 5.9, at steps ba and 8a. Each particle in the array stores 17 properties,
each stored as double-precision floating point variables. Only some of these variables
store the thermodynamic properties of the particle, the variables are used by the
program, such as in cell sorting. For the communication at step 5a, only the density,
pressure and sound speed have been updated and, for efficiency, only these variables

need to be sent to the other processors.

Figure 5.10 shows the layout of the variables in the particle structure array. Each
particle is a structure, consisting of the 17 variables, in an array. Precise access to the
array is made possible by the use of pointers: the pointer ptc refers to the address
of the entire particle array, ptc[i] refers to the address of particle i in the array
and &ptc[i].p refers to the address of the property p of particle i in the array.
MPT allows the definition of different types of variables to be declared, including

pte[i]
pte ptc[i].p

D A — t
b 5a .
M — other particles
other properties

Figure 5.10: Layout of variables to be tranferred from the particle array

vectors, to be used in communication routines. The command MPI_Vector can be
used to create a vector type that will be used to send only the necessary variables.
In the case of step ba, these are pressure, density and sound speed. As was shown
in Figure 5.10, the density, pressure and sound speed variables are stored as three
consecutive doubles within the particle structure. The vector type for particles
particles that have been updated by the process, sending send_variables variables
out of the total_variables variables that are stored for each particle (in this case
the vector spans the 17 for each particle storing the 3 updated properties), all of
type MPI_DOUBLE and assigning this vector to MPI_Vector_1 is assigned with:

MPI_Type_vector(particles, send_variables, total_variables, MPI_DOUBLE, &MPI_Vector_1);
MPI_Type_commit (&MPI_Vector_1);
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Each process can now broadcast this vector to the other processors, process_recv,
using MPI_Bcast. For the correct variables to be sent in the vector type, the starting
address used for the transfer should be the address of the first property to be sent,
in the first particle to be sent, from the array; this is the pressure in the emphi’th
particle: &ptc[i*sendcount].p. Since we are updating similar arrays on the pro-
cesses, ihis memory address is the same on the sending and receiving processes. The
vector type MPI_Vector_1 encompases all of the particles to be sent and, therefore,
only 1 copy of the vector is sent.

for (i=0; i<num_proc; i++)
MPI_Bcast (&ptc[i*sendcount] .p, 1, MPI_Vector_1, process_recv, MPI_COMM_WORLD) ;

Each processor performs this operation, and so we have an all to all group commu-

nication. The vector type can be freed using:

MPI_Type_free(&MPI_Vector_1);

The remainder particles, that did not fit into total_ptc/num_proc, have been up-
dated by the last process. The updated properties are transferred to the other
processes using a broadcast. Rather than define another type of vector to transfer

these results, all of the properties are sent since it is a small amount of data.

MPI_Bcast (&ptc[num_proc*(int) (total_ptc/num_proc)], extra_particles*variables,
MPI_DOUBLE, num_proc-1, MPI_COMM_WORLD) ;

Blocking communications are used, therefore barrier synchronisations are not re-
quired to follow the communications. This means that the program does not con-
tinue executing lines beyond the collective communication until it is guaranteed to
be complete. The system resources being used by MPI are released and the MPI

procedures are finalised using the command:

MPI_Finalize();

Bulk Synchronous Parallel (BSP)

The pseudo code for the BSP parallel version of SPH code is shown in Figure 5.11.
It has the same structure as the MPI code, however, non-blocking group commu-
nications are used at steps Ha and 8a, so explicit barrier synchronisations are now

necessary; these are added at 5b and 8b.

When the processes are initially spawned, a copy of the entire particle structure
array, ptc, as well as the cell field structure and the geometry structure are given
to each process. The region of the SPH code involving parallelism is initiated with

the command:

bsp_begin (num_proc) ;
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1. assign particles to flow domain according to initial density
2. assign initial properties to particles
-> 3. assign particles to cells
4. calculate densities at particle positions
5. calculate particle pressures and local sound speeds
ba. non-blocking group communication to update particle array
5b. explicit synchronisation of all processes using bsp_sync()
———————————— end of superstep --——-——-----
6. calculate particle accelerations
7. calculate rate of change of internal energy
8. integrate particle properties forward through time step
8a. non-blocking group communication to update particle array
8b. explicit synchronisation of all processes using bsp_sync()
———————————— end of superstep ------------
-- 9. check if solution time has been reached

Figure 5.11: Pseudo code for the BSP version of the parallel SPH method.

The memory area storing the particle structure array on each process is made glob-
ally visible for Direct Remote Memory Access (DRMA) transfers between threads.
The memory occupied by the particle array, starting at the pointer to the array,
ptc, and covering total_ptc*17*sizeof (double) bits, is registered as available to

DRMA operations, using:

bsp_push_reg(ptc, total_ptc*17*sizeof (double));

As with MPI, domain decomposition occurs on each time step. This is necessary
as the total number of particles in the simulation changes from each time step due
to boundary conditions. Each process has access to the data from the entire set
of particles, as with the simple parallel model. The particles are distributed for
computation by specifying the indices of the bounding particles of the region to be
calculated as a function of the process identification number. The communication
routines in BSP are slightly more flexible in some regards and so storing the number
of remainder particles is not necessary, as it is with MPI.

start = bsp_pid()*(int) (total_ptc/num_proc);

if (bsp_pid() == num_proc-1) end = total_ptc;
else end = (bsp_pid()+1)*(int) (total_ptc/num_proc);

The current BSP code does not use collective communication routines, rather per-
forming send operations for each process to process communication. BSP using
DRMA, as with MPI-2, allows for one sided communications and these are used in
the BSP code, with the command, bsp_put (). One sided communication is where
the send command can be issued to the sending process and the receiving process
will automatically receive the data. The communication routine steps through the
processes as sender and, for each sender, steps through the other processes as re-

ceivers. This is an all to all communication, but allows communication from a
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process to itself to be excluded. The variable ptc_mem size stores the number of
bits that each process takes up in memory.

for (receiver=0; receiver<num_proc; receiver++) {
if (bsp_pid() != receiver) {
if (bsp_pid() == num_proc-1) {

bsp_put (receiver, ptclbsp_pid()*(int) (total_ptc/num_proc)],
ptc, bsp_pid()*(int) (total_ptc/num_proc)*ptc_mem_size,
(total_ptc+1-(bsp_pid()*(int) (total_ptc/num_proc)))*ptc_mem_size);
} else {

bsp_put (receiver, ptc[bsp_pid()*(int) (total_ptc/num_proc)],
ptc, bsp_pid()*(int) (total_ptc/num_proc)*ptc_mem_size,
(int) (total_ptc/num_proc)*ptc_mem_size);
}
}
}

This communication is shown in Figure 5.12, for process 1, having updated the light
shaded segment of the data itself, and receiving DRMA transfers of data from the
other processes to update the rest of its copy of the array, shown as dark shaded.

Following this collective communication, it is necessary to perform a barrier syn-
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Figure 5.12: BSP DRMA data transfer for process 1 receiving.

chronisation to end the superstep. Communications are guaranteed to be completed
by the end of the superstep, because of the barrier synchronisation. The next step
may then proceed with a complete set of updated data. The synchronisation time
is counted in the communication time for BSP communication regions as the actual
process of communication continues after function call returns. This is known as
non-blocking communication. The communication is only guaranteed to be complete

once the call to the synchronisation routine, bsp_sync () ,returns.

At the end of a simulation, the system resources being used by BSP are released
and the procedures are finalised, as well as deregistering the particle structure array
for BSP communications, with the commands:

bsp_pop_reg(ptc);
bsp_end () ;
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5.2.2 Parallel MB_CNS

MB_CNS, which was described in Section 3.1.1, was originally developed as CNS4U,
a single block Navier-Stokes solver [110]. This code was developed with the intention
of extending it to a multi-block solver in order to enable the solution of flow fields in
parallel. The equations being solved by MB_CNS are hyperbolic, and the time steps
are chosen such that information can move only part way through a cell in any time
step. This means that updated flow information only needs to be communicated
directly at the block boundaries. The result, MB_CNS, is a multi-block solver in
which parallel execution can be achieved by solving the flow in each block using a
different processor [114], with the updated results at block boundaries transferred

between the processors during every time step.

The OpenMP parallel version of MB_CNS was used predominantly for the sim-
ulation in this thesis. This restricted the number of processors used to four when
running on the APAC National Facility. The MPI version of MB_CNS has been
developed and its performance analysed as a part of this thesis. The resulting code,
which allows the use of a larger number of processors on the APAC National Facility,
will be needed by future studies especially those involving finite rate chemistry and
radiation modelling, which are significantly more expensive than the simulations

described in this thesis.

Shared Memory (OpenMP)

Shared memory parallelism was originally implemented in the code using SGI Pow-
erC, which was the predecessor of OpenMP on the SGI Power Challenge computer.
The shared memory implementation of MB_CNS is structured using the multi-block
arrangement, with the flow in each block being solved separately. This makes the
same structure compatible with the distributed memory implementation. Fach block
may be solved on a single thread, or the work done solving a block may be shared

between threads.

By using the multi-block arrangement, each block uses the ghost cell boundaries.
Since all threads are reading from the same memory space each block can simply
read the boundary data from the bordering blocks. In the MB_CNS implementation,
explicit sends and receives of data were required to perform this communication
between the blocks.

Once the ghost cells have been updated. Large loops are specified to run in

parallel using:

#pragma omp parallel for shared(G,bd) private(jb) schedule(runtime)
for (jb = 0; jb < G.nblock; ++jb) {
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Where the for loop steps through each of the blocks, jb, updating the flow
properties from this block in the global flow data structure G. This process is repeated
for the predictor and corrector steps of the time integrator, updating the ghost cells
with the intermediate values between the steps. The self-contained packaging of the

data for each block ensures that there are no memory conflicts.

Like in the OpenMP version of the SPH code, the only difference between the
sequential version of MB_CNS and the OpenMP version are the few compiler direc-
tives that are added to the main() function to indicate which loops can be solved

in parallel.

Message Passing Interface (MPI)

Due to the complexity of the communication routines used this version of MB_CNS,
the actual coding will not be discussed in detail. Actions such as the initialisation of

processes are similar to that in the discussion of the parallel SPH implementation.

The MPI version of MB_CNS solves each block in a separate memory space.
The code is implemented in a one block per process arrangement. This was done to
maximise parallel efficiency and to prevent the code from becoming too complex. As
a result the code is quite restrictive in load balancing, since all blocks should be of
about the same size. Parallel efficiency would suffer significantly if the size of blocks
differs by a significant amount; however, static load balancing can be achieved by

arranging several MPI processes to particular computational nodes.

The data arrays for each block are dimensioned such that there is a buffer region,
two cells deep, around the active cells. The buffer region is required to be two cells
deep by the reconstruction scheme used in the code. The active cells completely
define the flow domain covered by the block and the buffer region contains ghost
cells which are used to hold a copy of the flow information from adjacent blocks or

to implement the boundary conditions.

For a boundary common to two blocks, the ghost cells in the buffer region of each
block overlap the active cells of the adjacent block. The only interaction that occurs
between blocks is the exchange of boundary data, prior to the reconstruction phase
of each time step. The exchange of cell-average data along the block boundaries
takes place as a direct copy from the active-cell of one block to the ghost-cell of the
other block. Thus, the cells along the common boundary of each block must match

in both number and position.
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The code allows for any arrangement of connections to be made between blocks.
The information on the connections between block boundaries is stored in a (global)
connectivity array. For each boundary on each block, this array stores the block
index of the adjacent block on each boundary, as well as the name of the connecting
boundary on the adjacent block. To keep the code simple, the two-way nature
of the exchange is explicitly stored in the connectivity array. Thus, if the East
boundary of block 0 is connected to the West boundary of block 1, the array stores
the information for that relation as part of the data for block 0 and it also stores

the corresponding (inverted) information as part of the data for block 1.

Figure 5.13 shows the arrangement of data for the solution of block one. The
rows of ghost cells used in the solution of block one have been copied from blocks

two and three.

Block 1 Block 2

—

Block 3

Figure 5.13: Block one with the rows of ghost cells on its east and south faces that are
copied from the west and north boundaries of blocks two and three respectively.

The program is written as an (outer) time-stepping loop which does the calcula-
tion of each time step in a number of phases. At various times during a time step, for
example at both the predictor and corrector steps of the time integrator, the bound-
ary data is updated. Fluid properties required by neighbouring blocks must be sent
and received explicitly between the processes. When an inter-block communication
is required by the code, each block steps through its boundaries with bordering
blocks. At each of these boundaries, the process posts non-blocking receives, using
MPI_Irecv(), and blocking sends, using MPI_Send (). MPI_Barrier () is used at the
end of each communication, thus providing the effect of a blocking communication

over the whole routine. At present the number of calls to MPI_Barrier () are quite
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conservative; further data dependency analysis will show whether all of the calls are
necessary. Except for this block to block communication and the occasional check-
ing of time step magnitudes, the rest of the calculation can be done independently
for all blocks.

This model also has the potential to perform computational and communication
concurrently [145]. As the properties of the cells away from block boundaries are
being updated, the communication of data from the previous time step can be taking
place at the boundaries. The communication of boundary conditions should must

be completed in the time before they are required.
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5.3 Parallel Performance

In this section, the performance of the OpenMP and MPT parallel implementations
of MB_CNS will be analysed. The performance of the parallel implementations of
the SPH code are included in Appendix A. The performance of the SPH code is
described in more detail than MB_CNS, including discussion of the effect of par-
allelisation on memory access from each of the processors and the effect of data

conflicts on the performance of the individual processor caches.

In this section the parallel performance of MB_CNS is examined on the Aus-
tralian Partnership for Advanced Computing (APAC) National Facility. This com-
puter is a HP (originally built by Compaq) Alphaserver CS, consisting of 127 nodes,
each containing a four processor EV68 Symmetric Multi-Processor (SMP) box. The
whole machine has a peak theoretical performance of over one teraflop (achieving
825 Gflops on Linpack). This architecture, with memory only being shared within

the four processor SMP nodes, OpenMP cannot be scaled above four processors.

Many of the simulations used in this thesis were solved on the Queensland Parallel
Supercomputing Foundation (QPSF) operated SGI Origin 3400. The performance of
MB_CNS on this computer is not analysed as the heavy usage of the computer means
that the performance is significantly influenced by other users and the performance

results are not reliable for this reason.
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5.3.1 Performance of Parallel MB_CNS

The solution procedure used in MB_CNS works on each cell in the flow field. This
means that as the mesh is uniformly refined, the amount of work per step increases by
N2, where N, is one of the dimensions of the mesh. The allowable time-step decreases
in proportion to the cell size and, as a result, the total amount of computational
work scales by an additional factor of N,. The resulting solution time scales with
N2 for uniform refinement. The use of multiple processors in parallel ideally reduces
the elapsed time by a factor of P, where P is the number of processors used. The
logarithm of the elapsed time should scale as: logT = 3/2logN; - log P, where N;
is the total number of cells in the simulation. The graphs shown in this section use
logarithmic axes for both the solution size and the times so that the variation of
solution and elapsed time plots as a straight line with a gradient of 3/2. The lines
for elapsed times on different numbers of processors would be offset according to the

number of processors used.

The OpenMP parallel version of MB_CNS, running on four processors is used
for the majority of the large simulations in this thesis. Using four processors main-
tained an acceptable level of efficiency across the range of mesh sizes used in these
simulations. Four processors was also the upper limit for OpenMP on the APAC

National Facility.

The performance of the parallel versions of MB_CNS will be investigated using
small diagnostic simulations, specifically aimed at analysing the parallel performance
of the code. The parallel efficiencies are calculated by comparing the elapsed solution

time in parallel with the elapsed sequential time divided by the number of processors.

Shared Memory (OpenMP)

Since OpenMP, running on four processors, is used for the large simulations in
Chapter 7, the actual performance in these simulations is used in this analysis in

conjunction with the performance in the small diagnostic solutions.

The solution times (in CPU hours) and the elapsed times required for the simula-
tions of the complete Drummond Tunnel (to be discusses in Chapter 7) are shown in
Table 5.1. The calculations were run on the APAC National Facility using OpenMP
on four processors. The simulations were run to 10 ms of simulation time, which
allowed for the simulation to run to beyond the end of the test flow duration. The
solution times for the coarse, medium and fine meshes are shown, along with the

number of cells in each mesh.

During the Drummond Tunnel simulations, MB_CNS achieved an average of
225,000 cell updates per second on the APAC National Facility and 115,000 cell
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Table 5.1: Solution times for the Helium driving Nitrogen case simulations of the complete
Drummond Tunnel on the APAC National Facility.

Number of Cells Solution Time elapsed Time

in the simulation (CPU hours) (hours)

Coarse Mesh 80,850 60.7 17.5
Medium mesh 181,890 237.9 64.2
Fine mesh 257,600 699.9 183.4

updates per second on the QPSF SGI Origin 3400. The speed on the Origin 3400,
when affected the high usage of the machine, was reduced to as low as 65,000 cell

updates per second for extended periods.

The solution time (in CPU hours) required for the simulations of the shock
induced deformation of the Helium bubble in Chapter 6 was 137.5hours. The mesh
used in this simulation had 334,080 cells. The solution took 36.1 hours of elapsed
time to run using OpenMP on the QPSF SGI Origin 3400. The simulations were

run to 1 ms of simulation time.

The CPU times required for the range of simulations, including the small di-
agnostic solutions and the large simulations, are shown in Figure 5.14. The CPU
times can be seen to scale with simulation size with a linear relationship. The pre-
dictable scale of the solution time, between the small diagnostic solutions and the
large Drummond Tunnel solutions, is evident. The gradient of the line is 3/2 as was
predicted. There is a slight increase in CPU time as the number of processors is

increased, due to the effect of parallel overheads.

The elapsed times for these simulations are shown in Figure 5.15. The decrease
in the elapsed time with an increased number of processors is evident. There is
little, or no, decrease in the elapsed time for the smallest simulation size on four
processors. This demonstrates that the parallel overheads dominate the elapsed

solution time for this simulation.

The resulting parallel efficiencies for the OpenMP simulations are shown in Fig-
ure 5.16. The efficiency of the single processor simulation can be seen to vary in
a range between 0.90 and 1.0. The efficiency being below 1.0 is caused by parallel
overheads that are still present on one processor. For a given simulation size, the
efficiency of the simulations decreases with an increased number of processors. The
efficiency increases with an increase in simulation size. Some of the parallel over-

heads experienced in these simulations are independent of the simulation size. As a
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Figure 5.14: CPU times required for simulations using the OpenMP parallel version of
MB_CNS on the APAC National Facility.

result, some of the overheads, such as the communication between threads, become

less of a proportion of the total solution time as the simulation size is increased. A

sharp drop in efficiency is evident for the smallest simulation size on two and four

processors. This is caused by the parallel overheads dominating the elapsed solution

time.
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Figure 5.15: elapsed solution times for simulations using the OpenMP parallel version
of MB_CNS on the APAC National Facility.
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Figure 5.16: Parallel efficiencies achieved in simulations using the OpenMP parallel ver-
sion of MB_CNS on the APAC National Facility.
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Message Passing Interface (MPI)

Since the MPI version of MB_CNS is aimed at the larger simulations, the perfor-
mance of the MPI version has been analysed for solutions on 4, 8 and 16 processors.
Because the MPI version was not applied to any of the large simulations in this
thesis, the analysis of the MPI version is limited to the small diagnostic simulations.
With the MPI parallel version of MB_CNS, the number of processors must be equal
to the number of blocks used. Scaling the number of processors past 16 was not

thought to be useful for the relatively small simulations that were run.

Figure 5.17 shows the CPU times required for the small diagnostic solutions with
the MPI version of MB_CNS. There is a significant amount of increased work evident
with the increased number of processors. This results from the small meshes used,
and the large number of blocks required. As the number of blocks are increased, the
number of boundaries at which flow data must be transferred increases. This adds
work for the simulations on larger number of processors. The sequential simulation
was run with four blocks. The CPU times can be seen to scale with simulation size

with a linear relationship.
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Figure 5.17: CPU times required for simulations using the MPI parallel version of
MB_CNS on the APAC National Facility.

Figure 5.18 shows the elapsed times for these simulations. The decrease in the
elapsed time with an increased number of processors, up to eight processors, is gen-
erally evident; however, the elapsed time for the smallest sixteen processor solution

is longer that for the four and eight processor solution. For the smallest mesh size,
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there is little, or no, decrease in elapsed solution time for the parallel simulations.
This demonstrates that the parallel overheads, especially the communication over-
head, dominate the elapsed solution time for the smallest mesh size and for the

solutions on sixteen processors.

Figure 5.19 shows the resulting parallel efficiencies for the MPI solutions. The
efficiencies across all of the simulation sizes, for the four, eight and sixteen processor
simulations are low. The results from the large numbers of processors used for the
small solutions, and the resulting proportion of the work that is in the communi-
cation overhead. The efficiency for the sixteen processor simulation is below 0.1,
showing that the performance is poor. For the four and eight processor simulations,
the efficiency increased to the middle mesh size solution and decreases again. The
reason for this decrease is not known, but there is a consistent trend between the

two processor numbers.

Despite the relatively poor performance demonstrated for the MPI version of the
code, we expect that significant gains in efficiency will be obtained as the size of the
simulations is scaled upward. The availability of the OpenMP capable supercom-
puters during this thesis biased the amount of computational work done towards
that implementation of the code. With the low prices, and high performance, of
commodity PC workstations, we expect that most of the large calculations per-
formed in the future will be on clusters of linux workstations. As a result of this,
the MPI version of MB_CNS will become the predominantly used implementation
of the code.
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Figure 5.19: Parallel efficiencies achieved in simulations using the MPI parallel version
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CHAPTER 6

Code Validation:
Shock Induced Deformation of Bubbles

The test flow durations achieved in reflected shock tunnels are often small fractions of
what is predicted by idealised descriptions of these facilities. Idealised descriptions
fail to take into account the real gas phenomena in these facilities, such as the
complex interactions that occur as the reflected shock travels back upstream through

the oncoming driven gas.

Contamination of the test flow with driver gas was identified by Stalker and
Crane [221] as the principle cause of the end of the test time in reflected shock
tunnels in high enthalpy operation. The test gas moves along the shock tube ahead
of the driver gas so,v for contamination of the test flow with driver gas to occur,
some mechanism must be responsible for projecting the driver gas through the test

gas.

It is believed that instability in the contact surface between the driver gas and
the driven gas is a major contributing factor to the projection of driver gas into the
driven gas. As the contact surface moves along the shock tube it may be suscep-
tible to a compressible variant of the Rayleigh-Taylor instability [225] and as the
reflected shock reaches the interface it is subject to the Richtmyer-Meshkov insta-
bility [25]. The combination of these two instabilities can have a significant effect
on the interface, introducing large amounts of vorticity and mixing at the contact

surface.

The description of the interaction of shock waves with interfaces between different
gases is complicated and simple analytical models are difficult to formulate [89]. The
flows involve multiple shock reflections, refractions and the transmission of the shock
waves through media of differing sound speed, as well as the instabilities in the gas
interfaces. The complex, transient nature of the resulting flow fields means that
high resolution computer simulation using, Computational Fluid Dynamics (CFD),

is required in order to accurately model the evolution of these instabilities over time.

The importance of these interactions to the operation of a shock tunnel means
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that a CFD code used to model shock tunnels must be able to model the mechanisms
leading to the instabilities in the contact surface. Idealised experiments are required,
both for improving our understanding of the complex phenomenological behaviour
of the systems, and for the validation of the numerical techniques and assumptions

used in the simulation.

The interaction of shock waves with bubbles of light and heavy gas is studied
as a test case for the ability of the code to model the shock induced deformation
and instability of these interfaces. The interaction of shock waves with cylindrical
bubbles is a test case studied as a model of how shock waves induce instabilities at
density stratified gas interfaces, and of the mechanisms by which these instabilities
deform the bubble; this deformation results in the formation of large vortices in
both cases considered. These instabilities also generate fine-scale turbulence and
intensify mixing at the interfaces [89]. the ability of the code to model mixtures of

different perfect gases in the same simulation.

This case has well defined initial conditions and experimental photographs, which
can be compared directly with the simulations. The particular experimental results
that will be used for comparison were preformed by Haas and Sturtevant [89]. These
experiments consider isolated, cylindrical gas inhomogeneities, which are impacted
by a weak, planar shock. A schematic of the flow field studied by Haas and Sturte-
vant is shown in Figure 6.1. Two different test gases are considered, both leading

to different shock interaction and deformation phenomena.

Mach 1.22 shock wave

89mm

Air (298K, 101.3kPa)

Refrigerant 22 bubble
(Diameter 50mm)

Figure 6.1: Schematic diagram of the experiments performed by Haas and Sturtevant
[89] and used in the comparison with the simulations in this chapter.

In addition to code validation and for its analogy to shock tunnel flows, this is
an interesting case in its own right. The study of flows involving contact surface
instabilities is also of interest in the mixing of light gaseous fuels being injected in

Scramjet engines. Given the short amount of time available for the mixing of the fuel
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and air available in order for efficient combustion to take place in the combustion
chamber, a method of enhancing the mixing are important. The passage of the
fuel, with a different density to the air, through shocks in the combustion chamber
may result in Richtmyer-Meshkov instabilities. The resulting deformation would
enhance mixing and increase the area of contact between the two gases. This mixing
mechanism has been studied by Lee [132] using three dimensional simulations of a

Scramjet, combustor.

As the shock passes over the bubble, both the test gas in the cylinder and the
surrounding air are accelerated impulsively. The bubble is not significantly disturbed
during the time that the shock passes through the bubble; however, it is left in an

unstable configuration by the shock and it continues to deform over time.

A contact surface between gases of differing density is subject to Rayleigh-Taylor
instabilities if it is experiencing an acceleration perpendicular to the surface in which
the heavier fluid is pushing on the lighter fluid. The instability causes the heavier
fluid to enter the lighter fluid, resulting in mixing and turbulence at the interface.
The study of the stability of interfaces between fluids of differing density began
with Taylor [232], who performed a linear stability analysis of a harmonically per-
turbed interface under gravitational acceleration. Corresponding experiments were
performed which agreed with the theory of Taylor for initial sinusoidal amplitudes
below 0.4 times the initial wavelength [253].

The Richtmyer-Meshkov instability can occur following the interaction of a shock
wave with an interface separating two fluids of different properties. Any perturba-
tions in the interface will be amplified following the passage of the shock. The driving
mechanism for the Richtmyer-Meshkov instability is the baroclinic generation of vor-
ticity, which results from the misalignment of the pressure gradient across the shock
and the local density gradient across the fluid interface [25]. The Richtmyer-Meshkov
instability is also referred to as the shock-induced Rayleigh-Taylor instability [89].

The shock-induced impulsive acceleration of an interface with sinusoidal pertur-
bations was studied analytically by Richtmyer [192]. A linear representation of the
flow following the passage of the shock was used and a formula that captures the
early time motion of the interface. This formula was applicable to a restricted range
of Mach numbers and density ratios. The first experimental modelling to study the
interaction of shock waves with density inhomogeneities were performed by Meshkov
[146], who studied the passage of a shock wave through a perturbed planar surface.
The experimental results of Meshkov agreed qualitatively for early times with the

analytical model of Richtmyer.

The shock bubble interaction flow field represents a fundamental departure from
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the classical Richtmyer-Meshkov instability, in which a planar shock passes through
a perturbed surface, or a perturbed shock passes through a planar surface [179].
Such a system initially exhibits a linear growth but, in contrast, the shock bubble
interaction exhibits a non-linear growth even from early times. Attempts have been
made to apply the linear theory to the shock bubble flow field [142].

The passage of the shock induces vorticity at the surface of the bubble and,
therefore, shear between the two gases. Shear in the interface between the gases of
differing density means that the interface is susceptible to Kelvin-Helmholtz insta-
bilities. The numerical modelling of these instabilities is heavily dependent on the

grid resolution used and the resulting numerical viscosity.

6.1 Experimental Modelling

The experimental study of Haas and Sturtevant [89] was conducted in the GAL-
CIT 15cm diameter shock tube at the California Institute of Technology. Due the
requirement for uniform inflow conditions, a ‘cookie-cutter’ test section is used in
the shock tube, further reducing the test section to 8.9cm in square section and
120 cm in length. They compare their results to acoustic theory for wave transmis-
sion through media of differing density. Other experimental work in this area was
conducted by Jacobs [109].

The experiments provide a recorded physical flow pattern, using shadowgraphs,
with which numerical simulation can be validated. The experimental study consid-
ered both cylindrical and spherical bubbles; however, the simulation in this chapter

will consider only the cylindrical bubble cases.

The experimental setup aims to demonstrate weak shock waves interacting with
cylinders of two different gases in air; one is a lighter gas, Helium, and the other is
a heavier gas, Refrigerant 22. These gases have sound speeds significantly different
from air: at room temperature, the speed of sound in Helium is 2.9 times faster
than in air and, in Refrigerant 22, it is 1.9 times slower than in air. The properties
of the gases used in the simulations are shown in Table 6.1. The gases inside the
cylinder were enclosed in a film and were at the same temperature and pressure as
the surrounding air. When the incident shock wave contacts the Helium the shock
speed will accelerate, meaning that the Helium cylinder will act as a divergent lens;
with the Refrigerant 22, the shock will decelerate, the cylinder acting as a convergent

lens.

Before the passage of the shock, the bubbles are stationary and in thermal and

mechanical equilibrium with the surrounding air. A small amount of leakage of the
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Table 6.1: Properties of the gases used in the experiments

Gas Ratio of Specific Gas Constant  Speed of Sound
Heats (7) (R) at 296 K

Air 14 287J/(mol.K) 344.9ms™!

Helium 1.667 2077J/(mol.K) 1012.4ms™!

Refrigerant 22 1.249 91 J/mol.K) 180.3ms™!

test gas was observed in the experiments and was accounted for in the simulations.
The experimental runs consisted of a cylinder of 5c¢m diameter in an experimental
section 8.9cm; the gases were at atmospheric pressure, assumed to be 101.3kPa,

and at ambient temperature which was assumed to be 298 K.

The cylindrical volume, containing the test gas was enclosed in a 0.5 um thick
nitrocellulose membrane wrapped on 5cm diameter, 3mm thick pyrex windows,

which served as the transparent ends of the cylinder.

The experimentation of Haas and Sturtevant was carefully controlled; however,
an ideally isolated experimental arrangement could not be achieved. The factors
that must be accounted for when setting up the numerical model of the system, and

in comparison of the numerical and experimental results, include:

1. A spark shadowgraph optical system was used to capture the waves and in-
terfaces present in the flow. Only one photograph was recorded per run of the
shock tube. The sequence of photographs throughout the course of the defor-
mation of the bubble was recorded by delaying the time that the photograph
was taken successively with each run. This relies on the repeatability of con-
ditions in the shock tube between runs. With this method, clear photographs
with good spatial resolution are obtained; however, this method results in an
uncertainty in shock speed estimation, which was thought to be of the order

of 10% or less under most circumstances.

2. The inertia of the nitrocellulose film that separates the two gases will have
an effect on the flow, although this is difficult to quantify. This will gener-
ally show up as a delay in the interface accelerating early in the experiment.
This influence may have varied between experiments, due to differences in
the effectiveness of the rupture. The film may continue to influence the flow

throughout the experiment as it is carried downstream.

3. It was noted that there was a certain amount of diffusion of gas across the film
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separating the test gas from the surrounding air. The experimentally mea-
sured shock speeds inside the cylinder (943ms~!) were quite different than
from pure Helium gas (1073 ms™"); the shock speed was calculated to corre-
spond to a 28%, by mass, contamination of the Helium test gas with air. To
compensate for this, the initial condition was used in the simulations assumed
homogeneously mixed mass fractions of 72% of Helium and 28% for air; this
provides a good model of the contaminated Helium test gas. In the case of
the refrigerant 22 cylinder, the experimental shock speeds showed that the
contamination of the test gas with air was negligible; it was estimated as 3.4%
by mass, resulting in a variation in shock speed below the error in shock speed

measurement.

4. The cylindrical sections were kept at a slight over-pressure to stretch the cylin-
der to its intended shape. This would cause the test gas to leak into the sur-
rounding air. This gas would diffuse out and cause sound speed gradients in
the region surrounding the cylinder. To counter this, the air surrounding the
cylinder was continually refreshed and so these gradients were small. They
were thought to be insufficient to affect the comparison with computational

results which assume a perfect separation of the gases.

5. The experimental section, being only 8.9 cm in diameter, was not muich larger
than the size of the bubble. This means that shock waves reflected, and
refracted, from the bubble would quickly reflect back into the flow from the
side walls. This increases the complexity of the flow, but can be modelled by

setting the computational domain to this same width.

6. The various support parts used in the generation of the cylindrical section of
gas, such as the end windows, connecting beam and the membrane itself, were
thought to cause some spurious gas effects at the windows of the shock tube
and so were captured in the shadowgraphs. These effects did not affect the
majority of the flow and, for the most part, are limited to the lower half of the

photographs.

Where possible, these factors should be accounted for in the simulations or noted in

the comparison with the simulation results.

Haas and Sturtevant [89] recorded static pressure traces at several points along
the plane of symmetry as a part of their experimental study. These pressure traces
would provide a quantitative measure of a flow property that could be used for
comparison with the simulations; however, Quirk and Karni [184] noted that the

traces cannot be relied on as an accurate benchmark since the measuring process
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was invasive. The measurements were made by using a movable wall placed in the
shock tube with a pressure transducer mounted in it. This means that the transducer
was recording was the pressure behind the waves reflected off of this surface and not

the local pressure, had the wall not been there.

6.2 Previous Computational Modelling

The experimental work of Haas and Sturtevant has been the subject of a significant
number of numerical studies. The first attempt at numerical simulation of this
case was by Picone and Boris [179]. However, in these earlier studies the flow
was modelled using a single gas rather than the exact binary system used by the

experiment.

Quirk and Karni [184] extended the early work of Picone and Boris [179] by
carrying out high resolution numerical simulation of the experimental work of Haas
and Sturtevant [89]. Quirk and Karni used a CFD code that utilised adaptive mesh
refinement. The algorithm led to between a forty and fifty-fold decrease in computer
time required to solve the flow field, for a given resolution achieved. The elapsed
solution time was further reduced by running the simulations in parallel on a cluster
of workstations. Figure 6.2 shows an images from the simulations of Quirk and

Karni [184], demonstrating the fine resolution of the flow field that was achieved.

Figure 6.2: An image from the simulation of Quirk and Karni [184], demonstrating the
high resolution that was achieved.

Yang, Kubota and Zukoski [251] applied the flux corrected transport (FCT)

computational methodology to the conservation equations in order to analyse the
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shock bubble interaction. They derived scaling laws for the amount of circulation

produced in the interaction, the time scale of the interaction and the vortex spacing.

Don and Quillen [62] applied two high order shock capturing schemes to the
simulations of shock bubble interactions. The simulations were evolved to late times,
examining the effect of the instability in promoting the mixing of the two gases.
The focus of the study was the investigation of the effectiveness of the numerical

techniques used in simulating the flow.

Bagabir and Drikakis [9] investigated the Mach number effects on the interaction
of shock waves with cylindrical bubbles. The variation in the evolution of the flow
fields, resulting from the interaction of the bubbles with shocks of different Mach
number, was examined. At higher Mach numbers, larger distortions of the bubble
were shown to occur and the resultant rolled-up structure was shown to form at

earlier times.

Morris and Monaghan [160] simulated the interaction using the Smoothed Par-
ticle Hydrodynamics technique that was described in Section 3.2.1. The case was
modelled as a demonstration of an artificial viscosity switch that had been developed.
The simulations were compared with other simulations, obtained using a more con-
ventional finite-volume based technique, and no comparison with experiments was

provided.

6.3 Simulation Using MB_CNS

Numerical simulation of the experiments of Haas and Sturtevant [89] was performed
with the compressible CFD code MB_CNS [114]. Simulations were performed using
the adaptive flux calculator described in Section 3.1.1. The cylindrical initial condi-
tions and relatively wide test section meant that the simulation could be performed

as a two dimensional simulation.

The computational mesh used in the simulations is shown in Figure 6.3. MB_CNS
is multi-block code so the initial arrangement of gases in the simulation was achieved
by forming the cylindrical gas layout out of the blocks. The blocks inside the cylin-
der were initially assigned as containing Helium, or Refrigerant 22, and the blocks

outside of the cylinder were assigned as containing air.

In hind-sight the design of the mesh would have benefited from the use of a
curved upstream boundary. This would have not only saved computational effort in
solving the flow upstream of the bubble, but would have helped to prevent waves
from being reflected back into the flow field. The mesh was refined towards the

original position of the bubble. For a transient flow field such as this, much of
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the computational effort was wasted in the fine mesh in the blocks in the original
position of the bubble.

Figure 6.3: Computational mesh used in the simulations of the shock bubble interactions.
This is the fine mesh used in the mesh refinement study.

The solution of the flow field was performed in parallel using OpenMP. The

computational performance was described in Section 5.3.1.

Mass conservation was solved for the two species in the simulation and their
mass fractions were stored for each cell. The properties of the gas in each cell were

calculated using mass weighted averages of the gases present in the cell.

The experimental shadowgraphs of Haas and Sturtevant [89] can be compared
directly with the simulation results. An experimental shadowgraph represents an
integration of the curvature of the density field across the entire width of the shock
tube facility used to perform the experiment. Numerical shadowgraph images were
constructed from the simulation results using the magnitude of the second derivative
of density. The shadowgraph variable, which was plotted, was normalised using the
same technique as was used for the numerical Schlieren images described by Quirk
and Karni [184].

6.3.1 Helium Bubble

Figures 6.4, 6.5 and 6.6 show the sequence comparing the experimental shadow-
graphs produced by Haas and Sturtevant [89] with the numerical shadowgraphs
produced from the simulation results, for the Helium bubble case. The experimen-

tal shadowgraphs are shown on the left and the numerical shadowgraph images from
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the simulation are shown on the right. To make an easy comparison with the exper-
imental results, the incident shock is now shown to be moving from right to left and
the original position of the bubble is marked by what looks like a dark circle with a

T-shaped support in the experimental images and a fine ring in the simulations.

Frame (a) of the sequence shows the Helium bubble 32 us after the incident shock
contacted the windward edge of the bubble. When the shock contacted the bubble,
part of the shock was transmitted through the Helium and part was reflected back
upstream. The higher sound speed of the Helium gas means that the transmitted
shock is refracted and curves outward, moving ahead of the plane of the incident
shock. The reflected shock is curved outwards and is moving upstream from the
bubble surface. These shocks meet at a triple point which lies close to the surface of
the bubble. The remaining segments of the incident shock, which are passing around
the bubble, remain planar. The bubble has already undergone a slight deformation
with its windward side being flattened with the movement of the flow. Also visible

in the frames is the circular shape of the original supporting ring in the shock tube.

Quirk and Karni [184] comment that the curved reflected wave is not accurately
described as a simple shock; it is not a simple expansion either. Its properties near
the axis of flow symmetry are those of a weak expansion; however, away from the
axis there is little deformation of the bubble surface and this wave has the properties
of a reflected shock. Behind the reflected wave is an expansion system which results

in the mixed properties.

Frame (b) shows the bubble at 52 us after the initial shock contact. The trans-
mitted shock, moving through the high sound speed Helium gas, has moved well
ahead of the transmitted shock and is over half way through the bubble. As the
transmitted shock moves through the leeward half of the bubble, the bubble height is
decreasing and part of this transmitted wave has emerged from the top and bottom
of the bubble. Due to the geometry of the bubble, this wave has almost converged
with the reflected wave at the transmitted wave. Two shocks normal to the bubble
surface are formed where this shock meets the bubble interface; these shocks can not
be seen in the experimental photographs, but are evident in the simulation results.
This point is joined to the bubble surface by Mach stem. This four shock configu-
ration is termed by Henderson et al. [94] as a Twin Regular Reflection-refraction.
The windward side of the bubble has continued to flatten. The reflected shock has

moved further outward upstream from the bubble.

Frame (c) shows the flow at 62 us. Around this time the transmitted shock
emerges from the leeward side of the bubble. At the instant that the transmitted
wave emerged from the leeward side of the bubble, the reflected part of this wave

converged on the centreline at the bubble interface. This wave is reflected internally
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back upstream inside the bubble. These waves are weak and just show up in the

photographs, but are important for the stability of the windward interface.

Frame (d) shows the flow at 72 us. Using their simulations, Quirk and Karni
(1994) identify in this frame the contact surface that would be expected to emanate
from the point of the TRR [184].

Frame (e) (in Figure 6.5), at 82 us, shows that the internally reflected waves
cross over one another and diverge. These waves extend across the leeward side of

the bubble and, as they sweep outwards, converge with the transmitted waves.

In Frame (f), at 102 us, along the axis of flow symmetry the side shock and the
transmitted shock have almost merged. Meanwhile, both the original reflected wave
and the transmitted shock have reflected from the walls of the shock tube and pass
back over the bubble. The incident shock can been seen to have started to diffract
around the leeward side of the deformed bubble. The internally reflected wave,
described in Frame (c), has emerged from the windward side of the bubble. As this
shock emerges from the bubble this adds to the instability on the bubble surface.

This wave is weak enough not to have appeared on the experimental shadowgraphs.

In Frame (g), at 245 us, the windward side of the bubble, which was accelerated
the most by the shock, has moved past being flat and begins to fold inwards on
itself. The original deformation is caused by the baroclinic vorticity generated at
the bubble interface which forces the windward face of the bubble to be pressed in
together into the plane of symmetry. As this progresses the face of the bubble folds
further, into the less dense fluid. In this Frame, waves which have reflected from the
walls of the shock tube can be seen interacting with the bubble. These waves have
a significant effect on the pressure field in and around the bubble, but, for the most
part, they are weak enough to have a small effect on the actual deformation of the
bubble.

In Frame (h), at 427 us, the windward side of the bubble has continued to fold
through and has formed into a jet that passes through the centre of the bubble. By
this stage no waves are visible in the Frame, as all have either moved downstream
or, for the waves reflected from the side walls, have been scattered and are now weak

enough not to appear.

In Frame (i) (in Figure 6.6), at 674 us, the generation of vorticity, which was
mentioned in reference to Frame (g), has caused the front of the jet to continue to
roll over into a mushroom shape. This effect becomes more pronounced as the jet
reaches the leeward side of the jet; it is more difficult for the jet to penetrate into the

high density air on the other side of this boundary and so it is spread out laterally.
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The only significant difference between the simulations and the experiments is
evident in the last frame, Frame (i). As the heavy gas upstream of the bubble
penetrates the Helium gas, the stiffness of the interface at the head of this gas
appears to be less in the simulations than in the real flow. Additional folding back
of the interface is evident in the simulated image. This may be due to limitations
in the ability of the simulations to reproduce the actual stiffness of the interface;
however, it may also be due to the effect of the nitrocellulose influencing the stiffness

of the gas interface.
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Figure 6.4: Part one of the sequence of frames comparing the experimental shadowgraphs
(left) with the numerical shadowgraphs (right) for the helium bubble. The experimental
shadowgraphs are reproduced from Haas and Sturtevant [89].
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Figure 6.5: Part two of the sequence of frames comparing the experimental shadowgraphs
(left) with the numerical shadowgraphs (right) for the helium bubble. The experimental
shadowgraphs are reproduced from Haas and Sturtevant [89].
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Figure 6.6: Part three of the sequence of frames comparing the experimental shadow-
graphs (left) with the numerical shadowgraphs (right) for the helium bubble. The exper-
imental shadowgraphs are reproduced from Haas and Sturtevant [89].
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6.3.2 Refrigerant 22 Bubble

for the Refrigerant 22 bubble case, Figures 6.7 and 6.8 show the sequence comparing
the experimental shadowgraphs produced by Haas and Sturtevant [89] with the
numerical shadowgraphs produced from the simulation results. The experimental
shadowgraphs are shown on the left and the numerical shadowgraph images from
the simulation are shown on the right. Again, the incident shock is moving from
right to left and the original position of the bubble is marked by what looks like a
dark circle with a T-shaped support in the experimental images and a fine ring in

the simulations.

Frame (a) shows the Refrigerant 22 bubble 55 us after the incident shock con-
tacted the windward edge of the bubble. The incident shock, passing over the
windward side of the bubble, is still planar. As the incident shock contacts the bub-
ble part of the shock is transmitted through the bubble and part is reflected back
upstream; Quirk and Karni [184] performed a one dimensional analysis for the mo-
ment the incident shock impacts the bubble which suggested that the transmitted
component of the shock is 6.4 times stronger than the component that is reflected.
The transmitted shock is refracted strongly as it moves through the bubble and lags
behind the incident shock. Deformation of the bubble is already evident with it’s

windward side being flattened into the flow.

In Frame (b), at 115 us, the two segments of the incident shock have passed
over to the leeward side of the bubble and can be seen to be diffracting around the
cylindrical shape of the bubble. Unlike with the Helium bubble, the point at which
the transmitted shock and the incident shock meet does not move away from the
bubble surface. The strong inward refraction of the transmitted shock has meant
that material inside the bubble has started to be focused towards the centreline
of the bubble and towards the leeward side. Haas and Sturtevant (1987) observed
that the refracted shock is thickened at its two endpoints. Quirk and Karni (1994)
conclude that this thickening is must be due to some three dimensionality in the
shadow photographs and that it is not a two dimensional flow feature; however, in
the simulation a series of additional waves can be seen in the flow around this time
which could explain this thickening. No explanation of it’s origin was given by the
Haas and Sturtevant [89]. Quirk and Karni [184] also noted that, at this point in
time, the bubble interface shows signs of incipient instabilities, where vorticity has

been generated on the interface of the bubble .

In Frame (c), at 135 pus, the incident shock has refracted further around the
cylinder and has continued to focus the material in the bubble towards the centreline.

The two segments of the incident shock have continued to diffract around the leeward
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side of the bubble and meet the bubble interface at with the transmitted shock.
Waves can be seen to have reflected from the upper and lower wall of the shock tube

and are re-entering the flow field.

In Frame (d), at 187 us, shows that the transmitted shocks are just about to
focus on the bubble centreline. Simulations by Quirk and Karni (1994) show that
this focusing results in a peak pressure 2.1 times higher than behind the transmitted
Mach 1.22 shock wave. The diffracted segments of the transmitted shock have
crossed over and continue to move outward through one another. Weak contact
discontinuities, between regions that have been processed by either the diffracted or
planar incident shock, are visible in this frame. The reflected shocks from the top
and bottom walls of the shock tube have now started to pass through the bubble.
Deposited vorticity has caused the rolling up of the bubble interface to continued to

grow.

In Frame (e) (in Figure 6.8), at 247 us, the two segments of the transmitted
wave have emerged from the leeward side of the bubble after having focused on
the centreline. These waves are cylindrical in shape and are moving outward. The
elevated temperature caused by the focusing of the transmitted shocks on the cen-
treline caused a high speed behind the transmitted shocks and causes the leeward

interface of the bubble to become wedge shaped.

Frame (f), which is at 318 us, shows the region downstream of the bubble. This
Frame is taken relatively close in time to Frame (g), but is of interest as it records
the motion of the transmitted and diffracted waves. Of the waves downstream of
the bubble, the two diffracted segments of the transmitted shock can be seen. A
Mach stem has formed near the centreline. The weak contact surface behind the
transmitted shock can be seen. The strongly curved transmitted shock can be seen

close behind these waves.

In Frame (g), at 342 us, as well as the significant deformation of the leeward
side of the bubble, the whole bubble can be seen to have moved downstream from
its initial position at the rings on the side windows. The outward motion caused
by the vorticity in the bubble interface has caused the bubble to be elongated in
the span-wise direction. A complicated wave, reflected internally from the focused

transmitted waves, can be seen moving upstream inside the bubble.

In Frame (h), at 417 us, the bubble has continues to fold under the influence of
the interface vorticity. The wave that was internally reflected, following the focusing
of the transmitted shock, has partly emerged from the upstream side of the bubble.
This Frame is complicated by the waves reflected from the upper and lower walls of

the tube. Significant instability is evident in the bubble interface, particularly along
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the leeward side.

In Frame (i), much later in time at 1020 us, shows the bubble as the two large
vortex cylinders forming at the upper and lower edges of the leeward side are devel-
oping; the whole bubble evolves into two large vortices. The blurring evident in this
Frame is due to three dimensionality in the cross section through the flow recorded

by the shadowgraph.

The simulations reproduce the experimental flow field accurately. Both the ex-
ternal and internal wave stuctures, and the evolution of the bubble are reproduced
accurately. It appears that the simulations have also accurately reproduced the level
of instability in the bubble interface. The level of instability in the experimental
images is harder to ascertain, as the shadowgraphs are taken through the width
of the test section; however, the magnitude of the disturbed regions the windward
and leeward sides of the bubble are very similar, between the simulations and the

experiments.
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Figure 6.7: Part one of the sequence of frames comparing the experimental shadow-
graphs (left) with the numerical shadowgraphs (right) for the Refrigerant-22 bubble. The
experimental shadowgraphs are reproduced from Haas and Sturtevant [89].
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Figure 6.8: Part two of the sequence of frames comparing the experimental shadow-
graphs (left) with the numerical shadowgraphs (right) for the Refrigerant-22 bubble. The
experimental shadowgraphs are reproduced from Haas and Sturtevant [89].
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6.3.3 Discussion of the Results
Effect of Mesh Refinement

Figure 6.9 shows the effect of refining the mesh from the coarse mesh, with 83,520
cells, to the fine mesh, with 334,080 cells, on the simulation results. The fine mesh
was shown in Figure 6.3. There only a qualitative difference between the two flow
fields. The characteristics of the bubble, and the internal and external waves are
all unaffected by the refinement, apart from the effect of resolution. The level of

diffusion at the bubble interface is increased, although not by a significant amount.

| ——

Figure 6.9: Effect of mesh refinement on the simulation of the Refrigerant 22 bubble.
The flow field from the coarse mesh is shown on the left and from the fine mesh on the
right.

Vorticity Generation

For both the heavy and the light bubbles, the deformation is driven by vorticity
impulsively generated at the interface by the passage of the shock wave through
it. Vorticity is produced whenever there is a misalignment in the gradients of the
density and pressure fields; in this case, the local pressure gradient through the
shock. The source of the vorticity is the shown in the baroclinic torque term (on the
far right) in the Curl of the Momentum Equation, Equation 6.1, for a compressible
fluid:

ow VpxVp

— —(w-V)u=—-wV-u+ 2 (6.1)

ot
where w is the vorticity, v is the velocity, p is the pressure and p is the density [89].
The left side of the equation represents the total change in vorticity following the

motion of the fluid. The first term on the right side represents vortex stretching; this
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term is zero for two dimensional planar simulations such as this study. The second
term on the right side is the baroclinic torque, which results from misalignment of
density gradients with pressure gradients. Since the density gradient is only present

on the bubble interface, vorticity is generated there.

Figure 6.10 shows contours of baroclinic vorticity generation in the lower half
of the frame and accumulated vorticity in the upper half of the frame, during the
passage of the shock for the Helium bubble case. This figure shows that once the
vorticity has been deposited at the bubble interface, it remains there, continuing to

deform the surface.

Figure 6.10: Contour plots of baroclinic vorticity generation in the lower half of the
frame and accumulated vorticity in the upper half of the frame, during the passage of the
shock for the Helium bubble case.

The majority of the vorticity is produced where the shocks intersect the bubble
interface due to the baroclinic torque. Since the incident shock is diffracted around
the leeward side of the bubble, it is significantly weakened at the point at which it
intersects the bubble. This means that it is only the refracted shock that produces
a significant amount of vorticity on the leeward side of the bubble and that more

vorticity is deposited on the windward side of the bubble than on the leeward side.

In the case of the lower density Helium bubble, the density gradient vector is
directed inwards. With the direction of the pressure gradient through the shock,
this results in an anti-clockwise baroclinic torque applied to the bubble surface.
This results in the windward surface of the bubble being folded in through itself
as shown in sequence of the Helium bubble interaction. With the higher density
Refrigerant 22 bubble, the density gradient vector is directed outwards from the

bubble. This vector combined with the shock pressure gradient results in a clockwise
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torque applied to the interface. This results in the outward folding of the Refrigerant
22 bubble evident in the sequence.

Effect of Numerical Instabilities

The simulations performed using MB_CNS were not as fine resolved as the simula-
tions performed in Quirk and Karni [184]. This was because of the adaptive mesh
refinement scheme used in the simulations of Quirk and Karni. The fine grid size,
and therefore low numerical viscosity, combined with the lack of a real viscosity
meant that small numerical disturbances grew quickly in their simulations. In addi-
tion, physical flow processes, which would normally be suppressed by the viscosity
in the fluid may be over-estimated [184]. The coarser mesh used in the MB_CNS
simulations, combined with the implementation of a real viscosity, meant that these
simulations were not as susceptible to this type of numerical instability. The simula-
tion of the physical instabilities in the flow were shown to be reproduced accurately
by the MB_CNS simulations.

An example of the numerical instabilities present in the late time flow fields
of the Helium Bubble as simulated by Quirk and Karni is shown in Figure 6.11.
The instabilities on the interface of the bubble, likely Kelvin-Helmholtz instabilities
resulting from the shear across the interface, appear to be spurious. This may be
caused by the lack of real or numerical viscosity in the simulation. The equivalent
frame from the MB_CNS simulations is shown in Frame (i) of Figure 6.6. Although
this figure shows an accurately stable representation of most of the bubble interface,
the stiffness of the interface is under-estimated by the simulation through the region

at the head of the heavy gas penetrating into the bubble.

Figure 6.11: Frame from the simulation of Quirk and Karni [184] showing the spurious
instabilities that were shown to form at late times.
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CHAPTER 7

Simulations of the Drummond Tunnel

Facility

Chapter 2 described how the flow development during the operation of a shock
tunnel differs significantly from ideal representations, with the test time achieved
being significantly shortened and noise being introduced into the flow. A number
of non-ideal processes occur throughout the operation of the facility. Some of these
processes are understood; however, empirical studies and numerical simulations have
not provided an adequate method of predicting driver gas contamination, which has
been identified as the primary cause of the termination of test time for high enthalpy
operation in the T4 shock tunnel [221]. A method of predicting, and potentially
preventing it, would be useful. Also, the quality of the test flow affects the use
of experimental data obtained in these facilities to their use in investigating the
conditions experienced in flight. The noise levels in shock tunnels are often an order
of magnitude higher than those experienced in free flight and this affects many

aspects of the experimental flow, including the onset of boundary layer transition.

Numerical simulations provide a method of investigating non-ideal processes oc-
curring in a shock tunnel and predicting their effect on the test flow. In this chapter,
simulations of the Drummond Tunnel facility, which was described in Section 2.2.1,
are presented. These simulations are aimed at providing a better understanding of
the flow in shock tunnels and the mechanisms by which the real flow deviates from
the ideal.

The approach taken in these simulations is to model the flow development
through the complete facility, from the driver section to the dump tank. An ax-
isymmetric, body-fitted mesh is used to accurately represent the geometry of the
facility and the simulations are provided with only the initial conditions reproduced
from the experimental operation. These simulations then run from the initiation of
the rupture of the primary diaphragm. Such large scale simulations have been made
possible through the use of parallel computing, which is described in Chapters 4
and 5. By modelling the development of the flow through the entire facility, the
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potential exists for predicting the test flow conditions, quality and duration. These
simulations will aim, in particular, to identify the mechanisms that lead to driver
gas contamination and the generation of the high levels of noise experienced in the

test flow.

The simulations were performed using the multi-block CFD code, MB_CNS [114],
which is based on a finite-volume formulation of the compressible Navier-Stokes
equations. It has a shock-capturing capability through the use of a limited recon-
struction scheme and an adaptive flux calculator that switches from AUSM to the
Equilibrium Flux Method (EFM) where large velocity gradients are detected. The

numerical techniques used in MB_CNS were described in Chapter 3.

The literature review, in Section 3.3, described the limitations in previously
published numerical simulations of shock tunnel operation. These limitations are
brought about by assumptions associated with only modelling part of a facility. The
simulations performed in this study extend the modelling performed previously by
removing these assumptions through the simulation of the complete facility. The
models that are used in this study provide sufficient resolution to study each of the

processes occurring in a shock tunnel under the influence of the surrounding flow.

Simulating the complete facility, from only the initial conditions complicates the
simulation because all of the relevant processes must be modelled with sufficient
resolution and any assumptions that are made must be valid. Processes that are
accounted for include: the rupture mechanics of the primary diaphragm, turbulence

in the boundary layers and the influence of the secondary diaphragm.

Chapter 6 described simulations of the interaction of shock waves with cylin-
drical bubbles of a light and a heavy gas and their comparison with experimental
photographs. This was used as validation of the ability of MB_CNS in modelling
transient flows involving instability in interfaces separating different gases. This
validation is important to this chapter, since in the simulation of shock tunnel flows,
these same unstable interfaces are present; however, there are no experimental pho-
tographs of the shock tunnel interfaces which can be compared directly with these

simulations.

The simulations of the Drummond Tunnel are compared with the experimental
results that were described in Section 2.2. The experiments provide traces of par-
ticular properties throughout the experiment. Support is given to the validity of
the representation of the whole flow by the simulations being able to provide a close
reproduction the traces from the experiments, This comparison of the experimental
results with the numerical simulations is discussed in Section 7.2. The three cases

that will be simulated are shown in Table 7.1.
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Table 7.1: Outline of the different cases simulated in this chapter.

Driver and driven gas Level of tailoring Test attachment
Nitrogen driving Nitrogen over-tailored Mach 4 nozzle
Nitrogen driving Nitrogen over-tailored blanked end

Helium driving Nitrogen  roughly tailored Mach 4 nozzle

Once the results of the simulations have been validated through comparison with
the experimental results, the simulated shock tunnel flow is then used to investigate
the flow in the real facility Section 7.3. The effect of mesh resolution on these pro-
cesses is important and will be examined. The processes occurring in the operation
of the shock tunnel are examined in separate discussions, but unlike previous studies,

the simulations do not assume that each of these processes is occurring in isolation.

7.1 Simulation Setup

This section will describe the details of the numerical methods used that are specific
to the simulation of the Drummond Tunnel. The MB_CNS Scriptit (.sit) files for
the Drummond Tunnel simulations are provided in Appendix B. These files include
the specification of the geometry and mesh, and the initial conditions. The spe-
cial case files mb_special_init.inc and mb_special_step.inc, which are used to

perform sections of codes specific to these simulations, are provided in Appendix C.

7.1.1 The Computational Mesh

The geometry of the Drummond Tunnel facility is discussed in Section 2.2.1. Body-
fitted, finite-volume meshes covering the complete facility are used in the simula-
tions. Each mesh covered the driver section, the length of the shock tube, and
where applicable, the Mach 4 nozzle, test section and dump tank. The computa-
tional meshes are designed to capture the geometry of the facility as accurately as
possible, given the constraints of the computational effort required and the body

fitted arrangement of cells.

The meshes exploit axisymmetry, which allows a good representation of the cylin-
drical geometry of the shock tunnel, but constrains the gas to movement in the axial
and radial directions, allowing no circumferential motion or gradients. This approx-
imation affords considerable computational savings from fully three dimensional

modelling.
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The meshes are decomposed into 24 blocks in order to represent the geometry
of the facility and to allow parallelisation of the solution. These blocks are, where

possible, maintained with the same number of cells to aid parallel efficiency.

The main 59 mm diameter section of the driver section, with the spike running
along its centerline, is included in the mesh. There is an additional driver volume
around the pneumatic cylinder, which is also included. Since all of the gases used

in the facility are modelled, there are no gas inflow boundaries in the facility.

The zero location for the geometry is set at a machined reference surface where
the nozzle attaches to the shock tube section. This allowed the most reliable way
of specifying the geometry, with the nozzle geometry being specified relative to this
surface. A body-fitted mesh is used primarily so that the geometry of the nozzle
could be modelled accurately. The geometry of the nozzle was known to within

0.1 mm from the nozzle design profile.

The full length of the dump tank behind the test section is modelled, along with
its end wall. The dump tank extended outwards from the nozzle centreline in two
opposite directions. This arrangement can be seen in Figure 2.12. This geometry is
modelled as a supersonic outflow condition at the radius of the cylindrical part of the

dump tank. The flow detail at this boundary was not considered to be important.

Two different computational meshes are used. The meshes only differ in that
the geometry of the Mach 4 nozzle, test section and dump tank are attached to the
end of the shock tube in one mesh, while the other has the end of the shock tube
blanked off. The wall for the blanked end is sunk 4 mm into the shock tube from

the zero location.

Figure 7.2 shows the coarse computational mesh used for the simulations with
the Mach 4 nozzle attached. The extent of the mesh is shown at the top of the
figure, showing the outline of each of the blocks. Inset 1 shows a closer view the
mesh in the region around the nozzle and the test section. Inset 2 shows the mesh
through the driver section. Inset 3 shows a closer view of the mesh through the

nozzle contraction from inset 1.

With the original mesh being defined, three meshes were used for refinement
studies. These three meshes were uniformly refined so that the number of cells
across the radius of the shock tube was varied to from 40 cells for the coarse mesh
(which is shown in Figure 7.2), 60 cells for the medium mesh and 80 cells for the fine
mesh. These three meshes consisted of a total of 80,850 to 181,980 and 323,400 cells
respectively. With the mesh being refined, the properties in the simulation should
approach the experimentally recorded values with a second order convergence rate.

Increasing the resolution of the mesh greatly increases the amount of computation
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required in the solution. Ideally, doubling the resolution of the mesh in both axes
requires an eight times increase in computational effort. The results of the mesh

refinement studies are described in Section 7.3.

The valid resolution of the boundary layers is the primary limitation on the
mesh. The mesh was refined towards the wall to focus cells in the boundary layers,
whilst still leaving a significant number of cells in the core flow. The ability of the
mesh to resolve the boundary layer is quantified in Section 7.3.2. The body-fitted
mesh requires that the radial dimension is constant along the length of the tube and
nozzle. Three frames of the same axial segment of the mesh through the shock tube
is shown in Figure 7.1. The three frames are taken from the coarse (on the left) the
medium (in the middle) and the fine resolution mesh (on the right). These frames

also demonstrate the refinement of the mesh towards the wall.

Figure 7.1: Segments of the computational meshes used. The coarse (left), medium
(middle) and fine (right) resolution meshes are shown. Segments of the meshes across the
31.1 mm radius of the shock tube are shown, with N, = 40, 60 and 80.

The mesh covers the length of the tube, so that the evolution of the flow along
the length of the facility can be modelled. Over the downstream 0.5 m of the shock
tube, the mesh is refined axially at towards the end of the shock tube in order to
focus the computational effort in the region of the reflected shock interactions that
take place. Simulations were run with double and quadruple axial resolution in
order to investigate the effect of the axial resolution, and cell aspect ratio, on the
evolution of the contact surface along the tube. In these simulations, the shape and
characteristics of the contact surface remained essentially the same. From this it
was concluded that the axial resolution of mesh was sufficiently converged for atleast

the fine resolution mesh.
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Figure 7.2: The computational mesh used for simulations of the Drummond Tunnel
facility with the Mach 4 nozzle attached. The extent of the mesh is shown in the outline
of the block boundaries. Three insets are shown: 1. the coarse mesh in the driver region,
2. the coarse mesh in the region around the nozzle, 3. an inset further into the nozzle
region.
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7.1.2 Initial Conditions

The type of gases used in the experiments, and their fill pressures, were given in
Table 2.1. These were specified in the simulation as the initial conditions, along with
the temperatures of the driver gases, which shall be further discussed in Section 7.2.
As all of the facility is modelled (except for the outer part of the dump tank) all of
the gases in the experiment are specified in the initial conditions and there are no

inflow boundaries.

The wall temperature was assumed to be constant at 296 K, which was measured
as an average ambient temperature in the laboratory containing the facility. It was
assumed that the experiment was short enough that the heat transfer would not
have been able to change the wall temperature. Simulations also were run using
adiabatic walls; however, these simulations could not reproduce the heat transfer

recorded in the experiments nearly as well as the constant temperature walls.

The ambient temperature of 296 K was also used as the initial temperature for
the driven and dump tank gases and, in the case with the Nitrogen driver, the driver
temperature. As was discussed in Section 2.2, the initial temperature of the driver
gases were elevated due to the non-ideal filling process. This was demonstrated in
the simulations, with shock speeds resulting from an ambient temperature driver
gas being around five to ten percent too low for the corresponding post incident

shock pressure.

In the real facility the test section is filled with very low pressure air; however, in
the simulations Nitrogen is specified in this section. This is done for the simplicity
of the gas models used and is not thought to be significant since the gas initially in
the test section does not interact in any significant way in the facility and Nitrogen

is the primary component of air.

7.1.3 Gas Models

The numerical methods used in MB_CNS require models representing the charac-
teristics of the gases in the simulation. For the Helium driving Nitrogen case, the
gas model assumed that the gas was a mixture of perfect gases. For the Nitrogen

driving Nitrogen cases, a look-up table, based on the CEA tables [39] was used.

The properties of gas composed of multiple components (or species) are modelled
by solving additional equations for conservation of each of these component gases.
The properties of the gas mixture in each cell are calculated using mass fraction
weighted averages of the component gas properties, as was described in Section 3.1.1.

The ability to specify additional gas components, which may be the same as another
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gas being used, allows regions of gas to be tagged and tracked over time through a

simulation.

The peak temperatures in the stagnation region at the end of the shock tube
remain below 1600 K. At these temperatures, vibrational and rotational modes of
excitation of the molecules are yet to become significant. For the Helium driving
Nitrogen case, the gas model assumes mixtures of perfect gases. Given the relatively
low peak temperatures simulated, this is thought to be sufficient. For the Nitrogen
driving Nitrogen case, a look-up table is used because it was available. Assuming

an ideal gas for this case would have been sufficient as well.

7.1.4 Primary Diaphragm Rupture Model

The simulations being performed in this chapter involve the modelling of both the
complete driver sections and the driven sections and, therefore, must account for the
rupture of the primary diaphragm. The flow in the real facility is initiated by the
rupture of a metal diaphragm separating the driver gas from the driven gas, as was
described in Section 2.1.4. It was found through the development of the numerical
models in this study that the flow in a shock tunnel could not be reproduced by a
simulation of the complete facility, which did not include the effect of the diaphragm

rupture process.

A model that assumes that the primary diaphragm opens as an iris is used in
these simulations. Support for the appropriateness of this model is based on the
experimental observations of Rothkopf and Low [197] and is discussed in detail in
Section 2.1.4.

The total rupture time and final rupture diameter are specified in the file
mb_special init.inc (which is provided in Appendix C), as well as the block index
of the block upstream of the diaphragm position; specifying a block index of -1 turns

off the diaphragm rupture model for the simulation.

The model works by assuming the linear variation in cross sectional area observed
by Rothkopf and Low [197]. At each time step the radius of the open diaphragm
is calculated based on this area. The cell occupying this radius of the shock tube
was identified and was specified as the edge of the diaphragm. Measurements of
used diaphragms, following experiments in the Drummond Tunnel, used to obtain
an average diameter of the remaining diaphragm material of 57 mm. The radius
of the opening diaphragm was increased at each time step, until this radius was

reached, at which point it remained.

The diaphragm rupture model is implemented in the inter-block communication

in MB_CNS. The block boundary condition would normally copy the data from the
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first two rows of cells on the neighbouring block to the two rows of ghost cells used
by the present block. This information passed from the neighboring block connects
the flow in the two blocks. On the outside of the row of cells specified as being at
the edge of the diaphragm, the two rows of the present block are transferred to the
ghost cells in the same block instead. This has the effect of a reflected boundary
condition, which is a wall between the blocks. This process is repeated for each side

of the diaphragm boundary looking at the other side.

The reconstruction scheme used requires information from two neighboring rows
of cells. This means that the communication at the block boundaries and, there-
fore, the diaphragm rupture model uses the two rows of cells on either side of the
diaphragm boundary. Figure 7.3 shows the numerical arrangement of the rupture
model, with the flow of information shown as arrows between the blocks on either

side of the diaphragm, and the ghost cells used in the block communication.

Block 1 G Block 2

Figure 7.3: The numerical setup of the iris based diaphragm rupture model

This model does not attempt to account for the energy taken out of the flow
by the deformation of the diaphragm but, given the relatively less ductile opening

observed of aluminium diaphragms, this model is believed to be sufficient.

7.1.5 Secondary Diaphragm Rupture

The Drummond tunnel also has a thin secondary diaphragm, which separates the
driver gas from the dump tank section. This diaphragm plays an important role in
the operation of the shock tunnel. In these simulations the effect of the secondary
diaphragm, in initially separating the shock tube from the test section, is modelled;

however, it is assumed to be removed ideally.

The boundary between the computational blocks on either side of the diaphragm
position are set at the position of the diaphragm. In the simulations, the effect of
the intact diaphragm is modelled by assigning the connections between these two
blocks as reflected boundary conditions, closing the connection. As there is no flow

in the blocks on the downstream side of the diaphragm (those in the test section
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and dump tank) they are assigned as inactive. The code to set up this arrangement

was included in the file mb_special_init.inc.

When the incident shock arrives at the diaphragm, the pressure on the diaphragm
rises rapidly and it bursts, allowing the shock processed driver gas to flow through
the nozzle. The pressure of the downstream most cell in the block before the di-
aphragm boundary is monitored. When this pressure exceeds 100 kPa, the boundary
conditions in the blocks up against the diaphragm position are connected to one an-
other and the blocks downstream of the diaphragm position are activated with the
initial conditions in the dump tank. The code to monitor the diaphragm pressure
and to activate the diaphragm connection and the dump tank blocks was included

in the file mb_special_step.inc.

The diaphragm burst pressure was varied from 100 kPa to 300 kPa to investigate
the effect of the pressure chosen on the resulting flow. Investigations of the resulting
supply pressure transducer traces and the test flow pitot pressure traces, showed no
difference for this variation in the secondary diaphragm burst pressure. Given the
rapid rise of the pressure at the secondary diaphragm resulting from the arrival
of the shock, the diaphragm will burst within a very short period for any burst

pressures of this order.

7.1.6 Turbulent Boundary Layer Modelling

The high densities and high stagnation enthalpies present in shock tunnel flows lead
to considerable heat transfer to the shock tube walls. This heat transfer rate is

determined by the behaviour of the turbulent boundary layers [213].

As was described in Section 3.1.1, the shock tunnel simulations in this thesis
solve the Reynolds-Averaged Navier-Stokes equations. These equations use methods
of statistically averaging the Navier Stokes equations over a time which is long
compared to turbulent time scales, but short compared with the time scale of the

mean motion.

The Baldwin-Lomax eddy viscosity model [11] is used to account for the effect
of turbulent motions in the shock tube wall boundary layers. The Baldwin-Lomax
model, is based on the model of Cebeci and Smith [40]. Eddy viscosity models are
the simplest turbulence models in that they model turbulent stresses and fluxes by
analogy to molecular stresses and fluxes [143]. The models add a component to the
viscosity in the boundary layer to account for the effect of turbulent motions. The

implementation of the Baldwin-Lomax model in MB_CNS is of the same form as
that described by Craddock [53].
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For the inner layer, the Baldwin-Lomax model is similar to the Cebeci-Smith
model, but it differs significantly in the outer layer; Baldwin and Lomax modified the
Cebeci-Smith Model by substituting new relations for conditions at the outer edge
of the shear flow. The Baldwin-Lomax model is inexpensive and robust; however, it
is an incomplete turbulence model and requires knowledge of the actual flow being
modelled in the form of modifiable coefficients. In the original paper, the coefficients

were obtained through comparison with the Cebeci and Smith model.

The variation of the outer layer coefficients, C., and C;ep, is described extensively
in the literature. The effect of favourable and adverse pressure gradients on C, and
Chiep 18 discussed in Granville [84]. The effect of Mach number on these coefficients
is described in York and Knight [252]. Kim, Harloff and Sverdup [121] modified
the coefficients for hypersonic flow conditions. He and Walker [92] obtained an
expression for C,, and showed that the Baldwin-Lomax model can account for the
effects of variability in density. The variation of other parameters, such as the

Clauser factor and the Coles wake factor are also described in the literature [84].

The outer layer coefficients, C., and Cep, were chosen from the relations pro-
vided in Kim, Harloff and Sverdup [121]. No instance of the variation of the Karman
constant, , has been discussed in the literature; however, in these simulations, the
use of the value of K=0.4 provided in the original model [11] resulted in simulations
which were definitely incorrect. The value of x used in the original Baldwin-Lomax
model was specified by Coles and Hirst [50], using experimental observations of a
wide range of incompressible attached boundary layer flows. The reason for the
requirement of varying « in these simulations is not understood; however, it may be
due to either compressibility effects or some aspect of the boundary layer specific
to shock tube flows. Due to the effect that it has on the level of viscous atten-
uation, both the pressure behind the incident shock and the pressure behind the
reflected shock depend strongly on the value of k. The value of x used in the simu-
lations is selected through the comparison of the results with experimental results,
in the context of the specific conditions used in the simulations. The selection of
the Baldwin-Lomax coefficients used in the simulations is described further in Sec-

tion 7.2. The coefficients used in the simulations are outlined in Table 7.2.

The turbulence model was activated for the block boundaries along the shock
tube walls and through the nozzle. The flow in the driver section was assumed to be
fully laminar since simulations using the turbulence model in the driver section were
inaccurate. In the original paper describing the Baldwin-Lomax method a model for
boundary layer transition was proposed. This transition model was used in these

simulations

In these simulations, the boundary layer was assumed to be turbulent through-
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out the nozzle profile. The boundary layer grows significantly in size through the
divergent section of the nozzle. This expansion also promotes the rapid transition
to turbulence in these boundary layers. The boundary layers on the nozzle of HEG
are assumed to be turbulent through the majority of the divergent section [45]. The
increased thickness of this boundary layer, due to the effect of turbulence, affects the
effective profile that the core of the flow, that is the useful test flow, passes through.
This has been found in the simulations to improve the accuracy of the simulated

test low pitot pressure traces.

The implementation of the Baldwin-Lomax model through the separated flows
in the region of the bifurcated foot of the reflected shock is questionable [122]. In
order to investigate the effect that the model in this region has on the simulation,
the turbulence model was switched off throughout the shock tunnel flow as the
shock reflected from the end of the shock tube. This showed no effect on the traces
produced, in comparison with simulations in which the turbulence model was left

as active.

7.1.7 Recording Experimental Traces

Data can be recorded at the geometric location of data acquisition equipment in the
real facility using history cells. These history cells are specified in the Scriptit files
that are provided in Appendix B. The gas properties of interest at this location
can then be extracted from this data. This simulated data can then be used in
direct comparisons with the experiments. These comparisons provide the validation
of the simulations in Section 7.2. The data can be recorded at a high sampling rate,

providing the appearance of a continuous trace.

History cells were specified as the outer most cells in the rows corresponding
to the axial locations of the supply pressure transducer and the heat flux gauge.
For the experiments with the blanked end, history cells are assigned at the radial
locations of the probes and the axial stations at which the rake is positioned. No
attempt is made to model the effect of the rake and its sting on the flow. In the
Nitrogen driver case with the nozzle attached, the pitot probe was positioned 14mm
from the exit plane of the nozzle. For the Helium driver case it was positioned on
the exit plane. This was accounted for by adjusting the history cells used for these

two cases.

As an example, the trace of wall heat flux is calculated using these history
cell traces. Knowing the temperatures at the outer row of cells, the gradient of
temperature at the wall can be calculated by approximating a linear profile at the

wall. For the comparison of the simulation results with the experimentally recorded
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heat transfer data, the heat flux to the wall (Q,,) was calculated using:

AT T, -T,
I~ = 1
Qu YR (7:1)

Where £ is the thermal conductivity of the gas near the wall, T"is the temperature

and y is the radial position. The subscript 1 denotes the properties at the centre of
the first row of cells from the wall and the subscript w denotes the properties at the

wall.
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7.2 Validation of the Simulations using the Ex-

perimental Results

The simulations that were run in this chapter reproduced the initial conditions of
three sets of experiments that were conducted in the Drummond Tunnel facility.
The data sets that were recorded during these experiments, were discussed in Sec-
tion 2.2.4. Simulated data traces were also recorded throughout the simulations
and, in this section, this simulated data will be compared with the corresponding
experimental data, to provide a validation for the simulations. The simulations are
given only the initial conditions from the experimental operation. This means that if
the simulations can provide a close reproduction of the traces from the experiments,
then it is likely that they are producing a valid representation of the flow through

the complete shock tunnel.

The case was initially modelled assuming laminar boundary layers. The accuracy
of the simulations were improved by accounting for the effect of turbulence in the
shock tube wall boundary layers with the Baldwin-Lomax eddy viscosity model
which was described in Section 7.1.6. This is an algebraic turbulence model and
it has coefficients that are modifiable for particular flow conditions. The variation
of the two outer layer coefficients C.,, Cgep is described widely in the literature
[121, 84, 92]. The values of these coefficients were obtained from Kim and Harloff
[121]. Kim and Harloff provide graphs of the variation of these two coefficients with
the Mach number, which were used to obtain the values used for the cases simulated,
based on the incident shock Mach number. The variation of C,, and Cj,e, was found
to not have a significant effect on the attenuation of the incident shock. The effect
of these values on shock tunnel flows is primarily seen in the evolution of the contact
surface along the shock tube, which will be discussed in Section 7.3.6. In order to
produce accurate simulations, the model was also modified through the Karman
constant (in the inner layer of the model). In the simulations, the value that would
reproduce the experimental results was found to be between 0.15 and 0.20. The
exact value was found by modifying this coefficient in conjunction with the driver
temperature; this process will be discussed in detail. The results in this section
will first be presented for the simulations assuming laminar boundary layers and
then for the simulations incorporating the turbulence model. The original Baldwin-
Lomax coefficients [11] provided results that are indicative of more than a 10% over

estimation of the attenuation of the incident shock.

The experimental gas fill pressures were known and were not varied in the simu-
lations, but the initial gas temperatures in the experiments were not known exactly.

The investigation of the filling process, described in Section 2.2, indicated that the
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driver temperatures were elevated to between 30°C and 40°C. It was also found that
the driver temperature can vary between experimental shots depending on the rate
of filling and the delay between filling and the firing of the shot.

The driven gas temperatures were assumed to be ambient, and equal to the wall
temperature. The driven gases were not filled to the same high pressure as the driver
gases and, therefore, were not believed to be subject to the same heating effect. Any
variation in this temperature would only have been due to variation in the ambient

temperature in the laboratory.

The implementation of the primary diaphragm rupture model was described in
Section 7.1.4. All of the parameters used in the model were characteristics of the
diaphragms used or were obtained from the literature. The primary diaphragm was
assumed to rupture with a linear profile of opened cross-sectional area versus time.
This assumption, and the total rupture time was obtained from Rothkopf and Low
[197] and was discussed in Sections 2.1.4. The resulting diameter of the ruptured
diaphragm was obtained from measurements of used diaphragms taken from the
facility following experiments. The effect of the diaphragm rupture model will be

discussed in Section 7.3.1.

The initial conditions used in the simulations reproduced the facilities operating
conditions that were given in Table 2.1. Along with these conditions, the modifiable
characteristics of the simulation that most closely reproduced the flow are given in
Table 7.2.

Table 7.2: Modifiable simulation parameters that best reproduced the experimental re-
sults.

Driver Temperature 305K (He) and 310K (Ny)
Driven Temperature 296K

Wall Temperature 296K

Baldwin-Lomax (Turbulence Model):

K 0.18

Cep 1.74

Chieb 0.47

Primary Diaphragm Rupture Model:

rupture time 200 ps

rupture diameter D7 s

The values used for the driver gas temperature and the Baldwin-Lomax model
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coefficient x were obtained by varying them and comparing a characteristic value
obtained from the simulation to the corresponding value obtained in the experiment.
This characteristic value was the pressure behind the incident shock for the Helium
driver case and the pressure behind the reflected shock for the Nitrogen driver cases.
An increase in driver temperature results in an increase in the initial shock strength.
On the other hand, an increase in k resulted in an increase in the level of the
turbulent contribution to the viscosity in the inner layer of the simulated boundary
layer (ft(inner)). This increased the viscous attenuation of the shock as it progressed
along the tube and, therefore, caused a decrease in the pressure behind the shock

as it passed the supply pressure transducer.

The speed of the incident shock was measured using the time of flight between
the heat flux gauge and the supply pressure transducer (which were separated by
217mm). The shock speed was not noted during the modification of the two sim-
ulation parameters which affected the shock pressures and it was found that the
shock strength required to reproduce the post shock pressure would reproduce the
shock speed. Support is given to the validity and potential predictive capacity of
the simulations in that the simulations, being calibrated for particular simulation

values, can predict other values.

Various combinations of initial conditions and levels of viscous attenuation could
be used to reproduce the desired shock characteristics; however, there are other
characteristics of the simulation which, if measured in combination with these, could
only be reproduced by a single set of simulation parameters. The other parameters
used in the comparison were: the delay between the arrival of the incident shock and
the reflected shock at the supply pressure transducer, and the time of the arrival
of the reflection of the tailoring wave. The delay before the arrival of the reflection
of the tailoring wave is dependent on the interaction of the reflected shock and the
contact surface and the conditions in the stagnated region at the end of the shock
tube. Also the behaviour of the driver gas following its interaction with the reflected
shock is used as a qualitative constraint. These constraints led to the single set of

parameters which were used in the simulations.

This set of parameters was the same for the two different operating conditions,
apart from the driver temperatures (which were, in all probability, different from
one another in the experiments). This is an important result for the validity of the
simulations: even though the operating conditions were very different, and given
the possible ranges of the parameters, the parameters that reproduced experimental

traces the most closely were the same for the three cases.

In this section, the simulations and the experimental traces used the same time

scale. The times are aligned at the arrival of the incident shock at the supply
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pressure transducer. Table 7.3 shows the time offsets between the times used in this
section, and the time from the initiation of the primary diaphragm rupture, which

is used in Section 7.3.

Table 7.3: Time offsets relative to the initiation of diaphragm rupture used in this section.

Driver and driven gas Attachment Time offset used

Nitrogen driving Nitrogen Mach 4 nozzle +3.716ms
Nitrogen driving Nitrogen blanked end  43.716ms
Helium driving Nitrogen = Mach 4 nozzle +2.528 ms

Two of the experimental transducers, the supply pressure PCB transducer and
the heat flux gauge, are mounted in the wall of the shock tube. This means that
the transducers measure the flow inside the boundary layer, and as a result, any
comparison of simulation data with them is sensitive to the accurate modelling of
the boundary layer. This is shown to be particularly important for measurements

recorded during the passage of the bifurcated foot of the reflected shock.

The simulation results presented in the following comparisons use the fine resolu-
tion mesh. In addition, the fine mesh resolution simulations are further discussed in
Section 7.3. The modifiable parameters used in the simulations were chosen so that
the result would converge for the fine resolution mesh simulations. As the mesh
was refined from the coarse and medium meshes to the fine mesh, there were no
significant deviations from the traces presented in this section. This was true for

the three cases that were modelled.

The experimentally recorded traces are described in Section 2.2.4. The features
of these traces are described in that section and so the discussion of the traces in
this section will be restricted to the comparison of the simulated and experimental

traces.

Problems with the Simulations

The accuracy of the simulations depends on careful comparison with the experi-
ments. The simulations, in their current form, cannot be used in a predictive way
with any certainty. There were some simulations, which through small changes in the

conditions, or the modifiable parameters, would produce entirely incorrect traces.

The most obvious of these is evident in the supply pressure transducer traces

from the Helium driving Nitrogen case. This case used roughly tailored operating
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conditions, and the axial location at which the reflected shock reaches the contact
surface is between the supply pressure transducer and the heat flux gauge (which are
separated by only 217mm). This means that any inaccuracies in either the initial
conditions, or the level of viscous attenuation along the tube can result in a slightly
incorrect level of tailoring. This can result in incorrect movement of the contact
surface following the interaction and as a result, the contact surface can impinge on
the supply pressure transducer. Driver gas coming into contact with the transducer

can produce large variations in the trace recorded by the transducer.

These types of dips were also evident in the over-tailored Nitrogen driving Nitro-
gen case. This resulted from a slightly incorrect representation of the over-tailored

interaction for the same reasons described in the Helium driving Nitrogen case.

Amongst the problems observed in the traces were the entirely incorrect traces
produced in simulations using the original value of k used in the original Baldwin-
Lomax model [11]. This variation may result from a coding problem in the imple-
mentation of the model in the code; however, the implementation of the model has
been used successfully in the past and careful examination of the code did not find
such an error. The simulations were continued using the modified value of k since

these values, through calibration, could be used to reproduce the traces.
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7.2.1 Over-Tailored Operation: Nitrogen Driving Nitrogen

This section will compare the traces obtained from the simulations of the Nitrogen
driving Nitrogen cases with the equivalent experimental traces. The two cases are
with the nozzle attached and with the end of the shock tube blanked off where the
nozzle would be attached. Nitrogen is used as the driver gas and the driven gas, using
the operating conditions given in Table 2.1; the resulting operation is over-tailored.

The other parameters used in this simulation were outlined in Table 7.2.

The convergence study was produced similar results for the two Nitrogen driving
Nitrogen cases. As a result of this, the convergence study is shown for the combined
case. This similarity in the convergence would be expected given the similarity of
the operating conditions. The x-t diagram that is discussed for these cases is also
assumed to be the same for the two cases. Separate traces from the experiments

and simulations using the blanked end and the Mach 4 nozzle will be considered.

Grid Convergence

As the mesh is refined, the solution should converge towards the experimental flow
field. The convergence of the solution, with refinement of the mesh, is examined
using characteristic flow values that can be used for reference. The most distinct
measurement values were used for comparison: shock speeds for both cases, and the
incident shock pressure for the Helium driver case and the reflected shock pressure

for the Nitrogen driver case.

Various levels of approximation interact throughout the simulation affecting the
level of errors present in the solution. The unlimited reconstruction scheme is 3rd
order accurate; however, the use of limiters affects the convergence, as do the bound-
ary conditions, the solution of viscous fluxes, the turbulence model and the selective
refinement of the mesh towards the wall. This means that no definite order of

convergence is expected to be observed.

Given the convergence of the solution with mesh resolution, the parameters used
in the simulations were chosen such that the values obtained from the fine mesh
resolution simulation converged to the experimental values. This was believed to
provide the best representation of the flow possible with these meshes. This means
that the coarse and medium meshes will under predict these values; however, the
fine mesh is used in the discussion and analysis. It will be seen in Section 7.3 that
the processes occurring in the flow are resolved sufficiently, for even the coarse mesh

simulations.

The convergence plots for the Nitrogen driving Nitrogen cases are shown in

Figure 7.4. The convergence based on the shock speed is shown on the left and the
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convergence based on the pressure behind the incident shock shown on the right.
The values obtained from the simulation are plotted versus the inverse of the number
of cells used across the radius of the shock tube. This is done so that a solution
with an infinite number of cells is at the left edge of the plot. The experimentally
measured value is shown as the dashed line across the plots. The convergence of
the solution towards the experimental values are evident. The value for the fine
mesh (which is the left most point) is slightly lower than the experimental values
and would be expected to converge closer to the experimental value for even finer

mesh solutions.
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Figure 7.4: Grid convergence for the blanked end Nitrogen driving Nitrogen case sim-
ulations. The grid convergence based on the shock speed is shown on the left and the
convergence based on the pressure behind the reflected shock is shown on the right.
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x-t Diagram

An x-t diagram can be constructed from the MB_CNS simulations by sampling the
centreline positions of the shock and the contact surface through time. This x-
t diagram, for the over-tailored case, is shown in Figure 7.5. This x-t diagram is
essentially the same for the two over-tailored cases simulated (the case with the Mach
4 nozzle and the case with the blanked shock tube end). The x-t diagram shown in
Figure 7.5 is taken from the blanked end case. The main difference between the two
cases, the expansion of the gas through the nozzle, does not have a significant effect
on this diagram. The extent of the contact surface is defined as being between the
most upstream and downstream part of the contact surface, not inside the boundary

layer, and not detached from the main contact surface.
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Figure 7.5: MB_CNS simulated x-t diagram for the Nitrogen driving Nitrogen with the
blanked shock tube end case. The turbulent simulation was used.

In the x-t diagram, early in time the trajectories of the incident shock (solid
line) and contact surface (grey region) can be seen moving towards the downstream
end of the shock tube. The incident shock is shown to reflect from the downstream
end of the shock tube and travel back upstream. The reflected shock interacts
with the contact surface, sending both a transmitted wave upstream and a reflected
wave back downstream. The wave reflected downstream, which is not shown, is the

over-tailoring wave. This wave ends the test time.

The expansion fan emanating from the primary diaphragm position is not shown

in this x-t diagram as its arrival at the end of the shock tube is late in time and



196 Simulations of the Drummond Tunnel Facility

so it is not important to the discussion with the operating conditions used in these

cases.

Wave Speed Diagram

The points sampled from the blanked end case simulations and used in Figure 7.5,
were used to obtain the wave speed diagram shown in Figure 7.6. As with the x-t
diagram, the shock is shown as the solid black line and the contact surface is shown
as the grey region. This figure demonstrates the initial strong acceleration of the
shock as the waves that form during the opening of the primary diaphragm coalesce.
Following this, the gradual attenuation of the shock, caused by the viscous boundary

layers, is evident.

The front of the contact surface moves along the shock tube with approximately
constant velocity, although a slight deceleration is evident. The effect of the di-
aphragm rupture model on the initial deformation of the contact surface is evident.
The stability of the contact surface is shown, in that as the contact surface moves

along the shock tube, the front and the back of the contact surface approach the

same speed.
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Figure 7.6: Evolution of waves speeds along the tube from the turbulent MB_CNS
simulations for the Nitrogen driving Nitrogen case. The speed of the shock and the front
and the back of the contact surface are shown.

The figure actually shows the variation of du/ds along the tube; however, this

leads to the acceleration by considering the relation: a = du/dt = du/ds - ds/dt =
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du/ds-v. This means that, since the sign of the velocity is always positive, the sign
of du/dt is the same as the sign of du/ds.

The delay in the arrival time of the incident shock and contact surface at the
heat flux gauge and the pressure transducer, being separated by 217mm, can be

used to identify the wave speeds, both in the experiment and the simulations.

For the blanked end case, the experimentally measured shock speed was 792.7 m /s.
Using the fine mesh simulation, the shock speed predicted by the laminar simula-
tion was 893.1m/s (12.7% high) and the turbulent simulation was 787.0m/s (0.7%
high). This shows a 12.0% improvement associated with the implementation of the
Baldwin-Lomax model. The experimental shock speed from the Mach 4 nozzle case
could not be determined with any accuracy due to the high level of noise in the

experimental trace.
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Supply Pressure Transducer: Blanked End Case

1. Laminar Simulation (Figure 7.7)

The laminar simulation significantly over estimates both the incident and the re-
flected shock pressures. These results are indicative that there has not been enough
viscous attenuation of the shock. In the experimental trace, the rise due to the
arrival of the reflected shock shows a curved profile, resulting from the interaction
of the reflected shock with the boundary layer. This effect is not reproduced in
this simulation. The tailoring waves arrive late, leading to an over estimate of the
steady period. In the laminar simulations, the arrival of tailoring waves at the trans-
ducer are too sharply defined, appearing on the trace as steps, rather than the more
tapered rise observed in the experimental trace. The final pressure, following the

passage of the contact surface is too high.

2. Turbulent Simulation (Figure 7.8)

With the calibrated turbulence model, the pressure behind the incident shock and
the arrival time of the reflected shock are reproduced accurately. The most sig-
nificant difference between the turbulent simulation and experimental traces is at
the arrival of the reflected shock. The foot of the reflected shock has bifurcated
due to its interaction with the incident boundary layers. The traces resulting from
this interaction are discussed in detail in Section 7.3.4. The arrival times of the
tailoring waves are accurately reproduced. The pressure rises are more tapered and
are significantly more like the experimental trace than the laminar simulation; how-
ever, the tailoring waves are still sharper and more defined than in the experimental
trace. This is believed to be due to limitations in the simulation of the contact
surface, which are described in detail in Section 7.3.6. The final pressure, as the
driver gas passes the transducer is accurately reproduced and the increased level of

noise associated with the arrival of driver gas is also reproduced.
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Figure 7.7: Static pressure recorded by the supply pressure PCB transducer during the
Helium driver case for the laminar simulation compared to the experiment.
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Figure 7.8: Static pressure recorded by the supply pressure PCB transducer during the
Helium driver case for the turbulent simulation compared to the experiment.
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Supply Pressure Transducer: Mach 4 Nozzle Case

1. Laminar Simulation (Figure 7.9)

As with the blanked end case, the laminar simulation significantly over estimates
both the incident and the reflected shock pressures. With the Mach 4 nozzle case,
the interaction of the reflected shock with the boundary layer is more significant
than with the blanked end case. The effect of this interaction is not evident in the
laminar simulations, with the trace showing a sharply stepped profile. The tailoring
waves arrive late, leading to an over estimate of the steady period. In the laminar
simulations, the arrival of tailoring waves at the transducer are too sharply defined,

appearing on the trace as steps and the final pressure is too high.

2. Turbulent Simulation (Figure 7.10)

With the calibrated turbulence model, the pressure behind the incident shock and
the arrival time of the reflected shock are reproduced accurately. In the simulation,
the passage of this shock foot past the pressure gauge has an oscillating stepped
profile, whereas the experimental trace is curved following a small step. The pres-
sures in front of, and behind, this interaction are the same for the simulation and
experiment, and the gradual rise in the experiment and the stepped profile in the
simulation both take the same amount of time to pass the transducer. The foot of
the reflected shock has bifurcated due to its interaction with the incident boundary
layers. The differences in these traces are discussed in Section 7.3.4. The pressure
behind the reflected shock in the simulation is within the range of fluctuations the
pressure in the experimental trace, or slightly below it. The arrival time of the
tailoring wave is accurately reproduced. As with the blanked end case, these tai-
loring waves are stronger in the simulations than in the experiment. The trend in
pressure as these waves arrive at the transducer is predicted accurately; however,
small deviations from the experimental trace are evident. The final pressure, as the
driver gas passes the transducer is accurately reproduced and the increased level of

noise associated with the arrival of driver gas is also reproduced.
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Figure 7.9: Static pressure recorded by the supply pressure PCB transducer during the
Helium driver case for the laminar simulation compared to the experiment.
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Figure 7.10: Static pressure recorded by the supply pressure PCB transducer during the
Helium driver case for the turbulent simulation compared to the experiment.
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Heat Flux Gauge: Blanked End Case

The heat flux traces are only compared for the blanked end case, as the measure-
ments taken during the experimental with the Mach 4 nozzle suffered from excessive
experimental noise. The magnitude of the heat flux was not known during the ex-
periments. This means that no quantitative comparison of heat fluxes could be
used, and the level of the experimental heat flux in the figures was aligned with
the simulated magnitudes. The simulated heat flux was calculated using a linear

relation given in Section 7.1.7.

1. Laminar Simulation (Figure 7.11)

The initial jump in heat flux is caused by the passage of the incident shock. It
can be seen in the experimental trace that the heat flux to the wall from the gas
in the region behind the incident shock is steady; however, in the simulation, this
heat flux decreases over time (with distance from the shock). This decrease in heat
flux is caused by the variation in heat flux through the growing boundary layer
which is increasing in thickness with distance from the shock. The second rise in
heat flux is the arrival of the reflected shock. The heat flux remains high in the
region behind the reflected shock. The sharp decrease in heat flux is caused by the
arrival of the contact surface following its interaction with the reflected shock. For
the remainder of the trace, the waves are dominated by the complex interaction
between the reflected shock and the contact surface and the resulting pseudo-shock

train.

2. Turbulent Simulation (Figure 7.12)

The only significant difference between the laminar and turbulent heat flux traces is
during the passage of the bifurcated foot of the reflected shock. This appears as the
dip in heat flux immediately following the arrival of the reflected shock. This dip is
not evident in the experimental trace, indicating that the temperature of the gas in
the shock foot is not as low as it is modelled in the simulation. The other features
in the trace are essentially the same as were described for the laminar simulation
comparison. Given the difficulty in reproducing these traces, it is believed that
both the laminar and turbulent simulations provide a reasonable reproduction of

the experimental heat flux over time.
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Figure 7.11: Heat flux recorded by the thin film heat flux gauge during the Helium driver
case for the laminar simulation compared to the experiment.
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Figure 7.12: Heat flux recorded by the thin film heat flux gauge during the Helium driver
case for the turbulent simulation compared to the experiment.
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Shock Tube Heat Flux Rake: Blanked End Case

The rake of heat flux probes described in Section 2.2.3 was used to detect the arrival
of the contact surface at stations at 524 mm and 1015 mm from the blanked end of
the tube. The diaphragm rupture model had a significant effect on the shape of the
contact surface in the simulations. For this reason, the results for simulations with,

and without, the diaphragm rupture model will be discussed.

1. Without the Diaphragm Rupture Model (Figure 7.13)

The profile measured at the 1015 mm position is shown on the left and the at the
524 mm position is shown on the right. The experimentally measured profile is shown
in grey and the simulated profile, without the diaphragm rupture model, is outlined
in black. The general shape of the contact surface from this simulation is similar to
the experimental shape, but the level of mixing at the contact surface is significantly
lower than is evident in the experimental measurements. The real contact surface is
expected to be turbulent, which would promote mixing and diffusion at the interface,

and may account for this difference.
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Figure 7.13: Contours of driver gas mass fraction, showing the contact surface shape at
the 1015mm station (on the left) and the 524mm station (on the right). The diaphragm
rupture model was not included in the simulation. The experimentally measured contact

surface shape is shaded in grey and the simulated contact surface shape is outlined in
black.

2. With the Diaphragm Rupture Model (Figure 7.14)

The profile measured at the 1015 mm position is shown on the left and the at the
524mm position is shown on the right. Again, the experimentally measured pro-
file is shown in grey and the simulated profile, with the diaphragm rupture model,
is outlined in black. The simulation with the diaphragm rupture model does not
reproduce the contact surface shape from the experiment correctly. An important
consideration is that the mixing length of the contact surface is about the same be-

tween the two. The circulation of material caused by the diaphragm rupture model
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has not resulted in full mixing at the interface. Also it is known that the contact
surface is turbulent; this turbulence would accelerate the mixing at the interface
and is not modelled in the simulations. The result is that the mixing in the simu-
lated profile is predominantly along the centreline of the shock tube, whereas in the
experiment it is across the full radius. The characteristics of the contact surface are
discussed in more detail in Section 7.3.6. These issues may have an effect on the
interaction of the contact surface with the reflected shock, discussed in Section 7.3.7,
although it is known that the interaction process is modelled sufficiently to accu-
rately predict the arrival of driver gas in the test flow from the Nitrogen driving

Nitrogen (Mach 4 nozzle) case. This comparison is shown in Figure 7.16.
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Figure 7.14: Contours of driver gas mass fraction, showing the contact surface shape at
the 1015mm station (on the left) and the 524mm station (on the right). The diaphragm
rupture model was included in the simulation. The experimentally measured contact

surface shape is shaded in grey and the simulated contact surface shape is outlined in
black.
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Nozzle Exit Pitot Pressure: Mach 4 Nozzle Case

Figure 7.15 shows the experimental trace of pitot pressure measured at the centreline
of the nozzle exit plane compared to the trace from the turbulent simulation. In
addition to accounting for the effect of turbulence along the length of the shock tube,
the use of the Baldwin-Lomax model on the nozzle walls improved the accuracy of
the simulations. In the trace shown, the duration over which these waves arrive
at the probe is accurately reproduced. The experimental trace has been filtered,
removing high frequency fluctuations; this includes much of the magnitude of the
startup waves. In the unfiltered experimental trace, the magnitude of the startup
waves was of the same magnitude as the simulated waves. The steady test time and
the magnitude of the pitot pressure during the test time are accurately reproduced.
The over-tailoring wave causes the increase in pressure that ends the test time. This
wave is too strong in the simulated trace; however, the general trend in the pitot
pressure rise, following the initial arrival of the tailoring wave is close to that seen
in the experimental trace. The final pitot pressure, as driver gas flows through the
nozzle, is reproduced accurately. The results from the laminar simulations are not

shown for the test flow properties as they are signficantly different.
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Figure 7.15: Comparison of the simulated and experimental pitot pressure at the nozzle
exit centreline. The simulated trace is from the turbulent simulation of the Nitrogen
driving Nitrogen case.
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Nozzle Exit Stagnation Temperature: Mach 4 Nozzle Case

Figure 7.16 shows the experimental trace of stagnation temperature measured 14 mm
from the centreline of the nozzle exit plane compared to the trace from the turbulent
simulation. The change in stagnation temperature resulting from the arrival of
driver gas is evident. This traces shows that the turbulent simulations accurately
reproduce the time of the arrival of driver gas in the test flow for the over-tailored
case. The trace shows that the simulations reproduce the stagnation temperature
with reasonable accuracy, both before and after the arrival of the driver gas. This
driver gas arrives in the test flow prematurely, because of the acceleration of driver
gas resulting from the interaction of the contact surface with the reflected shock.

This interaction is discussed in more detail in Section 7.3.7.
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Figure 7.16: Comparison of the simulated and experimental nozzle exit stagnation tem-
perature at the nozzle exit centreline. The simulated trace is from the turbulent simula-
tion of the Nitrogen driving Nitrogen case.
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7.2.2 Tailored Operation: Helium Driving Nitrogen

This section will compare the traces obtained from the simulation of the Helium
driving Nitrogen case. The Mach 4 nozzle is attached and the operating conditions

result in roughly tailored operation.

Grid Convergence

The process used to examine the convergence study in the Nitrogen driving Nitrogen
cases is followed here. The simulations aim for a converged simulation at, or near,
the fine resolution simulation. The incident shock pressure and the shock speed
between the supply pressure transducer and the heat flux gauge are used as the

characteristic simulation values.

The convergence plots for the Helium driving Nitrogen case is shown in Fig-
ure 7.17. The convergence using the incident shock speed between the heat transfer
gauge and supply pressure transducer is shown on the left and using the pressure
measured 0.1 ms after the arrival of the incident shock at the supply pressure trans-
ducer is shown on the right. The values obtained from the simulation are plotted
versus the inverse of the number of cells used across the radius of the shock tube.
The experimentally measured value is shown as the dashed line across the plots. It
can be seen that the convergence is set to a level that is too high and the conver-
gence over-shoots the experimental value. The values from the fine mesh simulation
are slightly higher that the experimental value, for both of the characteristic values;
however, they only exceed the experimental value by a small amount, possibly within

the limit of experimental error, and this convergence was thought to be sufficiently

accurate.
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Figure 7.17: Grid convergence for the Helium driving Nitrogen case simulations. The
grid convergence based on the shock speed is shown on the left and the convergence based
on the pressure behind the incident shock is shown on the right.
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x-t Diagram

An x-t diagram was also constructed from the MB_CNS simulation for this case.

This x-t diagram is shown in Figure 7.5.

4 T T T T T T T T T

35 F b

25 F

Time (ms)
[V}

L5

0 1 1 T, 1 1 1 1 1 1
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Distance along the shock tube (m)

Figure 7.18: MB_CNS simulated x-t diagram for the Helium driving Nitrogen with the
blanked shock tube end case. The turbulent simulation was used.

In the x-t diagram, the trajectories of the incident shock (solid line) and contact
surface (grey region) can be seen moving towards the downstream end of the shock
tube. The incident shock is shown to reflect from the downstream end of the shock
tube and travel back upstream. The reflected shock interacts with the contact
surface. Being a tailored mode of operation, the contact surface should be stopped
by the reflected shock. The driver gas can be seen to continue to move slightly
downstream. No discernible tailoring waves emanated from this interaction as would
be expected. The expansion fan emanating from the primary diaphragm position
can be seen to have reflected from the upstream end of the driver section and moved
along the shock tube. In this case, the reflected expansion reaches the test flow and

is responsible for ending the test time.

Wave Speed Diagram

The points sampled from the simulation, and used in Figure 7.18, were used to
obtain the wave speed diagram shown in Figure 7.19. As with the x-t diagram, the
shock is shown as the solid black line and the contact surface is shown as the grey

region. This figure demonstrates the initial strong acceleration of the shock as the
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waves that form during the opening of the primary diaphragm coalesce. Following
this, the gradual attenuation of the shock, caused by the viscous boundary layers,

is evident.

The viscous boundary layers also cause the acceleration of the contact surface.
This acceleration is clearly evident in this case, more so than in the Nitrogen driving
Nitrogen cases. This acceleration has a particularly important effect on the stability
properties of the contact surface and will be discussed in Section 7.3.6. The effect of
the diaphragm rupture model is evident in the initial axial thickness of the contact

surface.
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Figure 7.19: Evolution of waves speeds along the tube from the turbulent MB_CNS
simulations for the Helium driving Nitrogen case. The speed of the shock and the front
and the back of the contact surface are shown.

The delay in the arrival time of the incident shock between the heat flux gauge
and the pressure transducer was used to identify the shock speed, both in the
experiment and the simulations. The experimentally measured shock speed was
1151.6m/s. The shock speed predicted by the laminar simulation was 1225.3m/s
(6.4% high) and the turbulent simulation on the fine mesh was 1152.7m/s (0.1%
high). This shows an 6.3% improvement with the implementation of the Baldwin

Lomax model.
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Supply Pressure Transducer

1. Laminar Simulation (Figure 7.20)

The laminar simulation significantly over estimates both the incident and the re-
flected shock pressures. The arrival time of the reflected shock is close to the exper-
imental value. In the experimental trace, the rise due to the arrival of the reflected
shock shows a curved profile, resulting from the interaction of the reflected shock
with the boundary layer. This effect is not reproduced in the laminar simulation,
which has a sharp profile at the arrival of the reflected shock. The expansion arrives
at the correct time, but the pressure from the time of the arrival of the reflected

shock onwards is significantly over estimated.

2. Turbulent Simulation (Figure 7.8)

With the calibrated turbulence model, the pressure behind the incident shock is re-
produced accurately, but the arrival of the reflected shock is slightly early. The most
significant difference between the turbulent simulation and experimental traces is at
the arrival of the reflected shock. The foot of the reflected shock has bifurcated due
to its interaction with the incident boundary layers and the effect of the bifurcated
shock foot is even more significant here than in the Nitrogen driving Nitrogen traces.
In contrast, the properties of the flow following the arrival of the reflected expansion

are accurately reproduced, with the pressure being only slightly low throughout.
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Figure 7.20: Static pressure recorded by the supply pressure PCB transducer during the
Helium driver case for the laminar simulation compared to the experiment.
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Figure 7.21: Static pressure recorded by the supply pressure PCB transducer during the
Helium driver case for the turbulent simulation compared to the experiment.



7.2 Validation of the Simulations using the Experimental Results 213

Heat Flux Gauge

As with the Nitrogen driving Nitrogen cases, the magnitude of the heat flux was
not known so the level of the experimental heat flux trace was simply aligned with
the simulated trace. Again, the simulated heat flux was calculated using a linear

relation given in Section 7.1.7.

1. Laminar Simulation (Figure 7.22)

The initial jump in heat flux is caused by the passage of the incident shock. It can
be seen in the experimental trace that the heat flux to the wall from the gas in
the region behind the incident shock is approximately constant for 600 us, although
there are significant fluctuations during this period. In the simulation, the heat
flux decreases slighly during this period. This decrease in heat flux is caused by
the variation in heat flux through the increasing boundary layer which is increasing
in size with distance from the shock. The relatively sudden decrease in heat flux
is caused by the arrival of driver gas at the gauge. The instantaneous rise in heat
flux, in the middle of this decrease, is caused by the arrival of the reflected shock,
which has already passed through the contact surface. The arrival time of this shock
is accurately estimated in this simulation, but additional strong waves are evident
in the simulated trace following the passage of the reflected shock. These are not

evident in the experimental trace.

2. Turbulent Simulation (Figure 7.23)

A sharp peak in heat flux through the boundary layer immediately behind the
reflected shock is evident. The profile from the turbulent simulation has roughly the
same characteristics as the laminar profile, except in the region around the reflected
shock foot. The width of the material in the shock foot is evident in the simulated
trace, being responsible for the longer duration of high heat flux at the arrival of the
reflected shock than in the experimental trace. This is due to the high temperature
material being carried at the foot of the shock in the simulation. No additional waves
are evident in the trace at late times, as in the experimental trace. The simulated

trace ends at 1.5 ms.
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Figure 7.22: Heat flux recorded by the thin film heat flux gauge during the Helium
driving Nitrogen case for the laminar simulation compared to the experiment.

140000 : . | _ |
Experiment -

120000 k Turbulent Simulation |

100000 F

80000 r

60000 r

40000

Heat Flux (arbitrary units)

20000

e
o "wm‘%m“
o, A .
Y ‘W‘RKWW"WWMW
" n
ety g

-0.5 0 0.5 1 15 2 25
Time (ms)

Figure 7.23: Heat flux recorded by the thin film heat flux gauge during the Helium
driving Nitrogen case for the turbulent simulation compared to the experiment.
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Nozzle Exit Pitot Pressure

Figure 7.24 shows the experimental trace of pitot pressure measured at the centre-
line of the nozzle exit plane compared to the trace from the turbulent simulation.
In addition to its implementation along the length of the shock tube, the use of the
Baldwin-Lomax model on the nozzle walls improved the accuracy of the simulation
of the test flow. As with the Nitrogen driving Nitrogen cases, the characteristics
of the startup waves were accurately reproduced. The steady test time and the
magnitude of the pitot pressure during the test time are accurately reproduced, as
is the arrival of the reflected expansion in the test flow. For this case, the simulated
trace close enough to the experimental trace to be within the levels of the fluctua-
tions, throughout the trace shown. Also, the levels of fluctuations during the test
flow period are of the same magnitude in each of the traces. This will be discussed
further in Section 7.3.10.
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Figure 7.24: Pitot pressure recorded by the nozzle exit centreline pitot probe during the
Helium driving Nitrogen case for the turbulent simulation compared to the experiment.
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7.3 Discussion of the Simulation Results

The comparison of experimental and simulated traces in Section 7.2 demonstrates
that the simulations provide a good reproduction of the traces recorded during
experiments. The simulations are provided with only the initial operating conditions
used in the experiments and the geometry of the facility. This provides strong
support as to the accuracy of the simulations and to the modelling assumptions
that have been made. There were some differences between the experimental results

and the simulation results. These differences will be further addressed in this section.

This section discusses important fluid dynamic processes in the operation of
a shock tunnel as illustrated through the simulations. The visualisation of the
development of the flow throughout the whole facility is an important feature of these
simulations. The evolution of flow structures and the interaction of flow features

that have evolved properly is shown to be an important aspect of the overall flow.

The discussion in this section uses simulations performed on the fine resolution
mesh, the details of which were described in Section 7.1.1. Apart from Section 7.3.2,
which discusses the resolution of the boundary layers, the effect of the refinement of
the mesh is addressed in the context of each process being investigated. Through
refinement of the mesh from the coarse and medium resolution meshes, to the fine
resolution mesh, it is shown that the primary features of the solution are sufficiently

independent of mesh resolution.

The times quoted in Section 7.2 were all set with the zero time aligned with the
arrival of the incident shock at the supply pressure transducer. This was done so
that the simulated traces could be aligned with the experimental traces. Since this
section only deals with the simulation, all times discussed in this section will be
quoted from the time of the start of the simulation (at the initiation of diaphragm

rupture). These time offsets are shown in Table 7.3.
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7.3.1 Simulations of Diaphragm Rupture Mechanics

Simulations were run assuming an ideal removal of the diaphragm. These simula-
tions were unable to reproduce the experimental results, even through variation of
the simulation parameters. A diaphragm rupture model was implemented, which
enabled the simulations to be able to reproduce the experimental results, as shown

in Section 7.2.

An iris based model is used to account for the effect that the mechanics of the
rupturing primary diaphragm has on the flow. The rupture is assumed to be a steady
process, with the opening area increasing linearly with time. The total rupture
time is assumed to be 94% (to account for the slow initial opening) of a 200 us
rupture time. These assumptions were based on the experimental observations of
Rothkopf and Low [197], which were discussed in Section 2.1.4. These assumptions
are believed to be valid since the diaphragm material is aluminium and the rupturing
of the diaphragm is initiated by being pierced by the spike. From observations of
used diaphragms, the simulated diaphragm is assumed to rupture to a diameter
of 57mm. The implementation of the rupture model in the code was discussed in
Section 7.1.4.

The analysis in this section uses the Nitrogen driving Nitrogen case with the
blanked end, unless otherwise stated. Since the rupture process is the same for
the three cases simulated, the resulting flow at early times is similar for the cases

considered.

Sequence of the Rupture Process

Figures 7.25 and 7.26 show a sequence of numerical Schlieren (in the upper half
of the frames) and driver gas mass fraction (lower half) frames of the initial flow
resulting from the implementation of the diaphragm rupture model. The frames are

taken at 20 us intervals starting at the instant of the start of the simulation.

The gradual opening of the diaphragm can be seen through the frames. Due to
the initially small opening, the shock is spherical as it emerges from the opening. In
the frame at 60 us, this spherical shock front reaches the side wall. Following this it

reflects back into the flow.

In these early frames, the driver gas can be seen emerging through the opening.
This gas expands outwards, but moves predominantly downstream rather than out-
wards from the diaphragm. It is not until the frames as late as 200 us that the driver
gas can be seen to impinge on the side wall. In the frame at 100 us, the segment of
the shock reflected from the side wall can be seen to reach the contact surface. It

continues to pass through the driver gas in later frames. These transverse shocks
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bounce back and forth across the tube, repeatedly passing through, and processing
the contact surface. In this interaction, both the contact surface and the shocks are
significantly deformed, with vorticity being generated at the contact surface. This
vorticity results in the curling up of the outward edge of the contact surface seen in

later frames.

The forward moving segment of the spherical shock moves along the tube. This
part of the shock undergoes a regular reflection at the wall, until, as the angle of
incidence of the shock against the wall is such that the regular reflection is no longer
possible, a Mach stem forms. The Mach stem forms what becomes the primary
shock, as the triple point moves along the incident shock towards the tube centreline.
This Mach stem can first be seen to form in the frame at 120 us and the shock
is essentially planar by 240 us. As this planar shock forms, the transverse waves
continue to weaken. This weakening can be seen by comparing the strength of the
transverse waves in the frames at 220, 240 and 260 us. This process demonstrates
the inherent stability of the shock wave, as it forms into a roughly planar form

within 240 us, and less than two shock tube diameters from the diaphragm.

It was assumed that the diaphragm opens to 57 mm of the 62.2 mm diameter of
the shock tube. The remaining area behind what is left of the diaphragm results in
a pocket of stagnant gas. As the gas is forced around this gas, two oblique shocks
and a Mach disk form. Throughout the frames, the expansion of the driver gas can

be seen moving back upstream into the driver section.



7.3 Discussion of the Simulation Results 219

Ous /driver section /piercer /diaphragm position /shock tube

/ // / /

20 us

N

o
=

(7]

60 us /spherical shock

k

80 ps /shock reflection

L

100 us

L

120 us expansion

l

140 us ,contact surface processed by shock reflection

Figure 7.25: Part one of a sequence of frames showing the initial flow that results from
the implementation of the diaphragm rupture model. Numerical Schlieren is shown in the
upper half of the frames and mass-fractions are shown in the lower half, with driver gas
in blue and driven gas in yellow. The frames are at 20 us intervals starting at the instant
of the start of the simulation.
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Figure 7.26: Part two of a sequence of frames showing the initial flow that results from
the implementation of the diaphragm rupture model. Numerical Schlieren is shown in the
upper half of the frames and mass-fractions are shown in the lower half, with driver gas
in blue and driven gas in yellow. The frames are at 20 us intervals starting at 160 us.
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Effect on the Contact Surface

The rupture mechanics of the primary diaphragm has a significant effect on the
characteristics of the contact surface. Unlike the shock, which is inherently stable,
the contact surface evolves along the tube under the influence of how it is affected

by the rupture of the primary diaphragm.

Cambier et al. [35] and Petrie-Repar [176] observed that the diaphragm rupture
process results in an increased axial speed of the driver gas near the walls, relative
to gas near the centreline. Figure 7.27 shows a numerical Schlieren (upper half) and
axial velocity (lower half) frame of the flow resulting from the use of the diaphragm

rupture model. This frame is at 300 us after the start of the simulation.

As the driver gas enters the shock tube, it emerges from the contraction in area
through the diaphragm. This gas passes through an oblique shock, and a weaker
re-attachment shock, which straightens the flow. Following these shocks, the flow
converges slightly towards the centreline, before passing through a second set of
oblique shocks, which again straighten the flow. This shock structure remains from
the transverse moving shock resulting from the initial emerging spherical shock. The
gas which moves straight along the centre of the tube passes through a Mach disk,
which raises the pressure of the gas to the level of the gas that passed through the
two oblique shocks. This gas emerges with a higher velocity than the gas which
passes through the Mach disk.

The axial speed of the driver gas, shown in Figure 7.27, ranges from over 600 m/s
near the wall to the nearly stationary gas behind the Mach disk. This gradient in
velocity results in the jetting of driver gas near the walls, which imposes an outward
mixing of the gas at the contact surface as it moves along the shock tube. This will

be discussed further in Section 7.3.6.

This gradient in velocity is compounded by the generation of vorticity, which
results from the interaction of the contact surface with the transverse moving shocks.
This vorticity is a result of a baroclinic torque, of the same type as will be discussed
in Section 7.3.7 in the context of the interaction of the contact surface with the
reflected shock. This vorticity acts to promote the deformation and mixing at the

contact surface.

The assumption of an ideal primary diaphragm rupture process would result in
well defined, planar features forming. This may be appropriate for the shock, given
its inherent stability, but in the case of the contact surface, it would result in an

inaccurate representation.

Skinner [212] believed that the gradually opening diaphragm, resulted in the

jetting of driver gas along the centreline of the tube. It has been observed experi-
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Figure 7.27: Contours of numerical Schlieren (upper half of frame) and axial velocity
(lower half of frame) resulting from the diaphragm rupture model opening in 200 us in the
Nitrogen driving Nitrogen case simulations. The frame is at 300 us from the start of the

simulation.

mentally [197] that the initiation of the diaphragm rupture process is a slow process.
It was thought that as a result the driver gas was allowed to penetrate into the test
gas through this initially small opening. This effect was believed to be the primary
cause of driver gas contamination in the experiments conducted [212]. The oblique
shock structure observed in these simulations acts against this process, and is now

believed to be the more dominant of the two mechanisms.
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Effect of the Opening Time

In addition to the analysis of the flow field resulting from the 200 us rupture time,
the total time taken for the diaphragm to rupture was varied from instantaneous to
100, 200 and 400 ps. This allowed variation around the time observed by Rothkopf

and Low [197] in order to ascertain the sensitivity of the flow to this time.

Figure 7.28 shows numerical Schlieren (upper half) and driver gas mass-fraction
(lower half) frames from the flow fields resulting from these different opening times.
The effect of the rupture time on the flow can be seen in what is essentially a delay
in the arrival of flow features at positions along the tube, an increase in the strength
of the oblique shock structure and a significant increase in the early deformation of
the contact surface. The shock and contact surface speeds far downstream of the
diaphragm are relatively unaffected by this process; the only significant effect far
downstream is on the characteristics of the contact surface. In the 400 us opening

time frame, the diaphragm has not yet fully opened.

instantaneous opening

100 us opening time

200 ps opening time

400 ps opening ti me

Figure 7.28: The effect of diaphragm opening time on the resulting flow. Numerical
Schlieren (upper half of frames) and driver gas mass-fraction (lower half of frames) 300 s
after the diaphragm rupture was initiated. The instantaneous (top), 100, 200 and 400 ps
(bottom) opening time flows are shown.
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Figure 7.29 shows the shock trajectories versus distance from the diaphragm
position, resulting from the use of the diaphragm rupture model. The simulations
were run for the instantaneous, 100, 200 and 400 us opening times. The initially
low shock speeds, followed by the acceleration of the shocks as the spherical shocks
coalesce to form the planar shock is evient for all four of the traces. The variation
in the early centre-line speed of the shock results from the formation of the planar
shock from the spherical shock front. This process is also described by by Rothkopf
and Low [196], Zeitoun et al. [254] and Petrie-Repar [176].
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Figure 7.29: Shock trajectories versus distance from the diaphragm position, resulting
from the use of the diaphragm rupture model. Trajectories are shown for the model with
instantaneous opening, 100, 200 and 400 s opening times.
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Effect of Mesh Resolution

In order to determine whether the rupture process is being simulated in a mesh res-
olution independent manner, the results are compared with lower resolution simula-
tions. Figure 7.30 shows frames from the coarse, medium and fine meshes, demon-
strating the effect of mesh refinement. These frames are taken from the Helium
driving Nitrogen case, instead of the Nitrogen driving Nitrogen case as with the
other frames. Comparison of these frames show that the simulated flow is essen-
tially the same in the three frames, with sharper resolution being achieved with the
medium and fine meshes; this is particularly seen in the resolution of the shocks. It
is believed that the fine resolution simulations are not affected by mesh resolution

issues.

coarse mesh resolution

———
]

ol .

medium mesh resolution

fine mesh resolution

Figure 7.30: The effect of the mesh resolution on the modelling of the diaphragm rupture
process. Numerical Schlieren (upper half of frames) and driver gas mass fraction (lower
half) contours are shown, comparing the diaphragm rupture induced flow for the coarse
(top), medium (middle) and fine (bottom) meshes. The frames are shown at 300 us.



226 Simulations of the Drummond Tunnel Facility

7.3.2 Resolution of the Boundary Layers

The proper resolution of the boundary layers is vital to the accuracy of the simula-
tions. Properly resolving boundary layers places one of the most significant limita-
tions on the mesh. The shock that processes the test gas has been attenuated along
the length of the tube by the influence of the boundary layers. The flow of mate-
rial into the boundary layers also results in the acceleration of the contact surface,

further decreasing the test time.

Given the difficulty in resolving the boundary layers, the mesh is refined towards
the wall as was shown in Figure 7.1, in order to focus computational effort in this
region. Qualitative inspection of the flow in the boundary layers indicate that suf-
ficient cells are allocated inside them. The good correlation achieved between the
simulated heat flux to the wall, which is based on the gradients of properties through
the boundary layer, to the experimentally recorded traces from the thin film heat

flux gauge, indicates that the boundary layers are being modelled adequately.

The boundary layers from the Nitrogen driving Nitrogen case were examined in
detail. It is believed that the analysis conducted on these simulations are appli-
cable to the other cases, given that they use the same mesh, the same modelling

assumptions and have similar flow conditions.

u-+ versus y-+

In order to provide a quantitative assessment of the quality of the grid near the wall,
the grid spacing parameters u+ and y+ will be used. The two values u+ and y+

are calculated using the equations:

LT
= — 2
wt=t (72)
b Yus
== (7.3)
where:
Tw
Urp = 4| — 7.4
. (7.4

pw is the local density near the wall, 7, is the shear stress at the wall, y is the
distance to the centre of the first row of cells, v is the kinematic viscosity and @ is

the tangential velocity at the first row of cells.

A study of the simulation of flat plate boundary layers was conducted by Dil-
ley [58]. The grid spacing parameters required to adequately resolve surface heat
transfer in that study were discussed in Cockrell Jr., Auslender, White and Dilley

[49]. Tt was stated that a y+ value of 2 is required to ensure adequate resolution
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of the boundary layer. This was not achieved in this study by more than an order
of magnitude; however, this study does not depend on the quantitative prediction
of heat transfer rates. The prediction of heat transfer through the boundary layer
discussed in Section 7.2 appeared to be predicted sufficiently for this study. It is
believed that the requirements on y+ are not as strict as in other studies, with
different requirements, such as Cockrell et al. and Dilley. This study is primarily
concerned with the boundary layers for their effect on the flow along the shock tube.
With the correct level of the attenuation of the shock, and the critical aspects of
the interaction of the reflected shock with the boundary layer being accurately re-
produced, it is believed that the boundary layers are sufficiently resolved for this

study.

By varying 7 and y, as the cells move away from the wall, profiles of u+ versus y+
can be produced. These figures provide information on the quality of the simulated
boundary layer, including the number of cells inside the boundary layer. If the
number of cells inside the boundary layer is too low then the numerical techniques

used cannot be expected to resolve the boundary layer gradients properly.

A theoretical profile of u+ versus y+ through a boundary layer is shown in Fig-
ure 7.31. Comparison of this plot with the profiles obtained from these simulations

demonstrates the difficulty in modelling all aspects of a boundary layer.
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Figure 7.31: A plot of u+ versus y+ based on a theoretical representation of a boundary
layer. Reproduced from Wilcox [244].
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Figure 7.32 shows the u+ versus y+ plots for the boundary layers growing behind
the shock on the coarse resolution mesh. Separate profiles were extracted across
the radius of the tube, at 100 mm intervals from the shock, through the growing
boundary layer. The laminar boundary layer is shown on the left and the boundary

layer utilising the turbulence model is shown on the right.
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Figure 7.32: Profiles of u+ versus y+ for the laminar (left) and turbulent (right) growing
boundary layers behind the shock on the coarse resolution mesh.

The left most point shows the values from the inner most cell in the boundary
layer. These profiles all follow the same line through the boundary layer. This would
be expected since each profile is through a larger section of the same boundary layer,
modelled on the same mesh. The points corresponding to cells outside the boundary
layer all have the same axial speed and therefore lie on a flat line of u+. The effect
of the growing boundary layer is seen in the movement away from the wall of the

points in the flat line.

The use of the Baldwin-Lomax eddy viscosity model [11], accounting for tur-
bulence in the boundary layers, has a significant effect on the simulated boundary
layers. The model makes the boundary layers significantly thicker, thereby increas-
ing the number of cells that are inside the boundary layers. This has the effect of
increasing the ability of the numerical schemes to resolve the boundary layers. For
example, in the profile closest to the shock, which is at the thinnest part of the
boundary layer, the turbulent simulation has seven cells inside the boundary layer.
This number increases along the growing boundary layer. Across all of the profiles,
the simulated laminar boundary layers have between one and two points inside the

boundary layer; too little to be able to provide adequate resolution.

Figure 7.33 compares the u+ versus y+ plots for the boundary layers growing
behind the shock on the coarse and fine resolution meshes, both incorporating the
turbulence model. The improvement in the resolution of the mesh, with more cells

in the boundary layers and across the radius of the tube is seen between the two
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meshes. The same characteristics are evident in the plots in that the points through

the boundary layer are co-linear.
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Figure 7.33: Comparison of the profiles of u+ versus y+ for the growing boundary layer
behind the shock for the coarse (left) and fine (right) resolution meshes.
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7.3.3 Shock Reflection Process

When the shock reaches the end of the shock tube it reflects from the downstream
end of the tube. The shock reflection process has an important impact on the
resulting flow, influencing the interaction between the resulting reflected shock and

the boundary layer, and introducing significant fluctuations into the test flow gas.

In the blanked end case, this reflection is simple. With the Mach 4 nozzle cases,
the shock reflection is from the curved surface of the nozzle mouth and the secondary
diaphragm. This difference in the reflection process contributes to the differences
observed in the experimental results from the blanked end case and the nozzle case,

which, for the Nitrogen driver, both use the same conditions.

Sequence of the Reflection

Figures 7.34 and 7.35 show a sequence of numerical Schlieren frames of the reflection
of the shock from the Mach 4 nozzle throat. The frames are taken at 10 us intervals

starting at 2.69ms. The Helium driver case simulation is used.

The first two frames show the incident shock approaching the nozzle. The bound-
ary layer on the shock tube walls is also evident. In the frame at 2.71 ms, the shock
first reaches the nozzle surface. The shock gradually reflects from the nozzle surface
over the next two frames, as the shock reflection moves along the convergent section

of the nozzle.

The part of the incident shock near the centreline reflects from the secondary
diaphragm in the throat of the nozzle. As the pressure against this diaphragm
increases to 300 kPa, the simulated diaphragm is assumed to be instantaneously
removed. This diaphragm is ruptured so quickly that no upstream reflection of the

shock is evident. As this diaphragm is removed the flow expands into the nozzle.

The reflection of the shock from the nozzle surface moves outwards from the
nozzle surface, in an upstream direction and across the flow. A Mach disk forms on
the nozzle centreline as this reflected shock crosses its matching reflection from the
other wall. This is shown in the figure at 2.75ms. The resulting triple point moves
upstream and away from the nozzle centreline. As this triple point moves through
the flow it leaves a contact surface between the gases processed by the Mach stem, or
by the two segments of the reflected shock. An important feature, noted by Jacobs
[111], is the formation of a vortex at this contact surface. This vortex moves slowly
upstream and remains present in this region until it is swept out of the flow by the

nozzle expansion or by the arrival of the contact surface.

The reflection of the shock reflects from the opposing side of the nozzle mouth for

a second time. This shock, labelled in the frame at 2.78 ms, moves quickly upstream
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and, by the frame at 2.81ms, coalesces with the main reflected shock. Further

reflections continue this trend, but the shocks decrease in strength as they continue.

While the reflected shock moves upstream, it continues to coalesce with other
shocks and the triple point moves outwards towards the wall. Through this process
the reflected shock becomes planar. The inherently stable nature of the shock is

demonstrated in this reflection process.

The significant fluctuations in the nozzle supply region left by this process are
evident in the later frames in the sequence. The steady shocks through the nozzle

are also beginning to form by the later frames.

Similar nozzle reflection processes are described in more detail by Tokarcik-
Polsky and Cambier [234] and Lee [128].



232 Simulations of the Drummond Tunnel Facility
2690 s secondary diaphragm
2700 pis
R
I
2710 ps
N
2720 ps gradual reflection
/
\I\_/
2730 ps
\/
2740 us
xﬂ/
2750 ps | nozzle startup waves
2760 pis

Figure 7.34: Part one of the sequence of numerical Schlieren images showing the shock
reflection process from the nozzle throat. The Helium driver case simulation is used. The
frames start at 2.69ms and are at 10u s intervals.
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Figure 7.35: Part two of the sequence of numerical Schlieren images showing the shock
reflection process from the nozzle throat. The Helium driver case simulation is used. The
frames start at 2.77ms and are at 10u s intervals.
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Effect of Mesh Resolution

Figure 7.36 shows the effect of mesh refinement on the simulation of the shock
reflection process. Differences between the three frames is minimal. The position
of the contact surface, and therefore the locus of the triple point appears to be
unchanged. The most obvious of differences between the frames is in the position of
the second reflection of the shock. This is a fast moving shock and the differences in
the position of this shock are almost certainly due to the time misalignment of the
frames. The physics of the shock reflection process is not believed to be influenced

by mesh refinement.

Refinement of the mesh resulted in a slight increase in the speed of the shock
along the shock tube. This difference in shock speed meant that these frames were
realigned to account for the difference in shock arrival time. The frames were at-
tempted to be aligned with the fine resolution of mesh at 2700 us. The resulting
coarse and medium meshes are shown at 2715 and 2708 pus respectively. Differences
in the frames are largely due to time misalignment still present between these three

frames.

coarse mesh resolution

M

medium mesh resolution

fine mesh resolution

Figure 7.36: The effect of the mesh resolution on the modelling of the diaphragm rupture
process. Numerical Schlieren contours are shown, comparing the shock reflection process
for the coarse (top), medium (middle) and fine (bottom) meshes. The frames are shown
at 2715, 2708 and 2700 us respectively.
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7.3.4 Interaction Between the Reflected Shock and
the Boundary Layer

After the primary shock reflects from the end of the shock tube, it must move
back upstream through the boundary layer. As was discussed in Section 2.1.6, the
momentum deficient boundary layer material does not have enough monentum to
cross the normal shock. Since it cannot cross the shock, boundary layer material
builds up at the foot of the reflected shock and is carried upstream with it. The gas
passing around this foot material passes through two oblique shocks, rather than the
normal shock across the centre of the tube, and emerges from these shocks with a
higher velocity than the core flow. This is combined with a venturi effect as the gas
is accelerated through the contraction in area between the boundary layer material.
The result is a jetting of gas near the walls of the tube which has, in the literature,
been believed to be the cause of driver gas contamination, by jetting driver gas

material as the contact surface reaches the reflected shock [228, 46].

This jetting process has a number of effects on the operation of the shock tube,
introducing significant levels of fluctuations into the stagnation region, and con-
tributing to the process of driver gas contamination. The process also leads to
fluctuations of the properties behind the shock structure, and results in test flow

noise.

Figure 7.37 shows contours of pressure in the region of the reflected shock inter-
action with the boundary layer. In the region behind the normal shock, the flow is
stagnated; however, the flow that passes through the oblique shocks emerges from
these shocks at a lower pressure. This gas influences the region between the ring
of shock foot material by lowering the pressure of the gas in towards the centre-
line. The lower pressure gas in this region is stagnated by a series of shocks across
the tube at the downstream end of the shock foot. These shocks are referred to
in the literature as the pseudo shock train [144, 167]. This shock train means that
as the structure moves upstream it leaves the gas essentially stagnated. The figure
also shows that the pressure of the gas in the shock foot is in equilibrium with the

surrounding gas.

Figure 7.38 shows contours of axial velocity in the region of the reflected shock
interaction with the boundary layer. The stagnation of the gas through the normal
shock is evident. The gas which moves through the oblique shocks emerges with a
positive velocity. It continues to move with this velocity around the shock foot, until
it is stagnated by the shocks at the tail end of the shock foot. This figure seems to
suggest that, although gas is projected around the shock foot by the oblique shocks,
any sustained jetting of the gas would be limited by the shocks at the tail end of
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Figure 7.37: Contours of pressure in the region of the reflected shock interaction with
the boundary layer.

the shock foot. The gas near the centreline of the tube has a positive velocity due
to the influence of the gas from the oblique shocks, but this gas is also stagnated by
the tail end shocks.
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Figure 7.38: Contours of axial velocity in the region of the reflected shock interaction
with the boundary layer.

The normal segment of the reflected shock is curved across the radius of the tube.
This is due to the gradient of pressure on the downstream (towards the nozzle) side
the shock. This gradient results from influence of the lower pressure gas which

emerges from the oblique shocks.

Comparison of the Simulated and Experimental Interaction

The effect of the interaction between the reflected shock and the boundary layer
is evident in the experimentally recorded supply pressure transducer traces. The
leading arm of the lambda shock and the boundary layer material at the foot of the
shock pass over the supply pressure transducer as they move upstream. The initial
sharp rise in pressure is due to the passage of the leading arm of the lambda shock
foot. Following this there is a gradual rise in pressure through the material in the

shock foot to the post shock pressure level.

Figure 7.39 shows supply pressure transducer traces in the region of the inter-
action process. The Helium driving Nitrogen case simulations are shown, assuming
laminar boundary layers on the left and with turbulent boundary layers on the right.

Both the simulated and experimental pressure trace are shown for comparison.
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Figure 7.39: Supply pressure transducer traces in the region of the interaction between
the reflected shock and the boundary layer. The period of time for which the shock foot
is passing over the transducer is labelled on the figure. The Helium driving Nitrogen case
is shown, with the laminar simulation shown on the left and the turbulent case shown on
the right. The experimental and simulated traces are shown.

It can be seen in the pressure profile obtained using the simulation that assumes
laminar boundary layers, that the boundary layer is not thick enough to cause
significant bifurcation of the foot of the reflected shock. The laminar has a sharp
profile with the pressure rising rapidly to the post shock pressure. This indicates that
insufficient boundary layer material has been entrained at the foot of the shock. The
over-estimation of the final shock pressure that is evident in the trace is unrelated

to these aspects of the boundary layer interaction process.

In the trace from the turbulent simulation, the same sharp in rise resulting from
the passage of the front arm of the lambda shock is evident; however, it is then
followed by a sharp plateaued profile through the material at the foot of the shock,
rather than the gradual rise in the experimental trace. This difference is caused by
a difference in the pressure profile through the material in the foot of the shock.
The Baldwin-Lomax eddy viscosity model [11] adds a component onto the viscosity
to account for the turbulent fluctuations near the walls. This increased viscosity
causes the boundary layers to be much thicker and, as a result, a thicker layer of

gas cannot cross the normal shock, instead building up at the shock foot.

Despite the large deviations in the pressure traces, there are aspects of the in-
teraction process that are reproduced much more accurately with the turbulent
simulations. The pressure histories are recorded, in both the simulation and exper-
iment, inside the boundary layer. This makes this trace particularly susceptible to
the details of this interaction process and to the properties of the gas inside the
shock foot. Even though the simulated pressure trace diverges from the experimen-
tal trace for the period while the foot material is passing over the transducer, there

is still significant support given to the simulation being an accurate representation
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of the flow:

1. the duration for which the shock foot passes over the transducer is accurately

predicted by the simulation
2. the pressures before and after interaction are predicted accurately.

This difference in the traces is also evident in the literature, as was shown in Sec-
tion 3.3. No simulations in the literature show a gradual rise in pressure through
the shock foot material and all simulations show the same type of plateaued profile

seen in these simulations.

The effect of the 5 mm width of the pressure transducer was investigated by using
multiple history cells, covering the width of the transducer, in a simulation. The
values from these history cells were averaged to obtain an average value for the area

of the gauge. This had very little effect on the pressure trace.

An error in mounting height could also cause inaccuracy in recording the pressure
trace. The mounting of the transducer was inspected and was found to have been
mounted with a fine tolerance, making it unlikely that mounting height would have

an influence on the trace.

The response time of the transducer was estimated to be of the order of 2 us
[211, 54]. This is unlikely to be responsible for an inaccurate profile of pressure

through the shock foot as this takes a total of 250 us to pass the transducer.

Effect of Turbulence on the Interaction

As was discussed in Section 2.1.3, the boundary layers on the shock tube walls
are almost completely turbulent. Turbulence in the boundary layers It is known
from other experimental studies, including the original paper on this process by
Mark [141], that the interaction changes significantly with transition in the bound-
ary layer; this was discussed in Section 2.1.6. It is believed that the differences
observed between the experimental and simulated wall pressure profiles are caused

by approximations regarding the simulation of turbulence.

The simulations solve the Reynolds Averaged Navier-Stokes (RANS) equations.
These equations time average the fluid motion, removing any motion in the flow
resulting from turbulent fluctuations. This is an important aspect of simulations,
meaning that turbulent fluctuations in the boundary layers are not directly included
in the simulations. The real turbulent boundary layer is composed of fluctuating
turbulent eddies. Figure 2.6 demonstrates the magnitude of these fluctuations that
would be expected. These turbulent eddies would enter the shock foot in an un-

steady manner, unlike with the laminar boundary layer material. The additional
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energy that these eddies carry may even allow boundary layer material to cross the
shock intermittently. Comparison between the simulated and experimental pressure
traces shows that the amount of material in the shock foot is predicted accurately;
however, it is likely that the turbulent fluctuations in the boundary layer would have
a significant effect of the properties of the gas in the shock foot. With turbulent
boundary layer material entering the shock foot, the shock foot would be unsteady,
and the resulting profile of pressure through this shock foot would, in detail, be
different to that predicted by a simulation assuming a thick, but steady boundary

layer.

In addition to the RANS approximation, the movement of gases in the simula-
tions are restricted by the imposed axisymmetry, which does not allow any out of
plane motion of the gases. At later times, large vortices are seen to be generated
by the reflected shock interaction process. In the real flow these vortices would

degenerate into turbulence through the process of vortex stretching.

Sequence of the Interaction

Figure 7.40 shows a sequence of numerical schlieren frames of the flow in the region
of the flow in which the interaction of the reflected shock with the boundary layer
is occurring. These frames follow on from the sequence of shock reflection process
in Figures 7.34 and 7.35.

In the first frame of the sequence, material can be seen building up at the foot
of the reflected shock almost immediately. As the reflected shock moves upstream,
additional material builds up at the shock foot. The length of the separated region
can be seen to increase along through the sequence. At later times vortices can be
seen to be shed from the entrained material at the foot of the reflected shock. These

vortices are shed as the mass reaches some critical level.
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Figure 7.40: Sequence of numerical Schlieren images showing the interaction of the re-
flected shock with the boundary layer. The Helium driver case is considered. The frames
start 2.760ms after the arrival of the incident shock at the supply pressure transducer and
are at 40 us intervals.
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Influence of the Shock Reflection Process

The size of the interaction region recorded by the pressure traces is significantly
different between the blanked end and the Mach 4 nozzle cases (with the Nitrogen
driver). This difference is evident in both the experimental and simulated traces,
in Figure 7.41 Apart from the detail of the pressure rise through the region, the

simulations reproduce other important aspects of the experimental traces.
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Figure 7.41: Supply pressure transducer traces for the Nitrogen driving Nitrogen cases
with the blanked shock tube end (left) and the Mach 4 nozzle (right). The experimental
and simulated traces are shown. The traces are focused on the region in which the shock
boundary layer interaction is evident.

This is a significant result since the operating conditions are almost identical and
so must result from the geometry differences. The shock reflection in the blanked
end case is simple; however, in the nozzle case the reflection is complicated and
the reflected shock is coalesces from at least three reflections of the shock from
the nozzle surface. This shock formation occurs as the boundary layer interaction
process has already begun. The reflection process from the nozzle surface is shown
in Figures 7.34 and 7.35. Another difference caused by the geometry is the flow of
material over the structure as the test gas is expanded through the nozzle mouth.
This means that the flow, and the boundary layer with it, is expanded towards the
nozzle, increasing the rate of flow into, and over, the shock foot. In addition to
these differences, the distance that the reflected shock has travelled upstream before

it reaches the transducer is greater in the Mach 4 nozzle case.

Figure 7.42 shows numerical Schlieren images of the interaction of the reflected
shock with the boundary layer. The interaction resulting from reflection from the
blanked end is shown on the top and resulting from reflection from the nozzle is
shown on the bottom. The separation length is slightly shorter for the blanked end
case. This does not completely account for the difference in the traces observed

in Figure 7.41. The reflected shock travels upstream at least 10% faster in the
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blanked end case. This is believed be a result of the flow of material into the nozzle
not occurring in the blanked end case. The combination of the increased shock
speed and the slightly shorted separation distance is responsible for the differences

observed in Figure 7.41.

reflection from the blanked end

reflection from the nozzle

Figure 7.42: Comparison of numerical schlieren contour plots comparing the interaction
of the reflected shock with the boundary layer following the reflection of the shock from
the blanked shock tube end (top) and the nozzle (bottom)
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Effect of Mesh Resolution

Figure 7.43 shows frames from the coarse, medium and fine meshes, demonstrating
the effect of mesh refinement on the interaction process. These frames are from the
Helium driving Nitrogen case. Comparison of these frames shows that there are no
significant differences in the characteristics of the flow. As expected, sharper images

are produced with the medium and fine meshes.
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Figure 7.43: The effect of the mesh resolution on the modelling of the interaction of the
reflected shock with the boundary layer. Numerical Schlieren images are shown, comparing
the simulated flow for the coarse (top), medium (middle) and fine (bottom) meshes. The
frames are shown at 300 us
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7.3.5 Jetting of Gas Through the Reflected Shock

The jetting of gas through the bifurcated foot of the reflected shock is an important
feature of the operation of a shock tunnel. This process results in the introduction
of significant noise into the test flow and plays a role in the contamination of the
test flow with driver gas. Sudani and Hornung [228] state: “It is widely accepted
that the driver gas (normally Helium or a mixture of Helium and Argon) passing
through the bifurcated foot of the reflected shock causes early contamination of the

test gas in the reservoir condition”.

It is known, from sources in the literature and from this study, such as Fig-
ure 7.38, that the gas passes through the oblique shocks at the foot of the shock
with a higher axial velocity than the gas moving along the centre of the tube, through
the normal shock. The degree of sustained jetting of gas cannot be determined di-
rectly from these sources, and the conclusions reached in the past, on the degree of
sustained jetting has largely been based on indirect evidence of the jetting, such as

streamline plots.

Temperature contours, as used in the visualisation of the interaction by Wilson,
Sharma and Gillespie [247], are sensitive to the jetting of the test gas, before the
contact surface interaction. In the figures showing this interaction, the jetting of gas
showing temperature differences is shown, both before and after the contact surface
interaction. As a result the interaction resulting from the arrival of the contact
surface is difficult to distinguish from the previous jetting. Streamlines and vectors,
as used by Weber, Oran, Boris and Anderson Jr. [240], are difficult to interpret
for late time evolution of the transient flow fields studied here. In addition, in
many previous studies, the generation of vorticity in the simulations will be under-

estimated due to the planar contact surface profile used in those simulations.

It is not certain whether this jetting persists far past the shock structure, as
when the gas passes behind the foot material, it passes through the oblique shock
train and reduces in speed. In order to provide a direct measure of the jetting of
driver gas through the bifurcated foot of the reflected shock, two strips of gas across
the radius of the shock tube were tagged, one ahead of and one behind the reflected
shock. These two strips of gas were then allowed to evolve in time as the reflected
shock structure moves upstream. This part of the investigation does not include
the interaction of the reflected shock with the contact surface; it is only concerned
with the jetting of test gas material as the reflected shock moves through the test
gas slug. The interaction of the reflected shock with the contact surface, and its
subsequent effect on the jetting of gas through the bifurcated shock foot, will be

discussed later in Section 7.3.7.
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Sequence of the Jetting

Figures 7.44 and 7.45 show the sequence of the flow, starting with the reflected shock
part way moving upstream through the test gas slug. Numerical schlieren is shown
in the upper half of the frame and the mass fractions of the two tagged gases (in
blue) is shown on the lower half the frame. This sequence is taken from one of the

full shock tunnel simulations of the Helium driving Nitrogen case.

The initial strips of gas can be seen in the first frame at 3000 pus. The strips are
slightly curved due to the body fitted mesh that they were aligned with.

In the frame at 3020 us, the front strip can be seen to enter the shock structure.
A slight relative movement of the gas that passes through the oblique shocks, to
the gas that passes through the normal shock is evident; however, as the frames
progress, no sustained jetting of any part of the strip is evident. By the frame at
3140 ps, the front strip of gas has completely passed through the shock structure
and has emerged from the pseudo shock train. The section of the strip near the wall
is slightly downstream of the rest of the strip, but there is little remaining jetting

motion.

As the sequence progresses to later times, the movement of the wall gas towards
the nozzle is largely driven by the flow of the test gas into the nozzle. The movement
of the back strip of gas is more strongly influenced by the drainage into the nozzle

than the front strip.

In this simulation a slight relative movement of the gas near the wall, relative to
gas near the middle is evident; however, this is not a sustained jetting of the degree
that would cause this effect to be responsible for driver gas contamination. The
start of the interaction of the reflected shock with the contact surface is evident in
these frames. It will also be shown in Section 7.3.7 that the generation of vorticity
at the interaction of the reflected shock with the contact surface acts to stop the
jetting. These two observations mean that it is highly unlikely that jetting of gas

through the shock foot is mainly responsible for driver gas contamination.
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Figure 7.44: Part one of the sequence of numerical Schlieren images (upper half of frames)
and tagged mass fractions (lower half of frames) showing the jetting of test gas caused by
the reflected shock with the boundary layer. Helium driver with the Mach 4 nozzle.
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Figure 7.45: Part two of the sequence of numerical Schlieren images (upper half of frames)
and tagged mass fractions (lower half of frames) showing the jetting of test gas caused by
the reflected shock with the boundary layer. Helium driver with the Mach 4 nozzle.



248 Simulations of the Drummond Tunnel Facility

7.3.6 Contact Surface Evolution and Characteristics

Unlike the shock, which rapidly becomes planar, the contact surface is not inherently
stable and does not become planar; the shape of the contact surface continues to
deform as it propagates along the shock tube. This evolution is driven by viscous
drag from the boundary layers and by its stability properties. The characteristics of
the contact surface play an important role in simulations aiming to predict driver

gas contamination.

Effect of Diaphragm Rupture

The contact surface evolution is driven initially by the rupture mechanics of the
primary diaphragm, as was discussed in Section 7.3.1. In the diaphragm rupture
process, the contact surface is repeatedly affected by transverse waves, depositing
vorticity with each pass. The resulting gradient in the velocity of the driver gases
across the tube, with the gas near the wall moving significantly faster than gas near
the centreline, causes an outward mixing motion at the contact surface. Both of

these effects combine to promote deformation at the contact surface.

Figure 7.14 shows the experimentally recorded contact surface profile across the
tube with the iris based rupture model and Figure 7.13 shows the profile without
this model. The shape of the contact surface recorded by the heat flux rake shows
that it is more curved than would be caused by the boundary layer. If the contact
surface was influenced by only the boundary layers, then the profile across the tube
would be rounded through the width of the boundary layers, with a planar profile
across the rest of the tube. This is not the profile that is recorded. It is the combined
action of the initial deformation and the mixing along the tube that is believed to

result in the contact surface shape recorded in the experiments.

Stability of the Contact Surface

The flow of test gas into the boundary layers on the walls of the shock tube can,
under some conditions, cause the contact surface to accelerate as it moves along
the length of the shock tube [207]. It was shown for the two operating conditions
considered in this thesis, in Figures 7.6 and 7.19, that the contact surface accelerates
along the length of the shock tube. This is true more for the Helium driving Nitrogen

case.

This acceleration means that the contact surface will be unstable, due the com-
pressible form of the Rayleigh-Taylor instability, for low configurations in which the

density of the driver gas is less than the density of the driven gas at the contact
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surface [26]. This has an effect the same as a heavy gas being on top of a light gas

under a gravitational acceleration.

Figure 7.46 shows profiles of density along the shock tube centreline from the
primary diaphragm to past the incident shock for the Nitrogen driving Nitrogen
case (left) and the Helium driving Nitrogen case (right). These traces demonstrate
that, although the Nitrogen driving Nitrogen case has a higher density in the driver
gas making it stable, the Helium driving Nitrogen case has a discernible decrease
in density across the contact surface making it unstable as it progresses along the
tube.
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Figure 7.46: Centreline density profile from the primary diaphragm (at -3.02m) to past
the incident shock. The Nitrogen driving Nitrogen case is shown on the left and the Helium
driving Nitrogen case is shown on the right.

This instability is evident in the shape of the contact surface as it progresses along
the tube. Figure 7.47 shows the resulting contact surface shape for the Nitrogen
driving Nitrogen case. The effect of the diaphragm rupture mechanics on the contact
surface evolution is also shown in this figure (as is discussed in Section 7.3.1. Tt can
be seen that this contact surface is stable and it reaches a steady profile along the

tube. This was suggested by the combination of Figure 7.46 and Figure 7.5.

Figure 7.48 shows the resulting contact surface shape for the Helium driving
Nitrogen case. It can be seen in this figure that this contact surface is unstable,
as was suggested by combination of Figure 7.46 and Figure 7.18. The dense driven
gas can be seen to be penetrating the light driver gas with the fingers of heavy gas
that are characteristic of the Rayleigh-Taylor instability as the gas travels along the
tube.

The outward mixing motion caused by the diaphragm rupture model shows a
similar structure to the Rayleigh-Taylor instability. This makes the two effects dif-
ficult to distinguish from one another; however, the relative levels of mixing evident

in Figures 7.48 and 7.47 demonstrate the two effects occurring in isolation.
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Figure 7.47: Contact surface shape for the Nitrogen driving Nitrogen case resulting from
the ideal removal of the diaphragm (top) and the iris based diaphragm rupture model
(bottom).
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Figure 7.48: Contact surface shape for the Helium driving Nitrogen case resulting from
the ideal removal of the diaphragm (top) and the iris based diaphragm rupture model
(bottom).

Effect of Mesh Refinement

It is important to identify any mesh dependent behaviour of this development. Fig-
ure 7.49 shows the resulting contact surface from the coarse (top), medium (middle)
and fine (bottom) meshes, for the Helium driving Nitrogen case. As the mesh is re-
fined there is a noticeable increase in the level of mixing; however, the same general

characteristics are evident.

Limitations of the Simulation

The contact surface deforms under the influence of the diaphragm rupture (through
the generation of vorticity and the radial velocity gradient), and under the influence
of drag from the boundary layers and its inherent stability or instability. Much of the
physics leading to the characteristics of the contact surface are modelled; however,
there are some important physical processes, such as free stream turbulence and
molecular diffusion that are not. It is believed that these effects may be responsible

for the shape of the contact surface being too sharply defined.

The experimental results indicate that there is more mixing at the contact surface
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Figure 7.49: Effect of mesh refinement on the contact surface evolution and resulting
shape. The coarse mesh is shown on the top, the medium mesh in the middle and the fine
mesh on the bottom. The simulation of the Helium driving Nitrogen case is used.

than in the simulations. This difference between the simulation and experiment is

evident in:

1. the contact surface arrival measured by the rake of heat flux probes (evident

in the Nitrogen driving Nitrogen with the blanked end case)

2. the sharply defined arrival of tailoring waves at the pressure transducer (evi-

dent in both Nitrogen driving Nitrogen cases)

3. the heat flux gauge trace, which indicates mixing of the contact surface both
forward and backward from the position that it is located in the simulation

(evident in all cases)

It was shown in Figure 7.14 that the simulations, incorporating the effect of
the diaphragm rupture mechanics, reproduced the mixing length at the contact
surface. The levels of mixing observed in the simulated contact surface would result
in the acceleration of mixing and the generation of turbulence. It has been observed
experimentally that the contact surface is predominantly a region of turbulence,
engulfing significant parts of both the driver and driven gases [255]. It is therefore
reasonable to expect that the differences observed in the shape of the contact surface
result from the turbulent, mixed profile that would be present in the real shock
tunnel, but result from the two physical processes that are not modelled in the
simulation. Although the effect of turbulence in the boundary layers is accounted
for by an eddy viscosity model [11], no attempt has been made to account for

turbulence in the core flow following the incident shock.
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Sequence of Images of the Contact Surface

Figure 7.50 shows the evolution of the contact surface for the Nitrogen driving
Nitrogen case. It can be seen in this sequence that the evolution of the contact
surface is driven by the mixing initiated by diaphragm rupture. The outward motion
imposed on the outer gas forces it forward along the tube wall. As this outer gas
pushes forward, it folds back on itself and continues to move forward as a loop of

gas. There is no indication of further instability in the contact surface.

Figure 7.51 shows the evolution of the contact surface for the Helium driving
Nitrogen case. In addition to the mixing caused by the diaphragm rupture model,
the effect of the Rayleigh-Taylor instability is evident in the evolution of this contact
surface. The outward flow of material resulting from the diaphragm rupture is not
as defined as in the Nitrogen driving Nitrogen case and the region of mixing is seen
to be dominated by the penetration of the heavy driven gas into the light driver gas

along the centreline.
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Figure 7.50: The evolution of the contact surface along the shock tube for the Nitrogen
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Figure 7.51: The evolution of the contact surface along the shock tube for the Helium
driving Nitrogen case.
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7.3.7 Simulations of Shock Contact Surface Interaction

The representation of the interaction between the reflected shock and the contact
surface is crucial to the accurate simulation of a reflected shock tunnel. In addition to
producing tailoring waves and introducing fluctuations to the nozzle supply region,
this interaction process can also result in the projection of driver gas into the test

flow.

The modelling of shock tunnels cited in the literature have only modelled the
end of the shock tube. The assumptions resulting from only modelling part of a
facility have a significant effect on these simulations. Figure 7.52 shows a schematic
representation of the interaction process as it was modelled by Wilson, Sharma and
Gillespie [247]. An important feature evident in this schematic is the representation
of the contact surface as a planar, discontinuous interface. Similar assumptions
were also made in other studies, such as Chue and Eitelberg [45]. The focus of these
simulations were on the jetting of gas through the foot of the reflected shock and
were relatively unconcerned with the characteristics of the contact surface.
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Figure 7.52: Schematic representation of the interaction process as modelled by Wilson
et al. [247].

The present simulations show an interaction that occurs between the evolved
contact surface and the reflected shock following its interaction with the boundary
layer. The contact surface shape is dependent on its initial properties, from the
rupture of the primary diaphragm, and its stability and resulting evolution along
the shock tube, as was discussed in Section 7.3.6. The characteristics of the reflected
shock are a result of the facilities operating conditions, the level of attenuation
along the shock tube, the reflection process from the end of the shock tube and its
interaction with the boundary layer. The process affecting the reflected shock have

been discussed throughout Section 7.3.

The further interaction of the reflected shock with the contact surface can be
characterised as a form of the Richtmyer-Meshkov instability [25]. The flow following
this interaction is dominated by the effects of this instability. Its driving mechanism

can be described in terms of the generation of vorticity at the interaction.
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The level of tailoring of the contact surface defines much of how the interaction
of the contact surface with the reflected shock occurs. The interaction resulting
from the two levels of tailoring simulated in this thesis, one over-tailored and the

other roughly tailored, will be discussed separately.
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Over-tailored Interaction

Figures 7.53, 7.54 and 7.55 show a sequence of the interaction of the contact surface
with the reflected shock for the Nitrogen driving Nitrogen case. Numerical Schlieren
is shown in the upper half of the frames and mass-fractions are shown in the lower
half of the frames (with driver gas in blue and driven gas in yellow). This interaction

is with the over-tailored contact surface.

The first frames show the incident contact surface and the bifurcated reflected
shock. The effect of the diaphragm rupture model has resulted in the shape of
the contact surface. The interaction begins at the instant of the second frame, at
4700 ps. In these frames a series of vortices shed from the material at the foot of
the reflected shock are evident. These vortices are shed before the contact surface

interaction begins.

The driver gas moves predominantly through the oblique shocks near the shock
tube walls. This is partly due to the shape of the contact surface, but this also
occurs for simulations without the diaphragm rupture model and, therefore, with
contact surfaces with more planar shapes. In the frame at 5000 us, the driver gas
can be seen moving along the walls; however, this gas quickly moves back in towards
the centreline of the tube, as can be seen in the frame at 5200 us. This gas continues

to move along the centreline of the shock tube and towards the test flow.

The generation of a strong vortex at the head of the driver gas can be seen to
accelerate a some of the gas ahead of the main gas body. It has been observed by
Sudani and Hornung [228] that driver gas prematurely arrives in the test flow for
over-tailored conditions in the T5 shock tunnel. This premature arrival is potentially
caused by the same vorticity driven mechanism that is observed here. In the last
frame, at 6900 s, the main body of the driver gas is about to reach the nozzle. By
this time, the driver gas accelerated by the strong vortex has been in the test flow

for at least 0.5 ms.

This interaction process results in a complex structure to the reflected shock as it
moves upstream through the driver gas. This shock structure has been described as
the pseudo shock train [144], and can be seen to be forming in the frame at 4800 ps.
The structure becomes very complex through the frames up to 6100 us The late time

evolution of the flow would be dominated by turbulence.
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Figure 7.53: Part one of the sequence of numerical Schlieren images (top) and Driver gas
mass fraction (bottom) showing the over-tailored interaction of the reflected shock with
the contact surface. Nitrogen driving Nitrogen with the Mach 4 nozzle.
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Figure 7.54: Part two of the sequence of numerical Schlieren images (top) and Driver gas
mass fraction (bottom) showing the over-tailored interaction of the reflected shock with
the contact surface. Nitrogen driving Nitrogen with the Mach 4 nozzle.
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Figure 7.55: Part three of the sequence of numerical Schlieren images (top) and Driver
gas mass fraction (bottom) showing the over-tailored interaction of the reflected shock
with the contact surface. Nitrogen driving Nitrogen with the Mach 4 nozzle.
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Roughly-Tailored Interaction

Figures 7.56, 7.57 and 7.58 show a sequence of the interaction of the reflected shock
with the contact surface for the Helium driving Nitrogen case. Numerical Schlieren
is shown in the upper half of the frames and mass-fractions are shown in the lower
half of the frames (with driver gas in blue and driven gas in yellow). This interaction

is with the roughly tailored contact surface.

The first frame, at 3100 us, shows the incident contact surface and the reflected
shock at the starting instant of their interaction. The contact surface can be seen
to be significantly affected by its evolution through the shock tube. As with the
over-tailored case, the driver gas can be seen to move predominantly through the
oblique shocks at the foot of the reflected shock. A vortex is shed from the shock

foot ahead of the contact surface.

A significant amount of vorticity is deposited in the contact surface as it moves
through the reflected shock. When the reflected shock, laden with vorticity reaches
the trailing edge, the vortex spins up in the wake of the shock foot. The vortex ring
is formed by the vorticity generated through the shock interaction and is contributed
to by its formation in the wake of the upstream motion of the material in the shock
foot. The initial formation of this vortex is evident in the frames from 3240 us
through 3400 ps.

The motion caused by this vorticity is in a direction as to stop the jetting through
the shock foot; this was also observed by Chue [43]. This is a tailored contact surface
interaction and the driver gas does not continue to move downstream immediately

following this interaction.

A strong vortex is seen to be forming the head of the tailored driver gas. It
becomes more defined as it is drawn towards the centreline of the shock tube and
accelerates axially along the shock tube towards the nozzle and the test flow. This
vortex moves along the shock tube centreline with constant axial velocity through
the frames from 3420 s to the end of the sequence. The rest of the gas is shown to
be stopped by the reflected shock, as would be expected with the tailored mode of
operation. Significant vortical motion is also evident in this, otherwise stationary,
gas. The vortex that was seen to be shed from the foot of the reflected shock can

be seen to move along the shock tube ahead of the driver gas vortex.

This vortex and its effect on contamination of the test flow will be discussed in
Section 7.3.9, which includes a sequence of the motion of the driver gas following

this sequence.

As with the Nitrogen driving Nitrogen case, the late time evolution of the flow

would be dominated by turbulence.
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Figure 7.56: Part one of the sequence of numerical Schlieren images (top) and Driver
gas mass fraction (bottom) showing the tailored interaction of the reflected shock with the
contact surface. The Helium driver case simulation is used. The frames start at 3.10 ms
and are at 20 us intervals.



262 Simulations of the Drummond Tunnel Facility

3340 ps S Vvortex rollup

Y,W@ ,x JF

et ——

I_-- ),

g

f\
j
QA
\4

3380 us

gﬁ%@;

3400 ps

Figure 7.57: Part two of the sequence of numerical Schlieren images (top) and Driver
gas mass fraction (bottom) showing the tailored interaction of the reflected shock with the
contact surface. The Helium driver case simulation is used. The frames start at 3.26 ms
and are at 20 us intervals.
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Figure 7.58: Part three of the sequence of numerical Schlieren images (top) and Driver
gas mass fraction (bottom) showing the tailored interaction of the reflected shock with the
contact surface. The Helium driver case simulation is used. The frames start at 3.42 ms
and are at 20 us intervals.
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Effect of Mesh Refinement

Figure 7.59 shows the effect of mesh refinement on the interaction of the reflected
shock with the contact surface. The coarse resolution mesh is shown on the top, the
medium resolution mesh in the middle and the fine resolution mesh on the bottom.
The three frames are taken at the same time after the start of the simulation and,
therefore, the three frames appear further in time as the mesh is refined, due to
the slightly higher shock speed along the shock tube. The same characteristics
of the interaction are evident in the three frames, but the interaction appears to
occur closer to the nozzle for the coarser meshes. A similar flow field is evident
between the medium and fine meshes supporting the assertion that the simulation
of the interaction on the fine mesh has reached mesh resolution independence. An
important feature of these frames is that the strong vortex described in the previous
section can be seen to form in all three cases; the vortex is in the early stages of

formation in the coarse mesh frame.

coarse mesh resolution

medium mesh resolution

fine mesh resolution

Figure 7.59: Effect of mesh refinement on the interaction of the reflected shock with the
contact surface for the Helium driving Nitrogen case. The coarse mesh is shown on the
top, the medium mesh in the middle and the fine mesh on the bottom.
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Generation of Vorticity

The previous figures showed that the evolution of the flow following the interaction of
the reflected shock with the contact surface is driven by the generation of vorticity
through the interaction. This vorticity is generated by the mis-alignment of the
density gradients with the shock pressure gradients (the baroclinic torque). This
process was described in Chapter 6, and the baroclinic torque term, Vp x Vp/p?,
was shown in Equation 6.1. The previous sequences of the interaction processes show
numerical Schlieren in the upper halves of the frames. The numerical Schlieren is
generated through the gradient of density, making it an indicator of where vorticity

will be generated by interaction with the pressure gradient of the reflected shock.

Figure 7.60, again shows a sequence tailored contact surface interaction with the
reflected shock. In this sequence, contours of the baroclinic torque are shown in the
upper half of the frames (in black) and the contours of the accumulated vorticity
are shown in the upper half of the frames (in red). The sequence of images of
these derived variables allows the driving mechanisms of this interaction and of the
Richtmyer-Meshkov instability to be illustrated.

As the contact surface is deformed by the vorticity that is generated, and as the
reflected shock moves through this gas, additional density and pressure gradients
are generated. These additional gradients interact with additional gradients and
the process of vorticity generation is amplified. The result of this is that the vor-
ticity continues to build in magnitude as gas continues to flow into the interaction
region. As the interaction progresses, the regions of black (where vorticity is being
generated) increase rapidly. In the frame at 3340 us, the vorticity generation region
extends from the shock structure back to head of the contact surface. The large
regions of red at this time are also evident in the lower half of the frames, including
two strong vortices, one at the head of the contact surface and one downstream of
it. The vortex at the head of the contact surface eventually propagates downstream

and into the test section, taking driver gas with it.
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Figure 7.60: Sequence of the interaction of the reflected shock with the contact surface.
The frames show the baroclinic generation of vorticity (in black on the top) and accumu-
lated vorticity (in red on the bottom). The Helium driver case simulation is used. The
frames start at 3.10 ms and are at 60 us intervals.
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7.3.8 Nozzle Test Flow

With the complete shock tunnel being simulated, the test flow can be reproduced.
The nozzle test flow pitot pressure profiles were shown in Section 7.2. The pitot
pressure traces indicate that the simulations accurately reproduce the test flow,

including all of the transient features.

Turbulence in the boundary layers on the walls of the nozzle have a significant
impact on the resulting test flows. As the flow is expanding through this region,
the turbulent boundary layers increase in size dramatically. Without the turbulence
model, the under-predicted boundary layer thickness means that, even with the
pressure accurately predicted in the nozzle supply region, the nozzle test flow pitot

pressure will be lower than that measured in the experiments.

Sequence of the Nozzle Start-up

Figure 7.61 shows the nozzle startup sequence. This sequence shows contours of
the divergence of the velocity field. Numerical Schlieren contours (which were used
in previous sequences) do not show the field throughout the expansion through the
nozzle, because the density gradients in the nozzle supply region are much stronger
than in the test flow.

The nozzle flow is initiated by the rupture of the secondary diaphragm, which
is removed ideally in the simulations. This rupture is triggered by the sharp rise in
pressure at the arrival of the shock, and gas expands into the test section following
a series of startup waves. These startup waves consist of the primary shock, an
upstream facing shock, a contact surface separating these two shocks, the upstream
head of the unsteady expansion and the steady expansion back to the nozzle throat
[111]. The startup processes occurring in shock tunnel nozzles were first described
by Smith [214]. The processes are also described in more detail in Jacobs and Stalker
[111] and Lee [129].
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Figure 7.61: Part one of the sequence of nozzle startup. Contours of the divergence of
the velocity are shown.
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Figure 7.62: Part two of the sequence of nozzle startup. Contours of the divergence of
the velocity are shown.
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Figure 7.63: Part three of the sequence of nozzle startup. Contours of the divergence of
the velocity are shown.
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Test Flow Profiles

Figure 7.64 shows simulated profiles of test flow properties extracted 5mm down-
stream from the nozzle exit plane during the test time. The profiles are from the
Helium driving Nitrogen case simulation. The profile of Mach number shows the
steady profile of Mach 4 flow produced across the core flow. Two peaks in Mach
number are evident in the expansion at the nozzle edge, the inner jump being the
conical shocks shown leaving the nozzle in Figure 7.63. The profile of axial velocity
shows small fluctuations across the profile. In the profile of pressure the two steady

shocks that pass through the nozzle exit plane are evident.
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Figure 7.64: Profiles through the test flow 5 mm downstream of the nozzle exit plane. The
profiles are of axial velocity (top), Mach number (middle) and static pressure (bottom).
The profiles are taken from the flow development at 3.5 ms.
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7.3.9 Driver Gas Contamination

Of the two experimental cases simulated, neither was ended by the arrival of driver
gas in the test flow. Being a low-enthalpy facility, the Drummond Tunnel is less
susceptible to driver gas contamination than larger, high-enthalpy facilities such
as the T4 shock tunnel. The facility, and the simulations performed in this the-
sis, do provide a test-bed for investigating the mechanisms that lead to driver gas
contamination. If the simulations can accurately predict the interaction of the re-
flected shock with the contact surface, then these simulations, provide a method of

predicting driver gas contamination in reflected shock tunnels.

Figures 7.56, 7.57 and 7.58 showed a sequence of the interaction of the reflected
shock with the contact surface. The mode of operation is roughly tailored; however,
acceleration of driver gas towards the test flow is evident. Through the interaction
process, a significant amount of vorticity is generated at the head of the contact
surface. This resulted in the formation of a strong vortex, which is drawn towards
the shock tube centreline and accelerates axially along the shock tube. Figures 7.65
and 7.66 continue this description by showing a sequence of driver gas mass fraction
frames at later times. This sequence demonstrates the propagation of the vortex
along the axis of the shock tube and into the test flow. This vortex, carrying driver
gas material, represents a novel driver gas contamination mechanism that has not
been noted in the literature. Even through the bifurcated foot of the reflected shock
plays a vital role in the generation of the vortex, this contamination mechanism is

distinct the jetting of driver gas through the shock foot described previously [228].
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Figure 7.65: Part one of the sequence of driver gas contamination resulting from the
vortex that was described in Section 7.3.7. Driver gas mass fraction contours are shown,
with the driver gas in blue and the test gas in yellow). Helium driver case.
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Figure 7.66: Part two of the sequence of driver gas contamination resulting from the
vortex that was described in Section 7.3.7. Driver gas mass fraction contours are shown,
with the driver gas in blue and the test gas in yellow). Helium driver case.
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Figure 7.67 qualifies the arrival of driver gas in the test flow. The nozzle exit pitot
pressure is shown on the left and the driver gas mass fraction over the equivalent
time is shown on the right. The duration of the test flow is evident in the pitot
pressure trace. Throughout the test flow duration, the test flow is uncontaminated
(the test time is ended by the reflected expansion); however, some time following
this the mass fraction of Helium in the test flow rises to between 20 and 30 %. This

level remains relatively constant following the arrival of the vortex in the test flow.
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Figure 7.67: The arrival of driver gas in the simulated test flow for the Helium driving
Nitrogen case. The nozzle exit pitot pressure is shown on the left and the driver gas mass
fraction over the equivalent time is shown on the right.

The nozzle exit stagnation probe can be used as direct evidence of driver gas
arriving in the test flow in the Nitrogen driving Nitrogen case. This plot, which is
shown in Figure 7.16, shows a good comparison between the two, with the arrival
of the driver gas predicted to within a 100 us. The characteristics of the flow in
this time are also predicted well. This case is over-tailored and so driver gas would
be expected to arrive in the test flow; however, as noted by Sudani and Hornung
[228] using experimental evidence obtained in the T5 shock tunnel, a form of driver
gas contamination is also experienced in over-tailored cases, with driver gas being
accelerated towards the test flow. This acceleration of some of the driver gas was
evident in sequence of the over-tailored interaction shown in Figures 7.53, 7.54 and
7.55. The accuracy to which its arrival in the test flow is predicted by this simulation
provides support to the assertion that the interaction of the reflected shock with
the contact surface is being modelled accurately. No direct evidence of driver gas

arriving in the test flow was measured experimentally in the Helium driver case.

The validity of the simulation of this interaction process and the resulting flow
field is supported by the fact that the two important features in the interaction
are modelled as accurately as possible. These are the characteristics of the contact

surface, and the reflected shock following its interaction with the boundary layer.
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There is some concern over the accuracy of the contact surface before the interaction.
The contact surface in the Nitrogen driving Nitrogen case could not be reproduced
accurately; however, the differences were influenced by turbulence in the real flow,
which is not modelled. The contact surface was part of the way through a process

of recirculation and mixing, which also influenced the results.

The contamination is driven by the vorticity generated at the interaction of
the reflected shock with the contact surface. The bifurcated foot of the reflected
shock, resulting from the interaction of the reflected shock with the boundary layer,
does cause some jetting of gas as the reflected shock moves through the test gas;
however, this jetting ceases as the reflected shock reaches the contact surface. This
is because, as was suggested by Chue and Eitelberg [45], the vorticity generated in
this interaction acts against the jetting of gas. The vorticity continues to form as

the gas passes over the back of the material being carried upstream

The simulations discussed here have illustrated a new mechanism for driver gas
contamination in shock tunnels, that compliments the near wall jetting associated
with the bifurcation of the reflected shock.
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7.3.10 Test Flow Noise Levels

The mechanisms that result in the generation of noise occur through the development
of the flow. By modelling these processes, these simulations provide the potential to
predict the noise levels in the test flow across a range of frequencies. Section 2.1.10
discussed the processes that were expected to contribute to the generation of noise,

both in front of and behind the contact surface.

Significant levels of noise were generated in the driver gas, predominantly from
the oblique waves generated during the finite opening time of the primary di-
aphragm. Paull and Stalker [175] showed that the penetration of noise from the
driver gas into the test gas was limited by a sufficient increase in sound speed across

the contact surface.

The effect of noise propagation across the contact surface is evident in these
simulations. For the Nitrogen driving Nitrogen case, the change in sound speed
across the contact surface is sufficient to prevent noise in the driver gas from entering
the driven gas. In the traces ,from both the supply pressure transducer and the
nozzle exit pitot pressure probe, the arrival of the driver gas is evident in a significant
increase in fluctuations. This increase in noise is evident in both the experiment and
the simulations. In the Helium driving Nitrogen case, change in sound speed across
the contact surface does not prevent noise from crossing the contact surface. It is
believed that noise from the driver gas enters the driven gas as the contact surface
propagates along the shock tube. Fluctuations are evident in the test gas. These
fluctuations remain at relatively the same level as the driver gas arrives at the two

transducers.

The noise generated by the growth of the boundary layer can be visualised using
the divergence of the velocity field in the region around the boundary layer. Contours
of the divergence of the velocity field are shown in Figure 7.68. Several regular
patterns of waves can be seen propagating in the region behind the shock, along
with some regularly spaced spikes in flow which are numerical remnants from the
passage of the shock between block boundaries. The boundary layers in the facility
rapidly undergo transition to turbulence. Noise is generated from the turbulent

fluctuations; however, these fluctuations are not modelled in these simulations.

The shock reflection and interaction processes have a significant effect on noise
generation. This noise can be seen in the numerical Schlieren frames in the sequences
of these processes throughout Section 7.3. As the reflected shock processes are
occurring, fluctuations in density can be seen in the numical Schlieren frames. Some
of these fluctuations can be seen to propagate into the test flow. As significant

proportion of these fluctuations propagate along the shock tube walls.
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Figure 7.68: Divergence of the velocity field in the shock tube around the growing bound-
ary layer. The transverse waves generated by the boundary layer growth are evident in
the flow.

Simulations of a complete facility provide a method of estimating the effect of
noise and simulating its effect on experimental results. The level of noise in shock
tunnel test flows is difficult to estimate by analytical means. Adam and Hornung
[1] showed that there is no clear relationship between transition Reynolds number,
and therefore noise levels, and reservoir enthalpy. Difficult to impose noise levels in

a simulation without generating noise throughout the flow.

Some potentially relevant noise generating processes have not been simulated.
The iris based model of diaphragm rupture does not take into account the defor-
mation and fragmentation of the diaphragm material. The turbulent eddies on the
wall of the nozzle are known to have a significant effect on the noise levels measured
in the test flow. These turbulent motions are not modelled in these simulation; only
the increase in boundary layer thickness resulting from the turbulence is taken into
account. The effect of free stream turbulence is not simulated. In addition, the

propagation of high frequencies of noise is limited by the mesh.

Measurement of Fluctuations in the Test Flow

Figure 7.69 shows the simulated and experimental pitot pressure at the nozzle exit
for the Helium driving Nitrogen case. The experimental trace is shown on the left
and the simulated trace is shown on the right. The fluctuations in the Helium driver
case are important because the pitot probe used in these experiments utilized a high
bandwidth configuration (with a resonance of around 230kHz), whereas in the Ny
driver experiments the pitot probe was protected from the flow with a pneumatic
cavity (with a resonance of around 10kHz). Restricting attention to frequencies
between 10 and 50kHz, the measured RMS fluctuation in the He driver case is

1.4% over the period from about 0.5 to 1 ms on the time scale in the figure.

The simulation yields RMS pitot pressure fluctuations of 1.2% over the same
period and frequency band. This result suggests that, in this case, the dominant
source of the measured pitot pressure fluctuations is within the shock tube rather

than noise radiating from the nozzle boundary layers since the contribution of tur-



280 Simulations of the Drummond Tunnel Facility

bulence in the nozzle boundary layers is not modelled in these simulations. It is
known that in this case, from the relative levels of noise in the driver and the driven
gas, and from the acoustic characteristics of the contact surface, that noise from the
driver gas enters the driven gas. This is likely to make a significant contribution to
these measured noise levels.
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—
(=]
(=2}

1.04} f

—
=3
=

.02t ||

—
(=]
o

=

0.98" ¥ ' | | "\s' \ 0.98f ||

Normalised Pitot Pressure
—
<
Normalised Pitot Pressure
—

0.96 096 |

0.94 094 ‘
0 100 200 300 400 500 0 100 200 300 400 500

Time (ms) Time (ms)

Figure 7.69: Fluctuations in pitot pressure measured in the test flow. The experimentally
measured fluctuations are shown on the left and the fluctuations measured in the simulated
test flow are shown on the right.



CHAPTER 8

Conclusions

The primary motivation for this thesis was the development of numerical simulations
of a reflected shock tunnel for the purpose of providing a better understanding of
shock tunnel flows. A multi-block Navier-Stokes code, MB_CNS, was used in the
simulations. Measurements recorded during a set of physical experiments were used
for calibration and validation of the simulations. The following sections discuss the

outcomes of this thesis.

Modelling and Validation

The Drummond Tunnel is a relatively low-enthalpy shock tunnel operated at The
University of Queensland. In this thesis, simulations of the Drummond Tunnel are
developed and these simulations are used to investigate the flow through the facil-
ity. The simulations assumed axisymmetric flow and used computational meshes
covering the complete shock tunnel, from the driver section to the dump tank. By
modelling the complete facility, some of the assumptions required by other simu-
lation approaches have been removed, allowing a more complete description of the
flow development. The use of an axisymmetric mesh precluded fully three dimen-
sional motion, but still allowed the simulation of many of the complex, non-ideal
processes that occur during the operation of a reflected shock tunnel. The simula-
tions included a model of the effect that the rupturing primary diaphragm has on
the flow and assumed an ideally rupturing secondary diaphragm. An over-tailored

and a roughly tailored mode of operation was investigated.

The simulations of shock bubble interaction discussed in Chapter 6 demonstrate
the capability of the numerical techniques used in MB_CNS to accurately model the
shock induced instability and deformation of a contact surface separating different
gases. This provides support for the validity of the simulations used in the shock
tunnel modelling in Chapter 7. The simulations of the Drummond Tunnel show that
instabilities in the contact surface, separating the driver gas from the driven gas,

play an important role in shock tunnel operation. These instabilities are dependent
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on the characteristics of the flow as it evolves throughout the facility.

The validation of the simulations with experimental measurements is an impor-
tant aspect of this study. Given that the simulations are provided with only the
initial operating conditions used in the shock tunnel, the reproduction of the ex-
perimental measurements by the simulations provides strong support for the overall
validity of the simulations. Experimental measurements are made inside the bound-
ary layer, at an axial position close to the location of the interaction of the reflected
shock with the contact surface. The comparisons with the experimental results are,

therefore, sensitive to the accuracy of the simulations.

The Baldwin-Lomax eddy viscosity model [11] was shown to be effective in the
simulation of shock tunnel flows. Significant improvements in the reproduction of the
experimental traces, resulting from the implementation of the model, were demon-
strated in Section 7.2. The Baldwin-Lomax model is an incomplete turbulence model
and requires that certain parameters be calibrated for the flow conditions being sim-
ulated. This required prior knowledge of the flow and a significant amount of work
in calibrating the coefficients. The values of two coefficients that are commonly
modified, C,., and Cyep, were obtained from their dependence on Mach number, as
described in Kim, Harloff and Sverdup [121]. The original coefficients used in the
model were found to be incompatible with the shock tunnel simulations, and an
additional modification to the model, through the Karman constant, was required

in order to reproduce the experimental results in the simulations.

Along with the Baldwin-Lomax model, not knowing the initial temperature of
the driver gas meant that the simulations were not fully predictive and required
prior knowledge of the flow in the form of the experimental traces. Future work
in this area would benefit from the implementation of a more complete turbulence

model, such as the one equation Spalart-Allmaras model [217].

Smoothed Particle Hydrodynamics

The Smoothed Particle Hydrodynamics (SPH) technique [137, 78] was investigated
for advantages that it may provide in the simulation of shock tunnel flows. Being
Lagrangian in nature, the technique provides a more natural treatment of convecting

fluid interfaces.

A CFD code based on the SPH technique was developed and applied to a number
of test cases. Through the development of the SPH code and its implementation
in the test cases, significant limitations were discovered that make the technique
unsuitable for the modelling of shock tunnel flows. These limitations included its

treatment of solid boundaries, difficulties in accurately specifying initial conditions
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and the problem of particle penetration through the fluid interfaces. In addition,
the technique is limited by its relatively low resolution, which is a result of its
requirement for the use of an artificial viscosity. The limitations identified in the
technique, and its implementation, meant that the development of the SPH code for

shock tunnel simulation was discontinued.

Parallel Computing

In the past, simulations of reflected shock tunnels have been limited, by the available
computational power, to simulating only the end of the shock tube [206, 240, 45].
The use of parallel computation in this thesis has allowed the extension of the sim-
ulation of shock tunnels to a complete facility on an axisymmetric mesh. MB_CNS
utilises a multi-block solution procedure in order to exploit parallelism. The flow
field can be solved separately in each of these blocks, requiring information to be

shared only at the block boundaries at the end of each time step.

Two versions of MB_CNS have been developed, one using shared memory and the
other distributed memory. The shared memory version of MB_CNS, using OpenMP,
was developed from an earlier Power C version. The simulations described in this
thesis, both in Chapter 6 and 7, used the OpenMP version of MB_CNS with four
threads. The OpenMP version is simple, since all flow data can be read from the
shared memory space, and is efficient; however, it requires special shared memory

hardware to run and is limited to four processors on the APAC National Facility.

The Message Passing Interface (MPI) parallel version of MB_CNS has also been
developed. This version solves each of the flow-field blocks in a separate memory
space and so the block boundaries must be transferred between the blocks explicitly
in the code. This version of MB_CNS was not used significantly in the simulations of
described in this thesis; however, it is important for the extension of the simulations
in this thesis to large scale, high-enthalpy facilities, where the modelling of finite-
rate chemistry will add significantly to the computational work. This version allows
MB_CNS to be run in parallel on Beowulf workstation clusters [223].

The OpenMP version was found to be efficient and predictable in performance
across the range of simulation sizes considered. The MPI version was shown to pro-
vide unacceptable levels of efficiency in the small diagnostic simulations; however,
this version is aimed at the type of large scale simulations to which this form of par-
allelism is more suited. The SPH technique is naturally parallel and its performance

in parallel is investigated in detail in Appendix A.
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Driver Gas Contamination

Through the investigation of the simulated flow fields, a previously unobserved mech-
anism for the premature contamination of the test flow with driver gas was discov-
ered. This contamination mechanism is driven by the generation of vorticity in the
contact surface through its interaction with the reflected shock. Vorticity is gener-
ated as the density gradient at the contact surface passes through the oblique shocks
that form the bifurcated foot of the reflected shock. This means that the interaction
of the reflected shock with the boundary layer, and the resulting shock bifurcation,
is an important aspect of the observed contamination mechanism. The vorticity is
generated through the baroclinic torque that exists where gradients of density are
mis-aligned with gradients of pressure. The vorticity subsequently rolls up to form
a strong vortex at the head of the contact surface. Drawn in towards the centerline,
the vortex accelerates downstream along the axis of the shock tube. Driver gas
carried along by the vortex, reaches the nozzle and contaminates the test flow. The
vorticity driven contamination of the test flow was observed in the simulations for
both the tailored and over-tailored operating conditions. In the over-tailored case,
the premature arrival of driver gas in the test flow was verified with the experiment

measurements.

Previous numerical studies of driver gas contamination have described the jet-
ting of driver gas through the bifurcated foot of the reflected shock, and along the
shock tube wall, as the driving mechanism from the contamination [206, 240]. The
simulations performed in this thesis have shown that, although some relative move-
ment of gas through the reflected shock foot is evident, it is not sufficient to be
responsible for jetting driver gas into the test flow. In addition to this, it has been
shown that the vorticity generated at the contact surface acts to prevent this gas
jetting as soon as the reflected shock reaches the driver gas; this was also observed
by Chue and Eitelberg [45]. The new observations made in this thesis are enabled by
the simulation of the complete facility, which includes an evolving contact surface
that is significantly distorted by the time it encounters the reflected shock. The
resulting contamination mechanism transports the driver gas along the shock tube
centreline. This may explain why methods previously aimed at preventing driver gas
moving along the shock tube walls from reaching the test flow have been sometimes

unsuccessful [228].

Test Flow Noise Levels

The present, simulations have the potential to investigate the mechanisms that cause

the noise experienced in the test flows of shock tunnel facilities. These noise levels are
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often an order of magnitude larger than those experienced in the flight environment
[202]. This means that investigation, both of the mechanisms that generate the
noise, and the effect that the noise has on experimentation are important areas of

shock tunnel research.

Noise is generated through various processes occurring in operation of the shock
tunnel, including the rupture of the primary diaphragm, the growth of boundary
layers, shock reflection, and the interaction of the reflected shock with the boundary
layers and the contact surface. Many of the processes leading to the generation of
noise are modelled in the simulations described in this thesis, and the numerical
Schlieren images in the sequences shown in Chapter 7 demonstrate the generation
of fluctuations in the shock tube and propagation of these fluctuations into the test

flow.

The noise levels were measured in the test flow pitot pressure during the experi-
ments conducted by Dr. D. R. Buttsworth in the Drummond Tunnel. The magnitude
of fluctuations, at frequencies between 10 and 50kHz, in the nozzle exit flow was
accurately reproduced by the simulations. This demonstrates the potential of these

simulations in reproducing the mechanisms that lead to these high noise levels.

Limitations of the Modelling

The simulations are thought to provide a realistic representation of the flow through
the complete shock tunnel. Comparisons between the simulated flow and the ex-
perimental measurements indicate that the two main limitations in the simulations
are associated with shock boundary layer interaction and the representation of the

contact surface.

Shock Boundary Layer Interaction Turbulent motions are expected to play an
important role in the interaction of the reflected shock with the turbulent
boundary layer. The pressure profiles measured through this interaction in
the experiments were different from those measured in the simulations. The
boundary layers modelled in the simulations are steady approximations of
the turbulent boundary layer and, in the simulated interaction, material is
allowed to build up steadily at the foot of the shock. In the real interaction,
the turbulent fluctuations in the boundary layer would result in an interaction
with material crossing the reflected shock unsteadily. The material at the foot

of the shock is expected to be highly turbulent.

Representation of the Contact Surface The representation of the contact sur-

face is the most serious deficiency of the simulated shock tunnel. Despite
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modelling the effect of the primary diaphragm, the flow of material through
the boundary layers and the resulting stability properties of the contact sur-
face, the level of mixing and diffusion at the real contact surface was not
reproduced in the simulations. This was thought to be caused by diffusion
and turbulent mixing not being included in the simulations. Deficiencies in
the representation of the contact surface were evident in the sharply defined
tailoring waves and the incorrect contact surface characteristics recorded at

the locations of the shock tube heat flux rake.

In addition, turbulence in the free stream flow was not accounted for. The
Reynolds-averaging of the flow and the axisymmetry imposed by the mesh prevent
turbulent fluctuations from being modelled in detail. The late time flow field would
be dominated by turbulence but, in the present axisymmetric simulations, the late

time vortex field is constrained to be a series of coherent vortex rings.

Future Developments

The simulations performed in this thesis have demonstrated the feasibility using
simulations of a complete shock tunnel to gain a better understanding of the flows
through these facilities. They have been able to reproduce experimental measure-
ments with reasonable accuracy. Future studies of the numerical simulation of shock

tunnels can improve on these simulations in some specific areas.

More complete experimental data would be helpful. For example, in the simula-
tions presented in this thesis the driver temperature was not known. Measurements
that would otherwise be redundant would also be useful, as any measurements pro-

vide important constraints to the problem and can be used as validation.

As was discussed earlier, the implementation of the Spalart-Allmaras turbulence
model would be of benefit in future simulations. The Baldwin-Lomax model is an
incomplete turbulence model and, therefore, requires the calibration of coefficients

using knowledge of the flow.

The most important improvement required in these simulations concerns the
representation of the contact surface. Simulations using the Equilibrium Interface
Method (EIM) [140], have the potential to provide a better representation of the
level of diffusion at the contact surface. Alternatively, a diffusion model in the

system of equations solved by MB_CNS could be implemented.

The efficiency of the parallel versions of MB_CNS is critical to the extension

of these simulations to large scale facilities. The efficiency of the MPI version of
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MB_CNS could be improved by performing the inter-block communication concur-
rently with some of the computation. The solution of the flow in the interior of
blocks is not dependent on the block boundaries and could be performed while

boundary data is still being updated from the surrounding blocks.

It has been assumed that the differences observed between the experimental and
simulated measurements of the interaction of the reflected shock with the boundary
layer are caused by the effect of turbulent fluctuations, which are not modelled
in detail in the simulations. A detailed study of this interaction process, using a
numerical technique that included these turbulent fluctuations, such as Large Eddy

Simulation (LES), could provide a better understanding of this process.

Preventing Driver Gas Contamination

Attempts at preventing driver gas contamination in the past have focused on the
jetting of the gas through the foot of the reflected shock and along the wall. Methods
of preventing driver gas contamination based on this assumption have been largely
unsuccessful [228]. The simulations described in this thesis provide a method of
being able to predict the premature arrival of driver gas in the test flow through
the new contamination mechanism observed. They therefore provide the means of

being able to conduct trials of methods aimed at driver gas contamination.

A new style of annular diaphragm has been designed as is being tested in the
T4 shock tunnel at the University of Queensland. This diaphragm opens through a
series of holes drilled through a thick steel plate, resulting in a more even opening
profile. This diaphragm has the potential to postpone driver gas contamination by
preventing the jetting of driver gas along the walls of the shock tube, as is observed
in the simulations in this thesis, or the jetting of driver gas along the centreline of
the shock tube as was predicted by Skinner [212].

The use of ‘cookie cutters’ is common in experiments to remove unwanted flow
from the test section. This type of device could be used to remove the flow around
the walls with the boundary layers, meaning that only the core flow would pass
through to reflect from the nozzle. The shock would reflect into a much smaller
boundary layer, built up over the length of the cookie cutter only, thus reducing
the reflected shock interaction processes that lead to the generation of noise and
the contamination of the test flow with driver gas. The test gas material in the

boundary layers is unsuitable for use in the test flow anyway.
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APPENDIX A

Performance of the Parallel SPH Code

This appendix will investigate the performance of the parallel implementations of
the Smoothed Particle Hydrodynamics (SPH) code. As well as analysing the effect
varying parameters on the solution time directly, the effect of parallelism on the per-
formance of the computing hardware, such as cache memory, will also be analysed.
Some of the simulations being run as part of the present study are all smaller than

would necessarily be parallelised in practice and so efficiencies are generally low.

The sequential performance of a code is dependent on how the code is written,
the efficiency of the underlying mathematical algorithms used, the speed of the
processor, and how well the computers memory is utilised. In contrast, parallel
performance is dependent on many more factors, including: the bandwidth and
latency of the network connecting the processors, the delay required for processors
to be synchronised, the granularity of the parallelism and the relative amount of the
code that must run sequentially. These additional factors make analysing parallel

performance complex, requiring the consideration of many different aspects.

Running CFD codes in parallel requires the optimisation of many parameters,
one of these being the number of processors to use for the simulation size. The
number of processors is important as the parallel overhead, and therefore the parallel
efficiency is heavily dependent on the number used. The overhead is increased
because of the increased time required to synchronise larger numbers of processors
working in parallel; the decreased message size, and therefore, the more significant
effect of network latency; and the increased requirements on communication. Using
more processors does, on the other hand, provide a larger potential speed-up and
access to proportionally larger data caches and, on distributed memory machines,

total memory space.

In the SPH technique, when no algorithmic acceleration, such as sorting the par-
ticles into cells as described in Section 3.2.1, is used, every particle, N, must account
for every other particle in each calculation. This means that the computation time,
t, is proportional to N2. When this is the case, on a graph with logarithmic axes, the

line representing the computation time, ¢, versus the simulation size, N, will be a
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straight line with a gradient of two. In contrast, the scaling using a hierarchical tree,
for example, is: Nlog(N) and so, log(t) = log(N) + log(log(N)). The log(log(N))
term can be neglected and the gradient of the line on the graph will approach one,
for large N. The cell based sorting routine, reduces the amount of computational
work from N2, but not with the same efficiency as the hierarchical tree. This means
that, for a particular number of processors, the slope of the line on the graph will
be expected to be between one and two, depending on how optimally sized the cells

are for the number of particles in the simulation.

In order to investigate the performance of the parallel versions of the SPH code,
simulations varying in size from 6,250 particles to 200,000 particles were run. This
represents a large range of simulation sizes suitable for two dimensional models. The
simulations were run sequentially and using one, two, four and eight processors in
parallel using OpenMP, MPI and BSP. The actual libraries used in the tests are
discussed in Section 5.1. The parallel versions of the code will be compared to the
sequential version of the code. The sequential version contains no parallel constructs

and is not specifically structured for parallelism.

The test simulations were run over a total of 150 time steps. Several sections
of computation and communication, along with three synchronisations are run each
time step. The error resulting from using timing function calls in the program, and
those associated with the time and timex commands are expected to be small in
comparison to the time scales of the measurements. Where necessary, especially for
short tests, these results were averaged over several tests. The number of time steps

lessens the effect of start up effects.

The two computers used in the tests in this appendix, a previous computer of
the QPSF, an SGI Origin 2000, and the Beowulf workstation cluster. The SGI
Origin 2000 was replaced by an SGI Origin 3400 and the Origin 3400 was used in
the performance tests of MB_CNS in Chapter 5. The performance of the MPI based
code on the Origin 2000 and the Beowulf cluster will be compared. Given that the
interconnection network on the Origin 2000 is significantly faster than that on the
workstation cluster it would be pointless to do a direct comparison of their parallel
efficiencies; however, a meaningful comparison can be provided by comparing the

actual performance to the ideal performance of a particular system.

In the following plots, the slope of the line for the smallest simulations is sig-
nificantly lower than for the largest simulations. This is due to the influence of
the cell sizes being constant across all runs, regardless of the number of particles
used. With this algorithm, the size of the cells must be optimised for the number
of particles in the simulation, or rather, the density of particles. By not varying the

cell size, the sequential performance of the code is predictable, and we will use this
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to gauge the performance of the parallel libraries, without variation from sequential

code optimisation.
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A.0.11 Shared Memory (OpenMP)

Table A.1 shows the run times for the OpenMP parallel SPH code on the Origin
2000 as well as the sequential performance on an R10000 processor. This table shows
how the run time is reduced by running the code in parallel as well as the scaling
of the code’s run time with the number of particles. There is a certain amount of
variation in the timing data due to the use of shared processors on the system and

network contention; however, this should not affect the trends as discussed earlier.

Table A.1: Run times of the OpenMP parallel SPH code on the Origin 2000 (in seconds).

N | Sequential Number of processors
1 2 4 8
6250 6.58 6.89 4.62 3.04 2.44
12500 23.26 23.83 14.01 9.73 6.44
25000 78.37 79.10 45.20 27.30  18.22
50000 346.68 337.59 198.91 107.02 60.34
100000 1352.76 1301.76  717.43  384.93 232.81
200000 4805.65 4963.13 2672.26 1453.14 851.47

These results are plotted in Figure A.1, showing the overall trends present in
the scaling of the solution time with simulation size. The figure shows that the
solution time using the OpenMP code with a single processor is close to that of the
sequential code. Any overheads that do not directly result from communication or

multi-processor synchronisation would show up in this comparison.

The multiple processor run times scale with the sequential times, with speedups
of 1.86, 3.41 and 5.83 for 2, 4 and 8 processors respectively, for the largest simulation
size. These figures show that, although the reduction in solution time is quite
good, there are still significant overheads present. In the code used in the study,
communication is, ideally, transparent to the computation so this is unlikely to be

the primary cause.

The relative effect that the overheads incurred by running the code in parallel
have on the run time can be investigated by examining the parallel efficiency, that
is the actual speedup, divided by the number of processors. Figure A.2 shows the

parallel efficiency for the 1, 2, 4 and 8 processor simulations.

The efficiency can be seen to increase as the simulation size is increased. As
well as this, the efficiency decrease, for the same sized simulation, as the number of
processors is increased. For the largest simulation size, the efficiency is 97%, 93%,

85% and 73%, for 1, 2, 4, and 8 processors respectively. This reflects the decrease in
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Figure A.1: Run times of the OpenMP parallel SPH code on the SGI Origin 2000.

efficiency with increasing processors, caused by the combined effect of the decreased

run time and the increased amount of parallel overheads.

On the Origin 2000, the speedshop libraries allows the developer to identify
individual run times for parts of a program. Parts of the SPH code were grouped
as either parallel computation, sequential computation or parallel overhead.
Figure A.3 shows the contribution of the three components to the run time on the
left, and their relative proportions on the right. The left most graph shows how
the parallel run time is reduced in proportion to the number of processors, how the
sequential run time stays constant and the parallel overhead increases. It appears

that 98.2% of the sequential code’s run time is capable of running in parallel.

On the Origin 2000, at compiler optimisation levels of 03 or above (0fast=1p27),
function inlining and other optimisations make it difficult to identify the parts of the
program. For this reason the code was compiled with optimisation level 02 which,

it is hoped, provides a good indication of the performance of the optimised code.

The OpenMP based code performed well for the range of simulation sizes, with
efficiency increasing with the simulation size. This means that it is suited to coarser
grained parallelism and it is anticipated that the efficiency would further increase
for larger simulations. The parallel overheads made up a very small part of the total

run time.

Although the OpenMP code is still quite inefficient, it is not our intention to

spend a large amount of time optimisation. The OpenMP code is useful as a baseline
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Figure A.2: Parallel efficiency of the OpenMP parallel SPH code on the SGI Origin 2000.
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Figure A.3: Parallel, sequential and overhead components of the solution time for the
OpenMP parallel SPH code on the Origin 2000.

for what could be achieved with little coding effort using the shared memory model

and a specialised computer.
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A.0.12 Message Passing Interface (MPI)

Table A.2 shows the run times for the MPI parallel SPH code on the Origin 2000 as
well as the sequential performance on an R10000 processor. Significant overheads

are evident in the data, even when using a single processor.

Table A.2: Run times of the MPI parallel SPH code on the Origin 2000 (in seconds).

N | Sequential Number of processors
1 2 4 8
6250 6.58 8.99 6.21 6.70 6.54
12500 23.26 25.76 18.13 15.21  13.43
25000 78.37 85.30 54.29 39.61  27.39
50000 346.68 353.00 211.91 130.09 93.13
100000 1352.76 1386.16  816.40  469.47 321.62
200000 4805.65 5002.37 2683.61 1472.25 861.56

These results are plotted in Figure A.4, showing the overall trends present in the
scaling of the solution time with simulation size. The multiple processor run times
scale with the sequential times, with speedups of 1.79, 3.26 and 5.57 for 2, 4 and 8

processors respectively, for the largest simulation size.
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Figure A.4: Run times of the MPI parallel SPH code on the SGI Origin 2000.

Since communication must be performed separately to computation in the MPI
version of the code, significant overheads may be expected. Even when running

on a single processor, parallel overheads still account for between 4% to 10% of
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the run time. This is expected since MPI collective communications require that
a process transfers data to itself, incurring communication overheads even for a
single processor run. In addition to this, overheads for synchronisation, as a part of
the blocking communication, and process management would also be present. The
parallel efficiency can be used to give a better picture of the effect of these overheads

and is shown in Figure A.5.
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Figure A.5: Parallel efficiency of the MPI parallel SPH code on the SGI Origin 2000.

Message passing is an inefficient process with the small grained parallelism. Send-
ing small messages through the interconnection network increases the effect of the
system latency, as latency is independent of message size and, therefore, has a greater
effect on the total send time for the message. The efficiency improves greatly as the
number of particles is increased as would be expected with the use of message pass-
ing. The efficiencies reach 96%, 90%, 82% and 70% using 1, 2, 4 and 8 for the largest
simulation size. This also shows the decrease in efficiency with increased number of
processors. Although the simulations being run are quite small, the efficiencies are
low and an investigation of the components making up the solution time may show

where the inefficiencies are being caused.

On the Origin 2000, the speedshop libraries can be used to identify the contri-
bution of parts of a program to the run times. The parallel computation, sequential
computation and parallel overhead sections were grouped. The parallel overhead
was identified by calls to the MPT libraries. Again, the code was compiled to opti-

misation level 02 for these results to prevent inlining of functions. Figure A.6 shows
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the contribution of the three components to the run time on the left, and their

relative proportions on the right.
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Figure A.6: Parallel, sequential and overhead components of the solution time for the
MPT parallel SPH code on the Origin 2000.

The results obtained from speedshop were confirmed by bracketing sections of
the code by calls to the MPI command MPI_Wtime () which can be used to measure
elapsed time between lines in a code. These graphs show how the run time of
parallel sections of the code is reduced in proportion to the number of processors,
how the sequential run time stays constant and the parallel overhead increases with
the number of processors. Since communication cannot be performed concurrently
with computation with MPI, overheads make up a significant proportion of the run

time, particularly for large numbers of processors; this can be seen in Figure A.6.

As well as the extra work incurred through parallelisation and the effect of non-
parallelisable regions, another aspect of parallel execution is the effect of the paral-

lelism on the action of the individual processors.

The time spent in sequential regions of the code and the time spent in parallel
regions of the code, when normalised by the number of processes, should remain
constant as the number of processes is increased. Figure A.7 shows that these times
actually increase. The time taken in the sequential regions decreases below that of
the sequential code for two and four processors before increasing back above the
sequential level for eight processors. The normalised parallel times are are relatively
constant, but are all above that for the sequential code. The reasons for this comes
from a number of contributing factors and understanding their causes can enable

improvements to the performance of the parallel code.

The Origin 2000 command, perfex, can be used to study the code behaviour
in detail. A number of parameters associated with the calculation process can be

counted and displayed. Parameters of interest to us in particular are those associated
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Figure A.T: Sequential and normalised parallel solution time, for a fixed simulation size.

with the parallel execution. For a multiple process program, the results returned
by perfex are a per-process average as the perfex measures the aggregates of the

counts returned for all of the threads.

Figure A.8 shows the effectiveness of cache utilisation when running in parallel.
The left side of the figure shows the data cache hit rate which is the fraction
of data accesses that are satisfied from a cache line already resident in the either
the primary or secondary data caches. These two caches are shown on the plot as
plus and times signs respectively. The plot shows that the primary data cache is
unaffected by running the code with multiple processes. The primary data cache
hit rate is over 97% for all jobs showing that it is being utilised very efficiently. The
performance of the secondary data cache for a sequential job is 95.7% and 93.5%
for a single processor MPI job. Running the code over multiple processors degrades
the performance of the cache and the hit rate reduces to 90.0%, 88.9% and 86.1%

as the number of processes is increased to 2, 4 and 8 processors.

The right side of Figure A.8 shows the data cache line reuse and much the
same trend is evident. Data cache line reuse measures the number of times that, on
average, a data cache line will be used once it is moved into the cache. When running
in parallel, the number of primary data cache line reuses is above the sequential level
of 35 uses. For the secondary cache, the number of line reuses drops significantly. For
a sequential job, the secondary data cache line reuse is 22, dropping sharply to 14,
10, 8 and 6 when running in MPI on 1, 2, 4 and 8 processors respectively. Presently,
it is not known why the secondary data cache is affected by MPI parallelism and

the primary data cache is not.

Due to the message passing parallelism implemented in MPI, each process should
be working on entirely different sets of data and therefore there should not be any
affect on cache performance; however, the Origin 2000 is a shared memory com-

puter and, although we are attempting to run in a distributed memory mode, cache



320 Performance of the Parallel SPH Code

coherency issues may still be affecting performance.
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Figure A.8: Effect of parallelisation on cache utilisation.

As the number of processors is increased, so will the amount of data that needs
to be moved through the interconnection network. The amount of data moved
is proportional to the number of processors, as with domain decomposition of n
particles over p processes, p segments of n/p particles, must be transferred p times.
As a result of this, the bandwidth used per process should remain constant. The left
side of Figure A.9 shows the sum of the typical costs of all memory accesses during
the execution of the program as a fraction of the total run time. Memory access
time includes that for graduated loads and stores, primary and secondary data cache
misses and TLB misses. The fraction of the total run time spent accessing memory
is around 22% for single process jobs and increases as the number of processors is
increased to almost 30% for eight processors. This represents a significant proportion
of the run time and explains a significant proportion of the decrease in parallel

efficiency for a given simulation size as the number of processors is increased.

The right side of Figure A.9 shows the bandwidth used, per process, for both
data moved to main memory and for data moved between the primary and secondary
caches. The bandwidth used, per process, increased with the number of processors
used, for both cases. This means that more data was being moved both between the
caches and between the caches and the main memory. Being measured as the amount
per process, this is above the amount that the data transfer between processes will
increase by normally, as was discussed previously. This increase is possibly due to the
increased amount of data that is transferred in order to maintain cache coherency
as each of the caches are updated, even though this is not required for the MPI

programs.

Figure A.10 shows two measures of how much each process of a multiple process
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Figure A.9: Effect of parallelisation on memory access.

job affects one another. The left side of Figure A.10 shows the number of external
interventions, which is a measure of the amount to which the processes are interfering
with one anothers caches. The values for parallel jobs are given as points. The
number of these will be relatively high if processors are constantly trying to write

to cache lines stored on other processes.

In the case of the SPH code that we are analysing, this would be caused by a
process updating the data for a particle which also exists as a copy in a cache line
that another process is accessing. This number is negligibly small for the sequential
and single process MPI jobs, and increases rapidly as the number of processors is
increased, reaching over 16 million for 8 processors. This number is relatively small
compared to the number of graduated stores and this is likely to have little impact
on overall performance; however, as the number of processors is increased, issues

relating to interference between processes will become more important.
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Figure A.10: Effect of processors on one another.
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Pentium IIT Based Beowulf Cluster

As with the Origin 2000, the performance of the MPI parallel version of the SPH
code is examined on a Beowulf cluster. In general, only one processor of the two was
utilised at any time. In order to access unused processors, these second processors
were used on machines that did not have more than one job running on them.
This would work if the operating system would assign any new MPI processes on
the second processor only, but this was not the case as the number of processors
was increased. Trials were repeated on different nodes of the system and produced
consistent results. Table A.3 shows the run times for the SPH code on the Beowulf

cluster.

Table A.3: Run times of the MPT parallel SPH code on the Beowulf cluster (in seconds)

N | Sequential Number of processors
1 2 4 8
6250 9.12 9.63 8.02 91.50
12500 32.47 32.94  30.07 184.62
25000 107.76 ~ 109.00 76.81  238.30
50000 451.69  452.26 275.59  400.08 878.12
100000 1745.01 1745.38 997.25 1094.47

Simulations with 200,000 particles were not run, neither were solutions using 8
processors for other that 50,000 particles. These results are also presented in Fig-
ure A.11. Overheads for the single processor runs were negligible. The 2 processor
run times scaled relatively closely with the sequential code, but improves in per-
formance as the simulation size is increased. The performance of the 4 processor
run was very poor for the smaller simulations, but increased dramatically as the

simulation size was increased

Figure A.12 shows the parallel efficiency for the MPI parallel runs on the cluster.
The efficiency for the 2 processor simulation is acceptable and increased steadily
from 57% to 87% across the range of simulation sizes tested. The efficiency for
the 4 processor simulation is very low, increasing steadily from only 2% to 40%,
across the range of simulation sizes. A single point was recorded for the 8 processor
solution time since the parallel program did not appear to be running properly. The
operating system function top showed that, for runs with four or eight processors,
the utilisation of the second processor, which we aim at using, is below 5% while
the job is running. This suggests that the problem lies with the operating system
(Redhat Linux 7.0) not properly allocating the processes across the nodes on the

system.
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Figure A.11: Run times of the MPI parallel SPH code on the Beowulf cluster.
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Figure A.12: Parallel efficiency of the MPI parallel SPH code on the SGI Origin 2000.
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A.0.13 Bulk Synchronous Parallel (BSP)

Table A.4 shows the run times for the BSP parallel SPH code on the Origin 2000 as
well as the sequential performance on an R10000 processor. It can be seen in this
table how the run time is reduced by running the code in parallel, and how the run

time scales with simulation size for the sequential and the parallel runs.

Table A.4: Run times of the BSP parallel SPH code on the Origin 2000 (in seconds).

N | Sequential Number of processors
1 2 4 8
6250 6.58 7.41 5.45 6.03 7.02
12500 23.26 23.65 16.60 14.16 15.37
25000 78.37 84.78 51.19 39.46 36.47
50000 346.68  339.30  205.88 132.13  102.60
100000 1352.76 1335.47  758.78  501.29  301.17
200000 4805.65 4914.91 2809.43 1611.27 1030.56

These results are plotted in Figure A.13, showing the overall trends in the scaling
of the solution time. The solution time using the BSP code with a single processor
is close to that of the sequential code. This is expected since, as well as other
overheads not being present, the BSP communication routine used does not require

that a process communicate with itself.
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Figure A.13: Run times of the BSP parallel SPH code on the SGI Origin 2000.

Although the performance for the multi-processor runs on the smaller simulation



Performance of the Parallel SPH Code 325

was quite bad, the relative run times increased quickly as the simulation size was
increased. The speedups for the largest simulation sizes were 1.71, 2.98 and 4.66 for

2, 4 and 8 processors respectively.

The efficiency of the BSP parallel code is shown in Figure A.14. This figure shows
that the efficiency for the single processor run fluctuate, but is relatively close to one.
The efficiency drops markedly as the number of processors is increased; however, the
efficiency increases steadily with simulation size. For the largest simulation size, the
efficiency reaches 98%, 86%, 75% and 58% for the 1, 2, 4 and 8 processor runs.

1 m
S X—»\;»\\;
e S
0.8 ]
_ﬂ//—X”
] I
§ 06 g/' . -
g 04r - |
i El
021 e BSP 1 Processor —+— 1
3 - BSP 2 Processor ----x---
BSP 4 Processor ------
0 L BSP 8 Processor =

10000 100000
Simulation Size (Particles)

Figure A.14: Parallel efficiency of the BSP parallel SPH code on the SGI Origin 2000.

The lack of an efficient communication routine, with all variables being trans-
ferred to all processes at the end of each superstep, has probably meant that com-

munication has made a significant contribution to the parallel overheads.
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A.0.14 Comparing Performance

The parallel performance and efficiency of the SPH code using OpenMP, MPI and
BSP on the SGI Origin 2000 can be compared directly. Table A.5 shows the run

times for the three methods, using 4 processors, for the range of simulation sizes.

Table A.5: Comparison of parallel performance on the Origin 2000 with 4 processors for
a range of simulation sizes (in seconds).

N | OpenMP MPI BSP
6250 3.04 6.70 6.03
12500 9.73 15.21 14.16
25000 27.30 39.61 39.46
50000 107.02  130.09 132.13
100000 384.93  469.47  501.29
200000 | 1453.44 147225 1611.27

These results are also plotted in Figure A.15. MPI and BSP, both being based
on message passing, perform roughly the same as each other over the range of
simulation sizes. They both perform badly for small simulations, since message
passing is less efficient for small message sizes, such as those with small simulations.
OpenMP, being based on the shared memory model, is not as susceptible to latency
as message passing. Its performance is good for the whole range of simulation sizes
used in the tests. The Origin 2000 was specially designed to take advantage of

OpenMP code and good performance would be expected.

The performance of BSP is slightly better than for MPI, which is primarily due
to the choice of collective communication routines, rather than the performance of
the libraries themselves; however, the Message Passing Toolkit (MPT) on the Origin
2000 is specifically tuned for this architecture, so this would provide advantages over

BSP, which was not as tuned.

Figure A.16 compares parallel efficiency between the methods, across the range
of simulation sizes, using four processors. The much greater efficiency of OpenMP

for the smaller simulations is evident.

As shown in Figure A.17, varying the number of processors for the two largest
simulation sizes, of 100,000 and 200,000 particles shows the effect of processor de-
pendent overheads; important amongst these are the increased overhead for syn-
chronisation and communication for increased numbers of processors. These figures
show the resulting decrease in parallel efficiency with increased number of proces-
sors, for a fixed simulation size. The efficiency of OpenMP, with the flattest curve,

is the least affected by increasing the number of processors.



Performance of the Parallel SPH Code 327

. 1000 [
(2]
©
c
o
[S]
[}
)
£
= 100 ¢
c
i)
5
©
n
,«;;3?"7 e .
10 + AT Sequential —— |
BSP 4 Processors -—--x---
MPI 4 Processors -
. OpenMP 4 Processors =

10000 100000
Simulation Size (Particles)

Figure A.15: Comparison of parallel performance on the Origin 2000 with 4 processors
for a range of simulation sizes (in seconds).

Figure A.18 compares the run times (in seconds), and the parallel efficiency,
using MPT on the Origin 2000 and the Beowulf cluster. As was discussed earlier,
the performance of MPI on the Beowulf cluster could not be examined properly.
Increasing the number of processors above two resulted in utilisation of the proces-
sors around 10% and so the performance results did not reflect the potential parallel
performance; however, up to two processors the same general trend is evident as

that on the Origin 2000, given the relative speeds of the systems.
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APPENDIX B

MB_CNS Scriptit Files

# drummond_tunnel_mé4nozzle_80.sit

# Complete Drummond Tunnel Simulation

# Mach 4 nozzle, new (1998) driver

# N2 driving N2 and He driving N2 cases
# Version 7.4 (06/02/03)

BEGIN_GEOMETRY

# Driver Section Nodes

NODE d0 -3.02100 O.
.03110
.00635
.00635
.02950
.00635
.02950
.02950
.03110
.02480
.03700
.02480
.03700

NODE d1 -3.02100
NODE d2 -3.05701
NODE d3 -3.40600
NODE d4 -3.40600
NODE d5 -3.79100
NODE d6 -3.79100
NODE d7 -3.03900
NODE d10 -3.01160
NODE di14 -3.81850
NODE d15 -3.79600
NODE d16 -4.02100
NODE d17 -4.02100

O O O O O O O O O O O O

# Shock Tube Nodes
NODE s2 -2.60130
NODE s3 -2.60130
NODE s4 -2.25160
NODE sb -2.25160
NODE s6 -1.90190
NODE s7 -1.90190
NODE s8 -1.55210
NODE s9 -1.55210
NODE s10 -1.20240
NODE s11 -1.20240
NODE s12 -0.85270
NODE s13 -0.85270

O O O O O O O O O O OO

NODE s14 -0.60830 O.
NODE s15 -0.60830 O.

NODE s16 -0.38390 O.
NODE s17 -0.38390 O.

00000

.00000
.03110
.00000
.03110
.00000
.03110
.00000
.03110
.00000
.03110
.00000
.03110

00000
03110

00000
03110
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NODE s18 -0.22500 0.00000
NODE s19 -0.22500 0.03110
NODE s20 -0.08620 0.00000
NODE s21 -0.08620 0.03110
# Nodes for the Mach 4.0 Nozzle
NODE el 0.04000 0.00000
NODE e2 0.04000 0.01000
NODE e3 0.05305 0.02000
NODE e4 0.05305 0.03110
NODE f 0.06805 0.03110
NODE g 0.06805 0.01110
NODE h 0.08305 0.01110
NODE hO 0.08305 0.00000
NODE i 0.10005 0.01110
NODE j 0.10505 0.01110
NODE k 0.11005 0.01180
NODE kO 0.11005 0.00000

# Nozzle end and dumptank

NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE

LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

LINE

m 0.
n0
nil
n2
n3
n4
nb
t0
t1
t2
t3
t4
t5
t6
t7

O O OO O OO O O O O o oo

d17d15
d15d6

di6d14
d14d5

di16d17
d5d6

dod1l do
d3d4 d3
d5d3 db
d3d2 d3
d2d0 d2
déd4 dé
d4d7 d4
d7dl d7
d0s2 doO

27535 0.
.00000
.03790
.03970
.03970
.15200
.15200
.00000
.03500
.03790
.15200
.00000
.03500
.03790
.15200

.27535
.27535
.26535
.16535
.16535
.27535
.385635
.38535
.385635
.385635
.66535
.66535
.66535
.66535

d17
d15
d16
d14
d16
d5
di
d4
d3
d2
d0
d4
a7
di
s2

O O O O O O O O O O O O OO

di5
dé
di14
ds
d17
dé

d1d10 d1 410
d10s3 d10 s3

s2s3 s2

s3

03500
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LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

BEZIER ele4 el e2 e3 e4

s2s4
s3sb
s4sb
s4s6
sbs7
s6s7
s6s8
s7s9
s8s9

s8s10
s9s11

s2
s3
s4
s4
sb
s6
s6
s7
s8

s10s11
s10s12
s11s13
s12s13
s12s14
s13s15
s14s15
s14s16
s1bs17
s16s17
s16s18
s17s19
s18s19
s18s20
s19s21
s20s21
s20el s20 el
s2led s21 e4

s4
sb
sb
s6
s7
s7
s8
s9
s9
s8
s9
s10
s10
sl1
s12
s12
s13
sl4
sl4
s1b5
sl6
sl6
s17
s18
s18
s19
s20

s10
sl1
sl1
s12
s13
s13
sl4
s1b5
s1b5
sl6
s17
s17
s18
s19
s19
s20
s21
s21

BEZIER e4h e4 f g h

LINE
LINE
LINE

elh0
hOh
hi

BEZIER ik

LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

km
hOokO
kOk
kOnO
nOm
mnl
n3n2
n2nl
n3n4
n4nb
ninb

mt1

n0t0
nit?2
nbt3
t0t1
t1t2
t2t3
t0t4

el
ho
h

hO
h
i

ijjk

k

hO
k0
k0
n0

n3
n2
n3
n4
nl

n0
nil
nb
t0
t1
t2
t0

m
kO
k

n0
m

nil
n2
nl
n4
nb5
nb

tl
t0
t2
t3
tl
t2
t3
t4
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LINE t1th
LINE t2t6
LINE t3t7
LINE t4tb
LINE tbt6
LINE t6t7

POLYLINE
POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

tl t5
t2 t6
t3 t7
t4 tb5
t5 t6
t6 t7

northO
southO
eastO
westO

northl
southil
eastl

north2
south?2
east2

north3
south3
east3

north4
south4
east4

northb
southb
eastb

north6
south6
east6

north7
south7
east?

north8
south8
east8

north9
south9
east9

north10
southi10
east10

northilil
southll
eastll

= o= NN
+ + + +

[y
+

+

=
+ +

=
+ +

d17d15 + d15d6
d16d14 + d14d5
d5d6

d16d17

d6d4
dbd3
d3d4

d4d7 + d7d1

+ d3d2 + d2d0

dod1

d1d10 + d10s3
d0s2
s2s3

s3sb
s2s4
s4sb

sbs7
s4s6
s6s7

s7s9
s6s8
s8s9

s9s11
s8s10
s10s11

s11s13
s10s12
s12s13

s13s15
s12s14
s14s15

s1bs17
s14s16
s16s17

s17s19
s16s18
s18s19
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POLYLINE northi2 + s19s21
POLYLINE southl12 1 + s18s20
POLYLINE east12 + s20s21
POLYLINE northi3 + s2led
POLYLINE southl13 1 + s20el
POLYLINE east13 + eled
POLYLINE northi4 + e4h
POLYLINE southil4 + e1hO
POLYLINE east14 + hOh
POLYLINE northi15 2 + hi + ik
POLYLINE southil5 + hOkO
POLYLINE east15 + kOk
POLYLINE northi6 + km
POLYLINE southil6 + kOnO
POLYLINE east16 1 + nOm
POLYLINE northil?7 + mtl
POLYLINE southl? + n0tO
POLYLINE eastl17 1 + tOtl
POLYLINE northi8 + nit2
POLYLINE east18 1 + t1t2
POLYLINE west18 + mnl
POLYLINE northi9 + nbt3
POLYLINE east19 1 + t2t3
POLYLINE west19 + ninb
POLYLINE north20 + n4nb
POLYLINE south20 2 + n3n2 + n2nil
POLYLINE west20 + n3n4
POLYLINE north21 + t1th
POLYLINE south21 + t0t4
POLYLINE east21 + t4th
POLYLINE north22 + t2t6
POLYLINE east22 + t5t6
POLYLINE north23 + t3t7
POLYLINE east23 + t6t7

END_GEOMETRY

BEGIN_FLOW
# —--- [aug98] N2 driving N2 ---
#GAS_TYPE PERF_N2
GAS_TYPE LUTN

GAS_STATE driver
GAS_STATE driven
GAS_STATE dumptank 4.00e2 0.0 0.0 296.00 0.0 0.0 1.0 0.0 0.0

3.25e6 0.0 0.0 310.00 1.0 0.0 0.0 0.0 0.0
3.00e4 0.0 0.0 296.00 0.0 1.0 0.0 0.0 0.0
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# --- [feb00] He driving N2 ---
#GAS_TYPE PERF_HE_N2

#GAS_STATE driver
#GAS_STATE driven

# -—- [end] ---

DISCRETISE northO
DISCRETISE southO
DISCRETISE eastO
DISCRETISE westO

DISCRETISE northl
DISCRETISE southl
DISCRETISE eastil

DISCRETISE north2
DISCRETISE south2
DISCRETISE east2

DISCRETISE north3
DISCRETISE south3
DISCRETISE east3

DISCRETISE north4
DISCRETISE south4
DISCRETISE east4

DISCRETISE northb
DISCRETISE southb
DISCRETISE eastb

DISCRETISE north6
DISCRETISE south6
DISCRETISE east6

DISCRETISE north7
DISCRETISE south7
DISCRETISE east7

DISCRETISE north8
DISCRETISE south8
DISCRETISE east8

DISCRETISE north9
DISCRETISE south9
DISCRETISE east9

DISCRETISE northi10
DISCRETISE southi10
DISCRETISE east10

DISCRETISE northilil
DISCRETISE southll
DISCRETISE eastl1l

5.60e6
6.14e4
#GAS_STATE dumptank 4.00e2

140
140
80
80

220
220
80

220
220
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

SO O =+ O

[e e
o
o

oo

= = O O

= = = O
= = O O

00.03
.0 0.0 2
00.02

05.00
96.00
96.00
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DISCRETISE northi2
DISCRETISE southi12
DISCRETISE east12

DISCRETISE northi3
DISCRETISE southil3
DISCRETISE east13

DISCRETISE northi4
DISCRETISE south14
DISCRETISE east14

DISCRETISE northi1b
DISCRETISE southlb
DISCRETISE east1b

DISCRETISE north16
DISCRETISE south16
DISCRETISE east16

DISCRETISE northil?7
DISCRETISE southl?7
DISCRETISE eastl17

DISCRETISE northi18
DISCRETISE east18
DISCRETISE west18

DISCRETISE northi19
DISCRETISE east19
DISCRETISE west19

DISCRETISE north20
DISCRETISE south20
DISCRETISE west20

DISCRETISE north21
DISCRETISE south21
DISCRETISE east21

DISCRETISE north22
DISCRETISE east22

DISCRETISE north23
DISCRETISE east23

240
240
80

240
240
80

120
120
80

120
120
80

200
200
80

100
100
80

100
10
10

100 O

60
60

60
60
60

80
80
80

80
10

80
60

BOUNDARY_SPEC northO
BOUNDARY_SPEC northil
BOUNDARY_SPEC north2
BOUNDARY_SPEC north3
BOUNDARY_SPEC north4
BOUNDARY_SPEC northb
BOUNDARY_SPEC north6
BOUNDARY_SPEC north7
BOUNDARY_SPEC north8
BOUNDARY_SPEC north9

o
o

o
o
o

o
o
o

-
o
-

FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T

296.
296.
296.
296.
296.
296.
296.
296.
296.
296.

O O O O O O O O O o
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BOUNDARY_SPEC north10 FIXED_T 296.
BOUNDARY_SPEC north1ll FIXED_T 296.
BOUNDARY_SPEC north12 FIXED_T 296.
BOUNDARY_SPEC north13 FIXED_T 296.
BOUNDARY_SPEC north14 FIXED_T 296.
BOUNDARY_SPEC north15 FIXED_T 296.
BOUNDARY_SPEC north16 FIXED_T 296.
BOUNDARY_SPEC north19 SUP_0OUT

BOUNDARY_SPEC north20 SUP_0UT

BOUNDARY_SPEC north23 SUP_0UT

O O O O O O o

BLOCK driverl + northO + eastO0 + southO + westO
BLOCK driver2 + northl + eastl + southl + eastO
BLOCK driver3 + north2 + east2 + south2 + eastl
BLOCK shockl + north3 + east3 + south3 + east2
BLOCK shock2 + north4 + east4 + southd4d + east3
BLOCK shock3 + northb + eastb + southb + east4d
BLOCK shock4 + north6 + east6 + south6 + eastb
BLOCK shockb + north7 + east7 + south7 + east6
BLOCK shock6 + north8 + east8 + south8 + east7?
BLOCK shock7 + north9 + east9 + south9 + east8
BLOCK shock8 + northl10 + eastl10 + southl0 + east9
BLOCK shock9 + northll + eastll + southll + eastl0
BLOCK shock10 + northl12 + eastl12 + southl2 + eastll
BLOCK shockll + northl3 + eastl3 + southl3 + eastl2
BLOCK nozzlel + northl4 + eastl4 + southl4 + eastl3
BLOCK nozzle2 + northl5 + eastlb + southlb + eastl4d
BLOCK nozzle3 + northl6 + eastl6 + southl6 + eastlb
BLOCK testl + northl7 + eastl7 + southl7 + eastl6
BLOCK test2 + north18 + eastl18 + northl7 + westl8
BLOCK test3 + northl19 + eastl19 + northl8 + westl9
BLOCK test4 + north20 + westl9 + south20 + west20
BLOCK testb + north21 + east21 + south21 + eastl7
BLOCK test6 + north22 + east22 + north2l1 + eastl8
BLOCK test7 + north23 + east23 + north22 + eastl19

CONNECT_BLOCKS driverl east driver2 west
CONNECT_BLOCKS driver2 east driver3 west
CONNECT_BLOCKS driver3 east shockl west
CONNECT_BLOCKS shockl east shock2 west
CONNECT_BLOCKS shock2 east shock3 west
CONNECT_BLOCKS shock3 east shock4 west
CONNECT_BLOCKS shock4 east shockb west
CONNECT_BLOCKS shockb east shock6 west
CONNECT_BLOCKS shock6 east shock7 west
CONNECT_BLOCKS shock7 east shock8 west
CONNECT_BLOCKS shock8 east shock9 west
CONNECT_BLOCKS shock9 east shockl10 west
CONNECT_BLOCKS shock10 east shockll west
CONNECT_BLOCKS shockll east nozzlel west
CONNECT_BLOCKS nozzlel east nozzle2 west
CONNECT_BLOCKS nozzle2 east nozzle3 west
CONNECT_BLOCKS nozzle3 east testl west
CONNECT_BLOCKS testl north test?2 south
CONNECT_BLOCKS test2 north test3 south
CONNECT_BLOCKS test3 west testéd east
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CONNECT_BLOCKS testl east testb
CONNECT_BLOCKS test2 east test6
CONNECT_BLOCKS test3 east test7
CONNECT_BLOCKS testb north test6
CONNECT_BLOCKS test6 north test7

FILL_BLOCK driveril
FILL_BLOCK driver2
FILL_BLOCK driver3
FILL_BLOCK shockil
FILL_BLOCK shock2
FILL_BLOCK shock3
FILL_BLOCK shock4
FILL_BLOCK shockb
FILL_BLOCK shock6
FILL_BLOCK shock7
FILL_BLOCK shock8
FILL_BLOCK shock9
FILL_BLOCK shock10
FILL_BLOCK shockill
FILL_BLOCK nozzlel
FILL_BLOCK nozzle?2
FILL_BLOCK nozzle3
FILL_BLOCK testil
FILL_BLOCK test2
FILL_BLOCK test3
FILL_BLOCK test4
FILL_BLOCK testb
FILL_BLOCK test6
FILL_BLOCK test7

END_FLOW

BEGIN_CONTROL

TITLE Entire Drummond Tunnel Simulation (Diaphragm Rupture, Mach 4 Nozzle)
# progressive blocks can be activated in mb_special_init.c

CASE_ID 100

AXISYMMETRIC

VISCOUS

TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
TURBULENT
FLUX_CALC

shock1
shock?2
shock3
shock4
shockb
shock6
shock?7
shock8
shock9
shock10
shock11
nozzlel
nozzle?2
nozzle3
adaptive

driver
driver
driver
driven
driven
driven
driven
driven
driven
driven
driven
driven
driven
driven
driven
driven
dumptank
dumptank
dumptank
dumptank
dumptank
dumptank
dumptank
dumptank

west
west
west
south
south
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MAX_TIME 1.0e-2
MAX_STEP 600000
TIME_STEP 0.2e-8
DT_PLOT 1.0e-4
DT_HISTORY 1.0e-6
HISTORY_CELL driver2
HISTORY_CELL shock2
HISTORY_CELL shock9
HISTORY_CELL shockl1l
HISTORY_CELL nozzlel

220 80
106 80
150 80
32 80
1 1

# --- [aug98] N2 driving N2

HISTORY_CELL testl 14

1

HISTORY_CELL testl 14 22
HISTORY_CELL testl 14 30
HISTORY_CELL testl 14 52
# --- [feb00] He driving N2

#HISTORY_CELL testil
#HISTORY_CELL testil
#HISTORY_CELL testil
#HISTORY_CELL testil
# -—- [end] ---

END_CONTROL

BEZIER_FILE drummond_tunnel.bez

1 1
1 22
1 30
1 52

PARAM_FILE drummond_tunnel.p

BUILD

EXIT
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# drummond_tunnel_blanked_80.sit
# Complete Drummond Tunnel Simulation
# Blanked end, new (1998) driver,

# N2 driving N2 case
# Version 7.4 (06/02/03)

BEGIN_GEOMETRY

# Driver Section Nodes

NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE

do -3.
di -3.
d2 -3.
d3 -3
d4 -3
ds -3.
dé -3.
d7 -3.
di0 -3.
di4 -3.
dis5 -3.
di6 -4.
di7 -4.

.40600
.40600

02100 O.
.03110
.00635
.00635
.02950
.00635
.02950
.02950
.03110
.02480
.03700
.02480
.03700

02100
05701

79100
79100
03900
01160
81850
79600
02100
02100

O O O O O O O O O O O O

# Shock Tube Nodes

NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE

NODE
NODE

NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE

LINE
LINE
LINE
LINE
LINE
LINE

s2 -2.
s3 -2.
s4 -2.
sb -2.
s6 -1.
s7 -1.
s8 -1.
s9 -1.
s10 -1.
si1 -1.
s12 -0.
s13 -0.

s14 -0.
s15 -0.

s16 -0
s17 -0

s18 -0.
s19 -0.
s20 -0.
s21 -0.
s22 -0.
s23 -0.

d17d15
d15d6
di6d14
d14d5
d16d17
d5d6

.45520
.45520

60130
60130
25160
25160
90190
90190
55210
55210
20240
20240
85270
85270

O O O O O O O O O O O O

60830 O.
60830 O.

30210
30210
14910
14910

O O O O © O

di17 dib5
di15 dé6
di6é di4
di14 db5
di6 d17
d5 dé6

00000

.00000
.03110
.00000
.03110
.00000
.03110
.00000
.03110
.00000
.03110
.00000
.03110

00000
03110

.00000
.03110
.00000
.03110
.00000
.03110
002000 0.00000
002000 0.03110
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LINE d0d1
LINE d3d4
LINE d5d3
LINE d3d2
LINE d2d0
LINE d6d4
LINE d4d7
LINE d7d1
LINE d0s2

do
d3
d5
d3
d2
dé
d4
a7
do

di
d4
d3
d2
do0
d4
a7
di
s2

LINE d1d10 d1 d10
LINE d10s3 d10 s3

LINE s2s3
LINE s2s4
LINE s3sb
LINE s4sb
LINE s4s6
LINE sbs7
LINE s6s7
LINE s6s8
LINE s7s9
LINE s8s9

s2
s2
s3
s4
s4
sb
s6
s6
s7
s8

s3
s4
sb
sb
s6
s7
s7
s8
s9
s9

LINE s8s10 s8

LINE s9s11 s9

LINE s10s11 s10
LINE s10s12 s10
LINE s11s13 si1
LINE s12s13 s12
LINE s12s14 s12
LINE s13s15 s13
LINE s14s15 si14
LINE s14s16 s14
LINE s15s17 s15
LINE s16s17 s16
LINE s16s18 s16
LINE s17s19 s17
LINE s18s19 s18
LINE s18s20 s18
LINE s19s21 s19
LINE s20s21 s20
LINE s20s22 s20
LINE s21s23 s21
LINE s22s23 s22

POLYLINE
POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

POLYLINE
POLYLINE
POLYLINE

north0
southO
eastO
west0

northl
southil
eastl

north2
south?2
east2

s10
sl1
sl1
s12
s13
s13
sl4
s1b5
s1b
sl6
s17
s17
s18
s19
s19
s20
s21
s21
s22
s23
s23

= o= NN
+ + + +

e
+

d17d15 + d15d6
d16d14 + d14d5
d5d6

di16d17

ded4
dbd3
d3d4

2 + d4d7 + d7d1l
2 + d3d2 + d240
1 + do0d1
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POLYLINE north3
POLYLINE south3
POLYLINE east3

POLYLINE north4
POLYLINE south4
POLYLINE east4

POLYLINE northb
POLYLINE southb
POLYLINE eastb

POLYLINE north6
POLYLINE south6
POLYLINE east6

POLYLINE north7
POLYLINE south7
POLYLINE east7

POLYLINE north8
POLYLINE south8
POLYLINE east8

POLYLINE north9
POLYLINE south9
POLYLINE east9

[y

+ d1d10 + d10s3

1 + d0s2

+ 8283

+ s3sb
+ s2s4
+ s4sb

+ sbs7
+ s4s6
+ s6s7

+ s7s9
+ s6s8

1 + s8s9

+ s9s11

1 + s8s10

+ s10s11

+ s11s13

1 + s10s12

+ s12s13

1 + s13s15

POLYLINE north10 1

POLYLINE southil0
POLYLINE east10

POLYLINE northilil
POLYLINE southl1l
POLYLINE eastl1l

POLYLINE northi2
POLYLINE southil2
POLYLINE easti12

POLYLINE northi13

+ s12s14
+ s14s15

+ s15s17
+ s14s16
+ s16s17

+ s17s19
+ s16s18

1 + s18s19

+ s19s21
+ s18s20

1 + s20s21

POLYLINE southi3 1

POLYLINE east13
END_GEOMETRY
BEGIN_FLOW

#GAS_TYPE perf_n2

GAS_TYPE LUTN

GAS_STATE driver

GAS_STATE driven

DISCRETISE northO
DISCRETISE southO

+ 821823
+ s20s22
+ s22s23

3.20e6 0.0 0.0 310.00 1.0 0.0 0.0 0.0 0.0
3.00e4 0.0 0.0 296.00 0.0 1.0 0.0 0.0 0.0

140 0 0 0.0
140 1 0 1.6
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DISCRETISE eastO
DISCRETISE westO

DISCRETISE northl
DISCRETISE southl
DISCRETISE easti

DISCRETISE north2
DISCRETISE south2
DISCRETISE east2

DISCRETISE north3
DISCRETISE south3
DISCRETISE east3

DISCRETISE north4
DISCRETISE south4
DISCRETISE east4

DISCRETISE northb
DISCRETISE southb
DISCRETISE eastb

DISCRETISE north6
DISCRETISE south6
DISCRETISE east6

DISCRETISE north7
DISCRETISE south7
DISCRETISE east7

DISCRETISE north8
DISCRETISE south8
DISCRETISE east8

DISCRETISE north9
DISCRETISE south9
DISCRETISE east9

DISCRETISE northi10
DISCRETISE southi10
DISCRETISE east10

DISCRETISE northilil
DISCRETISE southll
DISCRETISE eastl1l

DISCRETISE northi2
DISCRETISE southil2
DISCRETISE east12

DISCRETISE northi13
DISCRETISE south13
DISCRETISE east13

BOUNDARY_SPEC northO FIXED_T 296.0

80
80

220
220
80

220
220
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

240
240
80

(]
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BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n
BOUNDARY_SPEC n

BLOCK driverl +
BLOCK driver2 +
BLOCK driver3 +
BLOCK shockl +
BLOCK shock2 +
BLOCK shock3 +
BLOCK shock4 +
BLOCK shockb +
BLOCK shock6 +
BLOCK shock7 +
BLOCK shock8 +
BLOCK shock9 +
BLOCK shock10 +
BLOCK shockll +

CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS
CONNECT_BLOCKS

orthl
orth2
orth3
orth4
orthb
orth6
orth7
orth8
orth9
orth10
orthil
orthi2
orth13

northO
northl
north2
north3
north4
northb
north6é
north7
north8
north9
northl
northl
northl
northl

driveril
driver?2
driver3
shock1
shock?2
shock3
shock4
shockb
shock6
shock7
shock8
shock9
shock10

FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T
FIXED_T

eas
eas
eas
eas
eas
eas
eas
eas
eas
eas
0
1
2
3

eas
eas
eas

+ o+ o+ o+ F o+ F o+ o+ o+ o+

eas

east
east
east
east
east
east
east
east
east
east
east
east
east

296.
296.
296.
296.
296.
296.
296.
296.
296.
296.
296.
296.
296.

O O O O O OO O OO O o oo

t0
tl
t2
t3
t4
t5
t6
t7
t8
t9
t10
tll
t12
t13

driver
driver
shocki1
shock?2
shock3
shock4
shockb
shock6
shock7
shock8
shock9
shocki1
shock1

FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK
FILL_BLOCK

driverl driver
driver2 driver
driver3 driver
shockl driven
shock2 driven
shock3 driven
shock4 driven
shockb driven
shock6 driven
shock7 driven
shock8 driven
shock9 driven
shock10 driven

southO
southil
south?2
south3
south4
southb
south6
south?
south8
south9
southl0
southil
southl2
southl3

2 west
3 west
west
west
west
west
west
west
west
west
west
0 west
1 west

+ o+ o+ o+ F o+ o+ o+ o+

westO
east0
eastl
east2
east3
east4
eastb
east6
east7
east8
east9
east10
eastll
east12
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FILL_BLOCK shock1l driven
END_FLOW
BEGIN_CONTROL

TITLE Entire Drummond Tunnel Simulation (Diaphragm Rupture, Blanked End)
# progressive blocks can be activated in mb_special_init.c
CASE_ID 101

AXISYMMETRIC

VISCOUS

TURBULENT shockl

TURBULENT shock2

TURBULENT shock3

TURBULENT shock4
TURBULENT shockb

TURBULENT shock6

TURBULENT shock7

TURBULENT shock8

TURBULENT shock9

TURBULENT shock10
TURBULENT shockl11
FLUX_CALC adaptive
MAX_TIME 1.0e-2

MAX_STEP 400000
TIME_STEP 0.2e-8

DT_PLOT 1.0e-4
DT_HISTORY 1.0e-6

#Rake at 1015mm position
HISTORY_CELL shock6é 88 1
HISTORY_CELL shock6 88 20
HISTORY_CELL shock6 88 46
HISTORY_CELL shock6 88 48
#Rake at 524mm position
HISTORY_CELL shock8 76 1
HISTORY_CELL shock8 76 20
HISTORY_CELL shock8 76 46
HISTORY_CELL shock8 76 48
#Shock tube wall points A and B
HISTORY_CELL shock10 24 80
HISTORY_CELL shockll 134 80

END_CONTROL
BEZIER_FILE drummond_tunnel.bez
PARAM_FILE drummond_tunnel.p

BUILD

EXIT



APPENDIX C

MB_CNS Special Case Files

/* mb_special_init.inc

£

* Section of code that deals with the initialisation of
* special cases.
£
*

This file is "included" in mb_cns.c.
*/
if (Case_ID == DRUMMOND_TUNNEL_M4NOZZLE) {
/* Primary Diaphragm Rupture Model:
* this is the number (the first one being zero) of the block
* upstream from the diaphragm
*/
diaphragm_block = 2;

/* assuming a linear profile of ruptured are versus time, the total
* opening time in seconds
*/

diaphragm_rupture_time = 0.94%200.0e-6;

diaphragm_rupture_diameter = 57.0e-3;

sprintf (msg_text, "\n... activating diaphragm rupture
parameters: block %d, rupture time = Jfus,
rupture diameter = %fmm\n",
diaphragm_block, diaphragm_rupture_timex*1.0e6,
diaphragm_rupture_diameter*1.0e3) ;

log_message (msg_text, 1);

/* Secondary Diaphragm:

* Initially set blocks[16]-[23] as inactive and put reflective

* boundary conditions between block[15] and block[16] (as the secondary
* diaphragm) .

*/
bd[15] .bc_E = 3;
bd[16].bc_W = 3;

secondary_diaphragm_ruptured = 0;
.active[16] = 0;

.active[17] = 0
.active[18] = 0
.active[19] = 0
.active[20] = 0;
.active[21] = 0
.active[22] = 0
.active[23] = 0

[P P PE PP R PR PR P]



346 MB_CNS Special Case Files

/* Progressive Shock Tube Blocks:

* Using progressive switching on of blocks along the shock tube.
* Initially only the three driver blocks and the first shock tube
* block are turned on and the boundaries are opened.

*/

/* use progressive blocks? */
drummond_progressive = 1;

if (drummond_progressive == 1) {
bd[3].bc_E = 3;
for (block_counter = 4; block_counter < 15; block_counter++) {
tube_block_activated[block_counter] = 0;
G.active[block_counter] = 0;
bd[block_counter] .bc_E = 3;
bd[block_counter] .bc_W = 3;

}
bd[15].bc_W = 3;
G.active[15] = 0;
tube_block_activated[15] = 0;
}
} /* end of DRUMMOND_TUNNEL_M4NQOZZLE */

if ( Case_ID == DRUMMOND_TUNNEL_BLANKED ) {
/* Primary Diaphragm Rupture Model:
* this is the number (the first one being zero) of the block
* upstream from the diaphragm
*/
diaphragm_block = 2;

/* assuming a linear profile of ruptured are versus
* time, the total

* opening time in seconds

*/
diaphragm_rupture_time = 0.94%200.0e-6;

/*  diaphragm_rupture_time = 50.0e-6; */
diaphragm_rupture_diameter = 57.0e-3;

sprintf (msg_text, "\n... activating diaphragm rupture
parameters: block %d, rupture time = fus,
rupture diameter = %fmm\n",
diaphragm_block, diaphragm_rupture_timex*1.0e6,
diaphragm_rupture_diameterx1.0e3);

log_message (msg_text, 1);

/* Using progressive switching on of blocks along the shock tube.
* Initially only the three driver blocks and the first shock tube
* block are turned on and the boundaries are opened.

*/

/* use progressive blocks? */
drummond_progressive = 1;

if (drummond_progressive == 1) {
bd[3].bc_E = 3;
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for (block_counter = 4; block_counter < 13; block_counter++) {

tube_block_activated[block_counter] = 0;
G.active[block_counter] = 0;
bd[block_counter] .bc_E = 3;
bd[block_counter] .bc_W = 3;

}

bd[13] .bc_W = 3;

G.active[13] = 0;

tube_block_activated[13] = 0;

}
} /% end if DRUMMOND_TUNNEL_BLANKED */
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/* mb_special_step.inc
£
* Special-case code for inclusion at the start of a time step.
*/
if (Case_ID == DRUMMOND_TUNNEL_M4NQOZZLE) {
/* Check for secondary diaphragm rupture */
pp = bd[15].Ctr[bd[15].ixmax] [bd[15].iymin] .gas.p;
if ( secondary_diaphragm_ruptured == 0 && pp > 1.0e5 ) {
secondary_diaphragm_ruptured = 1;
sprintf (msg_text, "\n... Secondary diaphragm ruptured at p = %e\n", pp);
log_message (msg_text, 1);
.active[16]
.active[17] = 1
.active[18] = 1
.active[19] = 1
.active[20] = 1;
1
1
1

]
-

.active[21] =
.active[22] =
.active[23] =
bd[15] .bc_E
bd[16] .bc_W

[P PP PR PR PR PR

non
(el e]

/* progressive blocks: activate tube blocks if the x velocity in the cell 5
* from the end of the block before it in the tube rises over 1.0m/s
*/
if (drummond_progressive == 1) {
for (block_counter = 4; block_counter < 16; block_counter++) {
if (tube_block_activated[block_counter] == 0) {
/%
* So far, this is an inactive block.
* Look a few cells into the upstream block to see if the shock
* in coming (as indicated by a velocity rise).
*/
pp = bd[block_counter-1].Ctr[bd[block_counter-1].ixmax-5] [bd[block_counter-1].iymin].u;
if (pp >= 1.0) {
sprintf (msg_text, "\n... Switching on block %d with %em/s\n", block_counter, pp);
log_message (msg_text, 1);
/* then activate this block and the boundary before it */
bd[block_counter-1].bc_E = 0;
G.active[block_counter] = 1;
bd[block_counter].bc_W = 0;
tube_block_activated[block_counter] = 1;

} /* end of DRUMMOND_TUNNEL_M4NOZZLE */

if (Case_ID == DRUMMOND_TUNNEL_BLANKED) {
/* progressive blocks: activate tube blocks if the x velocity in the cell 5
* from the end of the block before it in the tube rises over 1.0m/s

*/

if (drummond_progressive == 1) {



MB_CNS Special Case Files

349
for (block_counter = 4; block_counter < 14; block_counter++) {
if (tube_block_activated[block_counter] == 0) {
/*

* So far, this is an inactive block.

* Look a few cells into the upstream block to see if the shock
* in coming (as indicated by a velocity rise).
*/
pp = bd[block_counter-1].Ctr[bd[block_counter-1].ixmax-5] [bd[block_counter-1].iymin].u
if (pp >= 1.0) {
sprintf (msg_text, "\n... Switching on block %d with %ems-1\n", block_counter, pp);
log_message (msg_text, 1);
/* then activate this block and the boundary before it */
bd[block_counter-1].bc_E = 0;
G.active[block_counter] = 1;
bd[block_counter].bc_W = 0;

tube_block_activated[block_counter] = 1;

}
} /+ if DRUMMOND_BLANKED_BLANKED end */



