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Abstract

Eilmer is a program for the simulation of compressible gas flows. It is based
on a finite-volume formulation of the mass, momentum, energy and species con-
servation equations, plus a model of the gas thermochemistry. This report con-
tains the description of the single-temperature reacting-gas formulation, which
consists of a mixture of thermally-perfect gas species and a finite-rate kinetics
scheme that determines the evolution of the composition of that mixture. This
reacting gas module may be used as part of a flow simulation or in a scripted cal-
culation of your own design. Wrappers for Lua, Python3 and Ruby are available
for scripted calculations and example calculations are provided in this report.
The final example shows the use of the reacting-gas model in a flow simulation.
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CHAPTER 1
Introduction

When you work with the Eilmer flow solver, you should start your analysis with
the simplest gas model that is appropriate. For flows with moderate temperatures
of a few hundred degrees, that might very well be the ideal gas model, with fixed
composition and heat capacities. But, at higher temperatures, the gas in your flow
might undergo chemical reactions. For example in air, by 2 000 K oxygen molecules
will begin to dissociate, and by 4 000 K nitrogen molecules will begin to dissociate.

Atmospheric entry of a spacecraft and combustion within a ducted, supersonic
flow are typical examples of hypersonic flows that might be analysed with the Eilmer.
In these cases, the temperatures may be in the range 1000 K to several thousand de-
grees and velocities may be a few kilometres per second. Thus, it is likely that changes
to the chemical composition of the gas will be significant and also likely that the
timescales for these changes will be comparable to the transit time for the gas through
the flow domain. Now, for your gas-dynamic analysis with Eilmer, the equations of
the flow solver need to be complemented by a set of thermochemical relations de-
scribing the behaviour of the gas as a mixture of chemical species that undergoes
finite-rate chemical reactions.

In this report, we first consider the thermally-perfect gas model with one or more
chemical components (Section 2), all of which have perfect collisional behaviour but
each having all internal energy modes excited to an equilibrium described by a single
temperature. This has become the ”work horse” gas model for hypersonic flow anal-
ysis with Eilmer. We then describe the generic finite-rate chemical reaction scheme
(Section 3) that can be used with this gas model, followed by a description of the
configuration file specification (Section 4). The final section (5) describes some sam-
ple applications, in the form of scripted calculations and as part of a flow simulation
with the Eilmer flow solver.

The gas module is available as part of the Eilmer source code from the public
repository https://github.com/gdtk-uq/gdtk. The home page for Eilmer may
be found at https://gdtk.uqcloud.net/docs/eilmer/about/.
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CHAPTER 2
A thermally-perfect-gas model

The thermodynamic relations for the gas mixture of given composition are presented
here. The implementation of finite-rate chemical effects, which define how the com-
position changes with time, is discussed in Section 3.

2.1 A single-species thermally-perfect gas

The assumed behaviour of a thermally perfect gas is that all internal energy modes
are in equilibrium at a single temperature. For atoms this means that the Boltzmann
distributions for translational and electronic energy are governed by one tempera-
ture value. Similarly for molecules, the Boltzmann distributions for translational,
rotational, vibrational and electronic energy are described by a single temperature
value.

To model a thermally perfect gas requires a knowledge of how the gas stores en-
ergy as a function of temperature. It is convenient to have available the specific heat
at constant pressure as a function of temperature, Cp(T ). From this, specific enthalpy
of the gas can be computed as

h =

∫ T

Tref

Cp(T )dT + h(Tref ) (2.1)

and entropy is given as

s =

∫ T

Tref

CP (T )

T
dT + s(Tref ). (2.2)

The transport properties, viscosity and thermal conductivity, can be calculated
as a function of temperature for a single component of the gas mix. The transport
properties for a single component can be combined by an appropriate mixing rule to
give a mixture viscosity and thermal conductivity.

In the implementation, a thermally perfect gas is characterised by five curve fits
all of which are functions of temperature:

1. specific heat at constant pressure, Cp(T ),

2. enthalpy, h(T ),

3



4 Chapter 2. A thermally-perfect-gas model

3. entropy, s(T ),

4. viscosity, µ(T ), and

5. thermal conductivity, k(T ).

The form of these curve fits follows that used by McBride and Gordon [1]. The curve
fits for thermodynamic properties in non-dimensional form are as follows:

Cp(T )

R
= a0T

−2 + a1T
−1 + a2 + a3T + a4T

2 + a5T
3 + a6T

4 (2.3)

H(T )

RT
= −a0T−2 + a1T

−1 log T + a2 + a3
T

2
+ a4

T 2

3
+ a5

T 3

4
+ a6

T 4

5
+
a7
T

(2.4)

S(T )

R
= −a0

T−2

2
− a1T

−1 + a2 log T + a3T + a4
T 2

2
+ a5

T 3

3
+ a6

T 4

4
+ a8 (2.5)

The coefficients for these curve fits are available for a large number of gaseous species
in the CEA program [1] (and associated database files). Each of these curve fits are
only valid over a limited temperature range. For example, the thermodynamic curve
fits for molecular nitrogen (N2) are comprised of three segments: 200.0–1000.0 K,
1000.0–6000.0 K and 6000.0–20000.0 K. At the boundaries of these polynomials, the
values do not precisely match. This mismatch causes grief for the iterative method
used to determine temperature given the enthalpy because these methods rely on the
underlying function varying smoothly. To overcome this, we use the idea to blend
the polynomial coefficients near the boundaries presented in Gupta et al. [2]. At the
1000 K break point, we do a linear blending of the coefficients over a range of 400 K.
So, the linear blend starts at 800 K and finishes at 1200 K. At the 6000 K break point,
the blending range is 1000 K. It is important to note that the coefficients are blended,
then used in the polynomial to evaluate the required properties. The blending is not
performed on the values themselves. Beyond the range of the sets of polynomials,
the values are extrapolated. The extrapolations are based on a crude assumption of
constant Cp outside of the range. Thus the extrapolations are as follows:

Cp(T < Tlow)

R
=

Cp(Tlow)

R
Cp(T > Thigh)

R
=

Cp(Thigh)

R
H(T < Tlow)

RT
=

1

T
{H(Tlow)− Cp(Tlow)(Tlow − T )}

H(T > Thigh)

RT
=

1

T
{H(Thigh) + Cp(Thigh)(T − Thigh)}

S(T < Tlow)

R
= S(Tlow)− Cp(Tlow) log

(
Tlow
T

)
S(T > Thigh)

R
= S(Thigh) + Cp(Thigh) log

(
T

Thigh

)
The curve fits for viscosity and thermal conductivity are also in the same form as

that used by the CEA program [1]. The curves are as follows.

log µ(T ) = a0 log T +
a1
T

+
a2
T 2

+ a3
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log k(T ) = b0 log T +
b1
T

+
b2
T 2

+ b3

2.2 Mixing rules for a collection of thermally perfect gases

The thermodynamic state for a mixture of thermally perfect gases is uniquely defined
by two state variables and the mixture composition. The internal energy1 is computed
as a mass fraction weighted sum of individual internal energies,

e =
N∑
i=1

fiei =
N∑
i=1

fi (hi −RiT ) . (2.6)

Pressure is computed from Dalton’s law of partial pressures,

p =
N∑
i=1

ρiRiT. (2.7)

The specific gas constant for the mixture is defined as

R =
N∑
i=1

fiRi. (2.8)

The calculation of Cp is based on a mass fraction weighted sum of component specific
heats,

Cp =
N∑
i=1

fiCpi. (2.9)

The specific heat at constant volume is then computed as

Cv = Cp −R. (2.10)

The ratio of specific heats, γ, is given by its definition,

γ =
Cp

Cv

. (2.11)

The frozen sound speed for the mixture, a, is calculated as

a =
√
γRT . (2.12)

During a compressible flow simulation, the values of ρ and e are most readily
available from the conserved quantities that are solved for during each time incre-
ment. This leads to the specific problem of solving for the thermodynamic state of
the gas mixture given ρ, e, and the mixture composition,

−→
f . However, the formulae

previously presented are all explicit in temperature. We solve for temperature using
the Newton iteration technique for zero solving,

Tn+1 = Tn −
f0(Tn)

f ′
0(Tn)

, (2.13)

1Note that the GasState class uses the symbol u for specific internal energy.
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where the zero function, f0(T ), is based on the given internal energy, e, and a guess
for internal energy based on temperature,

f0(T ) = eguess − e =
N∑
i=1

fi (hi −RiTguess)− e. (2.14)

Using the fact that Cvi =
dei
dt

, we can conveniently find the derivative function for the
Newton technique by computing the mixture Cv,

df0(T )

dT
=

N∑
i=1

fi
dei
dT

=
N∑
i=1

fiCvi = Cv. (2.15)

The Newton iteration is set to converge when the accuracy of the temperature value is
within ±1.0× 10−6 K. Personal experience has shown that this kind of error tolerance
is required when temperature is used in a finite-rate chemistry calculation to compute
rates of composition change.

The calculation of mixture transport properties is not as straight forward as the
thermodynamic properties. A mixing rule is required to compute the mixture viscos-
ity and thermal conductivity. Wilke’s mixing rule [3] has been implemented in the
work presented here. Specifically, the mixing rules used by Gordon and McBride [4]
in the CEA program are used for calculating mixture transport properties in this
work; these rules are a variant of Wilke’s original formulation [3].

µmix =
N∑
i=1

xiµi

xi +
∑N

j=1
j ̸=i

xjϕij

(2.16)

and

kmix =
N∑
i=1

xiki

xi +
∑N

j=1
j ̸=i

xjψij

(2.17)

where xi is the mole fraction of species i.

The interaction potentials, ϕij and ψij , can be calculated a number of ways. Again,
the formulae suggested by Gordon and McBride [4] have been used,

ϕij =
1

4

[
1 +

(
µi

µj

)1/2(
Mj

Mi

)1/4
]2(

2Mj

Mi +Mj

)1/2

(2.18)

and

ψij = ϕij

[
1 +

2.41(Mi −Mj)(Mi − 0.142Mj)

(Mi +Mj)2

]
(2.19)

where Mi and Mj refer to the molecular weights of species i and j respectively.

Once the mixture viscosity and thermal conductivity have been computed, it is
possible to compute the mixture Prandtl number from its definition

Pr =
µCp

k
. (2.20)



CHAPTER 3
Finite-rate chemistry

3.1 Rates of species change due to chemical reaction

By assuming a collection of simple reversible reactions, the chemically reacting sys-
tem can be represented as,

N∑
i=1

αiXi ⇀↽

N∑
i=1

βiXi, (3.1)

where αi and βi represent the stoichiometric coefficients for the reactants and prod-
ucts respectively. The case of an irreversible reaction is represented by setting the
backward rate to zero. For a given reaction j, the rate of concentration change of
species i is given as,

(
d[Xi]

dt

)
j

= νi

{
kf

∏
i

[Xi]
αi − kb

∏
i

[Xi]
βi

}
, (3.2)

where νi = βi−αi. By summation over all reactions,Nr, the total rate of concentration
change is,

d[Xi]

dt
=

Nr∑
j=1

(
d[Xi]

dt

)
j

. (3.3)

For certain integration schemes it is convenient to have the production and loss rates
available as separate quantities. In this case,

d[Xi]

dt
= qi − Li =

Nr∑
j=1

ω̇appi,j −
Nr∑
j=1

ω̇vai,j (3.4)

The calculation of ω̇appi,j and ω̇vai,j depends on the value of νi in reach reaction j as
shown in Table 3.1.

The calculation of the reaction rate coefficients, kf and kb, and the solution meth-
ods for the ordinary differential equation system of species concentration changes are
discussed in the subsequent sections.

7



8 Chapter 3. Finite-rate chemistry

Table 3.1: The form of the chemical production and loss terms based on the value of
νi

νi > 0 νi < 0
ω̇appi νikf

∏
i[Xi]

αi −νikb
∏

i[Xi]
βi

ω̇vai −νikb
∏

i[Xi]
βi νikf

∏
i[Xi]

αi

3.2 Reaction rate coefficients

The reaction rate coefficients for a reaction can be determined by experiment (often
shock tube studies are used) or from theory. In a great number of cases, estimates of
the reaction rate from theory can vary by orders of magnitude from experimentally
determined values. For this reason, fits to experimental values are most commonly
used.

For the single-temperature gas model discussed in this chapter, the forward reac-
tion rate coefficients are calculated using the generalised Arrhenius form,

kf = AT n exp

(
−Ea

kT

)
(3.5)

where k is the Boltzmann constant and A, n and Ea are constants of the model.

The backward rate coefficient can also be calculated using a modified Arrhenius
form,

kb = AT n exp

(
−Ea

kT

)
(3.6)

or it can be calculated by first calculating the equilibrium constant for the reaction,

kb =
kf
Kc

. (3.7)

If the backward rate coefficient is calculated from the equilibrium constant, then a
method of calculation of the equilibrium constant is required. The equilibrium con-
stant for a specific reaction can be calculated from curve fits or, as is done in this
work, using the principles of thermodynamics. The equilibrium constant based on
concentration is related to the equilibrium constant based on pressure by,

Kc = Kp

(patm
RT

)ν

(3.8)

where patm is atmospheric pressure in Pascals, R is the universal gas constant, ν =∑NS

i νi and

Kp = exp

(
−∆G

RT

)
. (3.9)

The derivation of the formula for Kp, the equilibrium constant based on partial pres-
sures, can be found in any introductory text on classical thermodynamics which cov-
ers chemical equilibrium. The differential Gibbs function for the reaction, ∆G, is
calculated using

∆G =
Ns∑
i

νiGi (3.10)
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where each Gi is computed from the definition of Gibbs free energy,

Gi(T ) = Hi(T )− T × Si(T ) (3.11)

and Gi is in units of J/mol. Hi and Si can be computed in the appropriate units by
using the CEA polynomials and multiplying by RT and R respectively.

Some caution should be exercised in the selection and use of reaction rates for a
specific flow problem. In many cases, a set of reaction rates may only be “tuned”
for a specific problem domain. This problem of “tuned” sets of reaction rates and an
explanation for why it arises is described by Oran and Boris (p. 38 of Ref. [5]):

A problem that often arises in chemical reactions is that there are funda-
mental inconsistencies in a measured reaction rate. For example, there
may be experimental measurements of both the forward and reverse rate
constants, kf and kr. Nonetheless, when either is combined with the equi-
librium coefficient for that reaction, the other is not produced. This ap-
pears to represent a violation of equilibrium thermodynamics. The expla-
nation is usually that kf and kr have been measured at rather different
temperatures or pressures, and so there are inconsistencies when they are
extrapolated outside the regime of validity of the experiments.

3.3 Solving the chemical kinetic ordinary differential equation

The system represented in Equation 3.3 is a system of ordinary differential equations
(ODEs) which can be solved by an appropriate method. For certain chemical systems,
the governing ODEs form a stiff system due to rates of change varying by orders of
magnitude for certain species. For these systems, special methods for stiff ODEs are
required. At present, there are two ODE methods provided in the implementation:
one aimed at non-stiff systems, and the other for stiff systems.

1. Runge-Kutta-Fehlberg method (efficient for non-stiff systems)

2. alpha-QSS method (specialised for stiff chemitry systems)

The fourth-order Runge-Kutta method uses a fifth-order error estimate as a means
for controlling the timestep used for integration as proposed by Fehlberg [6]. This is
particularly efficient for non-stiff systems.

alpha-QSS method The alpha-QSS (quasi-steady-state) method was proposed in
Mott’s thesis [7]. The thesis provides good detail on the method development, how-
ever, a later journal article [8] on the method provides typographical corrections to
the update equations. Our implementation uses the equation from this journal ar-
ticle. It is an ODE solver aimed specifically at the problem of stiffness in chemical
systems. This ODE solver makes use of the forward and backwards rates of concen-
tration change as calculated by Equation 3.4. This is a predictor-corrector type scheme
in which the corrector is iterated upon until a desired convergence is achieved. The
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predictor and corrector are,

[Xi]
1 = [Xi]

0 +
∆tq0i

1 + α0
i∆tL

0
i

(3.12)

[Xi]
n+1 = [Xi]

0 +
∆t

(
q̄i − [Xi]

0 L̄i

)
1 + ᾱi∆tL̄i

. (3.13)

In the above equations,

L̄i =
1

2

(
L0
i + Ln

i

)
(3.14)

and
q̄i = ᾱiq

n
i + (1− ᾱi)Q

0
i . (3.15)

The key to the scheme is calculating α correctly. This α parameter controls how the
update works on a given species integration. Note that α is defined as

α(L∆t) ≡
1−

(
1− e−L∆t

)
/(L∆t)

1− e−L∆t
. (3.16)

Using Pade’s approximation,

ex ≈ 360 + 120x+ 12x2

360− 240x+ 72x2 − 12x3 + x4
(3.17)

it is possible to write a form of the expression for α which is more amenable to com-
putation as the expensive exponential function evaluation is avoided. The approxi-
mation for α becomes,

α(L∆t) ≈ 180r3 + 60r2 + 11r + 1

360r3 + 60r2 + 12r + 1
(3.18)

where r ≡ 1/(L∆t).
The corrector step is iterated until convergence is achieved or a maximum number

of corrector steps have been taken. The convergence criterion, given by Mott [7], is
based on all species satisying:∣∣∣∣∣∣[X]C − [X]P

∣∣∣∣∣∣ < ε1 [X]C (3.19)

Referring to the notation used earlier, [X]C = [X]n+1 and [X]P = [X]1. Qureshi and
Prosser [9] suggest an addition of a δ term to Equation 3.19 to prevent an excessively
restrictive criterion when species first appear from zero concentration. This change in
critertion also has a follow-on effect in prevernting some needlessly small timesteps.
Qureshi and Prosser suggest:∣∣∣∣∣∣[X]C − [X]P

∣∣∣∣∣∣ < ε1

(
[X]C + δ

)
(3.20)

On completion of a step, either successful or unsuccesful, Mott [7] provides a sug-
gestion for the new step size. That algorithm, including the δ addition of Qureshi and
Prosser [9], is:

σ = max


∣∣∣∣∣∣[X]C − [X]P

∣∣∣∣∣∣
ε2

(
[X]C + δ

)
 (3.21)

(∆t)new = (∆t)old

(
1

√
σ
∗ + 0.005

)
(3.22)
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Note that
√
σ
∗ is computed as three steps of a Newton’s method using σ as the starting

value. This is the suggestion of Mott [7] as an efficiency measure in the implementa-
tion.

3.4 Coupling chemistry effects to the flow solver

Some details about the coupling of the chemistry effects to the gas dynamics simula-
tion are provided here. In an unsteady, time-accurate flow simulation, the allowable
timestep is constrained by the Courant-Friedrichs-Lewy (CFL) criterion. In a viscous
compressible flow, the CFL criterion allows one to select an appropriate timestep and
limit the propagation of flow information to distances less than one cell-width. The
speed at which flow information propagates is a function of inviscid wave speeds
and viscous effects.

When the effects of finite-rate chemistry are ‘split’ from the flow simulation, the
chemical update is solved in a separate step in which the flow is held frozen. (In fact,
in true timestep-splitting, all other contributing physics is frozen during the chemistry
update.) Thus the chemistry problem is to find the updated species composition at
the end of the flow timestep.

It may be, and is quite likely, that the flow timestep is not an appropriate timestep
to solve the chemical kinetic ODE problem. When the timestep for the chemistry
problem is smaller than the flow timestep, the chemistry problem is subcycled a num-
ber of times until the total elapsed time equals that of the flow timestep. It is common
to have simulations where the chemistry timestep is 100–1000 times smaller than the
flow timestep, that is, 100-1000 subcycles are required to solve the chemistry prob-
lem. When the timstep for the chemistry problem is larger than the flow timestep, it
is simply set to the value of the flow timestep.

During the simulation process, the chemistry timestep is tracked for each finite-
volume cell in the simulation. Although the flow ‘moves on’ in subsequent timesteps,
if the change of flow conditions is not large, then the previous chemistry timestep will
be a good estimate to begin the new chemistry problem in the subsequent timestep.
An exceptional case is when a shock passes through the cell: the change of flow con-
ditions does become large. In this instance, the old chemistry step is disregarded and
a new step is selected. The selection procedure for a new step is discussed in the next
paragraph. When using either the Runge-Kutta-Fehlberg or the alpha-QSS methods,
an estimate of the new chemistry timestep is provided as part of the ODE update
routine.

So, during a simulation, the old chemistry step at one iteration is used to begin
the new chemistry problem in the next iteration. What is needed is a means to se-
lect the chemistry step on the initial iteration, or whenever the old suggestion is not
reasonable (as in the case of a shock passing through the cell). In this work, the ini-
tial step for the chemistry problem is selected based on the suggestion by Young and
Boris [10],

dtchem = ϵ1min

(
[Xi](0)

[Ẋi](0)

)
(3.23)

where ϵ1 is taken as 1.0 × 10−3 in this work, and the expression is evaulated at the
initial values for the chemistry subproblem. Young and Boris [10] suggest that ϵ1 be
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scaled from the convergence criteria. We have found that the fixed value is adequate
for the problems of interest to our research group.



CHAPTER 4
The reactions-scheme file

The chemical reactions which may take place in a reacting flow simulation are de-
scribed in a Lua input file. This input file, prepared by the user, is pre-processed with
the prep-chem program to produce a detailed chemistry file for subsequent use in
the main simulation code or in a custom script. As the input file is Lua-based, the
user has access to the full extent of the Lua scripting language when preparing her
files. Do not be concerned if you do not know the Lua syntax; the instructions and
examples given here should be ample to get you started building reaction schemes.1

Let’s proceed by looking at an example input file and discussing the keywords
and syntax. Listed here is an input file which describes the simple thermal dissoci-
ation of nitrogen. There are only two participating species, N2 and N, and only two
reactions.

Reaction{
’N2 + N2 <=> N + N + N2’,
fr={’Arrhenius’, A=7.0e21, n=-1.6, C=113200.0},
br={’Arrhenius’, A=1.09e16, n=-0.5, C=0.0}

}

Reaction{
’N2 + N <=> N + N + N’,
fr={’Arrhenius’, A=3.0e22, n=-1.6, C=113200.0},
br={’Arrhenius’, A=2.32e21, n=-1.5, C=0.0}

}

The first reaction is the dissociation of N2 by collision with other N2 molecules. The
forward reaction rate coefficient is computed with a generalised Arrhenius model,
and the parameters for that model are specified. Similarly, the backward reaction rate
coefficient is computed using the Arrhenius expression.

1If you are worried about needing to “learn Lua” just to get started, then don’t be. First, you may
just look at this as an input format for the chemistry, and forget that it has anything to do with Lua
altogether. Second, Lua was designed with non-programmers in mind and so it uses a simple syntax,
specifically so that those non-programmers could quickly use Lua as a configuration language.

13
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More generally, each reaction is specified within a Reaction table.2 The table
is delimited by the opening and closing braces ({ }). The first entry in the table is
always a string. That string is the chemical equation for the reaction. The remaining
items in the table are denoted by key-value pairs (of the form key=val), and may
appear in any order. Each item in the table is separated by a comma.3 This example
file contained two Reaction tables, hence two reactions are treated in the reaction
scheme.

Some final notes before discussing the input file in further depth. There is no
explicit mention of the participating species in the reaction file. The participating
species are taken from the species that are present in the gas model file for the same
flow simulation. In other words, if you list species in the reaction scheme that are not
present in the gas model, then you will get an error message.

4.1 Overview of input file format

By leveraging Lua as the input data description language, the input file is almost self-
describing, in my opinion. This provides an excellent record of what modelling was
used when you performed a simulation. A valid reaction input file will conform to
the following rules.

1. Any legal Lua code is acceptable, but you must not rename the following the
pre-defined functions:

• Reaction

• removeAllReactionsWithLabel

• removeReaction

• selectOnlyReactionsWithLabel

• selectOnlyReactions

2. Reactions are declared in Reaction tables.

3. Comments in the file begin when two dashes (--) are encountered and proceed
to the end of the line. (This is a repetition of Item 1 in that comments are legal
Lua code.)

As the reactions are listed in the file, they are numbered internally beginning from
1. In some cases, it is convenient to list all reactions in a scheme but then only use
some of the reactions. This is quite common if you wish to use a reduced mechanism
or if you believe that one of the species is inert at your flow conditions of interest, and
so would want to remove all reactions involving the transformation of that species.
Two convenience functions are provided so that you do not have to hack into your
input file to remove the unwanted reactions:

• removeAllReactionsWithLabel

2If you are well versed in Lua, you will recognise that Reaction is a function call with one argu-
ment, a table.

3Lua also permits the use of semi-colons instead of commas to delimit table entries.
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• removeReaction

Both functions will take a single item or an array of items. An array is a special form
of Lua table which is bracketed with braces ({ }). The first function accepts strings
which correspond to the labels of reactions. The labelling of reactions is explained
in the next section. The second function accepts integers which correspond to the
internal numbering. The convenience functions must be called after the declaration
of the associated reactions. Typically, the user would place the calls to these functions
at the end of his input file. Two examples follow.

removeAllReactionsWithLabel({’r3’, ’r5’})

This call would remove the reactions labelled ’r3’ and ’r5’
from the list of participating reactions.

removeReaction(13)

In this call, the 13th listed reaction is removed from the list (because we all know that
13 is unlucky, right?)4

Similarly, there are two complementary convenience functions that allow for the
selection of only certain reactions from the full set:

• selectOnlyReactionsWithLabel

• selectOnlyReactions

They work in reverse to the remove functions: these functions will only select those
reactions listed in their arguments for inclusion in the chemistry scheme.

Note, it is not advisable to mix and match the use of the remove and select
functions in the one reaction script. The behaviour is untested. Now on to the details
of the Reaction table.

4.2 Details of the Reaction table

The Reaction table accepts a number of items — some are mandatory, most are not.
The full list of items is shown here, and each item is described below.

Reaction{
’equation string’,
fr={...},
br={...},
ec=’model name’,
efficiencies={...},
label=’r1’

}

4Actually, unlike the Americans and their buildings, you don’t get rid of 13 that easily. If you have
more than 13 reactions, the higher numbered reactions will shuffle up one spot so that the numbering
remains continuous from 1. This all happens internally.
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’equation string’ (mandatory)
As mentioned earlier, this string must appear first in the table and has no key
associated with it. This string represents the reaction equation. As an example,
dissociation of nitrogen may be written as

’N2 + N2 <=> N + N + N2’

If the reaction involves a collision with a general third body, then this is strictly
denoted as species ’M’. For example, the formation of hydroperoxyl from oxy-
gen and monatomic hydrogen requires the presence of a third body. This reac-
tion is written as

’H + O2 + M <=> HO2 + M’.

The reactants and products are delimited by direction arrows. The use of <=>
indicates that the reaction proceeds in both directions, while => will mean that
the reaction proceeds in the forward direction only (no backward rate of con-
version will be computed).

fr (optional, if br supplied)
The fr key is used to specify the forward reaction rate coefficient and expects
a table value. The format of the table is a string naming the model followed
by key-value pairs giving the parameters for the model. The currently imple-
mented reaction rate coefficient models are listed at the end of this section, along
with their input format.

br (optional, if fr supplied)
The br key is used to specify the backward reaction rate coefficient. It is used
in the same manner as the forward rate key (fr).

ec (optional)
The ec key is used to specify the model for computing the equilibrium constant.
It accepts a string naming the model. Currently, there is only one model imple-
mented, ’from thermo’, which calculates the equilibrium constant based on
thermodynamic principles. For reversible reactions, if only one of fr or br is
specified, then the use of the equilibrium constant is assumed and does not need
to be declared.

efficiencies (optional)
If declaring a third body reaction, all species in the mixture are assumed to react
with an efficiency of 1.0. The efficiencies key accepts a list of exceptions to
that assumption of a value of 1.0. The list contains the key-value pairs of the
type species=efficiency value. For example, to denote that N2 has a 6-
fold efficiency value and O2 a value of 3.5, the list would be:

efficiencies={N2=6.0, O2=3.5}

Remember that all species are assumed to have a value of 1.0 unless otherwise
noted in the list. If you have a species that does not participate as a third body,
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then be sure to set its efficiency value to 0.0 (e.g. H=0.0). Also, note how you
can use the Lua table constructor to help in the case of ions and the electron:
simply enclose these in brackets when putting them in the efficiencies ta-
ble. An example is:

efficiencies={[’O2+’]=9.0, [’e-’]=0.0}

label (optional)
The label accepts a string allowing the user to give the reaction a name. This is
useful if one wishes to later remove certain reactions based on their labels using
the remove reactions by label convenience function.

Note that if you specify all three of fr, br and ec, you have overspecified the
modelling of reaction rate coefficients. In this case, no error is given. Instead, the ec
model is ignored.

Input for rate coefficient models

The various rate coefficient models are specified for the forwards rate coefficient, the
backwards rate coefficient, or both indepdendently. The specification is of the form:
fr={’ModelName’, param1=..., param2=...}
The available rate coefficient models are:

• generalised Arrhenius

• generalised Arrhenius with pre-exponential as log(A)

• pressure-dependent rates in two forms:

1. Lindemann-Hinshelword form

2. Troe form

Below we describe the available models, how they are selected and their input pa-
rameters.

Generalised Arrhenius
The generalised Arrhenius rate coefficient is computed as

k = AT n exp(−C/T ).

This is set in the input file as
fr={’Arrhenius’, A=..., n=..., C=...}
where:

A is the pre-exponential coefficient given in ‘cgs’ units (because they are most com-
mon in the chemistry reaction rate literature).

n is the non-dimensional power for T.

C is the activation temperature in Kelvin.
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Note that the units of the pre-exponential coefficients will depend on the num-
ber of colliders, in each direction, for a particular reaction. Considering the nitrogen
dissociation reaction

’N2 + N2 <=> N + N + N2’

we can specialize the rate equation (3.2) to give the rate of production of nitrogen
molecules due to this reaction as

d[N2]

dt
= −1

{
kf [N2]

2 − kb[N ]2[N2]
}
.

With the units of concentration being mole·cm−3, the units of kf and its associated
pre-exponential coefficient, A, will need to be mole−1·cm3·s−1 while the units for the
backward rate will need to be mole−2·cm6·s−1.

Generalised Arrhenius with pre-exponential as log(A)
The generalised Arrhenius rate coefficient is computed as

k = exp(log(A) +BT − C/T ).

This is set in the input file as
fr={’Arrhenius-logA’, logA=..., B=..., C=...}.

Lindemann-Hinshelwood form, pressure-dependent rate coefficient
The Lindemann-Hinshelwood pressure dependent rate coefficient is a blending of
zero-pressure and infinite-pressure limits:

k =
k∞k0[M ]

k∞ + k0[M ]

A discussion on the theory of Lindemann-Hinshelwood pressure-dependent rates is
given in Chapter 3 of O’Flaherty’s thesis [11]. To set this for a rate coefficient in the
input file, use:

fr={’pressure dependent’,
kInf={A=..., n=..., C=...},
k0={A=..., n=..., C=...}}

where:

kInf is used to set Arrhenius parameters at the infinite pressure limit.

k0 is used to set Arrhenius parameters at the zero pressure limit.

Troe form, pressure-dependent rate coefficient
The Troe form for rate coefficient is also a pressure dependent rate. It is evaluated as

k =
k∞k0[M ]

k∞ + k0[M ]
F

with

logF =

[
1 +

(
logPr + c

n− d(logPr + c)

)2
]−1

logFcent
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where

Pr =
k0[M ]

k∞
c = −0.4− 0.67 logFcent

n = 0.75− 1.27 logFcent

d = 0.14 and

Fcent = (1− a) exp

(
− T

T ∗∗∗

)
+ a exp

(
− T

T ∗

)
+ exp

(
−T

∗∗

T

)
To set this for a rate coefficient in the input file, use:

fr={’pressure dependent’,
kInf={A=..., n=..., C=...},
k0={A=..., n=..., C=...},
Troe={a=..., T1=..., T2=..., T3=...}}

where:

kInf is used to set Arrhenius parameters at the infinite pressure limit.

k0 is used to set Arrhenius parameters at the zero pressure limit.

Troe is used to set the parameters that appear in the expressions above, with T1 =
T ∗, T2 = T ∗∗, and T3 = T ∗∗∗.

Note: Both the Troe and Lindemann-Hinshelwood forms are selected with the
name ’pressure dependent’. The presence or otherwise of the Troe parame-
ter set is used to distinguish between to the two forms.

4.3 Extra control of the chemistry scheme

There are a number of details to do with solving the finite-rate chemistry problem that
are set by default for the user. However, all of these parameters may be controlled by
the user by setting values in the input file. The user can set these values in a Config
table. The full list of controllable options is described in what follows. To get started,
an example of setting some temperature limits on the rate coefficient evaluations and
selecting the Runge-Kutta-Fehlberg ODE integrator is shown here:

Config{
tempLimits={lower=300.0, upper=10000.0},
odeStep={method="rkf"}

}

tightTempCoupling
By default, tight coupling between the temperature update and the species up-
date is not employed. What this means is that in normal operation, the rate con-
stants are evaluated once (the constants, not the rate) and only once at the start
of a chemistry update. This is an efficiency measure that is employed quite com-
monly in finite-rate chemistry modules because the rate constant evaluation is
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relatively expensive. It also works well as an approximation in most situations
because the temperature in a given computational cell does not change much
over the timestep of interest.

However, there can be cases when the chemical composition change is quite
rapid over the chosen timestep, and correspondingly the temperature changes a
lot. In these cases, it is more robust and accurate to re-evaluate the temperature
and the rate constants on every subcycle step in the chemistry update. To set
this option active, set this parameter to true:

tightTempCoupling = true

To summarise, the default is to treat temperature as constant over the chemistry
update. This is good for most situations and is a very efficient way to proceed
with the calculation. For very energetic chemistry situations, it is more robust
to select tight temperature coupling. This will be more accurate and robust, at
the cost of being more computationally expensive.

tempLimits
This setting is used to control the temperature limits at which reaction rate co-
efficients are evaluated. The user provides lower and upper values for the
temperature limits. In the example here, the lower temperature limit is set to
300 K and the upper limit is set to 50 000 K. These happen to be the default val-
ues, if not set by the user.

tempLimits={lower=300.0, upper-50000.0}

These values are used to control the temperature limits at which reaction rate
coefficients are evaluated. When the local temperature exceeds the limits (on
either side), the rate is simply evaluated at the temperature corresponding to
the exceeded limit. As pseudo-code:

if T > T_upper
then T = T_upper

if T < T_lower
then T = T_lower

eval_rate_coeff(T)

maxSubcycles
This setting controls the maximum allowable chemistry subcycles when cou-
pled to a flow solver. This is an integer value and the default is 10,000. This
setting is to ensure that the chemistry update remains sensible and does not get
caught making almost no progress with extremely small chemistry steps. If this
does happen, it is usually a signal that there are bigger issues numerical model
setup, or what is being asked of the numerical model.

maxSubcycles=10000
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maxAttempts
Occasionally, a chemistry step will fail. This might be because the step size has
grown a little beyond what is numerically stable. This is called a failed attempt
and the code will adjust the step size an re-attempt the step. There is a control
on how many attempts are made to recover a failed step. This is an integer
value and set to 4 by default. The user can control this value. If a value much
larger than 4 is required, this is usually a hint that there are larger issues with
the simulation.

maxAttempts=4

odeStep
This setting allows the user to select the method type for the chemical ODE
integration. The user passes a table. At a minimum, the table contains a method
name. For example:

odeStep = {method=’alpha-qss’}

Optionally, the user might supply some more information specific to the chosen
method that controls aspects of the numerics. This is why a table is used: so
that the extra information is easy to include. Here is an example with some
finer control of the α-QSS method:

odeStep = {method=’alpha-qss’, eps1=1.0e-4, maxIters=5}

Presently, the choice of ODE methods is rkf and alpha-qss. These methods
and a description of the associated parameters are given directly below.

4.3.1 Selection and extra control of the ODE methods

As shown above, the selection of an ODE method for integrating the chemistry prob-
lem is performed by setting the odeStep parameter. Here we describe the finer de-
tails of control that are available for each of the methods: rkf and alpha-qss.

Runge-Kutta-Felhberg method
The Runge-Kutta-Fehlberg has one control parameter available to the user: an error
tolerance used when estimating error on each step, errTol. The error tolerance is
used in the algorithm to estimate error as suggested by Press et al. [12]. In the authors’
experience, the default value of 1 × 10−3 has worked well for a variety of non-stiff
chemistry systems associated with hypersonic reacting flows over blunt bodies.

The RKF integrator is selected and configured as:

odeStep = {method=’rkf’, errTol=1.0e-3}

Mott’s α-QSS method
The α-QSS method has four configurable parameters: eps1, eps2, delta and maxIters.
The first three parameters align with the update and step size estimator equations
presented in Section 3.3. The maxIters parameter is used to control iterations of the
corrector step are performed.

An example of selecting and configuring the α-QSS method is shown here (with
default values if left unspecified):
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odeStep = {method=’alpha-qss’, eps1=0.001, eps2=5.0e-4,
delta=1.0e-10, maxIters=10}



CHAPTER 5
Examples of Use

Although the reacting gas models are developed for use in the Eilmer flow solver,
their services are available via a simple applications programming interface. On
top of the basic GasModel and GasState classes discussed in the gas-model user’s
guide [13], the ThermochemicalReactor class provides the update_statemethod.
This single method defines the application programming interface (API) for the react-
ing gas models. The evolution of a charge of perfectly-stirred reactants in a thermally-
isolated, fixed-volume reactor is the conceptual model behind this update function.

So, given a particular gas model with more than one chemical species, we may
construct a GasState object and then pass that to the update_state method to
allow the chemical reactions to change the species fractions over a specified time in-
terval. During this interval, volume, density and internal energy are fixed. Species
mass or mole fractions and other thermodynamic quantities such as pressure ant tem-
perature may change.

The following sections in this chapter provide examples that might be interest-
ing in themselves or they might provide good starting points for building your own
analysis tools. The first (and simplest) example shows direct use of the Thermochem-
icalReactor class to calculate the evolution of an isolated blob of gas over a short time
period. This example is minimal but coded in all three of the supported scripting
languages (Lua, Python and Ruby). The second example is a small but typical appli-
cation that evaluates a selection of reaction schemes for hydrogen combustion in air.
The final example makes use of the reacting gas model within an Eilmer flow simu-
lation. There, the ThermochemicalReactor’s update_state method is called by the
flow solver code, rather than by the user’s input script.

5.1 Fixed-volume nitrogen reactor

Continuing with our minimal reacting gas example of dissociating nitrogen, we will
use the API to build a simulation of a fixed-volume reactor, initially containing nitro-
gen molecules and atoms at high enough temperature for reactions to occur over the
reasonable time of 300 microseconds. At least, that’s a reasonable time for hyperson-
ics people.

In preparation for running the scripts, we need a detailed-gas-model file and de-
tailed chemistry file set up for use by the simulation classes. The input file (called

23
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nitrogen-2sp.inp) for our nitrogen gas model specifies that we want to use the
thermally-perfect gas model and then lists nitrogen molecules and nitrogen atoms as
the species of interest.

model = ’thermally perfect gas’
species = {’N2’, ’N’}

Running this input file through the prep-gas program will generate a detailed-gas-
model file (nitrogen-2sp.lua) that can be used by the simulation functions.

$ prep-gas nitrogen-2sp.inp nitrogen-2sp.lua

The chemistry input file differs from the one shown on page 13 in that we omit
the backward rate expressions and let the solver provide them from the equilibrium
constant.

-- nitrogen-2sp-2r-Keq.lua
--
-- This chemical kinetic system provides
-- a simple nitrogen dissociation mechanism.
--
-- Author: Rowan J. Gollan
-- Date: 13-Mar-2009 (Friday the 13th)
-- Place: NIA, Hampton, Virginia, USA
--
-- History:
-- 24-Mar-2009 - reduced file to minimum input
-- 11-Aug-2015 - updated for dlang module

Reaction{
’N2 + N2 <=> N + N + N2’,
fr={’Arrhenius’, A=7.0e21, n=-1.6, C=113200.0},

}

Reaction{
’N2 + N <=> N + N + N’,
fr={’Arrhenius’, A=3.0e22, n=-1.6, C=113200.0},

}

This input file can be used to generate a detailed chemistry file with the command:

$ prep-chem nitrogen-2sp.lua nitrogen-2sp-2r-Keq.lua chem.lua

The detailed chemistry file, chem.lua, may now be used when constructing a reactor
object in the simulation script.

5.1.1 Lua programming interface

For the Lua API, we will access the reacting-gas model functionality via the gas-calc
program. This Lua programming interface reflects closely the D-language interface
that is used within the Eilmer flow simulation program.

The following script is passed to the gas-calc program on the command line:
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$ gas-calc fvreactor.lua

On line 5, we first construct a gas model consisting of our two species for reacting
nitrogen: nitrogen molecules and nitrogen atoms. We then construct a Thermochem-
icalReactor with the call to ChemistryUpdate:new (on line 6), passing the nitrogen
gas model object and the name of the detailed chemistry file.

1 -- fvreactor.lua
2 -- A simple fixed-volume reactor.
3 -- PJ & RJG 2018-04-21.
4
5 gm = GasModel:new{"nitrogen-2sp.lua"}
6 chemUpdate = ChemistryUpdate:new{gasmodel=gm, filename="chem.lua"}
7
8 gs = GasState:new{gm}
9 gs.p = 1.0e5 -- Pa

10 gs.T = 4000.0 -- degree K
11 molef = {N2=2/3, N=1/3}
12 gs.massf = gm:molef2massf(molef)
13 gm:updateThermoFromPT(gs)
14 conc = gm:massf2conc(gs)
15
16 tFinal = 300.0e-6 -- s
17 t = 0.0
18 dt = 1.0e-6
19 dtSuggest = 1.0e-11
20 print("# Start integration")
21 f = assert(io.open("fvreactor.data", ’w’))
22 f:write(’# 1:t(s) 2:T(K) 3:p(Pa) 4:massf_N2 5:massf_N 6:conc_N2 7:conc_N\n’)
23 f:write(string.format("%10.3e %10.3f %10.3e %20.12e %20.12e %20.12e %20.12e\n",
24 t, gs.T, gs.p, gs.massf.N2, gs.massf.N, conc.N2, conc.N))
25 while t <= tFinal do
26 dtSuggest = chemUpdate:updateState(gs, dt, dtSuggest, gm)
27 t = t + dt
28 -- dt = dtSuggest -- uncomment this to get quicker stepping
29 gm:updateThermoFromRHOE(gs)
30 conc = gm:massf2conc(gs)
31 f:write(string.format("%10.3e %10.3f %10.3e %20.12e %20.12e %20.12e %20.12e\n",
32 t, gs.T, gs.p, gs.massf.N2, gs.massf.N, conc.N2, conc.N))
33 end
34 f:close()
35 print("# Done.")

With the gas model in hand (as variable gm), we can construct a gas state object (line
8) and proceed to set its thermodynamic values (on lines 9 through 13). The species
fractions are specified as a table of numbers, with species names being provided as
the keys for those values. Only the species with non-zero fractions need appear to be
specified, however, those fractions need to sum to a total of 1.0. It is often convenient
to work in mole fractions or concentrations for the species but we must set the mass
fractions in the gas state. To do this, there are a number of convenience functions to
make these conversions easy, as seen on lines 12 and 14. Note that, in this example,
the gas starts with a significant dissociation fraction and a high enough temperature
for reactions to proceed quickly.
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The calculation of the gas state evolution proceeds in a number of discrete time
steps (of duration dt) from time zero to tFinal. This is the loop starting at line 25,
with the actual update function being called on line 26. The arguments given to the
update function are:

1. gs, the gas state object, whose thermodynamic values will be updated,

2. dt, the time interval over which the reactions will occur,

3. dtSuggest, a suggested time step size for the internal iterations of the thermo-
chemical reactor, and

4. gm, the gas model object

On completing its work, the update function returns a new value of dtSuggest,
which we may retain for subsequent use. Depending on the rates of reactions and the
internal stepping scheme, this value may be significantly different to the value that
we initially provided to the update function. After the thermochemical reactor has
updated the species mass fractions held by the gas state, we need to update the other
thermodynamic properties on line 29.

Some of the results of the simulation are plotted in Figure 5.1. As might be ex-
pected, some of the nitrogen atoms recombine into nitrogen molecules, raising the
static temperature and pressure as the reactions proceed. Eventually, the reactor ap-
proaches an equilibrium state. The final state in this transient simulation, which has
pressure p = 145.5kPa, temperature T = 6177.4K, and mass fractions massfN2 =
0.86928, massfN = 0.13072, can be checked against the expected equilibrium state, as
computed by CEA2. (See the Section 5.1.4.)
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Figure 5.1: Evolution of temperature, pressure and atom mass fraction in the isolated
reactor.
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5.1.2 Python programming interface

A similar programming interface is available from Python3 scripting language. The
Eilmer software package provides the D-language gas module as a loadable library,
together with Python and Ruby wrappers that each access this loadable library via
CFFI.

The following script is a re-implementation of the fixed-volume reactor calcula-
tion, this time in the Python3 programming language. We start by loading this shared
library into the Python interpreter, via the import statement on line 12.

1 # fvreactor.py
2 # A simple fixed-volume reactor.
3 # PJ & RJG 2019-11-25
4 #
5 # To prepare:
6 # $ prep-gas nitrogen-2sp.inp nitrogen-2sp.lua
7 # $ prep-chem nitrogen-2sp.lua nitrogen-2sp-2r.lua chem.lua
8 #
9 # To run:

10 # $ python3 fvreactor.py
11
12 from eilmer.gas import GasModel, GasState, ThermochemicalReactor
13
14 gm = GasModel("nitrogen-2sp.lua")
15 reactor = ThermochemicalReactor(gm, "chem.lua")
16
17 gs = GasState(gm)
18 gs.p = 1.0e5 # Pa
19 gs.T = 4000.0 # degree K
20 gs.molef = {’N2’:2/3, ’N’:1/3}
21 gs.update_thermo_from_pT()
22
23 tFinal = 300.0e-6 # s
24 t = 0.0
25 dt = 1.0e-6
26 dtSuggest = 1.0e-11
27 print("# Start integration")
28 f = open("fvreactor.data", ’w’)
29 f.write(’# 1:t(s) 2:T(K) 3:p(Pa) 4:massf_N2 5:massf_N 6:conc_N2 7:conc_N\n’)
30 f.write("%10.3e %10.3f %10.3e %20.12e %20.12e %20.12e %20.12e\n" %
31 (t, gs.T, gs.p, gs.massf[0], gs.massf[1], gs.conc[0], gs.conc[1]))
32 while t <= tFinal:
33 dtSuggest = reactor.update_state(gs, dt, dtSuggest)
34 t = t + dt
35 # dt = dtSuggest # uncomment this to get quicker stepping
36 gs.update_thermo_from_rhou()
37 f.write("%10.3e %10.3f %10.3e %20.12e %20.12e %20.12e %20.12e\n" %
38 (t, gs.T, gs.p, gs.massf[0], gs.massf[1], gs.conc[0], gs.conc[1]))
39 f.close()
40 print("# Done.")

Although Python programming interface is almost the same as for the Lua scripting
language, there are a few extra conveniences. On line 20, we specify the mole frac-
tions directly, without having to convert to mass fractions first. Concentrations are
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also directly available from the gas state, as shown on line 38. Finally, the gas-state
object retains a reference to the gas model that was used for its construction (on line
17). The little extra convenience here is that calls to update the thermo properties (on
lines 21 and 36) do not need to receive the gas model reference explicitly.

5.1.3 Ruby programming interface

Whatever you do in Python, you can do similarly in Ruby. There are a few language
differences, but the Ruby script is very similar to the Python script. The Ruby pro-
gramming interface to the reacting-gas model may be used in the automated test
scripts in the Eilmer code repository.

1 # fvreactor.rb
2 # A simple fixed-volume reactor.
3 # PJ & RJG 2019-11-27
4 #
5 # To prepare:
6 # $ prep-gas nitrogen-2sp.inp nitrogen-2sp.lua
7 # $ prep-chem nitrogen-2sp.lua nitrogen-2sp-2r.lua chem.lua
8 #
9 # To run:

10 # $ ruby fvreactor.py
11 $LOAD_PATH << ’˜/dgdinst/lib’
12 require ’eilmer/gas’
13
14 gm = GasModel.new("nitrogen-2sp.lua")
15 reactor = ThermochemicalReactor.new(gm, "chem.lua")
16
17 gs = GasState.new(gm)
18 gs.p = 1.0e5 # Pa
19 gs.T = 4000.0 # degree K
20 gs.molef = {’N2’=>2.0/3, ’N’=>1.0/3}
21 gs.update_thermo_from_pT()
22
23 tFinal = 300.0e-6 # s
24 t = 0.0
25 dt = 1.0e-6
26 dtSuggest = 1.0e-11
27 puts "# Start integration"
28 f = open("fvreactor.data", ’w’)
29 f.write("# 1:t(s) 2:T(K) 3:p(Pa) 4:massf_N2 5:massf_N 6:conc_N2 7:conc_N\n")
30 f.write("%10.3e %10.3f %10.3e %20.12e %20.12e %20.12e %20.12e\n" %
31 [t, gs.T, gs.p, gs.massf[0], gs.massf[1], gs.conc[0], gs.conc[1]])
32 while t <= tFinal do
33 dtSuggest = reactor.update_state(gs, dt, dtSuggest)
34 t = t + dt
35 # dt = dtSuggest # uncomment this to get quicker stepping
36 gs.update_thermo_from_rhou()
37 f.write("%10.3e %10.3f %10.3e %20.12e %20.12e %20.12e %20.12e\n" %
38 [t, gs.T, gs.p, gs.massf[0], gs.massf[1], gs.conc[0], gs.conc[1]])
39 end
40 f.close()
41 puts "# Done."
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5.1.4 CEAgas model

To get that equilibrium gas estimate of the final gas composition, we may make use
of the CEAgas gas model as shown below. Behind the scene, the GasModel object is
calling up the CEA2 program [4] to do the detailed calculations so, to use this model,
you need to have the CEA2 executable program somewhere on your PATH.

# n2-n-eq-check.py
# Usage: python3 n2-n-eq-check.py
from eilmer.gas import GasModel, GasState
gmodel = GasModel(’cea-n2-gas-model.lua’)
gs = GasState(gmodel)
gs.p = 1.455e+05
gs.T = 6177.424
gs.update_thermo_from_pT()
print("eq gas state=", gs)
print("ceaSavedData=", gs.ceaSavedData)

The transcript, below, has been lightly edited to break the lines into shorter lengths
than in the original output.

$ python3 n2-n-eq-check.py
eq gas state= GasState(rho=0.070243, p=145500, T=6177.42,

u=1.01128e+07, a=1530.8,
id=0, gmodel.id=0)

ceaSavedData= {’p’: 145500.0, ’rho’: 0.070243, ’u’: 10112800.0,
’h’: 12184200.0, ’T’: 6177.42, ’a’: 1530.8,
’Mmass’: 0.024796, ’Rgas’: 335.31658331989036,
’gamma’: 1.1313, ’Cp’: 8483.7, ’s’: 11208.3,
’k’: 0.0, ’mu’: 0.0,
’massf’: {’N’: 0.12976, ’N2’: 0.87024}}

The content of the gas model file (cea-n2-gas-model.lua) is tailored to this par-
ticular exercise because we need to specify the fractions of the N2 and N reactants.

model = "CEAGas"

CEAGas = {
mixtureName = ’n2-n’,
speciesList = {"N2", "N"},
reactants = {N2=2/3, N=1/3},
inputUnits = "moles",
withIons = false,
trace = 1.0e-6

}
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5.2 Ignition times for hydrogen

As stated earlier (on page 23), the evolution of a charge of perfectly-stirred reactants
in a thermally-isolated, fixed-volume reactor is the model behind the main chemical-
update function. We can use this basic calculation in a numerical experiment to com-
pare the ignition times for a number of proposed reaction schemes for the combustion
of hydrogen. These schemes are:

• a Stanford (2011) scheme with only hydrogen and oxygen participating in the
reactions (Appendix A.1),

• an Evans and Schexnayder scheme with only hydrogen and oxygen participat-
ing in the reactions (Appendix A.2) and

• a Rogers and Schexnayder scheme that includes hydrogen, oxygen and nitrogen
species in the reactions (Appendix A.3).

The script below shows the use of the Stanford-2011 scheme. The only changes re-
quired to use the other schemes are the file names provided on lines 1 through 3.

1 spFile = "Stanford-2011-gas-model.lua"
2 reacFile = "Stanford-2011-reac-file.lua"
3 outFile = "Stanford-ignition-delay.dat"
4
5 tFinal = 1500.0e-6 -- s
6 pInit = P_atm
7 Tlow = 900.0 -- K
8 Thigh = 1300.0 -- K
9 dT = 10.0

10
11 igCriteria = 5.0e-3 -- mol/mˆ3 : OH
12
13 function ignition_delay(T, gm, chemUpdate)
14 local Q = gm:createGasState()
15 Q.p = pInit
16 Q.T = T
17 local total = 2 + 1 + 3.76
18 local molef = {H2=2/total, O2=1/total, N2=3.76/total}
19 Q.massf = gm:molef2massf(molef)
20 gm:updateThermoFromPT(Q)
21
22 local t = 0.0
23 local dt = 1.0e-6
24 local dtSuggest = 1.0e-11
25 while t <= tFinal do
26 dtSuggest = chemUpdate:updateState(Q, dt, dtSuggest, gm)
27 t = t + dt
28 dt = dtSuggest
29 gm:updateThermoFromRHOE(Q)
30 local conc = gm:massf2conc(Q)
31 if conc.OH > igCriteria then
32 return t
33 end
34 end
35 return false
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36 end
37
38 function main()
39 local gm = GasModel:new{spFile}
40 local chemUpdate = ChemistryUpdate:new{filename=reacFile, gasmodel=gm}
41
42 local f = assert(io.open(outFile, ’w’))
43 f:write(’# 1:T(K) 2:t(s)\n’)
44
45 for T=Tlow,Thigh,dT do
46 local tIg = ignition_delay(T, gm, chemUpdate)
47 if tIg then
48 f:write(string.format("%20.12e %20.12e\n", T, tIg))
49 else
50 print("No ignition at T= ", T)
51 end
52 end
53
54 end
55
56 main()

The script runs a number of simulations, each starting with the same mixture of hy-
drogen, oxygen and nitrogen molecules, but with different initial mixture tempera-
tures, T. Only one value of pressure is considered in this numerical experiment and
that is the standard atmosphere pressure provided as a special constant by the gas
module (P_atm on line 6).

The main function (starting on line 38) coordinates the setting of the initial tem-
peratures and the recording of the ignition times, while the detailed code for each
simulation is in the ignition_delay function (lines 13 through 36). The simulation
code is much like that for the nitrogen reactor discussed in the previous example.
An initial gas state is constructed (lines 14 through 20) and the reactions are allowed
to proceed over small intervals of time, until ignition occurs. On line 31, the ignition
time is defined as the time at which the concentration of OH reaches a specified value,
with that value having been given on line 11.
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Figure 5.2: Time to reach ignition of a hydrogen-air mixture.

Looking at the plotted times compared with experiment in Figure5.2, we can con-
clude that nitrogen reactions are an important contributor to hydrogen ignition, espe-
cially for temperatures below 1100 K. The two reaction schemes that have only hydro-
gen and oxygen participating in the reactions miss the experimental mark completely.
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5.3 Dissociating nitrogen flow over a 2D cylinder

So far, we have been using the thermochemical models in stand-alone calculations.
Now, we look at an example of using the models within a compressible flow simula-
tion done with Eilmer. This example shows the construction of a simple flow domain
around a circular cylinder and the set up of a finite-rate reacting model for dissociat-
ing nitrogen. High speed flow of nitrogen over a 2D cylinder is a signature experi-
ment for shock tunnel and expansion tube facilities and the data for comparison has
come from our colleagues at the DLR-Göttingen shock tunnel laboratory.

The left part of Figure 5.3 shows a representation of the flow region about part of
a circular cylinder, with the east boundary representing the surface of the cylinder.
We consider just a two-dimensional flow in the simulation, however, the real flow in
the shock tunnel would be genuinely three-dimensional, with significant out-of-plane
flow over each end of the finite length cylinder. This is okay because our focus here
is on the strong thermochemical effects that come with allowing finite-rate reactions
of teh nitrogen molecules and atoms.

Wall_WithSlip

Wall_WithSlip

East

South

North

OutFlow

West
Inflow

Figure 5.3: Schematic diagram of the flow-domain geometry for the front part of the
cylinder (left) with mesh, coloured by pressure on the right.

In our two-dimensional flow domain, the south boundary is along the stagnation
line and the south-east intersection is located at the stagnation point on the cylinder.
The west boundary sees a supersonic inflow, as would be produced by the shock tun-
nel nozzle. The north boundary truncates the flow domain over the top of the cylinder
and is specified to be a simple ouflow boundary that the gas crosses at (presumably)
supersonic conditions. The other radial lines represent the boundaries between the
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multiple blocks that make up the full domain grid, which is shown in the right part
of the figure. Our motivation for bothering to have multiple blocks is to get the simu-
lation done quickly. The calculation takes less than a minute on a good workstation,
using 4 processor cores.

5.3.1 Eilmer input script

The best guidance for setting up flow simulations with Eilmer is found in the user
guides [13], [14] and [15], so the material in those reports is a prerequisite to fully
understanding the simulation input script shown below. Beyond the set up required
for a non-reacting simulation, our essential tasks are to specify the initial and inflow
mass fractions for the participating chemical species, and to specify a detailed chem-
istry file.

1 -- n90.lua
2 -- RG & PJ 2015-03-09
3 -- 2015-04-22 build an original grid in this script
4 -- 2019-05-25 Billig shock-shape correlation used to shape grid.
5 --
6 config.title = "Cylinder in dissociating nitrogen flow."
7 print(config.title)
8
9 nsp, nmodes, gmodel = setGasModel(’nitrogen-2sp.lua’)

10 inflow = FlowState:new{p=500.0, T=700.0, velx=5000.0, massf={N2=1.0}}
11 initial = FlowState:new{p=5.0, T=300.0, massf={N2=1.0}}
12 Minf = inflow.velx / inflow.a
13 print("Minf=", Minf)
14
15 config.reacting = true
16 config.reactions_file = ’e4-chem.lua’
17
18 require "billig_patch"
19 R = 0.045 -- m
20 bp = billig_patch.make_patch{Minf=Minf, R=R, xc=R, scale=0.95}
21 cf = RobertsFunction:new{end0=true, end1=false, beta=1.1}
22 grid = StructuredGrid:new{psurface=bp.patch, niv=61, njv=41,
23 cfList={west=cf, east=cf}}
24
25 -- We can leave east and south as slip-walls.
26 blks = FBArray:new{grid=grid, initialState=initial, label="blk",
27 bcList={west=InFlowBC_Supersonic:new{flowState=inflow},
28 north=OutFlowBC_Simple:new{}},
29 nib=1, njb=4}
30
31 -- Set a few more config options.
32 -- To get a reasonable start, we needed to set dt_init.
33 config.max_time = 100.0e-6
34 config.max_step = 40000
35 config.dt_plot = 20.0e-6
36 config.dt_init = 5.0e-9

Line 9 is where the detailed gas model file is specified. Only one gas model may be
specified for a simulation, however, other gas models may be used within the input
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script, using the Lua programming interface described in Section 5.1.1. Note that
three items are returned by the setGasModel function, the third being a reference
to the initialized gas model. This is now available for use within the Lua input script
and could be used to initialize a ThermochemicalReactor object, for example. Here,
we do not happen to make any direct use of the returned gas model but it is good to
know that it is available.

Lines 15 and 16 specify that we want the chemical reactions to be active during
the simulation and specify the detailed chemistry file. Later, when the simulation is
run, the ThermochemicalReactor will be initialized from the information in this file.

Lines 10 and 11, specify the inflow and initial gas states to be undissociated nitro-
gen, with the mass fractions being specified as tables containing an entry for nitrogen
molecules only. In each case, the unspecified mass fraction of N atoms is presumed to
be zero.

The remaining lines in the input script describe the flow domain (lines 18-20),
specify how to discretize it (lines 21-23), and set up an array of FluidBlocks consisting
of grid and boundary condition information (lines 26-29). The final few lines of the
input script (lines 33-36) set a few simulation control parameters. Again, refer to the
flow solver user guide [14] for details.

5.3.2 Results

By the end of the simulation, a shock layer of high-temperature and high-pressure gas
has developed over the cylinder. This shock layer can be seen coloured by pressure
value in the right part of Figure 5.3. Temperature and mass-fraction of nitrogen atoms
is shown in Figure 5.4. Following the gas as it flows from left to right, after it has
been processed by the shock, you can see increasing dissociation and corresponding
decrease in temperature as the gas approaches the cylinder’s surface.

One of the effects of finite-rate chemistry is to reduce the shock layer thickness,
relative to that for a non-reacting gas. If the reactions are suppressed, the shock layer
would be larger than allowed by the presently defined domain. If you want to exper-
iment with a non-reacting simulation, set config.reacting = false on line 15
of the input script. Also, change the value of scale=0.95 (on line 20) to something
more like 1.1 to accommodate the thicker shock layer.

Figure 5.5 shows the temperature along the stagnation line. Moving from left to
right across the figure, the shock processing results in a sudden jump in temperature,
and then the temperature relaxes as the dissociation reaction absorbs thermal energy
during the time that the gas takes to approach the cylinder surface. A non-reacting
case would have the gas temperature jumping at the shock and then continuing to in-
crease slowly as the gas approaches the stagnation point. Comparison of the Eilmer
data with the reference data provided by Sebastian Karl (DLR Göttingen) is reason-
ably good, given that Eilmer simulation is done on a very low-resolution grid and the
boundary layer on the cylinder is not modelled at all.
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Figure 5.4: Temperature and mass fraction of nitrogen atoms for the n90 bluff body
exercise.
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APPENDIX A
Input files for hydrogen combustion

A.1 Stanford, 2011

1 model = ’thermally perfect gas’
2 species = {’H2’, ’O2’, ’H2O’, ’HO2’, ’H2O2’, ’OH’, ’O’, ’H’, ’N2’}

1 -- Author: Rowan J. Gollan
2 -- Date: 2015-03-17
3 --
4 -- Reference:
5 -- Hong, Z., Davidson, D.F. and Hanson, R.K. (2011)
6 -- An improved H2/O2 mechanism based on recent
7 -- shock tube/laser absorption measurements.
8 -- Combustion and Flame, 158, pp. 633--644
9 --

10 -- NOTE:
11 -- Table 1 in Hong et al contains the suggested
12 -- reaction mechanism with reaction rates.
13 -- However, there is also a Chemkin input file
14 -- available online where the article is hosted.
15 -- The input file has some differences with regards
16 -- to efficiency values. I have adopted those
17 -- values from the supplied input file.
18 --
19 -- Updated: 2016-06-23
20 -- Use new format for Eilmer4
21
22 S = 1.0/1.987
23
24 Config{
25 odeStep = {method=’alpha-qss’},
26 }
27
28 Reaction{
29 ’H + O2 <=> OH + O’,
30 fr={’Arrhenius’, A=1.04e14, n=0.0, C=15286*S},
31 label=’r1’
32 }

41
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33
34 Reaction{
35 ’H + O2 (+ M) <=> HO2 (+ M)’,
36 fr={’pressure dependent’,
37 kInf={A=5.59e13, n=0.2, C=0.0},
38 k0={A=3.70e19, n=-1.0, C=0.0},
39 Troe={F_cent=0.8}
40 },
41 efficiencies={H2O=1.0,H=0.0,O2=0.0,OH=0.0,O=0.0,HO2=0.0,H2O2=0.0},
42 label=’r2b’
43 }
44
45 Reaction{
46 ’H + O2 (+ M) <=> HO2 (+ M)’,
47 fr={’pressure dependent’,
48 kInf={A=5.59e13, n=0.2, C=0.0},
49 k0={A=5.69e18, n=-1.1, C=0.0},
50 Troe={F_cent=0.7}
51 },
52 efficiencies={O2=1.0,H2O=0.0,H=0.0,OH=0.0,O=0.0,HO2=0.0,H2O2=0.0},
53 label=’r2c’
54 }
55
56 Reaction{
57 ’H + O2 (+ M) <=> HO2 (+ M)’,
58 fr={’pressure dependent’,
59 kInf={A=5.59e13, n=0.2, C=0.0},
60 k0={A=2.65e19, n=-1.3, C=0.0},
61 Troe={F_cent=0.7}
62 },
63 efficiencies={H2=2.5,H2O2=12.0,H2O=0.0,O2=0.0},
64 label=’r2d’
65 }
66
67 Reaction{
68 ’H2O2 (+ M) <=> 2OH (+ M)’,
69 fr={’pressure dependent’,
70 kInf={A=8.59e14, n=0.0, C=48560*S},
71 k0={A=9.55e15, n=0.0, C=42203*S},
72 Troe={F_cent=1.0}
73 },
74 efficiencies={N2=1.5,H2=2.5,H2O=15,H2O2=15},
75 label=’r3’
76 }
77
78 -- Reaction 4 appears twice.
79 -- The reaction rate constants are added together
80 -- as proposed by Hong et al in Section 2.5.
81 -- To achieve the same effect, the reaction can just
82 -- be listed twice with different reaction rates.
83 Reaction{
84 ’OH + H2O2 <=> H2O + HO2’,
85 fr={’Arrhenius’, A=1.74e12, n=0.0, C=318*S},
86 label=’r4a’
87 }
88 Reaction{
89 ’OH + H2O2 <=> H2O + HO2’,
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90 fr={’Arrhenius’, A=7.59e13, n=0.0, C=7269*S},
91 label=’r4b’
92 }
93
94 Reaction{
95 ’OH + HO2 <=> H2O + O2’,
96 fr={’Arrhenius’, A=2.89e13, n=0.0, C=-500*S},
97 label=’r5’
98 }
99

100 Reaction{
101 ’HO2 + HO2 <=> H2O2 + O2’,
102 fr={’Arrhenius’, A=1.30e11, n=0.0, C=-1603*S},
103 label=’r6a’
104 }
105 Reaction{
106 ’HO2 + HO2 <=> H2O2 + O2’,
107 fr={’Arrhenius’, A=4.20e14, n=0.0, C=11980*S},
108 label=’r6b’
109 }
110
111 Reaction{
112 ’H2O + M <=> H + OH + M’,
113 fr={’Arrhenius’, A=6.06e27, n=-3.31, C=120770*S},
114 efficiencies={O2=1.5,H2=3.0,H2O=0.0},
115 label=’r7a’
116 }
117 Reaction{
118 ’H2O + H2O <=> H + OH + H2O’,
119 fr={’Arrhenius’, A=1.00e26, n=-2.44, C=120160*S},
120 label=’r7b’
121 }
122
123 Reaction{
124 ’OH + OH <=> H2O + O’,
125 fr={’Arrhenius’, A=3.57e4, n=2.4, C=-2111*S},
126 label=’r8’
127 }
128
129 Reaction{
130 ’O + H2 <=> H + OH’,
131 fr={’Arrhenius’, A=3.82e12, n=0.0, C=7948*S},
132 label=’r9a’
133 }
134 Reaction{
135 ’O + H2 <=> H + OH’,
136 fr={’Arrhenius’, A=8.79e14, n=0.0, C=19170*S},
137 label=’r9b’
138 }
139
140 Reaction{
141 ’H2 + OH <=> H2O + H’,
142 fr={’Arrhenius’, A=2.17e8, n=1.52, C=3457*S},
143 label=’r10’
144 }
145
146 Reaction{
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147 ’H + HO2 <=> OH + OH’,
148 fr={’Arrhenius’, A=7.08e13, n=0.0, C=300*S},
149 label=’r11’
150 }
151
152 Reaction{
153 ’H + HO2 <=> H2O + O’,
154 fr={’Arrhenius’, A=1.45e12, n=0.0, C=0.0},
155 label=’r12’
156 }
157
158 Reaction{
159 ’H + HO2 <=> H2 + O2’,
160 fr={’Arrhenius’, A=3.66e6, n=2.087, C=-1450*S},
161 label=’r13’
162 }
163
164 Reaction{
165 ’O + HO2 <=> OH + O2’,
166 fr={’Arrhenius’, A=1.63e13, n=0.0, C=-445*S},
167 label=’r14’
168 }
169
170 Reaction{
171 ’H2O2 + H <=> HO2 + H2’,
172 fr={’Arrhenius’, A=1.21e7, n=2.0, C=5200*S},
173 label=’r15’
174 }
175
176 Reaction{
177 ’H2O2 + H <=> H2O + OH’,
178 fr={’Arrhenius’, A=1.02e13, n=0.0, C=3577*S},
179 label=’r16’
180 }
181
182 Reaction{
183 ’H2O2 + O <=> OH + HO2’,
184 fr={’Arrhenius’, A=8.43e11, n=0.0, C=3970*S},
185 label=’r17’
186 }
187
188 Reaction{
189 ’H2 + M <=> H + H + M’,
190 fr={’Arrhenius’, A=5.84e18, n=-1.1, C=104380*S},
191 efficiencies={H2O=14.4,H2O2=14.4,H2=0.0,O2=0.0},
192 label=’r18a’
193 }
194 Reaction{
195 ’H2 + H2 <=> H + H + H2’,
196 fr={’Arrhenius’, A=9.03e14, n=0.0, C=96070*S},
197 label=’r18b’
198 }
199 Reaction{
200 ’H2 + O2 <=> H + H + O2’,
201 fr={’Arrhenius’, A=4.58e19, n=-1.4, C=104380*S},
202 label=’r18c’
203 }
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204
205 Reaction{
206 ’O + O + M <=> O2 + M’,
207 fr={’Arrhenius’, A=6.16e15, n=-0.5, C=0.0},
208 efficiencies={H2=2.5,H2O=12,H2O2=12},
209 label=’r19’
210 }
211
212 Reaction{
213 ’O + H + M <=> OH + M’,
214 fr={’Arrhenius’, A=4.71e18, n=-1.0, C=0.0},
215 efficiencies={H2=2.5,H2O=12,H2O2=12},
216 label=’r20’
217 }
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A.2 Evans-Schexnayder

1 model = ’thermally perfect gas’
2 species = {’H2’, ’O2’, ’H2O’, ’HO2’, ’OH’, ’O’, ’H’, ’N2’}

1 -- Author: Rowan J. Gollan
2 -- Date: 02-Feb-2010
3 -- Place: Poquoson, Virginia, USA
4 --
5 -- Adapted from Python file: evans_schexnayder.py
6 --
7 -- This file provides four chemical kinetic descriptions
8 -- of hydrogen combustion. You can select between the various
9 -- options below by setting the ’model’ variable below to one of

10 -- the strings listed below.
11 --
12 -- REDUCED : a 7-species, 8-reactions description of hydrogen
13 -- combustion in pure oxygen
14 -- PURE_O2 : a 7-species, 16-reactions description of hydrogen
15 -- combustion in pure oxygen
16 -- IN_AIR : a 12-species, 25-reactions description of hydrogen
17 -- combustion in air (N2 and O2)
18 -- INERT_N2 : an 8-species, 16-reactions description of hydrogen
19 -- combustion in air with inert N2 (acting as diluent only).
20 --
21 -- The numbering of reactions in this file corresponds to
22 -- Table 1 in Evans and Schexnayder (1980).
23 --
24 -- Reference:
25 -- Evans, J.S. and Shexnayder Jr, C.J. (1980)
26 -- Influence of Chemical Kinetics and Unmixedness
27 -- on Burning in Supersonic Hydrogen Flames
28 -- AIAA Journal 18:2 pp 188--193
29 --
30 -- History:
31 -- 07-Mar-2006 -- first prepared
32 --
33 -- Species used in REDUCED: O, O2, H, H2, H2O, OH, N2
34 -- Species used in PURE_O2: O, O2, H, H2, H2O, OH, HO2
35 -- Species used in IN_AIR: O, O2, N, N2, H, H2, H2O, HO2, OH, NO, NO2, HNO2
36 -- Species used in INERT_N2: O, O2, H, H2, H2O, OH, HO2, N2
37
38 options = {
39 REDUCED=true,
40 PURE_O2=true,
41 IN_AIR=true,
42 INERT_N2=true
43 }
44
45 -- User selects model here
46 model = ’INERT_N2’
47
48 -- Check that selection is valid
49 if options[model] == nil then
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50 print("User selected model: ", model)
51 print("is not valid.")
52 print("Valid models are:")
53 for m,_ in pairs(options) do
54 print(m)
55 end
56 end
57
58 Config{
59 odeStep = {method=’alpha-qss’},
60 -- tightTempCoupling = true
61 }
62
63 Reaction{
64 ’HNO2 + M <=> NO + OH + M’,
65 fr={’Arrhenius’, A=5.0e17, n=-1.0, C=25000.0},
66 br={’Arrhenius’, A=8.0e15, n=0.0, C=-1000.0},
67 label=’r1’
68 }
69
70 Reaction{
71 ’NO2 + M <=> NO + O + M’,
72 fr={’Arrhenius’, A=1.1e16, n=0.0, C=32712.0},
73 br={’Arrhenius’, A=1.1e15, n=0.0, C=-941.0},
74 label=’r2’
75 }
76
77 Reaction{
78 ’H2 + M <=> H + H + M’,
79 fr={’Arrhenius’, A=5.5e18, n=-1.0, C=51987.0},
80 br={’Arrhenius’, A=1.8e18, n=-1.0, C=0.0},
81 label=’r3’
82 }
83
84 Reaction{
85 ’O2 + M <=> O + O + M’,
86 fr={’Arrhenius’, A=7.2e18, n=-1.0, C=59340.0},
87 br={’Arrhenius’, A=4.0e17, n=-1.0, C=0.0},
88 label=’r4’
89 }
90
91 Reaction{
92 ’H2O + M <=> OH + H + M’,
93 fr={’Arrhenius’, A=5.2e21, n=-1.5, C=59386.0},
94 br={’Arrhenius’, A=4.4e20, n=-1.5, C=0.0},
95 label=’r5’
96 }
97
98 Reaction{
99 ’OH + M <=> O + H + M’,

100 fr={’Arrhenius’, A=8.5e18, n=-1.0, C=50830.0},
101 br={’Arrhenius’, A=7.1e18, n=-1.0, C=0.0},
102 label=’r6’
103 }
104
105 Reaction{
106 ’HO2 + M <=> H + O2 + M’,
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107 fr={’Arrhenius’, A=1.7e16, n=0.0, C=23100.0},
108 br={’Arrhenius’, A=1.1e16, n=0.0, C=-440.0},
109 label=’r7’
110 }
111
112 Reaction{
113 ’H2O + O <=> OH + OH’,
114 fr={’Arrhenius’, A=5.8e13, n=0.0, C=9059.0},
115 br={’Arrhenius’, A=5.3e12, n=0.0, C=503.0},
116 label=’r8’
117 }
118
119 Reaction{
120 ’H2O + H <=> OH + H2’,
121 fr={’Arrhenius’, A=8.4e13, n=0.0, C=10116.0},
122 br={’Arrhenius’, A=2.0e13, n=0.0, C=2600.0},
123 label=’r9’
124 }
125
126 Reaction{
127 ’O2 + H <=> OH + O’,
128 fr={’Arrhenius’, A=2.2e14, n=0.0, C=8455.0},
129 br={’Arrhenius’, A=1.5e13, n=0.0, C=0.0},
130 label=’r10’
131 }
132
133 Reaction{
134 ’H2 + O <=> OH + H’,
135 fr={’Arrhenius’, A=7.5e13, n=0.0, C=5586.0},
136 br={’Arrhenius’, A=3.0e13, n=0.0, C=4429.0},
137 label=’r11’
138 }
139
140 Reaction{
141 ’H2 + O2 <=> OH + OH’,
142 fr={’Arrhenius’, A=1.7e13, n=0.0, C=24232.0},
143 br={’Arrhenius’, A=5.7e11, n=0.0, C=14922.0},
144 label=’r12’
145 }
146
147 Reaction{
148 ’H2 + O2 <=> H + HO2’,
149 fr={’Arrhenius’, A=1.9e13, n=0.0, C=24100.0},
150 br={’Arrhenius’, A=1.3e13, n=0.0, C=0.0},
151 label=’r13’
152 }
153
154 Reaction{
155 ’OH + OH <=> H + HO2’,
156 fr={’Arrhenius’, A=1.7e11, n=0.5, C=21137.0},
157 br={’Arrhenius’, A=6.0e13, n=0.0, C=0.0},
158 label=’r14’
159 }
160
161 Reaction{
162 ’H2O + O <=> H + HO2’,
163 fr={’Arrhenius’, A=5.8e11, n=0.5, C=28686.0},
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164 br={’Arrhenius’, A=3.0e13, n=0.0, C=0.0},
165 label=’r15’
166 }
167
168 Reaction{
169 ’OH + O2 <=> O + HO2’,
170 fr={’Arrhenius’, A=3.7e11, n=0.64, C=27840.0},
171 br={’Arrhenius’, A=1.0e13, n=0.0, C=0.0},
172 label=’r16’
173 }
174
175 Reaction{
176 ’H2O + O2 <=> OH + HO2’,
177 fr={’Arrhenius’, A=2.0e11, n=0.5, C=36296.0},
178 br={’Arrhenius’, A=1.2e13, n=0.0, C=0.0},
179 label=’r17’
180 }
181
182 Reaction{
183 ’H2O + OH <=> H2 + HO2’,
184 fr={’Arrhenius’, A=1.2e12, n=0.21, C=39815.0},
185 br={’Arrhenius’, A=1.7e13, n=0.0, C=12582.0},
186 label=’r18’
187 }
188
189 Reaction{
190 ’O + N2 <=> N + NO’,
191 fr={’Arrhenius’, A=5.0e13, n=0.0, C=37940.0},
192 br={’Arrhenius’, A=1.1e13, n=0.0, C=0.0},
193 label=’r19’
194 }
195
196 Reaction{
197 ’H + NO <=> N + OH’,
198 fr={’Arrhenius’, A=1.7e14, n=0.0, C=24500.0},
199 br={’Arrhenius’, A=4.5e13, n=0.0, C=0.0},
200 label=’r20’
201 }
202
203 Reaction{
204 ’O + NO <=> N + O2’,
205 fr={’Arrhenius’, A=2.4e11, n=0.5, C=19200.0},
206 br={’Arrhenius’, A=1.0e12, n=0.5, C=3120.0},
207 label=’r21’
208 }
209
210 Reaction{
211 ’NO + OH <=> H + NO2’,
212 fr={’Arrhenius’, A=2.0e11, n=0.5, C=15500.0},
213 br={’Arrhenius’, A=3.5e14, n=0.0, C=740.0},
214 label=’r22’
215 }
216
217
218 Reaction{
219 ’NO + O2 <=> O + NO2’,
220 fr={’Arrhenius’, A=1.0e12, n=0.0, C=22800.0},
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221 br={’Arrhenius’, A=1.0e13, n=0.0, C=302.0},
222 label=’r23’
223 }
224
225 Reaction{
226 ’NO2 + H2 <=> H + HNO2’,
227 fr={’Arrhenius’, A=2.4e13, n=0.0, C=14500.0},
228 br={’Arrhenius’, A=5.0e11, n=0.5, C=1500.0},
229 label=’r24’
230 }
231
232 Reaction{
233 ’NO2 + OH <=> NO + HO2’,
234 fr={’Arrhenius’, A=1.0e11, n=0.5, C=6000.0},
235 br={’Arrhenius’, A=3.0e12, n=0.5, C=1200.0},
236 label=’r25’
237 }
238
239 reactions_list = {}
240
241 if model == ’REDUCED’ then
242 reactions_list = {’r3’, ’r4’, ’r5’, ’r6’, ’r8’, ’r9’, ’r10’, ’r11’}
243 end
244
245 if model == ’PURE_O2’ or model == ’INERT_N2’ then
246 reactions_list = {’r3’, ’r4’, ’r5’, ’r6’, ’r7’, ’r8’, ’r9’, ’r10’,
247 ’r11’, ’r12’, ’r13’, ’r14’, ’r15’, ’r16’, ’r17’, ’r18’}
248 end
249
250
251 if model ˜= ’IN_AIR’ then
252 -- For all other models we select only a subset.
253 selectOnlyReactionsWithLabel(reactions_list)
254 end
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A.3 Rogers-Schexnayder

1 model = ’thermally perfect gas’
2 species = {’O’, ’O2’, ’N’, ’N2’, ’H’, ’H2’,
3 ’H2O’, ’HO2’, ’OH’, ’NO’, ’NO2’,
4 ’HNO2’, ’HNO3’, ’O3’, ’H2O2’, ’HNO’ }

1 -- Author: Rowan J. Gollan
2 -- Date: 29-Mar-2009
3 -- Place: Poquoson, Virginia, USA
4 --
5 -- Adapted from Python file: rogers_schexnayder.py
6 --
7 -- This file provides a reaction scheme for
8 -- hydrogen combustion in air.
9 -- NOTE: This scheme does not include carbonaceous compounds

10 -- or Argon (or any of the associated reactions).
11 --
12 -- Reference:
13 -- Rogers, R.C. and Schexnayder, Jr., C.J. (1981)
14 -- Chemical Kinetic Analysis of Hydroden-Air
15 -- Ignition and Reaction Times
16 -- NASA Technical Paper 1856
17 --
18 -- Species used: O, O2, N, N2, H, H2, H2O, HO2, OH, NO, NO2, HNO2, HNO3, O3, H2O2, HNO
19 --
20 -- Updated 2016-07-31
21 -- Updated for eilmer4
22
23 Config{
24 odeStep = {method=’alpha-qss’},
25 tightTempCoupling = true
26 }
27
28 Reaction{
29 ’O2 + M <=> O + O + M’,
30 fr={"Arrhenius", A=0.72e19, n=-1.0, C=59340.0},
31 efficiencies={O2=4.0, O=10.0, H2O=2.0},
32 label=’r1’
33 }
34
35 Reaction{
36 ’M + H2 <=> H + H + M’,
37 fr={’Arrhenius’, A=0.55e19, n=-1.0, C=51987.0},
38 efficiencies={H=5.0, H2=2.0, H2O=8.0},
39 label=’r2’
40 }
41
42 Reaction{
43 ’M + H2O <=> H + OH + M’,
44 fr={’Arrhenius’, A=0.52e22, n=-1.5, C=59386.0},
45 efficiencies={H2O=6.0},
46 label=’r3’
47 }
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48
49 Reaction{
50 ’H + O2 + M <=> HO2 + M’,
51 fr={’Arrhenius’, A=0.23e16, n=0.0, C=-403.0},
52 efficiencies={H2=2.0, H2O=13.0},
53 label=’r4’
54 }
55
56 Reaction{
57 ’M + NO2 <=> NO + O + M’,
58 fr={’Arrhenius’, A=0.11e17, n=0.0, C=32710.0},
59 label=’r5’
60 }
61
62 Reaction{
63 ’M + NO <=> N + O + M’,
64 fr={’Arrhenius’, A=0.41e19, n=-1.0, C=75330.0},
65 label=’r6’
66 }
67
68 -- not included, ignoring the carbonaceous compounds
69 r7 = ’M + O + CO <=> CO2 + M’
70
71 Reaction{
72 ’M + H + NO <=> HNO + M’,
73 fr={’Arrhenius’, A=0.54e16, n=0.0, C=-300.0},
74 efficiencies={H2O=3.0},
75 label=’r8’
76 }
77
78 Reaction{
79 ’M + H2O2 <=> OH + OH + M’,
80 fr={’Arrhenius’, A=0.12e18, n=0.0, C=22899.0},
81 efficiencies={H2O=6.0},
82 label=’r9’
83 }
84
85 Reaction{
86 ’M + OH + NO <=> HNO2 + M’,
87 fr={’Arrhenius’, A=0.80e16, n=0.0, C=-1000.0},
88 label=’r10’
89 }
90
91 Reaction{
92 ’M + OH + NO2 <=> HNO3 + M’,
93 fr={’Arrhenius’, A=0.13e17, n=0.0, C=-1107.0},
94 label=’r11’
95 }
96
97 Reaction{
98 ’M + O3 <=> O2 + O + M’,
99 fr={’Arrhenius’, A=0.13e22, n=-2.0, C=12800.0},

100 efficiencies={O2=1.5},
101 label=’r12’
102 }
103
104 r13 = ’M + HCO <=> CO + H + M’
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105
106 Reaction{
107 ’M + O + H <=> OH + M’,
108 fr={’Arrhenius’, A=0.71e19, n=-1.0, C=0.0},
109 label=’r14’
110 }
111
112 Reaction{
113 ’H2O + O <=> OH + OH’,
114 fr={’Arrhenius’, A=0.58e14, n=0.0, C=9059.0},
115 label=’r15’
116 }
117
118 Reaction{
119 ’H2 + OH <=> H2O + H’,
120 fr={’Arrhenius’, A=0.20e14, n=0.0, C=2600.0},
121 label=’r16’
122 }
123
124 Reaction{
125 ’O2 + H <=> OH + O’,
126 fr={’Arrhenius’, A=0.22e15, n=0.0, C=8455.0},
127 label=’r17’
128 }
129
130 Reaction{
131 ’H2 + O <=> OH + H’,
132 fr={’Arrhenius’, A=0.75e14, n=0.0, C=5586.0},
133 label=’r18’
134 }
135
136 Reaction{
137 ’H2 + O2 <=> OH + OH’,
138 fr={’Arrhenius’, A=0.10e14, n=0.0, C=21641.0},
139 label=’r19’
140 }
141
142 Reaction{
143 ’H + HO2 <=> H2 + O2’,
144 fr={’Arrhenius’, A=0.24e14, n=0.0, C=350.0},
145 label=’r20’
146 }
147
148 Reaction{
149 ’H2 + O2 <=> H2O + O’,
150 fr={’Arrhenius’, A=0.41e14, n=0.0, C=25400.0},
151 label=’r21’
152 }
153
154 Reaction{
155 ’H + HO2 <=> OH + OH’,
156 fr={’Arrhenius’, A=0.24e15, n=0.0, C=950.0},
157 label=’r22’
158 }
159
160 Reaction{
161 ’H2O + O <=> H + HO2’,
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162 fr={’Arrhenius’, A=0.58e12, n=0.5, C=28686.0},
163 label=’r23’
164 }
165
166 Reaction{
167 ’O + HO2 <=> OH + O2’,
168 fr={’Arrhenius’, A=0.5e14, n=0.0, C=503.0},
169 label=’r24’
170 }
171
172 Reaction{
173 ’OH + HO2 <=> O2 + H2O’,
174 fr={’Arrhenius’, A=0.3e14, n=0.0, C=0.0},
175 label=’r25’
176 }
177
178 Reaction{
179 ’H2 + HO2 <=> H2O + OH’,
180 fr={’Arrhenius’, A=0.2e14, n=0.0, C=12582.0},
181 label=’r26’
182 }
183
184 Reaction{
185 ’HO2 + H2 <=> H + H2O2’,
186 fr={’Arrhenius’, A=0.73e12, n=0.0, C=9400.0},
187 label=’r27’
188 }
189
190 Reaction{
191 ’H2O2 + H <=> OH + H2O’,
192 fr={’Arrhenius’, A=0.32e15, n=0.0, C=4504.0},
193 label=’r28’
194 }
195
196 Reaction{
197 ’HO2 + OH <=> O + H2O2’,
198 fr={’Arrhenius’, A=0.52e11, n=0.5, C=10600.0},
199 label=’r29’
200 }
201
202 Reaction{
203 ’HO2 + H2O <=> OH + H2O2’,
204 fr={’Arrhenius’, A=0.28e14, n=0.0, C=16500.0},
205 label=’r30’
206 }
207
208 Reaction{
209 ’HO2 + HO2 <=> H2O2 + O2’,
210 fr={’Arrhenius’, A=0.2e13, n=0.0, C=0.0},
211 label=’r31’
212 }
213
214 Reaction{
215 ’O + O3 <=> O2 + O2’,
216 fr={’Arrhenius’, A=0.10e14, n=0.0, C=2411.0},
217 label=’r32’
218 }



A.3. Rogers-Schexnayder 55

219
220 Reaction{
221 ’O3 + NO <=> NO2 + O2’,
222 fr={’Arrhenius’, A=0.54e12, n=0.0, C=1200.0},
223 label=’r33’
224 }
225
226 Reaction{
227 ’O3 + H <=> OH + O2’,
228 fr={’Arrhenius’, A=0.70e14, n=0.0, C=560.0},
229 label=’r34’
230 }
231
232 Reaction{
233 ’O3 + OH <=> O2 + HO2’,
234 fr={’Arrhenius’, A=0.90e12, n=0.0, C=1000.0},
235 label=’r35’
236 }
237
238 Reaction{
239 ’O + N2 <=> NO + N’,
240 fr={’Arrhenius’, A=0.50e14, n=0.0, C=37940.0},
241 label=’r36’
242 }
243
244 Reaction{
245 ’H + NO <=> OH + N’,
246 fr={’Arrhenius’, A=0.17e15, n=0.0, C=24500.0},
247 label=’r37’
248 }
249
250 Reaction{
251 ’O + NO <=> O2 + N’,
252 fr={’Arrhenius’, A=0.15e10, n=1.0, C=19500.0},
253 label=’r38’
254 }
255
256 Reaction{
257 ’NO2 + H <=> NO + OH’,
258 fr={’Arrhenius’, A=0.35e15, n=0.0, C=740.0},
259 label=’r39’
260 }
261
262 Reaction{
263 ’NO2 + O <=> NO + O2’,
264 fr={’Arrhenius’, A=0.10e14, n=0.0, C=302.0},
265 label=’r40’
266 }
267
268 Reaction{
269 ’NO2 + H2 <=> HNO2 + H’,
270 fr={’Arrhenius’, A=0.24e14, n=0.0, C=14595.0},
271 label=’r41’
272 }
273
274 Reaction{
275 ’HO2 + NO <=> NO2 + OH’,
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276 fr={’Arrhenius’, A=0.30e13, n=0.5, C=1208.0},
277 label=’r42’
278 }
279
280 Reaction{
281 ’NO2 + H2O <=> HNO2 + OH’,
282 fr={’Arrhenius’, A=0.32e13, n=0.0, C=22000.0},
283 label=’r43’
284 }
285
286 Reaction{
287 ’NO2 + OH <=> HNO2 + O’,
288 fr={’Arrhenius’, A=0.21e13, n=0.0, C=12580.0},
289 label=’r44’
290 }
291
292 r45 = ’CO + OH <=> CO2 + H’
293 r46 = ’CO2 + O <=> O2 + CO’
294 r47 = ’H2O + CO <=> HCO + OH’
295 r48 = ’OH + CO <=> HCO + O’
296 r49 = ’H2 + CO <=> HCO + H’
297 r50 = ’HO2 + CO <=> CO2 + OH’
298
299 Reaction{
300 ’HNO + H <=> H2 + NO’,
301 fr={’Arrhenius’, A=0.48e13, n=0.0, C=0.0},
302 label=’r51’
303 }
304
305 Reaction{
306 ’HNO + OH <=> H2O + NO’,
307 fr={’Arrhenius’, A=0.36e14, n=0.0, C=0.0},
308 label=’r52’
309 }
310
311 r53 = ’NO + CO <=> CO2 + N’
312 r54 = ’NO2 + CO <=> NO + CO2’
313
314 Reaction{
315 ’NO + HO2 <=> HNO + O2’,
316 fr={’Arrhenius’, A=0.72e13, n=0.5, C=5500.0},
317 label=’r55’
318 }
319
320 Reaction{
321 ’HNO + O <=> NO + OH’,
322 fr={’Arrhenius’, A=0.5e12, n=0.5, C=0.0},
323 label=’r56’
324 }
325
326 Reaction{
327 ’HNO3 + O <=> HO2 + NO2’,
328 fr={’Arrhenius’, A=0.10e12, n=0.0, C=0.0},
329 label=’r57’
330 }
331
332 Reaction{
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333 ’HO2 + NO2 <=> HNO2 + O2’,
334 fr={’Arrhenius’, A=0.20e12, n=0.0, C=0.0},
335 label=’r58’
336 }
337
338 r59 = ’HCO + O2 <=> CO + HO2’
339
340 Reaction{
341 ’O3 + HO2 <=> 2 O2 + OH’,
342 fr={’Arrhenius’, A=0.10e12, n=0.0, C=1409.0},
343 label=’r60’
344 }
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