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Abstract

The method of Contour Dynamics (CD) is applied to several
prototype flows typical of the motions found in the transition
region of the free shear layer. A derivation of the technique
and a numerical implementation is described, suitable for the
simulation of quasi-three-dimensional inviscid flows
comprising a cylindrically symmetric vorticity field and an
imposed stretching-strain field. The aim is to provide
accurate evolutionary solutions to the Navier-Stokes’
equations, in the limit of infinite Reynolds number (Re), from
initial vorticity distributions characteristic of various

scales of motion in the shear layer.

These scales of motion are those defined by the strictly
two-dimensional temporal shear layer model and by the Corcos-
Lin-Sherman (CLS) model (Corcos & Sherman 1984; Corcos & Lin
1984; Lin & Corcos 1984) of the higher order motions.
Particular vorticity configurations include

(1) a strictly two-dimensional, streamwise-periodic

vortex layer with vorticity of one sign. This models the

well known temporal, two-dimensional shear layer.

(ii) an array of finite area vortex regions (FAVRs) with

alternating circulation which are embedded in an

irrotational, plane strain field aligned so as to stretch
the vortex lines. This configuration models the
evolution of secondary streamwise vortices (located in
the braid region of the shear layer) under the influence
of the longitudinal strain provided locally by the
rolled-up vortex cores of the two-dimensional temporal
shear layer.

(iii) a periodic vortex layer subject to imposed vortex

stretching as in (ii). This models some of the aspects

of the evolution of finer scales that develop on the
secondary vortices.
In a separate but related account we investigate the effect of
stretching upon the interaction of two equal, like-signed
vortices in close proximity.
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Simulations of the two-dimensional layer strongly support
the conjecture that the dynamics of the large-scale roll-up is
only weakly dependent on Reynolds number. Several case
studies illustrate the evolution of the vorticity distribution
in which the large-scale flow features are very similar to
those produced by previous two-dimensional simulations done at
moderate Re and those observed in flow visualization
experiments. The influence of the subharmonic perturbation
upon the long-time evolution of the strictly two-dimensional
layer is found to vary with its relative phase to the
fundamental perturbation as noted in previous studies.
Examples are presented that illustrate the events of pairing
and tearing of two rolled-up cores and also the coalescence of
three rolled-up cores. However, there are fine-scale details
generated here that are not evident in the moderate Re
simulations. These include spiral filaments of rotational
fluid which are formed and then wrap around the rolled-up
vortex cores. These events generate "spiky" vorticity
distributions and also entrain large quantities of
irrotational fluid into the layer. Simulations proceed only
up until the first such event because we cannot resolve the
fine detail that is generated subsequently.

Simulation of secondary streamwise vortices of the shear-
layer, as in (ii) above, provides an interesting example of
stretching-strain / vorticity interaction and illustrates a
possible single stage of the turbulent energy cascade to
smaller-scale motions. For the Re = « cases here, the initial
vorticity distribution (elliptical FAVRs) always collapse into
compact, nearly-axisymmetric cores surrounded by spiral arms.
Although, for very high aspect-ratio vorticity distributions,
each secondary vortex may collapse into several smaller

nearly-axisymmetric cores.

A stretched periodic shear layer (configuration (iii)
above) is studied to illustrate the effect of stretching on
the interaction of the subharmonic and fundamental
perturbations in the limit of Re = «~. Stretching is found to

accelerate the initial roll-up and to enhance the production
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of spiral vortex filaments. It slows, but does not prevent,
the pairing interaction and, although the rolled-up cores
still pair with their nearest neighbours, the simulations are
terminated before they approach each other closely.

We also describe some numerical experiments performed to
study the effect of stretching strain on the strong
interaction of two equal, like-signed vortices in close
proximity. It is shown that stretching enhances the
coalescence if the line joining the two vortex centres is
aligned with the the compressive axis of the strain but

inhibits coalescence otherwise.
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Notation
Aj area of Rj
ag amplitude of perturbation applied to the shear layer
a, = A,/8,, aspect ratio of secondary vortex
a semi-major axis of ellipse
b semi-minor axis of ellipse
Cx contour delineating vorticity discontinuity in
(x, y)—-plane
D/Dt Lagrangian derivative
D. contour delineating vorticity discontinuity in the
E-plane
distance
parameter for integration quantities

abscissa for numerical quadrature

o
(Y
w

body force

eigenfunction defining the perturbation shape

—~
Ty
~

singularity distribution around contour C
Heavyside step-function

5om Q[0 0 Q

.

mean contour separation between contours Cj and Cj,
of the shear layer
v (-1)
ik unit vectors in the cartesian coordinates
wave number
ki..ky constants to evaluate computational effort
(table 2.1)

typical length scale of flow

= B

number of nested vortex regions

number of nodes in the node set defining Cj

.

max upper limit on nodes for each contour
node—adjustment parameters

[Ey
)

=

(@]

pressure
length of contour

Iy e’y at

ratio (quotient) (1) hj/hl'

O o o "oz =z
u.

Q
.

(ii)' (rl) j/ (rl) 1
R magnitude of & = R 19
(rl)j'(rz)j major, minor axes of initial ellipse for
secondary vortex simulations
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Re = UL/v, Reynolds number

Rey = AUMA{/v, Reynolds number for primary vortices

Re8 = AUSm/v, Reynolds number based on initial vorticity
thickness

Re, = I'y/v, Reynolds number for secondary vortices

Rj region of constant vorticity

T equivalent time in the purely two-dimensional
simulations (Lundgren’s transformation)

Ty time for braid to reach equilibrium thickness

To = xZ/F, characteristic time for the simulation

Tn Kolmogorov time-—scale

T, time for vortex collapse via Neu’s strain

T, roll-up time—-scale for stretched secondary vortices

t physical time

AU free-stream velocity jump across the shear layer

Ui, Uy free-stream velocities for the mixing layer

Uq convection velocity of the mixing layer

u vector velocity

Uy rUyr U, velocity components in cartesian coordinates

Vs Vy velocity field associated with o,

W =& + 1 ¥, complex potential

Wg..W3 weights for numerical quadrature

X,V,2Z cartesian coordinates

Yj maximum deviation of Cj from y = 0

Z = X + 1Y, complex coordinate of an arbitary point
in the (x, y)-plane

aj = a, + 1 a;, perturbation magnitude for Cj

B (x,y)-plane strain rate

Bz = FZ/Fl, relative strength of secondary vortices

r'q circulation of a rolled—-up spanwise vortex

I, circulation of a secondary streamwise vortex

Fcomp circulation in the computational domain

A(Qj) . fractional error in circulation invariant for Rj

Y (y,z)-plane stretching strain rate

Yo dimensionless stretching strain rate for the
secondary vortex simulations

Y3 dimensionless stretching strain rate for the

stretched shear layer simulations
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Ao, = O, — O, _q1, vorticity jump across Ch
n (i) Kolmogorov length scale
(i1) coordinate in o-plane

(11i1) nj(x) y-position of Cu

J
Sw vorticity thickness of the shear layer, AU/(omaX
82 vorticity thickness of the (i) secondary vortices

(ii) shear layer braid
€ (1) tolerance, (depends upon context)
(1i1) coordinate in o-plane
€1 tolerance for node insertion
nd tolerance for node deletion

m

= x + 1 y, complex coordinate of a point on Cj

6 (1) argument of & = R el®
(1ii) momentum thickness

K curvature

wavelength of the initial Kelvin-Helmholtz

instability for the shear layer

xl wavelength of the infinitesimal disturbance with
highest growth rate

KZ wavelength of the secondary vortex array

k3 wavelength of the fundamental mode for the stretched
shear layer

A wavelength of the computational domain

\Y kinematic viscosity

€ = ¢ + 1 m, complex coordinate

p fluid density

o (i) = 6, + 1 6., complex growth rate of layer

perturbations

(ii) radius of vortex blob

(1iii) = € + im, transformed plane in Lundgren’s

transformation

A

= t/Tc, nondimensionalized time
Tmax maximum nondimensionalized time reached during
simulation

flow potential

phase angle of initial perturbation to shear layer
streamfunction

z—component of vorticity in Rj

e e & & &

vector vorticity



WYX

CD

FAVR

O0(...)
<...>

Note:

4
circulation in region Rj
infinity
grad
cross product
partial derivative
(superscript) complex conjugate
Contour Dynamics
finite area vortex region
primed quantities are integration variables
of order ...

mean value of ...

The subscripts o and 0 are synonymous.



1.0 INTRODUCTION

Simulation of realistic fluid flows at high Reynolds
number is extremely difficult due to the occurrence of
turbulence. 1In this thesis we will use the method of Contour
Dynamics, a technique suitable for the simulation of quasi-
two—dimensional flow of an inviscid fluid, to calculate the
evolution of several prototype flows that typify the
structures present in the transition regime of a plane mixing
layer.

If we work within the continuum framework for an
homogeneous fluid then the well known Navier—Stokes equations
describe the motion of the fluid for any given initial and
boundary conditions. The solution of these equations is not
an easy problem : when attempting direct numerical solutions,
we encounter the problems of resolving the large range of time
and length scales. The length scales associated with flow
range from those associated with the large-scale motions, L,
(say, the width of a mixing layer) down to the Kolmogorov
length scale, m, of the nonturbulent motions with effective
Ren = 0(1). If we define the number of degrees—of-freedom
for a flow as L/n then this quantity wvaries as Re3/4 for each
spatial dimension (Liepmann 1979). Explicit numerical
solutions to the governing equations involving such a large
range of scales leads to computer memory and processing time
requirements that are prohibitive, even for the present
generation of supercomputers. Hence, we turn to the study of
simplified models in which not all of the flow detail has to
be treated explicitly.

The classical approach to the problem of turbulence has
been dominated by the statistical view initiated by Osborne
Reynolds (1895). Flow quantities are assumed to be composed
of a mean component and a superimposed random fluctuation.
Substituting these quantities into the Navier-Stokes
equations, and averaging with respect to time, results in a
set of equations analogous to the Navier-Stokes equations but

involving the mean quantities and an extra set of terms



commonly called the Reynolds sﬁresses (Hinze §1.2, 1975).
This procedure results in more unknowns than available
equations and at some point the system of equations must be
completed by introducing a "closure hypothesis". These vary
in complexity from a simple eddy-viscosity model relating the
Reynolds stresses to the gradients of the time averaged
velocities to more complex models involving extra equations
governing the transport of the turbulence properties through
the flow. One popular closure hypothesis is the k—& model
which has recently been successfully used by Paterson (1986)
to compute three-dimensional turbulent flow around buildings.
All such models contain one or several parameters that need to
be tuned to the flow situation.

Over the past two decades a large body of experimental
data has been led to the emergence of a alternative view of
turbulent flows. This is the so called "coherent structure"
hypothesis which suggests the presence of large individual
structures that maintain their coherence for long periods of
time and interact in a more deterministic manner than
previously thought. Despite the current high profile of
coherent structures in turbulence research, there are several
new approaches to turbulence currently under study (see e.g.,
Liepmann 1979; Chapman & Tobak 1985). One of these is the
chaotic systems approach (see e.g., Aref 1983). For reviews
on the subject of coherent structures in both bounded and free
flows see Cantwell (1981) and Hussain (1986).

Early observations of structures, for example the
spanwise vortices of the mixing layer, were thought to be
unusual and require carefully prepared conditions for their
existence. However, recent experiments have produced some
very convincing evidence for the existence of coherent
structure over a wide range of flow conditions. The now
celebrated shadowgraphs of Brown & Roshko (1974) show the
persistence of spanwise vortices in a mixing layer at high Re
and the photographs of Konrad (1976) (reproduced in figure
1.1) show streamwise streaks which have interpreted by many

workers to indicate the presence of streamwise, counter-—



rotating vortices superimposed upon the spanwise vortices. As
these vortex structures convect with the flow, experiments are
best done in a Lagrangian framework and much of the collected
evidence has been obtained using very simple flow

visualization techniques.

It has been suggested that certain experimentally
observed features of turbulent flows may be explained through
an understanding of the underlying vortex structure of the
flow (see e.g. Corcos 1979; Saffman 1981; Perry 1986). Here
the basic surmise is that a turbulent flow may be modelled as
a superposition of particular realizations of the vortex
evolution which are distinct but structurally similar
solutions of the equations of motion. For example, it is now
generally accepted that the early growth of the plane mixing
layer can be attributed to the progressive amalgamations of
the spanwise vortices (Ashurst 1977).

From a computational point of view, the aim is to provide
accurate numerical simulations of the nonlinear dynamics of a
typical realization as a means of elucidating the wvarious
dynamical paths leading to a range of eddy scales which
comprise the turbulence. These paths often take the form of
nonlinear instabilities which provide mechanisms for the
exchange of energy between the different scales of motion.

In this thesis we will take the coherent structure
approach and obtain solutions to the Navier-Stokes equations
in the Re = « limit starting with vorticity distributions that
are representative of realistic flow configurations. We will
calculate solutions to the (inviscid) Euler equations on the
supposition that, for finite times and away form solid
boundaries, these solutions will be the same as the limiting
solutions to the Navier—-Stokes equations as Re — o starting

from the same initial vorticity distribution.

To obtain numerical solutions, we use the Contour-Dynamic
(CD) technique (Zabusky, Hughes & Roberts 1979). The CD
method may be viewed as a member of the family of boundary-



Figure

Photograph of the plane mixing layer
taken by Konrad (1976).

(a) Plan view of the layer showing

streamwise streaks
(b) Spanwise view showing the characteristic
rolled-up vortex structures.

See also figure 6.1.



integral methods where the solution to the partial-
differential equations is specified in the form of a Green’s
function. The CD method is suited to the simulation of
"almost—-continuous" vorticity fields in a two-dimensional flow
of an inviscid fluid and, to date, has been restricted to
purely two-dimensional flows with strictly uniform vorticity.
Most of the simulations presented here use a nested set of
vortex regions with piecewise-constant vorticity to
approximate a continuous, nonuniform vorticity distribution
that is typical of real flows. (See, for example, the
experimental measurements of the vorticity of the ensemble
averaged flows made by Browand & Weidman 1976 and Oster &
Wygnanski 1982.) A three-dimensional, irrotational strain
field is also included to model the vortex-stretching effects
characteristic of three-dimensional turbulent flows. The nett
result is a quasi-three-dimensional simulation technique which
can be applied to flows where the vortex dynamics is
preferentially two-dimensional (e.g. the pairing of spanwise
vortices observed in the mixing layer observed by Winant &
Browand 1974) and to flows where the effect of larger-scale
motions can be modelled as an ambient strain field (as felt by
the streamwise vortices in the braid region of the mixing
layer) .

As indicated by the example mentioned above, a flow
configuration that has been the centre of much attention is
the plane mixing layer. This flow occurs naturally in many
situations and has provided one of the most striking examples
of the large scale or coherent structure. Over the past
decade, the cumulative efforts of many workers has led to the
emergence of attractive structural models of the mixing layer.
One version is the Corcos-Lin-Sherman (CLS) (Corcos & Sherman
1984; Corcos & Lin 1984 and Lin & Corcos 1984) model
consisting of a short hierarchy of relatively simple
deterministic motions. Each level in the hierarchy is defined
as a vorticity field, embedded within and influenced by a
larger—-scale flow.
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To place some of the subsequent discussion in
perspective, we will briefly consider the flow configurations
of interest. This description will be later expanded in
chapter 6 which forms the introduction to the application
section of this thesis. The standard laboratory mixing layer
(figure 1.2a) is the transition region between two co-flowing
parallel streams with different free stream velocities, U, and
Uy. The layer grows in the streamwise direction and, at any
fixed downstream position, its flow properties are roughly
periodic in time. Figure 1.1lb (Konrad’s photograph) shows the
nonlinear roll-up of the spanwise vortices in a mixing layer
between the two free streams and the subsequent growth of the
cross—stream thickness of the layer by the amalgamation of
several generations of the spanwise vortices. Another model
which has been found to be convenient for numerical
simulations is that of the temporal shear layer (figure 1.2b).
We define the shear layer as the region between two counter-
flowing but parallel streams with velocities AU/2 and -AU/2 in
the x-direction. The shear layer is infinite in extent,
periodic in the x-direction and evolves in time. The
numerical simulations presented later are based on this
temporally evolving shear layer.

In chapter 2 we review the computation of two-dimensional
fluid flows via vortex dynamics, and then in chapter 3
describe the method of Contour Dynamics (CD) that is used to
calculate the evolution of the prototype flows. This
description includes two new extensions to CD : (i) modelling
a nonuniform vorticity distribution as nested regions of
piecewise constant vorticity and (ii) the addition of a three-
dimensional stretching strain to model the effect of larger
scale motions. Chapter 4 describes the numerical
implementation of CD while in chapter 5 we compare the CD
simulations with both numeric and analytic results obtained
from the available literature. Computer codes for this

implementation are given in Jacobs [5].

Chapter 6 discusses the prototype flows that have been
used to model the motions of the plane mixing layer while
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Figure 1.2: (a) Conceptual view of the plane mixing

layer.
(b) Conceptual view of spatially periodic

shear layer which develops in time.

See also figure 6.2.
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applications of CD to prototype flows of the CLS model begin
in chapter 7. Chapter 7 contains sample simulations of the
strictly two-dimensional layer from which preliminary results
were published in Jacobs & Pullin [4] with a more complete
account to be published in Jacobs & Pullin [6]. Several cases
are presented that illustrate the effect of subharmonic
perturbations upon the nonlinear roll-up of the layer.

Chapter 8 contains sample simulations for the evolution
of secondary streamwise vortices in the braid region of the
shear layer. These results, previously published in Pullin &
Jacobs [3], provide an interesting example of stretching
strain / vorticity interaction.

In chapter 9 a stretched periodic shear layer is studied
as a limiting configuration of the secondary streamwise
vortices. Comparisons with the equivalent unstretched shear
layers in chapter 7 illustrate the effect of stretching upon
the interaction of the subharmonic and fundamental
perturbations. Again, preliminary results have appeared in
Jacobs & Pullin [4].

Chapter 10 details some numerical experiments that
illustrate the effect of an imposed stretching strain field on
the strong interaction of two equal, like-signed vortices in
close proximity. The results contained in this section have
been previously published in Jacobs & Pullin [1] and [2].
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2.0 COMPUTATION OF FLUID MOTION VIA VORTEX DYNAMICS

The availability of large scale computing resources has
stimulated the study of the nonlinear interactions of
vorticity fields flow at effectively infinite Reynolds number.
Calculations include both steady state configurations (e.qg.
Saffman & Szeto 1980, 1981; Saffman & Schatzman 1981; Overman
& Zabusky 1982; Dritschel 1985) and their associated linear
stability (e.g. Saffman & Schatzman 1982; Dritschel 1985).
Fully nonlinear evolutionary-simulations include those by
Acton (1976), Ashurst (1977), Zabusky et al (1979), Pullin
(1981) and Pozrikidis & Higdon (1986). Here, we will describe
the governing equations and some of the "vortex" methods used
to obtain particular solutions. These methods
characteristically have flow elements consisting of packets of
circulation. There have been several extensive reviews of
this active area including those by Leonard (1980b, 1985),
Saffman & Baker (1979), and Melander, Overman & Zabusky
(1986) .

2.1 Equations of Motion

The motion of an homogeneous incompressible fluid can be
described by the conservation of mass and conservation of
linear momentum. In vector notation these take the form

V.u =0 ’ (2.1)
Du 1
— =F - —Vp + v VZE ’ (2.2)
Dt p

respectively, where

[9 d 3 ]
V = L i—+3j—+k— J ’ (2.3a)
ox oy 0z
D [ 9 0 ) o | 2. 3)
—=| —+4+u, —+u, — +u, — . .
Dt L . Tax Yoy ooz J
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Here u is the vector velocity

u = uxi + uyi + uZ£ ’ (2.4)
where i, Jj, and k are the unit vectors in (x, y, 2) cartesian
coordinates and the subscripts refer to the spatial
dimensions. F, p and v are the body force per unit mass,
fluid static pressure and kinematic viscosity respectively.
These are the well known and much studied Navier-Stokes
equations in terms of the primitive variables, pressure and
velocity. These equations can be normalized by considering a
characteristic length, L, and velocity, U, for the flow and

defining a Reynolds number as Re = UL/v.

2.2 Direct Methods of Solution

The most straightforward numerical approach to solving a
two—-dimensional partial differential equation is to use a
finite-difference (FD) method on a rectangular mesh. Such
techniques have been applied to both the primitive variable
equations (2.1)-(2.2) and the vorticity-stream function
equations as discussed in Roache (1976) for example. A key
disadvantage to the FD approach is that, in order to eliminate
excessive numerical diffusion and dissipation in simulations
at high Re, a very fine grid is required. With increasing Re,
this very quickly leads to computer memory and processing-time
requirements that are beyond the scope of present day
supercomputers. For example, consider a three-dimensional
simulation of a periodic shear layer modelling the initially
two—dimensional instability and growth of the standard
laboratory mixing layer during transition to full three-
dimensionality. The transition includes (roughly) the first
three pairing events of the spanwise vortices and extends for
approximately 15?LO where A, is the wavelength of the initial
initial Kelvin-Helmholtz instability of the layer (Jimenez
1983).
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To reach this event in the temporally developing shear
layer simulation, we might choose a computational domain of
length 8%0 in the streamwise (x) direction and approximately
4%0 in both the cross-stream (y) and spanwise (z) directions.
(The simulations in section 7.4 indicate that the final
structure spans approximately half its wavelength.) The
largest characteristic timescale for the simulation is

= ° (2.5)

where AU is the velocity jump across the layer. Although the
evolution time depends upon the magnitude of the initial
amplitude, we guess that the nonlinear roll-up and third
pairing events occur at approximately 1T, and 8T,
respectively. The discussion above defines the requirements
for the large-scale motions but, to provide accurate
evolutionary solutions, we need to resolve all scales of

motion down to the Kolmogorov length n and time scale T, (i.e.

n

those with characteristic Reynolds number Re, ~ 1). Following

n
the arguements of Kolmogorov (also discussed in Liepmann
1979), an estimate of the range of length scales in any one

dimension is given by

L [ LU 13/4
- [ _ J = ReL3/4 (2.6)
v

~

where L is a characteristic length of the large-scale motions,
say the length of the computational domain. An estimate of
the micro-time scale is given by

{ vL }1/2 .
T = ~ —_— .
n u3 !

where ¢ is the characteristic velocity of the microscale
motions. The range of timescales is then
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< [ _° J - Rexl/z . (2.8)

n v

For a FD solution to the governing primitive wvariable
equations (2.1)-(2.2), a grid over the domain is reguired for
the specification of the dependent variables u and p. The
number of nodes in the streamwise and cross-stream directions

is
N, = k; — = 8k; Rey3/4 : (2.9a)

N, =N, = k; — = 4 k; Rey3/4 ) (2.9Db)

The total storage in terms of computer words (8 bytes) is then

= 4 N, N, N, = 512 k3 Rey /% ) (2.10)

Each time step involves the inversion of a Poisson equation
(2.12) to obtain the pressure and the updating of (2.2). For
a fourth order FD method or spectral method each time-step

requires

Nops/step = (NgNyNp) [k logy (N NON,) + kg1 (2.11)

operations (Saffman 1977). The number of time steps required
for the simulation is

— — 1/2
Nt ime-steps = 8 ko — = 8 ky Rey , (2.12)

giving a total operation count

_ 1/2 3 9/4
Neoral = (8 ky Repl/2) * (128 ki3 Rey /%)

x  [ky log, (128 ki3 Rey 2/ + k,1 . (2.13)



17

Typical values for the constants ki to k, are given in table
2.1 while estimates for the associated storage and processing-
time requirements at various Re are listed in table 2.2. The
processing-time is that for a Cyber 205 supercomputer
operating at an optimum speed of 200 Mflops (million floating-
point operations per second). To place this in perspective
with some of the experiments that have been performed,
consider the experiments of Winant & Browand (1974) where

Re, = 250 and the higher speed experiments of Brown & Roshko
(1974) with Rey = 34000.

There are other grid-based techniques such as the
spectral and pseudo-spectral methods based on the expansion of
flow variables in terms of Fourier components and orthogonal
polynomials. The economy of these methods is that they
require fewer grid points than a FD method for similar
resolution but the variation of computer processing-time with
grid resolution is similar to that for the FD methods (see
equation (2.13) and table 2.1). These methods have been
reviewed by Orszag & Israeli (1974) with more recent
applications described by Melander, Overman & Zabusky (1986).
Riley & Metcalfe (1980) used a pseudo-spectral method to
simulate the two-dimensional roll-up of the spanwise vortices
and the interaction with the first subharmonic at Rey = 400,
800 on 64 x 64 and 128 x 128 grids. They also performed a
three-dimensional simulation of the nonlinear roll-up on a
32 x 32 x 33 grid at Rey = 200.

Even if the estimates containied in table 2.2 are in
error by several of orders of magnitude (e.g., it may not be
necessary to resolve motions at all scales down to 0O(m)), they
still provide motivation to try to model the small-scale
motions in a way that is less demanding of computational
effort. Examples include the kx-&¢ turbulence model that has
been successfully used in engineering calculations (e.q.
Paterson 1986) and the subgrid-scale modelling (or large-eddy
simulations) used, for example, in the channel flow
simulations of Moin & Kim (1981, 1985). Those interested in
more fundamental studies have often used a vortex method



Table 2.1 :

Typical values of constants kl"'k4 for equations (2.10) and
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(2.13) defining computational effort.
taken from Saffman (1977).

These values are

Constant Computational method
4th order FD | Spectral
K
k2 2
k3 5 25
k4 90 100

Table 2.2 :

Computer storage and processing time required on a

Cyber-205 supercomputer for simulations at various

Reynolds numbers.

ReA Ath order FD method Spectral method
Storage Processing Storage Processing
(Mwords) time (Mwords) time

100 2.02x10° 26.3 hours | 16.1 0.58 hours

103 3.59x105 1.96 years 2.88X103 17.6 days

104 6.40x107 12.5 cent. 5.12x105 33.2 years

10° 1.14x10'0 7907 cent. | 9.10x10’ 220 cent.

cent. = century
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combined with some physical modelling (e.g. the secondary
streamwise vortices of the mixing layer embedded in a
stretching strain). This is the approach followed in the
present study.

2.3 Vortex Methods

It has been ndted that flows at high Re are often
characterized by compact regions of rotational flow embedded
in an irrotational velocity field (see e.g. Batchelor 1962).
For flows with no free surface, the equations of motion (2.2)
may be recast in terms of the derived variable ® (vorticity)

where
=V xu , \ (2.14)

giving the vorticity transport equation

Da 1
— = [@.V]u+— V2 . (2.15)
Dt Re

The left hand side of equation (2.15) represents the rate of
change of vorticity following a fluid particle. The second
term on the right is the rate of change of ® due to molecular
diffusion while the first term describes the effect of the
velocity field on ®. It represents the extension or
contraction of the vortex lines due to the component of u
parallel to ® and also the the rotation / reorientation of the
vortex lines by the component of u normal to ®w. For a purely
two-dimensional flow this term is identically zero as there is

only one nonzero component of vorticity ® = o,k and two

nonzero velocity components u = u,i + ugd.

This vortex description of the flow has the advantage of
being compact as we only need to calculate the evolution of ®
rather than the entire velocity field and also has the benefit
of eliminating pressure as a variable. These advantages,
however, are only realized for two-dimensional flows as the
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vector streamfunction in three-dimensions adds quite a degree
of complexity.

To avoid the limitations of a mesh, several Lagrangian
techniques have been developed. These are the vortex methods.
In three dimensions they have been applied to phenomena such
as the turbulent spot in a boundary layer (Leonard 1980a).
Reviews of two- and three-dimensional vortex methods are
available in Leonard (1980b) and Leonard (1985) respectively.
Generally, the production of fine-scale detail quickly
outstrips the computing resources available so only very
simple initial configurations have been explored (see e.g.
Chorin 1982). We will constrain the flow configurations
considered here to be cylindrically-symmetric with only one
component of vorticity, ®,. We note that Saffman & Meiron
(1986) have questioned the utility of the three-dimensional
equivalent of the two-dimensional point vortex technique owing
to its failure to conserve certain invariants of the motion
associated with such physical quantities as impulse and

angular momentum.

In a purely two-dimensional inviscid flow, the vorticity
transport equation (2.15) reduces to

DO)Z

— =0 . (2.106)
Dt

This means that a fluid particle that initially has a finite
vorticity always has that vorticity or, alternatively, that
the vortex tubes retain their identity as they move with the
fluid. This second feature is also true for three-dimensional
flows but there is the added complication of vorticity
amplification and reorientation.

The earliest of the vortex methods is the point-vortex
technique (Rosenhead 1932). The vorticity distribution is
modelled by a discrete set of point-vortices with the local
density of these points in a small region approximating
o, (x, y, t). The Eulerian velocity field of the flow is

identified with the particle velocities of the point-vortices
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so that time evolution of the vorticity field is now

represented by the particle mechanics of the point-vortices.

There are very few analytic (closed form) solutions for
this problem and these are usually for steady state systems
such as a pair of equal like-signed vortices rotating about
each other or the translating Karman vortex—-street. The
stability of these configurations to infinitesimal
perturbations is readily available in Lamb (1932) but fully
nonlinear interactions are, in general, too complicated for
analytic study. Instead, numerical simulations have dominated
the study of the nonlinear motions of several or many (arrays
of) particles.

If we consider a collection of N point-vortices then the
velocity calculation is essentially a summation of Green’s
function solutions to the Poisson equation (2.21). The
velocity of particle k is given by the summation

dg,” 1

dt 2ni

. _ ’ (2.17)
%$i (8 Cj)
where { = x + iy is the complex coordinate in the (x, y)-plane
and * indicates the complex conjugate. This direct
calculation requires O(N2) operations per time-step and, for
large N, it is computationally expensive. Rosenhead (1932)
appears to have been the first to use the point-vortex
technique as a numerical method by approximating a vortex
sheet as a periodic array of point-vortices and computing (by
"hand") the nonlinear roll-up of the sheet. He, and more
recent workers (e.g., Kadomtsev & Kostomarov 1972),
experienced accuracy problems with these calculations.

Another early application was the calculation by Abernathy &
Kronauer (1962) of the formation of a vortex street from two

vortex sheets, again modelled as arrays of point-vortices.

As an approximation to a continuous vorticity
distribution, the point vortex method is, at best, a weak

solution to the Euler equations (Saffman & Baker 1979, Saffman
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Figure 2.1 :

Definition sketch for the point vortex formulation. The
velocity of the vortex at Ck induced by the vortex at Cj
is depicted by the vector Ek(j). Three other point
vortices, labelled 1, 2 and 3, make up the rest of the

vorticity distribution.
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& Meiron 1986). This vorticity distribution induces an
unbounded velocity field (2.11) and numerical procedures
experience accuracy problems if the point-vortices approach
each other closely. 1If the velocity field is smoothed then a
reasonable approximation to the nonlinear evolution of the

original continuous vorticity field may be obtained.

The "vortex blob" method of Chorin (1973) involves the
use of a set of nondeformable, finite—area vortex blobs with
finite vorticity. The parameters now include the blob
strength, position, vorticity distribution and characteristic
radius as shown in figure 2.2. A typical axisymmetric
vorticity distribution for a single blob is

0, = { (2.18)
0 r 20 ’

that is, uniform vorticity oF] within a radius 6. A vortex

blob located at the origin induces a complex velocity

r 1
u, - iu, = | — — , ¢l =0,
® Y 2ri
r g2 1
> - o+ 18l <0 / (2.19)
L 27i c 4
where
I = nce, . (2.20)

The vorticity distribution has now been "desingularized"”
and induces a smoother velocity field. There have been a
number of large-scale numerical simulations using this method,
with several investigating the mixing layer or shear layer.
Acton (1976) used 96 vortex blobs positioned on 4 close
contours to study the initial rollup and subsequent pairing of
vortex regions in a shear layer. In an ambitious calculation,
Ashurst (1977) used up to 800 point wvortices and 250 hours of
processing time on a CDC 6600 (Mflops = 1, Floating Point
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Figure 2.2 : Two interacting vortex blobs. Blob #1 is located at the
origin and the induced velocity at the centroid of blob
#2 is represented by u. Inset, the variation of vorticity
and magnitude of induced velocity (of blob #1) with

distance from the origin.
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Systems 1986) to simulate the two-dimensional eVolution of a
spatially developing mixing layer with the same conditions
(Rey, = 250) as the layer studied by Winant & Browand (1974).
He included a random walk component in the velocity (Chorin
1973) to model the effect of viscosity and was also able to
emulate the conditions of the Brown & Roshko (1974) mixing
layer with Rex = 34000.

There are, however, accuracy problems associated with the
vortex blob being nondeformable. In simulation of a periodic
shear layer using blobs with Gaussian vorticity distributions,
Nakamura, Leonard & Spalart (1982) have demonstrated that a
blob diameter of order the centre separation (so that the
blobs initially overlap) is required to obtain a good
approximation to a continuous vorticity distribution. This
conflicts with the observations by Christiansen (1973) (see
also Jacobs and Pullin [1]) that there are large deformations
in the boundaries of finite—area vortex regions (FAVRs) in
close proximity. Although the nondeformable nature of the
blobs does not invalidate the method’s convergence as ¢ —» 0, a
more accurate and physically reasonable technique may be
obtained by using deformable blobs. One such technique is the
"variable-elliptical-vortex" method proposed by Teng (1986) in
which the blobs translate, rotate and deform as elliptical
shapes.

In an attempt to reduce the processing-time required for
large N, Christiansen (1973) proposed an alternate method of
calculating the velocities. In this "Cloud-in-Cell"™ (CIC)
technique, the basic variables are still the strengths and
positions of the point vortices but the velocity calculation
is performed with the aid of a grid. For each time step,
vorticity is smoothed onto the grid and then the grid
streamfunction, ¥, is found by solving a discretized form of
the relevant Poisson equation

V¥ = -o, (2.21)
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where

¥ 0¥
a, = — , u, = — — . (2.22a,b)
% oy Y 0x

The grid velocity is obtained by differencing ¥ and then the
individual point-vortex velocities are obtained by
interpolation. The interpolation is performed consistently so
that a vortex does not move in its own velocity field and so
that the velocity field induced by each vortex is isotropic.
For simple geometries, the inversion of the Poisson equation
(2.21) may be done relatively quickly using Fast Fourier
Transforms. On an M X M grid, this inversion requires leogzM
operations (Temperton 1979) and, when M2 is typically set to
be O(N), the number of operations required per time-step is
O(Nlog,N) plus O(N) operations required for interpolation. As
well as this speed advantage, the point-vortex equations have
been desingularized by smoothing the vorticity onto the grid.
This gives the vortices an effective core size of O(grid
spacing) and eliminates the difficult singular behaviour as
two point vortices approach closely. However, there is a
penalty to be paid in the form of a reduction in solution
accuracy.

The CIC method has been used in applications that require
large numbers of point-vortices to approximate continuous
vorticity distributions. Christiansen (1973) and Christiansen
& Zabusky (1973) investigated several case studies including
the interactions of two equal FAVRs, the formation of a vortex
street from a pair of finite thickness shear layers and, the
initial rollup of a spatially periodic free shear layer. More
recently, Aref & Siggia (1980) studied the "long—time"
evolution (well past the transition region) of a shear layer
using 4096 point vortices and an underlying 256 x 256 grid.
They performed the same type of computation to study the
formation of a vorﬁex street from two perturbed shear layers
(Aref & Siggia 1981). '

The advantages of vortex methods are that they provide a

compact description of the inviscid flow dynamics (especially
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in an unbounded domain) and, most importantly, that they are
mesh independent. This allows fine-scale motions to develop
and convect accurately. However, they require extremely large
numbers (N) of point-vortices / vortex blobs to provide a good
approximation to a continuous vorticity distribution and the
computing time increases rapidly with N.

While the point vortex methods and their variants have
been successful in describing the evolution of the largest
scales of motion in the two-dimensional free shear layer, they
have been less successful in elucidating the dynamical
mechanisms which might produce eddy structures on a finer
scale. For this purpose it seems necessary to consider a
finite and "almost-continuous" distribution of vorticity while
simultaneously retaining the mesh free advantages of the
vortex techniques. For an inviscid fluid, the simplest and
most convenient initial distribution of vorticity is the
"generalized step-function" or "piecewise-continuous"
distribution where there are several finite—area regions each
containing fluid with finite and uniform vorticity. This
distribution is "almost—-continuous” in the sense that it
maintains simple step-discontinuities only on a finite number
of curves (contours) in the (x, y)-plane. When the flow is
cylindrically-symmetric, the evolution of the vortical regions
is completely specified by the motions of the bounding
contours. This is the essence of the Contour-Dynamic
technique which is formulated in the next chapter.
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3.0 CONTOUR DYNAMICS FOR FLUID FLOW

The Contour-Dynamic (CD) technique for the numerical
solution of the two-dimensional, inviscid Euler equations for
an incompressible fluid (2.16), (2.21) was introduced by
Zabusky, Hughes & Roberts (1979) as a modification of the
"water-bag" technique used by Berk & Roberts (1970) for
simulations of a one-dimensional phase-space, ideal
incompressible fluid. The term "water-bag" arises from the
nature of the flow evolution. The regions of uniform
vorticity evolve as an incompressible fluid in (x, y)-space
similar to a blob of water in a perfectly elastic container
whose sides are formed by extending the bounding contours in

the z-direction.

It is interesting to note the analogy between the vortex
flows and the flow of a phase-space fluid (Berk, Nielsen &
Roberts 1970). The two-dimensional vorticity equation in
physical (x, y)-space is the same as the one-dimensional
Vlasov equation for a collisionless plasma in phase (x, Vv)-
space. The fluid vorticity is equivalent to the plasma
distribution function and the vortical (action-at-a-distance)
interactions are analogous to the long range nonlinear

Coulombic interactions of the plasma.

In CD, the initial vorticity field is specified as a
piecewise-constant distribution or generalized step-function
(Calder & Laframboise 1986). We consider M regions R.:, J=1..M
of uniform vorticity w:, j=1..M embedded in an unbounded
region R, of irrotational flow (w,=0) . The Rj j=1..M are
bounded by contours Cj delineating the vorticity
discontinuities in this piecewise-constant distribution.
Figure 3.1 shows a cylindrically-symmetric vorticity
distribution (i.e. independent of the z-coordinate)

o = o, (x) y, t) with M = 5, describing two separate FAVRs.
The evolution of vorticity field is still governed by the
vorticity transport equation (2.15) which, for a purely two-
dimensional flow, reduces to Helmholtz’s theorem (2.16). This

states that fluid particles maintain their vorticity and, when



29

Rg» wg =0

Figure 3.1 :

X
:

Definion sketch for the Contour—Dynamic formulation.
There are two FAVRs consisting of a total of 5 constant
vorticity regions Rl"'RS embedded in an otherwise
irrotational flow. The contours Cl"‘CS delineate the

discontinuities in the vorticity field.
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combined with a continuous velocity field, ensures that
particles initially constituting the contours Cj will always
be part of the Cj. This means that, to fully describe the
evolution of the uniform-vorticity regions R., and therefore
of the entire flow, we only need to follow the motions of the

bounding contours.

The CD method, in principle, provides an accurate
solution to the Euler equations (for a piecewise-constant o,
field) and retains the mesh free advantages of the vortex
methods discussed in section 2.3. When compared with the
point-vortex or CIC methods, the reduction in dimensionality
inherent in the CD method has the advantage of lower computer
storage and processing-time requirements for defining the

fine-scale motions of FAVRs (at least for moderate times).

CD as an evolutionary technique has been used by Zabusky
et al (1979) to study the large surface deformations of two
equal, like-signed FAVRs in close proximity. The aim of this
study was to elucidate the influence of these deformations on
the coalescence phenomena. This flow configuration was
previously studied by Christiansen (1973) using the CIC method
and will be further discussed in chapter 10 of this thesis.
Pullin (1981) used a periodic CD formulation (in terms of
complex variables) to study the large-scale motions of a two-—
dimensional vortex layer near a wall. More recently,
Pozrikidis & Higdon (1986) used a periodic formulation to
investigate the roll-up of a two-dimensional temporal shear
layer. They examined the effect of initial layer thickness
and perturbation amplitude upon the final state of the rolled-
up layer.

CD has also been used to obtain steady state vorticity
configurations with complex-shaped bounding contours. For
example, there are the V-states (e.g., Deem & Zabusky 1978;
Wu, Overman & Zabusky 1984) which are uniformly rotating (or
translating, Pierrehumbert 1980) solutions to the two-
dimensional Euler equations. The simplest of these are

finite—area generalizations of the pair of equal (or opposite



signed) point-vortices. Dritschel (1985) has studied the more
general problem of several FAVRs whose centroids are located
at the vertices of a regular polygon. Saffman & Szeto (1980)
used a formulation for periodic vorticity distributions to
obtain shapes of the FAVRs constituting a linear array of
vortices with like circulation. A periodic street of vortices
with alternating circulation was studied by Saffman &

Schatzman (1981, 1982) as a model of the Karman vortex Street.

To date most simulations have used uniform vorticity
(M = 1) distributions. However, multiple nested contours were
utilized by Jacobs and Pullin [2] and in the application
section of this thesis. Recently, an equivalent "multiple-
water-bag" technique for plasma simulation has been presented
by Calder & Laframboise (1986). Various strategies for
extending available simulation times have been suggested by
other workers and are discussed in section 5.3 and appendix 2.
These include (i) contour surgery to remove features of
negligible dynamical significance (Dritschel 1986a) (ii)
inclusion of model dissipative terms such as the tangential
regularization of Overman & Zabusky (1983) and (iii)
desingularization of the equations of motion for the contours

as Krasny (1986) has done for the vortex sheet problem.

In the next section we describe a formulation of the CD
algorithm for the nonlinear evolution of a single two-
dimensional FAVR with piecewise-constant vorticity
distribution delineated by a set of nested contours. After
describing the CD formulation for purely two-dimensional
flows, we add the three-dimensional effect of vortex
stretching to produce a quasi-three-dimensional simulation
technique. This formulation considers the special case of an
external three-dimensional plane strain field superimposed
upon the motions of the cylindrically-symmetric vorticity
distribution. The effect on the vorticity transport equation
(2.15) is to make the term (®.V)u nonzero and, by aligning the
extensional axis of the strain with the vortex lines, we
produce a vorticity amplification with no reorientation. In
some recent turbulence models (see e.g. Lundgren 1982; Perry &
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Chong 1982; Corcos & Lin 1984) this local strain is assumed to
arise from the average motions of the surrounding three-

dimensional flow or larger-scale motions.

3.1 Contour Dynamics for Two-Dimensional Flows

The formulation may proceed by considering an initial

vorticity field with only one component of vorticity

0 =0,(x y, t=0) k , (3.1)

with an associated two-dimensional velocity field

u=Vv,i+v,3 , (3.2)

where (i, j, k) are the unit vectors along the cartesian axes.
Using V.u = 0 for an incompressible fluid and ® = V X u it
follows that

av ov

2y X - (3.3a)
ox oy
oV v
0, = — - =X . (3.3b)
o0x oy

Hence, Vg and Vy may be derived kinematically from a
cylindrically-symmetric vorticity field by solution of the
appropriate Poisson equation (2.21). The evolution of the
vorticity field must satisfy the vorticity transport equation
(2.15) which for a purely two-dimensional flow reduces to

(2.16)

D(DZ

= 0 . (2.16)

Dt

We will now model an initial nonuniform vorticity field

in (3.1) by a piecewise-constant distribution defined as
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@, (0) = 0 in Ry (t=0)

e
&
Il

const. in R: (£t=0) ’

J
=1 ... M.

for a single isolated FAVR. From this point we drop the z-
subscript and refer to the scalar vorticity as ®w. In equation
(3.4), Rj(O) is an initial domain of the (x, y)-plane bounded
by counter—-clockwise curves (contours) Cj(O) and Cj+l(0), J =
1...M while R, (0) is an infinite domain containing
irrotational fluid. Figure 3.2 shows a single FAVR with
piecewise—constant vorticity delineated by a set of nested
counter—clockwise running contours Cj counting j =1, 2 from
the outermost contour inwards. The innermost region (here Ry)

is simply connected hence, for M regions, there is no CM+1 -

The velocity field may be decomposed as a sum of a
rotational component and the gradient of a cylindrically-
symmetric velocity potential ®. Consider the single uniform-
vorticity FAVR in figure 3.3. The full velocity field is
given by

u = Vo, in Ry ’

(3.5)

The velocity jump across the contour C, due to the rotational
flow field is

(u, - iuy)r,l = (uy - iuy)r,O = -0y (3.6)
where u, and u, are x- and y-components respectively of the
velocity field, i2 = -1 and the subscript r refers to the

rotational component. Since we require the full velocity
field to be continuous, this discontinuity must be cancelled
by an equal but opposite discontunuity in V® produced by a
distribution of singularities g({’) around C,. Here

€ = x + 1y is the complex coordinate on C; in the (x, y)-
plane. The irrotational velocity may then be written as



Figure 3.2 : A single nonuniform vorticity FAVR consisting of two
nested regions (R1 and RZ) of uniform-vorticity fluid.
These regions are bounded by contours C1 and 02 but,
with the innermost region (R2) being simply connected,
there is no C3.

z'(e) = x(e) + iy(e)

Figure 3.3 : A single uniform-vorticity FAVR embedded in an otherwise
irrotational flow field. The velocity field within the
contour C1 is rotational. The point Z is any general
point on the z-plane while the contour is defined by z'(e)
where e is a parameter that varies monotonically around
the contour.
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aw 1 1
(u, = iuy) s = — = — Qg(l’) —— d¢’ (3.7)
* YRR 4n omi A

€1

where primed quantities are integration variables around Cq-
Note that, in equation (3.7), the field point Z = X + iY may
be in either R; or Ry while {’ is a point on the contour. The
appropriate form of g({’) may be obtained by using the Plemel]j
formulae (Milne-Thomson §5.596, 1968) which states that the
jump in dW/dZ as Z crosses Cq is

aw

dz

aw

21 dz

= .—.g(C) , (3.8)

-84

where {q and oy are points on the R, and R; sides of Cq
respectively. Adding equation (3.6) to (3.8), and setting the
total velocity jump to zero gives

g(g') = -opy’ . (3.9)

Hence, the total velocity field is

-0, 1
u, - iu, = — y! —— d{’ - Hoqy ’ (3.10)
2ni Z - ¢’

C1
where H = 1 if Z is within Cq and H = 0 otherwise. Appendix 1
outlines a derivation of equation (3.10) using Green’s theorem
and shows that the velocity field induced by the FAVR tends to
that of a point-vortex as Z becomes large. The integral in
equation (3.10) may be decomposed as

1
= 4;(Y -y'") — d{’ + 2riYH . (3.11)
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The second integral on the left side of equation (3.11) can be
evaluated using residues and when substituted into equation

(3.10) produces an expression for the velocity,

u, - iuy = dag’ , (3.12)
2wi (z - ¢")

Cq

which is wvalid both inside, outside and on Cq-

Equation (3.12) may be generalized to evaluate the

velocity due to a vortex with domains R:, j = 1...M, of

j,
pilecewise—constant vorticity wj bounded by nested contours Cj
as seen in figure 3.2. For Cj, the distribution of

singularities equivalent to that in equation (3.9) is

g(g’) = ~(og — o5_1) v, (3.13)

giving a velocity field

1 % [ (Y - y") ‘ 5
u, — 1iu., = A® —— dac¢’ ’ (3.14)
X Y 2ti m=1 m9)(2 - ¢
Cn

where Aw, = o, - ®, 1 and the summation is over all nested
contours in each FAVR.

The continuous velocity field of equation (3.14) and the
Helmholtz theorem (2.16) imply that particles on the bounding
contours C. maintain their identity for all time. Identifying

J

the velocity de*/dt (* = conjugate) of a material point on Cj
with the Eulerian velocity (3.14) we obtain the equation for

the evolution of Cj as

vy = Y')
o)

agy’ , (3.15)

J M [
— = : § Aoy, 9}
" C

m

Note that equation (3.15) is a generic equation for
isolated vortex regions and is fully equivalent to the
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inviscid Euler equations in two dimensions expressed as an
integro-differential equation governing an initial value
problem. Particular solutions are obtained numerically (see
chapter 4) because the governing equation (3.15) is nonlinear.

3.2 Spatially Periodic Vorticity Configurations

Having discussed isolated vortex regions, we now extend
the CD formulation to include the interaction of many vortex
regions by considering vorticity configurations which are
periodic in the x-direction. Figure 3.4a illustrates a
vorticity distribution consisting of an infinite x-wise
periodic array of identical FAVRs with centroids located at
X =nk, n = —e,,.0...0., Since the configuration is unaffected
by a translation of the coordinate system #nA in the x-
direction, we need consider the evolution of only one FAVR.
In the limit of this distribution becoming a "continuous”
vortex layer, the contours may be defined as shown in figure
3.4b. To calculate the evolution of the layer, only the
evolution of the contours C (1) and C(3) need be followed as
c(2) and c{?) form an arbitary boundary between adjacent
wavelengths. Note that all wavelengths are constrained to be
translated images of the contours in -A/2 < x < A/2.

Although only uniform vorticity is considered in figures
3.4a and 3.4b, a nonuniform distribution may be introduced and
defined via a set of nested contours. For the discrete FAVR
array, the Cj take the same form as those in the isolated FAVR
case shown in figure 3.1 but, for the periodic layer, they
will have the configuration shown in figure 3.5 where a single
period of the layer is defined as two regions Ry and R,. The
contours separating adjacent wavelengths of the layer (i.e.,
C2(4) and C1(4)) coincide along the length of the inner

contour (C2(4)).

The construction of the Eulerian velocity field proceeds
along the same lines as that in section 3.1 but the array of
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e -

Figure 3.4a : A periodic array of discrete FAVRs. The array extends

to x = *o with wavelength A. The evolution of only one
contour, Cl’ needs to be computed as the other elements

of the array are constrained to be translated images of
this FAVR.

—_

/
/

e >

Figure 3.4b : A section of a uniform—vorticity shear layer. The

contour C1 bounding one period, Rl’ of the layer is

broken into segments Cgl), ng), C§3), and C§4).

Segments (2) and (4) delineate the boundaries between
adjacent wavelengths of the layer.
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singularities, with distribution g({’) along one period,
produces a complex flow potential for the rotational part of
the velocity field

1 oo

W(Z) = — g({’) ¥ 1n(Z - £’ + nd) . (3.16)
21ti N=—oo

This summation converges to

1 g
W(z) = — g(f’) 1n { sin {—(Z - C')}} ’ (3.17)
2ni A
as shown in Milne-Thomson §13.71 (1968). Using this complex

potential, and following the arguments of section 3.1, the
induced velocity field becomes

L d e
u, - iu, = Y Aw (Y - y") cot| — (2 = ¢') | 4¢' ,
x Y 2A1i m=1 m A
C

m (3.18)

where Awm = O — Op 1, the summation is over all nested

m
contours and, for the vortex layer, Cm = Cm(l) + Cm(3).

Equation (3.18) is the periodic distribution equivalent of
(3.14) and the equivalent CD equation

*

dg. 1 M

i
J
—_— = Y A® 4;(y- - vy.") cot{ — (L. - € ’)] dag..’
dt 20 m=1 J A " n
C

n (3.19)

follows by analogy.

3.3 Vortex Stretching and Contour Dynamics

We will now develop a flow model, in which a three-
dimensional strain is superimposed upon a cylindrically-
symmetric vortex flow. This may be used to study the effect
of strain-induced stretching on the nonlinear self-interaction
of the vorticity field (Jacobs & Pullin [11]).
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Figure 3.5 :

One wavelength of a nonuniform vorticity shear layer
consisting of two nested uniform-vorticity regions, R1

and RZ' The closed contours C1 and C2 have been divided
into segments superscripted (1) ... (4). Segments (1) and
(3) define the layer shape while segments (2) and (4)
delineate the arbitary boundaries between adjacent
wavelengths of the layer. Segments (2) and (4) need not

be vertical straight lines as shown here. Although

(2)
2
and Cga) actually coincide with C%z) and C&A) respectively.

they are shown to be separate for clarity, segments C



41

The initial vorticity field is that defined in equation
(3.1)

Z(Xl y, t=0) E ’ (3.19)

but is now embedded in an irrotational strain field

ug = -B(t) x 1+ [B(t) - y()]l y 3+ v() zk, (3.20)

where B (t) and y(t) are arbitary strain rates which are known
functions of time. Positive y(t) will stretch the vorticity
in the z-direction. This is illustrated in figure 3.6 where
the velocity field of the stretching strain is represented by
four streamline segments. We shall refer to 3 special cases
of interest

(1) plane two-dimensional strain y(t) = 0,
(ii) plane three-dimensional stretching strain
B(t) = 0, y(t) > 0, and
(iii) pure axisymmetric stretching strain B(t) = y(t)/2.

The full velocity field is given by

u=u, i+ Uy Jjt+tu, k . (3.21)
where

u, = -B(t) x + Ve (%, y, t) ’ (3.22a)

uy, = [B(t) = v(B)] v + Vy(X/ yr t) ’ (3.22Db)

u, = y(t) z . (3.22c¢)

Using V.u = 0 for an incompressible fluid, and defining
vorticity as ® = V x u, we again obtain the relations (3.3
a,b). Hence, vV, and Vy may be derived kinematically from the
vorticity field by solving the Poisson equation

V¥ = —@ , (2.21)
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Figure 3.6 :

Sectional view of a cylindrically-symmetric FAVR
consisting of two regions (Rl and RZ) of uniform
vorticity embedded in a stretching strain field.
The four curved streamlines in the (y, z)-plane
represent the stretching component of the imposed

plane strain field.
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The effect of the stretching strain field becomes evident
when the components for the vorticity field (3.1) and the
total velocity field (3.20) are substituted into the vorticity
transport equation (3.15) with Re = « to give

— = (®.V)u , (3.23a)

which then reduces to

Do,
— = 7(t) o, . (3.23b)
Dt

The solution to equation (3.23b) along particle paths x(t),

y(t) is
o, [x(t),y(t),t] = o,[x(0),y(0),0] explQ(t)] , (3.24a)
t
Q(t) = J Yy(t’) dt’ ’ (3.24Db)

0

and mz[x(O),y(O),O] is the initial wvorticity. Equations
(3.24a, b) represent the intensification of particle vorticity
(for y(t) > 0) by the z-component of the applied strain field
(3.20). Equations (3.23b)-(3.24) show that the vortex-—
dynamics preserves the initially piecewise—-constant property
of the vorticity field so that, in the mapping Cj(O)-+ Cj(t),
the C. retain their identity as the material curves that

J
delineate the vorticity discontinuities.

Following the arguments of section 3.1, we then obtain a
CD formulation for the evolution of the Cj bounding piecewise-
constant regions of vorticity (3.4) embedded in the three-

dimensional strain field (3.20) as



b

acj
—= = -B(t) Xy + 1 [y(t) - B(R)] Y5
ot
exp[Q(t)] M Yy T ¥p'
+ ——————— X Aoy (0) —— d{,’ /
2 i m=1 s = 8y
c 3
m
j=1...M , (3.25)

The equivalent equation governing the evolution of
stretched, x-periodic vorticity distributions (for which the

two-dimensional form is equation (3.19)) may be written as

acj*
— = 1 Y(t)Yj
ot

exp[Q(t)] M
+ —_— Y Awm(O)

(ys = yvm') cot[— (€2 - € ’)}dC "y
20 m=1 J m J m n

=1 ...M . (3.26)

Note that equation (3.26) contains only a plane stretching

strain (i.e., special case (ii) B = 0).

As with the purely two-dimensional formulation, the
"stretching” model does not allow the creation of vorticity.
Hence, the circulation Qj of region R: is an invariant of the

J

flow and, from (3.4) and (3.24), the area Aj enclosed by Cj

and Cj+1 varies as

A.(t) = Aj(O) exp[-Q(t)] . (3.27)

This "stretching” formulation is not unique. Lundgren
(1982) has shown that the initial value problem (3.25) may be
transformed into an equivalent two-dimensional flow with the

change of wvariables

T
T = J exp[Q(t’)] dt’ ’ (3.28a)
0
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6 (T) = exp[Q(t(T))/2] L(t(T)) ' (3.28Db)

in equation (3.25) to give

an
— = -b(T) exp[-Q(t(T))] 05
ot
1 M le - Tlm,
+— X Aoy (0) ———— do ' (3.29)
2ri m=1 oy - on'
Cm
where 6 = ¢ + im and b(T) = B(t(T)) — y(£t(T))/2. This is a

strictly two-dimensional flow in the o-plane (with time
variable T), subject to a plane two-dimensional strain with
principal axes of strain along the &€ and n axes. The physics
of the flow is unchanged so that, for the same initial
conditions, the vortex boundary in ¢ at time T has the same
shape as the corresponding boundary in { at time t but is
scaled by the factor exp[Q(t)/2]. For the special case of
axisymmetric strain, the equivalent two-dimensional flow is
unstrained, that is b(T) = 0.

Thus, as an alternative to (3.25), we could use (3.28) to
add the effect of stretching on the flow evolution governed by
(3.29). There is no computational advantage to be obtained by
following this path hence we develop the numerical
implementation using equations (3.25) and (3.26) for single
FAVRs and periodic vorticity distributions respectively. A
comparison of results for a test case computed using both

equations (3.25) and (3.29) is presented in section 5.1.
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4.0 NUMERICAL IMPLEMENTATION

As discussed in chapter 2, vortex dynamics is an
extremely nonlinear problem and, to date, only a few
nontrivial analytic solutions to two-dimensional vortex flows
are known (e.g. the nondeforming, rotating Kirchoff vortex
discussed in Lamb, §159 (1932). One general procedure for
obtaining timewise solutions to the CD equations (3.25) and
(3.26) is to specify the initial vorticity field and then
numerically calculate the subsequent evolution in discrete
time—-steps. In this chapter, we outline the numerical
procedure that we initially applied to equation (3.25) to
obtain solutions for single (and paired) isolated vortex
regions and, later, to equation (3.26) to obtain solutions for
spatially periodic arrays and "continuous"™ distributions such
as the free shear layer. Our aim was to produce a robust and
accurate code but the omission of viscous dissipation (in
order to directly calculate the the evolution problem in the
limit Re = o) may lead to an ill-posed or pathologically
unstable evolutionary problem. Manifestations of this
instability include the formation of cusps and slender
filaments on the bounding contours which involve a large

computing cost to resolve accurately.

Consider a single FAVR, as shown in figure 4.1, with
strain rates y(t) = vy, and B(t) = B, as constants. This FAVR
is comprised of M = 2 regions R:, j = 1, 2 with initial areas
Aj(O), j =1, 2, and bounding contours C., Jj =1, 2. All
physical quantities in equation (3.23) are made dimensionless
against characteristic length and time-scales. For isolated
FAVRs, we choose [Al(O)]l/2 and [A4(0)/T'] to be our
characteristic length and time respectively. This is
equivalent to putting Aq(0) =1 and I' =1 (i.e., unit area
enclosed by the outer contour and unit circulation of the
FAVR) for the computation.

The initial conditions refer to the geometric shapes of
the Cj(O) and the values of the wj(O). For each particular

vortex configuration to be considered in chapters 7-10, the
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| B

Figure 4.1 : A single FAVR with M = 2. The contours Cj are defined
by sets of nodes joined by line segments. To close
the contour, node O is set equal to node N. The node

index (k) progresses anticlockwise around the contours.

\
Y\
\
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N}

initial conditions will be defined at the beginning of the
appropriate results section. The initial vorticity profile of
the FAVR may be either a uniform distribution (i.e. M = 1) or
may be a piecwise-constant profile with nested contours

(M > 1). Particular values for wj(O) are chosen to give

IlT| = 1 in each discrete FAVR or in one period of the
continuous shear layer.

There are four major sections to the implementation of
the CD equations
(1) Each continuous contour is discretized by defining it as
a set of nodes connected by line—segments; This produces a
finite set of ordinary differential equations (ODEs) suitable
for a numerical implementation.
(ii) The line integrals, now over each small segment, are
evaluated either analytically or by numerical quadrature and
are then summed to approximate the integrals on the right hand
sides of equations (3.25) and (3.26).
(iii) Having evaluated the right hand side of the CD equation,
the solution is stepped forward in time using a standard
technique for first order ODEs.
(iv) The node set is (occasionally) updated to ensure that the

contour description remains adequate.

The computer codes used in the present work (available in
Jacobs [5]) evolved as refinements were made to the numerical
implementations of the procedures mentioned in subsections
(i)—(iv). The essential features of the major program
versions are summarized in table 4.1 and described more fully
in the following sections. As we did not have sufficient
computing resources to compute all solutions with the most up-
to-date implementation, we will give the "code-version" (table

4.1) for each set of results where appropriate.

4.1 Discretization of the Contours

To produce a finite description, we first discretize the

contours Cj, j = 1...M, by defining each contour by a set of
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of the major code implementations.

Implementation

Features

t-plane formulation (isolated FAVRs)
straight line interpolating segments

analytic integration

g-plane formulation (x-periodic vorticity)
parabolic interpolating segments

numerical quadrature only (no analytic patch)

¢-plane formulation (x-periodic vorticity)
parabolic interpolating segments

numerical quadrature plus analytic patch

C-plane formulation (x-periodic vorticity)
parabolic interpolating segments

numerical quadrature only (no analytic patch)
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Nj nodes (Cj)k, k = O...Nj, (Cj)o = (Cj)N, joined by
interpolating line segments. There are NSEGj segments
describing C. with a local polynomial, interpolated over

J
either two or three nodes, defining each segment. The
velocities of the (Cj)k are then evaluated by .summing the
contributions of each interpolated segment to the integral in
the governing equation (3.23), thus giving a set of 2N
M

N':ZNj(t) ’ (4.1)
j=1

ordinary differential equations (ODEs) for the node
coordinates, ((x4)y, (v45) ) -

Discretizing the Cj and replacing the integral on the

right hand side of equation (3.25) as a summation of integrals

over the NSEG. individual segments gives the governing

J
equation for the node coordinates as
il | s B (%) L Ty, - Byl (vs)
— -1 —_— = - Xl T 01 ¥y — Y4)x
ldth at Jk ° °
exp (Y, t) M
+ — by Awm(O)
2ni m =1

These segments of the Cj are defined locally by interpolating
curves on node subsets with parameter e. For the simulations
reported here, we have used either linear linesegments defined
by two end points or parabolic curve segments defined over
three sequential nodes. Other approaches to the interpolation
include circular arcs fitted to subsets of three nodes

(Pozrikidis & Higdon 1986) and cubic-splines (Dritschel
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1986a). The aim of the higher order methods is to reduce the
number of nodes required to adequately resolve the contour.
This is an important point as the CD method requires O(N2)
arithmetic operations per time-step (for large N). Adequate
resolution is required for conservation of the flow invariants
such as the total circulation and also for maintaining contour
flexibility. We found that the Cj were inflexible if the
segment sizes were significantly larger than the length-scales
associated with the velocity variations. Dritschel (1986a)
claims that there is also an advantage in having a description
(e.g. cubic-spline) that does not introduce discontinuities in
the contour curvature. We note that both our linear and
parabolic segments do so.

4.2 Integration for Straight Line Segments

The integrand over each segment in equation (4.1) is
always bounded but is not well behaved when (Cj)k approaches
Cp, (see appendix 3). A fixed rule numerical quadrature over
each segment would be relatively straightforward and fast over
well behaved.sections of the contour but, would not cope with
the integrand behaviour for small nonzero values of |(§j)k -

(Cm)’|. Early CD simulations (e.g. Zabusky et al 1979;
Pullin 1981) used straight line segments as the integral over
each segment could be evaluated in closed form fairly easily.
For our isolated vortex and vortex—coalescence simulations, we
have chosen to use straight-line segments for the same
reasons. The C.: become closed polygons and the governing

J
equations become a set of ODEs

( dxj ] ' [ dyj Ba(xs)y + 1 [ B~1 (y=2)
— -1 — D X2 1 [y, — VDR
N e o = Pol 1V
exp(yot) M NSEGm
+ 2 Ao, (0) hX
2T m=1 s =1
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¢ Ypn+1 = Yplp )

( (gl )k - (9'")1'\)

= Ay = () )+
{ ’ e ¢ Cpnt1 = Cplp

* { ln{G*((Cj)k - C) )t —

In{G (6 = )} | + [Wpny1 — Yp)p! } } ,
(4.3a)

where
lim {....} = [ (Yppe1 - Yp)p ] ' (4.3b)

(Cj)k'* (Cm)n
(Cj)k'é (Cm) n+1
and

[ (&) - (§) ]
G* _ m’ n+1 m’n ) (4.3¢)
| (cm)n+1 - (Qm)n |

Nodes (Cm)n and (Cm)n+1 are the end points of segment s and
* = complex conjugate. Figure 4.2 shows a single segment on a

section of the contour C, and the velocity point (Cj)k on

contour Cj. To reduce computing effort, we evaluate the
complex logarithms as

In (6" ((Ly) = Cplpsp)} = 10 (G (L, = (L))}
r
= 1n n+l + 16 sign(A) (4.4a)
n
0 = arccos (Q) ’ (4.4Db)

where
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Figure 4.2 : Straight line interpolation over segment (Cm)n'+ (;m)n+1

on contour Cm. The velocity point is ((;j)k on contour Cj'
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Q = {rnz + rn+12 - rsz} / (2r, rh4q) ' (4.5a)
rpo = L@ - Cpp | , (4.5Db)
Tne1 = 1G9k = Cp)pny | , (4.5¢)
re = | Cp+1 - Epp | , (4.5d)
A = Im {[(§5)y = (Cp)pl. condgl(Cp) ey = (Cp)plt
(4.5e)

and evaluate the real logarithm and angle using appropriate

expansions
&
Tn+1 X
1n = — (12 + y(-6 + x(4 - 3))) , (4.6a)
r, 12
0 =~ (1 + Q72/6) , (4.6Db)
X = (rpy1 - ry) / rp , (4.6¢)
Q = (1-0)1/2 ’ (4.6d)
for large |(Cj)k - (§y)pl. Care must be exercised as, with

large NSEG, the accumulation of round-off error for each

segment may become significant.

Alternatively, we could have used parabolic interpolating
segments and a closed form expression as shown in appendix 3
but these are more complex than their linear-segment
equivalents. In yet another variation, Dritschel (1986a) used
an expansion for small curvature to obtain expressions for his

cubic-spline interpolation.

4.3 Implementation for X-Periodic Vorticity Distributions

We now consider a vorticity distribution which is
periodic in the x-direction either as an array of FAVRs or as
a continuous shear layer. Physical quantities are
nondimensionalized by setting one period (i.e. the
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computational domain) to 2x and selecting the initial wvalues
of the vorticity to give |I'| = 1 in one period of the shear
layer or within one discrete FAVR in the array. The node set
s k= 0...NL(E),

J J
DN (i.e., closed contours) for the

J
array of discrete FAVRs and (7?)0 =
) and Cj(3), respectively, of

for each Cj is again specified as ({
J=1...M, with (yj)O = (v
(Yj)N + A (i.e., open
contours) for the contours Cj(

the vortex layer.

The equations of motion for the node coordinates (3.26)

become
a5
— = iy, (ya4)
at o) 7’k
exp(yot) M NSEGp,
+ —_— Y Awm(O) >
4ri m=1 s=1
J ; | 5 e |
[(ys)y — yp'1 cot| — ((€2)y — C.7) de’ ’
. 7'k m 5 j’k m de’
k=1...N5(0), J=1...M (4.7a)

where the limit of the integrand is

Bym’
lim [integrand] = , (4.7b)

Cmﬁe(cj)k de’

For simplicity, we have only included the (y, z)-component of
the three-dimensional plane strain.

In this x-periodic implementation, we choose the

interpolating segments to be parabolic curves defined over

subsets of three adjacent nodes [({,),—1/ (C)pnr (§)p+1ls
such that
¢ (e) = 2e? + Be + C , (4.8a)

Ce=0) = (p (4.8b)
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€ (e=-1)
€ (e=1)

() a1 : (4.8d)

Figure 4.3 shows a typical segment with

(Cm)n—l = 0.5 - 1 , (4.9a)
(Sm) n = 1.0 , (4.9b)
(Cp) ey = 1.0 + 2.0 : (4.9c)

When we selected the type of interpolation, we were concerned
with adequately describing the contour with fewer nodes than
was required for linear interpolation. Although the curvature
along the segment is continuous and bounded, there are
discontinuities at segment boundaries. Dritschel (1986a)
considers this to be a disadvantage as it introduces cusps

and, possibly, difficult contour behaviour at later times.

The intergrals over the interpolating segments can no
longer be obtained in closed form, so we have used a numerical
quadrature combined with an "analytic-patch" procedure
designed to improve the accuracy in regions where the
integrand exhibits difficult behaviour. In particular, we use

a 4-point Gauss-Legendre quadrature

3
1 14 4
I] T(e’)der = I Ilej) wy , (4.10)

where the w; are given in table 25.4 of Abramowitz & Stegun
(1965) . This quadrature had the added feature of eliminating
the need to handle the limit (4.7b) where the velocity point
coincides with one of the segment nodes (4.8). The method
also provided smoother solution contours than Simpson’s rule
over the same contour-discretization but at the cost of a

slight increase in computer processing-time.

The computation of the complex cotangent in equation
(4.7a) O(N2) times per subroutine call is very expensive so it
is decomposed into three simpler arithmetic operations using
the transformed variable
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by
2r fc(e=1)
Ot
—_—l ] .} |~X
2 -1 £ (e=0)
T (e
2L

Figure 4.3 : A single parabolic segment Z(e) = Ae2 + Be + C
defined by the subset of three nodes
L-1) = () _,=05-i
z(0) (c), =1.0 ,
(1) (gm) = 1.0 + 2.01 .

n+l
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£ = exp(-i{) . (4.11)

The cotangent term can then be expressed

Geme] - s [
cot — (¢ - C¢") = -1 _— , (4.12)
2 £ - ¢

with the relatively expensive operation of taking the complex
exponential in equation (4.11) requiring only O(N) operations
(as it is done only once at the beginning of the velocity
subroutine) .

For the simulation of an array of stretched vortices of
alternating sign (the secondary vortices of the CLS heirachy,
see chapter 8), we performed the whole calculation in the
transformed &-plane. This had the advantages that translating
(convecting) points always stayed in the computational domain
and that the open contours of the shear layer, Cj(l) & Cj(3)
in the {-plane mapped to the closed contours, in the &-plane.
Figure 4.4 shows two FAVRs of the periodic array (a) in the (-
plane and (b) in the &-plane where contours Cl' and Cl map to
Disand D; respectively. Unfortunately, the distortion at
large |y| forced the node-adjustment procedure to be done in
the {-plane thus requiring the transformation (4.11) to be
performed at frequent intervals. The equations of motion in
the &-plane are

-d(06=) i d(Rz)
Ik ko iy, In (R4)
dt (Ry)  dt
exp(yot) M
+———— 3 A, (0) [1n(Ry) = lnRp’]
Awi m=1 Dm
2(&2) 1 dg’
1k } T e’ } ,
(&) = &y’ g . de’
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- (a)
z-plane
X

€

(b)

y
i g&-plane
Dl' D
w*

Effect of the transformation & = exp(-iZ) on members of

—

the x-periodic FAVR array. Contours C1 and Cl' in the
¢-plane (a) map to contours D1 and Dl' respectively in
the £-plane (b). The Xs mark corresponding material

points in each plane.
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where & = R eie and the integral is now around the transformed
contour, D, . Although the (y - y’) term has now been
transformed to the more complex (ln R - 1n R’), the logarithms
need only be calculated only once per cell (on entry to the

velocity subroutine).

As mentioned in section 4.2 and further discussed in
appendix 3, the integrand behaves in a weakly singular manner
over segments that approach the velocity point, (Cj)k,
closely. Dritschel (figure 13, 1986b) illustrated the
numerical instability that is related to the inaccurate
evaluation of the velocities via a numerical quadrature.
Increasing the order of the quadrature delayed the appearance
of the instability but did not eliminate it. In appendix 3 we
show that the numerical quadrature (4.10) provides an
inaccurate estimate of the full integral when contours
approach closely. A method for overcoming this problem is
also described which we shall refer to as the "analytic
patch".

For the implementation of this "analytic-patch", we chose
to work with the (simpler) {-plane formulation. We decomposed
the integrand into a simple part, that varied rapidly but
could be integrated analytically, and a slowly varying (but
more complex) part that could be accurately integrated with
the fixed rule quadrature (4.10). The complexity of
implementation for numerical quadrature is fairly insensitive
to the style of interpolation and function complexity. The
full integrand in (4.7a) has the form

1 dg’
Ttotal = (v —v¥") cot{g (¢ - C’)}

’ (4.14)
de’

which, for small |{ - {’|, may be expanded. Retaining only
first order terms, this integrand can be approximated by

(y - y’") dg’ (4. 15)
I = 2 ) ; )
fast - ¢ de’
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For segments on which the full integrand (4.14) is well
behaved (i.e. slowly varying), we numerically integrate Itotal
but, on segments where our fixed quadrature rule cannot cope

with the rapid variations of this integrand, we integrate

{ {1@ . } (y—y')}d@'
I = (y —y") cot|—(§ - C")| - 2 ’
slow 5 - ) de

(4.16)

and add the analytically derived value for Ifast- This
"analytic-patch" procedure is implemented on segments for
which

min ( ch)k - Cp(es) |, 1 =0...3) < segsize , (4.17a)

segsize = “Cm)n+1 - (Cm)n| + |(§m)n - (Cm)n_l | ,(4.17b)
and (Cj)k # Cple), -1 < e <1 (i.e. (Cj)k is not part of
Cn) - A check is also made for the images of the velocity

point in the wavelengths either side of the computational
domain, (Cj)k * 2r. This criteria was derived from empirical
results contained in appendix 3. Although the check on
proximity (4.17) is fairly rough and simple, it is still too
expensive to compute each time the velocity routine is called.
We assume that the nodes do not move too far between calls to
the node-adjustment routine and so, on entry to the velocity
routine for the first time with a new set of nodes, we store
an index of the "close" segments (i.e. those that satisfy
equation 4.17) for each node. This information is stored in a
large integer "index—array". After summing the numerically
integrated contributions of each segment to the velocity of a
particular node, we then look up the "index-array" and adjust
the contribution of the "close" segments that are listed for
this node.

When the "analytic-patch” is to be used, we calculate the
value of Ifast using either two straight lines approximating
the segment (if |A| < &, € = 10 * machine precision) or the

parabolic segment. The expressions for the straight-line
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segments are very similar to those in equation (4.3) while the

expressions for the parabolic segment are

! Ifast
de = term, + coeff,.term, + coeff,.term, , (4.18a)
5 1 2 2 3 3
-1
where
term; = 2(2BI - AIB/A) ’ (4.18b)
coeff, = =-T; + [ A;T + B/2 (-B; + A{B/A)] / A , (4.18c)
term = 1In[(£2) = (L) 1 = In[(§s) = () el o
2 J'k m’'n+l J'k m’n-1 (4.18d)
coeff3 = —ZBIT + [ZAIT + B/2 (—BI + AIB/A)] B/A ’ (4.18e)

1 -B - 22 - v (-A) -B + 2A — v (-A)
term3 = — 1n - 1n
)

v (-A -B - 2A + ¥ (-A) -B + 22 + V (-A)
(4.18F)
and where
V(-A) = (B2 + aaT)1/2 , (4.189)
T = (&3 = Gy . (4.18n)

The subscript I’s indicate the imaginary part. Appendix 3
contains a derivation of these expressions along with a
description of the logic required to select the correct
branches of term, and terms.

4.4 Integration of the ODEs in Time

The ODE solver utilized was a packaged 4,5th-order Runge-
Kutta-Fehlberg routine (RKF45) from the text Forsythe, Malcolm
& Moler (1977). This routine uses 6 function evaluations per
time step to provide a 5th-order solution and takes
sufficiently small steps to maintain a user-specified error
tolerance between the 5th-order solution and an estimated 4th-
order solution (not explicitly calculated). The single-step

truncation error tolerance, €4er Was specified on entry to the
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routine and for most calculations was set to 10~ 4. Some
previous CD implementations have used low-order techniques
such as the centred-difference leap-frog strategy (see e.g.
Zabusky et al 1979; Berk & Roberts 1970) but Nakamura, Leonard
& Spalart (1982) demonstrated (in their vortex-blob
calculation of a Kirchhoff elliptic vortex) that the effective
viscosity (at a time-step At = 1072) for the lst-order Euler
method was 0(1l) whereas that for a 4th-order Runge-Kutta
method was 0(1077). Also, we found the RKF45 package
convenient as the ODE’s (4.3) were already in standard first
order form and the truncation errors were handled internally
by the package. The routine also had the advantage that it
was self-starting (hence, the occasional node adjustments,
resulting in a new set of equations did not involve much extra
work) and that it could take relatively large time-steps.
However, the 6 function evaluations per time-step made the
program computationally expensive in situations where the
routine was forced to make small steps.

4.5 Node Adjustment

During the evolution of the FAVR, the bounding contours
undergo severe local distortion. They may stretch, collapse,
form cusps (regions with extremely small radius of curvature)
or filaments (localized regions containing little
circulation). To enable the discrete contour description to
maintain a sufficiently accurate approximation to a continuous
contour, the node set must be occasionally refined (or
updated) . The frequency of updating depends on the rate of
contour evolution which, for purely two-dimensional flow, we
guess to be approximately constant and, for stretched-vortex
cases, to vary as exp(yt).

The adjustment may take the form of adding and/or
deleting nodes from the current node set (see e.g. Berk &
Roberts 1970; Pullin 1981) or may involve the parameterization
of the contour followed by the generation of a completely new
set of nodes (see e.g. Overman & Zabusky 1982; Dritschel



64

1986a) . We have chosen the addition/deletion scheme and have
refrained from using a complete or partial node
rediscretization approach as we felt that retaining some of
the original nodes maintained as true a solution to the CD
equations as possible.

Two versions of essentially the same scheme are described
in Jacobs & Pullin [1] and (more fully) in Pullin & Jacobs

[3]. Specifically, a node was inserted between (Cj)k and
(Cj)k+1 on Cj if
d. . 1
. min -
8ni = max{ min ;y — K l, Smax’ P9 Sadj], P5:| 7
P7 P8
(4.19Db)
where
dmin = max[Smin, P4] ’ (4.20a)
Spin = Mminimum distance of approach of another

contour or a "nonadjacent" section of the same

contour, (4.20Db)
aL* 3%
XK = local curvature = Im \— ——
de de? i ’ (4.20c)
Pg/ 0e 53
Smax = min [ (length of Cj)/Pl r Pyl , (4.20d)
S, g4 = min [ [(£2) - (82) b (€ e = (E)pq |1
adj 1(65) 142 3 k+1 ik Pr-1 b e

The new node was placed at e = k + 0.5 by linear interpolation
on [(Cj)k, (Cj)k+1]' Cubic interpolation was used for some
trials and, although it had higher order accuracy in regions
of low curvature-to-segment-length ratio, it was much less
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robust than the linear interpolation procedure in cusp-like
regions of the Cj where this ratio was large.

The node deletion scheme operated by deleting node (Cj)k
if

l(cj)k+1 - (Cj)kl < g,q = max [Pg, sni/Plo]
(4.21)

This simple node-deletion procedure was preferred to one
involving higher-order interpolation as it reduced the
occurrence of slender filaments containing negligible
circulation and decreased the tendency for contours to fold
back upon themselves. This type of event remains as one of
the major problems of the CD technique.

Although the emphasis of the numerical implementation is
to remain as faithful as possible to a true solution of the
Euler equations, we accept that the low-order linear
interpolation procedure for node insertion and the simple
deletion scheme are a form of smoothing. However, we attempt
to retain as many of the original nodes as possible simply by
having a very inefficient node deletion scheme and pay the
price of increased computing time. An adjustment scheme based
on complete rediscretization of the C.

J
with significantly fewer nodes (e.g. Overman & Zabusky 1982;

would probably operate

Dritschel 1986a) but introduces the possibility of suppression

of the evolving fine scales through implicit smoothing.

The behaviour of the node adjustment scheme is governed
by the empirical parameters P, - P1p. Parameters P, Py,
Py Py, determine the resolution provided by the node set
while P, - Per Ppp limit the effect of their respective
adjustment criteria. As we had to perform calculations with
limited computer resources, these parameters were chosen
(i.e., tuned to a specific application) so that no single
criterion dominated but that the coherence of the contours and
accuracy of the flow invariants was maintained. With
improvements to the numerical implementation, we were able to

relax some of the node-adjustment criteria. For example, the
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Table 4.2 : Description of node-ad justment parameters.

Parameter

Description

U v o
W N =

'y v 9 d
N O

minimum number of nodes on the contour

upper limit (absolute) on node separation

starting guess for minimum distance calculation

lower limit to calculated minimum distance

minimum distance below which a node will not be inserted
distance below which a node will be removed, regardless
minimum allowable ratio of intercontour distance over
internode distance

minimum ratio of the radius of curvature over

internode distance

maximum ratio of internode distance on adjacent segments
fraction of recommended internode distance, €47 below

which a node will be removed

Table 4.3 :

Values of node-adjustment parameters. For the secondary
vortex calculations ( 88 .), parameters P4, PS’ and P6 were

scaled with (Aj)2 so that the Cj are resolved uniformly.

Parameter Set 1 Set 2 Set 3 Set 4
P1 40.0 40.0 33.0 40.0
P2 0.11 0.11 0.15 0.15
P3 100.0 100.0 100.0 100.0
P4 0.05 0.035 0.04 0.04
P5 0.041 0.031 0.021 0.021
P6 0.02 0.015 0.01 0.01
P7 0.1 0.1 2.0 1.5
P8 3.0 4.0 6.0 6.0
P9 2.0 2.0 4.0 4.0
P10 0.4 0.4 0.333 0.333
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value of P-4 was reduced drastically with the inclusion of the
"analytic-patch" (see node-parameter sets 1 and 2) thus
providing a trade-off between complexity of velocity
calculation and numbers of nodes required. We note that the
"analytic-patch” procedure did not allow the complete removal
of the dmin/P7 constraint in equation (4.19b) as we found that
the solution accuracy was sensitive to the "contour
flexibility" (see also Dritschel 1986a). Overall, we have
achieved an empirical optimization of the node-adjustment
parameters and the CD implementation. (We do not believe that
the implementation described here represents a global maximum

in performance.)

4.6 Monitoring Solution Accuracy

Qualitative checks upon the solution accuracy were made
by monitoring the fractional error in the circulation

invariants for each uniform-vorticity region

A(Q2) = [exp(yot) A

5 (t)y - Aj(O)] / Aj(O) ’ (4.22)

J

where Aj(t) is the calculated area of the R. (t)and Yo is the

J
dimensionless strain rate. For one application (the secondary
vortices in chapter 8), the energy invariant (for y = 0) is

also monitored. The energy of the array per member (i.e. each

FAVR) is defined as

L M2

E(t) = —J r (V) 2 dy dx , (4.23)
2 J, .

vV, = 0¥/ dy , Vy = —-d¥/9dx , (4.24a,b)

where ¥ is a streamfunction satisfying the Poisson equation
(2.21). As given by Pullin & Jacobs [3], the energy (4.23)
may be written as
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1 M
E(t) = - —exp[Q(t)] X Acomj [...] ds
2 m=1 Cm
1 M
+ — exp[20(t)] = Aoy [0 (0)+@y_q (0)] JYB dx
12 m=1 Cn
(4.25a)
d(¥2/2) 1 , ¥
o] =Y — - — y% — , (4.25Db)
on 2 on

where ¥ = 0 on the line of symmetry midway between two FAVRs
(x = £A/2 in figure 8.2), s is the arc length and n is the
inward facing normal on Cm. For vy = 0, E(t) is an invariant
of the vortex evolution, but for y > 0, E(t) may be expected
to increase due to energy transfer from the imposed strain
field to the kinetic energy of the (x, y)-plane motions.

Unfortunately, A(Qj) is fairly insensitive to the fine

scale coherence of the Cj (see the end of Section 5.2.1). We
found that the most reliable way of testing the accuracy of
the method is to demonstrate convergence of the solution
contours with respect to the parameters P; - Py which
determine Nj(t). Such convergence was obtained empirically
for the vortex coalescence simulations with M = 1 and
separately for the shear layer rollup simulation, again with
M = 1. Similar demonstrations for the many contour (M > 1)
problems was expensive and difficult to obtain due to the
large wvalues of Nj(t) encountered very early in the
simulations. However, in figures 5.8 and 5.9 of section 5.2,
we show a single example of convergence for the stretched
shear layer. As the adjustment parameters are application
specific, we will provide an indication of which set of node-
parameter values was used in the respective application

sections.
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5.0 TEST CASES

The numerical implementations of the CD algorithms for
both the isolated FAVR and x-periodic vorticity distributions
were tested by comparing computed solutions with
(1) previous analytic and numeric solutions;

(1i) distinct but equivalent solutions via Lundgren’s
transformation (3.28);

(iii) (partially) independent solutions computed with
different code-versions;

(iv) solutions computed by the same code-version but having
different node resolution.

5.1 Isolated FAVRs with Stretching

The method was tested by considering the evolution of an
isolated rectilinear vortex of uniform vorticity, embedded in
the three-dimensional strain field (3.20). Analytic solutions
for this flow have been obtained by Neu (1984a,b) who has
shown that for all Yor BO ; an initial elliptical-shaped
vortex remains elliptical, thus generalizing the classical
rotating Kirchhoff vortex solution (Lamb §159, 1932) which
holds for y, = Bo = 0. Neu (1984a,b) has obtained three
coupled ODE’s

a =-a ((yq, - ﬁo)sinze + Bocosze ’ (5.1a)
b = -b ((y. - 2 in? 1
Yo By)cos“o + Bosin“e , (5.1b)
. o, exp(y,t) ab (Y,-2By) (2% + b?)
6 = - sin(206) ,
(a + b)? 2 (a2 - p2)
(5.1c)

which govern the length of the semi-major axis, a, the semi-
minor axis, b, and the angle between the semi-major axis and
the x—-axis, 0.
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Three examples have been chosen for comparison with Neu’s
solutions by selecting initial conditions which correspond to
oscillation, rotation and infinite planar—-elongation of the
ellipse for Yo = 0, BO # 0. Neu has presented his solutions
for Yy, = 0 as phase-plane plots of the ellipse aspect ratio,
a/b and the angle 6. The initial conditions for the CD
calculations were specified by selecting a point in the region
of the plot corresponding to one of the three characteristic
behaviours for Yo = 0. The stretching strain, Yo wWas then set
to a nonzero value and the vortex evolution calculated using
both equations (5.1 a-c) and the CD algorithm (4.3)
implemented as code-version A (table 4.1).

Figure 5.1(a)-(c) shows the sequence of frames from the
evolution of the three cases. The CD solution is plotted as a
solid line with the "X" marking a particular fluid particle.
Note that it moves around the contour with the rotating
ellipse appearing to the set of nodes as a periodic wave. The
analytic solution, obtained by integrating equations (5.1), is
plotted as a dashed line and, on the scale of figure 5.1, the
difference between the pairs of solutions is not discernible.
The times shown on each frame correspond to setting
®1 (0) = 1.0 rather than having unit circulation in the FAVR.
In the CD calculation, N, = 30 initially and no node insertion
or removal occurred over the test times as the node-adjustment

routine was not active.

Introducing node-adjustment with this case caused some
problems with the symmetry of the elliptical contours. It was
not simply a matter of inadequate resolution as the same
result (to within plotting accuracy) was obtained when
doubling the number of nodes, N;. The particular test case
studied had initial axes a = 1.53 and b = 0.208, combined with
stretching Yo = 0.15. Love (1893) has shown that the (purely
two-dimensional) Kirchhoff vortex is unstable to small
perturbations for a > 3b. Here, this condition was satisfied
and we found that the node-adjustment procedure introduced
perturbations to the vortex contour which subsequently grew
and destroyed the initial symmetry. The result we obtained
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(b) (c)
0 0

10-0 2:5
20-0 50

N

30-0

Evolution of isolated uniform vortices in a three-
dimensional strain field. X marks a material particle
and the times are shown on each drawing. The CD solution
is plotted as a solid line with the solution due to

Neu (1984) superimposed as a dashed line. The two
solutions are indistinguishable on the scale shown.

(a) Y, = 0.15, Bo = 0.12, (b) Y, = 0.05, Bo = -0.084,
(c) Y, = 0.05, BO -0.25



was similar to Dritschel’s (1986b) nonlinear evolution of an
ellipse with a/b = 6 combined with a two-fold symmetric
disturbance which eventually tears the ellipse into two peices
(his figure 12a). Despite this short coming of the node
adjustment routine, it appears to be adequate for simulations
where the growth rate of the (relatively large amplitude)
forced perturbation is significantly higher than that excited
by the truncation errors introduced via the insertion and
deletion nodes. This is the case for the interacting vortex
pair and the shear layer configuration.

The second test case that we used was the interaction of
a pair of equal, like-signed vortices in close proximity. The
unstretched version of this phenomena has previously been
studied by Christiansen & Zabusky (1973) using a CIC technique
and by Zabusky, Hughes & Roberts (1979) using the CD method.
It provides a thorough test of the algorithm as the contours
become severely deformed when the FAVRs approach each other
closely. We chose flow parameters (diameter d = (4/n)1/2,
centre separation, D = 1.5, 1.7, 1.92 (figures 10.3 - 10.7) to
approximately match those of Zabusky et al and found that the
results compared well. Physical quantities were scaled to
give 0 (0) = 1.0, Ai(0) = 1.0 and T = 1.0 in each FAVR. Final
solutions were computed with code-version A and node-parameter
set 4 (tables 4.1 and 4.3).

To check the sensitivity of the contour to the wvariations
in N, we repeated several simulations of the two-vortex
interaction and varied the node-adjustment parameters P, -
P1g- Figure 5.2 contains an enlarged view of two of the
solution frames from the sequence in figure 10.3b, D = 1.50,

Yy = 0.05, t =15, 17.5. 1In part b, t = 17.5, each FAVR has

N, = 435 and was indistinguishable from the same case with

N, = 324 at t = 17.5. With N, = 160 at t = 17.5 (part a), the
gross features of the vortex regions are unchanged. However,
there are small scale irregularities near the centre of the
merged structure. Given that the contour shapes converge to
smooth curves with increasing N;, we believe that these

spurious features are due to inadequate node resolution. In
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Figure 5.2a : Contour shapes for a low resolution (small N) simulation
of two interacting FAVRs, M =1, D = 1.5, vy = 0.05

(case 2 of §10). Times and node numbers as shown.
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Figure 5.2b : Contour shapes for a high resolution (large N) simulation
of two interacting FAVRs (case 2 of §10). The contours
. have converged to smooth curves with the numbers of nodes

shown on the figure.
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addition, a local linear stability analysis (similar to that
in appendix 5, M = 1) for a layer of irrotational fluid
bounded on either side by semi-infinite regions of vortical
fluid shows that the flow configuration is stable. In three
separate calculations of the case in figure 10.3d (equivalent
to the purely two-dimensional flow in figure 5.4), the vortex
contour at t = 10.0 was the same (to within plotting accuracy)
with N, = 87, 139, 227 respectively.

A third test, using the configuration of two interacting
FAVRs, involved the comparison of equivalent stretched and
unstretched simulations according to Lundgren’s (1982)
transformation (3.28). We provide two examples in which
frames at equivalent times can be directly compared by
changing the length scale. Figure 5.3 shows the evolution of
a test case with axisymmetric strain Yo = 0.15, Bo = 0.075.
This is the equivalent stretched flow for the purely two-
dimensional flow shown in figure 10.3a, D = 1.5. The
axisymmetric case shows the stretched simulation time, t, and
the equivalent two-dimensional time, T, on each solution
frame. For constant y = Yor the time T of the purely two-
dimensional evolution is related to the time t of the
stretched evolution by

1

T(t) = — [ exp(y,t) = 1] : (5.2)
Yo

Figure 5.4 shows the evolution of the vortex pair embedded in
an (x, y)-plane strain
Vo/2

B, = , (5.3)
YoT + 1

so that we have the equivalent two-dimensional case for the
plane-stretching flow in figure 10.3d (y, = 0.15, B, = O,

D =1.5). 1In both cases (figures 5.3 and 5.4) the contour
geometries appear to agree, at least to within plotting

accuracy.
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t = 6.109
(T = 10.0)

t = 7.040

t =2.12 (T = 2.5) (T = 12.5)
t =3.731 (T = 5.0) t = 7.858
(T = 15.0)

t =5.025 (T = 7.5)

Figure 5.3 :

The coalescence of two equal FAVRs in the presence of an
axi-symmetric stretching strain field y = 0.15, B = 0.075.
The flow configuration is the same as case 1 of §10

(y =0, B =0) with initial vortex diameter d = (4/Tr)1/2
and separation D = 1.5. Times t for the stretched solution

as shown. Times T for the purely 2D solution also shown.



77

T=0 (t=0)
T = 3.033
(t = 2.5)

T = 7.447
(t = 5.0)

T = 20.0

T = 10.0

T = 23.21
(t = 10.0)

Figure 5.4 :

Coalescence of two equal FAVRs in the presence of an (x, y)-
plane strain field (5.2). Times T for this pure two-
dimensional evolution as shown. Times t for the equivalent

stretched flow (case 4 of §10) are also shown.



78

The favourable comparisons for these vortex pair
simulations give us confidence in the stretching CD algorithm
and numerical implementation. In chapter 10 we will use the
method to study the effect of stretching upon the coalescence

phenomena.

5.2 Spatially Periodic Vorticity Distributions

Using symmetries, we are able to study a variety of x-
periodic vorticity distributions with the same computer code.
Previous CD simulations of periodic flows have been done by
Pullin (1981), who studied the dynamics of a uniform-vorticity
(M = 1) layer at a wall, and Pozrikidis & Higdon (1986), who
simulated the roll-up of a uniform-vorticity (M = 1) shear
layer. Here we present two test cases with parameters chosen
to match sample calculations from these papers so that the
results may be directly compared. We also illustrate some
convergence tests for the nonuniform-vorticity shear layer
studied in chapters 7 and 9.

5.2.1 Free Shear Layer

Figure 5.5 shows a series of snap shots of an evolving
uniform-vorticity shear layer separating two parallel but
counter—-flowing streams. Solutions were computed using code-
version C (table 4.1) and node-parameter set 1 on an IBM 3083

(64-bit precision). 1Initial contour shape for C, is defined
by
27X PN 27X
{1(x) = — + i 3— + ag sin| — ' (5.4)
Aq 2 Aq

with the lower contour Cqr defined as the image

Cir(x) = 21 - {121 - x) . ~ (5.5)

Note that the contours initially below the x—axis are

identified with primed subscripts. The layer parameters,
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s t=0
N S
- l l lt=118.4 ‘ ' '

i : l l t = £1.6 l l :

Figure 5.5 :

The evolution of a uniform-vorticity shear layer
with an initial sinusiodal perturbation. The ratio
of layer thickness to perturbation wavelength is
Gw/kl = 1/(4m) and the perturbation amplitude is
%)/Al = 1/(4m). Times t as shown.
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Figure 5.5 continued.
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thickness Em/kl = 1/(4n) and initial perturbation amplitude
ao/kl = 1/ (4n), have been chosen to approximate those in
figure 10 of Pozrikidis & Higdon (1985). The times included
on each frame are scaled to give ®; = —-1.0. Note that this
corresponds to having I' = -2r in one wavelength. Agreement

between the calculations appears to be very good.

With the node adjustment algorithm trying to maintain
good resolution, it is difficult to discern what effect the
analytic-patch procedure is having on the solution accuracy.
In figure 5.6, we show two magnified views of the shear layer
contours at t = 30. The layer evolution in figure 5.6a has
been calculated without the analytic patch (code-version D)
while in figure 5.6b it has been included (code-version C).

It is in regions where the contours approach closely that the
integrand behaviour is most difficult and in figure 5.6a, the
contour sections labelled (1) and (2) exhibit spurious
oscillations that are not evident in the simulation using the
analytic-patch procedure (figures 5.6b and 5.5). These
oscillations are artifacts of the "noisy" numerical quadrature
(4.10, 4.14) in the proximity of the velocity-point. 1In terms
of computational effort, the analytic patch procedure is quite
expensive. A 32-bit (not 64-bit) calculation on the IBM 3083
involving 60 nodes and using only the numerical quadrature
(4.10) required 0.303 cpu seconds per function call whereas an
equivalent calculation including the analytic patch required
0.477 seconds: a 50% increase.

To illustrate the invariance of solutions to the
particular CD formulation, figure 5.7 shows two frames at the
same simulation time and starting from the same initial
conditions (cases 3a and 3 of section 7.4) but computed by two
separate codes. The flow is initially a slightly perturbed
shear layer between two counter-flowing streams but, unlike
the case in figure 5.5, the layer has a nonuniform vorticity
distribution approximated by several (M > 1) uniform-vorticity
regions. The t = 90 (1t = 4.559) frames here show the vortex
structure formed by the coalescence of two adjacent rolled-up

vortex cores. Frame (a) was computed with code-version B and
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t = 30.0
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Figure 5.6 :

Improvement in the solution accuracy obtained
through the use of the "analytic -patch" procedure
Both solutions are from the evolution of a
uniform-vorticity shear layer (figure 5.5) at

t = 30 computed using 64-bit precision arithmetic.
(a) This computation was done without the

benefit of the "analytic-patch" procedure
(code-version D). Note the artifacts near the
region labelled (1) and (2).

(b) Computation with "analytic-patch" (code-

version D).
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node-parameter set 3 on an IBM 3083 (using 32-bit precision)
while frame (b) was computed with code-version C and node-
parameter set 1 on a Cyber 205 (using 64-bit precision).
There is almost no discernable difference in the large-scale
features but frame (b) (analytic patch plus 64-bit precision)
has significantly smoother contours.

Figures 5.8, 5.9 give some indication of convergence of
the contour shapes with increasing Nj at time t = 70
(t = 3.546). This configuration is a nonuniform-vorticity
shear layer with the same initial vorticity distribution as
that in figure 5.7. The difference here is that the layer
evolves in the presence of an imposed strain field that
stretches the vortex lines and produces a vorticity
intensification. Note that the initial condition is therefore
not a steady—-state solution to the Euler equations. The full
history is displayed in figure 9.4 (case 2b of chapter 9).
The large scale features for both solutions are almost the
same (figure 5.8) but there is an improvement in the contour
smoothness where several small-scale features marked in figure
5.9%a are not present in the higher resolution simulation of
figure 5.9b. Both solutions shown here were computed with
code-version C (table 4.1) however the solution in frame (a)
used node—parameter set 3 while the solution in frame (b) used
node-parameter set 1. Table 5.1 contains the number of nodes

on each of the upper contours (C numbered j = 1 to 4 from

N4
the outside to the inside) and tie circulation errors for the
corresponding uniform-vorticity regions. Although the higher
resolution case shows a marked improvement in contour
smoothness, there has been virtually no change in the
fractional error of the circulation invariants. Hence, the
monitor based on A(Qj) is a relatively insensitive measure of
solution accuracy. It should be noted, however, that the
calculation discussed here is an extreme case and, although
the solution is losing qualitative accuracy (breaking down),
the solutions for smaller values of stretching-strain strength

have considerably smoother contours (see figures 9.3 and 9.9).
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90.0

ot
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Figure 5.7 : Two independent solutions for the evolution of a non-
uniform shear layer; cases 3 and 3a of § 7.4 at time
t =90 or T = 4.559.
(a) Computed with code—version B and node parameter set 3.

(b) Computed with code-version C and node parameter set 1.
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(a)

Figure 5.8 :

Convergence of contour shape, at fixed time t, with
increasing resolution (node numbers). These frames are
from two separate calculations of a stretched shear layer
with the same numerical code but different node adjustment
parameters.

(a) node parameter set 1,

(b) node parameter set 2 (higher resolution).

The tic spacing is /4.
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Figure 5.9 : Close-up of figure 5.8 showing convergence of solution
contours with increasing resolution. Several small-
scale features (labelled (1) - (3)) in frame (a) are
not present in the higher resolution computation (b).

The tic spacing is m/4.
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: Number of nodes on upper and lower contours (Nj=Nj') and

fractional change in circulation A(Qj) for each pair of

regions Rj and Rj" These figures are for the stretched
shear layer with y#0.015, cases 2a and 2b of §.3. The

only difference between the calculations is the node

parameter set used; set 1 for case 2a and set 2 for case 2b.

j case 2a case 2b

N A(9) N A(R,)
1 387 0.21x107" 487 0.21x1072
2 496 0.89x10” 641 0.13x107}
3 587 ~0.19x107" 748 ~0.58x107"
4 679 ~0.41x107" 862 0.35x107!
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5.2.2 Shear Layer at a Wall

Figure 5.10 shows the evolution of a constant-vorticity
(M = 1) layer at a wall. The influence of a rigid wall is
provided by a mirror image Ry, of the vortex region in the x-
axis having opposite signed vorticity. Figure 5.11 shows the
contour configuration with the Cqs contours delineating the
the image regions (denoted by the primed subscripts). The
contributions from the vertical sections of the closed
contours again cancel but the contributions from the contour
sections along the x—-axis sum to give an effective
contribution

(ux - iuy)wall = _(Dly . (5.6)

The initial contour shape is defined by

2TX 2TX |
1(x) = — + ijh + ap sin|— ’ (5.7)
A A

with the mean height of the layer, h/A = 0.25, and the initial
perturbation amplitude, ao/l = (0.125, are chosen to
approximate the configuration shown in figure 7 of Pullin
(1981) . Again, the times are equivalent to having o = -1.
There is good agreement for the large—scale motions but we
have obtained smoother solution contours by using more nodes
(and computer resources) and a more refined code. ©Note the
"entrainment”™ or "engulfment" of a nearly closed sliver of

irrotational fluid within the layer.

5.3 Contour Breaking and Vortex Filaments

The CD method becomes more expensive as the number of
nodes describing the contours increases. To maintain the
contour flexibility, the number of nodes required increases
roughly with the contour length as shown in figure 5.12. Here
we plot (in figure 5.12a) the variation in contour length for
the simulation in figure 5.5 in while figure 5.12b we show the
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Figure 5.10 : Evolution of a uniform~vorticity layer at a wall (the
x-axis). The vorticity is unity and the tic spacing
is m/4.



90

20

Figure 5.11 :

A periodic vorticity layer at a wall. The vortical
fluid is bounded by an array of closed contours. One
member of this array, Cl’ is divided into four segments
superscripted (1) - (4). The region Rl' (with opposing
vorticity) is the mirror image of the region R1 in the
x-axis. The bounding contour Cl’ however, is still
defined in the anti-clockwise sense. Mean thickness

of the layer and perturbation amplitude are specified

by h and o respectively.



91

corresponding node numbers for the upper contour. The
computer processing-time per simulation time-step varies
roughly as N2 (figure 5.13a) because there are nested loops in
the velocity calculation. Combined with the increasing
numbers of nodes, mostly contained in the filament-like braids
joining the rolled-up vortex cores, we have an explosive
increase in computer processing-time required as the
simulation proceeds (figure 5.13b). Computer-processing time
is measured in seconds on a Cyber 205. As long slender
filaments containing negligible circulation are characteristic
of nearly all of the solutions computed in this thesis, the CD
implementations used here (without modification e.g. contour
surgery) are not suited to evolutionary problems in the late-
time epoch.

Although the filaments illustrated so far have been
formed by the stretching of ejected vortex arms or as braids
connecting rolled-up vortex cores (figure 5.5), there are
other mechanisms for their production. The "breaking”
(formation of cusps) of contours and the subsequent filament
formation has been observed by Deem & Zabusky (1978) for an
isolated uniform- vorticity FAVR and by Overman & Zabusky
(1982), Dritschel (1986a), Jacobs & Pullin [1] for interacting
FAVRs. Wan (1982) has theoretically investigated the
nonlinear stability of circular vortex patches. In figure
5.14 we show the evolution of a Karman vortex—-street modelled
by two periodic arrays of nonuniform-vorticity FAVRs. As the
vortices convect (downstream), large deformations travel
around the outer contour, Cl' which eventually (by t = 40)

breaks and produces a pair of filaments.

The reason for the generation of the filaments is
unknown. In some situations, contour-breaking and
filamentation may be a genuine feature of the vortex dynamics
but, we have included a case in appendix 2 (figure A2.1) in
which numerical errors have produced spurious filaments. Once
the filaments have formed, there is no in-built mechanism in
the CD algorithm to detect their presence but, where filaments
are vanishingly thin, (and therefore have negligible global
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Figure 5.12 :
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time, t
(a) Variation of contour (Cl) length with simulation time
t for the uniform vorticity shear layer simulation

(figure 5.5). The length of the unperturbed contour is

2m.  (b) The number of nodes defining the contour.
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Figure 5.13 : Variation of computer processing time per simulation time
time-step for the uniform-vorticity shear layer calculation
(figure 5.5). (b) Total computer processing time required

to reach the simulation time on the abscissa.
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by explicit smoothing or by introduction of model terms in the
CD equations (Krasny 1986) would seem to be justified.
Dritschel (1986b) has developed a contour surgery technique
designed to remove filaments that are dynamically
insignificant and allow the computation to proceed to long
simulation times with moderate processing time. This
approach, however, appears to require some compromises in
respect to conserving invariants of the vorticity field
(Dritschel 1986a).

The simulation of the Karman vortex-street (figure 5.14)
also provided a quantitative check on the CD algorithm via its
convection velocity. The circulation of each FAVR is unity
while the array period, A = 2n, and the y-seperation of the
FAVR centroids, h = 1.76. The major and minor axes of the
outer contour C; are initially 1.373 and 0.915 respectively,
and the regions have the nonuniform (normalized) vorticity
profile as specified in table 10.1. At t = 40, the measured
distance travelled by the FAVR’s is 2.22 units giving a
convection velocity Us, = 0.0555. For a street consisting of
point vortices with the same spacing and strength I', the
convection speed is given by

r Tth
U, = — tanh| — = 0.0562 , (5.8)
4r A
(Milne-Thomson §13.72, 1968). This is a 1.3 percent

difference which (if not a measurement inaccuracy) could be a
finite area effect. Saffman & Schatzman (1981) indicate that
the steady state uniform-vorticity FAVR street with the same
spacing and area ratios (h/A = 0.280, A/A = 0.100) has a
convection speed which is about 2% lower than that for the
point-vortex street. ©Note that this check is rather "weak" in

that the vortex centroids in figure 5.14 are located "by eye".
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dynamic effect on the vortex motion) their suppression either
by explicit smoothing or by desingularization of the CD
equations (Krasny 1986) would seem to be justified.

Dritschel (1986b) has developed a contour surgery technique
designed to remove filaments that are dynamically
insignificant and allow the computation to proceed to long
simulation times with moderate processing time. This
approach, however, appears to require some compromises in
respect to conserving invariants of the vorticity field
(Dritschel 1986a).

The simulation of the Karman vortex—-street (figure 5.14)
also provided a quantitative check on the CD algorithm via its
convection velocity. The circulation of each FAVR is unity
while the array period, A = 2m, and the y-separation of the
FAVR centroids, h = 1.76. The major and minor axes of the
outer contour C; are initially 1.373 and 0.915 respectively,
and the regions have the nonuniform (normalized) vorticity
profile as specified in table 10.1. At t = 40, the measured
distance travelled by the FAVR’s is 2.22 units giving a
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point vortices with the same spacing and strength I', the

convection speed is given by

r [ nh ]
U = — tanh[ — J = 0.0562 , (5.8)
4 A
(Milne-Thomson §13.72, 1968). This is a 1.3 percent

difference which (if not a measurement inaccuracy) could be a
finite area effect. Saffman & Schatzman (1981) indicate that
the steady state uniform-vorticity FAVR street with the same
spacing and area ratios (h/A = 0.280, A/A = 0.100) has a
convection speed which is about 2% lower than that for the
point-vortex street. ©Note that this check is rather "weak" in
that the vortex centroids in figure 5.14 are located "by eye”.
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Figure 5.14 : Evolution of a Karman vortex~street. For more details

see over page.
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Figure 5.14 :

Evolution of a Karman vortex-street of non uniform
vorticity FAVRs with unit circulation (upper array).
Array period A = 27 and y-separation h = 1.76. The
initial elliptical outer contours, Cl’ have major-

and minor-axis lengths of 1.373 and 0.915 respectively.
Times t as shown. By t = 40, two cusps appear to have
formed on C1 and, at later times, vanishingly thin

filaments emanate from these points.
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6.0 VORTEX MOTIONS OF THE PLANE MIXING LAYER

We now apply the CD technique to some vortex modelling of
various eddy scales in the plane mixing layer. This flow is
chosen as the large structures that are most apparent (at
least in the transition region) in many of the flow
visualization studies have been extensively modelled. There
is keen interest in such a generic flow and, as a consequence,
a large body of literature exists for both experimental and
computational studies of the layer. Hence, in the following
survey, we will only provide example references rather than an
exhaustive list for each point of interest. Ho & Huerre
(1984) review some current aspects of mixing layer modelling,
with emphasis on hydrodynamic instability concepts, while
Hussain (1986) reviews the current state of the coherent

structure approach to turbulence modelling.

For the discussion here, we will work within the
conceptual framework provided by the coherent structure
approach (e.g., Roshko 1976; Liepmann 1979). The resulting
flow models will be highly idealized and contain quasi-two-—
dimensional features that evolve from pure perturbations
(rather than random perturbations) to the base flow. The
universal existence of such coherent structures is not,
however, accepted by all workers (e.g., Chandrsuda et al 1978;
Bradshaw 1979). It may be that these features of the flow are
artifacts from the early stages of transition in an extremely
"clean" layer (i.e., very low free stream turbulence)
carefully produced in a laboratory rather than the genuine
structure of the fully three-dimensional turbulent flow.

We presuppose the existence of coherent structures within
the layer, and restrict our attention to the transition regime
by initially considering the development of the quasi-two-
dimensional features in sections 6.1 and 6.2. This evolution
involves an essentially endless redistribution of the initial
spanwise vorticity (Corcos 1979). 1In sections 6.3 amd 6.4, we
describe some of the models of the three-dimensional flow

structure that grows on the essentially two-dimensional base



98

(primary) flow. For the primary flow, we define two Reynolds
numbers Re,, Reg based on the velocity difference AU, kl
(wavelength of the most unstable perturbation) and 6 (initial
momentum thickness) respectively.

6.1 Two-Dimensional Features of the Mixing Layer

The mixing layer is the transition region between two
parallel, coflowing streams with velocities U, and Uy,. The
traditional view of the mixing layer has been a wedge of fine-
scale turbulent motions, growing in cross—stream thickness as
the observer moves down-stream. Such blurred images of the
fluid motions are typical of the relatively long exposure
photographs as shown, for example, in figure 4 of Bernal &
Roshko (1986). The layer grows in the cross—stream direction

by entraining and mixing nonturbulent free-stream fluid.

More recently, short exposure-time photographs of the
mixing layer have shown that large-scale vortical structures
(i.e. those with similar spatial dimensions to the width of
the layer) exist in the flow over a very wide range of
conditions. Examples in the literature have flow conditions
ranging from the Reg = 50 experiments of Winant & Browand
(1974) to the Reg = 0.5x104 experiments of Brown & Roshko
(1974) . Time-sequences of photographs have shown that the
large structures remain coherent over significant times and
interact in a deterministic manner. For examples of
individual vortex histories, see Brown & Roshko (1974), Roshko
(1976) and Hernan & Jimenez (1982). Given the strong evidence
for the important role played by the large vortical
structures, some workers (e.g. Saffman 1977, 1985; Saffman &
Baker 1979; Corcos 1979) believe that the mixing layer
behaviour may be better understood through the study of the
underlying vortex dynamics.

Figures 6.la,b are photographs taken by Konrad (1976)
looking (a) at the plane view of the layer and (b) along the
span of the layer. The spanwise view is interpreted as
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showing the roll-up of the layer into characteristic spanwise
structures that convect down-stream with roughly the average
velocity of the two streams

Ul + U»2

U, = —— = , (6.1)
¢ 2

while the plan view shows streamwise streaks due to the three-

dimensional motions.

The mixing layer initially undergoes a nonlinear Kelvin-
Helmholtz type (primary) instability which redistributes the
initial spanwise vorticity into compact, nearly axisymmetric
vortex cores whose axes are aligned in the spanwise direction.
The layer evolves in the streamwise direction and at any
particular down-stream position has roughly periodic
properties. At any such point, the layer thickness is related

to the spatial dimensions of the spanwise structures.

As the spanwise vortices evolve, they grow in size by
ingesting irrotational (free-—-stream) fluid. Individual vortex
histories recorded by Brown & Roshko (1974) and Hernan &
Jimenez (1982) indicate that, as the vortices convect down-
stream, there is a further concentration of vorticity into
fewer, larger but more distantly spaced structures. This
redistribution usually occurs in discrete events and appears
to be a preferentially two-dimensional process (Winant &
Browand 1974; Browand & Troutt 1980, 1985).

Experimental measurements (e.g., Winant & Browand 1974;
Lasheras, Cho & Maxworthy 1986) show that the layer thickness
increases (approximately) linearly with down-stream distance.
To estimate the amount of entrainment required to maintain
linear growth, consider the amalgamation of two vortex cores
into one. The diameter of a structure containing only the
fluid from the two small cores would be roughly V2 times the
diameter of the small cores. Hence, we require a further
factor of V2 increase in diameter to be obtained by

entrainment of irrotational fluid into the individual vortex
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Figure 6.1:

Photograph of the plane mixing layer taken by Konrad (1976)

using a spark shadowgraph technique. This particular figure
has been reproduced from figure 146 in Van Dyke (1982).

(a) Plan view showing streamwise streaks.

(b) Spanwise view showing characteristic rolled-up

vortex cores. The high speed fluid is in the upper stream.
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cores. Hernan & Jimenez (1982) indicate that the bulk of this

entrainment occurs between amalgamation events.

The bulk of both experimental evidence (e.g., Winant &
Browand 1974; Hernan & Jimenez 1982) and numerical experiments
(Acton 1976; Ashurst 1977) strongly suggest that the
amalgamation events are dominated by a "pairing" process in
which neighbouring vortex cores coalesce to produce a single
larger structure. Although the coalescence of two
neighbouring vortex cores appears to be most common, it is
possible to have three or more cores coalesce into a single
structure. For examples of multiple vortex coalescence see
Hernan & Jimenez (1982), Winant & Browand (1974) and Ho &
Huang (1982). Ho & Huang used a forced mixing layer and, in
particular, studied the effect of forcing the layer with
subharmonics of the most unstable frequency. They illustrated
the sensitivity of the layer to low level forcing and were
able to obtain amalgamations of 2, 3 and 4 vortex cores
simultaneously by forcing the layer at the appropriate
subharmonic frequencies.

Another mechanism of amalgamation, one in which
turbulent entrainment plays an important role, was suggested
by Moore & Saffman (1975). 1In this process, the vortex cores
of different strengths entrain fluid and grow in size until
the spacing cannot be sustained. Once this flow configuration
becomes unstable, a "tearing” or "shredding" mechanism
redistributes the vorticity of every second core to the
slightly larger cores either side. The redistribution is not
necessarily equal, so that in the final stages of the process
there may be a poor distinction between this process and that
of "pairing". However, the end result of larger and more
distantly spaced cores is the same. In the experimental data
analysed by Hernan & Jimenez (1982) amalgamation by "pairing”
occurred 10 times more frequently than amalgamation by

"tearing".
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6.2 The Temporal Shear Layer Versus the Mixing Layer

Following,the "coherent structure" approach, vortex
models of the mixing layer have been developed from the
interpretations of experimental observations. For example,
the nominally two-dimensional mixing layer of figure 6.1b is
modelled as an initially thin layer of spanwise vorticity
being shed from the trailing edge of the splitter plate (left
side of picture). Experiments such as those by Winant &
Browand (1974) and Browand & Troutt (1985) indicate that the
initial layer evolution is preferentially two-dimensional.
Hence, it may be reasonable to study the flow with a purely
two—-dimensional model consisting of a unidirectional vorticity
field.

Another standard computational model is obtained by
replacing the vortex dynamics in the window of figure 6.2a
with a spatially periodic vorticity distribution which
develops in time (figure 6.2b). This is the (spatially
periodic) temporal shear layer: a transition region between
two parallel counter—-flowing streams with velocities —-AU/2 and
AU/2 where AU = U; = Uy. Such a temporal layer provides a
computationally economic model as the spatial domain in which
the vortex dynamics needs to be explicitly computed is quite
compact (e.g., the dashed box in figure 6.2b). The shear
layer is related to the mixing layer by the Galilean

transformation

o t : (6.2)

but there are some important differences. The spatially
developing mixing layer does not have the symmetry of the
shear layer and downstream motions may influence the features
of the vortex dynamics in the window (figure 6.2a) thus
providing a feedback path for the layer perturbation. This
feedback has no analog in the temporal shear layer as a future
event cannot influence the present vortex dynamics. One of

the few experiments with a temporally evolving layer was
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Figure 6.2:
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(a) Conceptual view of the plane mixing layer showing the
spatially developing vorticity field between two parallel streams
with velocities U1 and U2.

(b) Conceptual view of the two-dimensional, spatially periodic
shear layer which develops in time. The "vortex dynamics"

of the fluid enclosed in the dashed box (b) models that in

box (a).
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performed by Thorpe (1971). He used a tilting tank of stably
stratified fluid in which the lighter fluid accelerated
"uphill” and the heavier fluid accelerated "downhill"™ thus

generating a shear at the interface between the two streams.

Several numerical simulations have been performed using
the two-dimensional, spatially developing model (e.g. Ashurst
1977; Davis & Moore 1985; Inoue 1985). These simulations
generally used vortex element methods (although Davis & Moore
use a finite difference method) and illustrated gross flow
features over times equivalent to several life-spans of a
typical eddy. Evolutionary histories which were generated
closely echoed the available experimental observations. Also,
a fully three—-dimensional simulation has been performed by
Couet & Leonard (1980) (also reported in Couet, Buneman &
Leonard 1981) using a three-dimensional extension of the
vortex—in-cell algorithm (similar to the CIC method discussed
in section 2.3). Simulations using the temporal model include
a finite-difference calculation by Patnaik, Sherman & Corcos
(1976), a point vortex calculation by Acton (1976), the CIC
calculations by Aref & Siggia (1980) and the fully three-
dimensional but moderately low Re (=100) pseudo-spectral
calculations of Metcalfe et al (1986). The simulations
reported in chapter 7 of this thesis are based on a temporally
evolving flow model.

6.3 Three—-dimensional Flow Features

The mixing layer motions do not remain two-dimensional as
(high-order) three-dimensional instabilities begin to grow on
the base flow. Although these instabilities eventually result
in the layer motions becoming fully three-dimensional, flow
visualization studies (e.g., Lasheras, Cho & Maxworthy 1986)
and computational studies (Riley & Metcalfe 1980; Corcos & Lin
1984) indicate that the spanwise coherence and evolution of
the primary vortices is only weakly affected. See Roshko
(1980) for a review of the three-dimensional motions in the
mixing layer.
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Figure 6.3: An isometric view of the '"vortex-skeleton" of the secondary
streamwise vortices superimposed on the spanwise vortices.

This figure has been reproduced from Bernal's (1981) thesis.
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Figure 6.1 (reproduced from Konrad 1976) shows some
streamwise streaks in the braid region of the mixing layer.
These streaks have been interpreted by Konrad (1976) and
Breidenthal (1981) as indicating the existence of a secondafy
flow structure consisting of an array of counter-rotating,
vortices with vorticity in the streamwise direction. This
interpretation has been confirmed by the the cross-sectional
photographs taken by Bernal (1981) and by computer generated
perspective views (Jimenez et al 1985) of the layer produced
form the cine film taken by Bernal (1981). Figure 6.3 is a
reproduction of Bernal’s figure II.18 showing his proposed
"vortex skeleton" (a term coined by Perry & Hornung 1984)
description of the secondary vortices. In this model, the
secondary vortex array is formed as part of a single vortex
filament winding back and forth between the high-speed side of
one primary vortex and the low-speed side of a second primary

vortex immediately up-stream.

These secondary vortices enhance the mixing by further
distorting the interface between the two free streams. It is
not until higher order instabilities generate even smaller
scales of motion than the secondary vortices that there is a
catastrophic increase in the interfacial area leading to
mixing at the finest scales of motion (Lasheras et al 1986).
This event, in which there is an explosive increase in mixing

activity, is called the mixing transition (Breidenthal 1981).

The origin of the secondary vortices has been the subiject
of much interest but has not yet been resolved. Experimental
observations by Lasheras et al (1986) indicate that, although
the down-stream position at which the interface distortion
first becomes evident varies with the up-stream perturbations,
the structures always initiate midway along the braids and
then propagate into the spanwise vortices. Some workers
(e.g., Bernal & Roshko 1986; Lasheras et al 1986) suggest that
the secondary vortex structure grows from a genuine flow
instability and may be initiated by perturbations introduced
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early in the development of the flow (possibly up-stream of
the splitter plate).

There are several plausible mechanisms that might
generate strong streamwise vorticity from such instabilities.
The stability analysis of Benney (1961) predicted the
existence of a three-dimensional instability that generated
streamwise vorticity. It is clear however that the classical
linearized Orr-Sommerfeld instability of the parallel shear
layer is not appropriate since the timescale for the growth of
the three-dimensional motions is larger than that required for
the appearance of the strongly nonlinear features of roll-up
and pairing of the two-dimensional spanwise vortices. This
led Pierrehumbert & Widnal (1982) to study the inviscid
modulational three-dimensional instability of an array of
Stuart vortices as a model of the spanwise vortex structure
comprising the base flow. They found a "translative"
instability that grew over a broad range of spanwise
wavelengths that included the streamwise wavelength of the
Stuart vortices. Corcos & Lin (1984) argue however that the
translative instability is both slower than, and is inhibited
by, the pairing instability of the primary vortices.
Consequently the assumption of a steady base flow, implicit in
the use of the Stuart vortices, is not appropriate to the
shear layer evolution. Corcos & Lin (1984) study the origin
of the three-dimensional motion at moderate Re as an initial
value problem obtained through linearization of the spanwise
average of the total velocity field. They found that spanwise
periodic perturbations grew to produce non-spanwise vorticity
in both the primary vortex cores and the braid regions (where
it lies essentially within the braids). Whatever the
mechanism, the nett result is the production of streamwise
vorticity which is locally tangent to the braids and
alternates in sign across the span of the layer.

More recently, Lasheras et al (1986) observed that an
isolated disturbance would propagate in the spanwise
direction. They described a dynamical mechanism for the

formation of the streamwise vortex structure that involved the
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spanwise propagation and magnification of disturbances
initiated by an isolated perturbation. This mechanism depends
upon the stretching and velocity shear across the braid (the
midpoint of which is continuously stretched by the velocity
field associated with the spanwise vortices). After the
structure has been generated it may then settle into a stable
configuration consisting of an array of pairs of counter-
rotating streamwise vortices. A numerical simulation relevant
to this mechanism was performed by Aref & Flinchem (1985) in
which solitary waves propagate along a vortex filament
embedded in a shear flow. The deformed filament evolves into
a form similar in appearance to the spanwise wiggle observed
by Breidenthal (1981).

6.4 The Corcos—Lin-Sherman Model

Several highly idealized models have been built from the
various interpretations of the observed mixing layer features.
One such model is that proposed by Perry (1986) in which the
motions of the layer are described by a hierarchy of hair-pin
vortices similar in form to the lambda vortices in Perry &
Chong’s (1982) model of the turbulent boundary layer. All of
the vortices start at the trailing edge of the splitter plate
and an "inverse cascade" process produces larger-scale

structures as the flow develops down—-stream.

Motivated by the idea that at least the initial phase of
transition occurs as a more or less orderly manner, Corcos-
Lin-Sherman (CLS) model the temporal shear layer as a short
hierarchy of deterministic motions which interact via a system
of identifiable nonlinear instabilities (Corcos & Sherman
1984; Corcos & Lin 1984; Lin & Corcos 1984). Each level of
motion in the hierarchy is characterized by a specific
vorticity distribution evolving within the ambient strain
environment provided by the other scales of motion. Figure
6.4 illustrates the "vortex skeletons" for the first two tiers
of these motions. The first tier (or first order motion) is

the nominally two—-dimensional instability and characteristic
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Figure 6.4: The Corcos-Sherman-Lin (CLS) hierarchy of deterministic motions
(two tiers shown) modelling the plane turbulent shear layer.
The primary vortices (dark shading) are connected by vorticity
depleted "braids". Superimposed upon this nominally two- ‘
dimensional base flow is the secondary vortex structure depicted
by an array of counter-rotating vortices contained within the
braid joining two primary vortices. Note that the drawing

is not to scale.
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roll-up of the layer into spanwise vortex structures (the
primary vortices) as mentioned in sections 6.1 and 6.2.

If 8@ is the initial vorticity thickness of the shear
layer, then the fundamental (Kelvin-Helmholtz) instability has
a maximum growth rate on a streamwise wavelength Ay = 7.5 8m
(Michalke 1964; Miksad 1972). The subsequent nonlinear roll-
up of the layer produces an array of vortex cores with

circulation

on a timescale

T, = O(ll/AU) . (6.4)

The braids connecting adjacent vortex cores are embedded in
the stretching velocity field induced by the array of vortex
cores. For an array of equal strength vortices, the
stretching strain strength at the centre of the braid is given
approximately by

AUR

y = — : (6.5)
20,

Equation (6.5) is derived from a point-vortex model of the
primary vortices as shown in appendix 4. However, for large
t, the effects of viscous diffusion will ultimately balance
the vorticity intensification induced by stretching. The
thickness of the braid, 82, might then be expected to approach

the Burgers vortex sheet thickness

8, = (2mv/y) /2 , (6.6)

(Burgers 1948) in a time

1 (8,2
T, = 0| — {— - 1 , (6.7)
2
Y 8,

(Lin & Corcos 1984). For an inviscid fluid, we expect the

braid thickness to vary asymptotically as

8, = exp(-yt) . (6.8)
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In the experiments of Bernal (1981), Jimenez (1983) (and
others) the secondary motions may be interpreted as a
structure of counter-rotating streamwise vortices. The
stretching strain imposed by the spanwise vortices upon the
middle of the braid (represented by the four streamline
segments in figure 6.5a) is assumed to be the only connection
between the primary and secondary model flows. The imposed
strain reorients the streamwise vorticity so that it is
aligned with the braid and compresses the braids (in the y-
direction of figure 6.5a) so that, within a linearized
approximation, the vorticity thickness of the secondary
vortices approaches the Burgers vortex—-sheet thickness 82 in
equation 6.6. Hence, in the middle of the braid (where the
structures appear to be most coherent), these secondary
vortices are modelled as an array of highly flattened,
counter-rotating vortices evolving in the local strain
environment provided by the spanwise vortices.

Measurements of the spanwise spacing and strength of the
secondary vortex structure have been obtained from
experiments. Breidenthal (1981) (using flow visualization)
suggested that the wavelength of the vortex array kz ~ kl
while Jimenez (1983) (using hot-wire techniques) indicated
that the strength (circulation) of the individual vortices
approached a constant value I', = B,I'; where B, = O(1). Later
measurements by Jimenez et al (1985) (using flow visualization
data) produced similar parameter values. We also define a

suitable Reynolds number for the secondary vortices as

Re, = I,/ v : (6.9)

The third tier of deterministic motions is comprised of
the small-scale eddies that evolve on the secondary streamwise
vortices. For increasing Re,, the secondary vortices will
become very thin (as 82-9 0) and, on a small scale, the local
environment will be similar to that of an infinite vortex
layer embedded in a stretching strain field. Such a stretched
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Figure 6.5:

(a) Stretched vortex array modelling the secondary vortices

in the CLS model.
(b) Stretched vortex layer modelling the tertiary motions

in the CLS model.
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layer may be expected to be unstable to spanwise perturbations
and lead to the production of tertiary motions. Hence, we
expect that the evolution of a stretched shear layer, as shown
in figure 6.5b, will be relevant to the tertiary motions as
the aspect ratio of the secondary vortices ap = . At low Re
these motions may not evolve as the viscous diffusion /
stretching strain of the vorticity distribution is achieved in
a short time but, for Re, — o it might be expected that
several tiers of higher order structures will rapidly generate
motions needed for the energy cascade to smaller scales
characteristic of inertial range turbulence.

In the following chapters we use the CD technique to
provide some high resolution vortex histories for the above-
mentioned prototype flows at the nominal limit Re = e
Chapter 7 contains details of the nominally two-dimensional
temporal shear layer behaviour (or first order motion), while
chapters 8 and 9 describe the simulation results for the
secondary vortex array and the stretched shear layer (tertiary
motions) respectively. Lastly Chapter 10 treats the
interaction of two equal (but otherwise isolated) vortices
embedded in a stretching strain field. Figures for each of
these sections are included as a "block" following the full
text for the chapter.
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7.0 PRIMARY MOTION

Numerical simulations of two—-dimensional mixing/shear
layers have successfully provided structural models and
examples of various features observed in experiments. These
features include the nonlinear roll-up into compact vortex
cores, pairing of vortex structures and resulting growth in
thickness of the layer. Aref (1983) reviews the application
of vortex element methods to the two-dimensional simulation
the mixing/shear layer. Some of the simulations are
summarized in table 7.1.

A realistic model of the shear layer would have both a
finite thickness (8) layer and a finite viscosity (v) fluid.
As discussed in section 2.1, the range of Reynolds numbers
obtainable in numerical simulations is severely restricted
owing to the computational burden of resolving the fine-scale
motions. Hence, most computational studies which aim to be
relevant to high Re will either use a model in which both
8 > 0 and v—> 0 (a vortex—-sheet of zero thickness) or a model
having 8 > 0 and v—> 0 (a finite-thickness vortex layer).

The approximation of the layer as a vortex sheet has been
investigated by Damms & Kuchemann (1974), Neu (1984) and
Higdon & Pozrikidis (1985) among others. This model is not
well defined and there is now substantial evidence which
suggests that the evolution of the vortex sheet results in the
formation of a singularity in the sheet curvature in a finite
time (Moore 1979; see also Krasny 1984). What happens to the
sheet evolution beyond the point of singularity formation is
still an open question. Note that Moore (1978) has considered
a layer of small but finite & but the relevant equation of

motion admits spurious short wave instabilities.

The second approach of keeping 8 finite and setting v = 0
appears to be a well defined limit and may also be a more
realistic representation of the early stages of an
experimental shear layer. In finding solutions to this model,

we suppose that the limiting solution to the Navier—Stokes
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equations (in the absence of solid boundaries) as Re = « (or
as v— 0) is equivalent to the solution of the Euler equations
starting with the same initial conditions (vorticity field).
Hence, we expect that the inviscid simulations in the
following discussion will be relevant to the behaviour of the
layer as Re — oo,

The definition of the vorticity field and the appropriate
Reynolds number of the solutions are closely linked with the
numerical technique. The simulations of finite-thickness
layers have been based on flow models having either (i)
continuous vorticity distribution at low to moderate Re
(finite-difference or spectral methods), (ii) discrete
vorticity distributions such as a cloud of point-vortices or
vortex blobs at Re = «, or (iii) a step—function distribution
such as used in the CD method at Re = e,

The computational effort required for a simulation
increases with the required resolution (see section 2.2) and
for moderate Re, the evolutionary problems very quickly
outstrip the available computing resources. However, several
"long—-time" numerical simulations have been performed which
provide vortex histories over timescales spanning several
vortex life-times. Ashurst (1977) used a vortex blob
technique in which vortex elements were ejected into the flow
at the trailing edge of a splitter plate and were allowed to
evolve as they convected downstream. Ashurst showed that the
dominant process for the production of the larger structures
was by pairing of the smaller cores (or clouds of vortex
elements). Aref & Siggia (1980) performed a simulation of the
spatially periodic shear layer using the CIC technique with
4096 vortex elements. They provided statistical estimates of
the layer properties and suggested that the growth of the
cross—-stream thickness was due, in part, to the scattering of
the vortex cores about the centre line of the layer. Davis &
Moore (1985) used a high-order finite-difference method to
simulate a spatially developing layer at Reg = O(104). The
initial conditions at the splitter plate were disturbed with

combinations of the primary eigenfunction and its subharmonics
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and vortex histories showed examples of pairing and tearing of
the vortex cores.

Short time simulations showing the fine details of one
amalgamation event have been performed by Patnaik, Sherman &
Corcos (1976), Acton (1976) and Riley & Metcalfe (1980).

These studies have mainly concentrated on the interaction of
fundamental perturbation combined with its first subharmonic.
The emphasis on the interaction of just the first subharmonic
has been justified by considering the analysis by
Pierrehumbert & Widnal (1982) of a flow consisting of an array
of Stuart vortices. They showed that, for such a flow, the
subharmonic perturbation has the highest growth rate and would
be expected to become the dominant influence once the layer
has rolled-up into compact cores. Although the simulations of
both Riley & Metcalfe (spectral method) and Patnaik et al
(using the finite difference method) were limited to

Reg = 0(100), they still produced vortex—-pairing scenarios
similar to those produced in the Reg = oo simulation of Acton
(using the point-vortex method). The vortex tearing mechanism
was also examined in these simulations and was found to occur
over a longer timescale and be weaker than the pairing

interaction in cases where both effects were present.

The first Contour-Dynamic simulations (excluding the
plasma simulations of Berk, Nielsen & Roberts 1970 showing the
equivalent of a combined pairing/tearing interaction) for the
inviscid shear layer of finite thickness appear to be those of
Pozrikidis & Higdon (1985). They investigated the effect of
parameters (i) layer thickness and (ii)amplitude of initial
disturbance of a uniform—-vorticity shear layer. They found
that the initial growth and form of the roll-up process
depended on the thickness of the layer, however, the final
layer amplitude was consistently limited to about 0.2 of the

wavelength of the computational domain, A We have

comp*
reproduced some of their results (see e.g. figure 5.5) using

the present technique.
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In this chapter we will use the inviscid CD formulation
for an x-periodic vorticity layer to produce moderate time,
high-resolution simulations of shear layer evolution at Reg =
o without the inherent "grainess" of the vortex element
techniques. 1In particular, we will investigate the evolution
of a nonuniform-vorticity layer, defined by a piecewise-—
constant vorticity distribution, which is initially disturbed
by imposing one or more eigenfunction modes, as calculated by
a linear analysis (appendix 5), with small but finite
amplitudes.

7.1 Flow Configuration

Consider the initial vorticity distribution illustrated
in figure 7.1. The two—-dimensional vortex layer is periodic
in the x-direction, y is the cross—stream direction and z is
the spanwise direction (of the shear layer). Only one period
0 £ x <A of the computational domain is shown. The

comp
vorticity

0= 0,(y)k ’ (7.1)

of the undistrubed layer is a piecewise-constant distribution
with regions, Rj, 3 =1..M, 1/..M" containing fluid with
vorticity @ in both regions Rj and Rj,. The primed
quantities here indicate contours that are initially below the
x—axis. Hence, each contour above the x-axis has a
corresponding contour below the axis. The associated wvelocity
field, u,(y) varies from +AU/2, y > h,/2 to -AU/2 for

y < —hl/2 where h4 is the average distance between the outer
contours C; and Cq,. The contours, Cj, i =1..M, 1/..M" in
the (x, y)-plane delineate the discontinuities of the
vorticity profile and are labelled Cq1 to Cy , progressing from
the top to the middle of the layer (and for the lower
contours, Cqs to Cys). Hence, the regions R: , J = 1...M-1

J

are bounded by contours Cj and Cj+l with Ry (being the same

region as Ry ) bounded by Cy and Cyr .
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All computations were performed in an x-periodic box of

length, A = 2r containing a total circulation |T

comp Compl = 1.
For any particular simulation, the computational domain may
contain an integral number (say n) of wavelengths of the

fundamental eigenfunction. Hence, for a single rolled-up

vortex core xl = (1/n) %comp and I'y = (1/n) Fcomp giving
Ap 2
Te = —— , (7.2a)
I'y

as the characteristic time for the evolution. For the
discussion of results in section 7.4, we find it convenient to
normalize the lengths on kl and the times on T, so that the

nondimensional time

T=t /T . (7.2Db)

The undisturbed piecewise-constant distribution of w(y)
has been chosen to approximate a Gaussian distribution

o(y) = exp [-p (y/h;)?] , (7.3)

Figures7.2a and 7.2b show the vorticity distribution for four
regions in the upper half of the layer (y > 0) for M = 4 and

M = 8 respectively. (Numeric values for hj and mj are given
in tables 7.2a,b). The approximate Gaussian distributions are
superimposed as solid curves with values of p = 1.0, 1.25 for

M =4, 8 respectively. 1In figure 7.3 we show a comparison of
the piecewise-linear velocity profiles (associated with the
piecewise-constant vorticity distributions) with the properly-
continuous hyperbolic-tangent velocity profile. The
differences in appearance between the M = 4, 8 (especially

M = 8) profiles and the hyperbolic-tangent profile are barely
discernible.
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7.2 Growth of Small Perturbations

We will first consider the growth of small-amplitude
sinusoidal disturbances superimposed on the mean contours and
search for vorticity preserving solutions to the Euler
equations for which the contours are perturbed as

h

Ny (%, t) = S, aj exp(iot) exp(ikx) (7.4)
2
J=1...M, 1'...M
where nj(x, t) is the contour y-coordinate, aj = arj + iaij is

the complex amplitude, k = 2n/A is the wave number and

6 =0, + io; is the complex growth rate (=0

cr/k = phase speed). On substituting equation (7.4) and

= growth rate,

appropriate expressions for the velocity fields into the Euler
equations, we can obtain a coupled set of linear algebraic
equations which may be solved as an eigenvalue problem with
eigenvalue ¢ and a:, j = 1...M, 1’...M’ as part of the
associated eigenfunction. Details of this linear stability
analysis of the piecewise-constant vorticity profiles are
contained in appendix 5.

To obtain a more compact description of the initial
contour geometry we define the eigenfunction in vector

notation as

h
n(x, t) = = + £M™ exp(ior) exp (ikx) , (7.5)
2
where
n = [Mp...My s Myro.omqgrlT 7 (7.6a)
h = [hy...hy , hy...h 1T, (7.6b)
E(M) = [oq...o aM,...al,]T ' (7.6c)

and T represents the transpose.

Figure 7.4 shows the normalized growth rated (-6;/@y,,)

for the four vorticity profiles : (i) The uniform-vorticity
layer M = 1 previously studied by Rayleigh (1880) and more
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recently by Pozrikidis and Higdon (1986); (ii) The piecewise-
constant M = 4 vorticity profile defined in figure 7.2a;

(iii) The piecewise-constant M = 8 vorticity profile defined
in figure 7.2b; and (iv) The continuous profile, o, (y) = AU/2
cosh(y), studied by Michalke (1964). For all profiles, there
are unstable perturbations only for a limited range of k6(D
with the upper limit of this range increasing with decreasing
ratio 8w/h1. All solutions that have 6; # 0 also have o, = 0.

Hence, unstable disturbances do not progress along the layer.

Considering just the piecewise-constant profiles, figure
7.4 shows that the maximum growth occurs for perturbations
with wavelength approximately 7'58m' Perturbations with
wavelengths shorter than about 35@ for M = 4, 8, and 56Co for
M = 1 are stable while the perturbations of maximum growth
rate have k&, = 0.875 and kd, = 0.857 for M = 4 and M = 8
respectively. Although the vorticity for these profiles is
contained entirely in a relatively thin layer, they provide a
close approximation to the perturbation growth rates of the
properly—continuous cosh(y) vorticity profile.

In the linear analysis, the shape of the perturbation is
calculated as part of the eigenvector but its amplitude is
indeterminate. We thus normalize the numerical values for the
aj such that the contour with largest displacement has
magnitude |a| = 1.0. (The contour of maximum amplitude is
invariably the innermost contour Cy » Cwr). The normalization

procedure also imposes a symmetry

Oy = — O (7.7)

where * represents the complex conjugate. This means that, if
we rotate the (x, y)—-axes m radians about the origin in the

physical plane then, the flow configuration is unchanged.

When initializing the contour shapes for the numerical
simulations, only the real part is relevant, hence the contour
Cj is defined as

nj(X) = h. + a

. o Real [aj exp(i¢) exp(ikx)] ’ (7.8)
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where ag is the initial amplitude of the applied perturbation.
For the simulations presented in section 7.4, we will use
simple initial contour shapes that consist of only one, two,
or three linearly combined eigenfunctions. The fundamental
mode is chosen to be the perturbation with maximum rate of
growth and is labelled as £; ™ (o /0 ., ~ 0.192 for M = 4).
In figure 7.4 the fundamental, first subharmonic, and second
subharmonic modes for the M = 4 profile are indicated by
fl<4), f2(4), and f3(4) respectively. Table 7.3 contains the
numeric values for the aj’s in the upper half of the layer
(i.e., Oy J = 1...4) while table 7.4 contains the data
defining the fundamental and first subharmonic eigenfunctions

for the M = 8 profile.

Figure 7.5 shows the variation of eigenfunction shape
for three values of kSw. Here we plot the contours of the

k8m = 0.875, 0.438, 0.219 respectively. To highlight the
difference in shape, each plot has the same wavelength A = 2%,

layer disturbed by eigenfunctions ;1(4), f2(4), £4(4) with

and a stretched y—-axis designed to give the appearance of
similar vorticity thickness. The fundamental perturbation,
£1(4), produces an accumulation of vorticity about the centre
of the domain while the smaller k8m perturbations, with
smaller growth rates, induce a more uniform displacement of
the bounding contours.

As the infinitesimally-small perturbations grow
independently, they may be combined linearly with any relative
phase angle, ¢, and amplitude ratio. However, Corcos &
Sherman (1984) report that an early consequence of
nonlinearity in the vortex dynamics is the selection of a
dominant wavelength. There is experimental evidence (e.g.,
Thorpe 1971) to suggest that, early in the evolution, a single
wavelength dominates the growth and temporarily inhibits the
growth of perturbations having similar wavelengths but with
either smaller growth rates (6;) or smaller initial amplitudes
(ag) -
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Figure 7.6 shows the evolution of an M = 4 layer with
sm/xcomp = 0.0382 and Nj(O) = 60. There is initially no
forced perturbation (a5 = 0) hence, to within machine
precision, the contours were of constant height. The
calculation used code-version B (table 4.1), node-parameter
set 3 (table 4.3) and was performed with 32-bit precision
arithmetic (IBM 3083). Numerical noise, presumably with a
wide bandwidth, seems to have been introduced via the finite-
precision arithmetic and, by t = 40, the vortex dynamics has
produced distinct rolled-up vortex cores and the early stages
of a pairing event. Hence, the t = 40 contours indicate the
presence of a single dominant wavelength (k8m = 0.96) and its
first subharmonic. This wavenumber is close to that of f1(4)
(kSm = 0.875) and the time for its amplitude to increase by
two orders of magnitude tq = 36.

We repeated the calculation (figure 7.7) this time using
code-version C and 32-bit arithmetic. The layer again rolls-—
up and the dominant perturbation (evident as a modulation of
the vorticity distribution by t = 40) has kd, = 1.44 and
tg = 53. The first subharmonic (k6m = (0.72) also grows and,
by t = 75, produces three merging structures in the
computational domain. To isolate the source of the
perturbations we (i) repeated the calculation using code-
version D (i.e. no analytic-patch) with 32-bit precision and
(ii) tried 64-bit precision with code-version C. The results
are summarized in figure 7.8 which shows the t = 60 frames
from figure 7.7 and (i) and (ii) above. In figure 7.8b
(case i), the dominant perturbation is only just discernible

with an amplitude ag/A =~ 0.05/2r. 1In figure 7.8c (case

ii), there is no visibizmgvidence that any perturbation has
grown. We conclude that, initially, perturbations with
effective amplitudes of one or two orders of magnitude larger
than the machine-precision have been introduced through the
finite-precision arithmetic either in the calculation of the
node velocities or in the time-stepping by the differential-
equation solver. Although the analytic-patch procedure
appears to be the major source of this error, it does not

detract form its superiority over the plain numerical
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quadrature (4.14) for "nearly touching" contours as
illustrated in appendix 3.

Given the evidence for a single wavelength and its
subharmonics becoming dominant it seems reasonable to use
initial conditions that are simpler than a perturbation with a
continuous wavenumber spectrum and have only, say, two or
three linearly combined eigenfunctions. Let us consider the
superposition of only the fundamental plus first subharmonic

eigenfunctions. Leaving aside the amplitude a. or the value

of M, we choose the fundamental (fl, k = 2) toohave a phase

¢ = 0 and allow the subharmonic (f2, k = 1) to take the wvalues
¢ = 0, /4, /2. These are labelled as the pure pairing mode,
pairing / tearing mode and the pure tearing mode. The
fundamental eigenfunction redistributes the vorticity of the
layer by producing two slight accumulations of vorticity as in
figure 7.5a while maintaining I' = 1 over the computational
domain. These accumulations will later become the spanwise

vortex cores with spacing Aq-

The effect of superimposing the eigenfunction f, depends
upon the value of the relative phase ¢. Owing to periodicity
we need only consider the range 0 < ¢ < =/2. For ¢ = 0, f,
modulates the y-position of the centroids of the vortex
accumulations while keeping their strengths equal. With
6 ==wn/2, f, modulates the strengths of the vortex
accumulations while maintaining their centroids undisturbed,
and, with ¢ = =n/4, f, alters both the accumulation strengths
and the positions of their centroids. Other values of ¢
(producing a combination of effects) may be taken anywhere in-
between.

Various other perturbations can be obtained by
considering combinations of eigenfunctions f3 and f,. For
example fq + f3 will produce a three vortex redistribution
while f, + £, + £, will produce a four vortex redistribution
having two pairs of accumulations.
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7.3 Initial Amplitude

Ideally, we would like the CD simulation to start from an
initial condition that is governed by the linear approximation
but which has a large enough amplitude to quickly become
nonlinear without great computational expense. As a measure
of nonlinearity in the computed solution, we use the
difference between a linear calculation and the full nonlinear
CD calculation.

Two test cases were chosen to illustrate the effect of
initial amplitude upon the short time evolution. As results
for both cases are similar, only one set will be presented
here. This case corresponds to an initial set of contours
(M = 4) defined by

n(x) = h/2 + a, Real(fy (Vel2x + £, (Melx) (7.9)

o}

where the length of the computational domain xcomp = 2x. Note

that the amplitudes of both perturbation components are equal.

Figure 7.7 summarizes the evolutionary calculations by
plotting the maximum y-coordinate for each of the contours in
the upper half of the layer. For each contour there is a
solid line for the full nonlinear CD calculation and a dashed
line for the linearized calculation where the contours take
the form

n(x, t) = h/2 + a, Real [£1(4) exp (i2x) exp (ioqt)

0

+ £2(4) exp (ix) exp(icyt)] .
(7.10)

Here 6, and o, are the complex growth rates of the fundamental
and first subharmonic (M = 4) perturbations scaled
appropriately with the maximum vorticity (Real(c) = 0).  The
evolution for ao/kl = 0.05/n is shown on figure 7.9%a and, for
the first six time-units, the two solutions are the same to
within plotted accuracy (+2% for the innermost contour). To
check the solution sensitivity, the calculation was repeated
for ay/Ay = 0.01/n (figure 7.9b). After 25 time units, the
innermost contour has reached approximately the same height as
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the aj/A; = 0.05/m case at t = 0. The solutions at this point
are only just beginning to diverge, thus indicating that the
linear solution (7.10) is adequate up to this time. From this
experiment we conclude that ao/kl = 0.05/m is a reasonable

upper—limit to the initial disturbance amplitude for each of
the eigenfunctions.
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7.4 Simulation Results and Discussion

We now present the results of the simulations of the two-
dimensional shear layer for various initial perturbations.
Computations have generally performed with code-version C
(table 4.1) and with node-parameter sets 1 and 2 (table 4.3)
on a CDC Cyber 205 supercomputer (located at C.S.I.R.0). A
summary of the full set of simulation results is contained in
table 7.5. Selected preliminary calculations (e.g. case 3a)
have been presented in Jacobs & Pullin [4].

Computations were started with the vorticity field being
defined by contours as defined in section 7.1 and perturbation
shapes defined by one or more eigenfunctions as described in
section 7.2. The amplitude of the applied perturbation was
close to the start of nonlinear interaction (section 7.3).
Termination of the computation invariably occurred upon
reaching an upper limit set on the computer processing-time
allowed per job (approximately 3 hours on the Cyber 205).

In the numerical calculations, we tried to closely
approximate the nonuniformities of the fully-continuous
vorticity profiles measured in experiments and hence would
have preferred to use the M = 8 profile for our "production
runs". However, the constraints on memory (2 Mwords on the
Cyber 205) and on processing time (CD computational effort
varies as O(NZ) as discussed in section 5.2) forced us to
compromise and perform the bulk of the simulations with the
M = 4 vorticity profile. Sensitivity of the solutions to
initial vorticity profile variations was checked by comparing
particular M = 4 simulations with a uniform-vorticity (M = 1)
layer (case 1) and an M = 8 layer (case 4). A seperate
computation case 3a, performed with an independent code (code-—
version B; table 4.1) indicated that the simulations were
broadly insensitive to the numerical implementation of the CD
algorithm. See figure 5.7 for a comparison of numerical
results.
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Where possible (and convenient) we made use of the shear
layer symmetries and set the lower contours (Cj,) to be images
of the upper contours, thus halving the computational effort
required for the full nonlinear calculation. However, this
could only be done for cases where the phase shift of all of
the subharmonics was set to zero (cases 1, 2, 3, 3a, 4, 7, 9
of table 7.5). Although case 5 has a similar form of

symmetry, it was not implemented in the numerical code.

Numbers of nodes on each contour ranged from
Nj(t=0) =60, j =1...4 to typically Nj(Tmax) = 527, 718, 867,
957. (These figures are obtained from case 3). The largest
number of nodes always occurred on the innermost contours
which were invariably the longest. The maximum number of
nodes allowed on the Cyber 205 runs was restricted to
Npax = 1000 and, on a 6Mb virtual machine on the University of
Queensland IBM3083, was restricted to Npax = 600. The bulk of
this storage was occupied by the integer index-—array that
recorded the segments that needed the "analytic patch"

correction during the velocity calculation (see section 4.4).

Each evolutionary history is presented as a sequence of
snapshots of the bounding contours with nondimensional times,
T, increasing down the page. We regard the simulations as

quantitatively accurate for times T < 71 where, for most

max
cases, Tp,, is the final time reached byathe computation.

(The final frame of case 1 (figure 7.10) is an exception.)

The contours have been reconstructed from the node sets by
joining consecutive nodes by straight line segments. Although
parabolic segments have been used in the calculations, the
straight segments give a better idea of the segment size and

contour resolution obtained.

As well as the pictorial histories, other information
presented includes
(1) length of contour, giving a measure of the interfacial
area of the two-dimensional layer and hence mixing. We
calculate
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length of contour Cj
pj = =

#cores in computational domain.kl A

length of contour Cj

comp
(7.11a)

In flows containing a very fast, diffusion-limited reaction
(e.g., Breidenthal 1981), the rate of product formation is
proportional to the growth rate of the interfacial area.
Before the mixing transition, the reaction is restricted to a
very thin interface between the two free streams as shown in
the laser-induced-fluorescence (LIF) pictures of Koochesfahani
& Dimotakis (1986) (reproduced here in figures 7.12a and
7.21c).

(1i) maximum height of contours

Yy = max ij(x)| . (7.11Db)

This is an easily obtainable (for CD at least) measure of the
layer thickness.

(iii) mean velocity profile

1 rkcomp
<u>(y) = J u, (x,y) dx . (7.11c)
kcomp 0

The profile has been evaluated by calculating the average x-—
velocity <u,> (averaged over 30 x-positions) at N y-positions
across the layer.

(iv) vorticity thickness, as a measure of layer thickness

AU <UL>\vy — <u,>
N 1
8y = = = = , (7.11d)
Onax SUg>N/2+1 T <Ug”N/2

This definition assumes that U/ 9y | nax OCcurs at the midpoint
of the layer. Unfortunately this measure was very sensitive
to the form of the velocity profile <u,>, especially near

y = 0.
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(v) momentum thickness

<u,> 2
0 = Jm { % } }dy i (7.11e)

- AU

[1

.

Being an integral measure, © was less sensitive to the

pecularities of <u,>, and more suitable for comparison with
experimental results. The numerical gquadrature for 6 was
truncated after the N steps of the calculated velocity profile
in (iii) above.

(vi) velocity fluctuation intensities

r 2.1/2 2.1/2
<u’ > <u’y >
4 7
AU AU
1 Acomp
where <u’ 2> = J (u, - <u,>) 2 dx ,  (7.11f)
A
comp 0
1 Acomp
<u’y2> = J (uy)2 dx , (7.119)
xcomp 0
and (vii) Reynolds stresses
1/2
<u’X u’y>
14
AU
1 Acomp
<ulx uly> = N J (uX - <ux>) uy dx ’ (7.11h)
comp “0

and (viii) local vorticity thickness of the braid connecting
the spanwise vortices

M
80, = [ X o
2 521

j (hy = hyp) 1/ @y (7.114)
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where hy,; = 0 and hj, j = 1...M are measured "by hand" from
enlarged plots of the solution contours.

7.4.1 Nonlinear Roll-up

We investigated the first stage of the nonlinear
evolution by calculating the evolution of a layer disturbed by
the fundamental eigenfunction only. Evolution of a uniform-
vorticity (M = 1) layer is shown in figure 7.10 and a
nonuniform-vorticity (M = 4) layer is shown in figure 7.11.
These are cases 1 and 2 respectively in table 7.5. Two
wavelengths of the fundamental are shown in each figure. For
both, the layer thickness was set to kd, = 0.875 and the
initial perturbation amplitude was set to a,/Ay = 0.05/m.
Although this is not the thickness of the uniform-vorticity
layer corresponding to maximum initial growth rate, it does
allow direct comparison of the effects of nonlinearities of
the initial vorticity distribution.

The solutions for both cases have started to degrade by
the final times shown in the figures,hence we have not
included the final simulation times (reached before exceeding
cpu limits). The degradation of this (32-bit precision)
computation is in the form of contours crossing and displaying
spurious features in the braid region. The reason for this
problem is unknown but it did not occur for any of the
computations performed with 64-bit arithmetic.

Both of the figures exhibit the same large-scale
characteristics. Most of the vorticity has been concentrated
into "perturbed-elliptical" vortex cores with only a small
amount of circulation left in the braids that spiral around
the cores. For the M = 4 case, the fluid in the braids is
predominantly the low vorticity fluid. For later times, we
expect that the cores will continue to rotate and deform
periodically and that the braid wrapped around the cores will
be stretched (in-plane) into a tightening spiral.
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In figure 7.12, we compare the M = 4, 1t = 5.284 vorticity
contours and the LIF "picture" taken by Koochesfahani &
Dimotakis (1986) of a mixing layer at Reg = 1750 (before the
mixing transition). The similarity between the two is
remarkable. The digital laser—induced-fluorescence (LIF)
picture has been produced by concatenating a sequence of scans
of the light intensity across the thickness of the layer as
the structure was convected past the sensor. A false colour
image (reproduced here in black & white) was then formed using
digital techniques. 1In this sense it is not an instantaneous
picture of the vortical structure. Also, (i) the flow
visualization techniques rely on a passive marker to
indirectly tag the vorticity field and (ii) the experimental
mixing layer possesses an asymmetry which is noticeable in
figure 7.12a. Despite these points, there is a close
similarity in features of the CD solution, the LIF picture and
also the picture of the forced mixing layer taken by Roberts,
Dimotakis & Roshko (1982).

It is interesting to note the migration of the vortical
fluid in the braids over the adjacent vortex cores after the
roll-up has occurred. In their moderate Re simulations,
Corcos & Sherman (1984) observe a relaxation of the vorticity
distribution after a "climax" state has been reached. This
migration begins to occur at about T = 5 with the braids
taking a shape similar to those in (i) the LIF picture (figure
7.12a); (ii) the vortex sheet calculations of Krasny (1986,
figure 13) and (iii) the initial stages of the vortex
splitting process observed by Freymuth, Bank & Palmer (1984)
for the accelerating flow behind an inclined aerofoil. The
spiralling of the braids around the vortex cores entangles
irrotational fluid from the free streams in a process that we
interpret as entrainment. For a viscous fluid, the vorticity
from the spiral arms would diffuse into the irrotational
fluid, thus completing the mixing process to the finest-scales
of motion.

We also characterize the gross layer evolution by the

growth of the interfacial area (contour length) and the growth
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of the maximum height reached by the contours (Yj). These
parameters are displayed in figures 7.13 and 7.14 for the

M =1 and M = 4 profiles respectively. The interfacial area,
as measured by the contour lengths, is shown in figures 7.13a
and 7.14a for the M = 1 and M = 4 cases respectively.
Initially there is little growth in the contour length as the
vorticity is concentrated into the vortex cores but, as soon
as the braids are formed and begin to wrap around the cores,
there is a rapid increase in the contour length. The growth
rate then approaches a roughly constant value, apparently due
to the in-plane stretching of the spiral filaments around the
vortex cores. These trends are similar to those observed in
the numerical simulations of Pozrikidis & Higdon (1985) and
the water tunnel experiments of Breidenthal (1981) although
the latter experiments included a mixing enhancement due to
three-dimensional motions.

The plots of Yj versus time indicate that the layer
thickness reaches approximately 40%-60% of the (maximum)
wavelength kl. This is consistent with the results of
Pozrikidis & Higdon (1985). These plots (especially 7.14b)
also exhibit the low frequency fluctuations in thickness due
to the "nutation" of the nearly elliptic vortex cores. This
effect was first identified (and the term coined) by Zabusky &
Deem (1971) in a CIC simulation of a periodic vortex street.
In figure 7.15a we show the variation of momentum thickness
with time for the M = 4 simulation. It shows essentially the
same features as the Yj plots with an initial growth during
roll-up and oscillations at later times due to the core

nutation.

The variation in vorticity thickness, 85, of the M = 4
braid midway between the cores is plotted on a logarithmic
axis in figure 7.15b. The measured thicknesses are denoted by
circles while the broken line indicates the expected
asymptotic variation of 82 for a model point-vortex array with
vortices of strength 'y and spacing Xl. Once the vorticity
layer has collapsed into compact cores (say by T = 3.040 in
figure 7.11) the slope of the 82 curve approaches that of the
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model (i.e., d/dt[ln(Sz/Kl)] = -n/2). The plot has been
truncated at t = 4.053 owing to the difficulty in accurately
measuring the braid thickness beyond this time.

The mean velocity profile for three times during the
M = 4 simulation are shown in figure 7.16. For all times
shown, the velocity field has maintained similarity with the
initial profile. This agrees with the experimental
measurements by Winant & Browand (1974) in the nonturbulent
region of the mixing layer (reproduced in figure 7.16d). Note
that the asymmetry of the experimental measurements is not

present in the temporal shear layer simulation here.

In figure 7.17, we compare the velocity fluctuation
intensities with the experimental measurements of Ho & Huang
(1982) for the forced mixing layer. We have reproduced their
figure for the mode I mixing layer which is forced at a
frequency near the most unstable frequency resulting in the
roll-up of the layer and the temporary suppression of the
subharmonic interactions. At x = 11.5cm there is a well
defined depression of the x-velocity (longitudinal)
fluctuation intensity near the axis of the layer due to the
close alignment of the row of vortices. These features
compare qualitatively with those for the 17 = 4.053 and 1t =
5.066 plots of u,’ for the CD simulation. For x 2 19.1cm in
the experimental measurements, the comparison is no longer
valid as the subharmonic perturbations have grown and merging
events have occurred.

7.4.2 Primary Mode Plus First Subharmonic

We now consider simulations of the two-dimensional layer
in which the initial disturbance is a linear combination of
the fundamental eigenfunction and its first subharmonic. For
merging of the primary vortices to occur, both the fundamental
plus its subharmonic need to be present. Ho & Huang (1982)
have shown that, if the layer is forced by just the
fundamental eigenfunction, the subharmonic is suppressed and
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merging delayed. Previously Riley & Metcalfe (1980) showed
that, if Jjust the subharmonic is present, then the layer will
roll-up on a larger wavelength without the merging process.
Although the fundamental and subharmonic eigenfunctions may be
combined with any relative phase and amplitude, we will
investigate only the cases of equal amplitude ay/Aq = 0.05/zn
and phase shifts of ¢ = 0, /4 and n/2. We expect this
selection to be representative of the full range of parameters
but note that these amplitudes allow the initial domination of

the evolution by the fundamental eigenfunction.

First we consider the evolution of the M = 4 nonuniform-

vorticity layer with an initial perturbation defined by

n(x) = h/2 + 0.05 Real[f; e?¥ + £, e10% &1X) | (7 12

with ¢ = 0. This combination of eigenfunctions leads to a
pairing interaction in which two vortex cores (with initial
spacing, kl) coalesce into a single structure. In figure
7.18, only one wavelength of the computational domain

(A

has been disturbed to produce two slight accumulations

comp = 2Ahq) 1is shown. At 17 = 0 the vorticity distribution

(fundamental) whose centroids have been offset from the x-axis
(subharmonic) .

The early stage of the nonlinear roll-up is a similar
process to that shown for the fundamental alone. However, the
growth of the subharmonic has become prominent by 1 = 2.533
with the vortex cores approaching each other and beginning to
rotate about each other. By 1 = 4.559, the vortex cores have
coalesced into a single, elongated structure connected to the
rest of the array (not shown) by an extremely thin braid.

This braid is so fine that we expect its global dynamical
effect to be negligible thus justifying the use of a form of
contour surgery (Dritschel 1986a) to remove the braids for
long-time simulations. Also evident in the final two frames
is the initial stage of ejection of vortex arms typical of the

coalescence of two equal and otherwise isolated vortices (see
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chapter 10; Christiansen & Zabusky 1973; Zabusky, Hughes &
Roberts 1979).

Figure 7.19 shows close-ups of sections of the bounding
contours at four times during the evolution. The degradation
of the contour smoothness is evident as 1 increases but,
simultaneously, the detail of the vorticity distribution has
increased markedly. These fine-scale features are most
obvious at T = 5.066 where the vortex filaments in some places
are of the order of the plotting-pen thickness. Although the
tracking of these vortex filaments is one of the computational
disadvantages of the CD method, the resolution obtained in
figures 7.18 and 7.19 could not be obtained with the
inherently grainy vortex—element methods.

The sensitivity of the layer evolution to M is tested by
performing essentially the same simulation with M = 8 (case 4,
table 7.5) shown in figure 7.20. The initial thickness of the
layer is slightly different as the maximum growth rate for
M = 8 occurs for kd, = 0.857 according to the linear theory
(section 7.2). With the extra contours to be tracked, we
could not compute the evolution to the same stage as for the

M = 4 case but, up to the time 1 = 3.799, the main features of
the evolution are very similar. To emphasise this point we
directly compare corresponding M = 4 and M = 8 frames at
T = 3.546 in figure 7.21. 1In the region between the two
approaching (M = 8) vortex cores, there are 16 contours
plotted in a section of the braid having the width of the
plotting pen. Overall, the dynamics are therefore fairly
insensitive to the initial vorticity profile. The braid
between the pairing structures (i.e. at x = 0) is slightly
thicker than for the M = 4 case but, otherwise, the
intensification of vorticity gradients is essentially the
same. Overlaying the figures 7.2l1a and 7.21b shows that the
difference in the position of the outer contour is only

approximately 1% of A (=2% of Aq).

comp

The vortex histories produced here are very similar to

those generated in other numerical simulations and observed in
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experiments. Figure 7.22 shows (a) the t = 5.066 frame from
our M = 4 inviscid simulation, (b) the 7 = 3.0 frame from the
Reg = 0(100) simulation by Corcos & Sherman (1984) and (c) the
LIF image of vortex coalescence in a plane mixing layer taken
by Koochesfahani & Dimotakis (1986). The remarkably similar
large-scale features in all three pictures provides supporting
evidence for the hypothesis that the large-scale vortex
dynamics are only weakly dependent on Re (Zabusky & Deem
1971). This point is echoed by Davis & Moore (1985) who
showed that changing the Reg for their simulations from
1.4x10% to 35 only "smudged" the individual vortex regions
without greatly affecting the global dynamics.

By the final times reached, there seems to be less
entanglement (entrainment) of irrotational fluid into the
vortex structure than for the simulations of the layer with
the fundamental eigenfunction (£1) only. This appears to be
consistent with the measurements of Hernan & Jimenez (1982)
which showed that the entrainment occurred mainly between
pairing events. An explanation for this may be that the
entrainment process is relatively slow and that, as noted by
Acton (1976), the pairing (and coalescence) process is very
rapid, once started.

The growth of the interfacial area for the M = 4 layer,
as measured by the contour length, is shown in figure 7.23a.
The curves are very similar in form to the corresponding
curves in figure 7.14a (fundamental only) except for the
earlier starting time for rapid growth. (This is due to the
larger initial amplitude for the fundamental eigenfunction in
this pairing case.) Even in the presence of the pairing
interaction, the growth of the contour length appears to be
determined by the roll-up of the spiral filaments about the
vortex cores.

The layer thickness, as measured by Yj is plotted for the
M = 4 layer (case 3) in figure 7.23b. The growth is initially
similar to that of the fundamental only (case 2), but at later

times, the growth is continued in a roughly linear manner



137

until the thickness is about 70% of the longest allowable
wavelength (the computational domain, xcomp)' At this point
we expect the thickness to begin oscillating as the vortex
structure nutates in a similar manner to that in case 2.

These features are more clearly evident on the plot of
momentum thickness versus time, 1, in figure 7.24a where the
reduction in thickness is evident at T = 5.5. The growth
rates shown here do not compare well with the experimental
measurements of Winant & Browand (1974) for the unforced
mixing layer. They show an initial growth that varies roughly
as the square root of down-stream distance (equivalent to =
here) and an approximately linear growth after that. Unlike
the measurements of the single vortex history here, the
experimental measurement of layer thickness is derived from an
ensemble average taken over a large number of structures with
a statistical distribution of characteristic size and spatial
scatter (Roshko 1976, 1980).

Four representative plots of the mean velocity profile
during the pairing event are shown in figure 7.25. There is a
strong qualitative similarity in the features of these
profiles and those of the measurements made by Ho & Huang
(1982) for the "mode II"™ mixing layer which is forced at the
first subharmonic of the most amplified frequency. Their data
is reproduced in figure 7.25e. Note the difference in the
measured profile relative to the hyperbolic-tangent velocity
profile for the CD calculations at time 1 = 4.053 the vortex
centroids approach a maximum displacement from the axis of the
layer. This variation is also evident in the experimental
measurements at a streamwise position x = 14.0 where the
mixing layer vortices for both the CD simulation and the
experimental measurements are in a roughly similar

configuration.

The calculated Reynolds stresses across the thickness of
the layer (see figure 7.27) vary during the merging process in
a manner similar to the experimental measurements of Oster &
Wygnanski (1982) and the computational measurements of Aref &
Siggia (1980) and Riley & Metcalfe (1980). The change in sign
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of the stresses has been discussed in Ho & Huerre (1984) in
terms of the orientation of the merging structure and the
associated (induced) velocity field. The stresses are
positive and increasing for T = 2.026, 3.04 while the velocity
fluctuations are approaching a maximum but become negative for
T 2 5 when the merged structure passes through a "climax"
state and the velocity fluctuations begin to relax. In the
nomenclature of Riley & Metcalfe (1980) this relaxation '
produces a counter—-gradient momentum flux and an associated

decrease in the layer momentum thickness (figure 7.24a).

Figure 7.24b shows the wvalue of 8, measured at a point on
the braid midway between the coalescing structures.
Superimposed on the late time section of the curve is a
straight (broken) line indicating the asymptotic variation of
82 according to the point-vortex model (equations 6.5 and
6.8) . The strength and spacing of the model array is 2’y and
2hq respectively, thus giving a slope d/dt[1n(8,/Aq)] = -m/4.
Note that 82, here, decreases at a higher rate in
2.0 < 1 < 3.0 due to the stronger strain induced by the
rolled-up I'y vortices with an initial spacing xl. Beyond
T = 4.559, the braid thickness was difficult to measure
because the contour description had degraded. When magnified
to a scale large enough for thickness measurement, the
contours exhibited oscillations with amplitude of order (braid
thickness) on a wavelength of order (node spacing). The
section of braid between the two approaching vortices 1is
subject to a higher strain and consequently is much thinner
than the braid between adjacent vortex pairs (see e.g., figure
7.20) .

We now investigate the effects of changing the relative
phase, ¢, between the fundamental and first subharmonic
eigenfunction. For small amplitude disturbances, the effects
have been discussed in section 7.2 but for the nonlinear

evolution the effects are dramatic.

Setting ¢ = ®/2 gives the tearing mode in which the

vorticity distribution now consists of a large and a small
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vorticity concentration with centroids still on the x-axis.
Figure 7.28 (case 5, table 7.5) shows the evolution of the
layer initially with this distribution. The vorticity from
the braid region is now unequally shared in the early stages
of roll-up resulting in two vortex cores withsignificantly
different strengths (circulations). The process is similar to
the "shredding interaction" described by Patnaik, Sherman &
Corcos (1976). The larger vortex has 1.2I'y while the smaller
core has 0.8T'; where I'j is the nominal circulation of a
primary vortex. See figure 7.31 for the variation of vortex
core strengths with time. By the final time shown in figure
7.28, the processes of roll-up combined with tearing appear to
be complete and the vortical fluid accumulated by the larger
core in thick filaments (near the core) are beginning to

migrate away and over the top of the smaller vortex core.

The inviscid tearing simulation has different long time
behaviour to the moderate Re simulations of Riley & Metcalfe
(1980) . Although their simulation at t = 24 has a very
similar vorticity distribution to the CD solutions at
T = 4.433 (as shown in figure 7.27) they indicate that the
fluid from smaller vortex will be completely redistributed
into the larger cores. However our inviscid simulations
suggest that the smaller core is now stable to the tearing
instability (Moore & Saffman 1975). As well as looking
similar to the simulation containing the fundamental only, the
other characteristics of layer evolution are similar. The
growth of layer thickness as measured by the maximum contour
height Yj (figure 7.30b) and momentum thickness (figure 7.31la)
and the growth of contour length Py (figure 7.28a) all closely
resemble the corresponding plots for the single mode
calculation in section 7.4.1.

For any relative phase 0 < ¢ < ®/2, the disturbance may
be decomposed into a pairing component and a tearing
component. Pairing is the stronger of these two effects
(Acton 1976; Riley & Metcalfe 1980; Corcos & Sherman 1984) and
so when there is a random combination, we expect the pairing
process to occur most frequently as observed by Hernan &
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Jimenez (1982). 1In figure 7.32 we show the evolution of a
layer with ¢ = n/4 and o,/A; = 0.05/n (case 6, table 7.5).
Initially tearing produces two unequal vortex cores which at
later times approach each other and coalesce into a single
structure in much the same way as the pure pairing case (case
3, figure 7.18). 1In figure 7.33, we show two examples of the
vector velocity field for this combined tearing/pairing case.
At © = 3.040, centres are evident near the vortex centroids
and the stagnation points near the braids have become obvious.

7.4.3 Primary Mode Plus Second Subharmonic

The next level of complexity in the interaction of
subharmonics is the three-vortex event. Examples of three
vortex cores coalescing into a single structure may be found
in the experimental observations by Winant & Browand (1974)
and Hernan & Jimenez (1982) for the unforced mixing layer and
by Ho & Huang (1982) for a forced layer. Numerical '
simulations by Aref & Siggia (1980) also show multiple vortex

events.

In particular, we will consider the evolution of the two-

dimensional shear layer with an initial condition
N(x) = h/2 + 0.033 Reallfy (4) &31% 4+ £, (4) oixy (7 13

The computational domain now contains three wavelengths of the
fundamental eigenfunction. Figure 7.34 shows the layer
evolution (case 7, table 7.5) up until a time of 1 = 5.224.
Initially the layer rolls into characteristic cores and, as
the subharmonic grows, the two outer cores begin to rotate
about and approach the central core. By the final times
shown, the vortex cores have merged into a single elongated
structure which contains much fine-scale detail, especially in
the regions where the braids interact with vortex cores.

Inset in the last frame is a section of a photograph taken by
Winant & Browand (1974). This photograph shows a three-vortex
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structure which is very similar to to that produced in our

numerical simulation.

Figure 7.35a is a close-up of one of the outer vortex
cores at T = 5.224. The braids have become extremely thin in
places but have still maintained their coherence. There are,
however, places where the contour smoothness has degraded
substantially. The complexity of the vorticity distribution
is illustrated in figure 7.35b which is a vorticity profile
along the section through the three vortex cores. The regions
indicated by a "*" in the close-up of the structure contain
irrotational fluid that has been entangled in the vortical
fluid of the braids. This is another example of the
entrainment mechanism mentioned in section 7.4.1. Four close-
ups of the contour evolution are contained in figure 7.36. As
T increases the contour description degrades more quickly than
for case 3 (figure 7.19). Both of these of these computations
used node-parameter set 2 but the three-vortex event evolves
on a smaller spatial scale. This indicates that, for optimum
performance of the CD algorithm, the node parameters need to

be tuned to the scales of motions that are expected to evolve.

Figure 7.37a shows the growth of the interfacial area
with time. The plots here are almost identical with those
from the two-vortex pairing up until 7 = 4.0 with rapid growth
commencing as soon as the braids were formed. Beyond this
time, the growth rate for the three-vortex case (here) is
slightly less than that for the two-vortex pairing simulation.
The growth of the layer thickness is again shown by both the
maximum contour height, Yj,and the momentum thickness, 6, in
figures 7.37b and 7.38 respectively. As would be expected
from inspection of vorticity distribution in figure 7.34, the
evolution is still in the rapid growth region before the
structure reaches its climax. (The axis joining the vortex

centroids is not yet aligned with the cross-stream direction.)
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7.4.4 Primary Mode Plus First and Third Subharmonics

In an attempt to study the first and second amalgamation
events using the CD technique, we performed two simulations

with an initial perturbation

n(x) = h/2 + 0.02 Real[f; (1) e?ix 4 £, (4) (16/2 2ix

4

v £, oix

(7.14)

The computational domain now contains four wavelengths of the
fundamental eigenfunction and the initial amplitude

ay/Aqy = 0.04/n is 80% of the initial amplitude for case 3
(table 7.5).

Figure 7.39 shows the evolution of the vortex layer for
¢ = 0 (case 8). There is the characteristic roll-up of the
vortex cores followed by the first pairing event which
produces two structures very similar to those produced in
figure 7.17 (case 3). At time T = 5.066 the evolution of the
structure is not quite as advanced as that in case 3 because
the initial disturbance amplitude used here is slightly
smaller. The computation was terminated at T = 5.066 owing to
limitations on the available computing resources. Although
the effect of f3 is beginning to grow by the final time frame,
we estimate that the second amalgamation event would not be
finished before © = 15 and that the outcome would be similar

to the mode IV forced mixing layer of Ho & Huang (1982).

In figure 7.40 we show the early evolution of the layer
with ¢ = m/2. This perturbation produces a tearing effect and
different sized primary vortex cores labelled (1)-(4) at
T = 3.040. Although the simulation has been terminated at
this point we guess that the first concentration event will
involve the pairing and coalescence of cores (2) and (3).

This may be followed by a coalescence of this larger structure
with vortex core (4). Examples of such a two stage
coalescence have been observed in the Karman vortex street
experiments of Matsui & Okude (1982) and the forced mixing
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layer experiments of Ho & Huang (1982). A multi-stage
concentration as proposed would lead to the scattering of the
vortex cores about the x-axis (and a corresponding growth in
layer thickness) in a manner similar to that observed in the
numerical CIC simualtions of Aref & Siggia (1980).

7.5 Summary

Using a piecewise-constant vorticity distribution we have
been able to qualitatively reproduce, at Re = o, some of the
interesting features of both forced and unforced mixing layers
that have been observed in experiments and previous numerical
simulations. 1In the simulations here the layer vorticity,
when initially disturbed by a low amplitude perturbation, is
redistributed into compact, nearly-axisymmetric vortex cores.
Although the layer evolution appears to be insensitive to the
initial vorticity profile, it is extremely sensitive to the
composition of the applied disturbance. The combination of
the fundamental eigenfunction with its first subharmonic may
lead to either the pairing of adjacent vortex cores or the
roll-up of the layer into vortex cores of different strengths
for the values of ¢ = 0 and n/2 respectively. Intermediate
values of ¢ will most likely result in the pairing of adjacent
vortices of varying strengths. Similarly, disturbing the
layer with a combination of the fundamental eigenfunction and
its second subharmonic results in the layer roll-up and
subsequent interaction of sets of three vortices.
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Table 7.2a‘:

Table 7.2b :
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Vorticity profile for the upper half (y > 0) of the

M = 4 shear layer, A

comp

vorticity thickness as shown.

= 2m, 6w/h1 = 0.6. Initial

5 ' . h,
w J “j j
0.875 1 ~0.0498 1.458

2 -0.117 0.875
3 -0.158 0.510
4 -0.182 0.236
0.4375 1 ~0.0995 0.729
2 -0.234 0.437
3 -0.316 0.255
4 -0.363 0.118
0.2917 1 -0.150 0.486
2 -0.315 0.292
3 ~0.475 0.170
4 ~0.546 0.0786
0.2188 1 -0.199 0.365
2 ~0.486 0.219
3 -0.633 0.128
4 -0.728 0.0590

Vorticity profile for the upper half (y > 0) of the

=-1, § = 0.429.
w

M = 8 shear layer, )‘comp = 27 rcomp
hj u)j h.i
1 -0.0262 0.823
2 - 0.0605 0.7078
3 -0.1063 0.6008
4 -0.1631 0.5020
5 -0.2199 0.4033
6 -0.2755 0.3127
7 - 0.3360 0.2140
8 - 0.3706 0.1152
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Table 7.3 : Complex amplitudes that define the sinusoidal perturbations

shapes for ther M = 4 shear layer.

J aj
(4) _ -(4)

f1 . (kéw = 0.875) f2 , (kém = 0.438)
1 -0.248 - i0.339 - -0.194 - i0.652
2 -0.331 -~ i0.479 -0.211 - i0.772
3 -0.393 - i0.667 -0.206 - i0.883
4 -0.341 - i0.940 -0.137 - i0.991
. (4) (4) _
3 f3 s (kcsm = 0.292) £, (kdw = 0.219)
1 -0.143 - i0.762 -0.113 - i0.826
2 -0.151 - i0.842 -0.115 - i0.897
3 -0.137 - i0.931 -0.106 - i0.955
4 -0.0843 - i0.997 -0.0585 - i0.998

:Table 7.4 : Complex amplitudes that define the sinusoidal perturbations

shapes for the upper half of the layer M = 8.

j o,
f§82 (ks = 0.857) ) fgsz (k§_ = 0.429)

1 0.220 - 10.315 ~0.176 - 10.621
2 ~0.248 - 10.355 ~0.188 - i0.660
3 -0.276 - i0.397 ~0.194 - i0.701
4 -0.306 - 10.448 -0.206 - 0.738
5 -0.339 - 10.511 -0.210 - 10.786
6 ~0.370 - i0.595 ~0.209 - 10.841
7 -0.386 - 10.735 -0.215 - 10.887
8 -0.329 - i0.994 ~0.131 - 10.991
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¢y AU/2
c, | —
AU/2 C
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y w=0 / 4
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Figure 7.1 : A single wavelength of an x-periodic shear layer consisting
of M = 4 uniform-vorticity regions. The bounding contours
(primed subscripts indicate contours below the x-axis) are
disturbed by a small amplitude perturbation. The
associated mean x-velocity field, u(y) and vorticity

cross-section are shown to the right.



150

1.0 ——<=

Ynax \\\\
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Figure 7.2 : Normalized vorticity distributions for (a) M = 4 and
(b) M = 8 piecewise-constant vorticity profiles. The
profiles are symmetric in y = 0. The solid curve
approximates a Gaussian distribution as defined in

equation (7.3).
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Figure 7.3 : Velocity profiles for the undisturbed shear layer.

(a) M =1 1linear-velocity variation
(b) M = 4 piecewise-linear velocity
(c) M = 8 piecewise-linear velocity

(d) hyperbolic—tangent\velocity u = tanh(y)
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Figure 7.4 : Normalized growth rates for four vorticity distributions.

(1) single region, M = 1, of uniform vorticity

(2) M = 8 piecewise-constant vorticity profile as defined
in table 7.3

(3) M = 4 piecewise-constant vorticity profile as defined
in table 7.2

(4) the continuous vorticity profile (AS5.11) corresponding
to the hyperbolic-tangent velocity profile (Michalke,
1964)

The primary mode, first subharmonic, and second subharmonic

for the M = 4 vorticity profile are labelled f1(4) f2(4)

and f3(4) respectively.
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Figure 7.5 :

2m

Perturbation shapes for (a) fundamental mode f( )
(b) first subharmonic fé ) and (c) third subharmonlc f A(AX
Note that the y-scale has been expanded by factors of

2 and 4 in parts (b) and (c) respectively.
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Figure 7.6 : Evolution of an initially undisturbed layer with

thickness dm/xcomp = 0.24/2 ™. A 32-bit implementation

of code-version B was used for the computation. Times

t as shown.



- t = O
L Il 'l 4 1 1 [
i t =40
— | } 4 L | [
i t =60

Figure 7.7 : Evolution of an initially undisturbed layer with
6 )\ - _h4 PR . .
w/ comp 0.24/27. A 32-bit precision implementation
of code-version C was used for this calculation.

Times t as shown.
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N t =60

—~—~— B s——
—_——————— e —
i t = 60

" t = 60

i 1 1 1 1 1 ] 1

Figure 7.8 : State of the éw = 0.24 layer at t = 60 for three separate
computations.
(a) code-version C (table 4.1), 32- bit precision, numeric
quadrature plus analytic patch. (figure 7.7)
(b) code-version D, 32-bit precision, numeric quadrature only.
(c) code-version C, 64-bit precision, numeric quadrature plus

analytic patch.
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i 1 i 1 1 ] i 1 1 S |

0.0 8 16 24 32 40

Figure 7.9 : Variation of maximum contour height for

(4) (4)
Of1 + a0f2
vorticity profile

(a) ao/kl 0.05/m ,
(b) aO/Ai = 0.01/7 .
Solid lines show the CD solution while dashed

perturbation o to the M =4

lines show the linear sloution. Times, t are in

=1,>\ = 2m.

computational units with T
c comp

omp
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T= 2.026

Figure 7.10 : For caption see over.
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T = 4.053

P

Figure 7.10 : Evolution of a uniform-vorticity layer disturbed by
a single mode perturbation , 6w /A =0.875/2m,
a0/>\l = 0.05/27m 1Initial disturbance

f1 (case 1, table 7.5). Times T as shown.
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Figure 7.11 : for caption see over.






Figure 7.12 :
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(a)

(b)

Comparison of CD solution with experimental
observation.

(a) Diéital Laser-Induced-Fluorescence picture of the
plane mixing layer showing a single vortex structure.
This figure is a reproduction of figure 7a from
Koochesfahani & Dimotakis (1986). (The original
figure was in colour.) |

(b) CD solution (case 2) at T = 5.284 ( t= 210)
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(a)

0.0 1.0 2.0 3.0 4.0 5.0 6.0

time, ¢

(b)

0.0 1 1 1 l 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0

time, T

Figure 7.13 : (a) Growth of contour length Py for case 1 (table 7.5).

(b) Variation of Y1 for case 1.
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Figure 7.14 : (a) Growth of contour length p. for nonlinear
roll-up (case 2, table 7.5).

(b) Variation of Yj for case 2.

.0

.0
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Figure 7.15 : (a) Variation in momentum thickness for case 2.
(b) Variation in braid thickness plus asymptotic

limit superimposed as a dashed line.
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Figure 7.16 : Mean-velocity profiles <u_> at various times during
the nonlinear roll-up of the shear layer, case 2,
(table 7.5) compared with experimental measurements
fromWinant and Browand (1974).
(a) T=0, (b) T=2,026, (c) T = 5.066
(d) Experimentally measured mean velocity profile in
the nonturbulent region of a plane mixing layer.
(Winant & Browand 1974).
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Figure 7.17 :

v/ v/ 0

Velocity fluctuation intensities for a single mode roll-up
(a) Experimental measurements of the longitudinal velocity
fluctuations reproduced from figure 28 in Ho & Huang, 1982,

CD calculation, case 2:

() t=2,026 (c) T=3,040 (d) T = 4.053 (e) T = 5.066.
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—_—— ——
B — \——/
—

=0

Figure 7.18 : Evolution of the M = 4 shear layer showing a single
pairing event 6w/)\1 = 0.875/2m aO/A1 = 0,05/m,

initial disturbance fga) + féﬁ). (Case 3, table 7.5)






Figure 7.18 : continued.
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Lt = 2,026 L T = 3,04

5 T =4,053 T = 5,066

Figure 7.19 : Four magnified views of the contours for the pairing

calculation in figure 7.18 (case 3). Times T as shown.
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Figure 7.20 : Evolution of an M =
pairing event dwlkl

initial disturbance

8 shear layer showing a single

= 0,875/2m, ao/x1 = 0.05/7

(8) (8)
£+ 5

Case 4, table 7.5
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Figure 7.22 : Comparison of layer evolutions involving a pairing

event :

(a) CD simulation of an inviscid shear layer
(case 3, figure 7.17)

(b) finite-difference calculation at Re; = 100

reproduced from figure & of Corcos & Sherman (1984),
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(c)

Figure 7.22 : (c) Digital Laser-Induced-Fluorescence picture
of the plane mixing layer at Red = 1750 showing the
coalescence of two vortices into a single structure.
This figure is a reproduction of figure 7b from

Koochesfahani & Dimotakis (1986).
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time, T

Figure 7.23 : (a) Growth of contour length Pj for pairing event (case 3)

(b) Variation of Yj for pairing event (case 3).
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Figure 7.24 :
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(a) Variation of layer momentum thickness, 6,

for pairing event (case 3)

(b) Variation in braid thickness for case 3. The

0

asymptotic limit is superimposed as a dashed line.
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Mean velocity profiles for the pairing event

(case 3). _
(a) T=2,026 (b) 1T

= 3;04 (¢) T=4,053 (d) T = 5.066.
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Figure 7.25 continued

mixing layer (equivalent to the pairing
simulation, case 3) measured at various
streamwise stations. This figure is

reproduced from figure 23 in Ho and Huang (1982).
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Figure 7.26 : Velocity fluctuation intensities for the pairing
event (case 3)
(a) Experimental measurements of the longitudinal
velocity fluctuations in the mode II mixing layer
reproduced from figure 29 in Ho and Huang (1982).
(b-e) CD calculation : (b) t = 2.026 (c) T = 3.04
(d) v =4.053 (e) T = 5.066,
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Figure 20  Evolution of Reynolds-stress cross-stream distribution with downstream distance

in a forced turbulent mixing layer (from Oster & Wygnanski 1982 and Browand & Ho 1983).

Ji < f,. The measurements were performed at R = 0.25, but the visualization refers to

R = 0.43. Comparison is only qualitative.
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Figure 7.27 : Reynolds stresses for the pairing event (case 3)
(a) Expérimental measurements from Oster and

Wygnanski (1982), This figure has been reproduced
from Ho & Huerre (1984).

(b-e) CD calculation : (b) T
(d) =

2.026 (c) T = 3.04
4,053 (e) T = 5.066.
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: Evolution of an M = 4 shear layer showing a

tearing event Gw/k1 = 0.875/2m aO/A = 0.05/m,
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initial perturbation f - (case 5, table 7.5).






TIT VT TV vy rey vy vrvry vy rver vy

rfvavvvvvvvvvvvarvvv

]

Figure 7.29 :

Comparison of the CD calculation (tearing mode,
case 5) with a calculation at Re=x 400

(a) T = 4.433 solution from case 5 (figure 7.26)
(b) Spectral method solution at t = 24 reproduced
from Riley & Metcalfe (1980), figure 14 c.
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Figure 7.30 :
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time,T
(a) Growth of contour length Py for a tearing
event (case 5).

(b) Variation of Yj for tearing event.
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Figure 7.31 :

time, T
(a) Variation of momentum thickness for tearing
event (case 5).
(b) Variation of vortex strengths P/Fl(O) for
vortex 1 and 2 for the tearing event. Vortex 1
is defined as being the vorticity in 0 < x < Al,
while vortex 2 is the vorticity in Al <x < 2Al

where A = 2T,
comp
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Figure 7.33 : Vector velocity plots for the combined tearing/
pairing event, (case 6).
(a) 7 1,013
(b) Tt = 3.040
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Figure 7.34 :

Evolution of an M = 4 layer showing a three

=0.875/2m a, /X, = 0.05/m,
1 ) 0""1
+ f3 (case 7, table 7.5)

Tic mark spacing is 3%1/8.

§
vortex coalescence. w/A

4
initial disturbance fg )
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Figure 7.34 continued : Inset on the solution at 1= 5.224

is a reproduction of part of figurev6a (x = 21.0)
from Winant & Browand (1974). Note that the shear

across the layer is in the opposite sense.
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(a)

l w (b)

Figure 7.35 : (a) Magnified view of the vortex contours for
case 7 (figure 7.32) at T = 5.224, Tic mark
spacing is 3%1/8.
(b) Vorticity profile along the section AA.
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‘Figure 7.36 : Four magnified views of the contours in case 7
(figure 7.32). Times T as shown, tic mark .

spacing = 2 %1/20 T
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Figure 7.37 : (a) Growth of contour length Py for three-vortex-
event (case 7).

(b) Variation of Yj with time (case 7).
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T = 5.066

0 2}1 4%1

Figure 7.39 : Evolution of an M = 4 shear layer § /X, = 0.875/27

W
aO/A1 = 0,04/7m, initial disturbance fgz) + f§4)

(case 8, table 7.5).

el
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Figure 7.40 : Evolution of an M = 4 shear layer Gw/k1 = 0.875/2n
?/Al = 0,04/m, initial disturbance
f14) + elﬁ/zféa) + fia), (case 9, table 7.5).
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8.0 SECONDARY STREAMWISE VORTICES

We now explore the evolution of prototype structures for
the streamwise vorticity superimposed upon the quasi-two-
dimensional base flow of spanwise vortices. Here, we will
take the Corcos-Lin model of the secondary vortices as
starting point and eschew further consideration of the
(unknown) formation mechanism. This CLS model assumes that
the secondary vortices consist of an array of highly
flattened, ribbon-like vortices with alternating circulations
of magnitude I'y. Locally, the vortices are aligned with the
braid and evolve in the ambient three-dimensional stretching
strain field provided by the primary (spanwise) vortices. The
model (cylindrically-symmetric) flow is exactly periodic in
the spanwise direction and consists of rectilinear vortices
whose axes are aligned with the extensional axis of a uniform
plane stretching strain.

Previous simulations by Corcos & Lin (1984) have
simulated the secondary vortex flow configuration up to
Re, = 0(500) where Re, = I'y/v. However, we are interested in
high resolution simulations at the nominal limit Re, = e and
so use the CD method to provide evolutionary histories for
selected piecewise-constant vorticity distributions. Corcos &
Lin find that the vorticity distribution collapses into
compact, nearly-axisymmetric cases on two length scales; one
on the wavelength of the vortex array (lz) and another on the
thickness of the individual vortices (85) .

8.1 Flow Configuration

Consider the interaction of an array of nonuniform
inviscid vortices (the secondary vortices) with an applied
stretching-strain field. 1In Cartesian (x, y, z)-coordinates,

the full unsteady velocity field, u, has components



200

Uy = Vo (x,y,t) ' (8.1a)
uy = Vy(x,y,t) - y(t) v o, (8.1Db)
u, = Yy(t) z , (8.1c)

Here, the terms containing y(t) define the uniform (y, z)-
plane-strain field induced externally by the primary vortices
and Vr Vy are the components of the self-induced velocity
field of the secondary vortices. Referring to figure 8.1, z
is directed locally along the braid of the nominally two-
dimensional primary vortex motion, x lies in the spanwise
direction and y is normal to (x,z). Note that these
coordinate directions are not the same as those defined for
the primary, quasi-two-dimensional motions. The only nonzero
component of the vorticity field is 0, (x,y,t). The velocity
and vorticity fields of equations (8.1), (8.2) are such that
vortex lines are of infinite extent and are always parallel to
the z-axis.

The secondary vortex structure at the midpoint of the
braid is modelled here as an infinite x-wise periodic array
consisting of one row of identical vortices with centroids at
y =0, x = (p + 1/4)Ay, P = -»... and circulation -I',, and of
a second row of identical vortices with centroids at y = 0, x

(p - 1/4)%2, P = —e ... e and circulation I'y. Figure 8.2
shows two members of the array corresponding to p = 0, which
we denote by vortex 1 (right hand) and vortex 2 (left hand)
respectively. Geometrically, vortex 2 is the mirror image of
vortex 1 in x = 0, and it has circulation equal in magnitude,
but opposite in sign, to that of vortex 1. At time t each
vortex appears in (x, y) cross—section as a nested set of M
nonintersecting contours which delineate discontinuities in
the piecewise—constant o, field. We denote the contours of
j(t)l
counting j = 1 ... M from the outermost contour inwards. The
domain of the (x, y)-plane bounded by Cj(t) and Cj+1(t) is
denoted by Rj(t) and has area Aj(t). Ry (t) is interior to
Cm(t) while Rp(t), 0 < x < x2/2 is exterior to Ci(t). The

initial vorticity distribution for vortex 1 is

vortex 1 by the counterclockwise running curves C
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O)O(XIYIO) = 0 in R0<O) ’
(DZ(XIYIO) = (8.2)
mj(O) = const in Rj(O), J=1...M
Hence from equation (3.24) for t = 0
0, (x,y,t) = wj(t), in Rj(t) ’ (8.3a)
wj(t) = mj(O) exp[Q(t)] , J =1 ... M, (8.3b)
also
Ay(t) = Aj(O) exp[-Q(t)] , (8.4)
Qj (t) = (Dj(t) Aj (t) = O)j(O) Aj(O) ’ (8.5)

where Qj is the magnitude of the circulation contained in Rj.
The Qj, j =1 ... M are invariants of the vortex motion and

I, = Zj Qj is the magnitude of the total circulation of vortex
1.

8.2 Initial Conditions and Parameters

The initial conditions refer to the geometrical shape of

the Cj and the wvalues of the wj(O), j=1...M. For most

simulations the Cj were initially elliptically shaped as
illustrated, for example, in the first frame of figure 8.3.
The dimensions of the major and minor ellipse axes (rl)j and
(r2)j respectively, and the values of wj(O) were chosen to
model a nearly sinusoidal distribution of vorticity along
y = 0, and a normal vorticity distribution along x = & Ay/2.
We define the initial wvorticity thickness Sw for each vortex
as
M
2.§1 mj(O)Mrz)j — (rp) 5411
8@ = ] ’ (8.6a)

(Dmax

where (r2)M+1 = 0 and Opnax = mM(O). This is equivalent to the
vorticity thickness definition for the two-dimensional shear
layer (see equation (7.11d)). The vortex aspect ratio is
defined as
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a2 = %2/(25®) . (8.6b)

One example of a nonelliptical vorticity distribution was
tried to check the sensitivity of the vortex dynamics to small
changes in the vorticity distribution. The definition of the
contour shape for Cq; in the first quadrant is given by the

(x, y)—-coordinate pairs in table 8.4.

Since the formation mechanism which initially produces
the secondary vortices is not fully understood (see section
6.3), their strength and typical geometry at the time when
nonlinear self-interaction begins to influence their evolution
remains uncertain. We therefore considered three initial
configurations corresponding to a, = 12.7, 25.8 and 51.7, for
the M = 4 profile, a, = 14.5 for the M = 8 profile, and one
nonelliptical case with a, = 12.7. The M = 4 cases were

combined with several values of the strain parameter 7y.

The respective ellipse and vorticity parameters are
summarized in tables 8.1 and 8.2 for M = 4 and M = 8
respectively. The initial number of nodes, distributed on Cq
were Ny (0) = 60 (ap, = 12.7, 14.5), Ny (0) = 60 (a, = 25.8) and
N, (0) = 100 (a, = 51.7). For the nonelliptical profile,

Nl(O) = 80. Proportionally smaller N.(0), j = 2,3,4 were used

J
on the inner contours.

The only further parameter (the local strain environment)

is the dimensionless stretching strain rate

Y, = YA/ (47°T,) : (8.7)

Using the mixing layer parameters from section 6.4,
Y = nAU/(le), kz = Kl and Fl = AUkl, gives

v, = (82B) "1 , (8.8)

where B = I'y/T';. The hot wire measurements of Jimenez
(1983) (see also Jimenez et al 1985) indicate that B = 0(1).
Using B = 0.25 and 0.5 gives y, = 0.16 and 0.08 respectively.
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Presently we take y, = 0, 0.1, 0.2 and 0.4. This last value
is large but is of interest as an extreme case. A
characteristic time-scale for the flow can be defined by
Ay
To = > , (8.9)
4 rz

so that the nondimensional time

T =t /T, , (8.10)

where t is the physical time. Lengths and times are
normalized by setting kz = 2r and T'p = 1.

8.3 Simulation Results and Discussion

Sequences of evolving contour portraits which depict the
timewise deformation of typical vortex pair for the range of
ap, and Yy, treated are shown in figures 8.3 - 8.4 and 8.10 -
8.23. Table 8.5 contains a summary of the full set of
simulations performed.

We regard the simulations as quantitatively reliable in

0 £t <1 where, for most cases displayed, 1 is a value

max max
somewhat larger than those indicated in the final frame of
each sequence. Computations were generally performed with

code-version B (table 4.1) and node-adjustment-parameter set 3

(table 4.3). 1Individual calculations were finally terminated
for 1 2 Tnax when either (1) maxj[A(Qj)] 2> 8(2), where
presently 8(2) = 0(10_2) and/or (ii) maxj[Nj(t)] 2 Npaxr where

the value N ., = 1000 was determined by available computing
resource limitations of a 2Mb virtual machine on the
University of Queensland’s IBM 3083. The onset of (i) was
usually accompanied by the appearance of substantial spatial
oscillations in the shape of the Cj of the order of the local
node spacing. These oscillations were taken to indicate
insufficient resolution. Maxj[Nj(t)] invariably occurred on

C,, with a typical value of 600 and Zij(T) = 0(1500).
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Figures 8.3 and 8.13 show the array evolution with
Y»> = 0, (i.e., no out-of-plane stretching) for ap, = 12.7 and
ap, = 25.8 respectively. These cases are of interest since
first they provide solutions against which the influence of
Yo > 0 can be evaluated, and second, variations in E(t) given
by equations (4.23-4.25) may be used as a global check on
accuracy.

At T = 4 in the sequence of figure 8.3, the differential
rotation of the Cj induced by the initial vorticity
concentration towards the centre of each vortex is clearly
evident. Later, for 1 2 12, this results in the formation of
a central vortex core. Simultaneously, the vortex tails
(those regions of the initial vortex closest to neighbouring
vortices) are drawn out into thin, curved vortex layers whose
thickness is small compared to the local radius of curvature.
The overall result, by 1 = 16, is the generation of a rolled-
up double spiral vortex similar to those found in vortex
coalescence computations (Zabusky et al 1979; Overman &
Zabusky 1982; Jacobs & Pullin [1]). ©Note that the inner
contours C3 and C4 which contain roughly 25% of ', at © = 16
in figure 8.3 quickly collapse into the vortex core. 1In
contrast, the outer contours Cq and Co undergo continuous and
large deformation both within the vortex core and as part of
the spiral filament, resulting in large vorticity gradients at
the outer edge of the core.

The sequence of figure 8.4 with a, = 12.7, vy, = 0.1 shows

the expected exponential reduction in the A. (1) as vortex

lines are stretched longitudinally by the zzcomponent of the
strain. With y, = 0.2 and 0.4 in figures 8.10 and 8.11
respectively, the increased spin induced by the vorticity
amplification is strong enough to substantially reduce the
time-scale of the initial vortex core roll-ups, when compared
with the Yo, = 0 evolution. Although the model flow is highly
idealized, the simulations indicate that the interface between
the two free streams of the mixing layer becomes highly
corrugated in the braid region (see also the perspective view

obtained by Jimenez et al 1985) and, in cross—section, the
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braid has been distorted into mushroom-shaped vortical
structures, similar to those photographs taken by Bernal

(1981) . The most striking example is shown in figure 8.7.

By analogy with the roll-up of the primary shear layer
(chapter 7), we assume that the dimensional roll-up time-scale
for y, = 0 is order kz/co, where o is the velocity Jjump
across the flattened vortex at its centroid at t = 0. Using a
vortex-sheet model with o(x) = oy sin (2xx/A,), where o, =
nrz/k2, in conjunction with a similarity transformation
(equation 3.28 here; Lundgren 1982) which relates stretched
and equivalent unstretched two-dimensional vortex flows, we
estimate the dimensionless roll-up time-scale for Yo > 0 as

T, = y," 1 1n(l + 4my,) , (8.11)

in broad agreement with the trends shown in figures 8.3 - 8.4
and 8.10 - 8.11. 1In figure 8.11 at 1t = 5, the beginning of a
local shear instability may be seen on each flattened spiral
vortex arm. This instability occurs at the tip of C,
presumably because of the contour shape perturbations caused
locally by the vorticity gradient along the vortex sheet.
(The vorticity thicknesses, however, are in the range
resulting in high growth rates of perturbations according to
the linear theory discussed in section 7.2 and appendix 5.)
Thus, the actual site of the local instability is determined
by the artificial and nonsmooth character of the piecewise-
constant vorticity field. However, a continuous initial
vorticity field will generally contain local nonuniformities
qualitatively similar to those modelled presently by vorticity
discontinuities. We therefore expect the appearance of local
or tertiary instabilities dynamically equivalent to those

produced in the CD simulations shown here.

A check on the sensitivity of the vortex dynamics to the
number of contours defining the piecewise-constant vorticity
profile was undertaken by performing a simulation with M = 8,
a, = 14.5 and y, = 0.1. The evolution is displayed in figure
8.7 and is effectively a higher resolution simulation of the
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case shown in figure 8.4 which has the same initial outer
contour, timescale and strain environment. The computation
was performed on the CSIRO’s Cyber 205 using code-version C
(table 4.1) and node-parameter set 2 (table 4.3). There is
little difference between the major features of the two cases
but the M = 8 case results in a slightly faster roll-up into a
more compact core and also generates smoother spiral arms that
wind about the core.

The sensitivity of the dynamics to contour shape was
partly explored by performing a simulation with a
nonelliptical contour shape as the initial condition. The
arbitrarily selected shape (defined in table 8.4) provides a
vorticity profile that is closer to being continuous in the
spanwise direction than that provided by the initially
elliptic contours. Figure 8.9 shows the evolution of such a
vorticity distribution. The gross features of this case are
very similar to those developed by the corresponding
elliptical initial condition of figure 8.4. However, there is
(i) a slightly slower roll-up of the vortex core due to the
reduction of circulation in the region near the centroid of
the vortex and (ii) the formation of bulbous tips on the
spiral arms.

The trend of the simulations with a, = 25.8 (y, = 0, 0.1,
0.2, 0.4) in figures 8.13 - 8.19 and with ap, = 51.7 (y, = 0.1,
'0.2) in figures 8.20 - 8.23 shows some resemblance to those
for a, = 12.7 but with notable differences in detail. The
more flattened initial vortex shape leads to enhancement of a
shear instability. In some cases, for example figures 8.17
and 8.20, these local instabilities dominate the evolution to
the extent that each vortex history is perhaps best viewed as
a series of local roll-ups of the type which were shown by Lin
& Corcos (1984, §4) to evolve on infinite, stretched shear
layers subject to periodic streamwise perturbations. The
stretched periodic shear layer will be the subject of
discussion in chapter 9. These (tertiary) vortex cores are
connected by their own system of thin braids, each undergoing
biaxial stretching caused by the combined strain fields of the
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primary and secondary vortices. By analogy with the
(uncertain) formation mechanism for the secondary vortices, we
might speculate that this new braid system may provide sites
for the production of still higher-order structure orthogonal

to and acting as an energy sink to the secondary vortices.

In figures 8.12, 8.15, 8.18 - 8.19, and 8.21 - 8.22 we
show magnified views of the vortex core regions at selected
times. These views illustrate the fine structure that has
evolved in the vorticity field. Shown inset in figure 8.12
and 8.15 are vorticity distributions obtained along cuts
through the vortex centroid. Notice the reversal in sign of
the vorticity gradient produced near the outer edge of the
core by roll-up of contour Cj interior to the vortex. On a
long time scale we would expect that the accelerating
differential-rotation in the vortex core would wind these
gradient reversals into a spiral embedded within weaker
ambient core vorticity, thus producing even finer scales of
motion than those generated on the "outer" spiral.

The details of figures 8.19 and 8.22 reveal corrugations
of the Cj on the scale of the local node spacing which are not
visible in the corresponding larger-scale plots of figures
8.17 and 8.20 respectively. This is a purely numerical
instability which signals the breakdown of the computation.

It appears because the node—-adjustment scheme is ultimately
unable to provide, within the bound max [Nj(t)] < N xs the
small-scale node spacing required for the resolution of the
very finest scales of motion. For figure 8.19 we find

A(Qq) ~ 0.003, A(Qy) ~ 0.01, A(Q3) ~ 0.04, A(Q4) ~ 0.08
(recall the definition in equation 4.22) at 17 = 3.8 while for
figure 8.22 we find A(Q;) ~ 0.005, A(Q,) ~ 0.01,

A(Q3) ~ 0.003, A(Q4) ~ 0.01 at T = 3.8. For these extreme
cases (i.e., large a2) the values of A(Q) indicate that the
respective solutions are losing quantitative accuracy, and
that they provide only a qualitatively faithful picture of the
tendency towards the formation of a series of vortex cores
through local instabilities. In figure 8.22, we indicate the

division of the vortex into core and braid segments at 1T =
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3.8. The respective fractions of the total circulation in
each segment are QA = ,11Q, QB = ,07Q, QC = 0.35Q, QD = 0.12Q,

Qp =~ 0.3Q, Q = 0.27Q and Ty = 2(Q + Qg + Q- + Qy + Q) + Q.

A comparison fo the final frame of each simulation
suggests that the vortex tails appear to approach a nearly
stationary state. This may be understood as follows; in the
vicinity of the vortex tails the velocity field may be well
approximated by a point vortex model obtained by assuming that
the circulation + I', of each finite area vortex is
concentrated at the vortex centroid (see appendix 4). The
(x, y)-plane velocity field for this point-vortex array
coupled with the stretching strain is

. r, [ ' Ay T . Ao ] .
u, - iu, = — cot{—(x+1y + ——)J - cot {—(x+1y - ——)J + ivyy.

Y 2ia, s 4 As 4
(8.12)
when v > 0, (8.12) exhibits stagnation points at Ry = imx2/2,
Yo = (-1)™ YA,/(2r), m = 0,1,2... where Y is a solution of
Y cosh (Y) - (2ny,)"t =0 . (8.13)

For y, = 0.1, 0.2 and 0.4, Y = 1.018, 0.652 and 0.372
respectively. The dimensionless velocity field from equation
(8.12) Ty, =1, hz = 2m) with Yo = 0.1 is shown in figure 8.5
superimposed on the contour shapes for ap, = 12.7, Yo = 0.1 at
T = 10 from figure 8.4. Also shown in figure 8.5 and in the
final frame of each of Figures 8.4, 8.6 — 8.11, 8.14, 8.16,
8.17, 8.20, and 8.23 are segments of the (x, y)-plane
stagnation streamlines of (8.12) for the left hand vortex
(vortex 2). As the vortex tilts in the anticlockwise
direction, it appears that the tips of the flattened vortex
tails approach and become trapped in the respective stagnation
regions. The competition between this tendency and the
contracting vortex core sustains the spiral arms by subjecting
the outer filaments to (x, y)-plane extensional strain, while
the core is compressed near its centre by a local strain field

which is the sum of the (y, z)-plane stretching strain and the
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(X, y)-plane strain induced near the vortex centroid by all
other members of the secondary vortex array. The agreement
with this model is less convincing for the ap, = 51.7 results
of figures 8.20 and 8.23 firstly because the point vortex
approximation loses accuracy near the vortex tails owing to
the extended vortex geometry, and secondly, since the
simulation is terminated before the vortex tails have fully
rotated into the stagnation region.

In figure 8.6 we show the vortex array evolution
calculated using a single contour (M = 1) uniform vorticity
model. The total circulation and initial shape of Cl' and
hence the mean vorticity is the same as the simulation of
figure 8.4. By comparison, we show also on figure 8.6 the
evolution of an isolated uniform elliptical vortex subject to
a (y, z)-plane stretching-strain field with y, = 0.1 (see
equation 5.1). The initial aspect ratio and strength are the
same as those for the left hand member (vortex 2) of the pair
shown at 1 = 0. Hence, the differences in the subsequent
shapes may be attributed to the influence of the array on
vortex 2. By 1T = 10 both vortex 2 and the isolated vortex
have tilted and have changed their shape to some extent, but
the array pair exhibit no fine structure remotely comparable
to that depicted in the t© = 10 frame of figure 8.4. At
T = 16, which is beyond the range of the present nonuniform
vortex computation, the vortices of figure 8.6 have decreased
in both area and in effective aspect ratio. This is an
example of the Neu (1984a,b) strain induced collapse mechanism
for isolated elliptical vortices, modified for vortex 2 by the
(x, y)-plane strain of all other members of the array. Lin &
Corcos (1984) give an estimate of the collapse time for
isolated vortices (their equation 8.8) by assuming collapse
following a local balance between the self-induced velocity at
the vortex tip and the y-component of the strain velocity. 1In
our notation, this is

H
n

60(1 + M) ‘cos?0 v, . (8.14)
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where n_l

is the ellipse aspect ratio and 8, may be identified
with the angle of tilt at t = 10 in figure 8.6. With the
parameters of figure 8.6, T, = 7.5 which is somewhat less than
T, = 16 suggested by the results of figure 8.6. For the
present nonuniform vortex evolution, the collapse mechanism
appears to be only partly effective, since the nonlinear self-
induction of the flattened vortices generates a rolled-up and
dominant vortex core before substantial local focusing of
vorticity by the y-component of strain can become operative.
We note that this result appears to cast some doubt on the
relevance of uniform vortex models to the inviscid dynamics of
nonuniform vortices at least for those initial distributions

that will produce a rapid distortion of the vorticity field.

In figures 8.24 and 8.25 we have plotted the energy
associated with vortex array induced fluid velocities in the
(x, y)-plane as calculated from equations (4.23-4.25) with
a = 12.7 and 25.8 respectively. When Yo = 0, E(7) is sensibly
max) — E(0))/E(0) = 0.005 in both

cases. When Yo > 0, E(t) increases because of energy transfer

constant with errors (E (7T

from the stretching strain field to kinetic energy in the

(x, y)-plane vortex motion. Further transfers to smaller
scales given by the spiral vortex turn spacing and by shear
layer instability scales may be expected but these transfers
have not been presently resolved in quantitative detail. In a
real viscous fluid this energy is eventually dissipated in
both the vortex sheet and rod structures generated by the

nonlinear vortex evolution.

A guantitative measure of individual vortex deformation
during its evolution is shown in figures 8.26 - 8.28, where we
have plotted the perimeters of the nested vortex contours
against t©. In their flow visualization study, Lasheras, Cho &
Maxworthy (1986) indicate that the chemical reaction producing
the visible dye is confined to a very thin but highly
distorted interface even after the appearance of three-
dimensional motions. Hence, we use the growth of the outer
contour (C,) perimeter as a measure of the enhancement of the

growth of the interfacial area due to the secondary vortices.
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In figures 8.26 - 8.28, C3z and C4 both show a sudden reduction
near the time of formation of the central vortex core. By
contrast C; and C, exhibit an explosive increase in length as
they are advected into and undergo rapid distortion within the
spiral vortex arms.

The Re, = e simulations here are complementary to the
moderate Re, results of Lin & Corcos (1984) but contain some
notable differences. The calculations depicted in figures 4,
7 and 11 of Lin & Corcos at Re, = 508, 508 and 1950 with
a, =8, vy, = 0.08, a, = 11.3, Y, = 0.16 and a, = 18, v, = 0.11
respectively, are the results most nearly comparable to ours.
The beginnings of the spiral shear-layer formation can be seen
in figures 4(c-d) and 11 while the onset of the local shear
instability is evident in the highest Rejycase of figure 8. 1In
the moderate Re, simulations the intensification of vorticity
by the strain field and the consequent balance effected by the
enhanced viscous diffusion appear to attenuate the radial
vorticity oscillations characteristic of spiral shear layers.
This attenuation results in the vortex tail remaining ,as for
example in figure 4(d), only as an appendage to the well
formed nearly axisymmetric Burgers vortex. By comparison, the
results here indicate that the Re, = e roll-up of individual
vortex influenced by the induced strain due to the rest of the
array can effectively lead to the formation of new spiral
vortex layers containing several turns on a time scale

comparable with both y 1

and the vorticity focusing time
scale. At large but realistic Re,, these results together
suggest a mechanism whereby vortex sheets may be continually
created by spiral production following roll-up associated with
nonlinear secondary or higher—-order instabilities, and
destroyed by relaxation via the Lundgren (1982) mechanism
towards the asymmetric Burgers vortex of Robinson and Saffman

(1984) .
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Table 8.1 : Initial geometry and vorticity distribution for vortex
1 of the 4 contour (M = 4) simulations for three initial

geometries. Values of Gw are 0.248, 0.122, 0.0608.

J a, = 12.7 a, = 25.8 a,= 51.7

1 1.53 0.208 -0.63 0.102 -1.29 0.0512 -2.57
0.918 0.125 -1.48 0.0612 -3.02 0.0306 -6.037
0.535 0.0728 -2.00 0.0357 -4.08 0.01785 -8.159
0.247 0.0336 -2.30 0.0165 -4.69 0.00824 -9.382

Table 8.2 : Vorticity profile for the 8 contour secondary vortex.
Initial geometry and vorticity distribution for vortex 1
of the 8 contour(M = 8) simulations for two initial

geometries. Values of 6w are 0,217 and 0.106.

a, = 14.5 a, = 29.6
j (r)) (r)); w0 (r); w0
1 1.53 0.208 -0.2121 0.102 -0.4326
2 1.316 0.179 -0.4899 0.0877 -1.000
3 1.117 0.152 -0.8601 0.0745 -1.754
4 0.933 0.127 -1.320 0.0622 -2.692
5 0.750 0.102 -1.780 0.0500 -3.630
6 0.581 0.0541 -2.230 0.0388 -4.548
7 0.398 0.0541 -.2720 0.0265 -5.548
8 0.214 0.0291 -3.000 0.0143 -6.119
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Table 8.3 : Initial geometry and vorticity distribution for vortex 1

of the nonelliptical vorticity distribution for 6w = 0.248,

M =4,

j a, = 12.7
r.), r,). w.(0
(r)) (r)) 5(0)

1 1.53 0.208 -0.535

2 0.0918 0.125 -1.256

3 0.535 0.0728 -1.697

4 0.247 0.0336 -1.952

Table 8.4 : Coordinates defining the initial nonelliptical profile of the
C1 in the first quadrant x 2 0, y 2 O.

X y X y X y
1.53 0 1.408 0.157 0.960 0.200
1.522 0.042 1.360 0.171 0.880 0.201
1.520 0.056 1.320 0.181 0.760 0.201
1.513 0.084 1.260 1.190 0.640 0.202
1.500 0.107 1.200 0.196 0.500 0.203
1.472 0.128 1.120 0.190 0.360 0.204
1.442 0.143 1.060 0.200 0.2 0.260

0 0.208
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Table 8.5 : Summary of secondary vortex simulations showing aspect
ratio, stretching strain strength, version-of-code (table 4.1)

and node-parameter set (table 4.3) used.

Case a, Y, M Tnax Version Node
of code Parameters
1 12.7 0 4 16 B 3
2 12.7 0.1 4 10 B 3
3 8 0.1 1 16 B 3
4 14.5 0.1 8 10 C 2
5 12.7 0.1 4% 12 C 2
6 12.7 0.2 4 8 B 3
7 12.7 0.4 4 5 B 3
8 25.8 0.0 4 8 B 3
9 25.8 0.1 4 6 B 3
10 25.8 0.2 4 5 B 3
11 25.8 0.4 4 3.8 B 3
12 51.7 0.1 4 3.8 B 3
13 51.7 0.2 4 2.5 B 3

3*

nonelliptic contours.
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spanwise

P

direction

Figure 8.1 : The Corcos-Lin model of secondary vortices (near the midpoint
of the braid) subject to locally-uniform three-dimensional

strain induced by the primary (spanwise) vortices.

Vortex 2 Vortex 1
| i’ ;X
A2 / o 22
2 ///" / _I-\ ~. N 2
~ N
— - — é’

Figure 8.2 : Pair of counter-rotating vortices in (x, y)-plane.
The contours describing vortex 1 are Cj’ j=1, 4
where j = 1 for the outermost contour. wj(O) is
the initial uniform vorticity in Rj bounded by Cj

and Cj+1' The flow is irrotational outside of the vortices.
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Figure 8.3 : Case 1, for legend see over page.
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Figure 8.3 : Evolution of vortex array, a, = 12.7, Yy = 0, case 1 (table 8.5)

Dimensionless times T as shown.
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Figure 8.4 . Evolution of vortex array, a, = 12.7, Y., = 0.1 case 2 (table
8.5). Dot-dashed lines show the (x, y)-plane projection of the
stagnation stream surface for a point vortex approximation

to the secondary array. Dimensionless times T as shown.
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Figure 8.6 : Evolution of vortex array, a, = 8, Y, = 0.1, case 3.
The vorticity is uniform in each vortex. Dashed contours indicate
the evolution of an isolated elliptical vortex embedded

in a (y, z)-plane stretching strain field Yy = 0.1.
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Figure 8.7 : Evolution of a vortex array, a, = 14.5, M = 8, Y, = 0.1, case 4.

2
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Figure 8.8 :

m/2 X

Magnified view of the vortex contours, a

M =8, case 4 at T = 10.
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T =

-
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Figure 8.9 : Evolution of vortex array, a, = 12.7, Y, = 0.1,

nonelliptic initial contours, case 5 (table 8.5).
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Figure 8.9 continued.
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Figure 8.10 : Evolution of vortex array, a, = 12.7, Y, = 0.2, case 6.

Dimensionless times T as shown.
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Figure 8.11 : Evolution of vortex array, a, = 12.7, Y, = 0.4, case 7.

Dimensionless times T as shown.
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1 1 1

m/2 X

Figure 8.12 : Magnified view of vorticity contours, a, = 12.7, Yy = 0.4,
T = 5, case 7. Inset; vorticity distribution in vortex

core.
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Figure 8.13 : Evolution of vortex array, a

9 = 25.8, Yy = 0, case 8.

Dimensionless times T as shown.
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Figure 8.14 : Evolution of vortex array, a, = 25.8, Y2 = 0.1, case 9.

Dimensionless times T as shown.
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1
m/2 X

Figure 8.15 : Magnified view of vortex contours, a, = 25.8, Y = 0.1,

T=6, case 9. Inset: vorticity distribution in vortex

core.
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Figure 8.16 : Evolution of vortex aray, a, = 25.8, Y2 = 0.2, case 10.

Dimensionless times T as shown.
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Figure 8.17 : Evolution of vortex array, a, = 25.8, Y2 = 0.4,

case 11. Dimensionless times T as shown.



233

1 us . 1 1

m/2 X

Figure 8.18 : Magnified view of vortex contours, a, = 25.8,
Yy = 0.4, T = 3, case 11.
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Figure 8.19 : Magnified view of vortex contours, a, = 25.8,
Yy = 0.4, T = 3.8, case 11.
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Figure 8.20 :

Evolution of vortex array, a, = 51.7, Y, = 0.1, case 12.

Dimensionless times T as shown.
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1
/2 X

Figure 8.21 : Magnified view of vortex contours, a, = 51.7, YZ = 0.1,

case 12, T = 2.5.
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1 1

Figure 8.22 :

m/2

Magnified view of vortex contours, a,

= 51.7, Y, = 0.1,

T = 3.8. Dashed lines indicate division of vortex into a

system of cores and connecting braids.

the end of vortex tail.

Section A extends to
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Figure 8.23 : Evolution of vortex array a, = 51.7, Y, 0.2, case 13,

Dimensionless times T as shown.
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Figure 8 24 : Energy of the vortex array per member, a, = 12.7.

Values of Y2 as ‘'shown.
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Figure 8.25 : Energy of the vortex array per member, a, = 25.8.

Values of Y2 as shown.
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Figure 8.26 : Variation of contour perimeter with time T, a, = 12.7,
Yz = 0.

2

C1
15 |
C2
10 |
5
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T

Figure 8.27 : Variation of contour perimeter with time T, a, = 25.8,
Y, = 0.2.
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Figure 8.28 : Variation of perimeter of outermost contour with time, T

a, = 12.7, values of Y, as shown.
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9.0 STRETCHED SHEAR LAYERS

Some of the secondary vortex simulations (especially
those with high aspect ratios) exhibit a Kelvin-Helmholtz type
instability which results in each secondary vortex evolving
into a string of compact vortex cores connected by braids of
Streamwise vorticity. A clear example is shown in figure 8.20
with M = 4, ap = 51.7 and Yo = 0.1, two frames of which are
reproduced in figure 9.1. Locally, that is within the dashed
box of figure 9.1, the evolution is similar to the purely two-
dimensional roll-up of the primary (or spanwise) vortices

investigated in chapter 7.

These small-scale vortices, which we associate with the
tertiary motions of the CLS model, evolve in the ambient
strain environment provided by the primary vortices. Given
the similarities with the two-dimensional layer evolution, it
appears profitable to study the behaviour of a stretched shear
layer as a model of the secondary vortices in the limit of
ap — oo,

The stretched shear layer has been studied by Lin &
Corcos (1984) at moderate Reg using a finite difference
technique. They used a Burgers vortex layer as an initial
condition and found roll-up and, in some cases, pairing
similar to that for the purely two-dimensional layer but

substantially modified by the ambient strain environment.

9.1 Flow Configuration

In figure 9.2 we show a conceptual view of the flow
model. A nonuniform unidirectional vorticity profile is
approximated by a piecewise-constant distribution in the same
way as for the purely two-dimensional layer defined in section
7.1. The imposed stretching strain (defined in section 8.1)
is represented by the four streamline segments in the (y, z)-
plane. The layer is periodic in the (spanwise) x-direction

and the extensional axis of the strain is aligned with the
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vortex lines along the z-axis (i.e., parallel to the braids in
the primary motion). The circulation contained in one
wavelength h3 of the fundamental eigenfunction (i.e., spacing
of the rolled-up vortex cores) 1is I'3 giving AU3 = I'3/A3 as the
velocity jump across the layer. By analogy with the two-
dimensional evolution, the characteristic time for roll-up is
To = x32/r3.

Note that, unlike the viscous simulations of Lin & Corcos
(1984), the Re = o flow here has no equilibrium state. (The
initially unperturbed layer decreases monotonically in
thickness as exp(-yt).) 1In simulations presented here, we
effectively "turn on" the dynamics at © = 0.

9.2 Initial Conditions and Parameters

For the numerical simulations, the wavelength of the

computational domain A = 2x and the total circulation

comp
contained in the domain was set to I’ = 1. The stretching

m
parameter y5; was scaled to achieve tﬁg zame local conditions
for the vortex roll-up as experienced in the dashed box shown
in figure 9.1. Measuring the circulation and spacing of the
vortex cores, we obtain the approximate values (in terms of
the secondary vortex simulation units) of A = 0.15% and

I' = 0.15 with a strain strength Yo = 0.1. These values give a
characteristic time for roll-up of T, = 1.48. Hence, for

I's = 0.5 and x3 = m, the stretching parameter becomes

Y3 = 0.0075. As there is some variation in the strengths and
spacing of the small vortex cores in figure 9.1, we attempt to
bracket the effective strain environment by generally using
two values of y3 for each vorticity distribution.

We have not determined the stability characteristics for
this nonequilibrium layer. Instead, we start from the same
initial conditions (ie., we apply perturbations consisting of
the same eigenfunctions and amplitudes to the layer) as for

the purely two-dimensional simulations shown in chapter 7.
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9.3 Simulation Results and Discussion

The computations were performed on a Cyber 205
supercomputer using (code-version C, table 4.1) and node-
parameter sets 1 and 2, (table 4.3). The only extra features
of the numerical implementation were (i) the addition of a y-
component of velocity due to the imposed strain field and (ii)
the intensification of the vorticity as specified in equation
(3.24) . We have selected three vorticity configurations to
illustrate the effects of vortex stretching. These correspond
to the pure-pairing, pure-tearing and three-vortex coalescence
cases (cases 3, 5, and 7 respectively) in section 7.4. A
preliminary result showing the stretched pure-pairing
evolution was included in Jacobs & Pullin [4]. Table 9.1

contains a summary of the full set of computations.

Figures 9.3 and 9.4 show the evolution of a stretched
layer which is initially perturbed to produce the pure-pairing
interaction of case 3 in section 7.4.2. Two values of
stretching chosen to model the local conditions in the
secondary vortex simulations (y3 = 0.0075, 0.015 for figures
9.3 and 9.4 respectively) were investigated to indicate the
trends with increasing Y3 and, in figure 9.5, we show the
individual frames taken at roughly equivalent times near the
end of each simulation.

The intensification of vorticity combined with the
conservation of circulation leads to a reduction in the area
enclosed by the bounding contours (equation 3.27). This
intensification of vorticity also accelerates the roll-up into
compact cores and enhances the production of the spiral
filaments that wind around these cores. Figure 9.6a shows the
variation of contour lengths with time. Once the spiral
filaments have formed, there is a rapid increase in the
contour length as occurred in the two-dimensional simulations.
However, the stretching induces a higher rate of growth. For
the higher strain rates (y3 = 0.015) of the simulation in
figure 9.4 and its associated plot of contour length in figure
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9.7a, these effects are more pronounced. At 7 = 3.5 in the
pairing simulations, p1/Ay = 2.6, 3.2 and 4.0 for Y3 = 0.0,
0.0075, 0.015 respectively.

In general, the simulations of the stretched layer could
not be taken to as large a time, 1, as the equivalent, purely
two-dimensional simulations of section 7.4. This limitation
is due to the enhanced spiral production and the associated
increase in numbers of nodes, Nj(T). The numbers of nodes on
each of the upper four contours are shown on the plots of
figure 9.5. For Y3 = 0.015, Ny (t=3.8) = 960 which is quite
close to the limit of Npax = 1000.

The stretching strain also has a marked effect upon the
interaction of the subharmonic. First, it inhibits the
rotation of the centroids of the vortex cores about each other
and, secondly, the reduction in area of the vortex cores
inhibits coalescence of the rolled-up cores. More evidence
for the inhibition of rotation of the centroids is contained
in figures 9.6b and 9.7b which show that, for any particular
time, the maximum-height-reached is reduced with increasing
strain. For example, at © = 3.5, Yj/ll = 0.468, 0.40, 0.352
for Y3 = 0.0, 0.0075, 0.015 respectively. However, in both

plots having Y3 > 0, Y. still has a high growth rate at the

J
final times shown. The extent to which the pairing
interaction is inhibited may be explained via Lundgren’s
transformation (3.28) to an equivalent purely two—-dimensional

flow (i.e., Y2 = 0) which has an in-plane strain
3

Ug = v3/2 exp[-Q(t(T))] (xi - yj) . (9.1)

With the line joining the vortex centroids nearly aligned with
the x-axis, the purely two-dimensional strain (9.1) tends to
separate the vortex cores thus slowing ahd/or inhibiting the
tendency for the cores to merge. (See also the discussion in
chapter 10.) In the stretched layer simulations, however, the
velocity vector (consisting of the stretching strain plus the
induced field due to the rest of the vortex array) at the

centroid of a vortex core includes a component towards the



246

centre of symmetry of the vortex pair (Lin & Corcos 1984).
Thus, although the pairing process may be initially inhibited,
the stretched vortices will always approach each other if they
are initially perturbed in an alternating fashion.

Two simulations involving the pure-tearing interaction
are displayed in figures 9.8 and 9.9 for Y3 = 0.0075 and 0.015
respectively. Again the vorticity intensification leads to
increased speed of rotation of the cores and enhanced
production of spiral filaments but the effect on the tearing
interaction appears to be minimal. For both values of
stretching investigated the tearing interaction proceeded to a
point where the larger vortex circulation was 1.5 times that
of the smaller vortex (see figure 9.11), in much the same time
as for the Y3 = 0 case (see figure 7.31b). Solution frames at
roughly equivalent times near the final times for each of the
tearing simulations are shown in figure 9.10. Another feature
inhibited by vortex stretching is the migration of the thick
braid formed around the larger core. In the relatively long-
time, Y3 = 0, simulations of the single mode perturbation
(case 2, section 7.4.1), the fluid contained in the braids
migrated along the layer. However, for the finite Y3 here,
the spiral filaments are rapidly tightened about the
concentrated cores and do not migrate.

As a final example, we show the effect of stretching on
the three-vortex interaction. Figure 9.12 displays the
evolution of the layer while figure 9.13 compares this
stretched result with the equivalent two-dimensional result
(case 7, section 7.4.3). As discussed above the following
stretching—induced effects are present (i) the formation of
compact cores with reducing area (ii) enhanced spiral
production (iii) inhibition of coalescence of the cores and
(iv) inhibition of the migration of fluid contained in the

braids/filaments.
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-

Figure 9.1 : 1Initial and final solution frames for the evolution

9 = 51.7,
Yy = 0.1 figure 8.20. The dashed box denotes the

of the secondary vortex array, a

region where the vortex dynamics is similar to

that for a periodic layer.

Figure 9.2 : A section of an x-periodic shear layer subject

to locally-uniform three-dimensional strain.

The layer shown here consists of three regions

of uniform vorticity wz’
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Figure 9.3 : Evolution of a stretched shear layer showing a
single pairing event, Y4 = 0.0075, Gw/k3 = 0.875/2m,
aO/A3 = 0.05/m, initial disturbance £+ f,, case 1

(table 9.1). Times T as shown.
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T = 3.546

1 1 q 1 1 1 1
i T = 4,053
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Figure 9.3 continued.
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Figure 9.4 : for caption see over page.
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Figure 9.4 : Evolution of a stretched shear layer showing a

single pairing event, Yq = 0.015, Sw/k3 = 0.875/2m

1+f2,

case 2b (table 9.1), Times T as shown.

aolkl = 0,05/m, initial disturbance f
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Figure 9.5 : Comparison of late-time solutions for the

pairing event with 3 values of stretching, Y3e
Times T, stretching strain strength Y3 and numbers

of nodes defining Cj’ j=1l...4 as shown.
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Figure 9.6 : (a) Growth of contour length, pj, for the pairing
event with Yy = 0.0075, case 1 (table 9.1).

(b) Variation of contour height, Yj’ for case 1,
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Figure 9.7 : (a) Growth of contour length, pj, for the pairing

event with Yq = 0.015, case 2b (table 9.1).

(b) Variation of contour length, Yj’ for case 2b.
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Figure 9..8 : Evolution of a stretched shear layer showing a
tearing event, Yq = 0.0075, Sw/AB = 0.875/2m,
aO/Al = 0.05/m, initial disturbance fl + elﬂ/zfz,

case 3 (table 9.1). Times T as shown.
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Figure 9.9 :

22

Evolution of a stretched shear layer showing a tearing

event, Y, = 0.015, Sw

initial disturbance f1 + e

Times T as shown.

/rq = 0.875/2m,

im/2

aO/A3 = 0.05/m,
f,, case 4 (table 9.1).
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Figure 9.10 : Comparison of late-time solutions for the

tearing event with 3 values of stretching, Y3

Times T and stretching strain strength Y3 as shown.



261

1.4
(a)
1.2
T
1“3(0)
1.0F
4
.8 L
B l 1 ! L L
0.0 1.0 2.0 3.0 4.0 5.0 6.0
time, T
1.4
(®)
1.2
T
1.0L
4
.B L
. B 1 1 ] 1 l
0.0 1.0 2.0 3.0 4.0 5.0 6.0
time, <t
Figure 9.11 : Variation of circulations in vortex 1 and 2

in the stretched "tearing" simulation (a) y = 0.0075,
case 3 (b) vy = 0.015, case 4 (table 9.1).

F3(0) is the nominal circulation for a rolled-up vortex.
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Figure 9.12
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. for caption see over.
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Figure 9.12 :

Evolution of a stretched shear layer showing
three-vortex event, Yy = 0.011, sw/x3 = 0.875/2m,
aO/)\3 = 0.05/m, initial disturbance £+ f3,

case 5 (table 9.1). Times T as shown.
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T = 4,559 Yq = 0.011
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Figure 9.13 : Comparison of late time solutions for the three-

vortex event with different strain rates, Y3- Times T

and stretching strain strength y3 as shown.
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10.0 THE EFFECT OF STRETCHING ON VORTEX COALESCENCE

In this section we describe qualitatively the influence
of plane three-dimensional stretching strain (3.20) on the
inviscid coalescence or merging process of two equal vortices.
The terms "coalescence" and "merging" are used synonymously to
describe a process by which the boundaries of the interacting
FAVRs approach closely and the regions fold together into a
single structure.

Both uniform vorticity FAVRs and nonuniform piecewise
constant vorticity FAVRs are studied. The results from the
former have been published in Jacobs & Pullin [1] while the

nonuniform vorticity results appeared in Jacobs & Pullin [2].

One situation approximated by an isolated pair of
interacting vortices is the long time behaviour of the rolled-
up vortices of the stretched shear layer undergoing pairing.
In some of the shear layer simulations there is pairing for
small values of stretching but, for larger strains, the
results are inconclusive as the computation could not be taken
to long enough simulation times. The main reason for the
expense of the shear layer computations is the rapidly
increasing length of the braids that wrap around, and join,
the rolled-up vortex cores. Here, we can start the
calculation afresh with a pair of the rolled-up vortex cores
being approximated by two circular vortices, diameter d,
separated by a distance D.

Another application is Lundgren’s (1982) strained spiral
vortex model of the fine structure of turbulence at high Re.
In this model, the mere existence of non-axisymmetric vortex
sheets leads to the -5/3 law for the turbulence energy
spectrum. The coalescence of like signed vortices is a
possible mechanism for the generation of such spiral
filaments. In nearly all two-dimensional simulations the
merging process results in the ejection of vortex arms
presumably to conserve angular momentum (Zabusky, Hughes &
Roberts, 1979).
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266

Sectional view of a rectilinear vortex tube embedded in

a stretching strain field. The vortex region consists

of M = 4 regions of uniform vorticity. The imposed strain
field is represented by the four curved streamlines in the

(y, z)-plane.
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Table 10.1 : Normalized vorticity profile for M = 1.
J wj qj
1 0.274 1.0
2 0.643 0.600
3 0.870 0.350
4 1.0 0.162
dl
Cl vortex #1
y
) T
Yo
:_X —te
X
O -—
vortex #2 l
Cl'

Figure 10.2 :

Initial vortex configuration showing two uniform-vorticity
FAVRs. The centre of vortex #1 is located at (xo, yo)
and has diameter dl' Vortex #2, bounded by Cl" is the

image of vortex #l rotated about the origin by m radians.
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Previous simulations of this flow configuration include
those by Christiansen (1973) and Christiansen & Zabusky (1973)
using a Cloud-in-Cell technique in which the FAVR was
approximated by a "cloud" of point vortices. These studies
showed that there were large deformations in the vortex
regions as they interacted and that there was a maximum
initial separation beyond which coalescence would not occur.
Later, the CD method was introduced by Zabusky, Hughes &
Roberts (1979) and applied to essentially the same uniform
vortex pair. When the initial separation is sufficiently
large, the vortices simply rotate about each other but may
either (i) have wave-like deformations travelling around the
bounding contours or (ii) be a steady state solution of the
Euler equations: the rotating V-states (Deem & Zabusky 1978).
For an experimental investigation of vortex merging (in a

rotating system) see Griffiths & Hopfinger (1986).

10.1 Flow Configuration

Consider a rectilinear FAVR embedded in a three-
dimensional plane strain field as shown in figure 10.1. A
section of the vortex tube is shown with the (x,y)-plane
contours delineating the discontinuities in the o, vorticity
field. The (y,z)-plane component of the plane strain field is
represented by the four curved streamlines with their
extensional axis aligned with the vortex lines in the z-
direction.

In the (x,y)-plane, the initial vorticity distribution of
vortex 1 is specified by a set of M concentric circular
contours Cq to Cy with centre (XO, yO). Vortex 2 is
constrained to be an image of vortex 1 through a rotation of =&
radians. Thus we calculate the motion of only one vortex

explicitly. The diameter of Cj is dj and we define

ay =2 (10.1)
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The total area of the FAVR, A = Zj Aj, is set to unity so that

d, = (4/n)1/2. (Here A, is the area of each uniform vorticity

J
region Rj.) The circulation of each FAVR is then
M 5 5 ndlz

and the vorticity is normalized to give I' = 1. Table 10.1
gives values of a4 and @ for both the uniform vorticity (M=1)
FAVR and a nonuniform case (M=4). These profiles are the
essentially same normalized vorticity profiles as used in

chapters 7 to 9. The initial separation is

D = 2 (xp? + v , (10.3)

and a characteristic time is

al/2

T o= (10.4)
C r !

The equation governing the motion of Cj is given in
(3.15) (with corresponding discretized form (4.2), (4.3)).
Computation were performed using code-version 1 (table 4.1)
and node-parameter set 4 (table 4.3). Calculations were
terminated either when N; = 0(500) (800 in cases 13 -15) or
when the time step for the ODE solver became unacceptably
small (and the calculation progressed slowly) except where

marked in table 10.2.

10.2 Simulation Results and Discussion

Results are shown as sequences of contour evolution for
Bp = 0 and 0 < Yo £ 0.2. Table 10.2 summarizes all of the
cases presented in this section giving the initial vorticity
distribution, stretching and final time reached. Other cases
where Bo is nonzero are shown in section 5.1 as test cases to
prove the method. The values of D have been chosen to

approximately match the two-dimensional simulations of
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Table 10.2 : Summary of simulations for the two vortex interaction.
The starred times indicate cases for which the simulation
proceeded to the indicated time without encountering

the limits for nodes or computer processing time.

Case M . Y Xq Yo tmaX
1 1 0.0 0.75 0.0 27.5
2 1 0.05 0.75 0.0 17.5
3 1 0.10 0.75 0.0 12.5
4 1 0.15 0.75 0.0 10.0
5 1 0.0 0.85 0.0 25.0
6 1 0.05 0.85 0.0 20.0
7 1 0.10 0.85 0.0 17.5
8 1 0.15 0.85 0.0 17.5"
9 1 0.0 0.96 0.0 25.0
10 1 0.05 0.96 0.0 25.0"
11 1 0.10 0.96 0.0 25.0"
12 1 0.15 0.96 0.0 25.0"
13 1 0.05 0.0 0.96 20.0
14 1 0.10 0.0 0.96 17.5
15 1 0.15 0.0 0.96 12.5
16 4 0.10 0.75 0.0 12.5
17 4 0.20 0.75 0.0 8.5
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Figure 10.3:

in a stretching strain field Y, 2 o, Bo = 0.

shown.

(a) Y, = 0, case 1,

(c) Y, = 0.10, case 3,

Coalescence of equal uniform vortices (M = 1) with D = 1.5
Times t as
(b) Y, = 0.05, case 2,

(d) Y, = 0.15, case 4.
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Zabusky, Hughes & Roberts (1979). A sensitivity test
demonstrating convergence of contour shapes with increasing N4
for the M=1, D=1.5 case is also described in chapter 5. 1In
the final frame of each sequence, the fractional error in Aq
is 0(1073). Figures 10.3 through 10.5 show the qualitative
effect of stretching strain and different initial separation,
D, for M = 1. 1In these figures the vortices are initially
oriented so that the line joining their centres is
perpendicular to the compressive axis of the stretching
strain. Figure 10.6 shows the effect of orienting the
vortices so that the line joining the centres is parallel to
the compressive axis while figure 10.7 illustrates the
difference between uniform and nonuniform FAVR interactions

for a single initial separation.

Two principal effects of stretching are apparent from the
D = 1.50 sequences of figure 10.3. First, there is a slight
increase in the speed of angular rotation of the merged
structure with increasing Yo caused by the vorticity
intensification, and second, the vortex stretching is seen to
substantially inhibit the formation of spiral sheets of
vorticity. At low or zero Yor these sheets are ejected from
the main vortex core and subsequently remain stable to local
Kelvin-Helmholtz instability because of the stabilizing effect
of the two-dimensional (x, y)-plane strain induced by the
merged central vortex (Moore & Griffith-Jones 1974; Moore
1976) .

For the highest stretching rate (yo = 0.15), the two
FAVR’s coalesce into an elongated "perturbed elliptical"™ shape
with much attenuated embryo-spiral arms containing little
circulation. In fact, each of the vortex sheets shown for
Yo = 0.10 and 0.15 is actually a double sheet, one from each
primary vortex core. The formation of the inner sheet (nearer
the vortex centre) appears to be connected with apparent cusp
formation in the bounding contour, C,. This cusp formation
can be seen, for example, in figure 10.3(c) at t = 7.5. At
the later time of t = 12.5, the inner sheet is of negligible

thickness with the bulk of material being contained in the
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Figure 10.4 :

in a stretching strain field Yo z 0, Bo = 0.

Times t as

shown. (a) Yo = 0.0, case 5, (b) YO = 0.05, case 6,

(c) Y, = 0.10, case 7,

(d) Y, = 0.15, case 8.

Coalescence of equal uniform vortices (M = 1) with D = 1.70
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Figure 10.5 : Coalescence of equal uniform vortices (M = 1) with D = 1.92

in a stretching strain field Yo z 0, BO = 0.

shown.

(c) Yo = 0.10, case 11,

(a) Y, = 0.0, case 9,

Times t as
(b) Y, = 0.05, case 10,
(d) Y, = 0.15, case 12.
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sheets ejected at the tails of the merging vortex cores. This
breaking of the vortex contours and the formation of filaments
is further discussed in section 5.3.

Figures 10.4(a,b,c) with D = 1.70 and Yo = 0.0, 0.05 and
0.10 show that the vortex merging process is qualitatively
similar to that shown for D = 1.50 with the difference that,
for larger initial separation, spiral vortex—-sheet formation
is suppressed at lower values. of Yo- Increasing Yo further to
Yo = 0.15 in figure 10.4(d) inhibits vortex coalescence
completely for t < 17.5. Continuation of this case past
t = 25.0 (not shown) produced no indication of coalescence at
a later time. Increasing the initial separation to D = 1.92
in figures 10.5(a-d) gives only a weak merging interaction for
Yo = 0. Coalescence in t < 25 is completely inhibited for
Yo > 0.05, with each uniform FAVR stretching ultimately to a
line vortex while moving in an inwardly directed spiral
trajectory.

The evolutionary tendencies for this initial orientation
agree qualitatively with those of the stretched vortex layer
studied in chapter 9. For an initial layer perturbation
consisting of the primary mode and its first subharmonic in
phase (pairing) we obtained coalescence for small values of Yo
but there was no tendency towards merging for the larger
value. This agreement may be fortuitous however, since in the
x-periodic configuration, there is effectively an extra
component of strain present due to the rest of the array.

This strain is absent in these two vortex calculations but
would be equivalent to finite By ~ 0(y).

The tendency toward strain-induced suppression of vortex
merging seen in these two vortex simulations, may be
understood qualitatively by considering the two-dimensional
6 (1) flow equivalent to each sequence in figures 10.3 - 10.5.
From 3.29 these have b(T) = -yY;/2. See figure 5.3 for the
two-dimensional 6(T) simulation equivalent to the D = 1.50,

Y = 0.15 case in figure 10.3 (d). Since Yo > 0, the vortex

centres initially lie on the principal extension axis (§) of
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Figure 10.6 :

Coalescence of equal uniform vortices (M = 1) with D = 1,92
in a stretching strain field Y, 2 0, Bo = 0. The line
joining the vortex centres is initially aligned with the
compressive axis (y) of the stretching strain. Times t

as shown. (a) Yo = 0.05, case 13, (b) Y, = 0.10, case 14,

(c) Y, = 0.15, case 15.
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strain for the o(t) flow. Hence the strain field tends to
increase the ratio D/Al(O)l/2 for small T, thus inhibiting
coalescence. This interpretation immediately suggests that
positioning the vortex centres initially on the y-axis (i.e
the principal compression axis of strain for both the o6(T) and
€(t) flows with Yo > 0 ) would alter the qualitative effect of
stretching. This is clearly demonstrated in figures 10.6 (a—c)
where D = 1.92 and Yo = 0.05, 0.01 and 0.15. Comparing these
sequences with the equivalent cases in figure 10.5 shows that
stretching now enhances coalescence, leading to a well
developed spiral sheet structure for all Yo-

To illustrate the effect of vortex nonuniformity on the
two vortex interaction, figure 10.7 displays three simulations
with initial configuration equivalent to the D = 1.5 uniform
vorticity FAVR pair which produce a strong merging interaction
for yp = 0. Figure 10.7(a) is an extract from the sequence in
figure 10.3(c) having M = 1. Sequences (b) and (c) have
initial configurations D = 1.5. d, = (4/n)1/2, I' = 1 and the
M = 4 initial vorticity profile defined in table 10.1. The
time scales are the same in each sequence. Figure 10.7(b)
compared to 10.7(a) shows that the concentration of vorticity
toward the vortex geometrical centre partially inhibits, but
does not stop, coalescence of the FAVR’s. For t = 7.5 the
vortices are again essentially separate. At this time however,
they are aligned with the compression axis of strain (y-axis)
leading consequently to a strong coalescence by t = 12.5. The
larger strain Yo = 0.2 of figure 10.7(c) appears to further
inhibit the onset of merging as for the uniform FAVR
simulations. It is interesting to note that for cases (b),

(c) the C, contours are subject to extreme distortion leading
to resolution difficulties but, in contrast, the Co = Cy4

contours undergo only small perturbations.
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Figure 10.7: Coalescence of equal vortices with D = 1.50 in a
stretching strain field, Yo > 0, BO = 0. Times t as
shown. (a) uniform vortex, M =1, Y, = 0.1, case 3,
(b) non-uniform vortex, M = 4, Y, = 0.1, case 16,

(c) non-uniform vortex, M = 4, Y, = 0.2.
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11.0 CONCLUSIONS

We have developed a Contour-Dynamic algorithm and an
associated numerical implementation suitable for the
simulation of essentially two—-dimensional flows of an
inviscid, incompressible fluid but with the added feature of
vortex stretching. Being a Lagrangian technique, the CD
algorithm allowed the natural evolution of fine-scale motions
and, being based on a piecewise—-continuous vorticity
distribution, could attain a resolution not previously
achieved using vortex methods. The numerical implementation
included quadratic interpolating elements and an "analytic-
patch" procedure to improve the solution accuracy in
situations where the contours approached closely. ' The code
could handle both (i) the evolution of several isolated
vorticity patches and (ii) the evolution of spatially periodic

vorticity distributions.

There are, however, several aspects of the technique that
need further work. The current implementation is limited to
short or moderate time simulations as the number of nodes
increases rapidly with the formation of filaments on the
contours. The formation of cusps and filaments needs to be
explored, possibly using a Fourier decomposition of the
contour descriptions (Moore 1976; Krasny 1984), while filament
truncation could be implemented in much the same manner as
Dritschel (1986a) but with consideration given to the changing
topology of the contours (say, from a continuous layer to an
array of discrete FAVRs). Also, there is need for improvement
in (i) the node—-adjustment algorithm to reduce truncation
errors while maintaining robustness and (ii) the contour

interpolation for the same reasons.

We have applied the CD method to the vortex modelling of
various eddy scales of the plane turbulent mixing layer.
Several numerical simulations, based on the hierarchical model
of Corcos, Lin and Sherman (Corcos & Sherman 1984; Corcos &
Lin 1984; Lin & Corcos 1984), produced evolutionary scenarios
that represent plausible structures of the flow at the nominal
limit of Re = o, for moderate times.
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For the nominally two-dimensional instability and roll-up
of the plane shear layer, we examined the influence of the
initial vorticity profile and the presence of various
subharmonic disturbances on the layer evolution. In all
cases, the inviscid simulations lead to the production of much
fine scale detail which usually resulted in termination of the
computation. Overall, the simulations showed that wvariations
in the initial vorticity field had only a minor effect on the
flow evolution but that the subharmonic content of the initial
perturbation greatly influenced the post-rolled-up evolution.
Disturbing the layer with a perturbation consisting of a
combination of the fundamental eigenfunction and its first
subharmonic resulted in a range of post-rolled-up evolutions
for differing values of phase angle ¢. For ¢ = 0, adjacent
vortex pairs rotated about each other and coalesced into an
array of larger vortical structures with a larger wavelength.
Comparisons with finite Re simulations and experimental
observations provide supporting evidence for the hypothesis
that the large-scale vortex-dynamics for the roll-up and
pairing processes are only weakly dependent upon Re (Zabusky &
Deem 1971). Setting ¢ = m/2 resulted in a tearing interaction
in which the roll-up of the layer produces adjacent vortex
cores of different strengths. Unlike previous moderate Re
simulations, the smaller cores produced in the Re = o
simulation here were not completely absorbed by the larger
vortices on either side. Disturbing the layer with a
combination of the fundamental eigenfunction resulted in the
roll-up and subsequent interaction of subsets of three
adjacent vortices in a manner similar to that observed in the

forced mixing layer experiments of Ho & Huang (1982).

Several parameters of the primary motion were not
explored. 1In particular, other wvalues of the relative
amplitude and phase of the subharmonic components need to be
tried. The domain could be extended to include a disturbance
involving several different wavelengths but this requires the
layer thickness to be quite small in order to include integral
numbers of wavelengths for all components. In the limit, a
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pseudo-random disturbance should be investigated as we are not
sure just what type of perturbation is introduced by the
truncation error of the single precision calculations in
section 7.2.

The stretching-strain / vortical interaction studied in
the secondary vortex simulations provided an example of an
energy transfer mechanism (relevant to the turbulent energy
cascade) from the large-scale motions (plane strain field) to
the smaller-scale vortex motions. The main features displayed
by the simulations of the secondary vortices include (i) the
rapid formation of an intense rolled-up vortex core with
companion double-arm vortex spirals, (ii) the presence of weak
sheet-like vorticity tails terminating the spirals, which are
maintained by the local velocity induction of all members of
the secondary vortex array coupled with the y-component of the
strain velocity and (iii) incipient tertiary instabilities
embedded in the spiral filaments and containing in some cases,
their own smaller-scale vorticity spirals. A comparison of
corresponding M = 1 and M = 4 simulations illustrated the flow
sensitivity to nonuniform vorticity distribution (or
concentration) with the concentration accelerating the roll-up
process. There is also a suggested dependency on Re, as the
spiral shear layers and local shear instabilities that
developed in our Re, = e simulations did not appear in the
moderate Re calculations of Lin & Corcos (1984) where wviscous
effects promoted the formation of nearly axisymmetric Burgers
vortex cores with much attenuated vortex arms.

Features that have been omitted by the secondary vortex
simulations include (i) the timewise decay of the stretching
strain strength caused by the successive amalgamation events
of the spanwise vortices (ii) strong random variations to the
perfect spanwise periodicity of the array that are clearly
indicated by experimental observations (e.g., Bernal 1981;
Roshko 1980) and (iii) fully three—-dimensional instabilities
involving the interaction of the primary (spanwise) and
secondary (streamwise) vorticity. These instabilities may
destroy the flow coherence on a time-scale comparable with
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that found for the evolution of the fine structure in either

the primary or secondary vortex simulations.

The evolution of the stretched vortex layer was not
explored in depth but the calculations performed indicated
some of the effects of stretching. In particular, the
stretching enhanced the production of spiral filaments but
inhibited the coalescence of the rolled-up vortex cores for
the pairing simulations. In simulations of the interaction of
two equal vortices (otherwise isolated) showed that the
inhibition of vortex coalescence was strongly dependent upon
the initial orientation of the vortex cores with respect to
the compression and extension axes of the stretching strain
field. 1In fact, orienting the vortex cores so that they are
initially aligned with the compressive axis of the strain

resulted in a significant enhancement of the merging process.
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APPENDIX 1 : Contour-Dynamic Formulation using Green’s Theorem

In chapter 3 the inviscid model is formulated by
considering distributions of singularities around the contours
Cj. Alternatively, we could start with the velocity field due
to a point-vortex and generalize to a finite area, two-
dimensional region. (Only regions of uniform vorticity are
considered here.) This velocity field can be calculated using
the Biot-Savart law and, for a purely two-dimensional flow may

be expressed in complex coordinates as

r

2ni(z = §,)

where Z2 = X + 1Y is the complex coordinate of the point at
which the velocity is calculated and I' is the strength
(circulation) of the point vortex at CO. Integrating over a
finite area region R, containing uniform vorticity ®,, the
velocity field becomes

1 o dx. dy
V. - iv =—JJ __©° 9 , (A1.2)

where the zero subscripts indicate integration variables over
Rl' The area integral (Al.2) over Rl may now be converted
into a line integral around the enclosing contour C, using a

- complex form of Green’s theorem

drF (z, &,) 1 N
—————— dxy dy, = — 1 F(z, ¢’) d¢' ’ (Al1.3)
Rq dt, 2 C1

where * denotes the complex conjugate and primed quantities
are integration variables around C, (Pullin 1981). Thus the

velocity expression (Al.2) becomes
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'\

Figure Al.1 : A single uniform vorticity FAVR consisting of a simply
connected region R1 bounded by contour Cl' Z is a

general point in the plane while o is a point in Rl'
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. %1
Vi - iV, = —
ir J o

Making the substitution dC*' = df{’ - 2i dy’ gives

wli

v, - iV, = —— In(z - ¢') dy’ (AL.

21 c

for Z external to R,. 1Integrating (Al.5) by parts results

"‘0)1 l
Ve - iv, = — Py’ —— dg’r . (A1

The velocity expression in (Al.6) now has the same form as
that in (3.10). We may check the far-field velocity
expression for large Z/{’ by expanding the denominator of
(Al.6) in terms of {’/Z to give

Vy - iVy = - 1 +—+ 0[(L"/2)“] d¢’ . (a1l.
2®i Z Cl Z
Retaining only first order terms in the integral gives
®q 1 >
Ve - iV, = — @ v A&+ ol /n? (AL.
2ni Z Cq

which reduces to

®) Aq

1
(V, - iv,) = —+ 0[(¢/2)?] , (A1.
Z

2wi

where Aq is the area of the vortex region enclosed by Cq-
Hence, for large Z, the velocity field given by (Al.6)
approaches that due to a point-vortex of strength mlAl.

qéln(z - ¢y dagtr . (Al.

in

.6)

9)
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APPENDIX 2 : The "Delta—Model" Applied to Contour Dynamics

The "d-model” for the vortex sheet works in much the same
way as the vortex blob approach where the singular velocity
field of a point vortex (-y, x)/(2=n |§|2) is replaced by that
of a vortex blob (-y, x)/(2n(|{|% + 82). Krasny (1984, 1986)
applied the 8-model to the problem of the roll-up of a vortex
sheet and was able to obtain solutions beyond the critical
time for 8 > 0. Here we apply the §-model to the Contour-
Dynamic formulation with the aim of modifying the the cusp and
filament formation processes.

Taking the CD equation (3.25), and using —mC*/Z instead
of -oy for the rotational part of the flow field in equation

(3.9), the motion of a particle on the contour C. is given by

J
1o ,
—— = B) x+ 1 [v(t) - B(E)] vy
ot
exp[Q(t)] M C
3 o dcm' , (A2.1)

i

We now desingularize the integrand of (A2.1) to obtain the "&-
equation" for CD

9y |
—— = B x4+ iyt - B(E)] vy
at
* *
exp[Q(t)] M (€57 = &y 2
- 2 AO)m 2 2 d(:m’ 7
dmi m=1 |§j - Ly 1c + 8
m

where 8 is a small positive real number. The effect for the
CD method is to "smudge" to the vorticity jump (delineated by
the contours) over a finite layer of characteristic thickness
8. The d-equation conserves area but does not satisfy the
Helmholtz conditions. Its local effect is to add a dispersion
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velocity component that is tangential to the contour (Pullin,
unpublished manuscript).

We have not analysed the effect of & nor fully
investigated the 8§ = 0 limit but we have performed a few
exploratory computations to illustrate the influence of & > 0.
Figure A2.1 shows the evolution of two interacting FAVRs with
d = (x/4)1/2, D = 1.50 and y = 0.1 (case 3 in chapter 10) for
8 = 0.0, 0.1, 0.2 and 0.3. The computations proceed forward
in time to t = 12.5 and then the time-step reversed to see if
the initial configuration can be faithfully reproduced. The
d = 0 case displays an obvious problem with filamentation,
however, the results for 8 > 0 do not show any marked
improvement (reduced filamentation) until 8 has become
relatively large (i.e., roughly the thickness of the merged
core). Although the 8 = 0.3 case has the "cleanest" result
the overall vortex dynamics has been significantly affected.
Note the presence of very curved arms and a more nearly
elliptical central vortex core.

A set of simulations based on case 9 of chapter 10 is
shown in figure A2.2. Although the overall rotational speeds
of the merging structures are not affected, the local
evolutionary features appear to be retarded with increasing §.
In particular, the shape of the vortex structure at t = 30 for
8 = 0.3 is similar to that at t = 20 for & = 0.

In summary, it appears that the marginal benefit we
obtain by applying the 8-model is not as great as that
obtained by Krasny (1984, 1986) for the vortex sheet problem.
This may be due to the vorticity discontinuity having only a
"weak" effect when compared to that induced by the velocity

discontinuity of the vortex sheet.
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Figure A2.1 a,b :

Merging of two, equal uniform vorticity FAVRS,
1
d = (n/4)?, D =1.5, vy = 0.1 with (a) § = 0,

(b) § = 0.1.

Times t as shown.
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o 5~ to OO o 5 Lo OO
= -1, -1, -1

5.0 0.0 5.0 0.0
o1, -4,
4. r-1.

7.5 7.5
- 1. - 1.
— 0 § - 0 §
-1 =

10.0 10.0
- 4. - 1.
- 0 (<9) - 0 %
—y 1.

12.5 12.5
- 4. - 1.
-1, -1,

10.0 10.0
- 1. - 1.
—0 / -0 /
- -4 --1.

7.5 7.5
Figure A2.1 ¢c,d : (c) § = 0.2, (d) § = 0.3
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(a) (b) (c) (d)
- 1. - 1. - 1. - 1.
2 OO0 OO0 OO0 OO
-1, -1 -1, -1,
t=0.0 t=0.0 t=0.0 t=0.0
- 1. - 1. - 1. - 1.
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[, . O ., O . O
5.0 5.0 5.0 5.0
- 1. 0 1. O - 1. Q - 1. &
- 0 - 0 - 0 - 0
-1, (::7 -1, (i:7 F-1. C::) --1. (::7
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-0 -0 -0 o
-~1. -1, -1, -1,
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- - (:%:> - 4. (:e:> - 1. <:%t> - 1. (:{E>
=X s - 0 - 0
-1, -1, --1. -1,
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~ 0 —~ 0 — 0 \ - 0
=8 -1, -1, -1,
25.0 25.0 25.0 25.0
- 1. - 1. - 1. - 1.
L o O\o o O\O o O o O
-1 F-1. --1. -1,
30.0 30.0 30.0 30.0

Figure A2.2 :

Merging of two equal, uniform-vorticity FAVRS, d = (m/4)?,
D=1.92, y = 0 with (a) § = 0,
(d) 6§ = 0.3.

(b) 6§ = 0.1,

1
2

(c) 6§ = 0.2,
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APPENDIX 3 : Analytic Patch Procedure for the Velocity
Calculation

The governing equations (4.7) for the spatially periodic
CD formulation contain an integrand of the form

1 aq’
Ttotalr = (¥ — y") cot|—(Z = §') ' (A3.1)
2 de’

which is not well behaved over contour segments that approach

very closely but, do not coincide with, the velocity point Z =
X + 1iY.

Consider the contour segment defined by

¢’ (e) = ne? + Be + {, , (A3.2)

where {’ (-1) = .1 and £’ (1) = §{;. For the segment in figure
A3.1, {4 = 0.5 - i, CO = 1.0, & = 1.0 + 2i. The weakly
singular behaviour of (A3.1) over the segment is illustrated
in figures A3.2 (a, b, c) where the real (labelled "R") and
imaginary parts of the integrand Itotal are plotted for

Z =1.3, 1.1 and 1.01 respectively. The smaller the distance

d = min | 2 = §' (e) | ’ (A3.3)
-1 £ e £ +1

becomes, the more difficult the integrand behaviour. For
these examples, the fixed rule (4 point) Gaussian quadrature

(4.10) cannot produce an accurate estimate of

1
Jd = J Iiota1 de’ ’ (A3.4)
-1

using a single panel. The estimate of J can, however, be
improved by breaking the segment into N smaller panels,
applying the quadrature (4.10) to each panel, and summing the
result. Just how many panels are required to produce a
specified accuracy depends on d. Figure A3.3 shows the
variations in the estimate for Im(J) with the number of panels
used, N. The panels here have been specified as having equal
ranges of the interpolation parameter, e. Both parts, (a) and
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JLy
2 1z (e=1)
1 ™~
-2 -1 z(e=0) 2
T e
2k

Figure A3.1: A single parabolic segment z(e) = Ae2 + Be + C
defined by the subset of three nodes

c(-1) =(g ) =0.5-1 ,
c(0) =(g), ~=1.0 ,
c(1) =(g ) ;1 =1.0+2.0i.
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Figure A3.2 : For caption see opposite.
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(c)

Itotal

Figure A3.2 : Real parts (labelled R) and imaginary parts of the
integrand Itotal (A3.1) as functions of the interpolation
parameter (e) over the segment defined in figure A3.1.
The weakly singular behaviour becomes more pronounced as

Z approaches the contour segment.

(a) Z =1.3
(b) Z =1.1
(¢) Z =1.01
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Figure A3.3 : Variation of the imaginary part of the integral J (A3.4)
with the number of panels used in the numerical
quadrature over the segment defined A3.1. The real
parts are nearly zero hence they are not displayed here.
(a) Z=1.1
(b) Z =1.01
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(b), show that the estimate converges, for sufficiently large
N.

The velocity calculation is the most computationally
expensive part of the CD implementation even with a fixed rule
quadrature. The implementation of an adaptive scheme would
result in a lot more work being done if the contours approach
each other very closely and, as d becomes small, the progress
of the calculation would greatly reduced.

To avoid this problem we propose to decompose the full
integrand, Iiotal’ into a rapidly varying part, Ifastr and a

slowly wvarying part, The slowly varying part may be

Isiow:
integrated accurately using our fixed rule quadrature (4.10)

with only one panel per contour segment. Ifast should have a
simple form so that it may be analytically integrated over the

segments but the complexity I is of little consequence as

slow
the implementation of the numerical quadrature is relatively

insensitive to integrand form.

To obtain an integrand which is similar in behaviour to
Iiotalr we expand (A3.1) for small | Z - {’ |. Retaining only
first order terms we have

(Y - y’) dg’

I = 2 . (A3.5)
fast (Z - ¢') de’

Subtracting (A3.5) from (A3.1) leaves

{ {1 (Y - y") | ag¢’

I = J(Y -y') cot|— (z-¢)| - 2———mMm ¢ —~

1

sLow 2 (z — ¢7)) de’
(A3.6)

Figures (A3.4a,b) show the variation of Ifast and Is1iow

respectively along the segment defined in figure (A3.1) with

Z =1.01. The small magnitude of Isiow indicates that the
total integrand is closely approximated by Ifast especially in
the region close to Zz (i.e., e = 0).
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Figure A3.4 : Real parts (labelled R) and imaginary parts of the
integrands (a) Ifast and (b) Islow as functions of the

interpolation parameter (e) over the contour segment

defined in figure A3.1. Z = 1.01.
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With I smooth, the integral

slow
1

Jslow = J Isiow de’ ’ (A3.7)
-1

may be approximated accurately with just one pénel. The
analytic integration of Ifast

1

I

fast

Ifast = J 2= de’ ' (A3.8)
1 2

can be done either for straight line interpolation between the
points defining the segment

o — e (&1 - go) ;, “1 <e<0 , (A3.9a)

I\
i_l

o + e (&1 - &y , 0<e ,  (A3.9b)

or for parabolic interpolation (A3.2). Both cases are needed
as the parabolic result breaks down for | A | £ machine-

precision.

First we give the result for straight line interpolation.
The total expression for Jeast is composed of contributions
from each of the straight line segments .1 = g and Co — Cq/

Jfast = Jd_q * Jq ’ (A3.10)
where
(YO - Y_l)
J—l = (YO - Y_l) + - (Y - Y_l) + (2 - C-l)
(CO - C—l)

x [ln(Z - ¢y - 1n(z - C_l)} ’
(A3.11a)
and
Z —> CO
Z— 64

The expression for J, is similar but has the translation
o= & and {1 — o -
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The difference of the logarithms can be rewritten as
oz 1
In(z - CO) - 1ln(Z - C_l) = ln—— + 1(120 - Lz_q) ,

lz_q1 |
! (A3.12)

where {g = (2 - §_q), .1 = (2 - §_q) and / represents the
angle argument. There is no difficulty with the real part of
equation (A3.12) but, to select the correct branch for the
imaginary part, we force a branch cut to lie along the
straight line segment €1 = &y This numerical evaluation can
be achieved in more than one way but we choose to evaluate
(A3.12) as

In(Z - &) - 1n(z - 1) =

* *

In[t (Z2 - Co)] - In[t (2 - §_q)] ’
(A3.13a)
where
(Eop - €7)
t = 0 ! _ . (A3.13b)
| &g = &1 |

These are essentially the same expressions as used in the
isolated FAVR calculations (equations (4.3a-c)).

We now consider the expressions for Jfast using parabolic
interpolation (A3.2). Defining

T =2 - { , (A3.14)

and denoting real and imaginary parts by the subscripts R and
I respectively, the integral may be written

1
Jfast = J

-1

2
(T+ — Bre — A-e®) (B + 224e)
{ 1 1 1 }de (A3.15)

T - Be - A &2

Expanding the numerator and using integral-table 2.17 of
Gradshteyn & Ryzhik (1980), the integral can be evaluated as

Jfast = terml + coeffz.termz + coeff3.term3 ’ (A3.16a)
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where
term; = 2(2B; - A;B/A) P (A3.16Db)
coeff, = -T; + [A{T + B/2 (-By + A;B/A)] / A , (A3.1l6c)
term, = 1ln(Zz - Cl) - 1n(Z2 - Q_l) ’ (A3.16d)
B
coeff3 = —ZBIT + X LZAIT + B/2(—BI + AIB/A)J ’
(A3.1l6e)

1 { { -B - 22 - V(-4A) } { -B + 2A - V(—A)}}
term3 = — 1n - 1n
A)

v (- -B - 2A + V (-A) -B + 2A - v (+A)
(A3.16f)

and
V(-A) = (B2 + aam)1/2, (A3.169)

Special care must be exercised when selecting the branch cuts

for term2 and term3.

The real part of term, is straight forward and may be
calculated as in equation (A3.12). The imaginary part
corresponds to the angle enclosed by the two lines Z - C—l' Z
- CO and the contour segment. For the three examples 21, 27171
and Zypp in figure A3.5 these angles are 0r, 677 and 0117

respectively.

The logic for determining 6 has the following steps.
(i) Evaluate the magnitude of 6 using the cosine rule

0 = acos[(L_q2 + L2 - | Az )/ (2L_qL) 1 (A3.17a)
where
Az =0y - Ly (A3.17D)

(A3.17d)

£
AN
|
N
|
e
AN
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I

Figure A3.5 : Three examples of the evaluation of the imaginary part
of term, (A3.16d). © is always the angle enclosed by
the two straight lines Z - Cys Z - c_q and the curved
contour segment. In the shaded region 6 = 2m - ©

cos
where ecos is evaluated using the cosine rule (A3.17).
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(ii) Determine where on the {-plane Z lies by computing an
indicator, A, which is the parameter of a straight line
joining Z and D. The line is defined by

(M) =D+ A(Z - D) , (A3.18a)
D = 0.5((_1 + {q) , (A3.18b)

We search for the intersection of the line (A3.18) with the

parabolic curve (A3.2) given by the solution of the two

equations
Age? + Bge + xy = Dg + A(X - Dg) (A3.19a)
Are? + Bre + yy = Dy + A(Y - D) (A3.19b)

in the unknowns A and e. 1In general, there will be two

solutions
B+ vV (B? +402)
e = , (A3.20a)
20
where
'X__DR‘
o = Ap - Ag —_— ’ (A3.20Db)
\Y_DIJ
fX—DR\
B = Bg - By | —— , (A3.20c)
LY_DI)

with one solution being in the range -1 < e < 1. We choose

this solution and calculate A using

A = (Are? + Bie - A;)/(Y - D), (A3.21)

If A > 1.0 then Z is inside the speckled region of figure
A3.6, else it is outside.

(iii) Determine the orientation of the triad Z, €1, €_1 on the

{ plane using a cross product
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C = Ax.y - Ayx ’ (A3.22a)
where

AZ = Ax + iAy ’ (A3.22Db)

D= x + iy , (A3.22c)

(iv) Combine the magnitude and sign using

if (A < 1.0) then (A3.23)

0 = sign (6 D)

cos’
else

0 = sign (2 - © -D) ’

cos'’

where the function sign transfers the sign from the second
argument to the first.

The evaluation of termg is best done in the w-plane where

w = (B2 + 4am)1/2 (A3.24)

Substituting the parabolic segment equations (A3.2) into
(A3.24) gives

w(e) = £(2he + B) ’ (A3.25)

which indicates that the parabolic segment maps to two
straight line segments in th w-plane, one being the image of
the other through the origin (see figure A3.6). Hence, the
evaluation of termy can be done in much the same way as in
equation (A3.13)

1

termy = - { In(t*(c; - w1 - 1n[t™(c, - w)]}

1

¥ —{ Inft*(c, + w)] - 1n [t"(cq + w)]} ,
w

(A3.26a)

where



Tm(w) w—-plane
C2 \,\
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e
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,/—/— J/‘ Re(W)
€1 i
//
///
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yd

Figure A3.6 : The parabolic segment in the g-plane maps to two

straight lines in the w-plane as defined by equation
(A3.25).

Table A3.1 : Number of panels required to achieve four digit accuracy

in the numerical quadrature of J d is the distance

total’
of closest approach of the segment to Z.

Z # panels required effective panel size p/d
p

1.01 70 0.032 0.31
1.02 40 0.056 0.36
1.05 20 0.112 0.45
1.1 12 0.112 0.54
1.2 7 0.319 0.63
1.5 4 0.560 0.89
2.0 2 1.120 0.89




314

c1 = -B - 27 ’ (A3.26Db)
Cy, = -B + 2A ’ (A3.26¢C)
t=A/]A| ’ (A3.26d)

The end points of the two w-plane lines are C1s Cp and -cq,
—C, while t is parallel to them.

When compared with the numerical quadrature, the
"analytic-patch" procedure is extremly expensive to implement.
Hence it has to be used only where required. For an
indication of the relative computing effort see the shear
layer described in (figures 5.5, 5.6 of ) section 5.2. 1In
order to determine a simple criteria for the application the
procedure, we carried out a numerical experiment in which we
found the number of panels, N, required to produce an accurate
(precise to 4 digits in 32-bit arithmetic) estimate for J
using the numerical quadrature (4.10) only. The results are
summarized in table A3.1. Taking the worst case, and
including an "ignorance factor", we set the criteria for
applying the patch as

min( | Z - {(ey) |, i =0...3 ) < segsize , (A3.27a)
where
segsize = |§q - §y | + | 8o — C—1 | (A3.27Db)

approximates the length of the segment. The e;, 1 = 0...3 are
the integration points for the numerical quadrature. Although
this test is rough, especially for segments with high
curvature, it has the advantage of being simple and relatively
inexpensive.
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APPENDIX 4 : Point Vortex Models of Some Simple Flows

We can describe some of the features of the finite area
vorticity distributions by approximating the rolled-up vortex
cores as point vortices. Here we will use point vortex models
to
(i) calculate the stretching strain induced by the primary
vortices on the secondary vortices at the midpoint of the
braid,

(ii) find the stagnation point of the axis of symmetry and its
associated streamline in the stretching secondary-vortex

simulations.

For an isolated point with circulation I' and position o
(figure A4.1) the complex potential is
r

W(g) =—1n({ - ¢, , (A4.1)
2ri

and the associated velocity field is

dw r 1
u - iv = — = _— ’ (A4.2)
dg 2ri §

where { = x + 1iy.

Extending this to a periodic array of point vortices with

circulations T and period A (figure A4.2) we have a complex

potential
r T .
Ww(g) = Iny sin | — (£ - &) / (A4.3)
2w i A
and associated velocity field
r T
u - iv = cot — (L - C) ;- (A4d.4)
2A1 A

(Milne-Thomson §13.71, 1968)
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u
} Z =X + iY
/
r \ =X 4+ i
Co Yo Yo

N

Ay

1fx

Figure A4.1 : An isolated point vortex located at Z, with circulation T

induces a velocity u=ul + vj at point Z.

r.

Figure A4.2 : A'periodic array of point vortices with circulations T
and spacing A.

c

One member of the array is located at

o
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Case (1)

Approximate the rolled-up primary vortices by
concentrated point vortices and set o = 1/2 so that the
braid connecting the primary vortices would be at { = 0. The
velocity field is

r T T
u - iv = cot - - — } ’ (A4d.5a)
2Ai L A 2
- T
= —— tan — . (A4.5Db)
2A1 L A

Expanding (A4.5b) for small { and retaining only the first
order terms gives a velocity field
il'n
u-iv o= — ¢ . (A4.6)
2A

By rotating into a new frame of reference given by

¢ = teTi0 (A4.7)

we obtain the velocity field

dw ,
w - iv/ = — = (u - iv).el® (A4.8)
dg’
Substituting (A4.6) gives
18 .
u’ - iv/ = —— i 216 ¢/ , (A4.9)
222
which, for 6 = -x/4, becomes
o’
P A — . (A4.10)
222

This is a plane-strain field of strength y = nF/(212) with
principal axes orientated at 45° to the (x, y)-axes as shown
in figure A4.3.
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Each rolled up vortex contains the vorticity
redistributed from one period, hl, of the initially perturbed
shear layer with velocity jump AU across the layer. The
circulation of each vortex core is then

r = llAU ’ (A4.11)

giving a stretching field

AUT
u’ - ivl = — . (A4.12)
2%1

Case (1i1i)

Approximate the rolled-up primary vortices by a double
array with period A as shown in figure A4.4. The circulations
'y, Ty, are not necessarily equal. The velocity induced by
these two arrays minus that due to the point vortex at the
origin is

Fl i F2 b9 b Fl 1
u - iv = cot| — C| + cot| — § - —| - -
2A1 A 201 A 2 2ri
(Ad4.13a)
r T A r T
2A1 A i 2A1 A
(A4.13Db)

‘Expanding (A4.13b) for small { and retaining only first order
terms gives

i Fl
u - iv = — — + Tyt § . (Ad4.14)
22 3

By rotating into a new frame of reference (A4.7), and setting
6 = -n/4, we obtain

, . T ry
u’ - iv = — 91— +71 g’ . (A4.15)
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which is again a plane-strain field orientated at 45° to the

(x, y)—axes as shown in figure 2A4.3.

Case (iii)

To approximately locate the stagnation point in the

secondary vortex simulations, consider the point vortex model

in figure A4.4. Set ry =T, Iy = -T and add the stretching
strain field (3.20). The total (x, y)-plane velocity is
r T T 4
u-iv = iyy + — § cot| — ¢ - cot| — ¢ - —
2A1 A A 2
(A4.106)

At the line of symmetry, x = A/4, the velocity is

ir 1
u - iv = iyy - — , (A4.17)

2ry
cosh| ——
A

so that, at the stagnation point,

2% r
0 = vy cosh| — vy - — . (A4.18)
A Ay

This can be nondimensionalized, as done in the secondary
vortex simulations, by setting

2%
vy = .y, (A4.19a)
A
4n2
r - 1 , (A4.19b)
22
to give
0 = Y cosh Y - (2rny)~ 1 ) (A4.20)

Solutions to equations (A4.20) are given in table A4.1 for the
values of the nondimensional strain, Yo, used in the full

nonlinear simulation (chapter 8). The corresponding
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Figure A4.3 : A plane strain field represented by four curved streamlines.
The principal axes (x', y') are oriented at 45° to the

(x, y) axes.

" 2 j;Sl :252
M2 M2 _J
-

- ~r

Figure A4.4 : A double periodic array of point vortices with
circulations Tl and Fz. The wavelength of the array is
A.

Table A4.1 : Solutions to equation (A4.20)

Y Y
0.1 1.018
0.2 0.652

0.4 0.372
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stagnation streamlines in figure A4.5 are obtained by starting
at a point "just off" the stagnation point and numerically
integrating (A4.16) in (x, y)-space.
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(a)

. (b)

Figure A4.5 :

(c)

Parts of the stagnation streamlines for three values

of stretching strain .

(a) v
(b) v
(c) v

0.1
0.2
0.4

Tic spacing is 7/10.
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APPENDIX 5 : Linear Stability Analysis for the Free Shear
Layer

The undisturbed flow consists of a piecewise-constant
vorticity layer between two counter-flowing but parallel
streams. The contours Cj, j=1...M, M’'...1’ delineate the
vorticity discontinuities in the (x, y)-plane and the
associated velocity field is piecewise-linear as shown in
figure A5.1. The regions of uniform vorticity are labelled as
Ry...Ryr » Ryr...Rqy, with primed subscripts indicating
contours below the x-axis. To determine the stability of the
shear layer to small amplitude two-dimensional perturbations,
we search for vorticity preserving solutions to the Euler
equations. First we specify the equations governing the flow
at contours C. and C., and then combine the sets of equations

J J
for the 2M contours to form an eigenvalue problem.

Consider the partial layer shown in figure (A5.2) with
contours defined as

I
ik
|
+
Q

exp (ikx) exp(ioct) , (A5.1a)

nj(xl t) = —dqy — t o exp (ikx) exp (iot), (A5.1Db)

where 4 is the y-coordinate of C h. is the mean height,

7 3

O = 0. + iai is the complex amplitude of the perturbation,

J rj ]
6 =0, *+ i0; is the complex growth rate, and k = 2r/A is the
wavenumber. The vorticity profile is normalized by setting
max |mj | = 1.0 and defining ay = hj/h1° See table 5.1 for the

normalized vorticity profiles for M = 1, 4 and 8.

The regions and corresponding vorticities associated with
contours C. and C., are

J J
Rj—l PoMyoq >y > 5 ;. © = ®5_1 (A5.23a)
Ry—17 ¢ My-pr < vy < myy 0= 051 (A5.2b)
Rj : nj >y > ﬂj+1 ;. ® = mj ’ (A5.2¢)
Rj, : nj, < y < nj—l’ ; O = mj . (A5.24d)
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Figure A5.1 : The undisturbed, nonuniform vorticity shear layer for
M = 4. For positive W, j =1 ... 4, the corresponding
velocity profile ux(y) is shown to the right. The upper
contours are labelled C1 oo C4 while the lower contours

are labelled C CA"

' e

Figure A5.2: A partial view of the shear layer showing contours Cj

and C., slightly perturbed from their mean position.

The average y-position of Cj is ﬁj = qjh1/2.
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Table A5.1 : Normalized vorticity profiles with Gw = 1.0 and Wy = 1.0.
=1 M=4 M=38
h, = 1.0 h1 = 1.667 h1 =1.92
) 3 4 “3 4 Y3 4
1 1.0 1.0 0.274 1.0 0.071 1.0
2 0.643 0.6 0.161 0.86
3 0.870 0.35 0.287 0.73
4 1.0 0.162 0.440 0.61
5 0.593 0.49
6 0.743 0.38
7 0.907 0.26
8 1.0 0.14




326

The velocity in each region is defined as the gradient of a
flow potential, ¢, superimposed on the rotational part of the
undisturbed parallel flow. The velocity vector

u-= uxi + uyi ’ (A5.3a)

is given by

Ry—1 ¢ 85-7 = Vo441 - ®j~1\y - qj gl J; + ujl , (A5.3b)
Rj—l' P8y S V¢j—1' — 041 :y + qy —2—3 i - uj_i_ , (A5.3c)
Ry Pouy o= V¢j - 0 :y T 9541 gl :i_+ uj+li', (A5.3d)
Ry P Uy Voyr - oy iy t Ay gl ‘; - ugydl s (B5.3e)

where i and j are the unit vectors in the x- and y-directions.

The velocities

uj = n%M wn<nn+l - nn) ;, J=1...M, (A5.4) .
are the undisturbed velocities at the contours Cj, 3 =1...M.
The flow potentials are defined as

041 = etRE IOt (g, ) oKV 4 Q4-1,2 €7V , (A5.5a)

05o1r = etFE IOt g 1 ek 0y 0, 5 eTRY) , (a5.5D)

05 = etk IOt (g, ) kY 4 gy, e7KY) , (A5.5¢)

050 = eMRE IOt (g4, oKV 4 g, e7RY) . (A5.54)

The form of the flow potentials in (A5.5) have been chosen to
satisfy continuity with the Q’s being complex constants (yet
to be determined). Note that, when considering the whole
layer, no ’ nol ’ QO’,Z ’ QM,2 and QM’,Z do not exist and @O =
0.
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We can differentiate the flow potentials (¢’s) to obtain
the velocity directly in terms of the complex constants (Q’s)
using the relationships

L

u, = — (A5.6a)
9.X
30

u, = — (A5. 6b)
2y

The equations defining the stability characteristics of
the layer may be derived by applying the following constraints
at each interface.

(i) The u, and Uy velocities across the interface are
continuous.
(1i) Particles that are initially on the interface always
remain on the interface. That is
o _ on

— +ux.__ﬁy= 0 , (A5.7)
ot o0x

where the bar indicates a mean quantity (undisturbed layer),

the hat, a perturbation quantity. This gives us six equations

for every pair of contours C. and C.,which, in matrix form,

J J
may be expressed as
AQ =0 (A5.8a)
where A and Q are
Q = [ Q, Qi qrq QU qv, Q Q. Qs Q. o e, ¥
= j-1,1 j-1,2 j-1',1 j-1',2 3.1 3,2 i',1 i',2 j j
(A5.8b)
A= ikp ik/p 0 0 -ikp -ik/p 0] 0 (wj-wj_l) 0
p -1/p 0 0 -p 1/p 0 0 0 0
0 0 0 0 —kp k/p 0 0 1o+ ujik 0
0 0 ik/p ikp 0 0 -ik/p -ikp 0 @f“yﬁ
0 0 1/p -p 0 0 -1/p p 0 0
0 0 0 0 0 0 -k/p kp 0 10- ujik
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For a uniform vorticity layer (M = 1) we set
Q,1 = Q-’,2 =0, Q9,1 =Q1r,7 and Qg 5 = 0y, 5 , thus
reducing (A5.8b,c) to

8=19,2 9,1 Q1,1 Q1,2 0 ops ]
(A5.9Db)
ik/p 0 -ikp ik/p ®p 0
-1/p 0 -p 1/p 0 0
n:k
0 0 -kp k/p ic-i—m 0
A = 2
- 0 ik/p -ik/p -ikp 0 0,
0 1/p -1/p P 0 0
hlk
0 0 -k/p kp 0 io+i—ua,
L 2 i
(A5.9c)
p = exp( h1k/2 ) . (A5.9d)

This can be rearranged into the form of a standard eigenvalue
problem

CQ=0B2Q ’ (A5.10)
where ¢ is the eigenvalue and A=C- 6B. We can solve the
M = 1 problem "by hand" to find the range of ¢ which have
6i < 0 but for M > 1 we resort to a numerical solution using
the QZ algorithm (Garbow, ACM).

For a shear layer with M > 1, we have to assemble the six
equations from each pair of contours Cj and Cj, into a single
set of equations. As there are common Q’s between adjacent
regions R, some of the elements of the eigenvector are shared
between adjacent sets of six equations. The arrangement for
assembling the full eigenvector is shown in figure AS5.3.
Although we have 6M equations, there are only 2M finite
eigenvalues as there is a degree of degeneracy built into the
formulation of the contour perturbation (A5.1) and the

velocity potentials (A5.5). These extra degrees of freedom
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Figure A5.3 : Assembling the eigenvector for the M pairs of contours.
The general case for j = 2...M - 1 is shown with its
elements overlapping the special cases j =1 and j = M.
N is the number of elements in the eigenvector after
adding the contour pair Cj—l and Cj—l'; N =8+ (j-1).6.
For contours C1 and Cl.; QO,l = 0, QO',l = 0 and for

Cyand Gy Qv g = Qy ; and Que o5 = Qy 5

j=1 jo=2...M-1 i=M
element quantity element quantity element quantity
# # #
- Q,1 =9
1 %,2
2 Qo',l =0
- Qr2
3 Q4 N-5 Q1
4 Q2 N - Q1,2
> Qe g L Q10,1
6 QL2 N-2 Qi
7 al N - -
8 al' N -
N+ 1 Q; ; N-5 Q1.1
N+ 2 QJ.’2 N -4 QM—1,2
N+ 3 Qv N-3 Qg
N + 4 Q1 N-2  Quii,
N+ 5 Otj N-1 -
N+ 6 OLJ., N -
N+1 QM,l
N + 2 Qy o
N+l Qg = Qi
N+ 2 Qpr g =Q o
f\I+3 oy
N+ 4 !




330

are present because we did not utilize all of the symmetries
of the physical problem. To check the final numerical code
for this stability analysis, the uniform-vorticity layer was
studied using M = 1, M= 2 and M = 4 with 0o =1, j = 1...4.

J
No difference was observed in the computed results.

The solution space 0 < khq < e was searched by selecting
a vorticity profile with Onax = 1 and hqy set to give Sm = 1.0
(see table A5.1). We then obtain particular solutions to the
eigenvalue problem (A5.10) for selected values of k. The
results are summarized in figure (A5.4) which show the

perturbation growth rates, si/mm over a range of kE‘S(D for

7
four vorticity profiles. The la;er is stable outside this
range. If we let M — o then we expect the computed solution
to approach that of the Rayleigh equation (Yih § 19 ) for an
inviscid properly-continuous vorticity layer. The plots of
growth rate in figure A5.4 support this conjecture as the

M = 4 and M = 8 curves provide reasonable approximations to
the continuous result (curve 4) except for short waves with
wavelength of order the contour seperation. This continuous

vorticity profile

@(y) = -0.5AU sech?(y) , (A5.11)

corresponds to a hyperbolic-tangent velocity profile

u,(y) = 0.5AU tanh(y) . (A5.12)

as studied by Michalke (1964). We find that the wavenumber
k8m of the perturbation with the largest growth rate decreases
with decreasing momentum thickness 6/8CO (table A5.2), as
Observed by Nakamura, Leonard & Spalart (1982). The same
trend is seen with the‘highest wavenumber for an unstable
perturbation.

The contour shapes are obtained from the o elements in
the eigenvector, Q. We are only interested in the real part

of m (A5.1) so we define the contour shape for Cj as

hq

nj (x) = qj '2— + arj cos (kx) - oclj sin(kx) . (A5.13)
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As numerical results computed using QZ are not normalized to
any particular phase and amplitude, hence we impose the

constraints
(ar)j = _(ar)j’ ’ (A5.14a)
(ai)j = *(ai)j/ ’ (A5.14Db)
| ooy | = 1.0 ’ (A5.14c¢)

57 = 2% - Cj and set the maximum

amplitude of (any of) the contours to one. Figure A5.5

which induce the symmetry C

illustrates the normalization procedure for the piecewise-
constant vorticity profile M = 4 with kd, = 0.875 (i.e., the
mode with the highest growth rate). The values of the o
produced by the numerical code are plotted on a graph with
axes "Old Re" and "0Old Im". A new set of axes ("New Re" and
"New Im" ) satisfying the constraints (A5.15) is overlaid and
the normalized values for the aj recorded. Values of
normalized a’s for all vorticity profiles and wavenumbers used
in the numerical simulations of chapters 7 and 9 are given in

tables 7.3 (M = 4) and 7.4 (M = 8).
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a. i
1
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max
0.2 -
0.1 |
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0.0 1 ] |
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Figure A5.4 : Normalized growth rates for four vorticity distributions.

(1) single region, M = 1, of uniform vorticity

(2) M = 8 piecewise-constant vorticity profile as defined
in table A5.1

(3) M = 4 piecewise—constant vorticity profile as defined
in table A5.1

(4) the continuous vorticity profile (A5.11) corresponding
to the hyperbolic-tangent velocity profile (Michalke,
1964)
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Table A5.2 : Extreme values of the parameters in the stability analysis

for each vorticity profile.

Vorticity _Tgy _El Perturbation highest unstable
Profile éw 8w with max growth wavenumber
kSw Oi/wmax de
uniform vorticity 0.167(1.0 0.795 0.2012 1.279
M=1)
piecewise constant 0.228(1.67 0.875 0.1926 1.675
M = 4)
piecewise constant 0.21511.92 0.857 0.1938 1.626
M = 8)
w = —3sec’(y) 0.25 - 0.889 0.1898 2.0
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0.0

new
Im

Figure A5.5 : Plot of uj, j=1

1 77
/ // ’ old
! // Re _

.. 4 for the non uniform vorticity

profile (M = 4) and wavenumber kéw = 0.875.

0ld axes - results as computed by the QZ algorithm.

New axes - results normalized as per (A5.14).



