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Short Course Outline, Day 1

Morning: presentation &
discussion
• Overview of Eilmer, a brief tour

• Theory & Formulation

• Implementation, Verification &
Validation

Afternoon: hands-on activities
• Installing Eilmer on a laptop /

workstation

• First example: cone in supersonic flow

• introduction to Lua as input
• pre-processing
• running a simulation
• post-processing

• discussion of directory layout

and files

• Second example: laminar flow over a
flat plate

• Tips & tricks:

• restarting a simulation

• using a previously completed

solution as initial state

• Third example: blunt wedge
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Short Course Outline, Day 2

Morning: presentation &
discussion
• Eilmer for simulation of hypersonic

flows

• Advanced thermochemistry

• Turbulence modelling

• Parallel computing: small & large
scale

• Advanced/experimental features
• user-defined BCs and source terms
• shock-fitting boundaries
• moving grid
• block-marching mode
• wall functions for turbulence
• GPU-acceleration of reacting flows
• steady-state solver
• adjoint solver for optimisation

• state-specific chemistry coupled to flow

Afternoon: hands-on activities
• Installing MPI version of Eilmer

• Working in 3D

• importing grids from 3rd-party
grid generation tools

• partitioning structured and

unstructured grids

• Fourth example: Reacting air flow
over a sphere

• Fifth example: shock-wave
boundary-layer interaction

• Tips & tricks:

• running simulations in parallel

• using the block-marching mode

• Bring-your-own examples
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Why hypersonics?
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Why computer simulation of hypersonic flows?

• The flow physics are modelled
reasonably well, but the interactions
are complex.

• Physical experimentation provides
insights but has limitations, such as:
scaling (time and length), boundary
conditions, quantification of
uncertainties, expense

• Computer simulation complements
physical experiments, and vice versa.

• Analysis via computer simulation
(might) substitute when we don’t
have suitable experience.

• Computer analysis good for ‘what-if’

studies, and design.
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Eilmer features – 1/2

• 2D/3D compressible flow
simulation.

• Gas models include ideal,
thermally perfect, equilibrium.

• Finite-rate chemistry.

• Multi-temperature and
state-specific thermochemistry.

• Inviscid, laminar, turbulent (k-ω)
flow.

• Solid domains with conjugate heat transfer in 2D.
• User-controlled moving grid capability, with shock-fitting

method for 2D geometries.
• Dense-gas thermodynamic models and rotating frames of

reference for turbomachine modelling. 5



Eilmer features – 2/2

• Transient, time-accurate, using explicit Euler,
PC, RK updates.

• Alternate steady-state solver with implicit
updates using Newton-Krylov method.

• Parallel computation via shared-memory on
workstations, and using MPI on a cluster
computer.

• Multiple block, structured and unstructured
grids.

• Native grid generation and import capability.

• Unstructured-mesh partitioning via Metis.

• en.wikipedia.org/wiki/Eilmer_of_Malmesbury

• Gas model calculator and compressible flow relations.
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Origins

• in the late 1980s, the state of the art for scramjet simulations
involving reactive flow was JP Drummond SPARK code

• Flow solver component based on Bob McCormack’s (1969)
finite-difference shock-capturing technique.

• All configuration hard-coded into the Fortran source code
and compiled to run on a Cray supercomputer.

• In the 1980s, a new CFD technology (upwind flux) was being
developed by the applied mathematics people and parallel
computing environments were being developed by the
computer science people (cluster computers).

• Dec 1990: following a CFD lesson on the chalk-board from
Bob Walters and Bernard Grossman, cns4u was started with
the intention to be like SPARK but with new technology
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Development of Eilmer

• 1993 built sm3d, a space-marching code for 3D scramjet
flows

• 1995 through 1999: the postgrad years expanded scope of
experimentation and application

• 1996: code reformulation around fluxes (frequent
discussions with Mike Macrossan); all code still in C with a
preprocessor having a little command interpreter built in.

• 1997: discovered scripting languages Tcl and Python
• May 2003: scriptit.tcl provided fully programmable

environment for simulation-preparation.
• Aug 2004: Elmer began as a hybrid code using Python and C.
• Jun 2005: rewrite of Elmer(2) in C alone.
• Jul 2006: rewrite Elmer2 in C++ and, in 2008, call it Eilmer3.

Class-based implementation was easier to extend.
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Eilmer contributors over the years
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Eilmer4 – think big, but control the complexity

• Jun 2015+: rebuild in the D and Lua programming languages.
• Heather Muir worked on the unstructured-grid generator.

based on the paving algorithm.
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Eilmer – find out more

Website:

cfcfd.mechmining.uq.edu.au/eilmer

Source code repository:

bitbucket.org/cfcfd/dgd

Documentation in the Eilmer 4.0 guides:

• Guide to the transient flow solver
• Guide to the basic gas models package
• Guide to the geometry package
• Formulation of the transient flow solver
• Reacting gas thermochemistry
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Theory: formulation, verification and
validation



Overview: compressible flow CFD via finite volumes

• What we solve: governing equations for a viscous
compressible flow

• How we solve: discretisation in space and time

• Global view of the update algorithm

• Convective fluxes: reconstruction-evolution approach,
interpolation order, flux calculators, limiters

• Time integration and the CFL condition

• Diffusive fluxes

• Boundary conditions
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What we solve

Integral form of a conservation law

A general conservation law for quantity U is written in integral
form as

∂

∂t

∫
V

UdV = −
∮

S

(
~Fc − ~Fd

)
· n̂ dA +

∫
V

QdV , (1)

where S is the bounding surface and n̂ is the outward-facing unit
normal of the control surface.

What are the quantities U?
The conserved quantities in a
compressible flow are mass,
momentum and energy. In two
dimensions, we can group these
conservation equations with vector
notation. 13



Integral form of conservation laws in vector form

For an ideal gas in two dimensions, the vector of conserved quantities is:

U =


ρ

ρux

ρuy

ρE

 , (2)

with convective flux vector

~Fc =


ρux

ρu2
x + p
ρuyux

ρEux + pux

 î +


ρuy

ρuxuy

ρu2
y + p

ρEuy + puy

 ĵ , (3)

and diffusive flux vector

Fd =


0
τxx

τyx

τxxux + τyxuy + qx

 î +


0
τxy

τyy

τxyux + τyyuy + qy

 ĵ . (4)

The vector of sources Q is typically zero.
14



Expansion of diffusive fluxes

The shear stresses in 2D are:

τxx = 2µ
∂ux

∂x
+ λ

(
∂ux

∂x
+
∂uy

∂y

)
,

τyy = 2µ
∂uy

∂y
+ λ

(
∂ux

∂x
+
∂uy

∂y

)
,

τxy = τyx = µ

(
∂ux

dy
+
∂uy

dx

)
,

where the secondary viscosity coefficient λ is related to the primary (dynamic)
viscosity coefficient µ via Stokes’ hypothesis, λ = − 2

3µ.

The diffusive heat fluxes are:

qx = −k
∂T
∂x

qy = −k
∂T
∂y

,

where k is the thermal conductivity of the gas.
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How we solve: discretisation in space, finite-volume method

Some nomenclature
cells: the finite volumes used to discretise the do-

main the flow solution is computed as av-
erage quantities in the cells

interfaces: the edges (or faces, in 3D) of cells
vertices: points in space forming the corners of cells 16



A flow domain with discretisation
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Spatial discretisation: semi-discretised equations

dU
dt

= − 1
V

∑
cell-surface

(
~Fc − ~Fd

)
· n̂ dA + Q (5)

• The right-hand side (RHS) of Eqn 5 is now discretised — it forms a set of
algebraic expressions.

• If our finite volumes completely fill the domain (they should!), we see that
this discretisation is inherently conservative: flux out of one cell is
balanced as a flux in to an adjoining cell.

• The complete system is a system of ordinary differential equations.

• This system can be integrated forward in time using numerical methods
for ODEs. We typically stick to low-order time methods because of the
complexity and computer memory required by evaluation of the RHS.

• More detail on how we compute
∑

cell-surface

(
~Fc − ~Fd

)
· n̂ dA are presented

later.

• But first, let’s talk about using operator-splitting on this system.
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Operator-splitting approach to update flow system

Operator-splitting, also known as timestep-splitting, is a solution technique
whereby the system is ‘split’ and each part is updated in turn.∫

∆t

dU
dt

dt =

∫
∆t

(
dU
dt

)
conv.

dt +

∫
∆t

(
dU
dt

)
diff.

dt , (6)

where (
dU
dt

)
conv.

= − 1
V

∑
cell-surface

(
~Fc

)
· n̂ dA + Q ,(

dU
dt

)
diff.

= − 1
V

∑
cell-surface

(
−~Fd

)
· n̂ dA .

• advantage: use of the best numerical integration schemes based on the
type of system

• disadvantage: the global solution is subject to the numerical instabilities
that could arise from any of the individual split processes
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Global view of update algorithm
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Convective flux update: overview

The goal is to numerically approximate the convective fluxes across cell
surfaces and update the cell quantity based on those approximations.

The convective flux update can be divided (broadly) into 4 steps. Steps 1
and 2 are focussed on the interfaces in the domain:

1. Reconstruction: use some form of interpolation to estimate the
flow states either side of an interface.

2. Flux calculation: using the reconstructed flow states either side of
an interface, compute the numerical flux through the interface.

Steps 3 and 4 are from the cell’s perspective:

3. Compute time derivatives: sum fluxes on bounding surfaces of cell
to get the time rate of change of quantities U.

4. Update cell-centre values: using a numerical integration technique.
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Convective flux update: reconstruction

We’d like to compute the flux through an interface based on the flow states
either side of the interface, so we need a means of estimating those flow states.
However, the finite volume formulation only gives us cell average information.
The process of estimating Left and Right flow states from nearby cell averages is
called reconstruction.

The simplest approach would be to take:

QL = Qi−1; QR = Qi

This in fact leads to a scheme that is first order accurate in space.

config.interpolation order = 1
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Reconstruction on structured grids

Higher-order approaches involve use of more nearby cells leading to higher
order spatial accuracy.

On structured grids for interface i, Eilmer’s reconstruction makes use of cells:

[Qi−2,Qi−1,Qi,Qi+1]

The (unlimited) reconstruction is 3rd order accurate in space.

For robust shock-capturing, a limiter is applied. On structured grids we use the
van Albada limiter. It puts a limit on the reconstructed values before passing
them to the flux calculator.

config.interpolation order = 2

Why 2 not 3? The mid-point integration used in the finite-volume has second
order truncation error. Despite this, the use of 3rd-order reconstruction gives
some benefit at no real extra computational expense.
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Reconstruction on unstructured grids

A weighted least squares reconstruction is used based on
neareset neighbour cells.

Reconstructed values require limiting.
Options are:

• Venkatakrishnan

• min-mod

• Barth

• van Albada

• MLP

config.interpolation order = 2
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A note on reconstruction and grid quality

• Those with some CFD experience may be familiar with the link between
the quality of the grid (smooth variations in cell size, mostly orthogonal
cells) and the quality and robustness of the numerical solution. You may
have even had someone else tell you: “Improve your grid.”

• The principal link between the grid quality and the numerical solution
quality is the reconstruction.

• Why? because of the assumptions built into the reconstruction methods.

• On structured grids, we’ve assumed that cells are (mostly) aligned in one
direction. Some reconstruction schemes even assume that all cells are of
equal width locally.

• On unstructured grids, we need to solve a least-squares problem. The
geometric distribution of neighbouring cell influences the quality of the
solution to the least-squares problem. We are essentially trying to fit a
plane through the collection of nearby points.

• Typically, as our grids deviate from these assumptions, the quality of the
solution degrades, particularly in regions of strong flow gradients.
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Convective flux update: flux calculation

Given flow states either side of the interface, the flux calculator algorithm is
required to estimate the numerical flux across the interface. There is an
enormous variety of approaches to the problem of flux calculation. Flux
calculation is the same on both structured and unstructured grids since we’ve
reduced it to a Riemann problem.

Flux calculators available in Eilmer:

• AUSMDV

• AUSM-plus-up

• EFM

• HLLE

• adaptive-EFM-AUSMDV

• adaptive-HLLE-AUSMDV

The adaptive calculators are designed for flows with strong shocks. A dissipative
calculator is used near shocks (EFM or HLLE) and a low-dissipation calculator
(AUSMDV) is used elsewhere. 26



Convective flux: computing time derivatives

Sum contribution from fluxes across bounding surfaces.(
dU
dt

)
conv.

= −1
V

(−FnAn − FeAe + FsAs + FwAw)

This expression generalises for arbitrary cell types on 2D and 3D
unstructured grids.
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Convective flux update: time integration

The flow solution may be advanced in time using standard ODE solution methods.

Explicit techniques

• include forward Euler, predictor-corrector, multi-stage Runge-Kutta methods

• easy to program

• typically low memory requirements (compared to implicit)

• timestep size is limited by stability considerations

Implicit techniques

• stable for large timesteps timestep beyond explicit timestep limits, not necessarily
accurate at large steps

• in practice, approximations in formulation put limits on the timestep for stability

• can be difficult to implement (influenced by choice of flux calculator)

• can have large memory requirements (scale as n2 where n is number of equations
to solve)
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Convective flux update: CFL condition

The Courant-Friedrichs-Lewy (CFL) condition states that the numerical domain
of dependence must wholly include the physical domain of dependence. This
can be interpreted to a give a timestep limit ∆t in terms of the cell size and the
fastest characteristic wave in the flow:

∆t <
∆x
|u|+ a

Depending on the chosen time integration scheme, the numerical domain of
dependence might be larger or smaller than that by the CFL condition.
Furthermore, the CFL condition does not account for nonlinearities, so we might
want to be conservative in its application. We can modify the expression by a
multiplier α to give an expression for the allowable timestep:

∆tallowable < α
∆x
|u|+ a

In this form,α is commonly called the CFL value.

config.cfl value = 0.4
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More on the CFL value

It is a (reasonably) expensive operation to check the CFL
condition. The ∆tallowable must be checked at every cell and search
performed across the flow domain to find the smallest value. This
also forces a global synchronisation step when running in parallel.

In Eilmer, we only check the CFL condition after a certain number
of timesteps have passed. The default is every 10 steps. Users may
select to change how frequently the CFL value is checked.

config.cfl count = 10

Recommended CFL values based on update scheme

Euler < 0.4
predictor-corrector < 0.7
3-stage Runge-Kutta < 1.3
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Diffusive flux update

The steps for performing the diffusive flux update are:

1. Spatial derivative estimate: required for shear stress and
heat conduction terms

2. Assemble fluxes at interfaces

3. Compute time derivatives

4. Update cell-centre values
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Spatial derivatives for diffusive fluxes

In Eilmer, in 2D on structured grids the recommended spatial
derivative method is to use the divergence theorem based around
vertices.

config.spatial deriv calc = ’divergence’

config.spatial deriv locn = ’vertices’

For all other cases, 2D unstructured, 3D structured or
unstructured, the choices are1:

• unweighted least squares

• 2-point derivative estimate
1These can be used on 2D structured also, but we recommend the divergence

theorem.
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Boundary conditions

At the edge of the domain, we need to supply some information about how the
flow at the boundary behaves. Sometimes it is useful to extend the domain with
a few imaginary cells and fill them with appropriate flow conditions. In this way,
we can use the regular reconstruction/flux calculation method to get the effect
of the boundary conditions. These imaginary cells are called ghost cells in
Eilmer. They are also used at the boundaries of block connections as a buffer to
transfer flow data.

imin imax

jmin

jmax

j

i

In other cases, it is more useful
to specify the flow condition at
the boundary interface directly
(a Dirichlet condition). Other
times, we know something
about the flux at the boundary
interfaces and so we set those
values (a Neumann condition).
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Implementation, Verification &
Validation



Implementation

D language data storage and solver, with embedded Lua interpreters for
preprocessing, user-controlled run-time configuration in boundary
conditions and source terms and thermochemical configuration.
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e3code
e4code
e3doc

At 60 lines per page, the Eilmer4 code is equivalent to a 1200 page

document.
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Implementation: packages and modules

dgd

|-- extern

| |-- lua-5.1.4

| ‘-- zlib-1.2.3

‘-- src

|-- eilmer

|-- extern

|-- gas

|-- gasdyn

|-- geom

|-- grid_utils

|-- kinetics

|-- moc

|-- nm

|-- quodas

‘-- util 35



Quality Control: Verification & Validation

To quote Blottner:

Verification: are we solving the equations right?
Validation: are we solving the right equations?

Verification:

• comparison to exact solutions
• comparison to manufactured solutions
• order of accuracy test
• code-to-code comparison

Validation:

• are our models of flow physics correct
• comparison to experimental measurements
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Verification for invisicd flows

For inviscid flows, we have verified the code using:

• Roy’s manufactured solution for supersonic invisicd flow.
Demonstrated 2nd order spatial accuracy on regular, stretched, and
distorted grids.

• Power & Stewarts’s exact solution for an oblique detonation wave.
Demonstrated 1st order spatial accuracy in the presence of shocks.
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Verification: oblique detonation wave

The flow problem is an oblique detonation wave which is supported by a curved
wedge surface. The analytical solution for this problem was first presented by
Powers & Stewart (AIAA J. 1992), and first employed for verification by Powers &
Aslam (AIAA J. 2006).

In order to make the problem analytically tractable, the reaction mechanism for
the detonation is simplified. The reaction is a one-step reaction that proceeds
once an ignition temperature is reached.
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The Powers and Aslam gas model

• Two species A, B, with reaction of A to B proceeding at rate

dρB

dt
= αρA H(T − Ti)

with rate constant α = 0.001 s−1

• Reaction progress variable is mass fraction of B: λ = YB = ρB
ρ

• YA = 1 − YB

• Equation of state for internal energy:

u =
1

γ − 1
p
ρ

− λq = CvT − YBq

with heat of reaction q = 300000 J/kg and ratio of specific
heats γ = 6/5.

• Pressure: p = ρRT , with gas constant R = 287 J/kg.K
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Oblique detonation wave results – 1/2

L1 =

Ni∑
i=1

Nj∑
j=1

|ρn,ij − ρe,ij|∆x∆y
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Oblique detonation wave results – 2/2
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Verification for viscous flows

For laminar viscous flows, we have verified the code using:

• Roy’s manufactured solution for subsonic viscous flow.
Demonstrated 2nd order spatial accuracy on regular, stretched, and
distorted grids.

• Code-to-code comparison with a boundary layer code to compute
the laminar supersonic flow over a flat plate.

For turbulent viscous flows, we have verified the code using:

• Roy’s manufactured solution for the k − ω turbulence model, with
modifications to suit the Wilcox 2006 version of the turbulence
model.
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Verification: laminar flow over a flat plate

M∞ = 4.0; p∞ = 101.3 kPa; T∞ = 300 K
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Validation

Validation involves comparing the numerical solution to the
physical model to experimental measurements. This gives us an
indication of how good the Euler and Navier-Stokes flow models
are for the problems of interest.

We have performed a good deal of validation of Eilmer over the
years and have given a special emphasis on hypersonic flows. We
encourage users to validate the flow solver on well-regarded test
problems when they are using the flow solver in a new area of
investigation.

We will look at two validation cases that deal with ideal gases:

• Flow of Noble gases over spheres
• Heat transfer on a cylinder-flare configuration
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Validation: spheres fired into Noble gases – 1/2

Schwartz & Eckerman tested their measurement technique of shock detachment

distance by firing ball bearings into noble gases for which a sound theoretical

model existed.

Argon flows

M∞ 2 – 6
T∞ 300 K
p∞ 10, 100, 200 mmHg

Krypton flows

M∞ 6 – 12
T∞ 300 K
p∞ 10, 100, 200 mmHg

Argon flow, M = 2.0, p = 10.0 mm Hg 45



Validation: spheres fired into Noble gases – 1/2
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Validation: laminar flow over a cylinder-flare – 1/3

Experiments performed at CUBRC in the LENS Shock Tunnel and
reported by Holden et al. This configuration is designed to give
rise to a separation bubble.
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Validation: laminar flow over a cylinder-flare – 2/3
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Validation: laminar flow over a cylinder-flare – 3/3
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