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Abstract

The True Direction Equilibrium Flux Method (TDEFM) is mathematically derived and ap-

plied to various flow problems. Rather than employing the conventional approach of calculating

fluxes of mass, momentum and energy in a series of one dimensional fluxes across cell interfaces,

TDEFM models the transportation of mass, momentum and energy based on the mechanism

used by a direct solver (such as DSMC). The resulting expressions allow fluxes of mass, mo-

mentum and energy to be transfered from a specified source volume to a specified destination

volume regardless of whether or not these regions share an adjacent interface. The fluxes of

mass, momentum and energy calculated by TDEFM are the analytical solution to the free flight

phase of a direct simulation when the flow is in thermal equilibrium and flow properties (such

as density) are assumed uniform over each cell volume. The TDEFM fluxes are calculated by

integrating the Maxwell-Boltzmann equilibrium distribution function over both velocity space

and the physical volume of each cell. The primary advantage to this approach is that the

TDEFM fluxes are true directional - fluxes of mass, momentum and energy can be transported

in their physically correct direction and do not rely upon one dimensional reconstructions for

flux calculation.

Direct solvers possess the ability to maintain gradients of density within each cell through

simulation particle location. To increase the physical realism of TDEFM the fluxes are re-

constructed using linear variations of density. The revised method, named Density TDEFM

(DTDEFM), provides results which are closer to a direct solver in the equilibrium limit than

conventional TDEFM without significantly increasing the computational expense. For com-

pleteness further flux expressions are developed for the inclusion of linearly varying velocity,

resulting in Velocity TDEFM (VTDEFM).

The capacity of TDEFM to capture unaligned flows on a regular grid is demonstrated in

various one and two dimensional problems. The effects of using true directional fluxes are first

demonstrated by testing the two dimensional radial blast wave and implosion problem. These

results obtained show that the results obtained using true directional fluxes better capture the

radial motion of gas on a regular cartesian grid when compared to other selected first order

continuum solvers. The true directional fluxes were then used to simulate various hypersonic

flow problems. The development of these true directional fluxes ultimately lead to the creation

of FASTWAVE, a tool capable of predicting blast wave behaviour in city environments in a

matter of minutes on a standard desktop PC or laptop. Finally, extensions to viscous flow

using en route collisions, adaptive mesh refinement and the hybridisation of TDEFM with a

BGK solver is discussed.
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Chapter 1

Introduction

Bird’s Direct Simulation Monte-Carlo method [15] simulates a rarefied flow by following the

motion and collisions of a large number of simulator particles as they move through the flow.

DSMC in the high collision rate limit has been used as an Euler solver [80, 73, 52] and as the

‘continuum’ part of a hybrid DSMC/continuum solver. DSMC is generally more robust than

a conventional Euler solver but suffers from statistical scatter which requires large amounts of

CPU power to reduce to acceptable limits. One reason for DSMC’s stability is that the fluxes

of mass, momentum and energy are carried by particles which move in the physically correct

directions; in any time step fluxes may flow from any cell to any other cell in the computational

domain.

In continuum solvers the fluxes are traditionally ‘direction decoupled’: one dimensional

flux calculations are performed in the direction normal to the interface between two cells,

and the fluxes are only exchanged with cells that share an interface. For example, on a 2D

structured grid the fluxes flow in two coordinate directions and never flow in one time step

between cells which are diagonally contiguous (share a vertex in common) but do not have a

common interface. Work by Cook [24] and Smith et. al. [93, 71, 98] have shown that when the

cell structure is not well aligned with the physical structures in the flow, ‘direction-decoupled’

methods may produce non-physical results such as negative temperatures or densities where

strong shocks occur or interact. These solvers may also produce asymmetrical results where

symmetrical results are theoretically predicted.

Macrossan et al. [70] used the ‘Particle Flux Method’ to mimic the effect of DSMC as an

Euler solver while cutting down greatly on computational effort. Nevertheless some statistical

scatter was unavoidable since particles, which were generated statistically from the Maxwell-

Boltzmann distribution within each cell, were used to carry the fluxes to other cells. Prior to

the free flight phase of the PFM method, these particles were uniformly distributed within each

cell. These particles were free to move from their source cell to any surrounding cell, regardless

of grid considerations.

Pullin [80] proposed the Equilibrium Flux Method (EFM) in which the fluxes carried by

particles having velocities conforming to the local Maxwell-Boltzmann distribution were calcu-

lated analytically across cell surfaces for the limit of an infinite number of particles over a very
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small time step ∆t. EFM eliminates the statistical scatter associated with the previously pro-

posed particle flux methods. The expressions obtained by Pullin’s EFM represent the fluxes of

mass, momentum and energy through a surface and therefore require the direction decoupling

approach to be used in higher dimensions.

Presented is the True Direction Equilibrium Flux Method (TDEFM) which aims to main-

tain the analytical foundation of EFM while employing the physical mechanism of transport

employed by a direct solver such as DSMC. The fluxes of mass, momentum and energy are de-

termined by integration of the local Maxwell-Boltzmann distribution over both velocity space

and the physical volume of each cell. This novel approach allows fluxes to be transported from

any specified source volume to any specified destination volume. Unlike EFM, flux exchange

between cells is not limited to those sharing adjacent interfaces. The fluxes obtained using

TDEFM represent the analytical solution to the free flight phase of a direct simulation in the

limit of an infinite number of simulation particles for any time step when conditions in each

cell are uniform and in thermal equilibrium.

Direct simulation techniques such as DSMC allow variation of density across each cell

through the discrete placement of simulation particles. To increase the physical realism of

the TDEFM fluxes, a linear variation of density is then applied. This method, named Density

TDEFM (DTDEFM), provides results closer to that of DSMC in the high collision rate limit

(Pullin’s Equilibrium Particle Simulation Method) than the previously implemented TDEFM

fluxes while maintaining the physical realism of true directional fluxes. For mathematical com-

pletion, new flux expressions are developed for the addition of a linearly varying bulk velocity,

named Velocity TDEFM. Both methods have been shown to provide superior results for un-

aligned flow on regular cartesian grids than selected, first order continuum solvers [98, 95].

The introduction of Adaptive Mesh Refinement (AMR) has allowed complex problems re-

quiring high levels of grid refinement to be solved by concentrating computational effort on

important regions. To increase the applicability of TDEFM the method is then employed using

a cartesian-based adaptive mesh which can split or combine cells as the simulation runs. Such

methods have been used in the past [47, 50, 97] and have been shown to effectively simulate

flows over bodies of arbitrary shapes. Preliminary results using TDEFM when target cell sizes

are based on the local mean free path are shown to approximately capture viscous flow as

simulated by DSMC.

The assumption of thermal equilibrium required by TDEFM for the analytical derivation

of the fluxes is invalid for many engineering flows. For example, simulations of hypersonic flow

include shocked regions where the flow time is too small for sufficient collisions to reach thermal

equilibrium to occur. The use of DSMC or a BGK solver in all regions of such a flow is often

computationally prohibitive. The recent emergence of hybrid methods has presented a solution

to this problem. Recent efforts by Kolobov et. al. [49, 50] propose a Unified Flow Solver (UFS)

where a BGK solver is used in regions of thermal non-equilibrium and a kinetic theory based

continuum solver (such as EFM) is used in regions of thermal equilibrium. The fluxes used
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are direction decoupled, i.e. fluxes are exchanged between regions sharing adjacent interfaces.

Presented is a true directional Unified Flow Solver which employs TDEFM in regions of thermal

equilibrium and a BGK solver which is used in regions of thermal non-equilibrium. Following

Kolobov et. al. [49, 50], the method is then applied using adaptive mesh refinement.

The ability of TDEFM to capture unaligned flow on a regular cartesian grid is then applied

in FASTWAVE, a rapid blast wave prediction tool for the two dimensional simulation of blast

waves in city environments. Conventional commercially available CFD packages are currently

unable to be used in a predictive fashion due to the large amount of time required to create a

computational grid appropriate to the geometry and flow conditions. FASTWAVE allows the

user to obtain a solution in a matter of minutes instead of hours. The software is validated by

comparison of simulations by Long and Sharma [60] whom employed DSMC with collision lim-

iting. FASTWAVE is then applied to the simulation of blast waves in various city environments

with solid and indestructible geometries.
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Chapter 2

Kinetic Theory of Gases

2.1 Introduction and Summary

This chapter provides some important results taken from the Kinetic Theory of gases. Firstly,

binary elastic collisions are discussed, followed by the persistence of velocity ratio following col-

lisions. The Boltzmann Equation and its approximate BGK equation are then presented. The

internal structure of a molecule and its corresponding degrees of freedom are later introduced.

Since this research focuses almost entirely on the equilibrium condition, emphasis is placed on

the derivation of the equilibrium distributions of velocity and energy. The mean free path, an

important concept in a Kinetic Theory gas is then discussed.

2.2 Binary Elastic Collisions

The laboratory frame of reference velocity of a particle is:

v ≡ c+ u (2.1)

where c is the thermal velocity and u is the bulk velocity of the gas. The bulk velocity is the

mean of the molecular velocities (u = v) with the thermal velocities varying with temperature

and molecular mass. Consider two molecules A and B traveling with velocity vA and vB, where

vA is a vector of velocities v = (vx, vy, vz) for molecule A. The pre-collision relative velocity

between these particles is gAB = vA − vB. From the center of mass reference frame, these

velocities become:

vA→m =
mB

mA +mB
gAB (2.2)

vB→m =
−mA

mA +mB
gAB (2.3)

where mA and mB is the mass of molecules A and B. The center of mass velocity is:

vm =
mAvA +mBvB

mA +mB
(2.4)
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The velocities of particles A and B can be rewritten in terms of a reduced mass m̃ as:

m̃ =
mAmB

mA +mB

(2.5)

vA =
m̃

mA
gAB (2.6)

vB = − m̃

mA
gAB (2.7)

Since the collision is completely elastic, the post collision velocities must be such that the

collision conserves energy and momentum. The post collision velocities of particles A and B

are:

v
′
A = vm +

m̃

mA
g

′
AB (2.8)

v
′
B = vm − m̃

mB
g

′
AB (2.9)

(2.10)

where v
′
A and v

′
B are the post collision velocities and g

′
AB is the post collision relative velocity.

In order to conserve energy, the post-collision relative velocity g
′
AB must be equal to the pre-

collision relative velocity gAB. As a result of the collision, the particles will experience a change

in trajectory, which may be defined as the deflection angle χ. From the center of mass reference,

the deflection is the same for both particles A and B [107]. It is commonly known that for simple

hard spheres, all deflection angles are equally likely [45]. Taking advantage of this fact plus

using Marsaglia’s method to simplify the trigonometric transformations, a simple algorithm for

calculating the post-collision velocities of hard spheres is:

1. Select two particles for collision, A and B.

2. Calculate the center of mass velocities vM = (vmx, vmy, vmz)

vmx =
mAvAx +mBvBx

mA +mB

vmy =
mAvAx +mBvBx

mA +mB

vmz =
mAvAx +mBvBx

mA +mB

3. Calculate the trigonometric transforms fx, fy and fz using Marsalglia’s method. Set a

dummy variable κ1 to 10. While κ1 is larger than 1, calculate:

κ2 = 2Rf − 1

κ3 = 2Rf − 1

κ1 = κ2
2 + κ2

3
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where Rf is a random fraction (valued from 0 to 1) calculated at each iteration. Using

the values of κ1-κ3, the trigonometric transforms are:

κ4 = 2
√

(1 − κ1)

fx = 1 − 2κ1

fy = κ2κ1

fz = κ3κ4

4. Calculate the post collision velocities in the center of mass reference frame:

v
′
A→m =

m̃

mA
gAB

v
′
B→m =

−m̃
mB

gAB

5. Use the trigonometric transforms to transform these to the global coordinate system. For

molecule A, this will be:

v
′
A→m,x = fxv

′
A→m

v
′
A→m,y = fyv

′
A→m

v
′
A→m,z = fzv

′
A→m

6. Perform the same transformation for molecule B. The final velocity for particle A in the

coordinates x, y, z is:

v
′
Ax = vmx + v

′
A→m,x

v
′
Ay = vmy + v

′
A→m,y

v
′
Az = vmz + v

′
A→m,z

The final velocity for particle B is calculated in the same way. This routine is only valid

for hard sphere collisions where all possible resulting deflection angles are equally likely.

2.3 Persistence of Velocity

For hard sphere particle elastic collisions particles tend to maintain, on average, a fraction of

their initial velocity in any given direction. This is a well known fact [20, 45] and quoting Sir

James Jeans:

We shall find that in general a collision does not necessarily reverse the velocity

in the original direction of motion, or even reduce it to rest: there is a marked

tendency for the original velocity to persist to some extent after collision.
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Figure 2.1: Average velocity as a function of collision number. The initial velocity of all particles
before collisions was vx = 3

√
RT . The collision partners are generated from an equilibrium gas

at rest with temperature T with the same value of R.

This can be numerically demonstrated to be true by using the collision routine shown in Sec-

tion 2.2. The procedure for this numerical experiment is:

1. Create n particles, all with an x velocity of vx0 = 3
√
RT . Assign each molecule y and z

velocities vy0 = vz0 = RN

√
RT , where RN is a normally distributed random number with

a mean of 0 and a variance of 1.

2. Each particle k is collided with a randomly generated molecule. This molecule is generated

from a gas in equilibrium with a mean of m (For the results presented, m = 0) and a

variance of RT . The resulting velocity v1,k of the particle is recorded and the generated

particle destroyed.

3. The average resulting velocity vx1 is calculated using vx1 = 1
n

∑n
k=1 v1,k.

4. Each particle k is again collided with a newly randomly generated molecule, this time

using the resulting velocity from the previous collision vx0 = v1,k. The resulting velocity

v2,k is recorded for use in the next collision.

5. The average resulting velocity after the second collision v2 is calculated.

6. The procedure is repeated for the required number of collisions.

Figure 2.1 shows the mean velocity vx as a function of the number of collisions. After one

collision, on average, particles still posses approximately one half of their initial velocity. After
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Figure 2.2: Testing the average change in velocity of a type A particle as a function of collisions
for particles of different mass. In this instance, type A particles have a mass mA = 1 while type
B particles have a mass of m = 0.5. 5000 simulation particles were used to find the average
post collision velocities.

another collision, the particles average one quarter of their initial velocity. Therefore, for this

numerical experiment, the persistence of velocity ratio � = 1/2. As the number of collisions

increases, the average velocity reduces until the mean value is reached.

The theoretical value of the velocity persistence ratio � is provided by Jeans [45] For any two

molecules traveling with a velocity vA and vB, the persistence of velocity ratio is:

� =
15(η4 + 1

10η2(3η2 + 1)
[η > 1]

� =
3η2 + 5

5(η2 + 3)
[η < 1] (2.11)

where η is the ratio of pre-collision velocities η = vA/vB. In this case, the mass of particles

A and B are assumed identical. Depending on the value of η, the persistence of velocity ratio

varies from 1/2 to 1/3. When the masses of A and B differ we expect the value of � to

differ since a heavier particle colliding with a lighter particle will tend to keep more of its

pre-collision velocity. This is demonstrated in Figure 2.2. Heavy particles colliding solely with

lighter particles posses a larger velocity persistence ratio when when colliding with other heavy

particles. Jeans [45] shows that when colliding particles are of different mass, the modified

persistence ratio is:

�AB =

(
mA −mB

mA +mB

)
+

(
2mB

mA +mB

)
�AA (2.12)
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where �AB is the persistence of velocity ratio for collisions of particle type B to particle type

B, mA and mB is the masses for particle type A and B and �AA is the persistence ratio for

collisions of type A particles, shown above to be �AA = 1/2.

2.4 Boltzmann Equation

In kinetic theory, the state of a monatomic gas is given by the molecular velocity distribution

f(x,v, t), where x is the position vector x = (x, y, z), v is the velocity vector v = (vx, vy, vz)

and t is the time. At time t, the number of particles dN in the phase space dxdydzdvxdvydvz,

denoted dxdv, is:

dN = n(x, t)f(x,v, t)dxdv (2.13)

The value of f is expected to evolve through time and space. Neglecting long range par-

ticle interactions and limiting molecular interactions to binary collisions, the evolution of f is

described by the Boltzmann equation. The Boltzmann equation is:

∂(nf)

∂t
+ v.

∂(nf)

∂x
+ F.

∂(nf)

∂x
=

[
∂(nf)

∂t

]
coll

(2.14)

The term v.∂(nf)/∂x represented the movement of molecules out of spacial element dx due

to molecular velocity v. The term F.∂(nf)/∂v accounts for acceleration on particles due to an

external force F. The collision term (designated by subscript coll) accounts for velocity changes

due to molecular collisions.

Bhtanagar, Gross and Krook [11] and Weylander [109] developed a simplified form of the

collision term shown in equation 2.14. The proposed replacement for the collision term is given

by: [
∂(nf)

∂t

]
coll

= nv(feq − f) (2.15)

Where v is the collision frequency and feq is the value of the local equilibrium velocity distri-

bution function. Here the collision frequency is assumed a function of temperature and density

but independent of velocity [107].

2.5 Molecular structure and internal degrees of freedom

A molecule is a collection of atoms bound together by a rather complex intramolecuar force.

[6] The amount of energy a gas can hold is defined by the way individual molecules can hold

energy. These ‘modes’ are summarised in Figure 2.5, and described below:

• Translational Energy - the kinetic energy molecules posses through movement of the

center of mass of each molecule. Since space can be broken up into 3 components - x, y,

9



Figure 2.3: Modes of molecular energy

and z, it is said that this mode possesses ‘3 thermal degrees of freedom’. Each degree of

freedom is assumed to be as capable of holding energy as the other translational modes.

• Rotational Energy - the rotational kinetic energy a molecule possesses through rotation

about its center of mass. The kinetic energy of a rotating object is proportional to its

rotational moment of inertia, which is a proportional to R2, and its mass. Therefore, in

the case of a linear polyatomic molecule, the rotational moment of inertia on its axis is

extremely small, and only 2 effective thermal degrees of freedom are added. For non-linear

polyatomic molecules, it is assumed that energy can be equally shared around each mode,

and 3 effective thermal degrees of freedom are added.

• Vibrational Energy - Molecules are modeled by the connection of individual atoms by

springs. Energy can be held by the atoms as a result of this vibration, in addition to the

potential energy contained in the springs holding them together. Each mode of vibration

will contribute to the vibrational energy a molecule can posses. Therefore, diatomic

molecules have two thermal degrees of freedom, one for the kinetic energy of the atoms

10



and the other for the potential energy held in the intramolecular force. Larger molecules

posses higher modes of vibration and thus contribute to more thermal degrees of freedom.

• Electronic Energy - This is energy held in the orbit of the electrons around the nucleus.

This will be neglected.

Using statistical mechanics the energy held in each mode can be determined. Each of these

modes is then broken up into distinct energy levels, designated as εi, where i represents the

energy level of a specific mode. (i.e. translational, rotational) Another result from quantum

mechanics shows that molecular orientation is also quantised. Therefore, it is possible for any

given particles with the same energy to have a different orientation. The energy a particle is

holding, along with its orientation, is described as its ’state’. Therefore, inside each energy

level there are a set number of possible states. If there are Nj molecules at each energy state,

then the total energy held in system is

E =
∑

j

εjNj (2.16)

Each different combination of ε and N will produce a different macrostate. Over a set

of time, as a system of molecules goes to equilibrium, one specific set of Nj for each energy

level in each mode will occur more frequently. The macrostate associated with this occurrence

is called the most probable macrostate, and is the definition for thermodynamic equilibrium

from a statistical mechanics framework. [6] However, recalling that each energy level in each

mode can posses a certain number of orientations, it is feasible to assume that any given

macrostate can be made up of different combinations of molecules distributed with identical

numbers of molecules in each energy level with different orientations. These combinations are

called ‘microstates’, and since the orientation of the molecule has no effect on the total energy

in the energy level, and thus on E, any given macrostate could be made up of a large number

of possible microstates. Thus, it stands to reason that the most probable macrostate is the

one with the largest number of associated microstates, especially if each microstate occurs with

equal probability.

In order to count the number of possible microstates for each given macrostate, and thus find

the equilibrium macrostate, another important distinction must be made. Molecules possessing

an even number of elementary particles shall be called Bosons, and molecules with odd numbers

of elementary particles shall be called Fermions. It is shown [6] that the number of Bosons in

any given state can be infinite, while only one Fermion can occupy any given state. This will

affect the way the microstates are counted.

Assuming each state is equally likely in a specific energy level εj , the number of distinct

ways that Nj molecules can be distributed among gj possible ‘states’ for that given energy level

is

11



Wj =
[Nj + (gj − 1)]!

(gj − 1)!N !
(2.17)

where Wj is the number of possible microstates for the energy level εj . Each of these possible

combinations represents an identical macrostate, but a unique microstate. Now consider all

possible energy levels and all molecules, and the net number of microstates is given by

W =
∑

j

Wj =
∏

j

[Nj + (gj − 1)]!

(gj − 1)!N !
(2.18)

It cab be shown that the net number of microstates for Fermions is given by [6]

W =
∑

j

gj!

(gj − 1)!N !
(2.19)

Taking natural logarithms of both sides of Equation 2.18 we obtain

lnW =
∑

j

[ln(Nj + gj − 1)! − ln(gj − 1)! − ln(Nj)!] (2.20)

Assuming that

• The number of possible orientations gj for each energy level j is significantly larger than

the number of molecules in that level Nj

• The values of gj and Nj are significantly larger than 1

• The factorial of a natural logarithm is given by

ln x! = x ln x− x (2.21)

We now obtain

lnW =
∑

j

[
Nj ln

(
1 +

gj

Nj

)
+ gj ln

(
1 +

Nj

gj

)]
(2.22)

By taking the derivative of Equation 2.22 and through the use of lagrange multipliers, we

find the maximum number of microstates occurs when

N∗
j =

gj

eαeβε′j − 1
(2.23)

where N∗
j is the number of molecules in each energy level εj that corresponds to the maximum

number of microstates. It can be shown [5] that β is given by

β =
1

kT
(2.24)

Using this, Equation 2.23 can be simplified to obtain
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N∗
j = N

gj exp (−εj/kT )∑
gj exp (−εj/kT )

(2.25)

Equation 2.25 is referred to as the Boltzmann distribution and provides a value of N∗
j at

which the system is in equilibrium. This can be rewritten though the use of the ‘state sum’, or

partition function Q, by

N∗
j = N

gj exp (−εj/kT )

Q
(2.26)

where Q is defined as

Q =
∑

j

gj exp (−εj/kT ) (2.27)

It can be shown [6] that Q can be related to many major thermodynamic variables though

the equations

e = RT 2

(
∂ lnQ

∂T

)
V

(2.28)

h = e+ pv = e+RT = RT +RT 2

(
lnQ

∂T

)
V

(2.29)

S = Nk

(
ln
Q

N
+ 1

)
+NkT

(
∂ lnQ

∂T

)
V

(2.30)

p = NkT

(
∂ lnQ

∂T

)
V

(2.31)

The value of the partition function Q is given by

Q = QtransQrotQvibQelec (2.32)

The value of each of Qtrans, Qrot, Qvib and Qelec is shown to be [6, 38, 39]

Qtrans =

(
2πmkT

h̃2

) 3
2

V (2.33)

Qrot =
8π2IkT

h̃2
(2.34)

Qvib =
1

1 − exp
(
−h̃ṽ/kT

) (2.35)

Qelec =
∞∑
l=0

gl exp (−εl/kT ) (2.36)
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Figure 2.4: Cv/R for Oxygen in temperatures ranging from 10 K to 5000 K.

where h̃ is Planks constant and ṽ is a specific fundamental vibrational frequency. (For oxygen,

ṽ = 4.737x1013s−1 [25]) Spectroscopic data is used to obtain the terms ε1, ε2.... for use in

Equation 2.36, though the series can be truncated after 3 terms for molecules where T ≤
15, 000K.

The energy held by translational modes at equilibrium is found by taking natural logarithms

of Equation 2.33

lnQtrans =
3

2
lnT +

3

2
ln

2πmk

h̃2
+ lnV (2.37)

and (
∂(lnQtrans)

∂T

)
V

=
3

2T
(2.38)

Substituting this result into Equation 2.28 obtains

etrans = RT 2

(
∂(lnQtrans)

∂T

)
V

= RT 2 3

2T
=

3

2
RT (2.39)

erot = RT 2

(
∂(lnQrot)

∂T

)
V

= RT 2 1

T
= RT (2.40)

evib = RT 2

(
∂(lnQvib)

∂T

)
V

= RT 2

(
hv/kT 2

exp (hv/kT ) − 1

)
=

(
hv/kT

exp (hv/kT ) − 1

)
RT (2.41)

Therefore, the value for Cv for a molecule (disregarding electronic energy) is

Cv =
3

2
R +R+

(hv/kT )2 exp (hv/kT )

(exp (hv/kT ) − 1)2 R (2.42)

A plot of Cv/R for Oxygen is shown in Figure 2.4 following Equation 2.42. At lower

temperatures, only the translational and rotational modes are excited, giving 5 thermal degrees

of freedom. At higher temperatures vibrational excitation occurs and (when fully excited) adds
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another 2 thermal degrees of freedom. The energy per particle can be taken from this expression,

or from experimental observations, as

Ei = Cpart ≡ 1

2
(ζdof − ζtrans)RT (2.43)

where ζdof = 2Cv/R is the total number of thermal degrees of freedom and ζtrans is the

number of ‘utilized’ translational degrees of freedom. Ei is the internal energy (i.e. disregarding

translational energy) resulting from temperature T .

2.6 Equilibrium Distributions of Energy and Velocities

In a small region of dilute gas, disregarding external forces, it can be shown that the Boltzmann

Equation can be rewritten as

df

dt
= 2π

∫ ∞

−∞

∫ π

0

n [f(v′1)f(v′2) − f(v1)f(v2)] gS(g, χ) sinχdχdv2 (2.44)

In this case, χ represents a deflection angle following a binary collision, v1 and v2 represent

molecular velocities and v′1, v
′
2 represent post collision velocities. Boltzmann’s H-theorem shows

the irreversible nature of non-equilibrium systems and is shown by defining the quantity

H(t) =

∫ ∞

−∞
fln(nf)dv (2.45)

and substituting into equation 2.44, leaving

dH

dt
=

∫ ∞

−∞
[1 + ln(nf)]

df

dt
dv (2.46)

It can be shown [15, 19, 41] that the value dH/dt is always negative and therefore H always

decreases until it reaches an equilibrium state where dH/dt = 0. Boltzmann’s H-theorem

essentially states that a system of molecules, through binary collisions, must move toward

equilibrium.

Using the H-theorem, the equilibrium Maxwell-Boltzmann distribution of molecular thermal

velocities is given by

feq(cx) =
( m

2πkT

) 1
2
exp

(
− m

2kT
c2x

)
=

1√
2πs

exp

(
− c2x

2s2

)
(2.47)

where c is the thermal velocity of a molecule in direction x, s =
√
RT is the standard

deviation of the distribution, m is the molecular mass of the molecule, k is Boltzmann’s constant,

R is the specific gas constant and T is the temperature. This distribution has a mean of 0 and

a variance of RT . The equilibrium probability distribution function for molecular velocities vx

from the laboratory frame of reference is:
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Figure 2.5: Equilibrium distributions of thermal velocity and thermal speed as a function of
normalised thermal speed and velocity.

feq(vx) =
1√
2πs

exp

(
−(vx − vx)

2

2s2

)
(2.48)

where vx is the mean (or bulk) velocity of the gas particles. The distribution of thermal speeds

c = |cx, cy, cz| is given by

f(c) = 4πc2
(

1

2πRT

) 3
2

exp

(
− c2

2RT

)
(2.49)

For a set of molecules in thermal equilibrium, the most probable thermal speed cm is

cm = (2kT/m)
1
2 = (2RT )

1
2 (2.50)

and the mean thermal speed is

c =

[
8kT

πm

] 1
2

=

√
8RT

π
(2.51)

The equilibrium distributions of velocity and speed are shown in Figure 2.5 with only the

positive values of thermal velocity shown. The molecular speed and velocity are normalised to

the most likely molecular velocity. It can be seen that the chance of a molecule possessing a

thermal velocity cx, cy or cz larger than 3 variances away from the mean is very unlikely, with

approximately 1 in 50,000 particles possessing such a velocity.

2.7 Mean free path and collision time

For a given viscosity µ, the approximate nominal mean free path can be shown to be [107]:
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λ =
2µ

ρc
(2.52)

where ρ is the density of the gas. The mean free time τ is simple defined as:

τ =
1

ν
(2.53)

where ν is the collision rate of the gas. The number of collisions in a region of gas over the

time ∆t is

Ncoll =
1

2
Nν∆t (2.54)

where N is the number of particles in the given region.

2.8 Kinetic Temperatures

This chapter briefly reviews the relations required to calculate the overall kinetic temperature

Tk in a gas. The translational temperature is calculated by taking a second moment of the

velocity distribution function. The total energy of particles per unit mass in direction x,

neglecting structural internal energy, is:

ex =

∫ ∞

−∞

1

2
(vx)

2f(vx)dvx (2.55)

If the gas is in thermal equilibrium, the above integral becomes:

ex =

∫ ∞

−∞

1

2
(vx)

2feq(vx)dvx

=
1

2

(
vx

2 + s2
)

The kinetic energy can clearly be divided into a bulk kinetic energy component (1/2)vx
2 and a

thermal energy component (1/2)s2 = (1/2)RTx. This result is in agreement with Equation 2.39

since there are three translation degrees of freedom (ςtrans = 3) and, in thermal equilibrium,

each translational degree of freedom must hold the same amount of energy. The total thermal

kinetic energy due to the degrees of freedom associated with translation will be:

etrans = etrans,x + etrans,y + etrans,z (2.56)

A real gas made of discrete particles may not be in thermal equilibrium and the velocity distri-

bution function is generally unknown. Thus, the thermal kinetic energy of the gas can be found

by taking samples of the particle population. In this case, the overall kinetic thermal energy

is found by summing each degree of freedom’s energy. Regardless, the kinetic temperature for
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translation will be:

Ttrans =
2etrans

ςtransR

=
2 (etrans,x + etrans,y + etrans,z)

3R

=
1

3
(Tx + Ty + Tz) (2.57)

The temperature of a gas can be calculated in terms of the number of degrees of freedom.

Recalling Equation 2.43, the temperature is defined as:

Tk =
2E

ςdofR
(2.58)

where E is the total energy as a result of the temperature Tk. If only rotational and translational

modes are considered, E is a linear function of Tk and thus Tk is simple to solve. However,

vibrational modes are non linear with Tk, as demonstrated by Equation 2.41. Thus, at higher

temperatures the value of Cv increases as demonstrated in Figure 2.4. Therefore, the calculation

of an effective number of vibrational degrees of freedom is required. This value, ςvib, can be

calculated from 2.41 and then applied to Equation 2.58. The calculation of the temperature

of a region of gas where the effective degrees of freedom for vibration is not constant with

temperature usually requires an iteration procedure to determine the temperature for any given

energy.
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Chapter 3

Governing Flow Equations and Properties

3.1 Introduction and Summary

This chapter begins with the definition of the Knudsen number and the continuum breakdown

parameter. These quantities are useful guides in classifying flow regimes. In rarefied hypersonic

flows the gas rarely has sufficient time for enough collisions to occur for the gas to reach local

thermal equilibrium. In such regions, the classic definition of temperature fails as the kinetic

temperatures in each degree of freedom can differ from each other. In such flows, direct solvers

such as DSMC and BGK solvers can be used to properly solve the flow. The breakdown

parameter is a concept used to predict the breakdown of convention continuum solvers and is

discussed. The BGK equation is then discussed, with the famous Euler equations following

this. The Navier stokes equations are also introduced.

3.2 Knudsen Number

The Knudsen number is a dimensionless quantity which characterises the degree of rarefaction.

It is defined as:

Kn ≡ λ

L
(3.1)

where L is a characteristic dimension. For any given mean free path, a measure of the rarefaction

is provided by this dimension. Flow is typically designated as rarefied for Kn values larger than

1. For example, the mean free path of air at standard temperature and pressure (STP) is on

the order of 0.1µm. The Knudsen number for flow around a vehicle of length L = 2m would

be Kn = 5e− 8. At these Knudsen numbers, the flow is collision dominated - there are almost

certainly enough collisions to ensure thermal equilibrium. However, at much lower scales such

as those involved in the design of computer hard drives, the characteristic distance is on the

order of a mean free path. In this instance, there may not be enough collisions to guarantee

local thermal equilibrium and a direct solver may be used.

In the previous examples the characteristic dimension L was a physically measured dimen-

sion. An alternative to this is to define the length in terms of the local gradient length scale:
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L = Q

∣∣∣∣∂Q∂x
∣∣∣∣−1

(3.2)

where Q is some arbitrary flow property such as the local density or local mean free path.

Using a length based on the local gradient length scale is a useful tool for predicting continuum

breakdown [102]. This concept is easily applicable to CFD methods when the gradient ∂Q/∂x is

easily and accurately calculated. However, in direct simulations such as DSMC, the statistical

scatter can made it difficult to accurately calculate.

3.3 Continuum Breakdown Parameter

Previous discussion on the local Knudsen number has been independent of the local flow speed.

In a flow where the Knudsen number is quite low, one might expect thermal equilibrium.

However, if the flow speed is sufficiently high, the particles are swept downstream before there is

opportunity to reach a local thermal equilibrium. Bird’s definition of the breakdown parameter

is based on the inclusion of this flow speed.

Flow speed can be taken into account by examining the time required to pass by an object

of length L. This time τflow is simply τflow = L/u, where u is the bulk velocity vL in the

direction of the orientation of length L. The ratio of this flow time to the local mean collision

time τ is:
τ

τflow
=
λu

Dc
=
(πγ

8

) 1
2

KnM (3.3)

Thus, the product Kn M might be applied as a continuum breakdown parameter. Following Bird

[13] the following breakdown parameter to predict continuum breakdown in gaseous expansions:

P =
u

ρν

∣∣∣∣dρdx
∣∣∣∣ (3.4)

Macrossan [68] proposed the modification

P =
uchar

c

λ

lchar

(3.5)

where uchar is a characteristic speed and lchar a characteristic length. By replacing the char-

acteristic speed uchar with the mean thermal speed and the characteristic length lchar with the

gradient length calculated using the local mean free path, Macrossan’s breakdown parameter

reduces to:

P =

∣∣∣∣dλdx
∣∣∣∣ (3.6)

3.4 Kinetic CFL number

Traditional CFL numbers are defined by the fraction of distance a disturbance can propagate

across a cell in a given time step to the local cell size. In most existing contexts, the speed
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at which a disturbance can travel is the local speed of sound. Since this study focuses on the

behaviour of a gas from a kinetic theory perspective, a kinetic CFL number is introduced as:

CFL =
(|V | + σ

√
RT )∆t

∆x
(3.7)

where σ is a selected number of variances of the equilibrium distribution and |V | is the magni-

tude of the velocity in the cell. Higher values of σ ensure that the surrounding neighbours of

the source cell capture a larger fraction of the mass. Small values of σ allow the time step to be

large enough for particles to travel in free-flight beyond the surrounding neighbours. If these

distant cells are not registered as neighbours to the source cell, then this flux will be neglected

and the results will be inaccurate.

The meaning of this CFL number can be physically defined. Let a particle possess a velocity

of V +5(RT )0.5 where, in this instance, σ = 5. The chance of a particle possessing this velocity

is extremely low - only approximately 1 particle out of 1e+12 particles will have a velocity

this large at equilibrium conditions. The kinetic CFL defined in Equation 3.7 represents the

fraction of the distance across a cell that this particle will be able to travel in free flight. The

traditional definition of the CFL number (or Courant number) is:

CFL =
(|V | + √

γRT )∆t

∆x
(3.8)

The Courant number arises from stability analysis of the finite difference representations

of the Euler Equations. In a conventional finite volume solver this value physically represents

the largest fraction of a cell width that a propograting wave can span. Courant numbers larger

than 1 are traditionally associated with instability in finite volume solvers.

3.5 BGK Equation

For flows in which the transition time is small in comparison to the mean free path, the gas

is not in thermal equilibrium and continuum methods are no longer valid. In these regions

it becomes necessary to solve the Boltzmann equation. However, the collision term of the

Boltzmann equation is quite complex, making even simple flows very difficult to solve. It is for

this reason that various flow model equation methods have been developed. The Boltzmann

equation is shown in Equation 3.9 and the collision term is given in Equation 3.10.

∂f

∂t
+ v · ∂f

∂x
+ F · ∂f

∂v
=

[
∂f

∂t

]
coll

(3.9)

[
∂f

∂t

]
coll

=

∫ ∞

−∞

∫ 4π

0

(f ∗f ∗
1 − ff1) crσ dΩ dc1 (3.10)

The Bhatnagar-Gross-Krook (BGK) model equation [11] (also proposed by Weylander [109])

replaces the collision term of the Boltzmann equation by a simpler source term which retains the
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important features of the original. In the BGK method, collisions are represented by a relaxation

at a finite rate of the velocity distribution function to the equilibrium distribution. This method

may be implemented in a simple, decoupled approach by solving the linear advection equation

and then performing the relaxation within each time step.

Unfortunately, the BGK model equation requires a significant amount of computational

power as each step of the solution must be performed over the entire range of molecular ve-

locities. It becomes necessary, therefore, to discover methods of reducing the computational

expense to a reasonable amount. One possible approach is to use an accurate linear advection

solver that is stable for CFL numbers greater than 1. This is discussed in more detail later.

One of the biggest advantages of the BGK model equation when compared to the more

common rarefied methods such as DSMC solvers is the lack of statistical scatter in the results.

Another advantage is its validity over a large range of Knudsen numbers while DSMC is limited

to dilute flows only.

The BGK model equation without external forces is shown below in Equation 3.11, where

νM is the collision frequency and fM is the local Maxwellian velocity distribution function.

∂f

∂t
+ v · ∂f

∂x
= νM (fM − f) (3.11)

where the collision frequency is given by

νM =
ρRT

µ

The local Maxwellian velocity distribution function in three dimensions is given by

fM =
n

(2πRT )
3
2

exp

( −c2
2RT

)
(3.12)

where c2 = (u− u)2 + (v − v)2 + (w − w)2.

The BGK method conserves mass, momentum and energy;∫ ∫
νM (fM − f)ψα dv = 0 (3.13)

where α = 1, 2, 3, 4, 5 and ψα =
{
1, u, v, w, 1

2
v2
}

and

v = u+ v + w.

As the Boltzmann equation describes irreversible processes, the entropy must increase. A

rigorous proof of the entropy condition for the Boltzmann equation is presented in [20]. Defining

the entropy density as H (f) = f ln fdv, the BGK method also satisfies the entropy condition

∂H
∂t

+
∂Hi

∂xi
≤ 0 (3.14)

The basic physical assumption underpinning the modified Boltzmann equation is that the

collision frequency is independent of the relative speed of the colliding molecules [51]. This

assumption is justified only for Maxwellian particles.
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In recent years, the development of the gas-kinetic BGK model equation method has been

quite strong. Single and multidimensional BGK methods have been developed.Aoki et al. [9]

used the model equation to solve for unsteady flow between two infinite parallel plates. Kim et

al. [48] adapted a finite volume gas-kinetic BGK method to unstructured triangular grids with

mesh adaption.

One of the most significant drawbacks of the BGK method is that it does not result in the

correct Prandtl number. Holway [42] introduced the ‘ellipsoidal statistics’ (ES-BGK) method

in order to fix this issue. The ES-BGK model [42] was developed to adjust the BGK model

to give the correct transport coefficients for the Navier-Stokes equation by relaxing toward a

Gaussian equilibrium distribution rather than a Maxwellian and allowing for the addition of the

Prandtl number to the collision term. Andries et al. [8] conducted some numerical comparisons

between this method, the standard BGK method and DSMC for transitional reentry flows that

showed reasonable improvements in most flow aspects. Chae et al. [17] also improved the

BGK method by correcting the Prandtl number. Li and Zhang [53, 54, 55] also modified the

BGK method to correct for the Prandtl number and removed the continuous dependence of

the distribution function on the velocity space through their discrete velocity ordinate method.

This model is of particular interest in this work and will be described in detail in later sections.

Macrossan [67] developed the ‘relaxation time simulation method’ (RTSM) by extending the

Equilibrium Particle Simulation Method (EPSM) of Pullin [80]. EPSM works in a similar way

to the Direct Simulation Monte Carlo (DSMC) methods, but rather than simulating collisions,

the momentum and energy of the particles in each cell are redistributed toward local Maxwellian

equilibrium at each time step. RTSM differs in that only a fraction of the particles are adjusted

to equilibrium.

In order to include descriptions of thermal non-equilibrium, multi-temperature BGK meth-

ods have been developed in recent years [46, 119, 120, 121]. Xu et al. [118] also developed a

diatomic gas BGK method with rotational and translational degrees of freedom included.

Gross and Krook [33] extended the original BGK method to allow for two component gas

mixtures. One major drawback of their method is that when both species are defined identically,

the one component method is not recovered. Bhatnagar [12] also continued development on

this two component method, as did Sirovich [92]. In the paper by Andries et al. [7], a two

component method is presented which satisfies positivity and the entropy inequality, has the

correct exchange coefficients and degenerates to the single component model.

3.6 Euler Equations

The flow of an inviscid, compressible gas is to be considered. The behaviour of such a gas is

governed by the Euler equations. In two dimensional form (with the absence of source terms)

these equations are given by
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∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (3.15)

where

U =

⎡⎢⎢⎢⎢⎣
ρ

ρu

ρv

ρE

⎤⎥⎥⎥⎥⎦F =

⎡⎢⎢⎢⎢⎣
ρu

ρu2 + p

ρuv

ρuH

⎤⎥⎥⎥⎥⎦G =

⎡⎢⎢⎢⎢⎣
ρv

ρuv

ρv2 + p

ρvH

⎤⎥⎥⎥⎥⎦ (3.16)

For an ideal gas, the total energy E and total enthalpy H can be written as

E = p
ρ(γ−1)

+ 1
2
(u2 + v2)

H = E + p
ρ

(3.17)

The Euler equations are the limiting form of the general viscous flow equations in the limit

of infinite Reynolds number [5].

3.7 Navier-Stokes Equations

The flow of a viscid, heat conducting, unsteady compressible gas is considered. The governing

equations for flow in 2 dimensions can be expressed as

∂

∂t

∫ ∫
Ω

Udxdy +

∫
S

(F − Fv) dy −
∫

S

(G − Gv) dx =

∫ ∫
Ω

Qdxdy (3.18)

where

U =

⎡⎢⎢⎢⎢⎣
ρ

ρu

ρv

ρE

⎤⎥⎥⎥⎥⎦F =

⎡⎢⎢⎢⎢⎣
ρu

ρu2 + p

ρuv

ρuH

⎤⎥⎥⎥⎥⎦G =

⎡⎢⎢⎢⎢⎣
ρv

ρuv

ρv2 + p

ρvH

⎤⎥⎥⎥⎥⎦ (3.19)

represent the conserved quantities and inviscid flux vectors as shown in Equation 3.15 and

Fv =

⎡⎢⎢⎢⎢⎣
0

τxx

τyx

τxxu+ τyxv + qx

⎤⎥⎥⎥⎥⎦Gv =

⎡⎢⎢⎢⎢⎣
0

τxy

τyy

τxyu+ τyyv + qy

⎤⎥⎥⎥⎥⎦ (3.20)

are the viscid flux vectors. Q is a vector of source terms which will be neglected in this

study. The total energy E and total enthalpy H are as shown in Equation 3.17. The viscous

stresses are given by
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τxx = 2µ∂u
∂x

+ η
(

∂u
∂x

+ ∂v
∂y

)
τyy = 2µ∂v

∂y
+ η

(
∂u
∂x

+ ∂v
∂y

)
τxy = µ

(
∂u
∂y

+ ∂v
∂x

) (3.21)

where µ and η are the first and second coefficients of viscosity. Stokes’ hypothesis (of zero

bulk viscosity) can be used to give η = −2/3µ [43] and the viscosity µ can be taken from

measurements or Sutherland’s law. Neglecting the presence of multiple species, the heat fluxes

are

qx = k̃ ∂T
∂x

qy = k̃ ∂T
∂y

(3.22)

where k̃ is the heat transfer coefficient for the gas in question.
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Chapter 4

Finite Volume methods in Computational

Fluid Dynamics

4.1 Introduction and Summary

Finite volume methods are based on a discretization of the integral forms of the conservation

equations [16]. The flow field is divided up into a large number of discrete volumes called ‘cells’.

Fluxes of mass, momentum and energy are then exchanged across the surfaces of the cell. In

order to better understand this, the procedure is described in terms of the conservation integral

equation. The general form of the conservation integral equation is given by:

∂

∂t

∫ ∫ ∫
Ω

UdΩ +

∫ ∫
S

�F · d�S =

∫ ∫ ∫
Ω

QvdΩ +

∫ ∫
S

QsdS (4.1)

This is simply a more general form of Equation 3.18. The two dimensional discretised form

of this equation is given by [16]:

∂

∂t
(UΩij) +

∑
sides

(�F · �S) = (Qv)ijΩij +
∑
sides

(Qs)ijS (4.2)

where Ωij is the volume of the cell (or finite volume element) with an indexing of i, j as shown

in Figure 4.1 and �F is the vector of fluxes of conserved quantities through surface S. Source

terms, or mechanisms by which mass, momentum or energy are added to the cell without

going through a cell surface, are represented as Qv. Consider the application of equation of

Equation 4.2 to the Euler equations demonstrated in
∮

3.5. Without source terms and enforcing

the notation used in Equation 4.2, the Euler equations can be rewritten as:

∂U

∂t
+
∂F1

∂x
+
∂G1

∂y
= −

(
∂F2

∂x
+
∂G2

∂y

)
(4.3)

where

U =

⎡⎢⎢⎢⎢⎣
ρ

ρu

ρv

Et

⎤⎥⎥⎥⎥⎦F1 =

⎡⎢⎢⎢⎢⎣
ρu

ρu2

ρuv

uEt

⎤⎥⎥⎥⎥⎦F2 =

⎡⎢⎢⎢⎢⎣
0

p

0

pu

⎤⎥⎥⎥⎥⎦G1 =

⎡⎢⎢⎢⎢⎣
ρv

ρuv

ρv2

vEt

⎤⎥⎥⎥⎥⎦G2 =

⎡⎢⎢⎢⎢⎣
0

0

p

pv

⎤⎥⎥⎥⎥⎦ (4.4)
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Figure 4.1: Finite volume representation of space showing discretisation into computational
cells.

where Et is equal to ρE defined in Equation 3.17. The components of the flux vectors E1 and

F1 can be represented by the single flux vector �F with e and f such that [16]:

�F = e�i+ f�j (4.5)

The flux term in Equation 4.2 can now be written as:

∑
sides

�F · �S = eAB∆y + fBC∆x− eCD∆y − fDA∆x

= (fBC − fDA)∆x+ (eAB − eCD)∆y (4.6)

The evaluation of the fluxes around the surfaces of element (i, j) will depend on the spatial

scheme selected. Hirsch [40] discusses many possible choices including the cell centered ap-

proach. In this case, the fluxes at the interface are simply the average fluxes of the adjoining

cells. For example:

eAB =
1

2
(ei+1,j + ei,j) (4.7)

This flux is essentially a one dimensional flux normal to the surface AB of cell (i, j. It is clear

to see from Equation 4.6 that fluxes of mass, momentum and energy can only be exchanged

between cells that share some common interface or surface. There is no allowance for the

fluxes to be exchanged to diagonally adjacent cells since the term �S will always be zero. The

concept of evaluating a one dimensional flux across cell surfaces is referred to here as ‘direction

decoupling’. The numerical and theoretical consequences of this are discussed in the following

section.
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Figure 4.2: (Left) Direction decoupling at a cell interface. Components of the flow are broken
into components normal and parallel to the cell interface and 1 dimensional fluxes are calculated.
(Right) Representation of cells on a regular rectangular mesh for use in an existing continuum
solver. Fluxes are only exchanged between the source and destination cells.

The method of solving a finite volume problem by examining the fluxes around the surfaces

is also commonly referred to as Godunov’s method. A solver which employs this approach is

commonly referred to as a Godunov solver. Godunov’s influential 1958 paper [28] presented a

method where the conditions in a cell where continuous over the cell volume, i.e. uniform. Go-

dunov’s famous theorem stated that as long as a solver employed uniform conditions throughout

the cell the accuracy could be no greater than first order. The proof for this is based on a linear

approximation to the advection scheme, thus if a flux calculation employed a higher order (i.e.

non linear) method there is an opportunity to increase the order of accuracy [106].

The evolution of a gas at an interface with differing conditions on either side is referred to as

Riemann’s initial value problem. Thus a Riemann solver is referred to here as a method which

solves Riemann’s problem. In these family of solvers, the fluxes across an interface depend on

conditions on either side and thus are labeled difference split fluxes. There are many exact and

approximate solutions to this problem: these are discussed in more detail later.

Through the assumption of local equilibrium, the Kinetic Theory of Gases can also be

used as a tool to evaluate the fluxes across surfaces. One such method, Pullin’s Equilibrium

Flux Method [80], is discussed. A mathematical splitting of the fluxes across an interface is

also possible, as performed by Van Leer’s flux method [105]. These methods both rely upon

splitting the fluxes across an interface and are commonly called vector split fluxes. Finally, the

proceedure of slope limiting is discussed.

4.2 Direction Decoupling

Existing CFD methods utilise ‘direction decoupling’, as described in Figure 4.2. Fluxes of mass,

momentum and energy are exchanged between cells sharing common interfaces. These fluxes

are calculated by finding the components of the flow normal and parallel to the interface and
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Figure 4.3: Examples of the carbuncle phenomena from [31] for flow over a cylinder at M = 10
for various schemes. Plotted are contours of temperature.

then calculating 1 dimensional fluxes. In this way, simulations of 2 and 3 dimensions can be

performed. Fluxes calculated in this fashion are directly proportional to the size of the time

step and of the shared interface area. Pullin’s [80] Equilibrium Flux Method is an example of

such a solver. As shown on Figure 4.2, only cells with a shared interface will exchange fluxes.

This is physically unrealistic - from common sense and kinetic theory, we know that fluxes

should be exchanged between all cells where particles could travel in a given time step.

A direct consequence of this is that flows traveling in a direction not aligned with the mesh

are not captured in a single time step. Flows unaligned with the mesh in a finite volume

CFD method can create physically unrealistic results [93, 71, 98, 24] especially for unsteady

simulations. This feature of existing methods may be partly responsible for the Carbuncle

phenomenon. The carbuncle phenomenon is a shock instability mechanism which ruins all

efforts to compute grid-aligned shock waves using low-dissipative upwind schemes [32]. This
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phenomena often occurs in the simulation of high speed flows, and is commonly represented by

a section of a bow shock extruding away from the body causing it. Examples of this are shown

in Figure 4.3 taken from [31]. The phenomena was first discovered by Peery and Imlay [78]. It

consists of a spurious stagnation point which moves the shock upstream along the symmetry

axis. The carbuncle phenomenon is highly grid-dependent, but does not require a large number

of points to appear [32].

Direct simulation (or particle based) methods, such as DSMC, EPSM and PFM calculate

mass, momentum and energy fluxes through the direct simulation of particles. Since these

particles are permitted to travel in any direction within a given time step, flux exchanges are

not limited to cells sharing an interface. There is no evidence to suggest that direct simulations

suffer from the Carbuncle phenomenon. Therefore, it is not important in direct simulations that

the mesh be aligned with the flow. These methods are very stable - in fact, the size of the time

step is controlled only by the demand for physically meaningful results [79] instead of stability.

The main reasons that direct methods are not more commonly used is the computational

expense and statistical scatter apparent in the results. Efforts have been made to make DSMC

faster for use in near continuum flows [68, 66] and recent efforts by various authors including

Long [60] have used ‘collision limited’ DSMC as a continuum solver.

Despite these advances, direct simulations used as continuum solvers are still very expen-

sive solutions to the Euler equations. A continuum method, derived from kinetic theory with

the conceptual strengths of direct simulations and the speed of continuum solvers would be

extremely useful in situations where accurate results are required quickly. Examples of such

situations are in the materials handling industry, outlined by van den Berg [103], in the simula-

tion of blast waves through urban tunnel networks. Other research [60, 83] has been conducted

on the effects of blast waves on structural bodies and in the mining industry. These are exam-

ples of situations where there is inadequate time to run a direct simulation and results from

direction decoupled solvers may be inadequate.

4.3 Riemann Solvers

The Riemann initial value problem is defined as the evolution of gas at an interface separating

two gases [106]:

Uo(x) =

{
Ul, x < 0

Ur, x > 0
(4.8)

Depending on the conditions, four conceptually possible outcomes can result as shown in

Figure 4.4. From these, only two are physically permitted to happen. Figure 4.4(a) and (b)

show propagating shock and expansion waves separated by a contact discontinuity. Examining

the conditions in Figure 4.4(a) from right to left, the pressure increases across the shock wave,

remains constant across the contact discontinuity and increases again through the expansion

wave. For most families of Riemann solvers, the motion of the shock wave, contact discontinuity
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Figure 4.4: Conceptually possible outcomes from the Riemann initial value problem. (a) A
shock wave propagating right with an expansion wave propagating left, (b) A shock wave
propagating left with an expansion wave propagating right, (c) two propagating shock waves,
(d) two propagating expansion waves.

and the expansion wave are linear in time. Therefore, at any time t the conditions are constant

in time and are determined by the location of the shock wave, contact surface and expansion

wave.

There are a large number of Riemann solvers available, including ‘exact’ iterative schemes

[30] and approximate (non-iterative) schemes [87, 77, 26]. Here we will focus on Jacobs ap-

proximate, non-iterative Roe solver [44, 43]. This solver is selected due to its relatively low

computational expense and track record. The general procedure used to calculate the flux of

mass, momentum and energy is:

1. Calculate the Riemann invariants:

UL = uL +
2aL

γ − 1

UR = uR − 2aR

γ − 1

where u is the velocity normal to the interface and a is the local speed of sound. Subscripts

L and R indicate reference to conditions on the left and right sides of the interface.

2. Guess the value of the pressure and velocity in the intermediate region P ∗ and u∗ between
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the shock and expansion wave using perfect gas relations [43, 29].

u∗ =
ULz + UR

1 + z

P ∗ = PL

(
γ − 1

2

)(
UL − UR

aL(1 + z)

) 2γ
γ−1

z =

(
aR

aL

)(
PL

PR

)γ−1
2γ

3. If the value of P ∗ is larger than 10PL and 10PR both waves may be taken as strong shock

waves. In this case, the estimate of the pressure and velocity in the intermediate region

can be calculated from shock relations:

P ∗ =
γ + 1

2
ρL

[ √
ρR√

ρR +
√
ρL

(uL − uR)

]2

u∗ =

√
ρLuL +

√
ρRuR√

ρR +
√
ρL

4. If the value of P ∗ is larger than either PL or PR, the estimate of P ∗ and u∗ can be improved

by taking multiple Newton-Raphson steps of the form [43]:

P ∗
NEW = P ∗

OLD − FOLD

(
dFOLD

dP ∗

)−1

Expressions for FOLD and its derivative can be found in [43].

5. The values of P ∗ and u∗ are used to calculate other flow properties. Focusing on a left

moving wave, if the pressure increases across the wave (i.e. P ∗ > PL) the left moving

wave is assumed to be a shock. In this case, the density is calculated using the Rankine-

Huginoit relation:

ρ∗L = ρL

[
(γ + 1)P ∗ + (γ − 1)PL

(γ + 1)PL + (γ − 1)P ∗

]
e∗L =

P ∗

(γ − 1)ρ∗L
a∗L = (γ(γ − 1)e∗L)

1
2

where e∗L is the specific internal energy. The wave velocity w, relative to the velocity of

the initial left state, is:

uL − wL =

[
γ + 1

2

P ∗

ρL

(
P ∗

PL
+
γ − 1

γ + 1

)] 1
2

(4.9)

6. If the pressure decreases across the left wave (i.e. P ∗ < PL) the wave is assumed to be

an expansion. In this case, the isentropic flow equations and the Riemann invariants are
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used to obtain the conditions:

a∗L =
1

2

(
UL − u∗L

)
(γ − 1)

e∗L =
(a∗L)2

γ(γ − 1)

ρ∗L =
P ∗

e∗L(γ − 1)

The relative wave velocity is simply uL − wL = aL.

By solving the Riemann problem at each interface around a finite volume we can compute its

evolution in time. At the end of each time step, after fluxes are exchanged between cells, the new

values of mass, momentum and energy are evenly redistributed evenly over each computational

cell and the process repeated. By forcibly redistributing the conserved quantities evenly over

the cell the resulting flow can become smeared [106]. This is a common trait with all finite

volume solvers.

4.4 Equilibrium Flux Method

The Equilibrium Flux Method was introduced by Pullin [80] as a solution method for the

Euler equations. EFM is based on the observation that the Euler equations are moments

of the Boltzmann equation [81]. The fluxes are derived from kinetic theory by assuming an

equilibrium distribution of molecular velocities in each computational cell. The fluxes may be

formally derived from the Boltzmann equation, but here we derive the fluxes as those which

result from Pullin’s Equilibrium Particle Simulation Method [80] in the limit of an infinite

number of particles in each cell, no gradients of density within the cells, and small time δt.

Consider a typical cell surface S with unit normals n̂,p̂ and q̂ attached to the surface. The

fluxes can be separated into two parts, f+ and f−, corresponding to the flow of molecules across

the surface in the positive and negative f-direction. Let the velocity of a molecule be denoted

by �v , with components vn = �v.n̂ , vp = �v.p̂, and vq = �v.q̂. Let:

Q =

[
m, mvn, mvp, mvq, m

(
1

2
�v.�v + est

)]
(4.10)

Note that 1
2
�v.�v is the specific translational energy of the molecule and est is the specific energy

of molecular structure, such as rotational, vibrational or electronic energy.

The flux of Q across the surface may be evaluated if the distribution functions for molecular

velocities on either side of the surface, g+ = nLfL and g− = nRfR , are known. Here, n

is the number density and f(�v, est)d�vdest gives the fraction of molecules with velocity in the

range and energy of molecular structure in the range . The subscript L and R denote condi-

tions on the left and right of the surface respectively; n̂ points from left to right. The net flux is:

FQ = F+
Q + F−

Q (4.11)

33



Here:

F+
Q =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

∫ 0

∞
Q+

g vndvndvpdvqdest (4.12)

is the flux arising from molecules traveling from the left of the surface to the right. The flux

arising from molecules traveling from the right side to the left side is:

F−
Q =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

∫ 0

∞
Q−

g vndvndvpdvqdest (4.13)

If the molecular velocities on either side take on the equilibrium distribution, Equation (4.12)

can be evaluated as:

F+
Q = WL

⎡⎢⎢⎢⎢⎢⎢⎣
ρvn

ρvnvn + ρRT

ρvnvp

ρvnvq

ρvn

(
1
2
�v.�v + CpT

)

⎤⎥⎥⎥⎥⎥⎥⎦+DL

⎡⎢⎢⎢⎢⎢⎢⎣
ρcm

ρcmvn

ρcmvp

ρcmvq

ρcm
(

1
2
�v.�v + 1

2
(γ + 1)CvT

)

⎤⎥⎥⎥⎥⎥⎥⎦ (4.14)

i.e.

WL = 1
2
[1 + erf (Sn)]L

DL = 1
2
√

π
exp (−S2

n)L

Sn = (vn/cm)L

cm =
√

2RTL

(4.15)

Cp and Cv are the specific heats at constant pressure and volume respectively, and γ = Cp

Cv
.

Equivalently, Equation (4.13) can be evaluated as:

F−
Q = WR

⎡⎢⎢⎢⎢⎢⎢⎣
ρvn

ρvnvn + ρRT

ρvnvp

ρvnvq

ρvn

(
1
2
�v.�v + CpT

)

⎤⎥⎥⎥⎥⎥⎥⎦+DR

⎡⎢⎢⎢⎢⎢⎢⎣
ρcm

ρcmvn

ρcmvp

ρcmvq

ρcm
(

1
2
�v.�v + 1

2
(γ + 1)CvT

)

⎤⎥⎥⎥⎥⎥⎥⎦ (4.16)

I.e
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Figure 4.5: Cell interface between cells L and R with a net fluxes of mass, momentum and
energy traveling from cell L to R.

WR = 1
2
[1 − erf (Sn)]R

DR = − 1
2
√

π
exp (−S2

n)R

Sn = (vn/cm)R

cm =
√

2RTR

(4.17)

For moderate and low values of Mach number, EFM suffers greatly from numerical diffusion

which can smear out contact discontinuities [81]. Macrossan has observed [62] that this numer-

ical dissipation vanishes as the Mach number increases. Being a member of the Flux Vector

splitting (FVS) schemes, EFM is robust in its capture of strong shock and rarefaction waves.

4.5 Van Leer’s Method

The concept behind split fluxes is displayed in Figure 4.5. We will assume here that all flows

remain subsonic and therefore a left and right moving flux is always present. The net flux

moving from cell L to cell R is the difference of the flux moving left from cell R and the flux

moving right from cell L. The right moving mass flux is

mr = ρLaL

[
1

2
(ML + 1)

]2

(4.18)

where a is the speed of sound, ρ is the density and M is the Mach number, with subscript L

indicating conditions in cell L. The subscript r indicates the flux is moving right. The flux

moving left from cell R is

ml = ρRaR

[
1

2
(−MR + 1)

]2

(4.19)

As long as the flow is subsonic, the net mass flux (per unit time per unit area) is therefore
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mass = mr −ml = ρLaL

[
1

2
(ML + 1)

]2

− ρRaR

[
1

2
(−MR + 1)

]2

(4.20)

The right moving momentum flux is

pr = ρLa
2
L

[
1

2
(ML + 1)

]2 [
(γ − 1)

γ
ML +

2

γ

]
(4.21)

where γ is the ratio of specific heats. The effective momentum flux moving left from cell R is

pl = −ρRa
2
R

[
1

2
(−MR + 1)

]2 [
−(γ − 1)

γ
MR +

2

γ

]
(4.22)

The net momentum (per unit time per unit area) is

mom = pr − pl

= ρLa
2
L

[
1
2
(ML + 1)

]2 [ (γ−1)
γ
ML + 2

γ

]
+ ρRa

2
R

[
1
2
(−MR + 1)

]2 [− (γ−1)
γ
MR + 2

γ

] (4.23)

Following Van Leer [105], the energy flux moving from right from cell L can be written in terms

of the previously found momentum and mass fluxes:

er = −
(

γ2

2(γ2 − 1)

)
p2

l

ml

(4.24)

The left moving flux is similarly

el = −
(

γ2

2(γ2 − 1)

)
p2

r

mr

(4.25)

The net energy flux (per unit energy per unit time) is

eng = er − el =

(
γ2

2(γ2 − 1)

)[
p2

r

mr
− p2

l

ml

]
(4.26)

Equations 4.20, 4.23 and 4.26 can be used to calculate the decrease in mass, momentum and

energy from cell L and the increase in mass, momentum and energy in cell R per unit area per

unit time. In the case of flows where local Mach numbers

4.6 Particle Flux Method

Particle Flux Method (PFM) is a modification to Pullin’s EPSM [80] proposed by Macrossan et

al. [70] with the goal of emulating a conventional continuum solver through the use of a direct

simulation approach. In PFM, fluxes of mass, momentum and energy are calculated through

the creation of simulation particles in each cell at each time step which are then moved in

free flight into destination cells. The quantities of mass, momentum and energy each particle

carries is then added to the destination cell, and the particle then discarded. Fluxes which are
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transfered are not limited to cells sharing an interface - the particles are free to move to any

cell reachable in a given time step.

PFM is a finite volume method in that the flow is subdivided into finite volumes (cells), fluxes

exchanged between neighbouring cells and the resulting mass, momentum and energy evenly

redistributed around each computational cell. Conservation is forced through the complete

discretisation and distribution of the conserved quantities into a fixed number of simulation

particles which are precisely tracked. Because of this, PFM does not suffer from the effects of

direction decoupling. It does, however, suffer from the smearing of conserved quantities over

cell volumes that other finite volume solvers suffer [106].

The general PFM procedure for any gas is described by:

1. The flow field is divided into a finite number of computational cells.

2. At each time step, a new set of simulation particles is created. The variance and mean of

the velocity distributions are scaled to ensure complete capture of momentum and energy.

The mass in the source cell is evenly distributed among the simulation particles, as is any

additional structural internal energy. The particle locations are distributed evenly around

the cell. The same set of simulation particles is used in each cell, each time with scaled

velocities to match the local cell conditions.

3. Each of these particles is moved in time x∗ = x + v∆t where x is a vector of positions

x = [x, y, z], v is a vector of velocities v = [vx, vy, vz] and ∆t is the time step.

4. The mass, momentum and energy each particle carries is added to that of the destination

cell.

5. Assuming even distribution of flow quantities over each cell, the revised state (i.e. tem-

perature, bulk velocity) is calculated.

6. The process is repeated for each cell, until a certain time has been reached or the flow is

steady.

The method is fundamentally different to that of EPSM because no density gradients are

maintained and particles are created and destroyed at every time step. Effectively, PFM is

simply a method for the calculation of mass, momentum and energy fluxes between cells and

can replace a conventional flux solver. Another important feature of PFM is its ability to

calculate fluxes of mass, momentum and energy in regions of low density. In a conventional

direct solver, regions of relatively low density (when compared to other regions in the flow

field) are represented by relatively few simulation particles. When using PFM, the number of

simulation particles used is identical for each cell.

Because the local conditions are assumed to be in perfect thermal equilibrium, the corre-

sponding collision time is theoretically very small. EFM, EPSM and PFM suffer from numerical
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Figure 4.6: Typical triangular cell used in PFM simulation.

dissipation because particles are often carried further in free flight than local conditions would

otherwise allow [70]. This leads to the artificial thickening of features such as shock waves. The

smearing that occurs due to PFM’s finite volume nature also contributes toward this. More

advanced direct simulations such as DSMC will suffer from similar dissipation if the time step

used for free molecular flight is larger than the mean collision time, but are not affected by the

smearing which occurs in finite volume solvers because information regarding particle location

is explicitly maintained.

Another advantage of PFM is its ease of implementation on unstructured grids. If the solver

uses triangular cells, then the PFM simulation particles can be distributed evenly around the

cell through the following procedure:

1. Calculate R1, a vector of random numbers R1 = [r1, r2...rN ] where there are N simulation

particles.

2. Calculate R2, a new vector of random numbers R2 = [r0.5
1 , r0.5

2 ...r0.5
N ].

3. Given the point B on the triangle (See Figure 4.6) and vectors �BC and �BA, the equation

for the new particle locations are:

X = R2

(
R1

�BA + (1 − R1) �BC
)

+B (4.27)

where X is a 2D vector of position X = [x, y].

A similar routine can be used for 3 dimensional simulations. Particles are then moved in free

flight (i.e. straight lines) to their destination region. This region can be found by using the

line equation created by the particle in flight and calculating possible intercepts across triangle

surfaces.

38



⋅
 

⋅
 

⋅
 

⋅
 

⋅
 ∆ t 

∆ x 
n 

n + 1 

i i+1 i−1 i−2 

i − 1/2 i + 1/2 

⋅
 

F
i − 1/2

 F
i + 1/2

 

Figure 4.7: Finite volume discretisation of a one dimensional partial differential equation. The
region is divided into a large number of volumes with cell centers i − 1, i, i + 1 separated by
distance ∆x. The flux of conserved quantities across volume interfaces is F . Time is progressed
in steps of ∆t with new fluxes F calculated at each step.

4.7 High Resolution Schemes

High resolution schemes are defined by Roe [89] as a class of algorithms designed for solving

problems involving partial differential equations in which wave propagation is an important

feature. Many wave propagation problems are governed by equations such as the Euler or

Navier-Stokes equations, commonly known as the conservation equations. Using the finite

volume approach, these equations are typically solved by dividing space into control volumes

and tracking fluxes of conserved quantities (i.e. mass, momentum and energy) across cell

surfaces. In order to increase the order of accuracy above first order, the flux calculator used

to estimate the fluxes of conserved quantities must be nonlinear [89, 106].

Roe [89] demonstrates some of the issues of solving the conservation equations by examining

the inviscid Burger’s equation:
∂u

∂t
+
∂(1/2)u2

∂x
= 0 (4.28)

where u is a conserved quantity and the equivalent flux function f(u) = (1/2)u2. Burgers

equation is often presented as a purely abstract problem which allows us to examine the quality

of finite volume solvers which maintaining wave propagating qualities [89]. The finite volume

discretisation for this problem is shown in Figure 4.7. The space in x is divided onto finite

volumes, or in this case lengths of width ∆x. Time is discretised into steps of ∆t. The

conserved quantity u is tracked in time and space through the exchange of fluxes of conserved

quantity F between finite volumes.

Therefore, using the notation described in Figure 4.7, the value of the conserved quantity
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Figure 4.8: Finite volume discretisation with conserved quantity u linearly distributed through
the cell volume. The mean value ui in cell i is the value of the conserved quantity u at the cell
center location xi. The slope of the conserved quantity in cell i is si.

u at location i at time n + 1 is equal to:

un+1
i = un

i − ∆t

∆x

[
F

n+1/2
i+1/2 − F

n+1/2
i−1/2

]
(4.29)

where F n+1/2i+ 1/2 is the flux evaluated at the interface between volumes i and i+ 1 and at

time n + 1/2. A simple explicit scheme can be created where the fluxes F is evaluated using

nearby states at time n. If the flux is a function only of states at time n, the method will

be first order accurate in time. An example calculation of F has already been presented in

Equation 4.7 and is:

F
n+1/2
i+1/2 =

1

2

[
(u2/2)n

i + (u2/2)2
i+1

]
(4.30)

This is easily recognised as a central difference and possesses a second order degree of accuracy

in space. However, this is unstable without the addition of numerical dissipation [89]. The

concept of upwinding is to use information taken from the flow in the direction the flow is

coming from. In this case, the estimate of the flux may be calculated as:

Fi+1/2 =

{
u2

i /2, ui + ui+1 > 0

u2
i+1/2, ui + ui+1 < 0

(4.31)

This is equivalent to Godunov’s upwind scheme [28] and is first order accurate. It is important

to acknowledge that these fluxes are all based on the assumption of the constant nature of the

conserved quantity u on either side of each interface [89]. The value of the conserved quantity

u up to (but not on) the interface is its cell centered value ui.

As long as the conserved quantity is distributed in the cell volume in a uniform fashion,

the method cannot exceed first order accuracy in space. The next logical step to overcome

Godunov’s dilemma is to assume some distribution of the conserved quantities in a cell. The

simplest case, first proposed by Van Leer [104] and is demonstrated in Figure 4.8. In this case,
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the conserved quantity u is reconstructed using a linear relationship with location:

ui(x) = ui + si(x− xi) (4.32)

where ui is the mean value of u over the cell i, si is the gradient of the conserved quantity,

x is an arbitrary location within cell i and xi is the average of x over the cell or simply the

location of the cell center. The gradient si can be calculated from the surrounding properties.

The simplest form of these gradients is the finite difference approximations:

s−i =
1

∆x
(ui − ui−1)

s+
i =

1

∆x
(ui + 1 − ui)

where s−i and s+
i are the forward and backward differences. If the effective value of si was

calculated as the average of these, the resulting expression would be linear and hence results

in oscillations in the solution [89]. In order for the solution to be of higher order, a nonlinear

average of s+ and s− must be taken. Since we have the freedom to chose the manner in which

the conserved quantity u is distributed through the cell volume we can also chose, in any man-

ner we wish, the form of si. The only constraint is that the mean value of ui(x) is always equal

to ui, which is the case for Equation 4.32.

The creation of the effective slope s∗i is a function of the value of u of the surrounding cells.

The effective state at the interface can be calculated using the effective slope:

uL
i+1/2 = ui +

∆x

2
s∗i

uR
i+1/2 = ui+1 − ∆x

2
s∗i+1

Various attempts have been made to evaluate the effective slope s∗:

• Godunov - s∗ = 0. The traditional Godunov solver assumes uniform conditions in a cell.

• Fromm’s Method - Central difference slope.

s∗ =
ui+1 − ui−1

2∆x
(4.33)

• Beam-Warming Method - Upwind difference slope.

s∗ =
ui − ui−1

∆x
(4.34)

• Lax-Wendroff Method - Downwind difference slope.

s∗ =
ui+1 − ui

∆x
(4.35)
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• Min-Mod slope limiter

s∗ = minmod(
ui+1 − ui

∆x
,
ui − ui−1

∆x
) (4.36)

• Monotonized central difference slope limiter (MC limiter)

s∗ = minmod[
ui+1 − ui−1

2∆x
,minmod(2

ui+1 − ui

∆x
, 2
ui − ui−1

∆x
)] (4.37)

These slopes are then used to provide a better estimate at the interfaces between cells, which

are in turn used to calculate fluxes across cell surfaces. It is important to note that once the

values at the interfaces have been established, the flux calculators (i.e. Van Leer, Roe solver,

EFM) assume the values behind the interface to be uniform. Therefore, the flux calculated is

only correct at the instant the flux is to be calculated - for any finite value of time step, the

conditions driving the reconstructed fluxes across a surface also change with time.
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Chapter 5

Computational solutions to the Boltzmann

Equation

5.1 Introduction and Summary

When the gas is considered dilute and distance between molecules sufficiently large, a complete

description of the characteristics of the flow is available in the form of the Boltzmann equa-

tion. When deviations from equilibrium are small, the Navier Stokes equations represent an

approximation to the Boltzmann equation. In theory, if a solver is capable of correctly solving

the Boltzmann equation, then that solver would be capable of modeling any flow so long as the

dilute gas assumption holds.

While the Navier Stokes equations are an accurate approximation of the Boltzmann equation

at small deviations from equilibrium, they are not valid in rarefied flows. In rarefied conditions,

the molecular collision rate is too low to maintain small deviations from equilibrium. This is

also the case in high speed flows, where the local flow time is on a scale comparable to the

local collision time. In these conditions, large deviations from equilibrium are possible. In such

conditions, the molecular nature of a gas must be considered and a method which solve the

Boltzmann equation itself is desired.

The most popular engineering method available in recent times is the Direct Simulation

Monte Carlo (DSMC). In this approach, the motion of molecules is tracked deterministically

while the interaction of particles is handled in a stochastic fashion. Each tracked molecule,

referred to as a simulation particle, represents a very large number of real particles. The flow

is divided into finite regions, or cells, in a similar fashion to finite volume methods. Time

is divided into discrete intervals and at each time step, particles are moved in free molecular

flight. Simulation particles are then sorted into the computational cells (and sometimes sub

cells) and are collided with each other using a stochastic approach to determine the outcome of

the collision. Through collisions, energy in the various degrees of freedom is exchanged. With

enough collisions, the energy is equally shared amongst the available degrees of freedom and

the gas reaches equilibrium.

Another more direct approach to solving the Boltzmann equation is known as the direct

Boltzmann or model Boltzmann approach. In this technique, the Boltzmann equation is at-
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tacked directly through the discretisation of velocity and translational space and time. Rather

than simulating particles directly, such methods discretise the velocity distribution functions

and calculate incremental changes in time and space. These are typically very computationally

expensive and to obtain accurate results for engineering flows requires significant computational

effort. Such methods are covered in detail following the investigation of the Direct Simulation

Monte Carlo.

5.2 Direct Simulation Monte Carlo

The Direct Simulation Monte Carlo, or DSMC, was created by Bird as a method for investi-

gating the translational relaxation of a monatomic gas. Since this time, DSMC has been used

for a large range of engineering applications including, but not limited to:

• Hypersonic flows, such as orbital reentry,

• The simulation of plasma reactors for use in microelectronics manufacture,

• Drag calculation of satellites in low Earth orbit,

• Calculation of the structure of jet plumes,

• Analysis of shock wave structure,

• Astrophysical calculation.

The scope of this work only requires a brief description of the DSMC method. Firstly,

the implementation of a typical DSMC method is outlined. Each of the steps in a DSMC

simulation, known as phases, is then described.

A standard DSMC code is implemented as follows:

1. Initialisation phase - Initialise particle velocities and locations using desired initial con-

ditions, create flow geometry and mesh.

2. Free flight phase - move simulation particles through collisionless flight by ∆t and enforce

boundary conditions. This phase will often involve the creation or deletion of simulation

particles.

3. Determine which cell (and sub cell, if applicable) each simulation particle resides in.

4. Sample the flow field and determine desired quantities, i.e. temperature, mean speed.

5. Collision phase - perform a calculated number of collisions in each cell. The outcome of

these collisions are probabilistic, moving the conditions in the cell from the initial state

toward the equilibrium state.
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6. Repeat from (2) for a desired number of steps until the simulation is completed.

7. Save results for post-processing.

5.2.1 Flow phase decoupling

The DSMC method relies heavily upon the assumption that the flow can be split into a ‘free

flight phase’ and a ‘collision phase’. During the ‘free flight phase’ of the direct simulation,

molecules are moved to new location x∗ from the old location x by distance vx∆t, where vx is

the particle velocity in the x direction. In a typical DSMC simulation, no external forces are

applied to the particle during this time. Thus simulation particle locations change but their

velocities remain untouched. The ‘collision phase’ is where simulation particles exchange energy

through stochastic collisions. During this time, particles are randomly selected for collision and

the results of the collision are a change in the simulation particles component velocities and

internal energies. During this phase, the velocities are changed but particle locations remain

untouched.

For this phase decoupling to remain valid, the time step separating the two phases must be

smaller than the mean collision time. Garcia and Wagner [27] and Hadjicontantinou [35, 36]

show that the transport coefficients depend on ∆t and the error in these coefficients is of the

order O(∆t)2. Typically, the time step is ∆t ≈ τ/3.

The cell size ∆x dictates the size of the region from which properties are sampled. These

properties control the calculated collision rate, and thus affect all particles within that region.

In many DSMC simulations, collision partners are selected from anywhere within the cell (or

sub cell) under the assumption that in a time step ∆t it is reasonable to assume two particles

in this region are capable of collision. Thus, the cell size must be smaller than the mean free

path λ. In regions where the flow gradients are small or zero, such a restriction is not required.

Where the characteristic length of these gradients approach λ, the cell size must also. Alexander

[1, 2] shows that the effective viscosity and heat transfer present are functions of the cell size,

hence great care must be taken to ensure the cells are sized correctly.

5.2.2 Movement phase

During the movement phase, particles undergo free flight and are untouched by external forces.

In a 3 dimensional cartesian coordinate system, the vector of new particle locations x∗ =

[x∗, y∗, z∗] is given by:

x∗ = x + v∆t (5.1)

where x = [xo, yo, zo] is the vector of locations prior to time stepping and v = [vx, vy, vz] is the

vector of particle velocities.
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5.2.3 Collision phase

During the collision phases, molecules undergo probabilistic collisions which results in a change

of their velocities and internal energy. Since particle locations are preserved during this phase, a

DSMC solver maintains information about the flow field by maintaining a density distribution

in the cell. Any velocity gradients resulting from the pre-collision distributions will tend to

vanish as more collisions occur. In the no time counter (NTC) method proposed by Bird [14],

the number of simulation particle pairs to test for collision are:

Npairs = nN(σg)max∆t/2 (5.2)

This number will result in a real number with a decimal component. The integer component

of Npairs can be used in the current time step, with the decimal component kept for the next

time step and added to subsequent Npairs calculations [10]. These collision pairs are selected

randomly from a cell (or sub cell, if applicable). For each pair, the value of σg is calculated.

A random fraction Rf is then calculated, and the chance of the pair of selected simulation

particles colliding is:

Rf <
σg

(σg)max
(5.3)

The value of (σg)max is updated as the simulation progresses. For a steady flow simulation,

the initial value of (σg)max is unimportant.

There are many other alternative schemes for the calculation of the collision phase of a

DSMC simulation. Macrossan [69] proposed a scheme which uses temperature dependent

molecular cross sections. This method, named µ-DSMC, can use an arbitrary viscosity law

(or data provided by the user) to simulate rarefied flows. The Chapman-enskog viscosity [19]

for hard sphere molecules is:

µ =
5mπ1/2

16

(RT )1/2

σ
(5.4)

Assuming collision pairs are selected when Rf > g/gmax, Macrossan calculated the collision

frequency in terms of the viscosity, given by:

ν =
5π

16
ρg

(RT )1/2

µ(T )
(5.5)

where g is the mean relative speed between collision partners and T the mean temperature.

Macrossan tested this by performing Couette and 1D shock wave simulations [69]. The method

was then expanded to include more complete molecular models. However, these modifications

to the method fall outside of the scope of this work and will not be investigated.

Another development by Macrossan was the creation of a DSMC method which does not rely

upon a collision pair acceptance-rejection scheme. The method, named ν-DSMC, calculated

the collision rate based on the Maxwell variable hard sphere model [66]. Since all collision pairs
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(in a cell or sub cell) were assumed equally likely no testing was performed. The collision rate

calculated for Maxwellian molecules is:

ν =
2ρRT

µ(T )
(5.6)

This collision rate is slightly higher than other existing DSMC collision rates. This is logical

since a higher collision rate would be required to compensate for collisions which occur with

little effect on the outcome of the simulation, such as collision pairs with low relative velocities

[66]. The ν-DSMC results were found to differ only slightly from those of conventional DSMC.

5.2.4 Boundary conditions

The treatment of boundaries in a DSMC simulation can be separated into stream boundaries

and interactions of particles with solid boundaries. For the direct simulation of inflow bound-

aries, this involves the creation of new simulation particles with qualities taken from the desired

free stream conditions. These upstream boundaries need to be far enough away from obstruc-

tions or flow features to ensure this selection of simulation particle is valid. This generation can

be performed in ghost cells outside of the simulation region. Simulation particles are moved in

time and those which enter the simulation region are kept while others a ignored and removed.

For downstream boundaries, many hypersonic flow problems have a resulting high velocity

exit condition. In such cases, exiting molecules are simply removed. This is valid in many cases

since the chance of a molecule generated downstream having sufficient velocity to reenter the

flow is extremely small. For this condition to be valid, the downstream flow boundaries must

be sufficiently far enough away from obstacles to ensure large exit velocities. In the case of

subsonic flow, a similar procedure to that of the inflow routine can be used. These methods

are valid for both steady and unsteady flow.

Reflections of solid surfaces are typically treated as either specular or diffuse in nature. A

specular reflection is a completely elastic collision with the surface. The velocity component

normal to the wall is reversed while the other parallel components remain unchanged. This is

demonstrated in two dimensions in Figure 5.1. In specular reflections, no energy is lost by the

incident particle and thus no heat transfer across the surface occurs. In engineering applications

this is often deemed as unrealistic since incident molecules are often trapped on the surface for

a period of time and tend to take on properties similar to that of the surface.

Diffuse reflections better take this property into account. All incident velocities are com-

pletely destroyed upon contact with the surface. Simulation particles are then given newly

generated velocities. The normal velocity assigned to a reflected simulation particle is given

by:

v∗n = (−ln(Rf))
1/2(

2kTwall

m
)1/2 (5.7)
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Specular Reflection 

Diffuse Reflection 

Figure 5.1: Specular and diffuse reflective models for direct simulations.

The velocity components parallel to the surface are generated from the Maxwell-Boltzmann

equilibrium distribution function using the temperature of the wall Twall and a zero bulk velocity.

This ensures a ’non slip’ boundary condition so the bulk velocity close to the wall surface tends

to zero. For many engineering flows, this reflective condition provides acceptable results.

5.3 Equilibrium Particle Simulation Method

Equilibrium Particle Simulation Method (EPSM) was proposed by Pullin [80] as a continuum

gas solver and represents the infinite collision limit of DSMC. Technically, EPSM only represents

a solution to the Boltzmann equation when the distribution functions are assumed to be those

of the Maxwell-Boltzmann equilibrium distribution functions [107]. In this case, the Boltzmann

equations are well known to reduce to the Euler equations. However, due to its similarities with

the DSMC proceedure the method is discussed here.

The collision process critical to DSMC simulations is replaced by a procedure in which all

particles within a cell have their velocities forced to an equilibrium velocity as described by the

Maxwell-Boltzmann velocity distribution. These velocities are randomly generated in each cell

for each time step. In order to conserve momentum and energy exactly, the pre-collision and

the post-collision (randomly generated) velocity distributions must have identical an identical

mean and variance. This is done through the scaling procedure employed by Montanero et. al.
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[74] and later used by Macrossan [68].

For a simple monatomic gas, the EPSM process is as follows:

1. N simulation particles are distributed through the flow geometry with scaled, randomly

generated velocities to suit the initial conditions.

2. Each of these particles is moved in time X∗ = X + V∆t where X is a vector of positions

X = [x, y, z] and V is a vector of velocities V = [u, v, w] and ∆t is the time step.

3. These particles are indexed into cells.

4. The state in each cell is calculated through kinetic theory relations.

5. Without adjusting particle locations, new particle velocities are assigned to each particle

according to the state the cell is in. For a monatomic gas, the variance and mean of the

new velocity distributions must be identical to the original.

6. The process is continued until the desired time has been reached, or the flow is steady.

Due to the statistical scatter encountered with any direct simulation, averages may be

required over various time steps to obtain a smooth solution.

EPSM has been used in various hybrid codes [68, 21, 22, 115] and has been used to solver

the Euler equations. The strength of such a method lies in the similarities of implementa-

tion. In regions deemed to be in thermal equilibrium the velocities of particles are assigned

from the equilibrium velocity distribution function while intermolecular collisions are employed

elsewhere.

5.4 Model-Boltzmann solver

An alternative method to the solution of the Boltzmann equation is to attempt to directly solve

the differential equation itself. The Boltzmann equation and its collision term is:

∂f

∂t
+ v · ∂f

∂x
+ F · ∂f

∂v
=

[
∂f

∂t

]
coll

(5.8)

[
∂f

∂t

]
coll

=

∫ ∞

−∞

∫ 4π

0

(f ∗f ∗
1 − ff1) crσ dΩ dc1 (5.9)

This equation is very difficult to solve directly. A more conventional approach is to attempt

to solve the Bhatnagar-Gross-Krook (BGK) model equation [11] (also proposed independently

by Weylander [109]) which replaces the collision term of the Boltzmann equation by a simpler

source term which retains the important features of the original. The BGK equation is:

∂f

∂t
+ v · ∂f

∂x
= νM (fM − f) (5.10)
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Figure 5.2: Discretisation of velocity space used by BGK solvers. The bulk velocity calculated
by from the discretised distribution is v = 3.98e− 17 with s = 0.995.

∆ x ∆ x 

∆ x/2 

Figure 5.3: The linear advection of mass by ray tracing in a BGK solver. In the case demon-
strated, the selected velocity bucket has sufficient velocity to ensure that half of the uniformly
distributed mass in the source cell will reach the destination cell.
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The method used to solve the BGK equation requires discretisation in time, physical space

and velocity space. The continuous velocity distribution functions and energy distribution

functions are discretised into a finite number of ‘velocity buckets’ of velocity width dv. The

value of f(vx) for each bucket is calculated using the velocity at the centre of each bucket. Each

velocity bucket is assumed to have this constant value of f(vx) over velocity space dv. A simple

example is demonstrated in Figure 5.2 where the equilibrium distribution function for velocity

in the x direction is discretised into 11 ‘velocity buckets’. Similar discretisations are required for

all other degrees of freedom of the gas. The mean and the variance of the discretised velocities

are used to calculate the mean velocity and temperature, therefore in an equilibrium gas the

mean and the variance must be identical to the continuous equilibrium velocity distribution

function.

The typical BGK solver employs flow phase splitting like that used by DSMC. The flow

is split into a movement phase, governed by the advection component of the BGK equation,

and a collision phase which uses the collision term in the BGK equation to approximate the

effect of collisions. While many attempts have been made to solve the advection term of the

BGK equation with a high degree of accuracy, this work will focus on the use of simple ray

tracing to track movement of the gas. This procedure is shown in Figure 5.3 when restricted to

a single dimension. The source cell (left) is assumed to have mass M which is assumed to be

uniformly distributed across the cell. For a given velocity vx, there is a fraction of mass in the

cell to possess this velocity fM = f(vx)dvx. Of this fraction, there will be a smaller fraction

which are able to move into the adjacent cell through free molecular flight. Figure 5.3 shows

a selected velocity vx which allows the fraction fM to move half a cell width in the alloted

time step. Therefore, since the mass is uniformly distributed, half of the fraction fM will fall

into the adjacent cell while the remaining half remains in the source cell. While this solution

method is simplistic, there is an analytical equivalent in the limit of an infinite number of

velocity buckets and an initial velocity distribution function equal to the Maxwell-Boltzmann

equilibrium distribution function. This method is discussed in Section 8.

The effect of molecular collisions is to shift a non-equilibrium distribution function to-

ward the equilibrium distribution function. A diagram showing a velocity distribution in non-

equilibrium and its hypothetical equilibrium counterpart is shown in Figure 5.4. The simplified

collision term states that the rate at which a particular velocity bucket approaches its equi-

librium value is proportional to the difference between its pre-collision distribution and its

final equilibrium distribution function. This difference, (fM(vx)− f(vx)), is represented in Fig-

ure 5.4 as shaded regions. After fluxes are moved and pre-collision distributions generated,

each velocity bucket is compared to its equilibrium value and relaxed toward it by an amount

ν∆t(fM (vx) − f(vx)).

The advection and collision phase of the BGK solver needs to be performed for every

possible combination of velocity buckets. Therefore, if the simulation of a gas with a single

translational degree of freedom requires n computational effort, a gas with two translational
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Figure 5.4: Hypothetical velocity distribution before collisions and the equilibrium distribution.
The difference between these distributions is shaded.

degrees of freedom will require at least n2 and three translation degrees of freedom requiring

at least n3. Therefore, if a three dimensional simulation using x velocity buckets was found

to have too coarse a discretisation in velocity space and 2x buckets were employed, the new

simulation would require 23 = 8 times as long to solve.Thus, it is difficult to practically apply

this method to real engineering problems due to its computational expense.
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Chapter 6

Kinetic Theory based hybrid solvers

6.1 Introduction and Summary

Due to the computational expense associated with solving non-equilibrium flows, a large number

of kinetic-theory based hybrid solvers have been developed. A large number of these hybrid

solvers employ solutions to the Navier-Stokes equations in regions of thermal equilibrium while

using a direct solver in regions of non-equilibrium. While these solvers have been shown to

provide valuable results, the fundamental basis for each component of such hybrid solvers

varies. This work will focus on the theory of the Unified Flow Solver (UFS), which describes any

solver capable of capturing both equilibrium and non-equilibrium regions with each component

derived from the same basic principles or theory, in this case the Kinetic Theory of gases. First

we examine the particle only hybrid solvers, first introduced by Macrossan [68] and further

investigated by Chen et. al. [21, 22] and Wu [115]. In such an approach, the Direct Simulation

Monte Carlo (DSMC) is used in regions of non-equilibrium while the Equilibrium Particle

Simulation Method (EPSM) is used in regions of thermal equilibrium. Following this, we

will examine the family of kinetic theory based hybrid solvers where fluxes are analytically

determined through integration of a given velocity distribution function over a boundary or

otherwise determined through the use of a BGK solver.

6.2 Particle based hybrid solvers

The simulation of flows with both equilibrium and non-equilibrium regimes is of practical

importance to modern engineering calculations. This is traditionally done with the use of

DSMC in all regions. However, regions of thermal equilibrium are collision dominated; the use

of DSMC in such regions is computationally expensive. In addition, the effective outcome of a

large number of collisions is well known - the distribution of velocities in these regions will be

equal to the Maxwell-Boltzmann distribution of velocities. Macrossan proposed a ‘particle only’

method which used the local breakdown parameter to separate regions of thermal equilibrium

and non-equilibrium [68]. In this method, the equilibrium regions were solved with Pullin’s

EPSM [80] while DSMC was used in regions of non-equilibrium. The same approach has been
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Figure 6.1: Regions of thermal equilibrium breakdown determined using gradients of mean free
path used by Smith [97] as part of a hybrid EPSM/DSMC solver. Regions are shown with a
breakdown parameter larger than 0.05 (Left) and 0.01 (Right). The flow is hypersonic over an
infinitely long cylinder. Free stream temperature was 300K. M = 8, Kn = 0.016, γ = 5/3. The
temperature at the wall was 300K. Steady time was 12ms, time step ∆t = 1.25e− 7s.

used by various authors [22, 21, 97, 115]. The advantage of such an approach is the simple and

rapid implementation while obtaining a modest decrease in computational expense. However,

since the local breakdown was calculated from existing flow properties which were subject to

statistical scatter, accurate detection of non-equilibrium regions was very difficult.

To counter this, Smith [97] utilised a continuum solver in parallel with the direct simulation

and used its results to attempt to accurately predict regions of continuum breakdown. The

continuum solver used the same computational grid and time step as the direct solver. The

resulting flow field from the continuum solver was used to calculate the breakdown parameter

and was used by the EPSM/DSMC hybrid to determine which solver to use. The additional

computational expense associated with the continuum solver was minimal when compared to

the expense of the direct solver. While the method provided modest decreases of computational

expense, in many instances the continuum solver (EFM) was unable to accurately place the

locations of thermal non-equilibrium. To counter this, a solution to the Navier-Stokes equations,

provided by a Riemann solver [44], was used as a guide to locate regions of thermal non-

equilibrium. Results showed that the regions of continuum breakdown as determined by EFM

accurately corresponded with those seen in the hybrid DSMC/EPSM only when adaptive mesh

refinement was employed with the target cell size on the order of the local mean free path [97].

6.3 Finite volume based hybrid solvers

Traditional hybrid methods with a finite volume solver component employ a conventional

Navier-Stokes solver in regions of thermal equilibrium [91, 110, 102]. In most cases, the in-

terfaces between DSMC and NS regions are separated by buffer cells and many of the technical

challenges associated with a combined DSMC/NS solver have been overcome. However, the
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statistical scatter present in the direct simulation component of this hybrid technique can still

cause difficulties in accurately predicting regions of continuum breakdown. There may also be

compatibility issues between the Navier-Stokes solver and the DSMC solver. Theoretically, if

the non-continuum regions were forced to equilibrium, the results obtained should be identical

to the results obtained if the continuum solver was used in all regions of the flow. However, tra-

ditional Navier-Stokes solvers are based on fundamentally different concepts to a direct solver

such as DSMC. The inaccurate matching of numerical viscosity, fluxes of mass, momentum and

energy and problems associated with direction decoupling associated with continuum methods

could therefore lead to problems with the idea of the hybrid DSMC/NS method.

The recent development of ‘unified’ flow solvers aim to bridge the gap between existing

continuum and direct simulation methods [111, 49, 50]. In a Unified Flow Solver (UFS), both the

equilibrium and non-equilibrium solvers are based on the same theoretical concepts. Whereas

previously employed hybrid solvers used continuum methods based on mathematical splitting

of fluxes (such as Van Leer or AUSM), the recent development of continuum methods based

on kinetic theory present an attractive alternative to existing methods due to the similarities

in underlying principles [50, 117, 76]. Recent efforts by Kolobov et al. [50] to create a unified

flow solver combining a Boltzmann Solver and a second order form of EFM were successful in

simulating hypersonic flow around blunt bodies. In this method, the breakdown of equilibrium

was predicted using the local Knudsen number using gradients of density to calculate a local

characteristic length, as shown in Equation 3.2.

The family of Unified Flow Solvers presented by Kolobov et al. [50] is capable of solving

regions of thermal non-equilibrium without the scatter associated with the use of a direct solver.

The use of a kinetic theory based solve in equilibrium regions means the method can solve

engineering problems without the computational restrictions associated with the intensive BGK

solvers. However, the fluxes employed in regions of thermal equilibrium are one dimensional

fluxes. Unlike particle based methods, at least two time steps a required to move fluxes to their

physically correct destinations. The use of direct coupled fluxes by both the equilibrium and

non-equilibrium solvers would result in results of higher fidelity in flows not aligned with the

computational grid.
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Chapter 7

Blast Wave Simulations in Computational

Fluid Dynamics

7.1 Introduction and Summary

The simulation of the effects of blast waves has been of key importance to the mining industry,

health industry and in recent efforts to protect by design against terrorism [60]. The study of

the generation and propagation of blast waves were always of great importance from the safety

viewpoint for any chemical industry handling explosive materials or flammable gases [86]. A

large number of past explosion accidents has led to considerable property damages, in addition

to human injuries along with fatalities in some cases [34]. Thus, simulations of blast waves have

been performed in large tunnel systems [86, 103] due to the dangerous nature of the chemicals

used in them.

7.2 Blast waves and tunnel systems

An example of the work done by van den Berg [103] on tunnel blast waves is shown in Fig-

ure 7.1. The blast phenomena in the tunnel system shown in Figure 7.1 was originating from

an instantaneous release 50m3 of liquid propane at 326K. The blast phenomena during the

early stages of the propagation have been visualised in a sequence of pictures showing the gas

dynamics at a few consecutive points in time [103].

7.3 Blast waves and structures

DSMC has been used as a continuum solver to simulate blast waves [60, 4]. Research by Long

[60] using DSMC to calculate the effect on structures by blast waves has been conducted with

the aim of reducing the cost of live testing using real buildings. Long utilised DSMC and

compared results against experiments for the square cavity problem and high speed flow over a

box and I-beam. Long used collision limiting and tested conditions in cells to ensure particles

within a cell had reached equilibrium in a given time step.
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Figure 7.1: Blast propagation from a tunnel tube via an open space into another tunnel tube
[103].
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Figure 7.2: A schematic showing the dimensions of the cavity and the pressure transducer
locations used by Reichenbach et. at. [83] and Long [60]. All dimensions are in mm.

The square cavity problem investigated by Reichenbach et. al [83] and used by Long to

compare against DSMC simulations [60] is shown in Figure 7.2. They presented Shadowgraphs

at different times during the experiments for two incident shock wave Mach numbers, 1.3 and

2.032 [60]. Long’s simulation used 800x440 cells with 40 particles in each cell at the start of

the simulation. These were compared qualitatively to Reichenbach’s results and used incident

shock wave Mach numbers of 1.43 and 2.032. To help reduce scatter in the resulting profiles,

roughly 1200 samples were collected for the results. All solid boundary reflections off surfaces

were treated as specular. The shadow graphs taken from the experiment, along with the DSMC

results forM = 2.032 are shown in Figure 7.3. The results forM = 1.43 are shown in Figure 7.4.

The simulation of flow over a square box and I-beam was then considered. The setup

geometry for each simulation is shown in Figure 7.5. Each DSMC simulation used 600x300

cells with 60 particles per cell at the start of the simulation. To reduce scatter 1800 flow

samples were taken. The initial conditions used were ρ1 = 1.14kgm−3, T1 = 196.45K and

Ms = 1.98. The top and bottom boundaries are specularly reflecting walls. The results from

DSMC simulations of flow over a square box are presented in Figure 7.6, and the results for

the I-beam simulation are presented in Figure 7.7.

The effect of blast waves in city environments has also been a key area of research [100, 90,

61, 85, 84]. Rose [100] recently investigated the propagation of blast waves in city streets by ex-

amining different configurations of intersections, street corners and the effect of the surrounding

buildings on the path of the flow. Data was collected both experimentally and through the use

of computational simulation. Rose examined the confining effects of surrounding buildings in

a blast situation using the geometry shown in Figure 7.8. This problem, initially investigated

by Smith and Feng [99], describes a situation where a blast is confined by nearby buildings. A

charge is located roughly 1/3 of the way down the street. Rose found that, as a result of the

confining effects of the buildings, the pressure measured at the location shown in Figure 7.8

was approximately 4 times higher than when buildings were omitted. In reality, this result will

be lower due to the likely failures of the buildings in the immediate vicinity of the blast [100].
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Figure 7.3: The interaction of a traveling planar shock wave (Mach number 2.032) with a square
cavity at different times. On the left are Shadow graphs from [83], and on the right are plots
of constant density from DSMC simulations [60]. (a)t = 75µs; (b) t = 100µs; (c) t = 125µs;
(d) t = 150µs.
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Figure 7.4: The interaction of a traveling planar shock wave (Mach number 1.43) with a square
cavity at different times. On the left are Shadow graphs from [83], and on the right are plots
of constant density from DSMC simulations [60]. (a)t = 100µs; (b) t = 140µs; (c) t = 160µs;
(d) t = 180µs.
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Figure 7.5: Geometry used by [60] for flow over a square box (top) and flow over an I-beam
(bottom). The I-beam has a uniform thickness of 3.75 mm. All dimensions are in mm. Square
numbered points represent locations where Long [60] collected information on pressure for
comparison to physical experiments.

Figure 7.6: Plots of constant density from [60] at different times for the blast impact simulation
of a box at t = 68.1µs (left) and t = 113.5µs (right)

Figure 7.7: Plots of constant density from [60] at different times for the blast impact simulation
of an I-beam at t = 68.1µs (left) and t = 113.5µs (right)
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Figure 7.8: The building configuration used by Rose [100] and Feng [99] to test the confining
effects of buildings on the propagation of blast waves. The initial charge is located approxi-
mately one third the way down the street and pressure measured on the face of the distant
building as indicated above.
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Chapter 8

The True Direction Equilibrium Flux Method

8.1 TDEFM - True Direction Equilibrium Flux Method

8.1.1 TDEFM with uniformly distributed mass

Derived below are the expressions for the mass, momentum and energy carried by molecules

in free-molecular flight for time ∆t, starting from a rectangular region (in 2D) to any other

rectangular region. For simplicity all forces acting on particles are assumed to be zero, i.e.

no particle interactions occur while particles are moving. Internal structural energy (such as

energy due to rotation and vibration) is included in the energy flux expressions so monatomic,

diatomic or polyatomic gases can be simulated.

Uniform conditions are assumed within the cell from which the molecules originate (i.e.

there are no gradients of density, mean velocity or temperature within the cell) and all the

molecules within the cell have velocities conforming to the same Maxwell-Boltzmann distribu-

tion. The distribution function for components of molecular velocity, vj ≡ vx or vy or vz, has

the Maxwell-Boltzmann form

f (vx, vy, vz) = g (vx) g (vy) g (vz)

where

g (vj) =
1

π1/2cm
exp

(
−(vj − Vj)

2

c2m

)
, Vj ≡ v̄j =

∫ ∞

−∞
vjgdvj and cm = (2RT )−1/2 .

In other words, the fraction of molecules having a velocity vx in the range vx → vx + dvx is

g (vx) dvx and similar expressions hold for vy and vz. The components of the mean flow velocity

(mean molecular velocity) in any cell are Vx and Vy (and Vz = 0 for 2D flow), the mass density

is ρ = mpn, where mp is the mass of one molecule and n is the number density (molecules/m3).

The random thermal velocity is cj = vj − Vj and the three components of translational kinetic

temperature are given by RTj =
∫∞
−∞ c2j dvj where R is the ordinary gas constant.

Setting s ≡ √
RT and m ≡ Vj the expression for g(v) can be rewritten as:

g(vj) =
1√
2πs

exp

(−(vj −m)2

2s2

)
(8.1)
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Figure 8.1: Particle moving from x (between xL and xR) to a region between xl and xr. For
the derivations used here, xr ≥ xl & xR ≥ xL

Referring to Figure 8.1, for a particle at location x to travel to a location between xl and

xr in a time space t, the velocity range falls between xl−x
t

and xr−x
t

. Therefore, the chance of a

particle at position x moving to between xl − xr is:

Pm =

∫ (xr−x
∆t )

(xl−x

∆t )

1√
2πs

exp

(−(vx −m)2

2s2

)
dvx

=
1

2

[
erf

(
m∆t+ x− xl√

2s∆t

)
− erf

(
m∆t+ x− xr√

2s∆t

)]
(8.2)

The average probability of a particle having the required velocity range over the space xL −xR

represents the fraction of particles from the region between xL and xR possessing the velocities

specified and is given by:

fM =
1

(xR − xL)

∫ xR

xL

Pmdx

= fM(m, s,∆t, xR, xL, xl, xr) (8.3)

= Mcexp

(−(m∆t+ xR − xl)
2

2s2∆t2

)
+M1erf

(
m∆t+ xR − xl√

2s∆t

)
− Mcexp

(−(m∆t+ xR − xr)
2

2s2∆t2

)
−M2erf

(
m∆t+ xR − xr√

2s∆t

)
− Mcexp

(−(m∆t+ xL − xl)
2

2s2∆t2

)
−M3erf

(
m∆t+ xL − xl√

2s∆t

)
+ Mcexp

(−(m∆t+ xL − xr)
2

2s2∆t2

)
+M4erf

(
m∆t+ xL − xr√

2s∆t

)
(8.4)

This equation can be used to find the fraction of mass from region xL ↔ xR that flows into

the region between xl ↔ xr. The mean velocity of particles (or the mean momentum per unit

mass) from location x to land in the region between xl and xr is:
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Pp =

∫ xr−x
∆t

xl−x

∆t

vx
1√
2πs

exp

(−(vx −m)2

2s2

)
dvx

=

[
− s√

2π
exp

(−(m− vx)
2

2s2

)
− m

2
erf

(
m− vx√

2s

)]xr−x
∆t

xl−x

∆t

(8.5)

The mean average velocity of particles moving into region xl ↔ xr from region xL ↔ xR is:

fP =
1

(xR − xL)

∫ xR

xL

Ppdx

= fP(m, s,∆t, xR, xL, xl, xr) (8.6)

= Pcexp

(−(m∆t + xR − xl)
2

2s2∆t2

)
+ P1erf

(
m∆t+ xR − xl√

2s∆t

)
− Pcexp

(−(m∆t + xR − xr)
2

2s2∆t2

)
− P2erf

(
m∆t+ xR − xr√

2s∆t

)
− Pcexp

(−(m∆t + xL − xl)
2

2s2∆t2

)
− P3erf

(
m∆t+ xL − xl√

2s∆t

)
+ Pcexp

(−(m∆t + xL − xr)
2

2s2∆t2

)
+ P4erf

(
m∆t+ xL − xr√

2s∆t

)
(8.7)

The mean energy of particles (per unit mass) moving from x into the region between xl and

xr,Pe, is defined as:

Pe =

∫ xr−x
∆t

xl−x

∆t

(0.5v2
x + C)√
2πs

exp

(−(vx −m)2

2s2

)
dvx

=

[
1

4

(
m2 + s2 + 2C

)
erf

(
x−m√

2s

)
− s

2
√

2π
exp

(−(m− x)2

2s2

)]xr−x
∆t

xl−x

∆t

(8.8)

where C is a molecules internal structural energy and is explained in Section 2. The mean

energy over the range xL to xR to flow into the region between xl and xr we will call fEE . This

is evaluated as:
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Figure 8.2: Particle moving from x (between xL and xR) to a region between xl and ∞.

fE =
1

(xR − xL)

∫ xR

xL

Pedx

= fE(m, s,∆t, xR, xL, xl, xr) (8.9)

= Ecexp

(−(m∆t+ xR − xl)
2

2s2∆t2

)
+ E1erf

(
m∆t+ xR − xl√

2s∆t

)
− Ecexp

(−(m∆t+ xR − xr)
2

2s2∆t2

)
− E2erf

(
m∆t+ xR − xr√

2s∆t

)
− Ecexp

(−(m∆t+ xL − xl)
2

2s2∆t2

)
− E3erf

(
m∆t+ xL − xl√

2s∆t

)
+ Ecexp

(−(m∆t+ xL − xr)
2

2s2∆t2

)
+ E4erf

(
m∆t+ xL − xr√

2s∆t

)
The fluxes that flow into region xl and xr where (xl & xr < xL) are calculated using similar

integrals to the ones above. To calculate the fraction of mass that remains in the region xL−xR,

we use the result from Equation 8.4 and set xl = xL and xr = xR. The same theory also applies

to the momentum and energy fluxes using Equations 8.7 and 8.10.

8.1.2 Generalised EFM flux expressions

Instead of using finite velocity bounds to derive flux expressions we can follow the convention of

existing kinetic theory based solvers and use an infinite bound for the far side of the destination

region and set the near side to the edge of the source cell. This is shown in Figure 8.2. The

distribution function for components of molecular velocity, vj ≡ vx or vy or vz, has the Maxwell-

Boltzmann form

g(vj) =
1√
2πs

exp

(−(vj −m)2

2s2

)
(8.10)

where s ≡ √
RT and m is the mean velocity. The probability of a particle with a velocity
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between a and b, or Pm, is:

P+
m =

∫ b

a

1√
2πs

exp

(−(vj −m)2

2s2

)
dvj (8.11)

Referring to Figure 8.2, for a particle at location x to travel to a location between xl and

xr in a time space t, the velocity range falls between xl−x
t

and ∞. Therefore, the chance of a

particle at position x moving to between xl −∞ is:

P+
m =

∫ ∞

(xl−x

t )

1√
2πs

exp

(−(vx −m)2

2s2

)
dvx

=
1

2

[
erf

(
mt+ x− xl√

2st

)
+ 1

] (8.12)

The mean probability over the source cell xL − xR is found by integrating this result over x

and is given by:

f+
M = Z

2
√

π

[
exp (−S2

n) − exp
(−(Sn − 1

Z
)2
)]

+1
2
SnZ

[
erf(Sn) − erf

(
Sn − 1

Z

)]
+ 1

2

[
erf
(
Sn − 1

Z

)
+ 1
] (8.13)

where the speed ratio Sn = m
cm

, cm ≡ √
2RT is the most probable speed and Z ≡ t

√
2RT
∆x

= tcm

∆x
.

In this form, it is clear to see that f+
M is dimensionless, and represents the fraction of the mass

to move from the source region to the destination region. Using the same technique to find

momentum and energy fluxes, the new modified flux expressions (per unit time per unit area)

are:

F+
Q = WL

⎡⎢⎢⎢⎢⎢⎢⎣
ρvn

ρvnvn + ρRT

ρvnvp

ρvnvq

ρvn

(
1
2
�v.�v + CpT

)

⎤⎥⎥⎥⎥⎥⎥⎦+DL

⎡⎢⎢⎢⎢⎢⎢⎣
ρcm

ρcmvn

ρcmvp

ρcmvq

ρcmE

⎤⎥⎥⎥⎥⎥⎥⎦+BL

⎡⎢⎢⎢⎢⎢⎢⎣
ρcm

ρcmvn

0

0

ρcm
(

1
2
�v.�v + CvT

)

⎤⎥⎥⎥⎥⎥⎥⎦ (8.14)

i.e.
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WL = 1
2

[
erf(Sn) − erf

(
Sn − Z−1

L

)]
L

DL = 1
2
√

π

[
exp (−S2

n) − exp
(−(Sn − Z−1

L )2
)]

L

BL = 1
2ZL

[
1 + erf

(
Sn − Z−1

L

)]
Sn = (vn/cm)L

ZL =
(

cm∆t
∆x

)
L

E = 1
2
�vL. �vL + 1

2
(γ + 1)CvTL

cm =
√

2RTL

(8.15)

Cp and Cv are the specific heats at constant pressure and volume respectively, and γ = Cp

Cv
.

Equivalently, the backward flux can be evaluated as:

F−
Q = WR

⎡⎢⎢⎢⎢⎢⎢⎣
ρvn

ρvnvn + ρRT

ρvnvp

ρvnvq

ρvn

(
1
2
�v.�v + CpT

)

⎤⎥⎥⎥⎥⎥⎥⎦+DR

⎡⎢⎢⎢⎢⎢⎢⎣
ρcm

ρcmvn

ρcmvp

ρcmvq

ρcmE

⎤⎥⎥⎥⎥⎥⎥⎦+BR

⎡⎢⎢⎢⎢⎢⎢⎣
ρcm

ρcmvn

0

0

ρcm
(

1
2
�v.�v + CvT

)

⎤⎥⎥⎥⎥⎥⎥⎦ (8.16)

I.e

WR = 1
2

[
erf(Sn) − erf

(
Sn + Z−1

R

)]
R

DR = 1
2
√

π

[
exp (−S2

n) − exp
(−(Sn + Z−1

R )2
)]

R

BR = 1
2ZR

[
1 − erf

(
Sn + Z−1

R

)]
Sn = (vn/cm)R

ZR =
(

cm∆t
∆x

)
R

E =
(

1
2
�vR. �vR + 1

2
(γ + 1)CvTR

)
cm =

√
2RTR

(8.17)

For small values of Z, Equations 8.14 and 8.16 reduce to the original EFM equations shown

in Equations 4.14 and 4.16. However, in this revised form it is impossible for a cell to ‘flux’
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Figure 8.3: Particle moving from x (between xL and xR) to a region between xl and xr in the
presence of a gradient in density. For the derivations used here, xr ≥ xl & xR ≥ xL

more mass, momentum or energy than is originally present in the source cell, regardless of time

step size. In this sense, the mechanism for transport of mass, momentum and energy in the

revised EFM flux expressions are more closely related to that used by a direct simulation such

as EPSM. However, the method can still become unstable as a result of the assumption that

the neighbouring cell captures all of the transported mass, momentum and energy. In an EPSM

simulation for a relatively large kinetic CFL, fluxes can pass over neighbouring cells and fall

into cells further away. The proposed equations will only be valid when the kinetic CFL is less

than 1 to ensure that the flux falling into the neighbouring regions are physically correct.

8.1.3 TDEFM with non-uniform mass distribution

A higher order equivalent of TDEFM is presented here where fluxes are recalculated with the

presence of a density gradients in the source cell. The analytical fluxes obtained should then

more closely match those of the infinite collision DSMC which allows for a density gradient

across the cell1. The density in the source cell is assumed to take the form:

ρ(x) = ax+ b (8.18)

where a is the gradient of density across the cell and b is the value of density at xL. For any

given value of a, there is a fixed value of b which ensures the total mass in the cell is correct.

Referring to Figure 8.4, for a particle at location x to travel to a location between xl and xr

in a time space t, the velocity range falls between xl−x
t

and xr−x
t

. Therefore, the chance of a

particle being able to start from location x to between xl − xr is:

Pm(x) =

∫ (xr−x
∆t )

(xl−x

∆t )

1√
2πs

exp

(−(vx −m)2

2s2

)
dvx

=
1

2

[
erf

(
m∆t+ x− xl√

2s∆t

)
− erf

(
m∆t+ x− xr√

2s∆t

)] (8.19)

1During the collision process any temperature or bulk velocity gradient is destroyed, especially for high
collision rates.
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The mean fraction of the mass between xL-xR that will then move to between xl − xr is:

fM =
1

(xR − xL)

∫ xR

xL

F (x)Pm(x)dx

where F (x) is the fraction of mass in element dx, given by:

F (x) =
(ax+ b)∆x∫ xR

xL
(ax+ b)dx

(8.20)

This integral is evaluated to obtain:

fM = fM(m, s,∆t, xR, xL, xl, xr)

= M1exp

(−(m∆t+ xR − xl)
2

2s2∆t2

)
+M5erf

(
m∆t+ xR − xl√

2s∆t

)
− M2exp

(−(m∆t+ xR − xr)
2

2s2∆t2

)
−M6erf

(
m∆t+ xR − xr√

2s∆t

)
− M3exp

(−(m∆t+ xL − xl)
2

2s2∆t2

)
−M7erf

(
m∆t+ xL − xl√

2s∆t

)
+ M4exp

(−(m∆t+ xL − xr)
2

2s2∆t2

)
+M8erf

(
m∆t+ xL − xr√

2s∆t

)
Similarly, the average momentum per unit mass fP is given by:

fP = fP(m, s,∆t, xR, xL, xl, xr) (8.21)

= P1exp

(−(m∆t+ xR − xl)
2

2s2∆t2

)
+ P5erf

(
m∆t+ xR − xl√

2s∆t

)
− P2exp

(−(m∆t+ xR − xr)
2

2s2∆t2

)
− P6erf

(
m∆t+ xR − xr√

2s∆t

)
− P3exp

(−(m∆t+ xL − xl)
2

2s2∆t2

)
− P7erf

(
m∆t+ xL − xl√

2s∆t

)
+ P4exp

(−(m∆t+ xL − xr)
2

2s2∆t2

)
+ P8erf

(
m∆t+ xL − xr√

2s∆t

)
The average energy flux per unit mass fE is given by:

fE = fE(m, s,∆t, xR, xL, xl, xr) (8.22)

= E1exp

(−(m∆t + xR − xl)
2

2s2∆t2

)
+ E5erf

(
m∆t+ xR − xl√

2s∆t

)
− E2exp

(−(m∆t + xR − xr)
2

2s2∆t2

)
−E6erf

(
m∆t+ xR − xr√

2s∆t

)
− E3exp

(−(m∆t + xL − xl)
2

2s2∆t2

)
− E7erf

(
m∆t+ xL − xl√

2s∆t

)
+ E4exp

(−(m∆t + xL − xr)
2

2s2∆t2

)
+ E8erf

(
m∆t+ xL − xr√

2s∆t

)
As expected these equations are identical to Equations2 8.4, 8.7 and 8.10 if c = 0 and d = 1.

2Located in A.1 of the Appendix

70



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.9

0.91

0.92

0.93

0.94

0.95

0.96
Fraction of Mass, Momentum and Energy Fluxes (TDEFM/DTDEFM)

Timestep ∆ t (RT)0.5/ ∆ x

F
ra

ct
io

n 
of

 o
rig

in
al

 T
D

E
F

M
 fl

ux

∆ t 

Mass 

Momentum Energy 

0 0.5 1 1.5
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04
Fraction of Mass, Momentum and Energy Fluxes (TDEFM/DTDEFM)

Timestep ∆ t (RT)0.5/ ∆ x

F
ra

ct
io

n 
of

 o
rig

in
al

 T
D

E
F

M
 fl

ux

Mass 

Momentum Energy 

Figure 8.4: The fraction TDEFM/DTDEFM of fluxes for mass, energy and momentum for
varying time steps. The density is assumed to increase by 20 percent across the cell. Mach
number and temperature in the cell is assumed spatially constant.
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Located in Figure 8.4 are the fractions of TDEFM fluxes for mass, momentum and energy

for DTDEFM. The condition presented, an increase of 20 percent in the density across the cell

width, is similar to the increase that occurs in the blast wave simulation through the shock

wave as shown in Section 4. The fluxes are on the order of seven percent larger for a time step

of ∆t(RT )0.5/∆x = 0.08 where ∆x is the width of the source cell. Future potential exists for

the inclusion of a density gradient using a higher order relationship, although the increase in

accuracy would probably be outweighed by the increase in computational effort.

8.1.4 TDEFM with a non-uniform velocity distribution function

Equations 8.4, 8.7 and 8.10 were derived by assuming m, the bulk velocity in the source cell,

was constant. If this velocity was a linear function of location x, then now we have:

m(x) = ax+ b (8.23)

Thus the Maxwell-Distribution becomes:

g(vj) =
1√
2πs

exp

(−(vx −m(x))2

2s2

)
(8.24)

where s =
√
RT , vx = speed in the horizontal direction of a particle originating from position

x, and m(x) = bulk velocity at location x. All the molecules within the cell have velocities con-

forming to the same Maxwell-Boltzmann distribution. Referring to Figure 8.1, the probability

of a particle at location x having a velocity between xl−x
t

and xr−x
t

is:

Pm =

∫ (xr−x
∆t )

(xl−x

∆t )
g(vj)dv

=
1

2

[
erf

(
(a∆t+ 1)x+ b∆t− xl√

2s∆t

)
− erf

(
(a∆t+ 1)x+ b∆t− xr√

2s∆t

)]
The mean probability, or the fraction of mass, from the region xR − xL to fall in the region

xr − xl is:
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fM =
1

(xR − xL)

∫ xR

xL

Pmdx

= fM(m, s,∆t, xR, xL, xl, xr) (8.25)

= Mcexp

(
− ((a∆t+ 1)xR + b∆t − xl)

2

2s2∆t2

)
+M1erf

(
(a∆t+ 1)xR + b∆t− xl√

2s∆t

)

− Mcexp

(
− ((a∆t+ 1)xR + b∆t − xr)

2

2s2∆t2

)
−M2erf

(
(a∆t+ 1)xR + b∆t− xr√

2s∆t

)

− Mcexp

(
− ((a∆t+ 1)xL + b∆t− xl)

2

2s2∆t2

)
−M3erf

(
(a∆t+ 1)xL + b∆t− xl√

2s∆t

)

+ Mcexp

(
− ((a∆t+ 1)xL + b∆t− xr)

2

2s2∆t2

)
+M4erf

(
(a∆t+ 1)xL + b∆t − xr√

2s∆t

)
(8.26)

The mean velocity of particles (or the momentum per unit mass) to travel from location x

and land in the region between xl and xr is defined as:

Pp =

∫ xr−x
∆t

xl−x

∆t

vx
1√
2πs

exp

(−(vx −m(x))2

2s2

)
dvx

=

[ −s√
2π

exp

(−(ax + b− v)2

2s2

)
− 1

2
(ax+ b)erf

(
ax+ b− v√

2s

)]xr−x
∆t

xl−x

∆t

The average mean velocity taken over the region between xR − xL is the momentum (per

unit mass) to travel into the region between xl − xr and is given by:

fP =
1

(xR − xL)

∫ xR

xL

Ppdx

= fP(m, s,∆t, xR, xL, xl, xr) (8.27)

= P1exp

(
− ((a∆t+ 1)xR + b∆t− xl)

2

2s2∆t2

)
+ P5erf

(
(a∆t+ 1)xR + b∆t− xl√

2s∆∆t

)

− P2exp

(
− ((a∆t+ 1)xR + b∆t− xr)

2

2s2∆t2

)
− P6erf

(
(a∆t+ 1)xR + b∆t− xr√

2s∆t

)

− P3exp

(
− ((a∆t+ 1)xL + b∆t− xl)

2

2s2∆t2

)
− P7erf

(
(a∆t+ 1)xL + b∆t− xl√

2s∆t

)

+ P4exp

(
− ((a∆t+ 1)xL + b∆t− xr)

2

2s2∆t2

)
+ P8erf

(
(a∆t+ 1)xL + b∆t− xr√

2s∆t

)
(8.28)
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The mean energy of particles (per unit mass) moving from x into the region between xl and

xr,Pe, is defined as:

Pe =

∫ xr−x
∆t

xl−x

∆t

(0.5v2
x + C)√
2πs

exp

(−(vx −m(x))2

2s2

)
dvx

=

[−s(ax+ b+ v)

2
√

2π
exp

(−(ax+ b− v)2

2s2

)
(8.29)

+
1

4
(2C + s2 + (ax+ b)2)erf

(
ax+ b√

2s

)]xr−x
∆t

xl−x

∆t

The average mean energy (per unit mass) to flow into the region between xl and xr is:

fE =
1

(xR − xL)

∫ xR

xL

Pedx

= fE(m, s,∆t, xR, xL, xl, xr) (8.30)

= E1exp

(
− ((a∆t+ 1)xR + b∆t− xl)

2

2s2∆t2

)
+ E5erf

(
(a∆t+ 1)xR + b∆t− xl√

2s∆t

)

− E2exp

(
− ((a∆t+ 1)xR + b∆t− xr)

2

2s2∆t2

)
−E6erf

(
(a∆t+ 1)xR + b∆t− xr√

2s∆t

)

− E3exp

(
− ((a∆t+ 1)xL + b∆t− xl)

2

2s2∆t2

)
− E7erf

(
(a∆t+ 1)xL + b∆t− xl√

2s∆t

)

+ E4exp

(
− ((a∆t+ 1)xL + b∆t− xr)

2

2s2∆t2

)
+ E8erf

(
(a∆t+ 1)xL + b∆t− xr√

2s∆t

)
(8.31)

A simple substitution of a = 0 and b = m into these equations gives the same result as

Equations 8.4, 8.7 and 8.10 respectively.

Located in Figure 8.5 are the fractions of TDEFM fluxes for mass, momentum and en-

ergy for VTDEFM. The condition presented is a decrease of 30 percent in the Mach number

across the cell width. The fluxes are on the order of 15-20 percent smaller for a time step

of ∆t(RT )0.5/∆x = 0.08 where ∆x is the width of the source cell. As per DTDEFM, future

potential exists for the inclusion of a velocity gradient using a higher order relationship.

8.2 Boundary conditions

8.2.1 Specular boundary reflections

The concept behind the specular boundary reflection is identical to that used by DSMC or

other direct simulation methods. In a specular reflection from a wall where all quantities are
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Figure 8.5: The fraction TDEFM/VTDEFM of fluxes for mass, energy and momentum for
varying time steps. The Mach number is assumed to decrease by 30 percent across the cell.
The density and temperature in the cell are spatially constant.
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conserved, the only conserved quantity which needs to be updated is the momentum component

normal to the surface of the wall. This is performed by calculating the flux of mass, momentum

and energy to travel past the wall surface, changing the sign of the component of momentum

perpendicular to the wall and then adding these fluxes back to the original source cell. Details

of the implementation of this boundary condition for uniform and non-uniform computational

grids are supplied in Section 8.3.

8.2.2 Diffuse boundary reflections

Previous implementations of TDEFM have focused on specular reflections of particles on bound-

aries [93, 98, 71]. Energy and momentum are conserved and reflected back into the source (or

correct destination) cell. This boundary condition is useful for solutions to the Euler equations

but not appropriate for real engineering flows [75]. In practise, most particle reflections of

engineering surfaces are considered diffuse. Previous work by Mallett et. al. [72] employed

diffusely reflective boundaries by integrating the probability distribution function for diffusely

reflected particles; a similar approach is employed here. All mass leaving the simulation region

through a diffusely reflective surface is automatically reinjected back into the flow with new

momentum and energy. Details of this boundary implementation can be found in Section 8.3.

The velocity probability distribution function for the component of reflected velocity normal

to the wall surface is:

fn(vn) = vns
−2exp

(−vn
2

2s2

)
(8.32)

such that the probability of a reflected particle having a normal velocity between vn and vn +

dvn is fn(vn)dvn. The probability distribution functions for parallel components of velocity is

assumed to be the Maxwell-Boltzmann equilibrium distribution function. Figure 8.6 shows the

computational domain surrounding the diffusely reflecting surface between xL −xR. The fluxes

of mass, momentum and energy (per unit mass) of diffusely reflected particles from region

xL − xR to fall in region xl, yl-xr, yr will be:

fM =
1

(xR − xL)

∫ xR

xL

∫ (xr−x)
∆t

(xl−x)

∆t

∫ (yr−yWall)

∆t

(yl−yWall)

∆t

fn(vn)feq(vp)dvndvpdx

fPn =
1

(xR − xL)

∫ xR

xL

∫ (xr−x)
∆t

(xl−x)

∆t

∫ (yr−yWall)

∆t

(yl−yWall)

∆t

vnfn(vn)feq(vp)dvndvpdx

fEn =
1

(xR − xL)

∫ xR

xL

∫ (xr−x)
∆t

(xl−x)

∆t

∫ (yr−yWall)

∆t

(yl−yWall)

∆t

Enfn(vn)feq(vp)dvndvpdx

(8.33)

where ∆x is the width of the source region xR − xL and En is the energy of a particle in the

direction normal to the wall En = 0.5v2
n + C where C is the internal energy per simulated
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Figure 8.6: Computational domain for diffuse reflection from a surface.

degrees of freedom C = (1/2SD)((2Cv/R) − SD)s2 where SD = 2 in a 2D simulation. The

Maxwell-Boltzmann equilibrium distribution function feq is used in the directions parallel to

the wall surface. In Equation 8.33 no assumptions are made regarding destination cell location.

The destination region does not have to be adjacent to the wall surface, and any fraction of

reflected particles can fall into the destination region. If the CFL number in the region near

the wall is small, it is reasonable to assume that all reflected particles will be captured in the

region between yl − yr. In this instance, the equations simplify to:

fM =
1

(xR − xL)

∫ xR

xL

∫ (xr−x)
∆t

(xl−x)

∆t

∫ ∞

0

fn(vn)feq(vp)dvndvpdx

= fM(Vwall, s,∆t, xR, xL, xl, xr)

fPn =
1

(xR − xL)

∫ xR

xL

∫ (xr−x)
∆t

(xl−x)

∆t

∫ ∞

0

vnfn(vn)feq(vp)dvndvpdx

=

(√
π

2
s

)
× fP (Vwall, s,∆t, xR, xL, xl, xr)

fEn =
1

(xR − xL)

∫ xR

xL

∫ (xr−x)
∆t

(xl−x)

∆t

∫ ∞

0

Enfn(vn)feq(vp)dvndvpdx

=
(
s2 + C

)× fE(Vwall, s,∆t, xR, xL, xl, xr)

(8.34)

where s ≡ √
RTWall,

√
π/2s is the mean normal velocity of all reflected particles, s2 + C

is the mean normal energy of the reflected particles and VWall is the velocity of the wall.

The proposed model provides an accommodation coefficient of 1.0, which is valid for many

engineering applications with a few exceptions [75]. The momentum and energy components

parallel to the surface of the wall are found using Equations 8.4, 8.7 and 8.10 exclusively since

all particles are assumed to fall into the cell adjacent to the wall. If the wall has a non-

zero velocity in the normal direction to its surface the above equations can be modified to

accommodate, however, this study is limited to a wall moving parallel to its surface. Details of

the implementation of the diffusely reflective boundary condition are provided in Section 8.3.2.
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Figure 8.7: Program flowchart for uniform, cartesian computational grids.

8.3 Implementation of TDEFM

8.3.1 Implementation on a cartesian grid

The general implementation of TDEFM is described in the flowchart shown in Figure 8.7. For

a regular cartesian grid, the computational space is divided into Nx and Ny cells (in the x

and y directions) to provide a total of Nx × Ny cells. The information contained within these

cells are stored in a series of two dimensional arrays. This approach greatly simplifies the

implementation since no neighbour searching algorithms are required.

Initialisation and State Calculation

During the initialisation stage the cartesian grid is constructed and the initial conditions of the

problem are set. In the case where there are buildings or obstructions in the flow, computational

cells are flagged - 0 if the cell contains gas or 1 if the cell contains solid material, where an

additional value representing material strength is also assigned.

78



f
E
 

f
W

 

f
N
 

f
S
 

x
R

 x
L
 x

l
 x

r
 

y
l
 

y
L
 

y
R

 

y
r
 

NW 

SOURCE 

N NE 

E 

SE S SW 

W 

Figure 8.8: Diagram showing source cell (in center) surrounded by destination cells.

In the state calculation, the density, bulk velocities and temperature is calculated from the

mass, momentum and energy arrays for each cell. The kinetic CFL is calculated and the time

step is adjusted to make sure gas cannot propogate further than a neighbouring cell.

TDEFM flux calculation

The complete TDEFM flux expressions are lengthy and computationally expensive. Significant

simplifications of these flux expressions can be performed when the computational domain is a

simple cartesian mesh, as displayed in Figure 8.8. To calculate the mass fluxes from the source

cell (in the region xL ≥ x ≥ xR, yL ≥ y ≥ yR) to all surrounding cells, only 4 total evaluations

of fM are required. The flux calculation procedure for the mass fluxes is:

1. Calculate values of fN , fS, fE and fW . In this instance, these values are:

fN = fM(V,
√

RT,∆t, yR, yL, yR, yr)

fS = fM(V,
√

RT,∆t, yR, yL, yl, yL)

fE = fM(U,
√

RT,∆t, xR, xL, xR, xr)

fW = fM(U,
√

RT,∆t, xR, xL, xl, xL)

If we assume that (i) the local CFL is small, and (ii) that all of the mass is captured

in the surrounding cells, the expressions for these fluxes simplify to Pullin’s EFM fluxes,
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requiring only a single erf() and exp() function evaluation each.

2. The fluxes of mass to the surrounding neighbours are:

MNW = M0 × fN × fW

MN = M0 × fN × (1 − fW − fE)

MNE = M0 × fN × fE

MW = M0 × (1 − fN − fS) × fW

ME = M0 × (1 − fN − fS) × fE

MSW = M0 × fS × fW

MS = M0 × fS × (1 − fW − fE)

MSE = M0 × fS × fE

This procedure can be repeated for the momentum and energy fluxes. If the expressions are

further simplified by assuming a small kinetic CFL number and complete capture by the sur-

rounding cells, this procedure reduces the computational expense significantly, requiring 10

percent more computational time that ordinary EFM. If required, the “cell catchment” region

could be increased to include more distant cells; however this would mean that the flow might

posses an artificially large mean free path. In this study, the capture of fluxes is restricted to

the surrounding 8 neighbours of each source cell.

During this phase, boundary conditions are also managed. The boundary conditions em-

ployed in this study on a cartesian grid are supersonic inflow, extrapolated outflow and specu-

larly reflecting surfaces. For each of the inflow and extrapolated outflow boundary conditions, a

‘reservoir’ is employed. These reservoirs are imaginary cells identical in size to the adjacent real

cells. In the case of an inflow boundary, the conditions in these cells is that of the freestream.

For an extrapolated outflow boundary, the conditions in these reservoirs are determined from

the nearest adjacent real cell. These reservoirs are identical in principle to the technique often

used in DSMC to calculate inflow or outflow [58]. Since these regions are two (or three) dimen-

sional regions, the equations used to calculate fluxes of mass, momentum and energy are the

standard TDEFM flux expressions which integrate over both velocity space and physical space.

8.3.2 Boundary condition implementation

The general implementation of a specularly reflective boundary condition is presented. Spec-

ularly reflecting surfaces do not require ghost cells: instead, fluxes of mass, momentum and

energy leaving the computational region are individually treated. This is demonstrated by

examining the process of flux calculation in a corner of specularly reflective surfaces as shown

in Figure 8.9. Fluxes of mass, momentum and energy are predicted to travel from cell i, j into

a region inside a specularly reflecting body (cell i + 1, j − 1). The fluxes are subtracted from
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Figure 8.9: Diagram showing flux treatment with the source cell cornered by a specularly
reflecting surface.

the source cell as per normal. Before the flux is inserted into the destination cell, the solver

examines the physical geometry in the immediate vicinity of the source and destination cell

i + 1, j − 1. First, the y-component of the momentum flux and its destination cell is treated.

The solver reverses the component of momentum normal to the y coordinate and changes the

destination cell to i + 1, j. Following this, the solver checks the modified destination cell and

concludes the flux still falls within a body region. The x-component of momentum and des-

tination cell is then treated: the new destination cell is now i, j. The solver checks again to

ensure the destination cell does not fall within the body and the destination flux is then added

to the revised destination cell.

The simulation of flow around corners is another issue to have drawn attention in the past

[47]. Flux integrals from a source cell i, j to a diagonal cell i + 1, j + 1 which is partially

obscured by a body cell at i + 1, j possess no analytical solution to treat the partial refection

of the transported fluxes expect for special cases (i.e. where the bulk velocity is zero). While

a number of approximate methods exist to attempt to correctly capture this feature, this work

treats the corner in a fashion consistent with existing direction decoupled techniques and reflects

fluxes to cell i, j + 1. Comparison of the results obtained using this treatment against allowing

the flux to travel undisturbed to cell i + 1, j + 1 reals no major influence on the simulation

result, including symptoms associated with the Carbuncle phenomenon. Therefore, while it is

doubtful that this treatment is responsible for such failings as the Carbuncle phenomenon, the

diffusive nature of the TDEFM fluxes makes a conclusive treatment impossible.

The treatment is fundamentally different if ghost cells are employed. Fluxes entering into

ghost cells are not individually treated like previously demonstrated in Figure 8.9. Indeed, any

fluxes leaving either real cell or a ghost and entering a ghost cell are ignored completely. These

fluxes of mass, momentum and energy are subtracted from the source cell and then destroyed.

The fluxes which would ideally be reflected back into the source cell are generated from the

ghost cell by controlling the conditions. Referring to figure 8.9, if a ghost cell was employed it
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would possess the same density and temperature as cell i, j. However, while the magnitudes

of Vx and Vy would be identical, the directions would both be opposite. The ghost cell in cell

i+ 1, j would only have the direction Vx reversed while the ghost cell in cell i, j− 1 would have

the direction of Vy reversed. This ensures the same final result as the individual treatment

covered above.

The diffusely reflecting boundary condition has no relevance in TDEFM as a Euler solver.

Any attempt to use a diffusely reflective condition will result in a boundary layer thickness

determined from the artificial diffusion which is a strong function of cell size [65, 1, 2]. However,

by controlling this artificial diffusion through adaptive mesh refinement, the local cell size can

be related to the local mean free path thereby approximating the artificial diffusion as the

correct physical dissipation [97]. A diffusely reflective boundary condition may be meaningfully

implemented as part of this proposed approximate viscous/rarefied solver.

8.3.3 Implementation on an adaptive grid

The implementation of TDEFM using Adaptive Mesh Refinement (AMR) is more involved

than the implementation on a uniform cartesian grid. The general flow of the program, shown

in Figure 8.10, has not changed significantly. The current implementation of TDEFM on an

adaptively refined mesh does not currently have the ability to calculate conventional direction

decoupled fluxes. Due to the unstructured nature of the problem, information contained in

computational cells is contained in a one dimensional array. The address of each cell is main-

tained in a single cell index. Therefore, while the conceptual flow of the program is almost

identical, the implementation is quite different. The calculation of flows across boundaries is

handled through the use of ghost cells which are discussed later.

TDEFM flux calculation

Due to the employment of adaptive mesh refinement knowledge of neighbouring cell size and

location cannot be incorporated easily into the flux expressions themselves. While a set of

situation specific flux expressions could be created and employed for different possible source cell

- destination cell combinations, it is far easier (although computationally expensive) to simply

calculate the full TDEFM flux. Referring to Figure 8.11, the net flux of mass, momentum and

energy to move from the source region to the destination region is:

M = M0fM(U,
√

RT,∆t, xR, xL, xl, xr) × fM(V,
√

RT,∆t, yR, yL, yl, yr)

Px = M0fP(U,
√

RT,∆t, xR, xL, xl, xr) × fM(V,
√

RT,∆t, yR, yL, yl, yr)

Py = M0fM(U,
√

RT,∆t, xR, xL, xl, xr) × fP(V,
√

RT,∆t, yR, yL, yl, yr)

Ex = M0fE(U,
√

RT,∆t, xR, xL, xl, xr) × fM(V,
√

RT,∆t, yR, yL, yl, yr)

Ey = M0fM(U,
√

RT,∆t, xR, xL, xl, xr) × fE(V,
√

RT,∆t, yR, yL, yl, yr)

E = Ex + Ey
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Figure 8.10: Program flowchart for adaptively refined computational grids.
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Figure 8.11: Sample source and destination cell geometry in 2D. The source cell is bounded
by the coordinates (xL, yL) − (xR, yR). The destination cell is bounded by the coordinates
(xl, yl) − (xr, yr).

where M,P and E are the net mass, momentum and energy fluxes respectively, M0 is the initial

mass in the source region, and ([xL, yL], [xR, yR]) give the size and location of the rectangular

source region, ([xl, yl], [xr, yr]) describe the size and location of the destination region, U is the

X velocity, V is the Y velocity, M is the net mass flux, Px and Py are the X and Y momentum

fluxes and E is the energy flux. These fluxes of mass, momentum and energy represent the

analytical fluxes where molecules belonging to a gas in thermal equilibrium are moved in free

molecular flight. The destination region can be located anywhere in space and is not required

to be adjacent to the source region.

For the extension to 3D, the process is very simple. The fluxes of mass, momentum and
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Figure 8.12: Sample source and destination cell geometry in 3D. The source cell is bounded by
the coordinates (xL, yL, zL) − (xR, yR, zR). The destination cell is bounded by the coordinates
(xl, yl, zl) − (xr, yr, zr).

energy from the source cell to the destination cell, shown in Figure 8.12, is:

M = M0fM(U,
√

RT,∆t, xR, xL, xl, xr) × fM(V,
√

RT,∆t, yR, yL, yl, yr)

×fM(Z,
√

RT,∆t, zR, zL, zl, zr)

Px = M0fP(U,
√

RT,∆t, xR, xL, xl, xr) × fM(V,
√

RT,∆t, yR, yL, yl, yr)

×fM(Z,
√

RT,∆t, zR, zL, zl, zr)

Py = M0fM(U,
√

RT,∆t, xR, xL, xl, xr) × fP(V,
√

RT,∆t, yR, yL, yl, yr)

×fM(Z,
√

RT,∆t, zR, zL, zl, zr)

Pz = M0fM(U,
√

RT,∆t, xR, xL, xl, xr) × fM(V,
√

RT,∆t, yR, yL, yl, yr)

×fP(Z,
√

RT,∆t, zR, zL, zl, zr)

Ex = M0fE(U,
√

RT,∆t, xR, xL, xl, xr) × fM(V,
√

RT,∆t, yR, yL, yl, yr)

×fM(Z,
√

RT,∆t, zR, zL, zl, zr)

Ey = M0fM(U,
√

RT,∆t, xR, xL, xl, xr) × fE(V,
√

RT,∆t, yR, yL, yl, yr)

×fM(Z,
√

RT,∆t, zR, zL, zl, zr)

Ez = M0fM(U,
√

RT,∆t, xR, xL, xl, xr) × fM(V,
√

RT,∆t, yR, yL, yl, yr)

×fE(Z,
√

RT,∆t, zR, zL, zl, zr)

E = Ex + Ey + Ez
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k N+1 
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Figure 8.13: Placement of new cells in a isotropically split cell. Cell k is the original cell to be
split, while cells N + 1, N + 2 and N + 3 are newly created. N is the previous total number of
cells.

Adaptive mesh refinement implementation

The use of Adaptive Mesh Refinement requires that a list of neighbouring cells be maintained.

This information is kept in a two dimensional array. This list is updated while the mesh is

adaptively refined. During the simulation initialisation, neighbours of source cells are found

through the following routine:

1. Select a source cell

2. Search though destination cells (i.e. all cells except the source cell) and calculate distance

between cell centers R = [(cxd − cxs)
2 + (cyd − cys)

2]0.5.

3. Compare to a desired neighbour radius Rd. If cells which are immediately adjacent

(including diagonal cells) are desired then Rd = [0.25((∆xs − ∆xd)
2 + (∆ys − ∆yd)

2)]0.5.

Rd can also be a function of flow speed and radial location (if desired), though in this

study only immediate neighbours are considered.

This is a lengthy procedure, and is performed during the initialisation of the simulation

only. Fluxes of mass, momentum and energy are then calculated from each source cell to every

neighbouring destination cell. At regular intervals, specified by the user, the qualities in each

cell are examined and the decision on whether or not to split (or combine) a cell is reached.

The procedure for isotropically splitting a cell with index k is:

1. Create 3 new cells with indexes of N + 1, N + 2 and N + 3, where N was the previous

number of existing cells (including ghost cells). The physical location of each new cell is

fixed and shown in Figure 8.13.
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2. Evenly distribute the mass, momentum and energy amoung cells k, N + 1, N + 2 and

N + 3.

3. Calculate the state in the newly created cells and regenerate the local neighbour list. A

complete reconstruction of the neighbour list is not required - just a reconstruction of the

cells which were previously neighbours of cell k.

4. Search through all neighbours of cell k. If the neighbour is a ghost cell and adjacent to

cell k, it should also be split.

5. Update the total number of cells.

The procedure for combining cells is more complicated. However, this task is made easier

by the strict rules used for splitting cells. Where a cell is deemed to be too small it is flagged

for combination with other neighbouring cells. The procedure used when cell k is flagged for

combination is:

1. Search through the neighbours of cell k. Locate cell N , the neighbour located directly

adjacent and to the right of cell k.

2. Assign cells N , N + 1 and N + 2 as candidate cells for combination.

3. Search through the neighbours of cell k again, and make sure that all of cells N , N + 1

and N + 2 are amoung them. If not, then the cell cannot be combined with any of the

surrounding neighbours.

4. Sum the mass, momentum and energy in cells k and N,N + 1, N + 2 and assign it to cell

k. Adjust the cell location and volume accordingly.

5. Adjust the local neighbour lists of cells k and N,N + 1, N + 2.

6. Flag cells N,N + 1 and N + 2 for deletion.

When all recombinations are complete, all of the cells flagged for deletion are removed from

the array. The above procedure ensures that cells are combined in the order that they were

split. By doing so, this ensures that the cells do not suffer the staircasing (or bricklaying)

effect discussed by Ham et. al [37]. This is demonstrated in Figure 8.14 showing cell 1100

and its neighbours following a mesh reconstruction. While cells 488, 1094 and 700 were re-

combined properly, cells 461 and 1099 incorrectly chose neighbours for reconstruction and thus

are staggered. Once local staggering occurs, the local cells cannot combine further with other

surrounding cells due to their lack of alignment.
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Figure 8.14: [Left] Example of a poorly reconstructed grid. While cells 1100, 488, 1094 and
700 were recombined correctly, cells 461 and 1099 were recombined incorrectly resulting in a
staggering of the computational grid.[Right] Correctly reconstructed grid showing cell 400 and
its neighbours.

Boundary condition implementation

Boundary conditions are managed through the use of ghost cells. These ghost cells behave

differently depending on what type of surface they represent, and thus are further categorised.

The types of boundaries used in this study in conjunction with adaptive mesh refinement are

specularly and diffusely reflecting surfaces, inflow and extrapolated outflow. The inflow and

outflow boundary ghost cells are identical in principle to the ghost cells used in the uniform grid

implementation - the ghost cells behave as ‘reservoirs’ from which fluxes of mass, momentum

and energy are calculated. Any fluxes calculated into these ghost cells are disregarded and not

used. Since these ghost cells (reservoirs) are two or three dimensional, the complete TDEFM

flux expressions are used to calculate fluxes into the flow region. This procedure is outlined in

the flowchart presented in Figure 8.15.

The treatment of diffusely reflective surfaces is fundamentally different to the previous

surface implementations. The distribution function for diffusely reflected molecules is not the

same as the equilibrium distribution function used in the derivation of the conventional TDEFM

flux expressions. In addition, the diffusely reflected fluxes result from integration of a velocity

distribution function from a surface rather than a volume. Therefore, regions which are diffusely

reflective are not considered as ‘reservoirs’ as the outflow and specularly reflective ghost cells

are.

Instead, the diffusely reflective ghost cells only serve to hold information regarding the mass

passed from real (internal cells) through the diffusely reflective surfaces of the simulation region.

This approach is only approximate - alternatively, conventional direction split fluxes could be

used to calculate the flux instead. However, for small values of ∆t these fluxes has been shown

to be equivalent [93]. The momentum and energy (per unit mass) reflected from the surface

is known (Equations 8.34), so the mass collected in these ghost regions is used to calculate
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Figure 8.15: Program flowchart for treatment of boundary conditions in adaptively refined
meshes.
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Figure 8.16: Example of a diffusely reflecting surface with fluxes calculated to its nearest
neighbours.

the total momentum and energy transfered. Following this, all of the mass, momentum and

energy is returned to the flow. Using this approach there is no chance of losing mass through

a diffusely reflective surface.

This is explicitly demonstrated using the cell layout shown in Figure 8.16. First, fluxes from

real cells i, j and k into the ghost cell G are calculated using standard TDEFM flux expressions.

These masses, Mi−G,Mj−G and Mk−G are totaled to provide the total mass transfer into cell G

MTotal. This mass is estimated as the total mass to pass through the surface separating cells G

and j, an approximation only valid in the limit of a zero time step. The reflected mass flux from

this surface to cell i is given by MTotalfyfx(W ) = MTotalfM(i). The equation for fM (i) is given

in Equation 8.34 under the assumption that fy = 1. The fraction of reflected flux to remain

above the surface fx(C) = 1− (fx(W ) +fx(W ) = 1− (fM(i) +fM(k)) such that the sum of reflected

fluxes is equal to the net mass flux MTotal, thereby ensuring that no mass is lost through the

diffusely reflective surface. Fluxes of momentum and energy are carried out in similar fashion.

8.3.4 Implementation with arbitrarily shaped boundaries

Engineering problems which require CFD analysis are rarely restricted to bodies of rectangular

shape. Therefore, it is important for a CFD solver to have the capacity to simulate flows

around bodies or arbitrary shape. A common strategy is to employ an unstructured triangular

mesh which allows simulation of complex shapes. Unfortunately, the use of a non-rectangular

destination region means that the integrals used to evaluate the TDEFM flux expressions

posses no closed solution. A number of approximations could be made which enable the flux

expressions to be evaluated: however, these result in a reduced accuracy and a greatly increased

computational expense. These alternatives lie outside of the scope of this thesis.

Fortunately, an increasing amount of effort has been spent investigating cartesian meshing
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Figure 8.17: Setup for the numerical validation of the TDEFM fluxes. Region A is defined as
the entire region where x > 11, while region C is y > 11. The bulk velocities in the x and y
direction are mx and my respectively. Region E is the cell diagonally adjacent from the central,
shaded cell. Region F is located at any point in space defined by x1, x2, y1 and y2.

methods around non-rectangular bodies [49, 50]. Since the computational grid of TDEFM is

not required to be aligned with the flow the use of domain mapping onto the grid is easily

implemented. Any computational cells that fall within a body are designated as body cells and

the specular reflection routine discussed in Section 8.3.2 can be employed. The consequence of

such a method is that angles surfaces and curved surfaces are resolved in steps and consequently

the quality of resolution at the surface is reliant upon cell size. The use of an adaptively refined

grid, refined near the surface of each body, improves resolution at the boundary and reduces

errors due to stair casing of curved or angled boundaries.

8.4 Validation of Flux Expressions

Direct simulations run in MATLAB were used to verify the TDEFM fluxes. n simulation

particles with unit mass were placed a region of unit volume. The mean velocities mx and my

in the central region were set to unity as was the time step. Particles were moved through

a single time step, and no particle interactions were allowed to occur. Figure 8.17 shows the

central (shaded) region located between 10 < x < 11 and 10 < y < 11. The fractions of mass,

energy and momentum were calculated for regions A, C, E and for the general region F, which

can exist anywhere in the flow field and does not need to share a common interface with the

shaded region for mass, momentum or energy transfer to occur. As the number n of simulation

particles increases, the fluxes calculated through direct simulation are expected to rapidly

approach the TDEFM fluxes derived. Defining region F by setting x1 = 13, x2 = 14, y1 = 13

and y2 = 14, we can simulate a cell diagonally adjacent to the shaded region, although we could

have chosen any region in the flow with equally successful results. If the mass flux fraction into

region F calculated by TDEFM is fT
MF and the fraction obtained from direct simulation is

fS
MF , then limn→∞

(
fT

MF − fS
MF

)
should equal zero. This can be shown in Table 8.1. The mean
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n mean(fT
MF − fS

MF ) var(fT
MF − fS

MF )
100 2.985e-3 2.944e-4

1000 4.414e-3 8.493e-5
10,000 7.043e-4 4.392e-6

100,000 1.762e-5 3.374e-7

Table 8.1: The absolute value of mean difference and the variance of the difference between
analytically calculated and directly simulated mass flux fractions. Both the mean and the
variance of the difference, defined as fT

MF − fS
MF , can be seen to approach zero as the number

of simulation particles increases. fT
MF is the mass flux fraction calculated by TDEFM, fT

MF

represents the simulated mass flux fraction. Subscript MF represents the mass flux fraction
into region F.
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Figure 8.18: Mass flux (per unit source mass) calculated in the numerical validation of the
TDEFM fluxes. The gas in the source region is at rest.

difference and variance between these fluxes are both decreasing as the number of simulated

particles increases, implying that the fluxes calculated by TDEFM are correct.

The accuracy of the one dimensional TDEFM flux expressions with varying kinetic CFL

numbers was also tested. A large number of simulation particles (500,000) were used to transfer

mass, momentum and energy from a region of width ∆x to an adjacent region of the same width.

After each test, the kinetic CFL number was increased and the resulting fluxes recorded. The

resulting mass fraction as a function of kinetic CFL number are shown in Figure 8.18. As the

CFL number increases, the fraction of particles which are able to pass over the destination

region increase, resulting in a decreased fraction of mass captured in the adjacent region. The

EFM fluxes are constant with time since they assume complete capture by the destination

region. The results from EPSM closely match those from TDEFM.
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Chapter 9

FASTWAVE - A rapid response to blast wave

threats

The effect of blast waves on buildings and structures has emerged as an important application

of Computational Fluid Dynamics (CFD). Traditionally, these simulations are carried out by

an expert user. These sophisticated calculation often involve the manual creation of a com-

putational grid, followed by the use of high power computational facilities and manual post

processing of results. The total time required, even when performed by an expert user on the

most modern facilities, can easily extend into hours or even days. Therefore, the application

of existing computational techniques and software to simulate blast waves resulting from an

immediate threat or emergency is simply impossible.

The use of existing commercially CFD packages can be quite involved and time consuming.

The flexibility and features offered by such modern packages, while making advanced analysis

of flow problems possible, have undesired side effects. Expert knowledge is required by the user

to decide, among other things, upon (i) solver selection, (ii) computational grid design, (iii)

boundary conditions, and (iv) initial conditions. Each of these has a significant impact on the

accuracy of the solution.

Traditionally, the procedure for performing a computational fluid dynamics calculation for

simulation of blast waves around structures is:

1. Create the computational grid. This can be a slow and sophisticated process because the

flow accuracy partially relies on the style and design of the grid. This step involves

(a) Creating nodes for all important surfaces or regions. These include physical surfaces

such as buildings in addition to non-physical regions such as the source region for

the explosion.

(b) Defining lines connecting all nodes and spatially discretising them.

(c) Creation of computational blocks in which the initial conditions of the flow problem

can be defined.

(d) Creating the computational grid in each block. This can be done using unstructured

or structured cells.
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2. Definition of the initial conditions used for the simulations, including

(a) Explosive regions, or the source of the blast wave,

(b) Undisturbed regions of gas, including the interior of the buildings (if applicable).

3. Definition and selection of boundary conditions for each surface, i.e.:

(a) Encapsulating boundaries,

(b) Building-Fluid surfaces, and

(c) Fluid-Fluid surfaces (often done automatically).

4. Selection of a CFD solver, and

5. Graphing of results for analysis.

Depending on the detail and type of simulation, the actual solution of the governing fluid

flow equations may only require a fraction of the total time required. The development of the

computational grid can be a lengthy and complicated process, even for simple flow problems.

As an example, a typical computational grid used for such problems is shown in Figure 9.1.

In this simple two dimensional simulation, there are a total of nine (9) simulated buildings

and one high pressure source region emulating the effects of an explosion source. In this case

the computational grid includes 160 surfaces or boundaries and 40 computational blocks. In

a structured grid, each block consists of x× y cells and each neighbouring block must share a

common number of cells along the connecting surface. The expert user then needs to attribute

each of these surfaces with the appropriate boundary condition. Following this, the user then

needs to apply the correct initial conditions to each computational block. After the selection

of the solver, the equations governing the behaviour of the select fluid are solved. Finally, the

results are graphed and analysis is performed. The entire procedure often requires the use of

multiple pieces of software, requiring the user to close and open various programs during the

development of the solution.

FASTWAVE is designed to encapsulate all of the above steps in a single application. Using

this software, the average user can perform the above tasks in a fraction of the time without

leaving the main program screen. The tedious tasks of edge discretisation and block creation

are removed completely as the solver uses a single block encapsulating the entire flow region.

The interfaces between fluid and structures are detected and handled in the solution engine

itself, so no user intervention is required. The errors associated with the use of regular cartesian

grids are reduced through the optional use of the true direction solver TDEFM (True Direction

Equilibrium Flux Method). This family of solvers represent the analytical solution to a direct

solver in the equilibrium limit using Godunov’s monotone scheme, i.e. uniform conditions over

a cell volume. While conventional finite volume solvers calculate fluxes across cell interfaces,

TDEFM (and its higher order equivalents DTDEFM and VTDEFM) calculate the fluxes of
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Figure 9.1: A typical computational grid used by the conventional commercially available CFD
solver CFD-FASTRAN [57].
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Figure 9.2: Layout of the FASTWAVE interface. The simulation region displays information
regarding structure and explosion geometry. The control panels located on the right side of the
interface contain variable settings for grid resolution, solvers and tools for entering structure and
explosions. The lower section of the interface contains the display options, where different flow
properties (Mach number, density ratio) are selected and graphed using filled colour contours.

mass, momentum and energy to all surrounding cells, not just those sharing an adjacent in-

terface. When compared with conventional finite volume solvers, TDEFM has been shown to

provide more accurate solutions on regular cartesian grids where flow is not aligned with the

grid.

A screen shot of FASTWAVE is shown in Figure 9.2. The simulation region occupies a

large fraction of the interface - it is here that the computational mesh, building and blast

geometry and results can be viewed. To the right of this region are the control panels. The

general procedure for solving a problem using FASTWAVE is demonstrated by stepping in

order through the control panels:

1. Resolution - Enter the number of cells in the x and y coordinates.
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Solver Mesh Generation Solution Initiation Solving Total

CFD-FASTRAN 42 mins 12 mins 28 mins 82 mins
FASTWAVE 1 min 30 sec 2 mins 3 mins 30 sec

Table 9.1: Times required to complete a blast wave simulation using FASTWAVE and CFD-
FASTRAN [57]. All simulations were conducted on the same desktop computer.

2. Structure placement - enter the coordinates of any buildings involved in the simulation.

3. Explosive placement - enter the coordinates and the strength of the explosion. The default

strength is 1000, meaning the temperature in the heated gas is 1000 times that of the

surrounding ambient gas.

4. Solver selection - choose from Pullin’s EFM, Jacobs approximate Riemann solver, Macrossan’s

PFM, or Smith’s TDEFM, VTDEFM and DTDEFM. The default is EFM.

5. Time control - select the time step and number of steps for the solver the use.

6. Calculate - run the selected solver for the number of selected steps.

7. Display Results - load the results from file and display on the simulation region. The

results will update at intervals of 20 percent of the total simulation time.

The results are written in tab delimited form to the local directory and can be viewed

using MATLAB. The domain in FASTWAVE consists of a single block with the number of

cells specified. The structures in FASTWAVE are constructed from normal cells and flagged as

solid bodies. Fluxes are not calculated for flagged cells, and when a fluid cell is connected (or

nearby, for true direction fluxes) and interaction is predicted, specularly reflective boundary

conditions are employed. The specified body dimensions are used as a guide for the flagging of

body cells. If any part of the cell occupies a region specified by the user as a building, the cell

is flagged as a body. Therefore, the level of detail available for building definition is limited by

the computational grid resolution. For the purpose of rapid calculation a coarse mesh of less

than a million cells is acceptable.

The solvers available for use by FASTWAVE are Pullin’s Equilibrium Flux Method (EFM)

[80], Jacob’s approximate Riemann solver [44], the True Direction Equilibrium Flux Method

(TDEFM) and its derivatives DTDEFM and VTDEFM [93, 98, 95] and finally the Particle

Flux Method (PFM) by Macrossan et al [70].

The times required to run a blast wave simulation using the city geometry in Figure 9.1 are

detailed in Table 9. The grid resolution used by both CFD-FASTRAN and FASTWAVE was

identical. CFD-FASTRAN is a popular commercially availble CFD package [57]. The CFD-

FASTRAN solver used Runga-Kutta time stepping with a single stage (simple Euler). Spatial

97



Figure 9.3: FASTWAVE interface showing the blast wave results for the initial conditions shown
in Figure 9.1. Colour contours of density are shown in the simulation region. The display can
be refreshed while the simulation is running to display the development of the flow. These
results are saved as unique files at intervals of 20 percent of the total simulation time.

accuracy was kept at first order to increase calculation speed. The fluxes at cell interfaces were

calculated using the Roe solver included with CFD-FASTRAN. An example of the graphical

output capability of FASTWAVE is shown in Figure 9.3. The shown colour contours are of

density and compare to that provided by the CFD-FASTRAN solution.

The current implementation of FASTWAVE uses an interface and source code capable of

simulation in two dimensions only. This is a drawback due to the three dimensional nature of

blasts. The extension to three dimensions provides a relieving effect on the gas thus restriction

to two dimensions has the effect of overpredicting the pressure of the blasted gas as it flows

through the city. However, as a preliminary tool for the estimation of the effect of a blast in

a city environment, this overprediction may be acceptable. Extension to higher dimensions is

possible in both the interface and the TDEFM solver itself, though falls outside the scope of

this work.
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Figure 9.4: (Top) Density contours from the CFD-FASTRAN results and exported by CFD-
VIEW. (Bottom) Density contours from the FASTWAVE results using the True Direction
Equilibrium Flux Method (TDEFM). Both results use identical mesh density, time step size
and initial conditions. All building surfaces are treated as reflective with no losses from friction.
The gas is ideal with gamma = 1.4.
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Chapter 10

Results

10.1 1D Shock Tube Problem

Results are presented for a standard 1D shock tube problem. A propagating shock is created

through a pressure ratio across a diaphragm, which is removed at time t = 0. There is no

temperature difference across the diaphragm, and the gas used is inviscid with γ = 5/3. After

the diaphragm is removed, a propagating shock waves is expected, followed by the contact

discontinuity and finally an expansion wave. The simulation is run using 200 time steps to

a total time of 0.1L/(RT )0.5 on a uniform grid of 200 cells. Figure 10.1 shows density and

temperature profiles from various solvers, with all results showing general agreement.

Figure 10.2 show a closer view of the propagating shock wave at x/L = 0.9. As expected,

the results obtained from TDEFM closely match that of EPSM with the forced redistribution

of mass. It is clear to see that the forced redistribution of mass in a cell causes the shock

thickness to increase. Density TDEFM also more closely matches the density and temperature

profiles of EPSM than does TDEFM. However, the simple inclusion of a linear variation of

density is insufficient to fully recreate the results obtained from EPSM, although the method

offers a significant improvement upon the existing TDEFM. This indicates that higher order

distributions of density are present in the EPSM solution, meaning that the placement of flow

features can be captured in regions of size less than a cell width.

Figure 10.3 shows the results from the same 1D shock tube problem using the proposed

hybrid TDEFM-BGK method. The simulation is run using 200 time steps to a total time of

0.1L/(RT )0.5 on a uniform grid of 200 cells. The gas is ideal and monatomic with a power law

viscosity using ω = 0.75 The Knudsen number in the tube using the initial conditions on the

low density side was Kn = 0.02 with the length of the tube used as the characteristic length.

Figure 10.4 shows the X Velocity distributions at varying locations through the propagating

shock for the same shock tube problem. The mean values of each velocity distribution shifts at

each location, indicating that the flow is accelerating through the shock wave. The variance of

each distribution function is also increasing, meaning the temperature of the gas is increasing.

Figure 10.5 shows results from the 1D shock tube problem used by Li and Zhang [54]. The

initial conditions are similar to that of Sod’s 1D shock tube with an imaginary diaphragm

separating gases of different conditions, specified below:
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Figure 10.1: Normalised density (left) and temperature (right) profiles for the 1D shock tube
problem from various continuum solvers. The gas is inviscid with γ = 5/3, and an initial
density ratio of 10. The simulation is run using 200 time steps to a total time of 0.1L/(RT )0.5.
200 cells are used in all methods.
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Figure 10.2: Comparison of density (left) and temperature (right) profiles from the 1D shock
tube results using various direct and true direction continuum solvers. The gas is inviscid with
γ = 5/3, and an initial density ratio of 10. The simulation is run using 1000 time steps to a
total time of 0.1L/(RT )0.5. 200 cells are used in all methods. The EPSM solution uses 550,000
simulation particles with 20 runs to help reduce statistical scatter.
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the 1D shock tube problem.
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Figure 10.5: Normalised density (top) and local gradient length Knudsen number (bottom).

ρ =

{
0.445, x < L/2

0.5, x > L/2
(10.1)

T =

{
13.21, x < L/2

1.9, x > L/2
(10.2)

u =

{
0.698, x < L/2

0.0, x > L/2
(10.3)

Figure 10.5 shows the density, Mach number and temperature using a breakdown parameter

of 0.01. Wherever the gradient length Knudsen number is less than this value, the BGK solution

approach is used while TDEFM is used in all other regions. The CFL is restricted to ensure

that the fastest moving velocity buckets from the BGK method can move no further than

the adjacent cell. The results agree with the use of BGK throughout the entire region, while

requiring only a fraction of the time.
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Figure 10.6: Blast wave geometry. (a) Ideal initial condition and geometry. (b) Geometry
used by the solvers with 50x50 cells. (c) Geometry used by solvers with 100x100 cells. The
symmetry boundary condition (specular reflection) was applied at all boundaries. Perfect gas
with ratio of specific heats γ = 5/3. Initial conditions: TH/TL = 1000, ρH/ρL = 1 (pressure
ratio PH/PL = 1000). Radius of high pressure region is r.

10.2 2D Blast Wave Problem

The flow field contains a two dimensional ‘blast wave’ caused by an initial small region with a

temperature higher than the surrounding gas. One quarter of a square plane of unit width with

symmetry condition applied on all four walls is used. The length of computational domain

is 50r in each direction, where r is the radius of the high temperature region. The initial

conditions are:
ρH/ρL = 1

T = χTH

χ = f + (1 − f) TL

TH

U = V = 0

γ = 5
3

(10.4)

where ρ0 is the density, TH is the temperature inside the ideal circular initial condition, TL is the

temperature outside. The fraction of the area of each cell inside the high temperature region is

given by f , and is demonstrated in Figure 10.6. The ratio χ is used to ensure that, regardless

of mesh density, the initial computational domain possesses the same total energy. This initial

high temperature (and hence pressure) in the one cell simulates a sudden ‘explosion’ centered

on the origin. Ideally, the resulting flow is radially symmetric. The unsteady simulation is run

to time t
√
RTL/r = 0.00196 where the expanding shock wave has traveled to just beyond 22r.

Although the method disregards viscous effects, the same numerical viscosity present in EFM

is present in TDEFM.

The benchmark result is obtained from a 1D-EFM solution using the initial condition de-

scribed in Figure 10.6(a). The length of the circular region was divided radially into 800 cells
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Figure 10.7: 2D solutions of the blast wave problem showing normalised density using 2D-
TDEFM (◦) and 2D-EFM ( · ) using a 50x50 mesh (left) and a 400x400 mesh (right). The initial
conditions as shown in Figure 10.6(b). The results from all individual cells are shown and should
collapse into a single line. The solid line shows 1D results with 1x800 cells. Simulations are
run up to t

√
RT/r = 0.00196. Sections of the results have been enlarged to better demonstrate

the scatter present in the results.

and the simulation run up to t
√
RTo/r = 0.00196 using 1000 time steps. The benchmark

results are represented as solid lines in Figure 10.7. Representations of the initial circular

starting condition are shown in Figure 10.6(a). Figure 10.7 shows the normalised density for

the 2D-TDEFM and 2D-EFM results for a mesh using 50 x 50 cells and 400 x 400 cells. The

expected features of this flow are present in both results - an increase in Mach number, density

and temperature occur through the radially expanding shock. The flow is smeared due to the

inability of the solvers to accurately capture the flow on a coarse mesh, though this smearing

diminishes as the mesh density increases. Since the flow is expected to display radial symmetry

there is a single correct value for temperature, density and Mach number at any given radius.

It can be seen that this is not true for the numerical solution - indeed, the degree of scatter in

these profiles is an indication of the error of the solution and has been used as such previously

[71].

Figure 10.8 shows the Mach Number and Density contours for TDEFM. Due to the radially

symmetric nature of the problem, the resulting Mach number and density contours should also

be radially symmetric. However, asymmetric features are present in both contours. These

features include a slight necking in the contours of the Mach number at M = 0.8 and a single

pressure ‘bubble’ in the pressure contours at P/PL = 4. These two features are also present

in the results obtained from EPSM when mass redistribution is employed. Figure 10.9 clearly

shows the same necking of the Mach number contours, as well as a pressure bubble occurring

at P/PL = 4.

Figure 10.10 shows the Mach Number and density contours obtained using DTDEFM.

These results can be seen to have a higher degree of radial symmetry, indicating a higher
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Figure 10.8: Contours of (Left) Mach number and (Right) normalised pressure from TDEFM
at time t

√
RTo/r = 0.00196. Contours of Mach number are of in steps of 0.2 up to 1.0, while
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Figure 10.12: Direction decoupled 2D solutions to the implosion problem using a 50x50
mesh.(Top Left) Initial condition ; (Top Right) EFM; (Lower Left) Godunov Method [44];
(Lower Right) Van Leer [105]. Contours are of density (ρ/ρL) with contours every 0.5. Flow is
shown at t

√
RTL/r = 0.098 after 100 time steps. Initial conditions are γ = 9/7, TH/TL = 1.0,

ρH/ρL = 10. Computational domain lies in the square region 0 < x/r < 2.

degree of accuracy. There is no necking of the Mach number contours present, and the pressure

‘bubble’ has vanished, insteading expanding to a uniform, radially symmetric pressure band.

Therefore, these effects cannot be due to direction decoupling or mesh resolution, but instead

exist because of the forced mass redistribution across cells. These results are confirmed in

Figure 10.11, showing Mach number and pressure contours obtained using ordinary EPSM.

10.3 2D Implosion Problem

TDEFM has been compared to EFM in a 2D implosion problem with the aim of demonstrat-

ing the problems associated with direction splitting. The implosion problem is shown in the
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Figure 10.13: 2D solutions to the implosion problem showing normalised density using 2D-
TDEFM (◦) and 2D-EFM ( · ) using a 50x50 mesh (left) and a 400x400 mesh (right). The solid
line shows 1D results with 1x800 cells. Simulations are run up to t

√
RT/r = 0.098.

introduction in Figure 10.12. The initial conditions are as follows:

ρ = χρH

χ = f + (1 − f) ρL

ρH

TH/TL = 1

U = V = 0

γ = 5
3

(10.5)

where f is the fraction of the cell falling outside radius r. The results from 2D-TDEFM and

2D-EFM using a 50 x 50 and 400 x 400 mesh are shown in Figure 10.13. As expected, the fine

mesh results more closely match the 1D results.

Shown in Figure 10.14 is a comparison of density contours between 2D-EFM and 2D-

TDEFM for the same initial conditions used to obtain the results in Figure 10.12. The 2D-

TDEFM contours are closer to being radially symmetric than the 2D-EFM contours, confirming

the result obtained through the analysis of the angle of deviation. The time step used was small

enough to justify the simplification of the primary TDEFM flux expressions in Equations 2-4 to

the original EFM expressions. At this time step, the direction coupled EFM provided identical

results (differences of less than 1e-13 percent) to the complete TDEFM expressions while per-

forming the same number of exponential and error function evaluations as direction decoupled

EFM.

Figure 10.15 shows the implosion results for DTDEFM and VTDEFM compared to TDEFM.

There is significant variation in the methods as a result of the inclusion of the density and

velocity gradients.
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Figure 10.14: (Left) Contours of density for the implosion problem shown in Figure 10.12 using
2D-TDEFM, (Right) Enlarged (2x) comparison between contours of density from TDEFM and
EFM using the same initial conditions showing the effects of direction decoupling.

10.4 Hypersonic flow over a rectangular body

The previous examples dealt with predominately low speed, unsteady flows in a square region.

The results for steady hypersonic flow over the rectangular body shown in Figure 10.16 are

shown here. The flow conditions are M∞ = 20, ρ∞ = 1 and T∞ = 1. The flow is progressed

until t
√
RT∞/H = 3. The gas is ideal with γ = 7/5. Density contours of the result obtained

using TDEFM is shown in Figure 10.17. The top and right hand side boundaries are extrapo-

lated outflow. The lower boundary and the body surfaces are reflective boundaries which are

appropriate for this inviscid calculation. As expected, a detached bow shock has formed, with

the density increasing through the bow shock and decreasing as the flow expands around the

corner of the rectangular body. There are no bumps or other spurious oscillations present in

the bow shock.

The computational region extends from −2.5 ≥ x/H ≥ 1.5. and 0.0 ≥ y/H ≥ 4.0 with

varying computational grid densities. The rectangular body has height H , is placed at x/H =

0.0 and extends to x/H = 1.5. The initial conditions throughout the flow field are of uniform

Mach Number M , varying from M = 5 to M = 20. The gas is an ideal gas with γ = 7/5. No

viscous effects are included in the calculations, although a numerical viscosity is present in all

methods. All reflections off the body are considered specular. The flow is symmetric around

y/H = 0.0.

The temperature and density profiles alone line A-A’ (shown in Figure 10.16) are shown in

Figure 10.18. Here, we can see that even for steady flow problems there is a distinct difference

in the solutions. The location at which the detached bow shock crosses the line A-A’ differs
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Figure 10.15: 2D solutions to the implosion problem showing normalised density using 2D-
TDEFM, 2D-DTDEFM and 2D-VTDEFM using a 50x50 mesh (left). The solid line shows 1D
results with 1x800 cells. Simulations are run up to t

√
RT/r = 0.098.

for true direction and direction decoupled fluxes. This is true regardless of mesh density. As

shown by the density profile in Figure 10.18, when the number of cells is increased by more

than 400 percent there is still a noticeable difference in the location of the bow shock. The

effect of direction decoupling here is quite severe as the flow is not aligned with the grid. The

temperature profile in Figure 10.18 extends from 1 ≥ y/H ≥ 2.5 (along the line A-A’ shown in

Figure 10.16) where the flow is closer to the body and better aligned with the computational

grid. The results demonstrate that the difference between the methods decreases where the

flow is better aligned with the grid. As the flow direction diverges from grid alignment, i.e.

as the distance y/H increases along line A-A’, the difference between the results is shown to

increase.

As may be expected, the shock stand off distance is also affected. Presented in Table 10.1

are the shock standoff distances using TDEFM and EFM with varying mesh densities. The
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Figure 10.16: The computational domain used for the hypersonic flow example over a rectangu-
lar body of height H . Flow is at Mach 20 with γ = 1.4. Initial conditions are ρ = ρ∞,M = M∞
and T = T∞. The simulations are progressed in time to t

√
RT∞/H = 3.

Method Number of cells Standoff Distance Relative Shock
∆/H Standoff Distance

TDEFM 3255 1.118 1
EFM 3255 1.185 1.06
EFM 3596 1.163 1.04

TDEFM 13050 1.0195 1
EFM 13050 1.05 1.03

Table 10.1: Shock standoff distances for varying computational grids.

shock standoff distance is defined here as the location along y = 0 where the Mach number

equals unity. Since TDEFM (in its simplified form) is typically 10 percent computationally

slower than EFM, tests were performed using EFM with a correspondingly larger number of

cells. While the results improve slightly, the difference between the results is still significant. In

terms of the shock standoff distance, increasing the number of cells from 3522 to 3596 decreased

the difference in normalised shock standoff distance from 6 percent to 4 percent. Similar trends

were shown with increasing mesh densities. Therefore, we conclude that the benefits of direction

coupling outweigh the slight increase in computational expense.

Figure 10.19 shows normalised temperature contours of Mach 20 flow over the rectangular

body specified including the results from DTDEFM and EPSM. The EPSM and DTDEFM

results are more closely matched than the TDEFM results. All of the features expected are
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Figure 10.17: Colour contours of density for hypersonic flow over a rectangular body of height
H using TDEFM. The computational region extends to 4H , with the front of the body located
at [2.5H, 0]. Flow is at Mach 20 with γ = 1.4. Initial conditions are ρ = ρ∞,M = M∞ and
T = T∞. The simulations are progressed in time to t

√
RT∞/H = 3.

present - the flow is compressed and heated through the bow shock and then cools as the flow

expands around the body. Figure 10.20 shows the vertical temperature profiles at x/H = 0.85

of Mach 20 flow over the rectangular body. Results taken from EFM and a Godunov Solver

[44] are also presented. In the temperature profile near the top surface, the DTDEFM solution

almost exactly matches the EPSM solution, while the TDEFM, EFM and Godunov solutions

all vary. In the density profile through the bow shock, the DTDEFM solution best attempts to

capture the shock when compared to the other continuum methods. This result is also shown

in Figure 13.1, with DTDEFM consistently capturing shocks at thicknesses closer to those

obtained by EPSM. Due to the nature of the Godunov solver, and the fact that viscosity has

been disregarded in these simulations, it is natural that the Godunov solver posses the thinnest

shock thickness. Figure 13.1 also shows shock standoff distance, with EPSM, DTDEFM and

TDEFM show similar shock placements varying no more than 3%.
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Figure 10.18: Density profiles (top) and temperature profiles (bottom) from EFM and TDEFM
solutions using various mesh densities. The results shown are alone line A-A’ as shown in
Figure 10.16. The temperature profile is in the region (1 ≥ y/H ≥ 2.5). The density profile
is in the region (2.5 ≥ y/H ≥ 4). Flow is at Mach 20 with γ = 1.4. Initial conditions are
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√
RT∞/H = 3.
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Figure 10.19: Contours of steady state temperature showing results from EPSM, Density
TDEFM (DTDEFM) and TDEFM. M∞ = 20, γ = 7/5. ∆x = ∆y = H/30. Contours are
taken every T/T∞ = 10. DTDEFM resulted obtained using MINMOD to calculate density
gradients in the source cells.
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Figure 10.21: Comparison of density contours in stagnation region for hypersonic flow over a
rectangular body. [Top] Riemann solver, [Bottom] TDEFM. Flow is at Mach 20 with γ = 1.4.
Initial conditions are ρ = ρ∞,M = M∞ and T = T∞. The simulations are progressed in time
to t

√
RT∞/H = 3.

Many of the symptoms associated with the Carbuncle Phenomenon (shown in Figure 4.3)

can been seen in hypersonic flow over a rectangular body. This is demonstrated in Figure 10.21.

Results taken from the approximate Riemann solver are seen to have spurious oscillations in

the stagnation region similar to several of the solvers shown in Figure 4.3. These oscillations are

not present in the TDEFM solution. However, it should be noted that the numerical diffusion

present in TDEFM is equivalent to that of direction decoupled EFM, which is also seen to be

immune to the Carbuncle phenomenon. Therefore it is more likely that TDEFM is immune

because of its inherent numerical diffusion rather than its direction coupled fluxes.

10.5 2D Hypersonic Flow over a cylinder

Results for hypersonic flow of an ideal inviscid gas over a cylinder are presented for TDEFM.

The computational grid is a regular rectangular cartesian grid. The surface of the cylinder is

mapped onto the mesh using the approach discussed in Section 8.3.4. The gas is ideal with
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Figure 10.22: Computational domain for simulation of hypersonic flow over a cylinder. The
free stream Mach number is M∞ = 3. The gas is ideal with γ = 7/5.

γ = 7/5 and a freestream Mach number of M∞ = 3. The surface of the cylinder is specularly

reflective. The geometry used is shown in Figure 10.22. The lower boundary is a symmetry

condition and the right hand side and upper boundaries are interpolated outflow conditions.

The computational grid is 400 x 400 cells with the cylinder occupying 22622 cells. All regions

of the flow initially have a Mach number M = M∞.

Figure 10.23 shows the unsteady flow development of density contours for the conditions

specified. No spurious oscillations are present in the stagnation region. There are no obvious

flaws in the density contours resulting from the use of domain mapping or an unaligned com-

putational grid. The calculated TDEFM fluxes are spatially and temporally first order. The

results are typical of a conventional, flow alligned finite volume CFD solver.

10.6 2D Hypersonic Flow over a forward facing step

Results for hypersonic flow over a forward facing step are presented for various solvers. This

problem, made famous by Woodward and Collela [112] involves the unsteady development of

shocked flow over a rectangular step. The initial conditions for this problem are presented in

Figure 10.24. The gas is ideal with γ = 5/3. All boundaries are specularly reflective with

exception made to the inflow and outflow boundaries. The inflow is fixed at the desired inflow

conditions while the outflow is managed using extrapolated conditions. The procedure for this

is identical to that used in the previous hypersonic flow problem.

Figure 10.25 displays density contours taken from the TDEFM solution after 1600 time

steps of size ∆t = 0.0005. The largest local kinetic CFL present in the conditions presented is

0.47. The results from TDEFM suitably match those obtained from existing continuum solvers.
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Figure 10.23: Unsteady development of hypersonic flow over a cylinder. Results are shown at
t
√
RT∞/L = 0.1, 0.2, 0.3and0.5 The free stream Mach number is M∞ = 3. The gas is ideal

with γ = 7/5. The computational grid is comprised of 400 by 400 cells.
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Figure 10.24: Geometry used for 2D hypersonic flow over a forward facing step. The gas
simulated is ideal with γ = 5/3 with a free stream Mach number M∞ = 3.
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Figure 10.25: Density contours taken from the TDEFM solution after 1600 time steps of size
0.0005. The free stream Mach number is M∞ = 3. The gas is ideal with γ = 5/3.

The leading bow shock is free of oscillations or wriggles.

Temperature contours for various solvers after 1600 time steps are shown in Figure 10.26.

The differences between the EFM results and TDEFM results are not as significant as encoun-

tered in the previous hypersonic flow problem. Due to the encapsulating nature of the upper

boundary, flow is not as free to be unaligned with the computational mesh as when an extrap-

olative boundary is used. Since the flow is better aligned with the mesh and the local kinetic

CFL numbers are quite low, the results should be very similar. However, greater differences

exist between the higher order VTDEFM and DTDEFM.

10.7 2D Planar Shock propagation over square cavity

The square cavity problem investigated by Reichenbach et. al [83] and used by Long to compare

against DSMC simulations [60] is shown in Figure 7.2 and is used here for comparison to

TDEFM and DTDEFM results. Presented are simulations using wave Mach numbers of 2.0.

All simulations used 400x200 cells are compared qualitatively to Reichenbach’s results. The

gas used in the simulations is inviscid with γ = 7/5. No heat transfer or viscous effects are

considered. The initial shock position was located at x/L = 0.1125 and 1492 time steps were

taken to reach a total time of 149µs. Contours of density taken from DTDEFM, TDEFM and
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Figure 10.26: Temperature contours taken from various solvers after 1600 time steps of ∆t =
0.0005. The gas is ideal with γ = 5/3. The solver results displayed are EFM (Top), a Riemann
solver, TDEFM, DTDEFM and VTDEFM (Bottom). The grid resolution was 100x300 cells.
The free stream flow Mach number is M = 3. The gas is inviscid and all boundaries are
specularly reflective with exception to the inflow and outflow boundaries.
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Figure 10.27: Comparison of planar shock interaction results showing EFM (left) and a Go-
dunov solver (right) . Presented are contours of density in steps of 0.5 kgm−3. The density
ratio across the shock wave is 2.6667, temperature ratio = 1.687. The density in front of the
shock is 1.14kgm−3. 1494 time steps are taken up to a total time of 149 µs.
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Figure 10.28: Comparison of planar shock interaction results showing TDEFM (left) and DT-
DEFM (right) . Presented are contours of density in steps of 0.5 kgm−3. The density ratio
across the shock wave is 2.6667, temperature ratio = 1.687. The density in front of the shock
is 1.14kgm−3. 1494 time steps are taken up to a total time of 149 µs.
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Figure 10.29: Planar shock interaction results from DTDEFM showing temperature (K). The
density ratio across the shock wave is 2.6667, temperature ratio = 1.687. The density in front
of the shock is 1.14kgm−3, the temperature 196K. 1494 time steps are taken up to a total time
of 149 µs.

the Godunov solver results are presented in Figure 10.27 and Figure 10.28. A surface plot of

temperature taken from DTDEFM results is shown in Figure 10.29. All of the features seen in

the experimental results [83] are present.
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Figure 10.30: I Beam geometry used for blast wave and shock wave tests.

10.8 2D Blast waves around buildings and structures

2D Shock wave interaction with I Beam structure

Results are presented for two dimensional flow around the I-beam displayed in Figure 10.30.

The geometry and conditions used here are similar to the numerical experiments performed by

Long and Sharma [60]. A region of shocked gas is traveling toward the I-beam. The approaching

shock creates a pressure increase of pH/pL = 4.5 and a temperature increase of TH/TL = 1.687

where subscripts H and L represent high and low density conditions respectively. The initial

location of the shock wave is (1/4)L away from the leading edges where L is the length and

width of the I beam. The I beam itself is square with sections of thickness (1/5)L. The gas

used in the simulation is assumed inviscid with γ = 1.4. The computational region is divided

into 400 x 200 cells.

The transient development of flow calculated using TDEFM is shown in Figure 10.31 and

Figure 10.32. The same features demonstrated by Long and Sharma [60] are present in the

results provided by TDEFM. An important feature to note is that the conditions behind the

propagating shock wave are constant, resulting in a stationary detached bow shock positioned

in front of the I-beam. This feature can be seen in results from various solvers shown in

Figure 10.33 and Figure 10.34. The unsteady development of flow for other various solvers is

presented in the Appendix.

Presented in Figure 10.36 is the development of pressure at the various locations on the

I-beam shown in Figure 10.35. As expected, the points on the leading edge of the I-beam

first experience an increase in pressure as the propagating shock strikes the I-beam. As the

trapped gas in between the flanges is compressed by the shock and resulting detached shocks

from the flanges, the pressure on the surface of the I-beam increases significantly. As the

shock travels around the I-beam, the pressure at the top and bottom surfaces increases and
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Figure 10.31: Density contours from TDEFM solution for a shock wave interaction with the
I-beam shown in Figure 10.30 at times

√
RTt/L = 0.052 and 0.104 where t is the flow time.

The computational grid employs 400x200 cells. The gas in assumed inviscid with γ = 1.4. The
approaching shock creates a pressure increase of pH/pL = 4.5 and a temperature increase of
TH/TL = 1.687. All surface reflections off the I-beam are treated as specular. All boundaries
encapsulating the computational grid are extrapolated from internal cells.
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Figure 10.32: Density contours from TDEFM solution for a shock wave interaction with the
I-beam shown in Figure 10.30 at times

√
RTt/L = 0.156 and 0.208 where t is the flow time.

The computational grid employs 400x200 cells. The gas in assumed inviscid with γ = 1.4. The
approaching shock creates a pressure increase of pH/pL = 4.5 and a temperature increase of
TH/TL = 1.687. All surface reflections off the I-beam are treated as specular. All boundaries
encapsulating the computational grid are extrapolated from internal cells.
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Figure 10.33: Density contours from EFM (Top), Riemann (Middle) and TDEFM (Bottom)
solutions for a shock wave interaction with the I-beam shown in Figure 10.30 at time

√
RTt/L =

0.208 where t is the flow time. The computational grid employs 400x200 cells. The gas in
assumed inviscid with γ = 1.4. The approaching shock creates a pressure increase of pH/pL =
4.5 and a temperature increase of TH/TL = 1.687. All surface reflections off the I-beam are
treated as specular. All boundaries encapsulating the computational grid are extrapolated from
internal cells.
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Figure 10.34: Density contours from DTDEFM (Top), VTDEFM (Middle) and CFD-
FASTRAN (Bottom) solutions for a shock wave interaction with the I-beam shown in Fig-
ure 10.30 at time

√
RTt/L = 0.208 where t is the flow time. The computational grid employs

400x200 cells. The gas in assumed inviscid with γ = 1.4. The approaching shock creates a
pressure increase of pH/pL = 4.5 and a temperature increase of TH/TL = 1.687. All surface re-
flections off the I-beam are treated as specular. All boundaries encapsulating the computational
grid are extrapolated from internal cells.
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Figure 10.35: Locations of pressure measurements taken from simulations to provide a transient
response resulting from blast/shock wave interaction for the I beam shown in Figure 10.30.
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Figure 10.36: Pressure measurements taken from TDEFM simulations showing the development
of pressure at the locations shown in Figure 10.35 resulting from blast/shock wave interaction.
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Figure 10.37: I Beam and blast region geometry used for blast wave test.

remains relatively constant. The pressure at the trailing edges of the I-beam increases slightly

as the shock defracts around the edges of the I-beam, then decreases to below the free stream

conditions due to the expansion of the flow around the corner.

Blast wave interaction with I beam structure

Results are presented for the interaction of a blast wave resulting from a simulated explosion on

an I-beam. Rather than modeling the traveling blast wave as a shock wave with constant prop-

erties driving the gas forward, the entire processes is captured. The purpose is to demonstrate

the effect of an I beam located in close proximity to the explosion source. The geometry of the

blast conditions and the I-beam is displayed in Figure 10.37. A region of high temperature gas

of width L is given a temperature 1000 times higher than the surrounding ambient gas. The

standard I beam, shown in Figure 10.30 and Figure 10.37, is placed a distance of 3L (to the

I-beam flange) away from the initial diaphragm separating the high and low temperature gas.

The air is assumed inviscid with γ = 1.4. Upon removal of the diaphragm, a blast wave will

propagate toward the I-beam. The structure of the blast wave is similar to that demonstrated

in the radial blast wave problem - a significant and sudden increase in density and Mach number

immediately followed by a rapid reduction in both quantities as the gas propagates outwards.
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Figure 10.38: Mach number contours from the DTDEFM solution for a blast wave interaction
with a the I-beam shown in Figure 10.30 at times

√
RTt/L = 0.1 and 0.2 where t is the flow

time. The computational grid employs 200x200 cells. The gas in assumed inviscid with γ = 1.4.
The approaching blast was generated by a region of gas with a temperature 1000 times higher
than that of the surrounding fluid. All surface reflections off the I-beam are treated as specular.
All boundaries encapsulating the computational grid are extrapolated from internal cells.
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Figure 10.39: Mach number contours from the DTDEFM solution for a blast wave interaction
with a the I-beam shown in Figure 10.30 at times

√
RTt/L = 0.3 and 0.4 where t is the flow

time. The computational grid employs 200x200 cells. The gas in assumed inviscid with γ = 1.4.
The approaching blast was generated by a region of gas with a temperature 1000 times higher
than that of the surrounding fluid. All surface reflections off the I-beam are treated as specular.
All boundaries encapsulating the computational grid are extrapolated from internal cells.
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Figure 10.40: City A (3 building configuration) used to simulate blast waves in a city environ-
ment.

Figure 10.38 and Figure 10.39 show the unsteady development of the local Mach number

in the flow around the I-beam resulting from the simulated explosion. Rather than forming a

stationary bow shock as found when simulating a shock wave, the impacting blast wave reflects

off the front of the I-beam and pushes forward back into the exploded gas. The resulting

flow pattern is more complicated than the previous test cases because of the rapidly changing

conditions in the gas behind the shock.

City A - 3 building configuration

Results for two dimensional flow around various rectangular bodies are presented for EFM,

Riemann, TDEFM, VTDEFM, DTDEFM and CFD-FASTRAN. The flow is solved using the

core engine behind the program FASTWAVE, described in 9. In the following sections, the

buildings are treated as indestructible objects which force the flow around and between them.

This is for the sake of simplicity as opposed to realism, since genuine blast waves will tend to

break past the outer coverings (i.e. windows, glass panels) and cause flow to propagate into

the interior of the building. This will be discussed in more detail in following sections. In this

instance, two layout configurations are demonstrated (i) a blast wave propagating between and

around three buildings, and (ii) the same blast wave propagating around and between nine

buildings.

The layout of the buildings and the initial high temperature region are shown in Figure 10.40.

The flow is initially at rest, is assumed inviscid and is a monatomic gas (i.e. γ = 5/3). The

surfaces of the buildings are treated as specular and are indestructible. The outer boundaries

are treated using the extrapolated outflow condition discussed in Section 9.8. The interior
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Figure 10.41: Density contours taken from the Roe solver results at times t
√
RT/L =

0.02, 0.03, 0.05 and 0.1. The gas is inviscid and monatomic. All building surfaces are treated as
fully reflective while the edges bounding the computational domain are extrapolated outflow.
The initial ’bomb’ region is the high temperature and pressure region shown in Figure 10.40.
The computational grid is a cartesian mesh of 400x400 cells.

spaces of the buildings are treated as a solid and no flux calculation is performed. Simulations

are performed for various solvers on varying mesh densities.

Figure 10.41 shows density contours as obtained using a Roe solver [44] on a mesh of 400x400

cells after t
√
RT/L = 0.01. The same asymmetric flow features discussed in the analysis of

the blast wave problem are demonstrated here, with artificial high pressure regions located in

regions of unaligned flow. These high pressure regions deflect the flow from the correct radial

direction. This effect is present in all of the Roe solver, EFM and FASTRAN results.

Figure 10.42 and Figure 10.43 shows density contours obtained using EFM and TDEFM

on a coarse mesh after t
√
RT/L = 0.01. The same radially asymmetric result obtained using
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Figure 10.42: Density contours taken from EFM results at times t
√
RT/L = 0.02, 0.03, 0.05 and

0.1. The gas is inviscid and monatomic. All building surfaces are treated as fully reflective while
the edges bounding the computational domain are extrapolated outflow. The initial ’bomb’
region is the high temperature and pressure region shown in Figure 10.40. The computational
grid is a cartesian mesh of 400x400 cells.
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Figure 10.43: Density contours taken from TDEFM results at times t
√
RT/L = 0.02, 0.03, 0.05

and 0.1. The gas is inviscid and monatomic. All building surfaces are treated as fully re-
flective while the edges bounding the computational domain are extrapolated outflow. The
initial ’bomb’ region is the high temperature and pressure region shown in Figure 10.40. The
computational grid is a cartesian mesh of 400x400 cells.
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Figure 10.44: Density contours taken from DTDEFM results at times t
√
RT/L =

0.02, 0.03, 0.05 and 0.1. The gas is inviscid and monatomic. All building surfaces are treated as
fully reflective while the edges bounding the computational domain are extrapolated outflow.
The initial ’bomb’ region is the high temperature and pressure region shown in Figure 10.40.
The computational grid is a cartesian mesh of 400x400 cells.

FASTRAN and a Roe solver is present in the EFM results. The direction coupled nature of

TDEFM attempts to spread these high pressure regions in a radially symmetric fashion. This

is not a consequence of the use of TDEFM - the method is not more inclined to solve radial

flows more accurately - rather, the method attempts to capture the true motion of the fluid

regardless of mesh alignment.

The results from DTDEFM and VTDEFM are shown in Figure 10.44 and Figure 10.45.

The effect of the inclusion of flow gradients into the flux expressions is to improve the accuracy

of the solution despite the nature of the coarse mesh. The solution obtained by DTDEFM

demonstrates this, as no artificially high pressure regions exist in its solution. While the
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Figure 10.45: Density contours taken from VTDEFM results at times t
√
RT/L =

0.02, 0.03, 0.05 and 0.1. The gas is inviscid and monatomic. All building surfaces are treated as
fully reflective while the edges bounding the computational domain are extrapolated outflow.
The initial ’bomb’ region is the high temperature and pressure region shown in Figure 10.40.
The computational grid is a cartesian mesh of 400x400 cells.
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inclusion of a velocity gradient into the flux expressions improves the result, the improvement

is not as significant as with DTDEFM.
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Figure 10.46: City B (9 building configuration) used to simulate blast waves in a city environ-
ment.

City B - 9 building configuration

The layout of the buildings and the initial high temperature region are shown in Figure 10.46. As

in the previous test case, the flow is initially at rest, is assumed inviscid and is a monatomic gas

(i.e. γ = 5/3). The surfaces of the buildings are again treated as specular and are indestructible.

Simulations are performed for various solvers on varying mesh densities - presented here are

results from simulations using 160000 cells.

Figure 10.47 displays the unsteady development of density resulting from a blast wave taken

from the Roe solver results. The results generally agree well with the unsteady development of

the EFM, TDEFM, DTDEFM and VTDEFM results displayed in Figure 10.48, Figure 10.49,

Figure 10.50 and Figure 10.51. The initial blast propagates outwards, resulting in a complicated

flow pattern as the exploded gas is channeled between buildings. All of the presented results

were calculated using FASTWAVE and required no more than 10 minutes on PC with a single

3.0Ghz processor and 1Gb of ram.
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Figure 10.47: Density contours taken from the Roe solver results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05, 0.1 and 0.2. The gas is inviscid and monatomic. All building surfaces
are treated as fully reflective while the edges bounding the computational domain are extrapo-
lated outflow. The initial ’bomb’ region is the high temperature and pressure region shown in
Figure 10.46. The computational grid is a cartesian mesh of 400x400 cells.
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Figure 10.48: Density contours taken from EFM results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05, 0.1 and 0.2. The gas is inviscid and monatomic. All building surfaces
are treated as fully reflective while the edges bounding the computational domain are extrapo-
lated outflow. The initial ’bomb’ region is the high temperature and pressure region shown in
Figure 10.46. The computational grid is a cartesian mesh of 400x400 cells.
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Figure 10.49: Density contours taken from TDEFM results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05, 0.1 and 0.2. The gas is inviscid and monatomic. All building surfaces
are treated as fully reflective while the edges bounding the computational domain are extrapo-
lated outflow. The initial ’bomb’ region is the high temperature and pressure region shown in
Figure 10.46. The computational grid is a cartesian mesh of 400x400 cells.

145



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/L

y/
L

2.5

2.5

2.
5

3.25
1.75

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/L

y/
L

2.5
3.25

0.25

3

2.
5

2.75

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/L

y/
L

2.
5

0.
75

0.25

3

1

0.5

3

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/L

y/
L

0.25 0.5

3.25

1.5

2
2

2

2.5

1

1.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/L

y/
L

2

10.5

0.51.25

2.5 2.5

2

2

0.5

2.
25

Figure 10.50: Density contours taken from DTDEFM results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05 and 0.1. The gas is inviscid and monatomic. All building surfaces are
treated as fully reflective while the edges bounding the computational domain are extrapo-
lated outflow. The initial ’bomb’ region is the high temperature and pressure region shown in
Figure 10.46. The computational grid is a cartesian mesh of 400x400 cells.
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Figure 10.51: Density contours taken from VTDEFM results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05 and 0.1. The gas is inviscid and monatomic. All building surfaces are
treated as fully reflective while the edges bounding the computational domain are extrapo-
lated outflow. The initial ’bomb’ region is the high temperature and pressure region shown in
Figure 10.46. The computational grid is a cartesian mesh of 400x400 cells.
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Chapter 11

Analysis and Discussion

11.1 TDEFM flux transportation

Conventional finite volume solvers calculate states at the interfaces between cells and use these

to estimate fluxes of mass, momentum and energy across cell surfaces. In kinetic theory based

solvers such as EFM, the molecular velocity distribution is examined at the cell interfaces only

and any particles with positive relative overall velocity are moved across the interface into

the adjascent cell. While these approaches are correct, they contain no information regarding

where the gas molecules originated from or which region specifically the molecules will fall
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Figure 11.1: Finite volume discretisation using a cartesian grid. Molecules are shown fluxing
across the cell surface shared by cells (i, j) and (i+1, j). Traditional CFD finite volume solvers
would calculate this flux, subtract the fluxes of conserved quantities from (i, j) and add them
to cell (i + 1, j) despite the fact that a fraction of the mass did not originate from cell (i, j)
and, likewise, a fraction of the fluxed mass is not moving into cell (i+ 1, j).
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into. An example of the fluxes theoretically calculated by EFM are present is diagramatically

represented in Figure 11.1.

Another consideration is the number of particles in the source region. Conventional CFD

finite volume solvers calculate fluxes which are independent of the cell size and the finite mass

located in each cell volume. The assumption that these fluxes are built upon are justified since

the fluxes of mass, momentum and energy typically represent the instantaneous rate of fluxes

across a cell interface. This is usually a very good approximation, especially for the Riemann

class solvers which calculate the state between propagating waves which should remain constant

regardless of time. The timestep in such solvers is manually limited to ensure the propagating

waves do not travel further than a cell width.

Therefore, the flux calculated over a surface by a kinetic theory based solver (like EFM)

is the correct flux over a surface for a given small timestep but does not accurately represent

the flux from a source finite volume to a destination finite volume. This is because there are

components of the EFM flux that do not originate in the source volume, and similarly there are

components of the flux which do not move to the destination volume. The fluxes determined

by TDEFM represent analytical solution to the free flight phase of a direct simulation in the

limit of an infinite number of simulation particles, thermal equilibrium and uniform conditions.

Referring to Figure 11.1, the flux of mass from cell (i,j) to cell (i+1,j) calculated by TDEFM

will be less than that calculated by EFM. The difference of between fluxes that cross the surface

seperating cell (i,j) and (i+1,j) is recovered by the TDEFM fluxes travelling from cells (i,j-1)

and (i, j+1) to the destination cell (i+1,j). The net forward flux through the surface seperating

the cells (i,j) and (i+1,j) calculated by TDEFM will be identical to that calculated by EFM

only if the time step is very small and the conditions in cells (i,j-1) and (i,j+1) are the same as

the conditions in cell (i,j).

11.2 Effects of Direction Decoupling

In order to quantify the effect of direction decoupling, we use an “angle of deviation”, designated

as θ, to measure the radial symmetry present in the solution. This concept is applied to the two

dimensional blast wave and implosion problem because of the approximately radially symmetric

nature of the flow. The angle of deviation is defined as the angle between the radial position

vector �r = (xi + yj) and the velocity vector �v = (Vxi + Vyj), and is given by:

θ = cos−1

(
�v ·�r
|�r||�v|

)
. (11.1)

If the initial conditions were perfectly circular in shape, this angle should be zero because of

the radially symmetric nature of the flow. The magnitude of θ at any position is a measure of

radial asymmetry in the flow and therefore a measure of error. Although the initial conditions

used in the blast wave and implosion problem are applied on rectangular cartesian grid and are
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between the radial position vector and the velocity vector) for a given cell.
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not perfectly circular, the quality of the flow approaches radial symmetry as the distance from

the origin increases or the mesh resolution increases.

Figure 11.2 shows that deviation angle θ taken from the 2D-EFM and 2D-TDEFM results

with meshes of 50x50 and 400x400 cells for the 2D blast wave problem. It is clear that the

angle of deviation is consistently less for TDEFM than for EFM, indicating a higher level of

fidelity. This fact remains true regardless of mesh density - simulations using much finer meshes

(
 2 million cells) have revealed that the magnitude of the angle of deviation is always lower

in TDEFM results than in EFM results. Therefore, there is always an effect due to direction

coupling, regardless of mesh density, although this effect diminishes as mesh density increases.

This effect is also demonstrated in the results from the implosion problem shown in Figure 11.3.

The effect of direction decoupling is further demonstrated in the simulation of hypersonic

flow over a rectangular body. As a result of the additional time step required to transverse to

diagonally adjacent cells, the bow shock is pushed further in front and away from the body.

This is demonstrated in Figure 11.4. Despite the increase in the resolution of the computational

grid in the direction decoupled techniques to compensate for the additional computational ex-

pense, the direction coupled solution still provides a better result. This is confirmed by the

location of the bow shock as calculated using Pullin’s EPSM, which should be equivalent to

collision limited DSMC. This is demonstrated in Figure 10.19 and Figure 10.20. These direct

simulations, which are not susceptible to the failings of direction decoupling, provide predicted

bow shock locations closer to the body in agreement with the results obtained from TDEFM

and its derivatives DTDEFM and VTDEFM.

The differences between direction decoupled EFM and the direction coupled TDEFM results

for simulation of a blast wave in a city environment are presented. The percentage difference

in density at various flow times is presented in Figure 11.5 and Figure 11.6. The greatest

differences in the results occur where the flow is both relatively fast and unaligned with the

computational grid. This supports our previous hypothesis regarding the description of the

errors resulting from direction decoupling. These errors are significant, resulting in a difference

of at least 25 percent in density at multiple locations. The use of direction coupled fluxes is

therefore justified despite the slight increase in computational expense.

It is important to note that the shape of the blast wave in the early stages of the blast is

not perfectly circular. This can be explained through several arguments:

• The initial shape of the high temperature region is rectangular and several cells in size.

In the results shown in Figure 11.5 and Figure 11.6 the initial high temperature region is

16x16 cells in size. The size of this rectangular region represents a significant fraction of

the size of buildings in the vicinity.
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√
RT/L = 0.05 and 0.1 for flow through city buildings. The gas is inviscid and
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computational domain are extrapolated outflow. The initial ’bomb’ region is the high temper-
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Figure 11.7: Computational domain used for simulation of hypersonic flow over a flat plate. The
physical geometry is fixed in both TDEFM and DSMC computations. The knudsen number is
varied through manipulation of the gas viscosity alone.

• While TDEFM incorporates true direction fluxes, the order of accuracy is still first or-

der. Therefore, in each time step the fluxes masses are evenly distributed around their

destination cells. This forces the solution to take on (to a limited extent) the shape of

the computational grid. This flaw is common in every finite volume CFD code.

11.3 Adaptive mesh refinement based on mean free path

length

Kinetic theory based continuum solvers such as EPSM and EFM are known to have an effective

mean free path length equivilent to the cell size [1, 2, 97]. This is also true in the TDEFM

fluxes - fluxes are transported from a source cell to a nearby destination cell, after which

they effectively undergo an infinite number of collisions. Therefore, any kinetic theory based

continuum solver (including direct simulations in the high collision rate limit) will demonstrate

flow features that are reliant upon the cell size. This is often regarded as a negative feature

of kinetic theory based solvers with significant effort by various authors [117] to eliminate the

dependence of flow features on the cell width.

The use of Adaptive Mesh Refinement (AMR), together with the diffusely reflective flux

expressions derived in Section 8.2, allows us the possibility of using this feature to attempt the

simulation of a psuedo-viscous gas. Previous finite volume solvers which employed adaptive

mesh refinement focused on the resolution of flow features such as shock waves through the

addition of large numbers of cells in such regions. However, to more accurately represent the

physical flow of gas, the mesh adaptation used by TDEFM focused on setting the local cell size

to a fraction of the local mean free path.
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Figure 11.8: Density contours from adaptive TDEFM for hypersonic flow over a flat plate.
The freestream Mach numer is M∞ = 5. The Knudsen number is Kn = 0.002666. The gas is
monatomic with a two coefficient sutherland viscosity law. Adaptive Mesh Refinement (AMR)
is employed to ensure the cell size is approximately equal to the local mean free path.

This concept is tested by simulating hypersonic flow over a flat plate while employing

adaptive mesh refinement. The initial conditions and geometry are shown in Figure 11.7. The

simulated gas is an ideal, monatomic hypothetical gas with a viscosity governed by the two

parameter sutherland viscosity law, defined as:

µ(T ) =
C1T

3/2

T + C2

(11.2)

where C1 and C2 are coefficients which differ between gases and T is the temperature. This

viscosity law was selected due to its well known properties and common use by popular com-

mercially available CFD packages. The mach number of the freestream gas is M∞ = 5. The

temperature of the plate is fixed at the freestream temperature. The top and right hand side

boundaries are extrapolated outflow. The left hand side boundary is inflow while the lower

surface located infront of the diffusely reflective surface is specularly reflective. The Knudsen

number of the flow is varied to test the general capability of the adaptive grid TDEFM tech-

nique. This is done through manipulation of the gas viscosity - the physical geometry is fixed

in its dimensions.

The results from TDEFM are compared to results taken from a DSMC solution. The number

of simulation particles employed varied with the simulated Knuden number. Due to its fast

speed and ease of implementation, Macrossan’s ν-DSMC was used. Each DSMC simulation was

run until the flow was steady, followed by another 10,000 steps for ensemble averaging to assist

in the removal of statistical scatter. The inflow and outflow boundaries were managed through

the use of ‘reservoir’ ghost cells. A calculated number of proposed simulation particles were

uniformly distributed over each cell and moved through a time step - particles which resulted

inside the computational domain were added to the simulation, while particles resulting outside

the domain were disregarded.
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Figure 11.8 shows density contours as calculated by TDEFM employing Adaptive Mesh

Refinement. The initial grid consists of a regular grid of 20x10 cells (not including ghost cells)

which was then refined every 500 time steps. The mesh adaptation is initially restricted to cell

division. After the flow is steady and no further cell division occurs, complete mesh adaptation

is permitted with cells able to combine with neighbours in the process outlined in Section 8.3.

During the cell division phase, a cell is split if the ratio of the local mean free path to cell

size λ/∆x < 0.75 and the local gradient length Knudsen number (given in Equation 3.2) is

larger than 0.005. This ensures cells in the undisturbed freestream are not remeshed. During

the cell combination phase, cells are combined if the ratio of local mean free path to cell size

λ/∆x > 0.75. The selection of 0.75 ensures that the cells, on average, are on the order of a

mean free path.

To compare the results obtained by DSMC and TDEFM, x-velocity and density profiles at

regular locations along the plate are examined. Figure 11.9 shows the x-velocity as a function of

distance from the plate surface at locations x/L = 0.06, 0.33, 0.66 and 0.86 for varying Knudsen

numbers. The gradient of velocity at the plate surface calculated by TDEFM closely matchese

that obtained by the DSMC results. There is generally very good agreement between the

TDEFM and DSMC results over the entire flow field.

Figure 11.10 shows the density as a function of distance from the plate surface at locations

x/L = 0.06, 0.33, 0.66 and 0.86 for varying Knudsen numbers. The differences between the

TDEFM and DSMC results are more obvious - the thickness of the shock is larger in the

TDEFM results than in the DSMC results. This is likely because of DSMC’s ability to maintain

information regarding mass distribution across cells. TDEFM forces uniform mass distribution

across each cell at each time step. This feature of finite volume methods has been shown to

artificially increase the width of flow features [89] and is usually resolved using higher order

methods. The employment of DTDEFM as a flux calculator would see a decrease in the

difference between the results. However, further investigation of this concept falls outside the

scope of this thesis and this is not investigated here.

Figure 11.11 show the computational grids employed by the TDEFM solutions for the

varying Knudsen numbers. The number of cells employed for low Knuden numbers is much

larger than for higher numbers - the number of cells employed by each computation grid for

each Knudsen number respectively is N = 836, 4733 and 14450 cells, not including ghost cells.

Despite the large numbers of cells, the computational expense of using TDEFM with adaptive

mesh refinement is still significantly less than using ν-DSMC, requiring less than 9 percent

of the computation time required by ν-DSMC. It is important to note that the code utilised

is a prototype code not developed for computational speed - a statement reinforced by the

fact that the flux expressions are the complete (and computationally expensive) TDEFM flux

expressions. Also, one of the advantages to using ν-DSMC is the absence of testing for collision

pairs - all collisions are assumed equally likely and no testing is required. Macrossan showed

that nu-DSMC was at least twice as fast as DSMC using variable hard spheres, depending
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Figure 11.9: X-velocity profiles from TDEFM for simulation of hypersonic flow over a flat plate.
Each line represents the variation in x-velocity at x/L = 0.06, 0.33, 0.66 and 0.86. The Knudsen
numbers for each case are Kn = 0.0133 (Top), Kn = 0.0026 (Middle) and Kn = 0.0013
(Bottom). The gas is monatomic with a two coefficient sutherland viscosity law. Adaptive
Mesh Refinement (AMR) is employed to ensure the cell size is approximately equal to the local
mean free path.
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Figure 11.10: Density profiles from TDEFM for simulation of hypersonic flow over a flat plate.
Each line represents the variation in density at x/L = 0.06, 0.33, 0.66 and 0.86. The Knudsen
numbers for each case are Kn = 0.0133 (Top), Kn = 0.0026 (Middle) and Kn = 0.0013
(Bottom). The gas is monatomic with a two coefficient sutherland viscosity law. Adaptive
Mesh Refinement (AMR) is employed to ensure the cell size is approximately equal to the local
mean free path.
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Figure 11.11: Adaptive grids employed by TDEFM for simulation of hypersonic flow over a flat
plate. The Knudsen numbers for each case are Kn = 0.0133 (Top), Kn = 0.0026 (Middle) and
Kn = 0.0013 (Bottom). The gas is monatomic with a two coefficient sutherland viscosity law.
Adaptive Mesh Refinement (AMR) is employed to ensure the cell size is approximately equal
to the local mean free path.
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Figure 11.12: Diagram of a high speed viscous flow inside a lid driven cavity (Mwall =
8.73, Twall/Tinit = 1,Kn = 0.04 and µ = µo(T/To)0.75).

on the ratio of ∆t/τ [66]. The presented TDEFM results required approximately 30 minutes

(using a Toshiba Satellite M50 with a single 3 GHz processor and 2GB of RAM) while typical

modern DSMC codes can require days. It is fair to say the further investigation of this concept

is certainly warranted though falls outside the scope of this work.

This concept is further tested though comparison with DSMC results obtained by Wu [113]

for a high speed lid driven cavity problem. The results taken from adaptive mesh refinement

are also compared to those found through arbitrarily increasing the number of computational

cells employed. While previously results were compared by examining the x-velocity and density

profiles over the plate, this comparison simply examines the location of the center of circulation.

Figure 11.12 shows the computational domain used by both TDEFM and DSMC solutions.

The results from these simulations found that simply increasing the number of cells without

consideration of the local mean free path length resulted in an increasingly incorrect solution.

Due to the small cell sizes, the gas was effectively being collided very frequently and posessed

a decreased effective viscosity. Thus the center of circulation seen in the simulation of a lid

driven cavity flow was pulled closer to the wall and futher to the lower right of the simulation

region. By setting the cell size splitting criteria such that the cell sizes are, on average, the

size of the local mean free path length, a more accurate estimation of the location of the center

of circulation can be found. The time step is also restricted to ensure particles do not travel

further than a local mean free path, or in this case, the neighbouring cells. It should be noted

that due to the simple isotropic splitting of the cells employed here the cell size is not always

precisely the target size. This, combined with the fact that at the selected Knudsen number

(Kn = 0.04) there are insufficient collisions to ensure thermal equilibrium, may be responsible

for the differences seen between the location of the center of circulations shown in Table 11.1.

The evolution of the computational grid is shown in Figure 11.13.
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Figure 11.13: Development of the computational mesh for the high speed lid driven cavity
flow when the local mean free path is used as a adaptation guide (Kn = 0.05,M = 8.0, µ =
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0.75).
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Simulation Kn M # Cells Location
Wu [113] 0.04 8.73 2500 (0.67, 0.16)

Coarse Mesh 0.04 8.73 400 (0.6, 0.18)
Fine Mesh 0.04 8.73 6400 (0.77, 0.15)

λ 0.04 8.73 6010 (0.63, 0.16)

Table 11.1: Comparison of the location of the main circulation obtained Wu [113] and Smith
(current) in the Lid Driven cavity problem.

Despite these differences there certainly seems to be the possibility of using true direction

fluxes together with adaptive mesh refinement to simulate viscous flow. To further test the

idea of using TDEFM as a viscous flow solver, many more tests should be run and compared to

results obtained from DSMC. The inclusion of en route collisions in the TDEFM flux expressions

seems like a sensible starting point and is briefly investigated in Section 11.4.

11.4 En route collisions in TDEFM flux expressions

The derivation of the TDEFM flux expressions is based upon the assumption that flow can

be separated into a collision phase and a free movement phase. The TDEFM flux expressions

represent the analytical form of Pullin’s EPSM fluxes in the presence of an infinite number of

simulation particles uniformly distributed across each cell at the beginning of each time step.

It is also the analytical form of the PFM (Particle Flux Method) presented by Macrossan et

al. [70]. The TDEFM flux expressions are also equivalent to Pullin’s EFM fluxes in the small

CFL number limit [93].

The TDEFM flux expressions are designed around the assumption of local thermal equilib-

rium, meaning a very large number of collisions are theoretically required for this assumption

to be valid. It might therefore be unreasonable to decouple the movement phase and colli-

sion phase as the collision times are very small. Past attempts to derive kinetic theory based

flux expressions are based on the integration of a distribution function created using the BGK

equation and Taylor series expansions [117].

As a result, the effect of collisions and changes in the distribution function in space and time

can be included. Knowing that the collision process retards the velocity (on average) by a known

amount, we can predict what the effect of collisions will be during their supposed ‘free flight

phase’. The velocity persistence ratio, �, is defined as the ratio of the initial and final velocity

following a collision [20, 45]. Jeans [45] and Chapman [20] determined the mean persistence of

velocity ratio varies from 1
3

to 1
2
. For the range of velocities considered through limitation of

the local kinetic CFL number, and following the results from Section 2.3 we assume that � is

equal to 1
2
. Since the decay of velocity follows an geometric progression of the persistence ratio,

we assume that a particle’s velocity (as a function of time) is:
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vx(t) = mx + (vx0 −mx)�
( t

2τ ) (11.3)

where τ is the mean collision time and mx is the bulk velocity of the gas the particle is moving

through.The motion of this particle can be predicted through integration:

x(t) = x0 +mxt−
2τ
(
�( t

2τ ) − 1
)

ln(�)
(mx − vx0) (11.4)

with x0 being the starting position. Therefore, the velocity required to reach a location x∗ from

x0 in time step ∆t is:

v(x∗, x,∆t,mx, τe) = mx +

⎛⎝(x∗ − x0 −mx∆t)ln(�)

2τ
[
�(∆t

2τ ) − 1
]

⎞⎠ (11.5)

Thus, the probability that particles from any location x will land within the region bounded

by xr and xl in time step ∆t is:

P (x) =

∫ v(xr ,x,∆t,mx,τe)

v(xl,x,∆t,mx,τe)

g(vx)dvx

=
1

2

⎡⎣erf

⎛⎝(xl − x−mx∆t)ln(�)

2
√

2sτ
(
�(−∆t

2τ ) − 1
)
⎞⎠⎤⎦

− 1

2

⎡⎣erf

⎛⎝(xr − x−mx∆t)ln(�)

2
√

2sτ
(
�(−∆t

2τ ) − 1
)
⎞⎠⎤⎦ (11.6)

where g(vx) is the Maxwell-Boltzmann equilibrium velocity probability distribution function

(PDF), v(xr, x,∆t,mx, τ) is the velocity required to reach location xr and v(xl, x,∆t,mx, τ)

the velocity required to reach location xl:

g(vx) =
1√
2πs

exp

[
−(vx −mx)

2

2s2

]
(11.7)

v(xr, x,∆t,mx, τe) = mx +

⎛⎝(xr − x−mx∆t)ln(�)

2τ
[
�(∆t

2τ ) − 1
]

⎞⎠ (11.8)

v(xl, x,∆t,mx, τe) = mx +

⎛⎝(xl − x−mx∆t)ln(�)

2τ
[
�(∆t

2τ ) − 1
]

⎞⎠ (11.9)

The mean value of P (x) over a region between xL and xR represents the fraction of mass

fM to move to between regions xl and xr and is:
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fM =
1

(xR − xL)

∫ xR

xL

P (x)dx

= fM(m, s,∆t,Z, xR, xL, xl, xr)

= Mc exp

(
Z2
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(−m∆t+ xR − xl)
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2s2∆t2

])
+M1erf

(
Z
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−M3erf

(
Z

[
m∆t+ xL − xl√

2s∆t

])
+ Mc exp

(
Z2

[
(−m∆t+ xL − xr)

2
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+M4erf
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Z
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(11.10)

where the values of Mc,M1 −M4 are:

Mc =
s∆t

Z
√

2π(xR − xL)

M1 =
1

2(xR − xL)
(m∆t− xl + xR)

M2 =
1

2(xR − xL)
(m∆t− xr + xR)

M3 =
1

2(xR − xL)
(m∆t− xl + xL)

M4 =
1

2(xR − xL)
(m∆t− xr + xL)

and Z is a dimensionless relaxation parameter:

Z =

(
∆t

τ

)
ln(�)

2
(
�(∆t

2τ ) − 1
) (11.11)

It is clear that the flux expressions are identical to the previously defined expressions with

the exception being the dimensionless parameter Z. This value of Z can also be phrased in

terms of an effective collision time τe:

Z =

(
∆t

τe

) exp
(

∆t
τe

)
(
exp

(
∆t
τe

)
− 1
) (11.12)

where τe = −2/ln(�)τ . When the mean collision time τ is very large in comparison to the

local time step ∆t, the value of Z rapidly approaches 1, and the above expressions approach

the original TDEFM expressions. When the local collision time τ is very small compared to the

local time step ∆t, the value of Z rapidly approaches infinity. The corresponding momentum

fluxes are:
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fP = fP(m, s,∆t,Z, xR, xL, xl, xr)
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where the values of Pc, P1 − P4 are:

Pc =
ms∆t

Z
√
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The energy flux (per unit source mass) is:

fE = fE(m, s,∆t,Z, xR, xL, xl, xr)

= Ec exp
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(11.14)

where the values of Ec, E1 − E4 are:
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Figure 11.14: Computational domain for simple direct simulation test used to verify CTDEFM
flux expressions. A simple box with specularly reflective boundaries and equilibrium conditions
is split into two regions. Particles are either moved through a single time step of ∆t (for free-
flight tests) or moved through a larger number of small time steps ∆ts totalling ∆t. Collision
pairs are selected from anywhere within the cell since the Knudsen number of the gas is in the
cell is larger than one. Due to the identical equilibrium conditions in the box, collisions do not
affect the conditions in the cell.
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To verify these fluxes, they were compared to results from a simple DSMC simulation. The

computational domain employed by DSMC is shown in Figure 11.14. A box with equilibrium

conditions and a Knudsen number of 2
π

−1/2
is divided into a source region and a destination

region. Particles are either moved through a single time step of ∆t (for additional verification

of the TDEFM expressions which assume free flight) or a larger number of small time steps

of ∆ts. A collision phase follows each movement phase: performing a calculated number of

collisions using simple hard spheres. Since the box is in thermal equilibrium, collisions do not

affect the conditions (i.e. temperature, viscosity, collision rates). However, these collision do

tend to hinder the movement of particles from the source region to the destination region.

The flowchart showing the implementation of this test is shown in Figure 11.15. Two different

implementations of DSMC were applied - Macrossan’s ν-DSMC [66] and µ-DSMC [69]. Both
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Figure 11.15: Flowchart for the implementation of a simple DSMC verification of the CTDEFM
fluxes. Two types of DSMC were employed - Macrossan’s ν-DSMC [66] and µ-DSMC [69]. Both
solvers employed hard sphere collisions. The differences in the results obtained from each for
this simple test were negligible.
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solvers employed hard sphere collisions. The differences in the results obtained from each for

this simple test were negligible. The results presented here are those obtained using ν-DSMC.

The maximum time step ∆t was selected such that the kinetic CFL number was unity.

The results obtained from the both free molecular and en route-collision tests are shown in

Figure 11.16. As was expected, when particles were permitted to flux a time step ∆t without

collisions the DSMC and TDEFM results coincide. The mass flux is linear for small time steps,

demonstrating that the use of existing kinetic theory methods (where fluxes are linear functions

of the time step) is valid in the low time step limit. This mass increases as mass moves into

the destination region and then decreases as the ‘particles’ move past the destination region.

Figure 11.16 also shows the results from DSMC simulations with en route collisions incorpo-

rated. It is clear that the results obtained using a single step of ∆t in TDEFM, when including

the effect of en route collisions, closely match the results obtained using DSMC with multiple

time steps of ∆ts.

This method, named Collision TDEFM (CTDEFM), attempts to approximate the effects of

collisions on the flight of molecules in an equilibrium gas. However, the presented derivation is

flawed because it does not consider the transferal of momentum and energy to the appropriate

destination during molecular flight. The velocity used in the calculation of momentum and

energy fluxes is the initial pre-collision velocity. Therefore, of the expressions displayed for the

momentum and energy flux a fraction will remain in the source cell and the remaining amount

will sucessfully be transfered to the destination cell. Therefore, the fluxes of momentum and

energy are rederived below to take this into consideration.

Let the fraction of each time step spent by a particle in the source region be represented by

f . The velocity of the particle as it crosses the interface between the source and destination

region is:

vw(vx) = mx + (vx −mx)�
( ft

2τ ) (11.15)

where vw is the velocity of the particle at the instant it crosses into the destination region.

Assuming that all of the momentum and energy that this particle is carrying after this point

in time will be deposited into the destination region, the revised momentum flux is:
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Figure 11.16: [Top] Mass flux (per unit source mass) from TDEFM and DSMC. The DSMC
results presented do not incorporate collisions during the free flight phase: simulation particles
are moved through a single time step of ∆t. [Bottom] Mass flux (per unit source mass) from
TDEFM and DSMC. The DSMC results presented incorporate collisions in the flight phase,
moving through 10 time steps of ∆ts up to a total time of ∆t. The conditions in the cells
are not permitted to change as a result of the collisions. Each DSMC simulation used 100,000
simulation particles.
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where the revised values of Pc, P1 − P4 are:

Pc =
ms∆t

Z
√

2π(xR − xL)

P1 =
1

2(xR − xL)

(
m(m∆t− xl + xR) +

�
f∆t
2τ s2∆t

Z

)

P2 =
1

2(xR − xL)

(
m(m∆t− xr + xR) +

�
f∆t
2τ s2∆t

Z

)

P3 =
1

2(xR − xL)

(
m(m∆t− xl + xL) +

�
f∆t
2τ s2∆t

Z

)

P4 =
1

2(xR − xL)

(
m(m∆t− xr + xL) +

�
f∆t
2τ s2∆t

Z

)

The revised energy flux (per unit source mass) is:
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where the values of Ec, E1 − E4 are:
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)

When the collision time τ is very large in comparison to the time step ∆t, the term �
f∆t
2τ and

the value of Z both approach unity, therefore reducing the momentum and energy equations to

the original TDEFM flux expressions. These flux expressions are compared to those obtained

from the simple DSMC test used previously to check the mass flux expressions and are displayed

in Figure 11.17. These fluxes are calculated for varying ratios of ∆t/τ up to a value of ∆t/τ =

0.5, which approximately corresponds to a kinetic CFL of unity when the cell size is based

on the local mean free path λ. Figure 11.17 show the revised expressions for momentum and

energy succesfully reproduce the results obtained through the direct simulation. As expected,

the oringinal CTDEFM results show a larger transfer of energy and momentum.

The results presented in Figure 11.17 use an estimated value for the fraction of time spent in

the source region of f = 0.5. This value is verified using the results from the direct simulation.

Figure 11.18 shows the mean fraction of time spent by particles in the source region which

sucessfully travel from the source region to the destination region after 30 time steps of ts.

This test shows the value of f averaging just under f = 0.5 and is relatively constant over the

examined ratios of ∆t/τ . Due to the complexity of the expressions, no analytical expression

exists for the exact value of f . Further efforts to find alternative means of the calculation of f

are outside the scope of this work.

11.5 Hybridisation of TDEFM-BGK solver

The assumption of thermal equilibrium is not valid in many modern engineering problems.

Therefore, the fluxes obtained by integrating the Maxwell-Boltzmann equilibrium distribu-

tion function do not accurately represent the actual fluxes present in regions of thermal non-

equilibrium. The traditional and most popular response to this problem is the use of a direct

solver such as DSMC. However, despite recent advances, the direct simulation of a large num-

ber of simulation particles is computationally expensive when compared to traditional finite
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Figure 11.17: [Top] Momentum flux (per unit source mass) from the revised CTDEFM flux
expressions and DSMC. [Bottom] Energy flux (per unit source mass) from the revised CTDEFM
flux expressions and DSMC. The DSMC results presented incorporate collisions in the flight
phase, moving through 30 time steps of ∆ts up to a total time of ∆t. Each DSMC simulation
used 500,000 simulation particles. The assumed fraction of time spent in the source region by
each particle is f = 0.5.
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Figure 11.18: Mean fraction of a time step f spent in the source region as calculated by DSMC.
Every simulation particle is tracked and the time spent in the source region recorded. Of these,
each simulation particle starting in the source region and sucessfully reaching the destination
region after 30 time steps of ∆ts is used to calculate the mean fraction f .

volume solvers. In addition, there is a large amount of statistical scatter associated with direct

simulation techniques.

Presented are the preliminary results from a proposed hybrid TDEFM-BGK solver similar

to that of Kolobov et. al. [49, 50]. True direction equilibrium fluxes are employed in regions

of thermal equilibrium while a BGK solver is employed in regions of thermal non-equilibrium.

To distinguish the regions, the local cell Knudsen number was used where the length scale

was based on density gradient length scale as proposed in Equation 3.2. Following previous

hybrid solvers [49, 50, 21, 22] where this local Knudsen number was greater than 0.01 the BGK

solver was employed. In all other regions, the TDEFM flux solver was used. Both methods are

true directional, meaning that fluxes can be transfered from any specified source region to any

required destination region. The hybrid solver was implemented by splitting the flux exchange

proceedure into the four possible situations:

1. Flux transfer from a TDEFM cell to a TDEFM cell

2. Flux transfer from a TDEFM cell to a BGK cell

3. Flux transfer from a BGK cell to a BGK cell

4. Flux transfer from a BGK cell to a TDEFM cell
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Figure 11.19: Flowchart describing the calculation of fluxes from a BGK source cell to a BGK
destination cell.
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Simulation Local cell Kn cutoff Relative Computational Time (Percent)
Pure BGK -1 100

Hybrid BGK-TDEFM 0.01 9.85
Pure TDEFM 100 0.25

Table 11.2: Relative computational expense required by the hybrid BGK-TDEFM solver. These
times are taken from the 2D implosion test case used in the results presented in Figure 11.20
and Figure 11.21. The BGK solver discretised velocity space in the x, y and z directions into
50 velocity buckets each with velocities ranging from −6(RT )0.5 to 6(RT )0.5.

The simplest of these were the first and the third steps where flux transfer occured between

like cells. The flowchart demonstrating how fluxes are calculated between BGK cells is shown

in Figure 11.19. When a TDEFM cell was required to calculate the flux of mass, momentum

and energy to a BGK cell, a temporary set of velocity buckets were created from the Maxwell-

Boltzmann equilibrium distribution function as demonstrated in Figure 5.2 in Section 5.4.

These were then used to calculate fluxes in the same way a BGK does. The fluxes from a

TDEFM cell to a BGK cell are equivilent to the actual TDEFM fluxes in the presence of an

infinitely fine discretisation of velocity space. The fluxes from a BGK cell to a TDEFM cell

were calculated by cycling through the discretised velocity distributions (as demonstrated in

Figure 11.19) and incrementally adding fluxes of mass, momentum and energy to the TDEFM

cells. There is no guarantee these fluxes are the equilibrium fluxes as the BGK cell is capable

of tranfering non-equilibrium fluxes into an equilibrium cell.

In addition to the one dimensional results presented in Section 10.1, presented here are two

dimensional results for the implosion problem introduced in Section 10.3. The gas is ideal with

γ = 5/3 using a power law viscosity model with a power coefficient of 0.75. The Knudsen

number is 0.0125 (based on the length of the square region) and the initial velocity of the

flow is zero. The initial conditions are the same as those used in Section 10.3. The BGK

solver employed the discretisation of velocities in the three dimensions into 50 discrete velocity

‘buckets’ each. The time step was set to ensure that a particle moving with a velocity of

(|V | + 6(RT )0.5) would travel no further than an adjacent cell.

Presented in Figure 11.20 and Figure 11.21 are results from the two dimensional implosion

problem. The same characteristic features are present as in the continuum solution, but the

sharpness of the flow features is smeared due to the relatively rarefied nature of the flow. Also

shown are the regions designated as thermal equilibrium solved using TDEFM and thermal

non-equilibrium solved by the BGK solver. It can be seen that as the propagating shock

travels inwards and away from the contact discontinuity, the region solved using BGK splits

into two distinct parts. The region inbetween the shock and contact discontinuity, in addition

to the expansion wave, are not classified as ’broken down’ regions by the selected breakdown

parameter and are thus solved using TDEFM. It is also seen that both the density colormaps

and the region selections are radially symmetric - a feature not seen when using direction

coupled fluxes as demonstrated in Section 10. The percentage of cells which employed the
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Figure 11.20: Colormaps of density at times t
√
RT/L = 0.01 (Top) and 0.05 (Bottom) for the

simulation of a rarefied, viscous flow using a hybrid TDEFM-BGK solver. Also presented are
the regions solved by TDEFM (blue) and the BGK solver (red). The Knudsen number of the
initial flow (based on the low density region of gas) is 0.0125 (based on the length of the square
region). (Continued in Figure 11.21)
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Figure 11.21: Colormaps of density at times t
√
RT/L = 0.1 (Top) and 0.2 (Bottom) for the

simulation of a rarefied, viscous flow using a hybrid TDEFM-BGK solver. Also presented are
the regions solved by TDEFM (blue) and the BGK solver (red). The Knudsen number of the
initial flow (based on the low density region of gas) is 0.0125 (based on the length of the square
region).
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Figure 11.22: Percentage of cells employing the BGK solver in the hybrid BGK-TDEFM solver
for the 2D implosion problem. The Knudsen number of the initial flow (based on the low
density region of gas) is 0.0125 (based on the length of the square region).

BGK solver in the BGK-TDEFM hybrd as a function of time step is shown in Figure 11.22.

The relative computational times required by the various configurations of the hybrid solver

are shown in Table 11.2. The use of the current hybrid code as a pure BGK solver is very

expensive when compared to the code being used with pure TDEFM or in its hybrid capacity.

Following the work of Kolobov et. al, the hybrid TDEFM-BGK is then extended to include

an isotropic mesh refinement algorithm. The mesh is refined in regions where the local cell

Knudsen number, based on the density gradient length scale, is larger than 0.005. When this is

the case, the cell size is refined (or cells are combined) to ensure the cell size is approximately

one mean free path length. Presented in Figure 11.23 is an example of the computational grid

after several levels of refinement for the implosion problem demonstrated in Figure 11.20 and

Figure 11.21.

The results obtained from the one dimensional and two dimensional simulations for the

hybrid TDEFM-BGK solver with true directional fluxes seem promising. However, further

development of the method past this point falls outside of the scope of this work.
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Figure 11.23: The computational mesh obtained using the hybrid BGK-TDEFM solver with
isotropic mesh adaptation. The mesh is refined in regions with a local cell Knudsen number
greater than 0.005. Regions with a local cell Knudsen number greater than 0.01 employ the
BGK solver while other regions use TDEFM. The Knudsen number of the initial flow (based
on the low density region of gas) is 0.0125 (based on the length of the square region).
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Chapter 12

Conclusion

Since the inception of Computational Fluid Dynamics (CFD) a large number of numerical

schemes have been developed. Despite the varied nature of these schemes and their implemen-

tations, a majority of these techniques are based around the approximate discretisation of the

governing differential equations such as the Euler equations. These methods employ the dis-

cretisation of space into finite volumes called ‘cells’. In such methods, the standard procedure

is to calculate fluxes of mass, momentum and energy and exchange these between cells that

share adjacent interfaces through one dimensional flux calculations. This procedure is referred

to here as ‘direction decoupling’.

An alternate approach is found in the Direct Simulation Monte Carlo (DSMC) method

created by Bird. Rather than directly modeling a governing differential equation, the gas is

modeled through the use of simulation particles which represent a large number of real particles.

These particles are moved regardless of grid orientation or grid density and, for a given time

step, can move from a source cell to any destination cell. Therefore, fluxes of mass, momentum

and energy are carried by these particles into any cell and are not limited to those that share

an adjacent interface.

Direct simulations such as DSMC split the flow into two phases - a collision phase and a

movement phase. While the movement phase is handled deterministically, DSMC simulations

employ stochastic modeling of the intermolecular collisions. Simulation particles are sorted

into cells and perform a calculated number of collisions with other simulation particles. With

increasing numbers of collisions the conditions in the cell rapidly approach those of thermal

equilibrium. When the gas is in thermal equilibrium, the velocity distribution functions of the

simulation particles becomes that of the Maxwell-Boltzmann equilibrium distribution function.

Pullin proposed the Equilibrium Particle Simulation Method (EPSM) where, instead of per-

forming a large number of collisions, the velocities of each simulation particle are reselected

from the equilibrium distribution function. Since both EPSM and DSMC methods employ the

use of a finite number of simulation particles, the results are subject to significant statistical

scatter.

While EPSM is faster than performing the large number of collisions required by DSMC,

it is still much slower than the existing continuum methods. To counter this, Pullin also

proposed the Equilibrium Flux Method (EFM) where integrals of the equilibrium distribution
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functions are evaluated over velocity space at cell interfaces. This method does not employ

simulation particles like EPSM and DSMC. Instead, fluxes of mass, momentum and energy

over cell interfaces are calculated by taking moments of the equilibrium distribution function.

Therefore, there is no statistical scatter associated with EFM. However, since the equilibrium

distribution functions are only integrated at the cell interfaces exchanges of mass, momentum

and energy fluxes are limited to cells sharing an adjacent interface.

The True Direction Equilibrium Flux Method (TDEFM) is presented here with the aim of

reproducing the results obtained by a direct simulation technique (such as EPSM). In TDEFM

the integrals of the equilibrium distribution function are evaluated over both velocity space

and the entire physical space of the cell, rather than just at the boundary. The fluxes of

mass, momentum and energy are carried from any specified source region into any specified

destination region. These fluxes are not limited to cells sharing adjacent interfaces and can,

for a given time step, be exchanged between any source and destination cell. TDEFM is the

analytical equivalent to EPSM when conditions in each cell are uniform and an infinite number

of simulation particles are present.

The fluxes obtained by TDEFM are shown to be equivalent to that of EFM only when the

kinetic CFL number is very small and fluxes are limited to one dimension. When maintaining

a small kinetic CFL number and extending to higher dimensions, EFM and TDEFM differ only

in that the fluxes calculated by TDEFM are exchanged between all surrounding cells, not just

those sharing an adjacent interface. When the kinetic CFL number is very low and destination

cells are adjacent, the TDEFM flux expressions can be simplified considerably. Thus, the

computational expense associated with extending EFM to its ‘direction coupled’ equivalent is

minimal.

At larger kinetic CFL numbers the results obtained by TDEFM diverge from EFM results

and begin to converge on those obtained using EPSM. However, owing to EPSM’s ability

to maintain gradients of density within each cell through simulation particle location, results

obtained by TDEFM do not match those of EPSM. Therefore, linear gradients of density are

introduced into the flux expressions. This improvement, named DTDEFM (Density TDEFM),

provides results that better match those of EPSM, are free of statistical scatter and require a

fraction of the computational expense of that required by EPSM.

The proposed TDEFM method has been shown to provide superior results when compared

against selected continuum solvers on structured cartesian computational grids when solving

the Euler equations. By utilising an adaptive mesh where the desired cell size is based on a

fraction of the local mean free path length and newly derived diffusely reflective flux expressions,

the TDEFM fluxes are shown to approximately reproduce results obtained by DSMC for a

viscous flow. These preliminary findings require further simulations and comparisons which lie

outside the scope of this work. The consideration of viscous forces is then extended through

the introduction of en route collisions. The resulting flux expressions are adjusted to take into

account the ratio of time step to collision time - when the time step is very small compared to the
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collision time, the revised flux expressions simplify to the complete TDEFM flux expressions.

The assumption of thermal equilibrium is invalid for a large number of engineering flows. In

order to increase the applicability of TDEFM the method is hybridized with a model-Boltzmann

solver. In regions of non-equilibrium the hybrid solver attempts to solve the BGK equation

while in regions of thermal equilibrium the conventional TDEFM fluxes are employed. The

BGK solver is based on the same true direction principles as TDEFM, allowing flow from a

given source region to a given destination region. The BGK solver has been shown to provide

identical results to TDEFM when the gas is forced to relax to equilibrium and when sufficiently

discretised in velocity space. The proposed hybrid solver is truly a unified flow solver with true

directional fluxes.

The simulation of blast waves in city environments by commercially available software is cur-

rently unable to be used in a predictive manner due to the complexity involved with the creation

of the computational grid and definition of arbitrary geometries. A new program, FASTWAVE,

has been presented as a tool for the approximate prediction of blast wave behaviour in city en-

vironments. A user is able to define the city geometry, create the computational grid and solve

the user defined problem in a matter of minutes on an average desktop PC or laptop. In ad-

dition to conventional flux solvers, FASTWAVE also includes several of the true direction flux

methods presented here. The current version of FASTWAVE is capable of solving two dimen-

sional flows only. The extension of FASTWAVE to three dimensions lies outside the scope of

this work.
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Chapter 13

Appendix

13.1 TDEFM coefficients with a uniform mass distribu-

tion

Mass coefficients

Mc =
s∆t

(xR − xL)
√

2π

M1 =
1

2(xR − xL)
(m∆t− xl + xR)

M2 =
1

2(xR − xL)
(m∆t− xr + xR)

M3 =
1

2(xR − xL)
(m∆t− xl + xL)

M4 =
1

2(xR − xL)
(m∆t− xr + xL)

Momentum coefficients

Pc =
ms∆t

(xR − xL)
√

2π

P1 =
1

2(xR − xL)
(m(m∆t− xl + xR) + s2∆t)

P2 =
1

2(xR − xL)
(m(m∆t− xr + xR) + s2∆t)

P3 =
1

2(xR − xL)
(m(m∆t− xl + xL) + s2∆t)

P4 =
1

2(xR − xL)
(m(m∆t− xr + xL) + s2∆t)

Energy coefficients

Ec =
(2C +m2 + 2s2)s∆t

2(xR − xL)
√

2π

E1 =
1

4(xR − xL)

(
(m2 + s2 + 2C)(m∆t− xl + xR) + 2ms2∆t

)
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E2 =
1

4(xR − xL)

(
(m2 + s2 + 2C)(m∆t− xr + xR) + 2ms2∆t

)
E3 =

1

4(xR − xL)

(
(m2 + s2 + 2C)(m∆t− xl + xL) + 2ms2∆t

)
E4 =

1

4(xR − xL)

(
(m2 + s2 + 2C)(m∆t− xr + xL) + 2ms2∆t

)
13.2 TDEFM coefficients with a non-uniform mass dis-

tribution

Mass coefficients

Mo =

∫ xR

xL

(a+ bx)dx =
1

2
a(x2

R − x2
L) + b(xR − xL)

Mc =
s∆t

Mo(xR − xL)
√

2π

M1 = Mc

(
b+

1

2
a(−m∆t+ xl + xR)

)
M2 = Mc

(
b+

1

2
a(−m∆t+ xr + xR)

)
M3 = Mc

(
b+

1

2
a(−m∆t+ xl + xL)

)
M4 = Mc

(
b+

1

2
a(−m∆t+ xr + xL)

)
M5 =

1

Mo(xR − xL)

(
1

2
b(m∆t− xl + xR) − 1

4
a((m2 + s2)∆t2 − 2mxl∆t+ x2

l − x2
R)

)
M6 =

1

Mo(xR − xL)

(
1

2
b(m∆t− xr + xR) − 1

4
a((m2 + s2)∆t2 − 2mxl∆t+ x2

r − x2
R)

)
M7 =

1

Mo(xR − xL)

(
1

2
b(m∆t− xl + xL) − 1

4
a((m2 + s2)∆t2 − 2mxl∆t + x2

l − x2
L)

)
M8 =

1

Mo(xR − xL)

(
1

2
b(m∆t− xr + xL) − 1

4
a((m2 + s2)∆t2 − 2mxl∆t + x2

r − x2
L)

)
Momentum coefficients

Pc =
s∆t

2Mo(xR − xL)
√

2π

P1 = Pc

[
2bm+ a(m(xl + xR) − (m2 + 2s2)∆t)

]
P2 = Pc

[
2bm+ a(m(xr + xR) − (m2 + 2s2)∆t)

]
P3 = Pc

[
2bm+ a(m(xl + xL) − (m2 + 2s2)∆t)

]
P4 = Pc

[
2bm+ a(m(xr + xL) − (m2 + 2s2)∆t)

]
P5 =

1

2Mo(xR − xL)
b(m(m∆t− xl + xR) + s2∆t)

+
1

4Mo(xR − xL)
a[m∆t2(−m2 − 3s2) + xl∆t(2m

2 + 2s2) +m(−x2
l + x2

R)]
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P6 =
1

2Mo(xR − xL)
b(m(m∆t− xr + xR) + s2∆t)

+
1

4Mo(xR − xL)
a[m∆t2(−m2 − 3s2) + xr∆t(2m

2 + 2s2) +m(−x2
r + x2

R)]

P7 =
1

2Mo(xR − xL)
b(m(m∆t− xl + xL) + s2∆t)

+
1

4Mo(xR − xL)
a[m∆t2(−m2 − 3s2) + xl∆t(2m

2 + 2s2) +m(−x2
l + x2

L)]

P8 =
1

2Mo(xR − xL)
b(m(m∆t− xr + xL) + s2∆t)

+
1

4Mo(xR − xL)
a[m∆t2(−m2 − 3s2) + xr∆t(2m

2 + 2s2) +m(−x2
r + x2

L)]

Energy coefficients

Ec =
s∆t

4Mo(xR − xL)
√

2π

E1 = 2Ecb(2C +m2 + 2s2)

+Eca
[
(2C +m2 + s2)(−m∆t+ xl + xR) + s2(xR − xl − 3m∆t)

]
E2 = 2Ecb(2C +m2 + 2s2)

+Eca
[
(2C +m2 + s2)(−m∆t+ xr + xR) + s2(xR − xr − 3m∆t)

]
E3 = 2Ecb(2C +m2 + 2s2)

+Eca
[
(2C +m2 + s2)(−m∆t+ xl + xL) + s2(xL − xl − 3m∆t)

]
E4 = 2Ecb(2C +m2 + 2s2)

+Eca
[
(2C +m2 + s2)(−m∆t+ xr + xL) + s2(xL − xr − 3m∆t)

]
E5 =

b

4Mo(xR − xL)
((m2 + s2 + 2C)(m∆t− xl + xR) + 2m∆ts2)

+
a

8Mo(xR − xL)
[−∆t2(m2(m2 + 6s2) + 2C(m2 + s2) + 3s4)

+mxl∆t(2m
2 + 6s2 + 4C) − (x2

l − x2
R)(s2 +m2 + 2C)]

E6 =
b

4Mo(xR − xL)
((m2 + s2 + 2C)(m∆t− xr + xR) + 2m∆ts2)

+
a

8Mo(xR − xL)
[−∆t2(m2(m2 + 6s2) + 2C(m2 + s2) + 3s4)

+mxr∆t(2m
2 + 6s2 + 4C) − (x2

r − x2
R)(s2 +m2 + 2C)]

E7 =
b

4Mo(xR − xL)
((m2 + s2 + 2C)(m∆t− xl + xL) + 2m∆ts2)

+
a

8Mo(xR − xL)
[−∆t2(m2(m2 + 6s2) + 2C(m2 + s2) + 3s4)

+mxl∆t(2m
2 + 6s2 + 4C) − (x2

l − x2
L)(s2 +m2 + 2C)]

E8 =
b

4Mo(xR − xL)
((m2 + s2 + 2C)(m∆t− xr + xL) + 2m∆ts2)

+
a

8Mo(xR − xL)
[−∆t2(m2(m2 + 6s2) + 2C(m2 + s2) + 3s4)
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+mxr∆t(2m
2 + 6s2 + 4C) − (x2

r − x2
L)(s2 +m2 + 2C)]

13.3 TDEFM coefficients with a non-uniform velocity

distribution function

Mass coefficients

Mc =
s∆t√

2π(a∆tt+ 1)(xR − xL)

M1 =
((a∆t+ 1)xR + b∆t− xl)

2(a∆t+ 1)(xR − xL)

M2 =
((a∆t+ 1)xR + b∆t− xr)

2(a∆t+ 1)(xR − xL)

M3 =
((a∆t+ 1)xL + b∆t− xl)

2(a∆t+ 1)(xR − xL)

M4 =
((a∆t+ 1)xL + b∆t− xr)

2(a∆t+ 1)(xR − xL)

Momentum coefficients

Pc =
s∆t

2
√

2π(a∆t+ 1)2(xR − xL)

P1 = Pc [a (xR(a∆t+ 1) + b∆t+ xl) + 2b]

P2 = Pc [a (xR(a∆t+ 1) + b∆t+ xr) + 2b]

P3 = Pc [a (xL(a∆t+ 1) + b∆t + xl) + 2b]

P4 = Pc [a (xL(a∆t+ 1) + b∆t + xr) + 2b]

P5 =
a((xR(a∆t+ 1))2 − x2

l ) + (b2 + s2)(2 + a∆t)∆t+ 2b(xR(a∆t+ 1)2 − xl)

4(a∆t+ 1)2(xR − xL)

P6 =
a((xR(a∆t+ 1))2 − x2

r) + (b2 + s2)(2 + a∆t)∆t+ 2b(xR(a∆t+ 1)2 − xr)

4(a∆t+ 1)2(xR − xL)

P7 =
a((xL(a∆t+ 1))2 − x2

l ) + (b2 + s2)(2 + a∆t)∆t+ 2b(xL(a∆t+ 1)2 − xl)

4(a∆t+ 1)2(xR − xL)

P8 =
a((xL(a∆t+ 1))2 − x2

r) + (b2 + s2)(2 + a∆t)∆t+ 2b(xR(a∆t+ 1)2 − xr)

4(a∆t+ 1)2(xR − xL)

(13.1)

Energy coefficients

Ec =
s∆t

6
√

2π(a∆t+ 1)3(xR − xL)

E1 = Ec

[
(2s2 + b2)(3 + 3a∆t+ a2∆t2)

+6C(a∆t+ 1)2 + a2xR(a∆t+ 1)(xl + xR(a∆t+ 1))
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+a2x2
l + ab((3 + 5a∆t+ 2a2∆t2)xR + (3 + a∆t)xl)

]
E2 = Ec

[
(2s2 + b2)(3 + 3a∆t+ a2∆t2)

+6C(a∆t+ 1)2 + a2xR(a∆t+ 1)(xr + xR(a∆t+ 1))

+a2x2
r + ab((3 + 5a∆t+ 2a2∆t2)xR + (3 + a∆t)xr)

]
E3 = Ec

[
(2s2 + b2)(3 + 3a∆t+ a2∆t2)

+6C(a∆t+ 1)2 + a2xL(a∆t+ 1)(xl + xL(a∆t+ 1))

+a2x2
l + ab((3 + 5a∆t+ 2a2∆t2)xL + (3 + a∆t)xl)

]
E4 =

[
(2s2 + b2)(3 + 3a∆t+ a2∆t2)

+6C(a∆t+ 1)2 + a2xR(a∆t+ 1)(xr + xL(a∆t+ 1))

+a2x2
r + ab((3 + 5a∆t+ 2a2∆t2)xL + (3 + a∆t)xr)

]
E5 =

1

12(a∆t+ 1)3(xR − xL)

[
b∆t(b2 + 3s2)(3 + 3a∆t+ a2∆t2)

+xR(3s2 + a2x2
R + 6C + 3b2 + 3abxR)(a∆t+ 1)3

−xl(6C(a∆t+ 1)2 + 3b2 + 3s2 + 3baxl + a2x2
l ) + 6bC∆t(a∆t+ 1)2

]
E6 =

1

12(a∆t+ 1)3(xR − xL)

[
b∆t(b2 + 3s2)(3 + 3a∆t+ a2∆t2)

+xR(3s2 + a2x2
R + 6C + 3b2 + 3abxR)(a∆t+ 1)3

−xr(6C(a∆t+ 1)2 + 3b2 + 3s2 + 3baxl + a2x2
r) + 6bC∆t(a∆t+ 1)2

]
E7 =

1

12(a∆t+ 1)3(xR − xL)

[
b∆t(b2 + 3s2)(3 + 3a∆t+ a2∆t2)

+xL(3s2 + a2x2
L + 6C + 3b2 + 3abxL)(a∆t+ 1)3

−xl(6C(a∆t+ 1)2 + 3b2 + 3s2 + 3baxl + a2x2
l ) + 6bC∆t(a∆t+ 1)2

]
E8 =

1

12(a∆t+ 1)3(xR − xL)

[
b∆t(b2 + 3s2)(3 + 3a∆t+ a2∆t2)

+xL(3s2 + a2x2
L + 6C + 3b2 + 3abxL)(a∆t+ 1)3

−xr(6C(a∆t+ 1)2 + 3b2 + 3s2 + 3baxl + a2x2
r) + 6bC∆t(a∆t+ 1)2

]
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13.4 Hypersonic flow over a rectangular body
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Figure 13.1: (Top) Shock standoff distance and (Bottom) Normalised shock thickness from
EPSM, DTDEFM and TDEFM, EFM and a Godunov Solver. DTDEFM resulted obtained
using MINMOD to calculate density gradients in the source cells. γ = 7/5. ∆x = ∆y = H/30
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Figure 13.2: Temperature profiles along stagnation line showing results from EPSM, DTDEFM
and TDEFM. M∞ = 10, γ = 7/5. ∆x = ∆y = H/30. DTDEFM resulted obtained using
MINMOD to calculate density gradients in the source cells.
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Figure 13.3: Temperature profiles along stagnation line showing results from EPSM, DTDEFM
and TDEFM. M∞ = 5, γ = 7/5. ∆x = ∆y = H/30. DTDEFM resulted obtained using
MINMOD to calculate density gradients in the source cells.
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13.5 2D Hypersonic flow over a forward facing step
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Figure 13.4: Temperature contours taken from the EFM solution after 400, 800, 1200 and 1600
timesteps of ∆t = 0.0005. The gas is ideal with γ = 5/3. The grid resolution was 100x300
cells. The freestream flow mach number is M = 3. The gas is inviscid and all bounaries are
specularly reflective with exception to the inflow and outflow boundaries.

204



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x/H

y/
H 1.5

2.
5

4

5

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x/H

y/
H

1.52.5

3.5

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x/H

y/
H

1.5

2

3

3.5

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x/H

y/
H

1.5

2

3

2.
5

3.5

Figure 13.5: Temperature contours taken from the Riemann solution after 400, 800, 1200 and
1600 timesteps of ∆t = 0.0005. The gas is ideal with γ = 5/3. The grid resolution was 100x300
cells. The freestream flow mach number is M = 3. The gas is inviscid and all bounaries are
specularly reflective with exception to the inflow and outflow boundaries.
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Figure 13.6: Temperature contours taken from the TDEFM solution after 400, 800, 1200 and
1600 timesteps of ∆t = 0.0005. The gas is ideal with γ = 5/3. The grid resolution was 100x300
cells. The freestream flow mach number is M = 3. The gas is inviscid and all bounaries are
specularly reflective with exception to the inflow and outflow boundaries.

206



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x/H

y/
H 1.
5

2.5

4

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x/H

y/
H

1.
5

2.
5

3.5

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x/H

y/
H 1.
5

2

3
3.5

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x/H

y/
H

1.5

2

2.
5

3

23

3.5

2

Figure 13.7: Temperature contours taken from the DTDEFM solution after 400, 800, 1200 and
1600 timesteps of ∆t = 0.0005. The gas is ideal with γ = 5/3. The grid resolution was 100x300
cells. The freestream flow mach number is M = 3. The gas is inviscid and all bounaries are
specularly reflective with exception to the inflow and outflow boundaries.
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Figure 13.8: Temperature contours taken from the VTDEFM solution after 400, 800, 1200 and
1600 timesteps of ∆t = 0.0005. The gas is ideal with γ = 5/3. The grid resolution was 100x300
cells. The freestream flow mach number is M = 3. The gas is inviscid and all bounaries are
specularly reflective with exception to the inflow and outflow boundaries.
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13.6 Shock wave interaction with I beam
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Figure 13.9: Density contours from EFM solution for a shock wave interaction with the I-beam
shown in Figure 10.30 at times

√
RTt/L = 0.05, 0.104 and 0.154 where t is the flow time. The

computational grid employs 400x200 cells. The gas in assumed inviscid with γ = 1.4. The
approaching shock creates a pressure increase of pH/pL = 4.5 and a temperature increase of
TH/TL = 1.687. All surface reflections off the I-beam are treated as specular. All boudaries
encapsulating the computational grid are extraploated from internal cells.
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Figure 13.10: Density contours from the Riemann solution for a shock wave interaction with
the I-beam shown in Figure 10.30 at times

√
RTt/L = 0.05, 0.104 and 0.154 where t is the

flow time. The computational grid employs 400x200 cells. The gas in assumed inviscid with
γ = 1.4. The approaching shock creates a pressure increase of pH/pL = 4.5 and a temperature
increase of TH/TL = 1.687. All surface reflections off the I-beam are treated as specular. All
boudaries encapsulating the computational grid are extraploated from internal cells.
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Figure 13.11: Density contours from the DTDEFM solution for a shock wave interaction with
the I-beam shown in Figure 10.30 at times

√
RTt/L = 0.05, 0.104 and 0.154 where t is the

flow time. The computational grid employs 400x200 cells. The gas in assumed inviscid with
γ = 1.4. The approaching shock creates a pressure increase of pH/pL = 4.5 and a temperature
increase of TH/TL = 1.687. All surface reflections off the I-beam are treated as specular. All
boudaries encapsulating the computational grid are extraploated from internal cells.
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Figure 13.12: Density contours from the VTDEFM solution for a shock wave interaction with
the I-beam shown in Figure 10.30 at times

√
RTt/L = 0.05, 0.104 and 0.154 where t is the

flow time. The computational grid employs 400x200 cells. The gas in assumed inviscid with
γ = 1.4. The approaching shock creates a pressure increase of pH/pL = 4.5 and a temperature
increase of TH/TL = 1.687. All surface reflections off the I-beam are treated as specular. All
boudaries encapsulating the computational grid are extraploated from internal cells.
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13.7 Blast waves around city buildings
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Figure 13.13: Results for a Roe solver [Top] and CFD-FASTRAN [Bottom] at time t
√
RT/L =

0.01. The gas is inviscid and monatomic. All building surfaces are treated as fully reflec-
tive while the edges bounding the computational domain are extraploated outflow. The initial
’bomb’ region is the high temperature and pressure region shown in Figure 10.40. The com-
putational grid is a cartesian mesh of 100x100 cells. The CFD-FASTRAN computational grid
employed 40 blocks with a total of 8400 cells.
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Figure 13.14: Results for EFM [Top] and TDEFM [Bottom] at time t
√
RT/L = 0.01. The

gas is inviscid and monatomic. All building surfaces are treated as fully reflective while the
edges bounding the computational domain are extraploated outflow. The initial ’bomb’ region
is the high temperature and pressure region shown in Figure 10.40. The computational grid is
a cartesian mesh of 100x100 cells.
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Figure 13.15: Results for DTDEFM [Top] and VTDEFM [Bottom] at time t
√
RT/L = 0.01.

The gas is inviscid and monatomic. All building surfaces are treated as fully reflective while
the edges bounding the computational domain are extraploated outflow. The initial ’bomb’
region is the high temperature and pressure region shown in Figure 10.40. The computational
grid is a cartesian mesh of 100x100 cells.
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Figure 13.16: Density contours taken from the Riemann solver results at times t
√
RT/L =

0.02, 0.03, 0.05 and 0.1. The gas is inviscid and monatomic. All building surfaces are treated as
fully reflective while the edges bounding the computational domain are extraploated outflow.
The initial ’bomb’ region is the high temperature and pressure region shown in Figure 10.40.
The computational grid is a cartesian mesh of 100x100 cells.
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Figure 13.17: Density contours taken from EFM results at times t
√
RT/L = 0.02, 0.03, 0.05 and

0.1. The gas is inviscid and monatomic. All building surfaces are treated as fully reflective while
the edges bounding the computational domain are extraploated outflow. The initial ’bomb’
region is the high temperature and pressure region shown in Figure 10.40. The computational
grid is a cartesian mesh of 100x100 cells.
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Figure 13.18: Density contours taken from TDEFM results at times t
√
RT/L = 0.02, 0.03, 0.05

and 0.1. The gas is inviscid and monatomic. All building surfaces are treated as fully re-
flective while the edges bounding the computational domain are extraploated outflow. The
initial ’bomb’ region is the high temperature and pressure region shown in Figure 10.40. The
computational grid is a cartesian mesh of 100x100 cells.
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Figure 13.19: Density contours taken from DTDEFM results at times t
√
RT/L =

0.02, 0.03, 0.05 and 0.1. The gas is inviscid and monatomic. All building surfaces are treated as
fully reflective while the edges bounding the computational domain are extraploated outflow.
The initial ’bomb’ region is the high temperature and pressure region shown in Figure 10.40.
The computational grid is a cartesian mesh of 100x100 cells.
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Figure 13.20: Density contours taken from VTDEFM results at times t
√
RT/L =

0.02, 0.03, 0.05 and 0.1. The gas is inviscid and monatomic. All building surfaces are treated as
fully reflective while the edges bounding the computational domain are extraploated outflow.
The initial ’bomb’ region is the high temperature and pressure region shown in Figure 10.40.
The computational grid is a cartesian mesh of 100x100 cells.
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Figure 13.21: Density contours taken from the Riemann solver results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05, 0.1 and 0.2. The gas is inviscid and monatomic. All building surfaces are
treated as fully reflective while the edges bounding the computational domain are extraploated
outflow. The initial ’bomb’ region is the high temperature and pressure region shown in Fig-
ure 10.46. The computational grid is a cartesian mesh of 100x100 cells.
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Figure 13.22: Density contours taken from EFM results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05, 0.1 and 0.2. The gas is inviscid and monatomic. All building surfaces are
treated as fully reflective while the edges bounding the computational domain are extraploated
outflow. The initial ’bomb’ region is the high temperature and pressure region shown in Fig-
ure 10.46. The computational grid is a cartesian mesh of 100x100 cells.
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Figure 13.23: Density contours taken from TDEFM results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05, 0.1 and 0.2. The gas is inviscid and monatomic. All building surfaces are
treated as fully reflective while the edges bounding the computational domain are extraploated
outflow. The initial ’bomb’ region is the high temperature and pressure region shown in Fig-
ure 10.46. The computational grid is a cartesian mesh of 100x100 cells.
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Figure 13.24: Density contours taken from DTDEFM results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05, 0.1 and 0.2. The gas is inviscid and monatomic. All building surfaces are
treated as fully reflective while the edges bounding the computational domain are extraploated
outflow. The initial ’bomb’ region is the high temperature and pressure region shown in Fig-
ure 10.46. The computational grid is a cartesian mesh of 100x100 cells.
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Figure 13.25: Density contours taken from VTDEFM results at times t
√
RT/L =

0.01, 0.02, 0.03, 0.05, 0.1 and 0.2. The gas is inviscid and monatomic. All building surfaces are
treated as fully reflective while the edges bounding the computational domain are extraploated
outflow. The initial ’bomb’ region is the high temperature and pressure region shown in Fig-
ure 10.46. The computational grid is a cartesian mesh of 100x100 cells.
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13.8 Properties of the Error Function

The Error function is defined as:

erf(z) =
2√
π

∫ z

0

e−t2dt (13.2)

And can also be defined in terms of the incomplete gamma function γ(α, χ) as:

erf(z) = π−1/2γ(
1

2
, Z2) (13.3)

As a Maclaurin series, the error function is defined as:

erf(z) =
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n + 1)

=
2√
π

(
z − 1

3
z3 +

1

10
z5 − 1

42
z7 +

1

216
z9...

) (13.4)

13.9 C++ Code for TDEFM function

void tdefmflux(double xL, double xR, double xl, double xr,

double t, double m, double s, double *DATA) {

double m2, s2, t2, tm, denom;

double LMl, LMr, RMl, RMr, RML, LMR;

double expLMl, expLMr, expRMl, expRMr;

double erfLMl, erfLMr, erfRMl, erfRMr;

double expcoeffm, expcoeffp, expcoeffe;

double sdx, C, OD;

OD = 2; // Number of dimensions used in simulation

m2 = m*m; // Bulk velocity in source cell squared

s2 = s*s; // Variance (sqrt(RT)) squared

t2 = t*t; // Timestep squared

tm = t*m;

denom = sqrt(2)*t*s;

sdx = xR - xL; // 1D width of source cell

RMl = (xR-xl+tm)/denom;

RMr = (xR-xr+tm)/denom;

LMl = (xL-xl+tm)/denom;

LMr = (xL-xr+tm)/denom;

expRMr = exp(-RMr*RMr);
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expRMl = exp(-RMl*RMl);

expLMl = exp(-LMl*LMl);

expLMr = exp(-LMr*LMr);

erfLMl = erf(LMl);

erfLMr = erf(LMr);

erfRMl = erf(RMl);

erfRMr = erf(RMr);

C = (1/OD)*(0.5*((2*Cv/R)-OD)*s*s);

//C = Amount of energy (per unit mass) each particle carries

expcoeffm = t*s/sqrt(2*MPI);

expcoeffp = t*m*s/sqrt(2*MPI);

expcoeffe = t*s*(m2+2*s2+2*C)/(2*sqrt(2*MPI));

// MASS FLUX

DATA[0] = (1/sdx)*(expcoeffm*(expRMl-expRMr-expLMl+expLMr)

+ 0.5*(tm + xR - xl)*erfRMl

- 0.5*(tm + xR - xr)*erfRMr

- 0.5*(tm + xL - xl)*erfLMl

+ 0.5*(tm + xL - xr)*erfLMr);

// MOMENTUM FLUX

DATA[1] = (1/sdx)*(expcoeffp*(expRMl-expRMr-expLMl+expLMr)

+ 0.5*(m*(tm + xR - xl) + s*s*t)*erfRMl

- 0.5*(m*(tm + xR - xr) + s*s*t)*erfRMr

- 0.5*(m*(tm + xL - xl) + s*s*t)*erfLMl

+ 0.5*(m*(tm + xL - xr) + s*s*t)*erfLMr);

// ENERGY FLUX

DATA[2] = (1/sdx)*(expcoeffe*(expRMl-expRMr-expLMl+expLMr)

+ 0.25*(tm*(m2 + 3*s2 + 2*C) + (xR - xl)*(m2+s2+2*C))*erfRMl

- 0.25*(tm*(m2 + 3*s2 + 2*C) + (xR - xr)*(m2+s2+2*C))*erfRMr

- 0.25*(tm*(m2 + 3*s2 + 2*C) + (xL - xl)*(m2+s2+2*C))*erfLMl

+ 0.25*(tm*(m2 + 3*s2 + 2*C) + (xL - xr)*(m2+s2+2*C))*erfLMr);

} // End of TDEFM flux function
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