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DLR – German Aerospace Center
in 2024
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About 10 000 employees in about 50 institutes and 

installations in about 20 locations.

Offices in Brüssel, Paris, Tokio and Washington.



CFD Experiences: Development & Application
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Locate Spacecraft Department (RFZ)
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Spacecraft Department
DLR Göttingen – Dr. Jan Martinez Schramm

Aerothermodynamics and Propulsion Technology

Rarefied Flows (Chemical Space Propulsion)Rarefied Flows (Electric Space Propulsion)

Experimental Aerothermodynamics



Aerothermodynamics and Propulsion Technology Group
Dr. Tobias Ecker / Dr. Tim Horchler

▪ Efficient large scale HPC-Application

▪ Interfaces and infrastructures for interdisciplinary and multi-

physics simulations

▪ Chemically reacting flows, complex multi-phase thermodynamics, 

advanced turbulence models, radiation

▪ Aerothermodynamic performance, heat loads and design 

database development

▪ Propulsion systems

▪ Fundamental research in high enthalpy reacting flows

▪ Numerical support for experimental work in test facilities

Development of advanced numerical methods and models

Numerical analyses of vehicles, sub-systems and test stands

T. Ecker and T. Horchler, Institute for Aerodynamics and Flow Technology, 01.12.2022



Rarefied Flows Group
Dr. Martin Grabe

▪ Advanced plasma beam diagnostics and thrust measurement

▪ Plume / spacecraft interaction

▪ Electric propulsion thruster studies and development

▪ Technology transfer from R&D to application

▪ Large-scale test facility: STG-ET

▪ Thruster plume characterization

▪ Spacecraft self-contamination (molecular, droplets; erosion)

▪ Landing site contamination assessment

▪ Plume / Plume interference in nozzle clusters

▪ Large-scale test facility: STG-CT

Electric space propulsion

Chemical space propulsion

T. Ecker and T. Horchler, Institute for Aerodynamics and Flow Technology, 01.12.2022



Aerothermodynamics for Spacecraft Group
Dr. Alexander Wagner

▪ Hypersonic flight configurations at realistic flight conditions

▪ High temperature effects on aerodynamics of (re-)entry

▪ Boundary layer transition control

▪ Complete supersonic combustion scramjets

▪ Investigation of magneto-hydrodynamic effects during (re-)entry

▪ Large-scale test facility: HEG

High enthalpy hypersonic flow

T. Ecker and T. Horchler, Institute for Aerodynamics and Flow Technology, 01.12.2022



CFD Experiences: Development & Application

DLR-TAU (> 3 decades) UQ-Eilmer (< 6 month)

C (, Python) - procedural D, Lua  - object oriented

Finite volume on dual grid Finite volume on primary grid 

netcdf, .plt, … ASCII.zip, .pvd + .vtu

iso99, (tecplot, paraview) Paraview

Expert Learner

V. Hannemann, Spacecraft Department, AS, 2024

Dr. rer. nat. Dipl. phys. Volker Hannemann



kw turbulence model
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Observation: too much turbulence predicted downstream of shocks (worse the stronger the shocks is)



Explanation of modification (Sinha, Mahesh, Candler: Modeling shock 
unsteadiness in shock/turbulence interaction, Physics of Fluids, Vol.15(8), 2003)
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• Production term is designed for eddies facing a smooth gradient of the mean velocity.

• Shocks exist on a smaller length scale than the turbulent eddies 

• Shocks adjust fast to the changed flow condition within an eddy

Better production term at shocks with μ𝒕= 0

• Based on 1d linear analysis the damping of the remaining production term 

due to shock movement depends on the shock strength
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Implementation issues
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• Shock indicator to remove locally the μ𝒕 term from the production

• Shock strength measure M to dampen the remaining production term

• Problematic with moving shocks 

• Tedious procedure to find values upstream and downstream of the shock

New idea:                (Rathi & Sinha, AIAA Journal, Vol.61, No. 8, 2023)

Transport-Equation-Based Shock Sensor
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Analytic solution across a shock (without second source term):

If ψ𝟎 = 1 (and relaxation fast enough) ψ is a local shock strength measure.
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Concave ramp flow at Mach 12.25
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S. Mohammadian, PhD-Thesis, London, 1970:

“Hypersonic boundary layers in strong pressure gradients”

• Laminar

• Exp. focus: Comparison with theoretical models

upstream of SWBLI

Why good starting point?:

• No feedback of implementation

• Converging compression 

• Shocks of different strength



Divergence of the velocity field
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Shocks: div < 0

Expansions: div > 0



Balance equation with 1st source term only
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Restrict source term to div < -ε to avoid ψ > 1.

But, still indicates more then only shocks.

Therefore, minimal pressure jump to accept

div as shock related.

Without  2nd source term ψ < 1 downstream of 1st shock and 

values of ψ = ssf are no local measure of 2nd shock strength.



Balance equation with relaxation term

V. Hannemann, Spacecraft Department, AS, 2024

++ Local shock strength measure downstream of second shock!

-- Stronger relaxation gives better localization but less accurate values.

Relaxation interferes with 1st source term.

Best parameter values to determine L might be problem dependent.

Influence in turbulence model restricted by shock indicator

based on ψ distribution:

S = f(ψ < ψ𝑊 = 0.98, 𝛁ψ ∙ 𝑢 < 0)

f includes transformation to make S smooth but almost binary.



Modification
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Allow 2nd source term only where 1st source term is not active

but then with stronger relaxation.



Shock indicator
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Default Eilmer indicator without any user adjustment.

Primary usage: switch between more and less dissipative schemes.

Rathi&Sinha indicator



Shock indicator
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Simple mapping of S(ψ) towards 0 and 1 depending on ψ𝑾.



Finer Grid
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kw turbulence model
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kw original

kw with shock unsteadiness modification  

• High turbulence level inflow

• Shown: detail of turbulent kinetic energy field



Turbulence model prediction with different turbulence 
intensities at the inflow
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Status of Implementation in Eilmer
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• Scalar shock function is added in a pilot version

• Modifications done for Mach 12.25 compression ramp flow

• Lucky punch at a “laminar” test case

Plausible results but further tests necessary to gain trust

Missing verification against published results:

• Rathi&Sinha: SWBLI cases Ma=2.28 and β=8°, DNS different Tw/Tr

• Pasha&Sinha: SWBLI cases Ma=6, β=14° and β=10°, experiments in RWG

Re~30*10^6
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Flat plate Hakkinen SWBLI

Laminar flow

Ma = 2



Flat plate Hakkinen SWBLI
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Flat plate Hakkinen SWBLI

Δp=0.01

Δp=0.001



Lessons learned
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• Pressure jump parameter needs adjustment for the test case at hand

• Visualization of shock indicator useful to adjust the sensitivity

• Divergence of the velocity is a nice value to analyze supersonic flow fields

• This laminar separation bubble generates compression waves rather than shocks

• Sinha investigated fully turbulent SWBLI – more complex shock structure

(Amjad Ali Pasha & Krishnendu Sinha (2008) Shock-unsteadiness model applied to oblique shock

wave/turbulent boundary-layer interaction, International Journal of Computational Fluid Dynamics,

22:8, 569-582, DOI: 10.1080/10618560802290284)



Lessons learned
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• Pressure jump parameter needs adjustment for the test case at hand

• Visualization of shock indicator useful to adjust the sensitivity

• Divergence of the velocity is a nice value to analyze supersonic flow fields

• This laminar separation bubble generates compression waves rather than shocks

• Sinha investigated fully turbulent SWBLI – more complex shock structure

Thank you for the great work atmosphere at UQ! 


