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Abstract

An evolutionary design approach is used to construct an autopilot for a hypersonic air-

breathing aircraft. Flight control for this class of vehicle is an extremely challenging

problem due to the combination of nonlinear dynamics, parametric uncertainty and com-

plex constraints. Consequently, simultaneous control over the flight path, aerodynamic

attitude and propulsion is required.

This thesis develops and applies a design procedure which can explicitly address the

challenges of hypersonic flight control. The principal computational results of this the-

sis focus on the capability of an evolutionary based optimizer to design, withouta priori

knowledge, a robust fuzzy control law for a hypersonic vehicle concept. This work is not

meant as an expression of the superiority of a particular control approach or an optimiza-

tion procedure. Rather, it experiments with the potential of fuzzy control to represent a

complex, nonlinear, and robust control function, the incorporation of robustness features

in the control performance measure, and the capability of the genetic algorithm as a search

procedure. The structure of the fuzzy rule base defines the mapping procedure and the

design procedure learns the output profile through a numerical optimization procedure.

The evolution of the controller design requires the definition of a scalar objective function

which assesses the merit of the particular control solutionbeing tested. For this work

the design objective is extracted from a collection of simulated flight responses. Such an

approach is computationally demanding, but the benefits arethat fewer simplifying as-

sumptions are required in the flight dynamics and aero-propulsive models. There is also

the capacity to represent features in the objective function which encourage the develop-

ment of a robust control law. These include the evaluation ofthe flight response at many

points along the trajectory, the full range of expected attitude and control states, and the

inclusion of realistic variations in engine operation, vehicle aerodynamics, and physical

properties. Essentially, the controller can be configured based on the best available and

most practical model of the system. Stability and performance robustness are therefore a

natural derivative of the design exposure to the varied performance of the system.

A conventional autopilot structure has been used for the longitudinal motion study. An

outer guidance loop provides vehicle attitude commands fortrajectory maintenance, while

an inner-loop attitude controller tracks the commanded attitude and provides stability

augmentation. The control design focus is on the specification of the control function for
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the inner-loop. Aside from the evolutionary based design, the second prominent feature

of the control application is the parameterization of the attitude controller through a fuzzy

rule base. A fuzzy controller has been used for its inherent robustness, and its simplicity in

representing a nonlinear control function. The main performance benefit over a constant

gain linear controller is derived from the capacity to locally manipulate the control surface

of the fuzzy controller during the design. This allows rapidattitude response while still

providing the appropriate control authority about the trimmed condition. In addition, the

control surface can be configured to any nonlinearities which are a function of the control

inputs.

The development of the flight simulation models and the control design procedure are

described in detail in the thesis. For the flight simulator, particular attention was paid

to a realistic representation of the flight dynamics behaviour through an aero-propulsive

simulation module and a dynamics formulation that used the full six degree-of-freedom

equations of motion for flight about a spherical, rotating Earth. Successful application

of the evolutionary control design procedure to the hypersonic vehicle is demonstrated

through a series of design experiments. These cover some of the many variants avail-

able with both the specification of the control function and the application of the genetic

algorithm. Within this scope, the benefits and potential pitfalls of the overall procedure

are considered. Significantly, the genetic algorithm is able to capture the necessary con-

trol features for a design of large dimension, with relatively few function evaluations. To

provide guarantees of performance and stability robustness, the fuzzy controller must be

assessed against an extensive set of test conditions throughout the design process.

As part of the numerical experiments it was found that to achieve good quality control

designs, a modification to a well know non-uniform mutation operator was required. This

minor enhancement to the genetic algorithm greatly improved the quality of the control

solution. The search performance benefits have also been demonstrated on a collection of

standard minimization test problems, as documented in Appendix A.
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Introduction

In Germany during the second World War Eugen Sänger and Irene Brendt conducted re-

search on a long range antipodal bomber. The Sänger “SilverBird” vehicle was to be

launched from a rocket driven sled, climb to an altitude of 300 km, and descend through

a series of aerodynamic skips off the atmosphere [186, 6], ina manner similar to the op-

eration of today’s space shuttle. Sänger had first proposedthe winged hypersonic vehicle

in the late 1920’s. His work was the genesis of hypersonic research, inspiring the “higher

and faster” pursuit of the aerospace industry to achieve manned lunar return and the space

shuttle. Ultimately, as a long term project the Sänger space-plane was abandoned for the

V1 and V2 missiles favoured by the German military.

Hypersonic flight is defined by a Mach number greater than 5, representing a flight

speed five times the local speed of sound in the atmosphere. In1961 the rocket powered

North American X-15 was piloted to Mach 5.3 [6], becoming thefirst hypersonic aircraft.

The vehicle was an essential stepping stone to realizing thepotential of rocket powered

aircraft which ultimately led to the space shuttle. Rocket propulsion remains today as

the only mechanism for achieving hypersonic speeds and for launching objects into earth

orbit.

Modern rocket propelled launch systems operate close to theoretical limits. Their

continued development is driven by a demanding space marketwhich covets reliability,

flexibility, and a reduction in the cost of raising payloads.In pursuit of the lucrative satel-

lite market, a broad range of rocket propelled space transporters have been developed,

offering variations in size, staging, operation, and launching [108]. They are however

constrained by large infrastructure requirements and a payload penalty incurred from the

need to carry oxidant for combustion. Presently, the only foreseeable practical alternative

to chemical rockets is the air-breathing supersonic combustion ramjet engine, or scramjet

engine. A popular contemporary vision of scramjet application is the civilian transporter,

capable of cruising at speeds three to five times greater thancurrent propulsion capabili-

ties [95]. Despite the allure of high speed passenger flight,the primary motivation for the

development of hypersonic air-breathing vehicles is theirpotential as transatmospheric

aircraft, capable of accelerating to orbit. Advanced launch systems utilizing scramjets
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promise to make space more accessible by reducing the cost ofinserting payloads into

orbit.

Aerospace engines are customarily rated using specific impulse, or thrust per weight of

fuel per second. A convenient map of the operational capabilities of high speed propulsion

options may be formed by charting the variation of specific impulse with Mach number.

Figure 1.1 shows the performance of rockets and existing air-breathing engines, along

with predictions for the operation of a scramjet engine. Air-breathing engines in general,

offer superior cycle-efficiency compared to chemical rocket engines, because the oxygen

needed for operation is captured from the atmosphere, instead of being carried on board.

Scramjets, in particular, circumvent the material temperature limitations encountered in

ramjets and turbomachinery, and allow more efficient utilization of propellant than chem-

ical rockets [12]. In Figure 1.1 these two features appear asan extension of air-breathing

capabilities to hypersonic Mach numbers and, compared to the hydrogen and hydrocar-

bon fuel rockets, have a higher specific impulse at high Mach numbers. The high specific

impulse of a scramjet translates to a capacity to acceleratemore mass than a rocket of the

same size [118]. The weight saving can be used to provide a better payload fraction while

allowing a greater “empty weight” which, in turn, can be directed towards augmenting

vehicle ruggedness and flexibility of use. Realizing these capabilities would be a big step

towards improving the performance and efficiency of space launch vehicles.
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Serious consideration of scramjets for hypersonic flight followed the post-war pe-

riod of development of hypersonic vehicle concepts [118]. The pioneering period was

the 1950s and 1960s, beginning with the demonstration of stable supersonic combus-

tion. Dorsch and others at NACA Lewis Labs, used experimentson external and inter-

nal combustion in supersonic airstreams [29] to catalyse the development of the ramjet

cycle using supersonic combustion. With the first steps made, many researchers and or-

ganizations made significant contributions towards the development of the ramjet cycle

using supersonic combustion. For example, Weber and Mackay[226], Ferri [71, 70], and

Swithenbank [214] helped establish the basic concepts behind scramjet operation. Sev-

eral important aspects of scramjet operation were addressed, centering on the practical

issues of supersonic combustion and establishing methods of analysis. They included the

behaviour of supersonic combustion flames, chemical reaction processes, fuel-air mixing,

multidimensional interaction between combustion and fluiddynamics. Simultaneous with

the development of the propulsion system was the evolution of a new aerospace vehicle

configuration. To address the unique requirements of the inlet, combustor, and nozzle, the

airframe and propulsion system formed an integrated design, leading to some configura-

tions being dubbed “flying engines”. The extreme conditionsassociated with hypersonic

flight have also promoted the development of lightweight high temperature resistant ma-

terials, active cooling of the vehicle structure, dual subsonic and supersonic combustion

capability, intelligent trajectory and propulsion controls, simulation codes, and ground

testing facilities [95].

The supersonic combustion ramjet remains a conceptually simple concept. Despite

this, the development period resembles that which precededthe Wright brother’s first

powered flight, rather than the 20 - 30 year evolution period post 1900. Forty years of

hypersonic air-breathing research has been dominated by engine related issues. Only

recently was a small scale scramjet demonstrated to producenet thrust in an experimental

facility. In 2001 there were engine-centered flight tests bythe American Hyper-X program

and the Australian HyShot program. Such tests are an important stepping stone to a

practical scramjet powered vehicle suitable for sustainedfree flight.

Along with engine/airframe research, another key enablingtechnology is flight con-

trol. It is this challenge that provided the stimulus for this thesis onthe application of

intelligence based methods to the longitudinal flight control of a scramjet powered launch

vehicle. The vehicle concept follows the proposal for the development of an Australian

small scale launch vehicle, with a scramjet powered stage [204, 194]. Closed-loop flight

control is required to stabilize the vehicle, provide trajectory maintenance, and stabil-

ity robustness against performance uncertainty, constraints, and disturbances. With the

vehicle additionally defined by highly nonlinear time-varying dynamics, it is generally

accepted that most conventional linear control system methodologies are unsuitable [39].
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Hence the application of methods borrowed from intelligentcontrol, which promise the

ability to design a complex non-linear controller capable of robustly dealing with vari-

ations and uncertainty in vehicle and propulsion performance. Working with a conven-

tional longitudinal autopilot structure, the inner loop isrepresented by a fuzzy logic rule

base while the outer loop guidance is provided by linear feedback. They are designed

sequentially using a genetic algorithm (GA) to maximize flight control performance. The

design procedure builds robustness through the controllerperformance randomly sourc-

ing simulated flight responses. These responses can includesystem model uncertainties,

constraints and disturbances. With a noisy, evolving objective function, and a potentially

large number of control parameters to configure, it is a demanding optimization problem.

GAs are a general global search algorithm inspired by natural evolution. They have gained

a reputation for their robustness in the presence of noise, and their ability to search highly

non-linear, multimodal, and multivariate problems. As with any brute force approach

however, there is a potential for the design to be computationally expensive.

The remainder of this chapter introduces the hypersonic air-breathing vehicle, and

explores issues important to high speed flight and control. Aformal statement of the

research objectives is then provided, together with a guideto the remaining chapters.

1.1 Issues of Hypersonic Flight Propulsion

Convention separates supersonic and hypersonic flight regimes by associating hypersonic

aerodynamics with flows greater than Mach 5 or, for example, 1500 km/hr at an altitude

of 30 km. The distinction represents an increased importance at Mach numbers much

greater than 1, of physical flow effects such as viscous interaction, high temperatures, and

low density flow. In a laboratory setting, hypersonic is a term often used when describing

high speed flows in wind tunnels where the high Mach number is associated with a low

stream temperature, as is typical of large “blow down” tunnels [20]. In real high speed

flight such as atmospheric reentry, the high temperatures encountered through airstream

interaction with the vehicle are important for vehicle design and performance. The term

hypervelocity flow is then used to describe the generation ofthese high energy flows,

where there are both high Mach numbers and high temperatures. Since this thesis is

concerned with flight conditions where the term hypersonic is typically applied, there is

no further distinction made with these definitions.

Air-breathing engine selection for hypersonic flight essentially deals with the thermal

barriers imposed by structural heating and heat release [227, 118]. In Figure 1.1 the per-

formance range of several air-breathing engines indicate atransition from turbojets at low

Mach numbers, to ramjets up to low hypersonic and finally to scramjets for hypersonic

flight. The Mach 3 limit for turbojets represents a constraint on the turbine inlet temper-



1.1 Issues of Hypersonic Flight Propulsion 5

ature, which increases with Mach number, ultimately compromising structural integrity.

As the Mach number increases, the continued drop in turbojetcycle efficiency gives the

advantage to ramjets. Assuming forecasted technological improvements are met the op-

eration range of hydrogen fueled ramjets extends to a maximum flight speed of around

Mach 7. This operational limit is imposed by the heat releaseaccompanying the slowing

down of the highly energetic airstream to locally subsonic conditions prior to combus-

tion. Material and structural limits are compromised and the benefits of combustion are

reduced through higher initial temperatures and the dissociation of reactants. Both ram-

jets and scramjets compress the air stream by the forward speed of the aircraft. In ramjets

the passive surfaces generate strong normal shock waves with losses that increase with

flight speed. Above Mach 6 a scramjet configuration provides less inlet compression,

lower shock losses, lower combustion temperatures, and supersonic combustor flow. The

lower static temperature and pressure mean less heat transfer to the airframe and lower

structural loads, and enable an increased benefit from the burning fuel. Scramjet superior-

ity at hypersonic speeds is thus a result of the thermal and structural advantages of adding

heat to a supersonic rather than a subsonic combustor flow.

In addition to bounding high speed propulsion, the extreme thermal environment im-

pacts greatly on the actual engine design and successful operation of the aircraft. The

effects of high temperatures in combination with other hypersonic flow features such as

shock layers, entropy layer, low density flows, and viscous interaction [6] present many

potential problems. For example, interaction between the boundary layer and the invis-

cid flow reduces the core flow to the engine, and can greatly affect the surface pressure

distribution and therefore the lift, drag, and vehicle stability. Also, the high tempera-

ture flows can cause dissociation and ionization within the gas and influence the vehicle’s

aerodynamic parameters. These issues have also inspired the evolution of experimental

and computational techniques which are used to predict their influence.

One of the many contributions made through flight testing theX-15 rocket plane [45,

97] was the practical importance of hypersonic effects. A 1967 test flight had a dummy

ramjet suspended by a pylon below the X-15 [6]. Localized heating caused by shock

wave-boundary-layer interactions prematurely ended the thermal test flight of the axisym-

metric ramjet model. The model was completely removed from the pylon when the shock

wave from the ramjet nacelle burnt through the connecting pylon surface. Further damage

was caused by local surface heating from the pylon bow shock impinging on the bottom

of the X-15, allowing the penetration of the hot boundary layer.

The difficulties associated with the hypersonic environment have contributed to the

long development time of scramjet technologies. In contrast with the simplicity of the

scramjet engine, aerodynamicists continue to face many challenges which obstruct the

practical application of scramjet engines.
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1.2 The Hypersonic Air-Breather

Air-breathing vehicles generate thrust in direct proportion to the amount of air processed

by the engine. A basic scaling argument shows that as the operating speed increases, the

cross-sectional area required for the intake becomes a larger fraction of the total frontal

area. For hypersonic air-breathing aircraft, there is the additional need of a high dynamic

pressure flight trajectory to achieve optimum combustor operation. Therefore, generation

of the high specific impulse predicted for scramjets at high Mach numbers, not only brings

concerns of heating and structural loads, but also requiresthe engine intake area to be a

large fraction of the vehicle frontal area. The resulting large engine surface area attracts

significant drag penalties. Early tests on scramjet concepts showed the high external drag

of the engine negated the benefits of the scramjet, if it had tomounted in the traditional

manner, isolated from the airframe [118]. More recently, efforts to optimize a Mach 12

axisymmetric scramjet showed that, due to the large viscousforces, the net axial force on

the optimized scramjet was actually a drag force [48]. Provided engine designers are able

to build a useful vehicle-engine configuration, the drag force will likely remain a large

percentage of the total thrust, so that a small increase in engine performance can provide

a large increase in acceleration capability.

The basic shape of the hypersonic air-breather is formed by first addressing the inlet

processing requirement. Shown in Figure 1.2 are two genericairframe integrated scram-

jets. Both the accelerator and cruiser configuration have the propulsion system integrated

with the airframe structure. In addition to inlet processing, these configurations also ad-

dress other issues critical to hypersonic operation. They minimize external drag of the

airframe and propulsion system combination, minimize the total vehicle weight, and ad-

dress the cooling requirements of the airframe and engine byreducing the internal surface

area thereby reducing the surface area to be protected from high thermal loads. The slen-

der configurations also allow weak bow shocks to be maintained to minimize shock losses

within the propulsive flow path.

Major international hypersonic air-breathing projects are being pursued in the United

States of America, Europe, and Japan. Their focus is the relatively large, hydrogen-fueled

scramjet powered space-plane concept, for which cost effectiveness is achieved through

their continual reuse. The cruiser configuration of Figure 1.2 is representative of the

space-plane concept. Leading the way for space-plane research is the American Hyper-X

project [79]. Early development of this concept was via the NASP (National Aero-Space

Plane) and HySTP programs of the 1980s and 1990s [79]. Cancellation of the NASP

program led to Hyper-X, a less ambitious sub-scale hypersonic research plane. Presently,

it is the only project with the capability of testing the free-flight operation of a scramjet

powered vehicle. Hyper-X testing uses a modified Pegasus booster to deliver the vehicle
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Figure 1.2: Generic hypersonic air-breathing vehicles. (Source: References [227, 97, 221])

to the hypersonic test condition, before separation and free flight.

The large containment volume required when using hydrogen fuel means the space-

plane is a relatively large vehicle. The size of the operational concept vehicle behind

the Hyper-X sub-scale project is approximately 61 m, significantly larger than the shuttle

orbiter which is 35 m in length. Integration of the airframe and engine is such that the

lower portion of the vehicle forms the propulsion system while the upper portion is the

airframe. The entire forebody performs the initial compression of the freestream air, with

further compression by the inlets of the engine modules. Therear of the airframe is also

used, being shaped as a nozzle and producing thrust from the expansion of combustion

products. A benefit of using the fore and aft surfaces of the airframe for engine operation

is the generation of lift which would otherwise require large wings and attract large drag

penalties.

An alternative configuration to the Hyper-X vehicle type is the axisymmetric scram-

jet accelerator. This vehicle, shown in Figure 1.2 b), maximizes the airflow capture area

relative to the airframe area, promoting an adequate thrustmargin while minimizing con-

figuration drag at near zero angle of attack. The axisymmetric configuration was used

in the first flight tests, of a scramjet engine by the Russian Central Institute of Aviation

Motors (CIAM). These tests began in Russia in 1991 with the launch, to Mach 5.5, of an

axisymmetric scramjet atop a surface-to-air missile [120,100]. The test configuration was

essentially the same as the American Hypersonic Research Engine (HRE) project. Dur-

ing the 1960s, part of the HRE project involved preliminary tests where an axisymmetric
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Figure 1.3: CIAM scramjet testing using the Hypersonic Flying Laboratory. (Source: Refer-
ence [183])

ramjet was mounted below the X-15 rocket plane [79, 45].

Supporting CIAM’s testing was the hypersonic flying laboratory Russia developed

using modified surface-to-air missiles [184]. Figure 1.3 shows the arrangement used in

the Russian tests. The hypersonic flying laboratory was advertised as being capable of

testing a hydrogen-fueled scramjet up to Mach 6. A number of tests were performed

with the aim of collecting data to validate predictive numerical codes. The tests also

served to provide validation of systems such as the fuel supply. Using a truncated nozzle,

thrust was not measured directly, but sustained supersoniccombustion at hypersonic flight

speeds was reported as being achieved [46, 97, 100].

The Russian flight test capability separately attracted France and America. France’s

vested interest was their own high speed air-breathing technologies program which began

in the 1950s with an emphasis on missile applications. Todaythough, there is the addition

of a long term goal of a single stage to orbit plane. The CIAM testing provided the first

steps to validation of the scramjet and its real propulsion capacities [69, 57, 119]. America

was also attracted by the opportunity to cost-effectively obtain valuable flight data for their

space-plane program. The National Aeronautics and Space Administration of the United

States of America (NASA) worked with CIAM to reassess the scramjet design used in the

Franco-Russian tests. The higher heat loads associated with full scramjet operation at a

higher Mach number, required redesign of the combustor and active cooling system. The
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culmination of the NASA and CIAM contract was a flight test in 1996 which achieved a

new maximum flight Mach number of over 6.4 and provided usefuldata for the Hyper-X

project [183].

At The University of Queensland (UQ), scramjet research has, since the early 1980’s,

prompted the development of ground based testing facilities and computational modelling

capabilities. The basis for scramjet development was the potential of an axisymmetric

configuration operating as an acceleration stage in a small launch vehicle application. UQ

researchers within the Department of Mechanical Engineering, were the first to demon-

strate, in a shock tunnel, a flight-style scramjet generating more thrust than drag [171].

Presently, a UQ team heads an international effort to flight test the supersonic combustion

process in a scramjet, under the banner of the HyShot program[170]. For these hyper-

sonic air-breathing experiments, a two-dimensional scramjet is fitted to a Terrier/Orion

rocket. The experiments use a flight trajectory which provides the capability of testing at

a flight speed of Mach 8. Extensive instrumentation is installed to measure the pressure

rise produced by supersonic combustion, allowing correlation with measurements from

shock tunnel experiments performed at the university.

An early application concept, shown in Figure 1.4, uses the conventional scout rocket

configuration with a scramjet powered second stage [194]. Endorsement for this type of

scramjet application is provided by the scaling argument presented by Stalker [204]. The

basis for the analysis is a comparison of the cost to payload ratio over a wide range of pay-

loads, for traditional all-rocket launchers and one using ascramjet powered second stage.

The scaling argument reinforced the belief that scramjet-powered vehicles are relatively

insensitive to scale effects, compared to the quite strong increase in cost with payload

for rockets. As such, it was considered that a scramjet powered launch vehicle capa-

ble of placing a relatively small 1000 kg payload into low-earth orbit, could be operated

competitively against all-rocket launch vehicles.

51015202530

First stage
Algol 111AThird stage

Antares 111AScramjet powered
stage

Payload

Figure 1.4: A small payload launch vehicle concept formed by integrating a scramjet powered
second stage with a conventional scout rocket configuration.

One of the benefits of the axisymmetric design for the small launcher application, is

the potential for integration with conventional rocket stages [113]. In addition, changes
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in angle of attack would not be required to balance the variation in thrust level with

increasing velocity and altitude. Figure 1.5 shows a baseline design for the scramjet

powered stage, developed and tested in the Department of Mechanical Engineering at

UQ [229, 230]. A conical forebody delivers the hypersonic freestream air into six scram-

jet engines modules which surround the centre body. This allows control of the circum-

ferential distribution of mass flow, and provide the means for differentially throttling the

ducts as a method of controlling the vehicle attitude. In contrast, the alternative of a sin-

gle axisymmetric flow path would, with small angles of attack, have the bulk of the air

mass flow on the lee side, making the vehicle very hard to control. The axisymmetric

configuration of engine modules is designed to run optimallyat zero angle of attack at

roughly constant altitude. Conversely, non-zero angle of attack operation produces an

uneven distribution of freestream flow amongst the engine modules. Such off-design op-

eration means a significant impairment of engine performance and vehicle operation, and

generates large destabilizing moments. Successful operation therefore requires accurate

attitude control of the vehicle in level flight.

Figure 1.5: Baseline design for the scramjet powered stage. The axisymmetric scramjet propul-
sion system is shown with the cowl removed. It features a conical forebody, swept inlets providing
three-dimensional compression, and scramjet modules withcylindrical combustors.

Operation of the axisymmetric scramjet as depicted in Figure 1.6, is conceptually sim-

ple. There are no moving parts within the engine flow path and flow processes are neatly

divided into compression, combustion, and expansion. The conical forebody redirects the

freestream into the combustor through a series of oblique shocks, raising the temperature

and pressure of the airstream. Fuel is mixed with the supersonic airstream, undergoes tur-

bulent mixing and “auto-ignites” due to the high temperature. After traveling the length
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of the combustor, the combustion products and unburnt fuel are expanded by the vehicle

aft-body. Net thrust is then the difference between the thrust generated by the expansion

of exhaust gases and the total drag of the engine. Practical operation of such an engine,

in contrast to the simple flow structures shown in Figure 1.6,remains an enigma. What

is certain is that continued advancement of simulation capabilities is required to provide

analysis of the complex flow interactions which makeup hypersonic aerodynamics and

supersonic combustion. Also required are innovative methods to limit the impact of skin

friction on the overall performance, and the effect of boundary layer development on the

performance of the engine.

Forebody / Inlet Combustor Nozzle

M∞ expansionfuel
injection

shock
processing

Figure 1.6: Flow schematic of the fully integrated axisymmetric scramjet.

1.3 Early Flight Control

Around the turn of the nineteenth-century, George Cayley established the fundamental

defining concepts of an airplane. The majority of modern aircraft still conform to his

basic definition: a machine with fixed wings, a fuselage, and atail, with separate systems

providing lift, propulsion, and control [115]. Despite Cayley’s insight and decades of

aerodynamic research, it wasn’t until the later half of the nineteenth century that the real

surge toward powered flight began. At this stage, powered human flight was no longer a

flight of fantasy, and engineers began approaching it as justanother technical challenge.

This era of research has been popularized in museums around the world, and through

numerous texts [115, 2, 218, 7, 9].

It is worth noting several of the contributions during the Wright era, to contrast with

the development of the scramjet vehicle and hypersonic flight control.

There was a seemingly widespread belief among scientists ofthe late nineteenth-

century that enough was known about aerodynamics to achievepowered flight. They

were confident that the flying problem could be simply tamed byplacing a large enough

engine on a strong enough airframe capable of generating lift [115, 7]. Hiram Maxim

belonged to this group of thinkers. He assembled a huge four-ton machine powered by

two very efficient steam engines, but without many of the elements needed for practical

flight. Likewise, Clement Ader attempted to fly a steam-powered aircraft whose only

method of control was a highly impractical method of moving the wings fore and aft.
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Both Maxim (1890’s) and Ader (1890), through their brute force approach, managed to

briefly lift their vehicles during tests. Maxim’s vehicle crashed after it managed to break

free from the guard rail of his test track. To his credit though, a control augmentation

device was installed, in apparent recognition of the inherent longitudinal instability of the

vehicle [2, 148].

A more productive approach was followed by Samuel P. Langley. Ironically, it also re-

sulted in the most heralded aeronautical failure of the era.Langley began with flight tests

on models, conducting a number of successful tests with one-quarter scale, unpiloted

steam-and-gasoline- powered aircraft models. Unfortunately for Langely, his success

ended when the piloted full-scale version of his successfulmodels collapsed following

takeoff. As an internationally respected scientist he attracted considerable ridicule for the

failure of his much publicized, late 1903 attempts.

In contrast with both Langley and Maxim, Otto Lilienthal believed it was necessary to

obtain a feel of the airplane and thereby understand its flight properties, before attempting

to fly with an engine. In this respect he followed Cayley’s lead of performing aeronau-

tical studies using gliders. Lilienthal recognized the need for control but his method of

shifting mass was limited. The other great limitation of hisdesign was the use of flapping

wings for propulsion. Despite many successful flights, he died in 1896, as a result of

injuries sustained when a wind gust stalled his glider and itfell to the ground. However,

the “aviator” philosophy established by Lilienthal contributed significantly to the aero-

dynamics and practical design of an airplane, and ultimately inspired the success of the

Wright Brothers.

The Wright brothers, like Lilienthal, were concerned with what was needed to fly,

rather than the principles behind it. Combining established aerodynamic principles with

their own research, they established the design features needed to fly an airplane. The

key obstacles as they saw it were the wings for generating lift, a means of propulsion,

and a method of balancing and steering. The first two elementshad already been well

investigated and were considered to be attainable and rapidly developed as required. As

Wilbur Wright put it during a presentation before the Western Society of Engineers:

“... When this one feature (balance and steering) has been worked out, the age

of flying machines will have arrived, for all other difficulties are of minor im-

portance.” Wilber Wright speaking before the Western Society of Engineers,

September 1901, as quoted in [115], page 48.

To address the control problem the Wrights followed the aviator philosophy, learning

to fly controlled gliders. Dynamic stability within controllable limits set the boundary

for their research. This approach was perhaps a benefit of their experience with bicycle

building, and provided the concept of a stable system consisting of the machine and the
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pilot, rather than simply a stable airframe. Nine days afterLangley’s failed attempt, the

Wrights’ research culminated with the epochal flight of the inherently unstable Wright

Flyer. It showed that with relative safety, one could fly a powered aircraft.

In the century following the Wright brothers’ success, control technology has evolved

from a pilot dependent era to an era of computerized automatic control of both piloted

and unpiloted vehicles. There was a brief foray into aircraft with inherent stability, as

the demanding task of flying as performed by the Wright brothers was not practical for

early aircraft with lesser pilots. Also, the more stable an aircraft, the easier the autopilot

was to design. Abandoning inherent stability in favour of dynamic stability followed

the realization of the performance gains available throughthe reduction in the weight

and drag from stabilizing surfaces. Active flight control has since, been at the forefront

of developments in control theory. From the Wright Flyer to the Space Shuttle these

advances have seen the application of methods such as gain scheduling, adaptive control,

robust control, and optimal control techniques.

The “higher and faster” ideology has catalysed aviation innovation for a hundred

years, allowing aircraft to access a greater range of speedsand altitudes. Consequently, it

became apparent that vehicle behaviour was dependent on theflight condition. In particu-

lar, the aerodynamic and propulsive differences required for subsonic, supersonic, hyper-

sonic, and rarefied flight regimes, place varied demands on the flight control system. The

following section considers various issues important to hypersonic flight control.

1.4 Hypersonic Flight Control

While many aviation pioneers pursued the development of thepower plant, the success

of the Wright brothers lay with their appreciation of flight control. The Wrights argued

that a propulsion system is of little use without the capability of controlling the vehicle in

flight. This is of course, generally true for applications ofhypersonic air-breathing flight.

However, what sets the hypersonic era apart is that practical scramjet engine operation

is considered one of the greatest challenges in modern aeronautics. There are a host

of recognized aerodynamic, material, and propulsion problems which continue to attract

the majority of hypersonic research interest [118, 45, 106]. Similarly though, there are

numerous issues central to controlled hypersonic flight.

Broadly speaking, the hypersonic air-breathing flight controller must provide stable,

robust operation of a vehicle over a broad operating range, and ensure maximal engine

performance subject to a highly constrained operating envelop. In other words, simulta-

neous control over the flight path, aerodynamic attitude, and propulsion is required. This

key control requirement is a direct descendant of the integrated vehicle configuration and

the conditions needed for efficient engine operation. Engine performance depends on the
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inlet’s capability to capture the airflow, translating to a strong dependency on flight con-

dition and the vehicle angle of attack. Such is the anticipated sensitivity of the propulsion

system to variations in flight conditions, it has been suggested [45] that tracking tolerances

of the order of0.1◦ could be required for some configurations. Since local flow deflec-

tions control the engine operation, vehicle performance can also be critically affected by

structural deformations [191, 41, 45].

Efficient engine operation also requires tracking an aggressive trajectory of high dy-

namic pressure, constrained by structural and thermal loading. The extreme operating

environment places considerable demand on the instrumentation of sensors and the at-

tachment of actuated stabilizing surfaces to the vehicle. Amyriad of sensors are required

throughout the vehicle, allowing for example, the detection of structural vibration modes,

fuel flow rate, internal engine flow conditions, and the freestream. Air data measure-

ments can be used to determine the pressure altitude and vehicle attitude. Due to the

surface exposure to high temperature flow it is likely that all sensors will require cooling.

Flow intrusive methods used for subsonic and supersonic aircraft [85] are not suitable

for hypersonic vehicles as the sensors protruding from the surface would not survive the

high energy environment of hypersonic flow. Also, booms instrumented with pitot tubes

are sensitive to vibration and alignment error, and can induce flight instabilities which

may degrade aircraft handling [231]. An alternative is the real-time flush air-data sensing

(FADS) system [232, 117, 52], which couples a collection of pressure tappings located

flush with the surface and an airdata estimation algorithm. Such a system has been flown

on the shuttle orbiter [174, 13]. However, since the geometry of the scramjet vehicle is

not conducive to such arrangements, further development insensor design is required.

A FADS system for the sharp-nose geometry needed by hypersonic vehicles has been

developed for flight at Mach 3 to 8 [54].

Two of the critical parameters needed for the guidance and control systems are the

dynamic pressure and angle of attack. Though FADS systems are being developed for

this purpose it is likely that air-data sensors will be augmented by estimates available

from inertial measurement units (IMU). The gyroscopes and accelerometers of an IMU

are used to compute estimates for the vehicle velocity, altitude, and attitude, with respect

to a fixed coordinate system.

For most launch vehicle applications a high degree of maneuverability during the ac-

celeration stage, is not a desirable feature. A stable vehicle can be configured through the

appropriate distribution of mass and the use of fixed wings, thereby simplifying the au-

topilot design. In early rocket launcher concepts, massivewings and fins were used to sat-

isfy stability and control requirements. A fine example of this is the 81 m tall space ferry

concept designed by von Braun [186]. The multi-staged launcher shown in Figure 1.7,

incorporated three recoverable stages, each fitted with large stabilizing fins. The final



1.4 Hypersonic Flight Control 15

stage was to function in a manner similar to the more familiarspace shuttle orbiter. Like

the space shuttle orbiter, the final stage of von Braun’s design used aerodynamic surface

to generate lift and augment stability for a gliding reentry. The complexities of practi-

cal operation do not follow linearly from existing propulsion systems. Scramjet powered

vehicles have a fundamentally different operation boundary to rocket-only launchers like

the von Braun concept and the space shuttle. Scramjets require prolonged access to high

dynamic pressure conditions, implying the need to minimizethe exposed area. Inherent

stability through large aerodynamic surfaces would severely compromise the vehicle’s

application as an acceleration stage. While marginal stability characteristics may be de-

sirable for maneuverability, in the scramjet vehicle thereare stringent constraints on the

vehicle attitude and the dynamic pressure variations.

Figure 1.7: A space ferry concept from the early 1950’s, designed by Wernher von Braun. Stand-
ing 81 m tall with a launch mass of 6350 tonnes, it had three recoverable stages. (Source: Refer-
ence [186])

The selection and performance of control stabilizers is another key issue for hyper-

sonic flight control. Aerodynamic surfaces and thrust vectoring are the primary choices

available from modern aircraft and also find application in air-breathing vehicles. Their

potential is very much dependent on the vehicle configuration. The Hyper-X configura-

tion, shown in Figure 1.2 a), by virtue of lift generated by the inlet and nozzle surfaces, can

make do with relatively small wings. Between the wings and elevators, pitching stability

can be achieved at an angle of attack without unreasonably large aerodynamic losses. The

axisymmetric scramjet on the other hand requires a relatively large wing area to generate

lift and also large elevators to counter disturbances to theoptimal zero angle of attack

flight condition. The necessary control authority is therefore more difficult to achieve

and may require a combination of control mechanisms, like aerodynamic surfaces and

differential throttling. Whatever the vehicle configuration, high bandwidth, high strength
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control actuators are required. Due to the long forebody section and the generation of

large thrust forces, the controller must perform a delicatebalancing act.

Thrust vectoring has been used with increased frequency in recent years. It has found

application in commercial airliners for safe landing afteraero-surface failure and military

aircraft to enhance manoeuvrability. On modern rockets, thrust vectoring through gim-

balling of the nozzle has significantly reduced and in many cases eliminated, the need for

aerodynamic surfaces. For scramjet vehicles, thrust vectoring can be achieved by manip-

ulation of the thrust surface [122, 213], external burning [29], surface blowing [243, 146]

and differentially throttling the engine modules [234]. Considering the potential distur-

bance to the engine and airframe flow - especially with components being optimally con-

figured - these methods will require accurate simulation to ensure critical vehicle opera-

tion is not lost. Also, the necessary fuel for thrust vectoring is in competition with the

primary usage of fuel for thrust generation and cooling. It is therefore likely that thrust

vectoring on scramjet vehicles will be used to augment vehicle stability and control, rather

than act as the primary controller.

Without unconstrained access to hypersonic flight testing,the methods of assessing

control feasibility are in the form of numerical and experimental simulations. The most

relevant and accessible experimental capability available for hypersonic vehicles are im-

pulse test facilities. Though these facilities are able to reproduce the hypersonic flight

condition, they are unable to make dynamic measurements, can have uncertain and con-

taminated test flows, require scaling of models or partial vehicle simulation, and are still

developing their capability, especially in relation to data measurement techniques. The

alternative to physical experiments is to perform numerical simulations of the flow in-

teracting with the vehicle. The most advanced numerical tool is computational fluid dy-

namics (CFD) [223]. CFD avoids many of the constraints associated with experimental

facilities, but introduces additional unique constraints. Primarily, CFD applications are

constrained by the time needed for accurate simulation of the flow structures, while the

accuracy is dependent on the mathematical models used to describe the flow structures

and the integration procedure. The continued development of both numerical and physical

experimental techniques is crucial to the development of hypersonic flight technologies.

The status of scramjet vehicle development means that flightcontrol design utilizes

system models based on the aerodynamics, propulsion and control performance ofcon-

ceptvehicles. Accordingly, the system models are generally simplified numerical rep-

resentations of the interactions between the vehicle and the flow path, or performance

coefficients abstracted from experimental data. Due to the limitations of the these ap-

proaches and those of more advanced simulation techniques,control design must con-

sider the effects of uncertain and unmodelled system features. Hence, there is a focus

on robust control techniques by those researchers investigating the design of hypersonic
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flight controllers, see for example [188, 145, 157, 41, 38]. Robustness in this case refers

to both stability robustness and performance robustness [209]. The former refers to main-

tenance of vehicle stability subject to parameter variation, while the latter is the assurance

of proper response to commands and the reduction of responseperturbations caused by

disturbances. Contributions to hypersonic control are reviewed later in Chapter 2.

The primary causes of control failure leading to aircraft failure are insufficient control

authority, actuator failure, and the effects attributableto uncertain or unmodelled system

features. An early space shuttle orbiter reentry provides acogent example of the effect

of system uncertainty and the robustness required by flight controllers. Discrepancies

in the predictions of pitching moment with those inferred from flight data, meant body

flap deflections twice those predicted were required to maintain trim during the orbiter’s

first reentry [92]. This issue was finally resolved with a marriage of computational fluid

dynamics (CFD) codes and experimental data [228], addressing the real-gas effects and

viscous effects, and their influence on vehicle pitching moments and control effectiveness.

Compared to air-breathing hypersonic vehicles, the shuttle configuration is relatively sim-

ple and CFD codes can be readily applied. The added complexity of scramjet operation

means the accurate representation of flow features, to ensure understanding of the vehicle

performances, continues to be an area of research.

Additional vehicle operating complexity arises from the highly nonlinear nature of

its operation. Nonlinearities appear in the vehicle dynamics and the aerodynamic char-

acteristics through dependencies with angle of attack, flight condition, fuel setting, and

elevator position. Following a conventional approach to control design, the vehicle be-

haviour would be represented as a linearized model and analytical tools used to design

the control system. If necessary the system parameters and control parameters would be

“scheduled” [180] along the flight trajectory, with flight speed and altitude being probable

reference variables. Working against this approach in the hypersonic regime is the broad

operation range, rapid variations in aerodynamic responsewith changing flight condition,

and the need for numerous indices such as Mach number, angle of attack, altitude, and

dynamic pressure, to schedule the system behaviour. Systemnonlinearities also place a

greater importance on the modelling of the system behaviourfor control design. Fewer

simplifications are appropriate for the dynamics and propulsive models if a reasonable

representation of system performance is expected.

The combination of sensor requirements, actuator design, system uncertainty, and the

extreme operating environment, has the potential to make orbreak the practical applica-

tion of the scramjet engine to hypersonic flight. It is a complex, multi-dimensional task

where isolation of components for analysis is generally notpossible, and an integrated

approach to trajectory, control, airframe, and propulsionis necessary. The aviator philos-

ophy so deservedly revered by Lilienthal and the Wright brothers has been transformed
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by the restriction of testing to experimental facilities and computerized numerical simula-

tions. Though full-scale testing is possible with numerical codes, real flight tests remain

desirable for the gradual buildup to full-scale vehicle operation. The prohibitive costs of

tests with full-scale models mean scaled down versions suchas America’s Hyper-X will

require thorough exploration. The combination of extensive sub-scale simulation experi-

ments with CFD is necessary for avoiding the scaling problems which thwarted Langley’s

efforts towards powered flight.

Considering the broad range of issues influencing control design and performance,

the results of this thesis have been based on the more restricted problem of longitudinal

control of a scramjet powered, hypersonic concept vehicle.We are not in a position

to examine the complete operational characteristics. Nor is the purpose of this thesis

to demonstrate through simulation, the successful six-dimensional operation of a real

scramjet launcher concept. Rather, the purpose is to investigate the application of some

“intelligence based” techniques to the design of a hypersonic flight controller. The field

of artificial intelligence has developed ways of dealing with a very wide range of system

uncertainties, non-linear systems, and many degrees of freedom, in the same manner that

human intelligence has shown this ability.

1.5 Thesis Outline

The primary motivation for this thesis was the opportunity to address the flight control

challenge presented by air-breathing hypersonic flight, through intelligence modelling

and novel optimization techniques. Towards this, the aims of this thesis were:

• To develop a numerical system model to describe the aerodynamic, propulsive, and

physical properties of a scramjet powered launch vehicle concept, operating in the

hypersonic flow regime.

• To develop a simulation program for the dynamic simulation of controlled hyper-

sonic flight about a spherical, rotating Earth. This is the basis of performance anal-

ysis used for the control design, and contrasts with the conventional use of linear

models or look-up tables.

• Assemble a real-coded genetic algorithm for the optimization of arbitrary functions.

• To investigate the use of genetic algorithms in designing a robust fuzzy logic con-

troller using a benchmark problem as a test case. This benchmark control problem

is presented in a separate technical report [17].

• To demonstrate the evolution of a robust flight control function for a scramjet pow-

ered vehicle using full-nonlinear flight simulations as a performance measure.
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• To evaluate the performance of the longitudinal autopilot through a full hypersonic

trajectory flight simulation.

The organization of the thesis is described by the followinglist:

Chapter 2. Provides a review of developments in flight control, particularly those being

applied to hypersonic air-breathing flight. A formal introduction to the autopilot design

used for this thesis is also presented.

Chapter 3. Discusses the flight simulation package used for the design and analysis of

the flight control laws. Attention is paid to the geometric specification of the scramjet

powered vehicle concept, aerodynamic and propulsive modeling, mass properties specifi-

cation, and the provision of a flight response history through the integration of the flight

dynamics model.

Chapter 4. In this chapter the control system design tools are discussed. A fuzzy logic

controller has been used in this thesis to describe the control function for inner loop of the

autopilot. Fuzzy logic control represents a human based reasoning implementation of a

rule based system. An introduction to the application and design possibilities is provided.

The second major component of this chapter is the control design tool. Here a genetic

algorithm is introduced as a powerful optimization tool forhigh order, highly nonlinear,

and noisy functions. In the control design case, the objective function used to direct the

search is sourced from controlled flight simulations.

Chapter 5. Implementation issues for designing a robust flight controller for the hyper-

sonic scramjet are addressed. Control design is essentially an evolution of the control

function using full non-linear flight simulations to build afitness function. A number

of techniques are used to encourage the rapid development ofa stable robust control

function. These include a large sampling of initial conditions to test the controller perfor-

mance, and a non-uniform objective function.

Chapter 6. Reports on the results of simulated flight control experiments for the hyper-

sonic scramjet. The results are organized with the aim of addressing a series of questions

relating to the parameterization of the control function, the design procedure, and the

performance of the genetic algorithm. Performance and stability robustness are the key

requirements of the inner-loop attitude controller, and these are examined for a constant-

gain linear controller and a range of fuzzy control laws. This chapter also presents a

longitudinal guidance configuration for the purpose of providing a full trajectory simula-

tion.

Chapter 7. A summary of this thesis is presented in the final chapter. Conclusions are

made relating to the major components of this thesis: vehicle design and operation, the



20 Introduction

inner loop fuzzy controller, overall autopilot design, thegenetic algorithm, and the evo-

lutionary design procedure. Some proposals and recommendations are also drawn from

these main areas.
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Approaches to Flight Control

Developments in flight control are driven by the continual development of flight tech-

nologies and the potential for disaster following control failure. This combination has

placed flight control at the forefront of many advances in control theory. For exam-

ple, the first type of adaptive controllers were designed forapplications to aircraft con-

trol problems [93, 187, 127]. Advances in overall system performance have increased

maximum flight speeds and operation range but, simultaneously have presented vehicles

with marginal stability and exposure to more extreme and more variable environments.

Throughout this period of improvement in propulsion systemand aircraft hardware, the

contributing factors to control failure have remained similar: unmodelled effects, inade-

quate control authority, and actuator failure. The inevitable increased demands placed on

pilots have led to the evolution of flight control from a pilotdependent era to computerized

automatic control of both piloted and unpiloted vehicles.

In June of 1903, a few months prior to the maiden flight of the Wright flyer, aeronau-

tical theoretician G. H. Bryan made the following prediction:

“The problem of artificial flight is hardly likely to be solveduntil the condi-

tions of longitudinal stability of an aeroplane system havebeen reduced to a

matter of pure mathematical calculation.” Quoted in [218],page 2.

The Wrights had clearly developed an understanding of the principles of flight and the

dynamic characteristics of their vehicle. By 1911, Bryan had established the mathematical

theory for the motion of aircraft in flight, which are essentially the rigid body, six degrees

of freedom equations used today [36]. The linearization of the equations of motion to

form perturbation equations, thus simplifying the simulation of vehicle responses, was

also a product of Bryan.

The need for a strong analytical approach to aircraft stability and control came much

later, with the extension of the flight capabilities to pointwhere piloting became difficult.

Classical control theory developed from this need, employing frequency domain meth-

ods such as pole placement, root locus, and frequency response. Applying conventional

methods relies on interpreting the system’s dynamic response through descriptions such
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as settling time, oscillation frequency, rise time, overshoot and so on. The approach is

generally most useful when dealing with single-input single-output (SISO) systems and

linear time-invariant (LTI) systems.

The development of what is commonly referred to as modern control theory, was

based on design with a state variable model and the use of mathematically precise perfor-

mance functions to provide a solution for the control gains [211]. Modern control theory

is applicable to multiple-input multiple-output (MIMO) systems, which may be linear or

nonlinear, time-invariant or time varying. Compared to classical control theory which

requires successive loop closure to select control gains inmultivariable systems, modern

control theory allows the simultaneous determination of all control gains. In general, the

control element is introduced in a linear manner, with a quadratic performance index used

to provide an algebraic equation for optimal gain design.

Though many aircraft may behave in a locally linear manner, the application of linear

control theory over a broad operational envelope requires some means of adapting the

control gains to maintain performance over the range of flight conditions to be encoun-

tered. Traditional flight control designs thus involve linearizing the vehicle dynamics

about several operating conditions throughout the flight envelope, designing linear con-

trollers for each, and using an interpolation scheme to blend the design points. “Gain

scheduling” typically follows some predetermined schedule for the variation in the con-

trol gains, and is often expressed in terms of flight speed, angle of attack, altitude, or

dynamic pressure. Gain scheduling is generally sufficient to ensure acceptable dynamic

performance, though there are some situations where it cannot easily provide acceptable

performance. These include rapid climbing and diving with large variations in dynamic

pressure, rapid manoeuvres involving large angles of attack, and booster separation which

involves considerable mass change.

In cases where gain scheduling is not feasible a self-adaptive control system can be

implemented. The two types of adaptive systems are model reference (direct adaptive)

and parameter-adaptive. The basic idea of an adaptive control system is the maintenance

a constant or invariant closed loop dynamic response throughout the vehicle flight range.

There was a large effort toward adaptive control research during the 1950’s and 60’s,

including those by General Electric, Honeywell and MIT [14]. The early attraction of

adaptive control of aircraft was the promise of a universal autopilot. The Honeywell

adaptive control system was flight tested on the X-15 hypersonic research vehicle [202],

though it was considered partially responsible for the failure of a vehicle flight test which

tragically resulted in the loss of the pilot [202, 187].

As vehicle design advances, the level of certainty associated with representation of

system model for the purpose of control design, is of increasing importance. Parametric

uncertainties describe unknown parameters in an otherwiseknown model structure, such
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as that arising from linearized equations of motion. Example uncertainties include per-

formance dependency on variations in the flight environment(dynamic pressure, Mach

number, angle of attack), and large configuration variations relating to location of center

of gravity, fuel and payload, and geometric variations. Another form of uncertainty con-

sists of unknown and unmodelled dynamic processes at high frequencies. These include

structural resonances and unsteady distributed aerodynamics. In the application of classi-

cal control theory, gain and phase margins are used to satisfy robustness of SISO systems.

Multivariable techniques such as the linear quadratic regulator (LQR), provide optimal

control strategies with guaranteed multivariable robustness properties. Recent develop-

ments in modern control theory through the use ofH∞ andµ synthesis, have developed

methods of including uncertainty in the mathematical representation of the system, thus

forming “robust control” theory. The aim of robust control is the development of control

algorithms which guarantee a certain level of performance in the presence of uncertainties

and disturbances.

The challenges posed by hypersonic air-breathing flight represent a development and

application opportunity for advanced control techniques.Not surprisingly then, there

have been many approaches presented as solutions to the flight control problem: sliding

mode control, predictive control, quantitative feedback theory, nonlinear control, robust

control theory, stochastic optimal control, and intelligence based control for example.

Contributions in some of these areas are covered in the review in the following section.

The work of this thesis centres on the application of an evolutionary design approach,

whereby the control parameters are evolved according to theperformance of simulated,

nonlinear, controlled flight responses. With a fuzzy controller performing the active stabi-

lization of the vehicle, the control design procedure is effectively a search for knowledge

process. Performance and stability robustness are developed by exposing the design to

the full range of hypersonic flight conditions, and by representing parametric uncertainty

and disturbance through randomized variations.

The remainder of this chapter provides a review of international efforts towards hy-

personic vehicle control, followed by an introduction to a specific autopilot configuration

and its evolutionary design.

2.1 Developments in Hypersonic Flight Control

Despite the relatively unproven concept of hypersonic air-breathing flight, there have been

many contributions to the hypersonic flight control problem. The interest is driven by

the challenges posed by hypersonic air-breathing flight, covered in Chapter 1, and the

desire for control theory not to be trailing the developmentof flight hardware. The high

performance of the first jet aircraft stepped ahead of stability and control technology [2],
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as did the first supersonic flight, where the difference between success and failure was

getting the elevators to work.

In terms of hypersonic flight control design, the challengesgenerated are twofold.

The first relates to the flight constraints of a highly nonlinear time-varying vehicle perfor-

mance and the second is due to the degree of uncertainty in theperformance of airframe,

propulsive and control components. The common theme amongst developments in con-

trol theory is therefore the optimal design of a robust controller. Another recognized

feature is the integration of guidance and control [192, 191, 96], due to the coupling of

airframe and propulsion systems and the the sensitivity of both to the flight conditions

and vehicle attitude. The following reviews some of the contributions to hypersonic air-

breathing flight from the past decade, under the headings of intelligent control, adaptive

control, stochastic robustness and parameter tuning, multivariable robust control, optimal

control, fuzzy control and hypersonic maneuvering.

2.1.1 Robust Intelligent Control

Chamitoff’s thesis [39] applied “intelligent” optimization methods to the development of

a robust predictive flight control strategy. The flight control was formulated as receding

horizon optimal control problem, which provides stable tracking of a desired trajectory.

Lyapunov stability was combined with an enhanced A∗ optimization algorithm, to search

through possible short term trajectories. With the inclusion of parametric uncertainty,

a robust control solution can be obtained by minimizing the worst case tracking error.

The performance of candidate solutions was assessed by simulating the full nonlinear

dynamics, which incorporate vehicle constraints and parametric uncertainty. Due to the

emphasis on the development and analysis of the trajectory control system, an appropriate

inner-loop feedback is assumed for the rejection of high frequency disturbances while

tracking the outer-loop commands. The results clearly showthe benefits of a multi-step

trajectory prediction compared to a single step optimal controller. A feature of the work

was the development of a simulation environment for representing the dynamic behaviour

of the vehicle.

2.1.2 Adaptive Control

The two forms of adaptive control referred to here are the scheduling of control gains

with respect to the flight condition and the vehicle attitude[52], and the adaption of con-

troller parameters using model reference adaptive control[158]. With the proven success

of gain scheduling in flight control, it is not that surprising that, for the first flight testing

of a flight style hypersonic air-breathing vehicle [79, 177,52], a gain scheduled controller

has been adopted. The flight control laws for NASA’s Hyper-X Research Vehicle are re-
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quired for stage separation, maintenance of the design condition during the engine tests,

and a controlled descent. Conventional longitudinal and lateral control loops are used

with guidance commands and sensor feedbacks combining to generate aerodynamic sur-

face commands. For the longitudinal control law, angle of attack and pitch rate are used

to derive a symmetric command for the all-moving wing. The control laws were designed

using classical linear control design techniques with feedback gains scheduled with angle

of attack, Mach number, and dynamic pressure. Robustness analysis included full non-

linear simulations of numerous parametric arrangements using a Monte Carlo analysis.

Stability analysis concluded that gain and phase margins were within guidelines. With

the spectacular failure of the booster elevators in a recentflight test [199], it remains to

be seen whether the flight control developed for the hypersonic portion of the flight test is

successful.

Another form of adaptive control is model reference adaptive control (MRAC), where

the feedback element is based on matching the vehicle performance with that of a ref-

erence model. A paper published by Mooij [158], provides a numerical investigation of

MRAC for a hypersonic aircraft. The vehicle model is the winged-cone configuration,

representing a generic accelerator vehicle. [196]. The database of aerodynamic properties

for the accelerator vehicle has been widely used in control studies [225, 145]. For the

reference model, a linearized model of the rotational dynamics was used, following the

assumption that the translational motion has no influence onthe rotational model. It is in-

teresting that the vehicle is described by nonlinear differential equations, yet the adaptive

algorithm assumes a linear time-invariant system. There isalso a stability requirement

that the controlled nonlinear system is almost strictly passive. Though the fundamen-

tal design of the MRAC control system is relatively easy, there are many control design

parameters, of which quite a number are configured in a trial and error process.

2.1.3 Stochastic Robustness and Parameter Tuning

Stochastic robustness [178] characterizes a compensator in terms of the probability that

the closed loop system will have unacceptable behaviour when subjected to parametric

uncertainties. The stability and performance metrics usedto indicate the system behaviour

can include classical and frequency domain metrics, such asclosed loop eigenvalues for

stability of the locally linearized system, settling time,and overshoot. Since the scalar

robustness cost function is simply a weighted sum of individual behaviour probabilities,

it is also possible to include bounds on the operating envelop and actuator constraints as

performance metrics.

Marrison and Stengel [145] combined Monte Carlo evaluationand genetic algorithms

to design robust, linear-quadratic control parameters, dependent on a stochastic cost func-
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tion. Monte Carlo evaluation allows a finite set of samples over the expected system

parameter space, thus providing a practical method for the estimation of the behaviour

probabilities and cost functions. The subsequent computational penalty of the large num-

ber of Monte Carlo evaluations to design the controller can be reduced by an efficient

search procedure such as that provided by genetic algorithms. Longitudinal flight dynam-

ics were modelled using aerodynamic coefficients from the winged-cone configuration

model of [196], with 28 uncertain parameters, each based on anormal probability den-

sity function. Aerodynamic coefficients and air data are interpolated from lookup up

tables or spline fits, to data around the nominal cruising condition. Their stochastic ro-

bustness analysis was also used to design robust compensators for a benchmark control

problem [144], and through stochastic robustness analysis, used to compare the robust-

ness of compensators designed by different groups [210]. The approach appears to be an

effective basis for flight control design and analysis yet, despite the large number of un-

certainty parameters, the system features are limited by the complexity available with the

winged-cone data. Another limitation of the analysis is that the uncertainty parameters

appear to be applied as constants throughout each simulation trial, rather than carrying

frequency components according to the physical nature of the uncertainty. As with any

multi-objective optimization problems, care must be afforded to the specification of the

weights used for each performance metric.

Continuing the work on flight control by Marrison and Stengel, is the contribution

from Wang and Stengel [225]. Here control laws based on nonlinear dynamic inversion

of the aircraft model are developed with stochastic robustness. Apart from the dynamic

inversion aspect, the work follows directly that covered byMarrison and Stengel in Ref-

erence [145]. To characterize the system robustness, the probability of instability and the

probabilities of violations of 39 performance metrics are used.

Research motivated by the development program for the Hope-X Japanese reentry

space vehicle has applied the stochastic robust analysis methods established by Ray and

Stengel [178], in the form of a stochastic parameter tuning method [157]. More than

100 uncertain properties were modelled, with the performance analysis based on landing

performance requirements. The parameter optimization problem is characterized by a

noisy performance index which can be computationally expensive to evaluate, and by the

potential for many adjustable design parameters. A mean-tracking technique was adopted

as the optimization algorithm, citing its reliability and efficiency. However with the mean-

tracking technique being equivalent to gradient-based methods, the solution returned may

not be the global optimum. The authors advocate the use of distributed computation for

the Monte Carlo flight simulation and have developed parallel computing software for

the implementation of the design over a TCP/IP network protocol. They also envisage

the application of the stochastic parameter tuning method in combination with advanced
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robust control theory and design methods.

2.1.4 Multivariable Robust Control

Though all the hypersonic flight control developments have focused on robustness, this

section refers to the application of advances in modern control theory in the direction of

multivariable robust control techniques usingH∞ andµ-synthesis techniques. Because

the literature on these techniques has become very large over the past few years, readers

interested in the development and application ofH∞ andµ-synthesis are directed toward

the review references [62, 61, 163, 220, 37]. The objective of H∞ control is to find

the compensator transfer function matrix such thatH∞ norm of the closed-loop transfer

function is minimized.H∞ theory does not take into account the possible structure in

the uncertainty, and may therefore lead to conservative controllers unable to satisfy per-

formance measures.µ-synthesis allows the introduction of uncertainty structure in the

controller design process.

The vehicle configurations tested include both the hypersonic cruise aircraft [10] and

the winged-cone accelerator configuration [91, 38]. The basis for the synthesis of the

controllers is a linear time-invariant system model which consequently means the anal-

ysis point is generally an equilibrium condition (as opposed to one where the vehicle is

accelerating) or has some steady state flight condition. Gregory et al. [91], using the

winged-cone model with an updated propulsion model, represented the time varying pa-

rameters by a multiplicative uncertainty for the system model, allowing the linear system

to be considered time invariant over some interval. For their initial application of robust

control theory to the problem, the structured uncertainty representing parameter varia-

tion with time, was described for elevator effectiveness and fuel flow rate. Atmospheric

turbulence and signal noise were also included in the designof the controller.

Buschek and Calise [38] have developed a fixed-order design dealing with mixed

real/complex uncertainties. To reduce the conservatism inthe design procedure, aµ

synthesis method is used, providing an iterative procedurewhere theH∞ design is a

subproblem in the mixedµ-synthesis procedure. The hypersonic vehicle model was the

winged-cone configuration of [196], with the linear model configured for a trimmed, ac-

celerated flight condition. A limitation of the source data is that the propulsion system

model does not include sensitivity to angle of attack variations. Following the same rea-

soning as Gregoryet al., the inclusion of signal noise is not simple for realistic sensor

data, but the application ofH∞ theory to output feedback problems requires the corrup-

tion of all measurement signals by noise. Performance sensitivity to angle of attack is

represented by parametric uncertainty in the pitching moment sensitivity to angle of at-

tack variations. It was included in the system model througha scalar perturbation to the
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nominal model. There was also an attempt to represent the elastic modes of the vehicle,

by introducing uncertainty in the rigid-body behaviour. Inthe results presented, the con-

trollers demonstrated robustness to atmospheric turbulence and a worst-case disturbance

model. However, due to the linear nature of the control synthesis, gain scheduling would

be required for the different flight conditions. Another significant result was the illustra-

tion of the general superiority of the fixed-order design technique over the order reduction

approach which had previously being used to reduce the orderof H∞ controllers. Since

the fixed order controller synthesis requires a numerical iterative approach to defining the

optimal design, the potential for numerical ill-conditioning for large systems led to the

suggestion that alternative numerical approaches such as genetic algorithms and simu-

lated annealing may be useful.

Chavez and Schmidt [41] have also reported on the application of multivariable con-

trol robustness, but the focus was on the modelling of uncertainty with underlying physics

of the real system in mind. Three forms of uncertainty are considered: real parameter,

unstructured, and structured uncertainty. Multivariablerobustness analysis requires the

representation of uncertainty as some combination of structured uncertainty (allowing

specific sources to be identified and represented) and unstructured uncertainty (where el-

ements are arbitrary, mutually independent, and complex).Representing the uncertainty

in a feedback system allows augmentation of the system matrix. The application of the

generalized Nyquist theory [137] to establish stability robustness produces a conservative

inequality criteria, which can be mitigated if the actual uncertainty has some structure.

Chavez and Schmidt used a generic hypersonic vehicle similar to the X-30, which was

the predecessor to the Hyper-X project. The model included an elastic degree of freedom,

the neglect of which was shown to be not justified. The aerodynamic, propulsive, and

structural models where described analytically in the formof stability derivatives which

are nonlinear functions of vehicle geometry and mass properties, atmospheric pressure,

structural-vibration mode shapes, and flight number [40].

2.1.5 Optimal Control

In addition to an emphasis on robust control, all the controlapplications also fall under

the umbrella of optimal control. The original format of optimal control in modern control

theory was the derivation of the optimal feedback law using the linear quadratic regulator

(LQR). McLean and Zaludin [149] applied LQR theory to designan optimal feedback

control law robust to modelling uncertainties in the aircraft dynamics. A linear quadratic

Gaussian regulator solution was considered unnecessary due to the assumption of negli-

gible atmospheric turbulence. The complexity of anH∞ controller was also considered

unnecessary, due to the resulting high order controller which makes it difficult to assure

the degree of controller reliability necessary to ensure stability. Analysis was based on a
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linear state equation for the longitudinal motion which, from inspection of the eigenval-

ues, was both statically and dynamically unstable. In addition to ensuring stability, the

controller design would need to limit the change in angle of attack due to the coupling

between the aerodynamics and propulsion systems. Some additional flying qualities were

quantified in relation to the pitch, height, and speed responses. The main focus of the

work presented was to address the difficulty associated withassigning the state and con-

trol weighting matrices. Their approach was to determine the state weighting matrix based

on matching the closed-loop eigenvalues with a predefined set. The linear state equation

describing the longitudinal motion of the hypothetical hypersonic transport aircraft was

based on the mathematical model defined in [40], with the state vector representing small

perturbations about an equilibrium condition and includedvariables for flexible mode.

A single altitude response simulation was plotted, showinga very slow height response

generated by very small angle of attack and pitch angles.

2.1.6 Fuzzy Control

Fuzzy control is seemingly well suited to the hypersonic control problem due its robust-

ness to variations in the vehicle performance, and the capability of describing a nonlinear

control law [131]. There have been many proposals for the application of fuzzy logic

based guidance and control, including conventional proportional derivative control, adap-

tive control, sliding mode control, hierarchical systems,optimal control, and fuzzy gain

scheduling [135].

There have been limited studies on the application of fuzzy control to hypersonic flight

control. Christian [43] reported the application of a fuzzylogic controller for the regula-

tion of the acceleration of a hypersonic interceptor. A linearized longitudinal dynamics

model was used with the aerodynamic coefficients defined by nonlinear functions of an-

gle of attack, providing an unstable airframe. The primary objective of the study was the

design of a broad range fuzzy controller to express the thrust level as a function of accel-

eration error and pitch rate. It appears that the rules were heuristically determined. That

the controller was so effective is probably a reflection of the simple system model used in

the analysis. With the addition of an adaptive scheme based on changing the membership

functions, the acceleration response showed considerablerobustness to large changes in

the aerodynamic parameters.

A Sänger-type hypersonic transporter was the study vehicle for an application of fuzzy

logic based flight control by Zhouet al. [244]. The purpose of the controller was to

provide longitudinal stability and attitude command tracking. The flight characteristics

were defined through the longitudinal linearized equationsof motion about a horizontal

reference flight condition, with elevator deflection angle as the control variable. Four
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reference flight conditions were used, the two hypersonic conditions possessing short-

period modes which were dynamically unstable. Angle of attack and pitch rate were

used as inputs, and the rule base was developed according to the behaviour of a human

pilot. Simulated angle of attack responses depicted a favourable comparison between the

fuzzy controller and standard linear proportional-derivative feedback control system, and

showed the robustness of the fuzzy controller to variationsin the flight condition. The

superiority of the fuzzy control law in this case is attributable to the non-linear control

law which was generated by localized manipulation of the control surface.

2.1.7 Hypersonic Maneuvering

Maneuvering in hypersonic flight is significantly affected on by the operating constraints

of the vehicle and high speed flight effects such as centrifugal relief, requiring a non-

zero normal load factor required to maintain a constant altitude. This was one of the

conclusions drawn by Raney and Lallman [176] while addressing a control concept for

maneuvering in hypersonic flight. The overall control system consisted of outer loop con-

trols to track guidance commands and reject disturbances, inner loop controls to provide

stability augmentation and a resolver to communicate between the two loops by trans-

lating acceleration commands to a normal load factor and a bank angle. Lateral flight

simulation experiments of the resolver concept were performed with the winged-cone

configuration [196], trimmed at several Mach numbers for a constant dynamic pressure.

Angle-of-attack commands were limited to±0.4◦ about the trim value, representing the

performance degradation likely with small angle of attack perturbations. The assumption

of perfect angle-of-attack control and negligible propulsive and aerodynamic variations

with angle-of-attack could be expected to make real flight hypersonic maneuvering con-

siderably more difficult.

2.2 A Longitudinal Autopilot for Hypersonic Flight

In Chapter 1, the demands of flight control for the hypersonicaccelerator where discussed.

The inherently unstable vehicle operates over a large flightenvelope for which there is

significant uncertainty over all facets of its performance and the environment in which it is

traveling. It exhibits non-linear behaviour on account of performance variation with flight

condition and altitude, and also due to non-linear flight dynamics. The principal aim of

this thesis is the production of an autopilot for the air-breathing hypersonic stage of a small

launch vehicle concept with an emphasis on inner-loop controller. The objectives of the

autopilot are to provide robustness of stability and tracking performance over the entire

hypersonic regime, subject to the presence of modelling uncertainty and disturbances;
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and to satisfy operational constraints represented by limits on the vehicle attitude, flight

envelope, and actuator limits.

The block diagram shown in Figure 2.1 represents a conventional longitudinal autopi-

lot structure. The overall control system consists of two main subsections: (i) an outer

loop guidance system which provides trajectory maintenance and (ii) an inner loop sta-

bility augmentation and attitude controller for the tracking of guidance commands and

the rejection of disturbances. Each of the major blocks is introduced in the following

sections.

HABV
Longitudinal

Guidance
System

Longitudinal
Attitude
Control

Desired
Trajectory

Sensor
Noise

x(t)u(t)e(t)

x(t)x(t)

x(t)

xref(t)

x(t)
-

Figure 2.1: Longitudinal autopilot for the hypersonic air-breathing vehicle.

Hypersonic Air-Breathing Vehicle Model, (HABV):

The vehicle concept considered in this study is representative of an axisymmetric scram-

jet powered accelerator stage of a small scale launch vehicle configuration [194, 113].

Aerodynamic and propulsive modelling has been confined to the hypersonic operation

of the vehicle. A full description of the hypersonic vehicleconfiguration and its flight

simulation is provided in Chapter 3.

A simplification for the purpose of aerodynamic and propulsive analysis describes the

flow paths as two-dimensional ducts. The six degree-of-freedom rigid-body motion of the

vehicle is described about a spherical, rotating Earth, by the nonlinear set of differential

equations describing the vehicle state dynamics:

ẋ = f(x,F (t,x,∆,d),M(t,x,∆,d)) (2.1)

The forceF and momentM vectors are evaluated from surface pressure distributions

along the exposed vehicle surfaces, arising from aerodynamic and propulsive effects. A
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numerical simulation of the vehicle’s aerodynamic and propulsive behaviour describes

the internal and external flow processing in terms of the atmospheric flight conditions, the

vehicle geometry, the orientation of the vehicle, and the control actuator position. Para-

metric performance uncertainty,∆, provides a stochastic time history of perturbations

in the propulsive performance, mass properties, control effectiveness, and atmospheric

conditions. Atmospheric turbulence provides a disturbance inputd = [∆u,∆w], where

∆u and∆w representative additive longitudinal and vertical turbulence velocities respec-

tively. Though aeroelastic effects can have a significant influence on the vehicle perfor-

mance, they have not been considered in this analysis.

The vehicle statex, combines the vehicle position, attitude, angular velocities, trans-

lational velocities, mass, and control settings,

x = [(R, µ, λ) , (ψ, θ, φ) , (p, q, r) , (u, v, w) , m, (θe, θe,cmd, νU, νL)]
T . (2.2)

The inclusion of altitude in the state vector accounts for gradients in the atmospheric

properties and gravity. Longitudinal flight control relieson the symmetric action of a rear

wing-elevator combination, appearing in the state vector as an elevator angleθe. Fuel

input settings(νU, νL), for the two scramjet engine modules, are included in the vehicle

state description to account for the mass loss and subsequent variations in the vehicle

mass properties. The subscripts U and L refer to the upper andlower engine modules

respectively.

For control design, it is common practice to simplify the vehicle dynamics by lin-

earizing the differential equations. This is generally done by retaining only the first-order

terms from the Taylor series expansion of the non-linear equations of motion, relative to

a non-equilibrium or steady-state flight condition. If the controller design is based on

linear time invariant analysis, special care must be taken with the time varying aspects of

the vehicle operation. In robust control analysis, parameter variations with time can be

accounted for by augmenting the system model using a multiplicative uncertainty [91],

such that the linear system can be considered time invariantover some interval and LTI

control design can be used. In the present study, control design is not reliant on such a

conventional representation of the vehicle. Instead, the full non-linear model is used to

configure the controller such that simulated flight responses guide the development of an

optimal control law.

Desired Trajectory:

Operation of the hypersonic scramjet depends on maintaining the vehicle within a narrow

flight envelope. Trajectory planning and maintenance is thus a critical feature of the flight

plan and autopilot role. The desired flight path may be sourced from ana priori solution
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to a global optimization problem to provide, for example, a near-minimum fuel trajectory,

or it may be computed on-line during flight as a means to provide simultaneous mainte-

nance of optimal engine performance and vehicle attitude. Afeature of many hypersonic

control studies is the development of an integrated trajectory management and control

strategy [192, 191, 96].

Conventional launch trajectories are often expressed through a time history of velocity

and altitude, so that stage separation can be scheduled. In this form, the role of longitu-

dinal guidance is the simultaneous tracking of altitude by directing the flight path angle

and the tracking of flight velocity via throttle control. Time based trajectory management

for the hypersonic air-breathing vehicle is inappropriate. Due to the likely marginal thrust

capabilities of the vehicle, its operation as an acceleration stage relies on the maintenance

of optimal inlet conditions and maximal fuel settings. Since dynamic pressure constraints

bound the hypersonic flight regime, a constant dynamic pressure trajectory is generally

considered desirable. There are alternative specifications, such as a constant climb rate,

constantρV which roughly corresponds to constant thrust, constantρV 2 corresponding

to constant aerodynamic pressure, andρ
1/2V 2 1/2 corresponding to constant aerodynamic

heating rate [194]. In this thesis, a constant dynamic pressure (q∞ = 1
2
ρ∞V

2
∞) trajec-

tory is used to provide the nominal flight path as a mapping of velocity versus altitude,

href = f(q∞, V∞). The role of the autopilot is therefore to be at the correct altitude for

the flight velocity. Since the vehicle configuration used in this study does not support

differential throttling for stability augmentation, the role of thrust modulation as a control

variable is effectively removed. The constant dynamic pressure trajectory is plotted in

Figure 2.2 forq∞ = 188 kPa. The flight profile describes an acceleration from 2500 m/s

at 22.4 km altitude to 4900 m/s at an altitude of 31 km. It describes a gradual climb which

allows sustained scramjet operation in the narrow air-breathing corridor. The “desired tra-

jectory” block in Figure 2.1 takes the flight velocity and iteratively solves for the altitude,

with reference to a standard atmosphere model. More detail on the atmosphere model is

provided at the end of Chapter 3.

An estimation of the instantaneous trimmed condition is also provided as part of the

trajectory data, though not strictly written in terms of theflight path. The trimmed condi-

tion for the elevator is expressed as a function of angle of attackα, using a least squares

fit to the trim variation across the trajectory. Trimmed flight has been described by the

elevator position which provides a zero net pitching momenton the vehicle. This state

is not a steady-state flight condition, as an imbalanced liftforce will rapidly disturb the

trim condition. Using the vehicle configuration defined in Chapter 3, the trim equation is

written as the following polynomial approximation, with the angles defined in radians.

θe,trim(α) = −117.4α3 + 0.1091α2 + 2.078α− 0.0033 (2.3)
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Figure 2.2: Hypersonic flight trajectory for a constant dynamic pressure q∞ = 188 kPa. The
Mach number profile assumes a standard atmosphere, described in Section 3.6.

Figure 2.3 shows a sampling of the source data for the above expression. Each dashed

line represents the variation of the trim elevator positionversus angle of attack, for a

specific flight condition. The thick solid line represents Equation 2.3. A consequence

of the estimated trim condition being used by the control system, is a requirement of the

controller to be robust against trim uncertainty. Vehicle performance variation will also

contribute to errors in the trim estimate.

Longitudinal Guidance System(Outer loop):

Tracking the desired trajectory is the role of the longitudinal guidance system. The guid-

ance law generates an angle of attack command,αcmd, for the longitudinal attitude con-

troller. It is based on the altitude errorherr and climb rate erroṙherr, such that

αcmd = FG(herr, ḣerr). (2.4)

Rather than having a preset nominal climb rate, the reference condition is estimated ac-

cording to the current acceleration performance of the vehicle, with the assumption that

the nominal trajectory is being followed. For simplicity, aconstant gain guidance law

is used with a bandwidth that provides the inner loop with sufficient time to trim the

vehicle. The proportional and derivative guidance gains are configured to optimize the

trajectory tracking performance. To be compatible with thecapabilities of the inner loop,

the guidance command and equivalent attitude error are bound by±3◦.
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Figure 2.3: Variation in the elevator trim condition across the hypersonic flight envelope. Each
dashed line represents a flight condition selected from the constant dynamic pressure flight trajec-
tory. The solid line describes the approximation used by theautopilot.

Longitudinal Attitude Control (Inner loop):

Closed loop stability and attitude control is provided by a nonlinear feedback control law.

It expresses a functional relationship between a subset of the vehicle state relative to the

guidance commands, and the actuation command for the symmetric elevators. Due to

the nozzle configuration used in this study, differential throttling of the engines for the

purpose of stability augmentation or attitude control, is not a practical option. Results

in Chapter 6 use both a linear constant gain feedback controller and a fuzzy rule base

controller to express the elevator control law. Each controller can represented by the

functional relationship,

ue = Fatt(αerr, θ̇, θe,err), (2.5)

where the inputs are angle of attack error (αerr), pitch rate (q = θ̇), and the elevator trim

error (θe,err). It is assumed that accurate full state information is available. In the Hyper-X

testing program [52], an inertial measurement unit is used to supply accurate angle of

attack data at a high bandwidth. Flush air data systems are also being considered, relying

on accurate flow simulations to provide a functional relationship between the pressure

differential amongst surface pressure ports and angle of attack.

The control command,ue, describes the actuation rate for the symmetric rear wing-

elevator combination, which is the only active stabilization and control device. Though

there is no strict constraint applied to the steady-state attitude error during the design, a

component of the objective function is the minimization of the settled response error. It
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is expected that the longitudinal attitude controller be able to maintain an angle of attack

error less than 0.5 degrees. With the assumption that inertial measurements are available

for specifying the vehicle angle of attack, perturbations from atmospheric turbulence are

not included in the control input signal. The turbulence is introduced into the simulation

as a freestream disturbance rather than additive noise for the control input.

2.3 Evolutionary Design for Robust Flight Control

As mentioned earlier, the basis of the control design approach is to use simulated flight

responses to guide a parameter optimization procedure. Thebasic structure of the con-

trollers is predetermined, see Chapters 4 and 5, and the freeparameters are then op-

timized by a genetic algorithm, so that the simulated flight responses for a variety of

initial conditions display desirable properties, such as long term stability, fast settling,

disturbance rejection and broad range performance. The genetic algorithm is a zero-order

search procedure, where the only information used to directthe search process is a perfor-

mance measure, referred to as the objective function, computed from a set of simulations.

Though the design procedure is essentially a brute force approach, it has been configured,

in terms of the controller structure, the search algorithm,and the adaptive performance

measure, to moderate the computation time required.

There are a number of advantages to designing the controllerwith an optimization

tool and a performance metric abstracted from the randomly perturbed flight responses.

Firstly, it relieves a common issue faced by many control design approaches, namely rep-

resenting the vehicle mathematically in an appropriate form. The accuracy of the model

is a function of available computing power and the knowledgeof the vehicle physical

properties and the processes governing the performance, rather than being bound by the

structure of the control design procedure. In conventionaldesign theories the system is

typically assumed to be LTI and, in the case of robust controltheory, uncertainty added

to the system to account for system nonlinearities and variations with time. Represen-

tation of performance uncertainty is critical for the development of a robust control law.

Much work in robust control theory is directed towards the development of compatible

structured and unstructured uncertainty models. When the simulated flight responses are

used, the inclusion of parametric uncertainty can describethe physical process leading to

the variations in the vehicle performance, through the inclusion of appropriate simulation

models.

Another advantage of the design approach is that the controllaw development is linked

directly to the time history responses, allowing stabilityand performance measures to be

easily quantified. The genetic algorithm does not need the components of the objective

function to be the same throughout the design. They too can evolve with the controller de-
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sign so that as the controlled flight responses improve, greater demands can be placed on

the performance of the controller. The only constraint on the objective function with the

design procedure implemented in this thesis, is that it be reduced to a scalar performance

measure. Further supporting the evolutionary design procedure is the inherent robustness

to noisy objective functions. The source of the noise is typically due to randomly sourced

uncertainty models and sensor noise, but may also be generated by variation in the initial

condition set used to assess the controller performance. Since the search is probabilistic,

a significant level of noise in the objective function can be tolerated, while still allowing

the genetic algorithm to successfully configure the controllaw.

Though the genetic algorithm is noted for its global search capabilities, it is also ex-

tremely opportunistic. Considerable care is therefore needed when defining objective

functions, and when combining multiple and possibly conflicting design objectives. How-

ever, this is a feature which must be addressed in all optimalcontrol theories. In problems

where noncommensurate objectives are unavoidable, evolutionary algorithms are consid-

ered to be particularly suited since a set of solutions are processed in parallel. One means

of dealing with such problems is to use a multi-objective genetic algorithm [77, 245] to

obtain Pareto-optimal solutions.

One potential problem in an iterative design approach is the“curse of dimensionality”.

As the number of design parameters increases there may be an exponential increase in

the effort required to arrive at the solution. Though this can be mitigated by providing

some structure to the design, it is important that a large number of design parameters can

be dealt with. Evolutionary based search procedures are readily applied to problems of

high dimension, and are able to rapidly extract useful designs in spite of the size of the

problem. If the absolute global minimum or maximum of a complex multi-modal search

space is required, then the computing effort remains considerable. However there are few

algorithms capable of performing well on such functions andthe notion of an efficient

search procedure is still being established.

The focus of this effort is the design of an inner-loop attitude controller which would

offer closed-loop vehicle stability, subject to system uncertainties, broad range perfor-

mance variations, disturbances, sensor noise, and severe operational constraints. In the

chapters that follow, a detailed description of the major areas of the research is provided.

These include the hypersonic aerodynamics and propulsion modelling, flight simulation,

control system configuration and design, and the construction of an evolutionary design

tool.
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Simulation of Hypersonic Flight

A fundamental step in the development of an aircraft is a means of simulating the dynamic

behaviour of the vehicle. The aviation pioneers of the Wright Brothers era set the stan-

dard by flying model aircraft and constructing simple wind tunnels. With well understood

propulsion units, their principal intent was the thorough testing of vehicle aerodynam-

ics and stability and control features. For the developmentof hypersonic technologies,

the test flights of the X-15 aircraft allowed, amongst other things, the investigation of

materials, flight systems and vehicle control requirements. The X-15 marked the first ap-

plication of hypersonic theory and wind tunnel work to an actual hypersonic vehicle and,

as a simulation tool itself, was extremely productive. It facilitated the transition to space

flight, leading to the space shuttle orbiter.

As flight technologies have evolved, the simulation tools have become more spe-

cialized and less accessible. Today, flight access to hypersonic speeds is only available

via rocket propulsion. The most familiar vehicle that regularly accesses the hypersonic

regime is the space shuttle orbiter. Compared to the hypersonic air-breather there is a sig-

nificant gap in the operating characteristics. The shuttle performance differences are due

to its flight envelope, method of operation, and the vehicle configuration. Shown in Fig-

ure 3.1, is the ascent and reentry trajectories of the shuttle along with the ascent trajectory

for a scramjet powered vehicle. In the ascent phase of the shuttle, high Mach numbers

are reached only at high altitudes, and the severe thermal and pressure loading of an air-

breathing vehicle are not duplicated. Reentry of the orbiter is as an unpowered glider and

like the Apollo reentry, the descent involves decelerationat much higher altitudes than

those needed for scramjet operation. The significance of this is not minor. By example,

engineering estimates of aerodynamic heating show the expected stagnation point heating

of a hypersonic air-breathing concept to be an order of magnitude greater than that for

reentry heating of the shuttle [217, 6].

A further constraint to generating real flight test data is the cost of model production

and the supporting launch vehicle needed to reach test conditions. The Hyper-X test

program is a recent example of the demands of flight testing a hypersonic air-breathing

vehicle. It uses a Pegasus launcher, released from carrier aircraft, to deliver the vehicle to
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the hypersonic conditions needed for scramjet operation. The test vehicle is not a simple

concept model, rather an advanced subscale ( m) vehicle design, incorporating decades of

vehicle and engine research in the configuration. The advanced configuration reflects the

need for optimal airframe and engine coupling, to realize practical scramjet propulsion.

Hyper-X has the support of an extensive ground based simulation program [151, 222, 66]

which has allowed stability and control aspects to be well established. While a flight

test program such as Hyper-X is not realizable for the majority of research groups, there

is potential in less ambitious flight test projects which test simplified vehicle concepts

or simple engine units attached to rocket launchers. We havealready seen a number

of programs of this nature: the X-15 rocket plane with an axisymmetric scramjet [45],

Russian axisymmetric tests [120, 100], and the HyShot test program [170].

An implication of the divide between hypersonic rocketry and air-breathing hyperson-

ics is a shift in the approach to vehicle design and analysis.Vehicles such as the shuttle

orbiter and reentry probes have a relatively simple geometry exposed to the flow, in con-

trast to the complex internal and external flow structures ofa scramjet powered vehicle.

Integration of the engine with the airframe also means the usual division between aerody-

namics and propulsion does not exist. Without the benefit of similarly performing vehi-

cles, hypersonic air-breathing development has focused onground-based testing facilities
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and the exploitation of computational modelling. These arecomplementary technologies

as experimental facilities help validate computer models and in return, computer models

aid the understanding of flow interactions observed in experiments.

Presently, impulse facilities such as shock tunnels and expansion tunnels [212, 5], are

the most effective method of experimentally reproducing the flow conditions experienced

by a scramjet. These facilities are capable of reproducing both the high temperatures

and high pressures of hypersonic flight. The trade-off for reproduction of the hypersonic

flight condition are short test times, of the order of 0.1 to 100 milliseconds. Experimenters

must also contend with uncertainty in flow quality, a hostiletesting environment, a limited

testing range, scaling issues resulting from matching flow properties with a subscale flight

model, long turn-around times, and the still developing capabilities of flow and force

measurement techniques.

Computational modelling avoids many of the constraints imposed on experimentalists.

Provided the computing power is available, detailed flow analysis of complex geometries

is possible over the entire hypersonic trajectory. It is also possible to conduct flight dy-

namics simulations with numerical vehicle models or empirical performance data. The

primary limitations of a computational approach is the availability of sufficient computing

power for accurate simulation in a reasonable time scale, and the accuracy (and/or com-

pleteness) of the physical models used to represent the flow and its processing features.

State of the art computation is a fully three dimensional real gas analysis of a complete

vehicle [223, 153]. However, depending on the needs of the study, reduced order mod-

els [219, 12] may provide sufficient insight into the performance of a hypersonic vehicle.

Existing vehicles are also making use of developments in computational analysis. One po-

tentially fruitful area of research is the optimization of reentry vehicles. Uncertainty over

the interaction of the ablative surface of reentry vehicleswith hypersonic flows, has gen-

erated over-designed configurations which limit the potential payload return. The level of

detail available in computational fluid dynamics (CFD) has promoted it as a valuable tool

in the actual design of real components.

The potential of numerical analysis in aircraft design was demonstrated in the success-

ful development of the Pegasus launch vehicle. Pegasus was designed as a small payload

launcher through a joint venture between Orbital Science Corporation and the Hercules

Aerospace Company [108]. Shown in Figure 3.2, Pegasus is a three-stage, winged space

booster, configured for launching from a carrier aircraft. Setting the development of the

vehicle apart was the sole use of computational aerodynamicand fluid-dynamic meth-

ods for the purpose of aerodynamic design and analysis [153]. Aiding the success of

the design approach was the relatively simple geometry where the propulsion system is

uncoupled from the airframe, accessible rocketry experience, and the availability of em-

pirical data from the X-15 rocket plane to validate computational codes. A range of meth-
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ods were used, from panel methods and other relatively simple engineering approaches,

to the numerical solution of the Navier-Stokes equations. Rapid aerodynamic analysis

techniques were used for the majority of the configuration, with more computationally

expensive approaches left for localized interaction zonessuch as control surfaces.

1st  Stage

2nd  Stage

Payload
and
3rd  Stage

Lifting wing

Rear wings
& stabilizers

Figure 3.2: General configuration of a Pegasus vehicle - an air-launchedsolid-propellant space
booster with wings - used for launching small payloads into orbit. (Source: Reference [153])

Pegasus is particularly relevant to this study due to its hypersonic flight capability

and the similar target market it shares with the air-breathing launcher presented in this

thesis. After first stage burnout, Pegasus reaches Mach 8.7 at 60 km altitude, a velocity

of roughly 2.7 km/s. On the velocity-altitude map shown in Figure 3.1, the trajectory is

similar to the shuttle ascent. Like the shuttle, the Pegasussecond stage accelerates the

vehicle through the velocity range of a scramjet vehicle, but at a much higher altitude.

Unlike the Pegasus vehicle, hypersonic air-breathing flight is not an extrapolation of

existing technologies. After fifty years of scramjet research, the continuing focus of ex-

perimental studies is on component analysis, specifically the engine, rather than full vehi-

cle simulation. To date, the generation of broad range performance information has been

largely in the realm of computational techniques. The earlyevolution of concept geome-

tries was supported by simple computational models which allowed rapid determination

of the airframe performance. A collection of routines basedon “non-interfering constant

pressure finite-element analysis” [82] were used to satisfypreliminary design require-

ments for drag, lift, and moment coefficients, and some control derivatives [147, 159].

These relatively simple engineering approaches have been used on a range of hypersonic
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vehicles including the North American X-15 and the space shuttle. They have also found

application in air-data calibration [117] and as a comparative tool for experimental pres-

sure measurements for blunt body flows such as those around reentry vehicles [198]. For

these cases, the application of Newtonian flow analysis [16,6] is often suitable, as the

shock shape follows closely that of the blunt body exposed tothe flow. The scramjet

vehicle has a propulsion system integrated with the airframe so, in addition to impact

methods for the external airframe, the complete vehicle model must also include internal

flow processing. See, for example [39].

For the purpose of this thesis, the role of the scramjet vehicle performance model is the

computation of forces and moments which, together with the mass properties of the vehi-

cle, allow the time integration of the flight dynamics. Beinga complex function of shape

and motion, the aerodynamic and propulsive modelling dominates the development of a

numerical flight simulation. One of the approaches for encoding the vehicle operation is

the assembly of an aerodynamic, propulsion and control coefficients database. In the case

of longitudinal hypersonic flight, the database would be discretized with respect to flight

speed, altitude, angle of attack and actuator position. An alternative approach is to have

the aerodynamics and propulsion simulated as required by the flight dynamics integration

routine. Simulation as required offers greater flexibilitybut at the expense of computation

time. Presently the time required for full vehicle simulations through CFD represents a

very large computational cost, prohibiting the fashioningof a complete system model for

a flight simulator. It is possible however, to reduce the computational effort by repre-

senting the flow paths as two-dimensional or axisymmetric. For this thesis, a simplified

geometric representation of the axisymmetric scramjet configuration is considered suffi-

cient for longitudinal flight simulation and the assessmentof flight control performance.

Two-dimensional flow paths are featured, for which analytical and quasi-numerical meth-

ods are used to represent principal flow phenomena. It is understood that the practicality

of simplified analysis is contrary to the expected reality where complex multidimensional

flow effects are exploited, however, the exercise of trying out new control design ideas

does not require such precise flow path simulation.

The remainder of this chapter details the numerical flight simulator, built to portray

the operation of a hypersonic air-breathing launch concept. Following an introduction to

the design specifications of the aircraft, models are developed to represent the physical

properties of the vehicle, hypersonic aerodynamics and propulsion performance, the at-

mosphere, and the vehicle motion. Some details on the construction and operation of the

longitudinal guidance and attitude control modules have been provided in Chapter 2 and

are developed further in Chapters 4 and 5.
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3.1 Simulator Overview

A numerical simulation environment called FACDS (Flight and Control Design Simula-

tor) was constructed as a tool for the development and evaluation of control strategies for

hypersonic aircraft. Incorporated within FADS are the following code modules:

• an instantaneous aerodynamics and propulsion vehicle performance model, de-

scribed by one and two-dimensional quasi-numerical flow theories. Parametric

uncertainty is also represented by randomized perturbations to the fuel centre of

mass, engine performance and control effectiveness.

• an environment module described by a standard atmosphere model with turbulence

and temperature perturbations, and a variation in the localgravity with altitude.

• a dynamics and kinematics module describing rigid-body 6 degree-of-freedom mo-

tion about a spherical, rotating Earth.

• methods for the numerical integration of the flight dynamicsmodel.

• control modules for the generation of guidance and inner-loop commands.

• optimization procedures for control design, headed by a genetic algorithm, and

supported by a Nelder-Mead simplex method.

Along with these primary modules there are numerous peripheral modules which, among

other things, provide performance assessment from flight state histories [18].

A supporting guide to the hierarchy of the simulation modules is shown in Figure 3.3.

The flight simulation component of FACDS is described by the flow diagram shown in

Figure 3.4. FACDS integrates the dynamics of an aircraft HABV, in a discrete time

simulation, partitioned by the sampling timesteps for the guidance loop and inner loop

control,(∆tg,∆tc). The state vectorx, describes the vehicle position, orientation, attitude

rates, velocities, mass, and actuator settings,

x =
[

(R, µ, λ) , (ψ, θ, φ) , (p, q, r) , (u, v, w) , m,
(

θe, θ̇e,cmd, νU , νL

)]T

. (3.1)

Initialization of the flight simulation requires the specification of the vehicle geometric

and mass properties, the initial state vectorx0, and the controller configuration. For each

guidance update, the trajectory module provides the targetaltitudehref = f(q∞, V ) given

the aircraft velocity, and for this thesis, a predefined freestream dynamic pressureq∞. This

information is fed into the longitudinal guidance routine,along with state data, to return

a reference attitude and a trim actuation position. The inner control loop represents the

longitudinal attitude tracking and stabilization component of the flight control. Actuator
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Figure 3.3: Hierarchy of code modules for HABV simulation. Higher levelblocks make use of
information from lower level blocks.

commands are describe by a control function dependent on theangle of attack error, pitch

rate and the elevator trim error,ue = f(αerr, q, θe,err).

The flight dynamics are integrated between longitudinal controller updates, using a

single step integrator over the integration timestep∆t, and working on the state vector

x. The block denoted by HABV represents a numerical simulation of the instantaneous

aerodynamics and propulsion of the hypersonic air-breathing aircraft. No timescales are

used to represent the flow processing dynamics, implying an instantaneous change in flow

structures. With each call from the integrator to evaluate the state derivatives, HABV

generates the net forces and moments acting on the vehicle. It also translates the fuel

command settings,(νU , νL), into fuel flow rates which define the rate of mass loss of

the vehicle. Though simplified models have been used within HABV, during the control

design phase the aero-propulsive modelling represents 99 %of the computational effort.

Other studies generally use equivalent analytical statements of the general performance

characteristics [43], use an analytical or numerical vehicle model to establish a table of

aerodynamic and control derivatives [39], or schedule a collection of linearized models.

3.2 Scramjet Vehicle Design

The scramjet vehicle concept studied for this thesis was an adaption of the axisymmetric

configuration investigated at The University of Queensland(UQ). In Chapter 1 the vehi-

cle was introduced as a potential acceleration stage in a launch vehicle concept for small

payloads. Figure 1.5 (page 10) showed a possible configuration for the scramjet stage, in-

corporating many of the design features which were principally evolved from decades of

scramjet engine research at NASA. In particular, the engineconcept features round com-

bustors, swept compression surfaces, a cut-back cowl, and acircumferential distribution
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of the engine modules around the vehicle axis of symmetry. Each engine module incor-

porates a forebody-inlet region, a combustor, and a nozzle or thrust generating expansion

surface. Accurate representation of these features for thepurpose of generating a numer-

ical model, is a demanding task. The inevitable computational simplification must be

traded against the importance of realistic engine operation which, amongst other aspects,

will exploit multi-dimensional flow effects.

This thesis considers only the longitudinal performance ofthe scramjet powered stage.

Its representation as a vehicle model within the flight simulator must facilitate the cal-

culation of airframe and engine performance characteristics and the estimation of mass

properties. The principal geometric simplification is the use of two-dimensional flow-

paths, providing a box-section representation rather thanthe round body associated with

an axisymmetric geometry. Importantly, the basic shape of the vehicle and engine are

maintained, along with the operational dependencies on angle of attack and flight con-

ditions. A fixed geometry is used with reference to a single flight condition, providing

the best compromise for broad range operation. Acting as an accelerator, the vehicle is

generally not at the design condition, resulting in significant variation in longitudinal per-

formance, dependent on the engine and airframe flow processing. Consideration has also

been given to the description of lifting and rear stabilizing surfaces, and the positioning

of the payload and fuel, sufficient to reasonably represent the internal mass distribution.

3.2.1 Engine Specification

The level of integration of airframe and engine featured in scramjet vehicle designs have,

for the axisymmetric configuration, earned the demonstrative title of aflying engine[105].

The implication of the extreme integration is that the engine geometry largely defines the

dimensions of the vehicle. Here, a fixed geometry scramjet isdescribed, using a nominal

flight condition set at the high Mach number end of a typical hypersonic air-breathing

trajectory. This represents a compromise for propulsive operation when performance is

required over a range of Mach numbers. According to Stalker [203], the losses in net

thrust for off-design operation are less when the propulsive duct is configured using a

design Mach number at the maximum end of the range. The enginedesign condition

was thus set at a flight Mach number of 15, at an altitude of 30 km, and with zero angle

of attack. This places the vehicle at the edge of the air-breathing corridor, customarily

defined by a dynamic pressure range of 24 to 100 kPa [105], see Figure 3.1. The design

dynamic pressure of roughly188 kPa, is recognized as exceeding the structural predictions

of the past twenty years. Favour has been afforded to engine operation, in preference

to the vehicle structural capability. Though lower dynamicpressures are preferable for

designing a vehicle structure, the scramjet engine becomesless effective.
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The key engine elements of a scramjet are the inlet, combustor, and nozzle. Figure 3.5

shows the arrangement of these elements for an axisymmetricscramjet. It is representa-

tive of a baseline concept where no effort has been made to optimize the exposed surfaces

for broad range performance. The practical need for optimumbroad range performance

can also be augmented with a variable geometry engine. In particular, a variable inlet ge-

ometry can improve the efficiency of the inlet in capturing the freestream air. Henry and

Anderson [98] showed a maximum performance increase of 16% with a variable geome-

try. When traded off with an associated penalty due to increased system complexity and

increased weight, their conclusion was a preference for thefixed inlet scramjet. Interest-

ingly, it is the three-dimensional features of the inlet which make a fixed inlet geometry

feasible. Three-dimensional compression reduces the overall turning angle needed for

broad range operation, and the swept inlets shown in Figure 1.5 aid inlet starting at low

speeds and reduce boundary layer separation from the inlet wedge. Variable geometry has

also been considered for the combustor and nozzle regions ofthe engine. A variable noz-

zle geometry has the added potential of acting as a control actuator. It is likely, however,

that the only variable feature of the first generation scramjets would be through provid-

ing dual mode operation, where the engine is able to operate in both ramjet and scramjet

modes [227, 50].

11o
20o

inlet surface

cowl

combustor expansion surface

1 m 1 m
M∞ = 15 @ 30 km altitude

p ~ 1 atm

oblique shock

x

Figure 3.5: Geometric specification of the Mach 15 scramjet engine with two-dimensional flow
paths. A compression ratio of 12.213 has been used

The purpose of the inlet is to direct the freestream flow into the combustor, whilst

compressing the flow to a pressure and temperature desirablefor combustion. If struc-

tural considerations were not a factor, the most effective method of doing this would be

through isentropic compression of the freestream. Though providing shock free compres-

sion, such an inlet is prohibited by the low structural strength of a long sharp nose and

by excessive viscous drag and heat transfer. Practical hypersonic inlet designs typically

incorporate a combination of external and internal compression through oblique shocks,

thereby providing half angles large enough to allow the construction of structures that can

withstand the high dynamic loads. There is also a desire to control the inlet bow shock

with changes in angle of attack and flight Mach number, especially in relation to the en-

gine cowl lip [133]. The physical limitations are excessivewave drag if the bow shock
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is too far away from the vehicle, excessive local heating with shock impingement, and

potentially harmful shock reflections propagating throughthe engine when the bow shock

is swallowed into the cowl. Several inlet designs for the axisymmetric scramjet where

investigated by Craddock [48]. A short multi-shock inlet with a bent cowl was favoured,

due to its low drag and being the least prone to boundary layerseparation. This also ap-

pears to be the configuration used for the scramjet flight tests performed in Russia during

the 1990s, and discussed in Section 1.2.

The inlet geometry shown in Figure 3.5 is the simplest representation of a mixed exter-

nal and internal compression system. It consists of a straight inlet surface orientated at11◦

to the vehicle axis of symmetryx, and a cowl aligned parallel tox and positioned to pro-

vide a vehicle half height of 1 m. The shock produced by the theinlet wedge compresses

the freestream flow and directs it along the inlet surface. Atthe design condition this

shock intersects the cowl leading edge and the corresponding reflected shock redirects the

flow uniformly into the combustor, with the shock being cancelled at the upstream corner

of the combustor. The net result at the design condition is shock-free uniform combustor

flow at a pressure of approximately one atmosphere. This is considered sufficient on the

basis that, for a reasonable length combustor, the combustion kinetics are fast enough to

bring the combustion composition nearly to its equilibriumstate [121]. Inlet performance

away from the design point is discussed in Section 3.3.1.

A constant area combustor sits downstream of the inlet, aligned parallel to the vehicle

axis of symmetry. Experimental studies at The University ofQueensland [229] utilized

a 350 mm long combustor for tests on a Mach 7.6 Composite Scramjet Motor, figuring

this was long enough to allow near complete mixing of the fuelwith the incoming air.

The length of 1 m used here, follows the recommendation by Kerrebrock [121], with

consideration to the rate of energy release from the combustion process for an engine

with a flight speed of Mach 15, and assuming a combustor inlet pressure of 1 atm. There

is an alternative view supported through numerical studiesby Craddock [48], that a short

combustor is desirable in terms of limiting viscous losses,with the combustor and nozzle

combination providing greater net thrust. This conclusionwas also based on the use of

an axisymmetric combustor rather than the arrangement of engine modules used here.

Practical engine designs may also utilize relief through a diverging duct [50]. This is to

counter the heat addition limit before steady flow breaks down in a constant area duct

which, for low supersonic entry conditions, means very little heat can be added.

Expansion of the supersonic combustion products is the mechanism of thrust gen-

eration in the scramjet. This is achieved here by a straight20◦ surface. The cowl has

been extended axially to the extremity of the nozzle surface, primarily to simplify the

nozzle flow simulation. Practical arrangements generally have the cowl terminated at a

length sufficient to capture the expansion fan generated at the upstream corner of the noz-
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zle. Like the inlet and combustor surfaces, significant performance gains are realizable

through optimization of the expansion surface [112, 48].

3.2.2 Overall Vehicle Configuration

The engine geometry of Figure 3.5 defines the primary flow paths necessary to determine

the propulsive performance of the engine. It also describesthe basic dimensions of the

overall vehicle, in affect shaping and sizing the fuselage.To complete the physical de-

scription of the vehicle, the payload and fuel is positionedwithin the internal volume,

structural densities are specified, and lifting wings and stabilizing surfaces are defined.

Without access to any advanced scramjet vehicle designs, itis not possible to accurately

represent the distribution of elements within the vehicle.For the structure, densities of ad-

vanced materials envisaged for hypersonic applications are used. Despite the conceptual

approach, the mean vehicle density compares favourably with the Pegasus vehicle. It is

worth repeating that assembling a practical hypersonic air-breathing vehicle is not simply

a matter of adding the necessary flight components to the engine. Usage of the internal

volume is critical for vehicle stability, and the necessaryoptimization of the airframe and

propulsion system combination means the entire vehicle appears in the design equation

from the beginning. In contrast, many traditional aircraftcan be designed using the engine

simply as a peripheral component to be added to the fuselage.

The physical layout and properties of the scramjet powered vehicle are summarized in

Figure 3.6 and Table 3.1. In most respects, the simplification of the axisymmetric vehicle

to that with two-dimensional flow paths means the vehicle is treated as a two-dimensional

vehicle, with the vehicle depth set to 1 m. For convenience, two coordinate frames are

used for defining the vehicle geometry. The leading edge of the vehicle body is used as

a fixed reference for the initialization and storage of vehicle dimensions. Frame(x, y)

as defined in Figure 3.6, also provides a fixed reference for element centres of pressure.

These are updated relative to the vehicle centre of mass, as the mass of the vehicle changes

during flight. The axes(xB, zB) represent the body-fixed coordinate frameFB, used in

the vehicle dynamics model. FrameFB has its origin at the vehicle centre of mass, with

axes aligned along the principal inertia axes of the vehicle.

Surface Description and Force Accounting:

The basic structure of the vehicle is an assemblage of uniform surface elements. Their

geometry is specified by a general spatial distribution, an area, and vectors for the centre

of area and an inward surface normal. The surface normals aremaintained in terms of

(xB, zB), providing a direct translation to body axial and normal forces. For all except

the nozzle internal surfaces, a uniform surface pressure isassumed. Since the origin of
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Figure 3.6: Overall physical layout of the scramjet vehicle.
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Table 3.1: Physical definition of the Mach 15 two-dimensional scramjetvehicle. See Figures 3.6
and 3.5 for schematics of the vehicle assemblage.

Feature Part description Value
General Overall length. 8.246 m

Vehicle height. 2 m
Inert mass. 2487 kg
Maximum vehicle mass. 4972.0 kg
Maximum pitch axis inertia. 11825 kgm2

Full fuel load centre of mass,(x). 5.2 m
Surface element density. 30.0 kg/m2

Inlet Leading edge location,(x, y), see Figure 3.6. (0,0) m
Ramp angle. 11◦

Compression ratio, or inlet area ratio. 12.213
Combustor Length. 1 m

Combustor area, or height. 0.0819 m
Nozzle Ramp angle. 20◦

Upstream height. 0.0819 m
Cowl Design shock angle. 14.319◦

Leading edge location,(x, y). (3.918,±1.0) m
Fuel Ethane. C2H6

Liquid density. 544 kg/m3

Heating value or energy density,H. 47.484 MJ/kg-fuel
Stoichiometric mixing ratio, mass basis. 0.0624 kg-fuel/kg-air
Nominal combustion efficiency,ηc/100 %. 0.75

Tank Maximum width. 1.56 m
Storage capacity for ethane. 2485 kg
Nominal centre of mass, (x). 5.41 m

Payload Mass, including stage 3 motor. 500 kg
Leading edge,(x). 1.5 m
Axial location of mass centre. +1.19 m

Lifting wing Density. 25.0 kg/m2

Angle of attack. 3◦

Axial location. 5.794 m
Area. 8.25 m2

Fore section half angle. 3◦

Aft section half angle. 6◦

Rear wing Density. 25.0 kg/m2

Half angle. 3◦

Axial location. 8.2 m
Area. 3.0 m2

Elevator Half angle. 6.0◦

Axial length. 0.43 m
Area. 1.5 m2

Actuation limit. 20◦

Acutation rate limit. 2.0 rad/s
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FB changes with fuel consumption, the centre of area vectors are maintained in terms of

(x, y), and transferred to frameFB as required, for the summation of element moments.

Mass Properties:

Overall, the physical properties of the vehicle are assembled in two parts, a fixed com-

ponent containing all structural elements and fixed peripheral elements, and a variable

fuel component. This allows an initial evaluation of the vehicle components to provide

the inert values for mass, inertia, and centre of mass(m,Iy, cm)fixed. Included in the es-

timation are the main structural elements, payload, tank, and all external aerodynamic

features. The vehicle mass is tracked through the fuel consumption rate, and a simple

updating procedure combines the fuel properties with the inert elements to provide the

overall vehicle centre of mass and inertia.

m = mfixed +mfuel

cmx = (cmfixedmfixed + cmfuelmfuel) /m

Iy = Ifixed + Ifuel +mfuel(cmx − cmfuel)
2

(3.2)

Table 3.1 contains the default physical properties for the Mach 15 scramjet vehicle,

carrying a full fuel load. Since the fuel rate changes along the flight trajectory and with

vehicle attitude, additional nominal fuel loads were defined along the trajectory, see Chap-

ter 5. It is worth comparing the physical representation of the scramjet properties to those

for the second and third stage combination of the Pegasus vehicle [109]. The scramjet’s

inert mass density is double that of the Pegasus vehicle, which may be supported by the

argument that part of the weight saving from not having to carry oxidant for combus-

tion, can allow a greater empty weight to improve vehicle ruggedness. Overall, the mean

vehicle density is roughly equivalent to that for Pegasus.

Apart from the payload and fuel, each element of the vehicle is represented as a rigid

panel of uniform thickness, with a mass per unit area reflecting the properties of the

advanced materials that are expected to be used for such vehicles. Factored into the struc-

tural densities is a component associated with expected cooling requirements, which may

take the form of ablative material or an active cooling mechanism. Inertia calculations

for each structural element, including the wings and elevator, follow those for a thin plate

of uniform density, see for example [27]. Without any deformable components in the

dynamics model, elevator motion is not modelled as a contribution to the variation in

vehicle inertia or center of mass. For the fuel and payload components, we assume a uni-

form distribution of their respective masses within the volume available to them. Further,

the inertia calculation of the fuel is based on the volume of fuel remaining, assuming a

constant storage density and a centre of mass fixed relative to the tank. Modelling uncer-
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tainty has been represented through a perturbation in the centre of mass of the fuel, see

Section 3.5.

Fuel and Payload:

Modern rocket propelled launch systems rely on the combination of highly energetic and

light propellants to achieve a high specific impulse. For thespace shuttle this is realized

with the combination of hydrogen and oxygen. Liquid hydrogen is the generally accepted

fuel for high speed applications due to its high energy density, high combustion rate and

high combustion temperature. However, due to the low molecular weight of hydrogen, ex-

ternal tanks are needed to provide the shuttle with sufficient storage to execute the launch.

Such an arrangement is the antithesis of the integrated engine/airframe configuration of

hypersonic air-breathing vehicles. Using hydrogen for theair-breathing launcher is there-

fore generally associated with vehicle concepts large enough to store the fuel internally.

By example, the operational concept behind the NASA Hyper-Xproject, is a hydrogen

fueled vehicle of approximately 61 m in length, compared to the 35 m long shuttle orbiter.

On a small scale launcher like that envisaged for the axisymmetric scramjet, the higher

liquid density of hydrocarbons combined with reasonable specific impulse values, make

them a suitable fuel. An additional advantage is the much simpler storage needs than

the cryogenic storage needed for hydrogen. Because supersonic combustion timescales

are of the order of milliseconds for a combustor of length 1 m,the critical parameters for

selection of a hydrocarbon fuel are the ignition and reaction delay times at combustor

conditions [160, 104, 229]. Ethane, being the fastest igniting of alkane hydrocarbons, has

been considered suitable for small scale launch vehicle concepts [229, 160], and is used

here.

As with any aircraft, the internal mass distribution of the fuel, payload, and ancillary

equipment, is critical for vehicle performance. The most important issue to address is the

location and variation of the vehicle centre of mass. Accurate representation of this is

required to assess the inherent stability of the airframe, and to position and size stability

augmentation devices and lifting surfaces. For hypersonicaircraft, though, the possible

configuration options are limited due to the available spacein a slim airframe, where

the external surface area is necessarily minimized. Further, there are operational issues

relating to delivering a payload to orbit, which constrain the internal arrangement. For

the axisymmetric concept [204], final orbit insertion is expected to be achieved through

a rocket motor and the positioning of this stage relative to the payload, as well as the

primary fuel supply, is restrictive.

The maximum cross-sectional area is used to house the fuel tank, see Figure 3.6. This

roughly coincides with the location of the vehicle centre ofmass, thereby minimizing the
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influence of fuel consumption on the rotational behaviour ofthe vehicle. The maximum

fuel capacity has been set at 2900 kg, providing roughly 290 seconds of engine operation.

Though ethane is stored as an LPG (liquefied petroleum gas), the fuel tank mass uses the

approximation for cryogenic storage of 10 kg per cubic metreof propellant [39]. Mass

not needed for cryogenics is assumed available for additional peripheral components.

Positioned forward of the fuel is the payload compartment which includes the stage three

orbit insertion motor. The arrangement supports a possiblescenario whereby the forebody

is disposed of before releasing the payload for the final stage of inserting into orbit.

Lifting Wings and Stabilizing Surfaces:

Wings are used here to generate enough lift to allow the vehicle to travel a near-level

flight trajectory at zero angle of attack, and to augment longitudinal stability. To limit

the total wing area a lifting wing and rear stabilizing wing are configured similar to that

used for the Pegasus vehicle, shown in Figure 3.2. The swept back design typical of high

speed vehicles is not reproduced since two-dimensional flowpaths are assumed through-

out the vehicle. Operating along a constant dynamic pressure flight trajectory, the lifting

wing requirements are relatively independent of flight speed. Though the lift generated

decreases gradually as the vehicle accelerates and climbs,there is also a drop in the fuel

load. Depending on the actual trajectory followed, there isthe possibility of a net positive

lift developing which would aid the gradual climb of the vehicle. With this in mind, the

lifting wing was configured to provide sufficient lift with a full fuel load, at the low speed

end of the flight trajectory.

Figure 3.7 shows the general configuration of the wing, defined by the parameter

values recorded in Table 3.1. Axially, the wing is located using the division between the

fore and aft sections of the wing. Tests showed the optimal axial position for a given wing

size, to be relatively independent of flight velocity, basedon the acceleration, attitude,

and altitude hold performance of the vehicle for control fixed operation. The symmetric

wedge sections are orientated relative to the vehicle body with an angle of attack, which,

in combination with the wing surface area produces sufficient lift to approximately match

the maximum weight flight condition.

y

x

wing axial
location

wing angle
of attack

Figure 3.7: Lifting wing specification.

The principal stabilizing feature used in this thesis is a rear wing and elevator ar-
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rangement. A number of configurations were investigated fortheir capacity to control

the vehicle. Figure 3.8 shows the arrangements and their mode of operation. In the

case where the rear wing is fixed and the elevator a wedge profile, the control moment

dead zone caused by shadow cast by the rear wing, significantly retards the flight control

performance. To achieve stable flight the rear wedge arrangement must be prohibitively

long. The two alternatives where symmetrically operated rear flaps, and an all-moving

rear wing arrangement. These proved to be roughly equivalent in their flight control per-

formance. The all-moving wing allows a lower surface area and is used for the simulations

presented in this thesis. When sizing the rear wing surfaces, it was noted that successful

flight control design required trim angles of roughly the same order as the angle of attack.

x

x

x

a) b)

c)

θe

θe

θe

θe

Figure 3.8: Possible arrangements for the rear wing and elevator combination: a) fixed rear wing
with an elevator wedge, b) fixed rear wing with elevator flaps nominal set parallel to the wing
surface, and c) an all-moving rear wing.

3.3 Airframe and Propulsion Models

The practical realization of a scramjet powered vehicle relies on a sound understanding of

the real flow features encountered in hypersonic flight. Hightemperatures, viscous effects,

boundary layer action, and three dimensional effects are all features of hypersonic flow,

and all significantly impact on vehicle design and operation. As previously mentioned,

numerical simulation of these features is very demanding and are not without uncertainty.

The approach typically employed is to approximate the detailed mathematical function

needed to obtain accurate performance characteristics. Simplified models have been used

to provide performance insights on a range of studies, and are considered sufficient for a

stability and control analysis of a concept vehicle.

An example of the level of modelling is the widely used collection of engineering

methods representing the Aerodynamic Preliminary Analysis System (APAS) [159, 49,

60]. These impact-type finite element models simulate the external aerodynamics of the

airframe, and have been used to estimate the forces and moments generated by various
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control actions on a range of hypersonic vehicles [147]. Simulating the engine flow re-

quires additional analysis techniques, as in [12, 219, 39].Armengaud et al. [12] used the

approximation of one-dimensional thermodynamic equations to examine performance re-

lationships for the scramjet. They considered the ideal gasmodel useful for exhibiting the

general characteristics of scramjets, reporting a 20% difference in comparison to real gas

characteristics. Tsukikawaet al. [219] applied a quasi-one-dimensional model for flow

through the scramjet, aimed at determining the optimum configuration of the engine.

For this thesis the vehicle simulation task is simplified by describing the geometry

with two-dimensional flow paths and by assuming an instantaneous representation of flow

structures. A multi-domain quasi-numerical description of the vehicle can therefore be

formulated using a combination of simple one-dimensional and two-dimensional gas flow

models, whereby, for a given freestream condition, the net forces and moment relating to

longitudinal vehicle motion can be evaluated. As the external aerodynamics is relatively

straight forward, scramjet engine operation dominates themodeling requirements. Fig-

ure 3.9 schematically shows the basic engine processes, segmented by inlet, combustor,

and nozzle regions. Freestream air is ingested into the inlet and is processed by a series

of oblique shocks, raising its pressure and temperature. Onentering the combustor the

airflow continues to be supersonic. Fuel is added and combustion of the supersonic flow-

stream is represented by a simple heat addition model. The nozzle flow is then detailed

with an expansion fan model capable of tracking the interaction of a finite number of

waves.

shock processing
heat addition
through combustion nozzle expansion

freestream flow

Figure 3.9: Processing of flow through the two-dimensional hypersonic scramjet.

Perhaps the most significant features not represented in this model are those relating

to viscous effects. Computational experiments by Craddock[48] on a similarly simple ax-

isymmetric configuration indicated that, even when the inlet, combustor, and nozzle sur-

faces were optimized, the viscous contribution to drag meant the scramjet engine did not

produce a net propulsive thrust. The only redeeming conclusion was that the majority of

the skin friction was associated with the axisymmetric combustor of the wrap-around con-

figuration used. Significant improvement is available with the configuration depicted in

Figure 1.5, which incorporates separate engine modules with cylindrical combustors. An
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engineering approach to skin friction such as that used by Chamitoff [39] could be used,

but with skin friction forces being of similar magnitude as form drag, it would only serve

to augment the vehicle drag to such a degree that it becomes a “net drag vehicle”. Ac-

cordingly shear forces have been neglected in the propulsive and aerodynamic modelling

of the scramjet vehicle in this thesis. Further critical features such as shock-boundary

layer interaction, viscous-inviscid interactions, flow transition, mixing and combustion,

and radiation, remain serious issues with respect to the performance of the propulsion

system, particularly in terms of setting the maximum speed.They are however assumed

to be secondary effects with respect to control. The small thrust margin achieved through

neglecting these features is an accepted limitation of the simple geometry being used.

Figure 3.10 summarizes the aerodynamics and propulsive analysis of the scramjet

vehicle. For a given vehicle statex, and centre of masscm, the vehicle model returns the

net aero-propulsive forces and moment from the contributions of the inlet (I), nozzle (N),

cowl (C), lifting wing (LW) and rear wing (RW).

F aero-prop= F I + F N + F C + F LW + F RW (3.3)

M aero-prop= M I + MN + MC + M LW + MRW (3.4)

The environment module provides the atmospheric conditions (T, p, ρ) through a stan-

dard atmosphere model augmented by temperature perturbations and turbulence veloci-

ties(∆u, ∆w). In the following sections the application of the flow processing models is

described.

3.3.1 Inlet Flow Processes

The inlet’s function is to raise the pressure and density of the freestream air and direct the

flowstream into the combustor. A uniform wedge and a cowl section perform this func-

tion, through the action of external and internal oblique shock waves. The shock configu-

ration, and therefore the inlet performance is dependent onthe freestream flight condition

(M,h), defining the flight Mach number and altitude, and the vehicleangle of attack,α.

At the zero angle of attack design condition of Mach 15 flight at an altitude of 30 km,

the inlet processes the flow through two oblique shocks, as shown in Figure 3.11(a). The

primary shock generated by the inlet wedge, redirects the freestream air parallel to the

inlet surface, with the shock intersecting the leading edgeof the cowl. The delivery of

uniform flow to the combustor is provided via cancellation ofthe reflected shock at the

combustor upstream corner. External flow over the cowl for this condition is simply the

undisturbed freestream air.

For any non-zero angle of attack, the flow processing in the two engine modules is

asymmetric. This can greatly influence the overall performance of the vehicle, not just
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Figure 3.10: Scramjet aerodynamic and propulsion modelling summary. The arrows indicate the
flow of data.

a) Design condition
= 15, = 0M α

b) = 10, = 0M α

c) = 10, = 3M α o

d) = 16, = 3 .M α o

expansion

shock

Figure 3.11: Schematic examples of the modelled flow processing through the scramjet inlet for
various flight Mach numbers and angle of attack. Note that thevehicle and flow geometries are
drawn as true shape.
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in the flow conditions presented to the combustor, but also inthe destabilizing moment

generated by the pressure difference over the long inlet surfaces. The net effect is the ap-

plication of an operational limit on the possible angle of attack of the vehicle. One clear

boundary is to limit the angle of attack to a value less than the inlet wedge angle, thereby

avoiding the effective shut down of one of the engine modules. However, the pitching mo-

ment generated by the inlet, rises rapidly with angle of attackα, and a practical operation

limit of a just a few degrees is necessary. The generation of astabilizing moment through

wings, elevators, or other means, can thus be achieved without excessive thrust penalty.

A similar operational tolerance could be expected for the Hyper-X style air-breathing ve-

hicle described in Section 1.2. Although operating at a relatively highα, manipulation of

vehicle attitude to maintain optimum engine performance asflight conditions change, is

likely to be limited to a few degrees about the nominal condition.

The matching of the inlet shock structure to the inlet geometry as in Figure 3.11,

represents inlet processing at a single precise flight condition. To simplify the off-design

modelling, the basic two-shock inlet arrangement is assumed at all times. Approximating

the inlet flow structure in this manner neglects any further shock interaction in the inlet

and any follow on flow features downstream. Figure 3.11(c)-(d) shows a selection of off-

design inlet flow structures. Noticeably there is little travel of the primary shock relative to

the leading edge of the cowl. Despite the similarity of the flow structures in the Mach 10

examples, the pressure differential between the upstream combustor flows atα = 3◦ and

α = 0◦ is around 50 % of that for theα = 0◦ condition, see Figure 3.12. The variation of

inlet performance with flight Mach number and angle of attackis shown in this figure. If

the vehicle is assumed to follow a constant dynamic pressuretrajectory then the pressure

downstream of the inlets would increase linearly with Mach number, for the two-shock

model.

In Figure 3.13 a more accurate representation of the inlet flow structure simplified in

Figure 3.11(d) is shown using a computational fluid dynamics(CFD) simulation [110,

111]. Although there are more waves in the combustor, the additional complexity makes

little difference to the integrated pressure over the inletsurface, or to the average flow

properties presented to the combustion. The shock interactions are important for the pro-

cesses in the combustion, but these are considered an issue for engine designers, and

beyond the scope of this study.

The external flow over the engine cowl varies according to theposition of the primary

shock relative to the cowl leading edge. It will generally result in either expansion of

the freestream about a small angle, or expansion of the post shock flow through the inlet

angle. No shock/expansion interaction has been modelled for flow over the cowl. The

movement of the shock about the cowl leading edge is a critical feature, as step changes

in pitching moment may result from changes in pressure over the external cowl surface.
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Figure 3.12: Inlet pressure ratio for the engine module on the upper half (−vezB) of the vehicle.

Figure 3.13: Pressure contours (in 5 kPa increments) from a computation fluid dynamics (CFD)
simulation of the hypersonic inlet flow. The freestream conditions correspond to flight in a stan-
dard atmosphere at 4900 m/s and an altitude of 31.04 km, equating to a flight Mach number of
16.2. An angle of attack of3◦ has been used.
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It is also important for engine designers, as the local rise in pressure and heat transfer

resulting from the condition where the bow shock generated from the inlet ramp strikes

just inside the inlet, can cause structural problems. Further details regarding inlet design

can be found in references [97, 98, 133].

Force and moment calculations for the inlet assume a constant pressure along the pri-

mary compression surface and the internal cowl section. A more detailed representation

could be achieved by including the additional shock interaction associated with off-design

operation. Again, the simple two-shock arrangement is considered sufficient to reason-

ably represent the inlet surface pressure and to capture thevariation in combustor inlet

conditions with flight condition. To simulate the flow arrangements of Figure 3.11, the

inlet model makes use of the oblique shock relations and an expansion analysis for a calor-

ically perfect gas. The theoretical foundations of these can be found in compressible flow

texts, for example [134, 8]. Their solutions are summarizedin the following sections.

Oblique Shock Analysis

A shock wave is generated whenever supersonic flow is turned onto itself. Provided the

turning angle is less than a (Mach number dependent) maximumdeflection angle, the

shock will generally be an attached oblique shock wave. The notation used for the oblique

shock procedure is shown in Figure 3.14. Using theθ-β-M relationship for oblique

M1

M2

θα

β
s  h  o  c 

 k

r  a  m  p    s  u  r  f  
a  c  e

Figure 3.14: Oblique shock nomenclature.

shocks, the flow deflection angleθ is defined as a unique function of the upstream Mach

numberM1 and the shock wave angleβ,

tan θ = 2 cotβ

[

M2
1 sin2 β − 1

M2
1 (γ + cos 2β) + 2

]

. (3.5)

With θ andM1 known, Equation 3.5 is solved iteratively to provide the shock angleβ, rel-

ative to the freestream flow direction. The solution regime,as implemented, restricts the

shock to the weaker of the two possible solutions available,providing supersonic down-

stream conditions. A strong shock solution would require some independent mechanism

to increase the downstream pressure, such as choking of the combustor, and results in sub-

sonic flow downstream of the shock. The bounds for the iterative solution of Equation 3.5
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are provided by the high Mach number limit for smallθ andβ, and for the upper bound, a

polynomial fit for the maximum shock angle achievable assuming a weak shock solution:

βlow =
γ + 1

2
θ,

(3.6)

βmax =
1.5556

M3
− 1.3844

M2
+

0.0797

M
+ 1.1839.

Having evaluatedβ, the conditions downstream are expressed by the oblique shock re-

lations, where upstream and downstream conditions are denoted by subscripts 1 and 2,

respectively.

Mach number normal to wave: M2
n2 =

M2
n1

+ [2/ (γ − 1)]

[2γ/ (γ − 1)]M2
n1
− 1

(3.7)

Post shock Mach number: M2 =
Mn2

sin (β − θ) (3.8)

Pressure ratio:
p2

p1
= 1 +

2γ

γ + 1

(

M2
1 sin2 β − 1

)

(3.9)

Density ratio:
ρ2

ρ1
=

(γ + 1)M2
1 sin2 β

(γ − 1)M2
1 sin2 β + 2

(3.10)

Temperature ratio:
T2

T1

=
p2

p1

ρ1

ρ2

(3.11)

An additional constraint on the model is associated with themaximum flow deflection

angleθmax, for a given Mach number. The form of theθ-β-M function in Equation 3.5 is

such that ifθ > θmax, then no solution exists for a straight oblique shock wave. In that case

a detached curved shock is required to process the flow and a more complex downstream

flow field results. Using data drawn from Equation 3.5 a test for the existence of an

oblique shock solution is expressed as a polynomial function, θmax = f(1/M),

θmax =
1.6137

M3
− 2.418

M2
+

0.0171

M
+ 0.7972. (3.12)

An analytical expression forθmax can also be derived by differentiating Equation 3.5 with

respect toβ, see [39]. Inlet design and vehicle operation for this studyis such that depar-

ture from attached oblique shocks will only occur with operation well outside acceptable

operating conditions.

Prandtl-Meyer Expansion Analysis

Prandtl-Meyer expansion describes the isentropic turningof a supersonic flow through an

angle, for a calorically perfect gas. Expansion at a corner occurs through acentered wave,
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M1

M2

θ

Figure 3.15: Nomenclature for expansion around a corner. The expansion fan angle is bounded
by the upstream and downstream Mach angles, indicated by thedashed lines.

consisting of an infinite number of Mach waves which spread downstream, as sketched

in Figure 3.15. The relationship between the expansion angle θ and the upstream and

downstream Mach numbers is given by

θ = ν(M2)− ν(M1), (3.13)

whereν describes the Prandtl-Meyer function,

ν(M) =

√

γ + 1

γ − 1

[

tan−1

√

γ − 1

γ + 1
(M2 − 1)

]

− tan−1
√
M2 − 1. (3.14)

Thus, knowingθ andM1, ν(M2) can be evaluated, and Equation 3.14 iteratively solved

to provide the downstream Mach numberM2. To provide the limits for this numerical

solution a set of polynomial functions expressingM = f(ν) were used, withν defined in

degrees. Two of these were provided by Fraser [78], accurateto four significant figures

and covering the region0 ≤ ν ≤ 65◦ for γ = 1.4. For0 ≤ ν ≤ 5◦:

M = 1.0 + 7.932×10−2ν2/3(1 + 3.681×10−2ν − 5.99×10−3ν2 + 5.719×10−4ν3),

(3.15)

and for5◦ < ν ≤ 65◦:

M = 1.071 + 3.968×10−2ν − 4.615×10−4ν2 + 1.513×10−5ν3

−1.840×10−7ν4 + 1.186×10−9ν5
(3.16)

For Mach numbers greater than 4 (corresponding toν > 65◦), another polynomial was

assembled,

1

M
= 0.6724− 8.647×10−3ν + 4.096×10−5ν2 − 1.088×10−7ν3. (3.17)

The only downstream information needed for the external aerodynamics simulation is

the Mach number and pressure. As the expanding flow is isentropic, the ratio of total and
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static pressure is

p0

p
=

(

1 +
γ − 1

2
M2

)
γ

γ−1

. (3.18)

So, for constant total pressurep0, the pressure ratio across the expansion fan is expressed

as

p2

p1
=

(

2 + (γ − 1)M2
1

2 + (γ − 1)M2
2

)
γ

γ−1

. (3.19)

The downstream surface pressurep2 is assumed to be uniform over the entire surface,

when applied to any external feature. Expansion within the thrust nozzle considers the

wave reflections and is treated in more detail in Section 3.3.3.

3.3.2 Combustor Analysis

Achieving supersonic combustion in a scramjet engine must address a broad range of is-

sues, including fuel injection, mixing, burning, chemicalkinetics, shock interaction and

boundary layer interaction. It continues to be the most researched feature of scramjet

related technology [164, 50], however, even for the most advanced computational tech-

niques, modelling the combustor flow processes is an extremely demanding task and, it

is not without uncertainty [203]. Consequently, in pursuitof rapid analysis techniques,

approaches of varying complexity have been used to provide general engine operating

characteristics [219, 12, 39]. The basic processes of heat release in fuel-air combustion

are fuel injection, fuel-air mixing, and chemical reaction. The HABV model avoids the

details of the combustion process by describing combustionusing a control volume ap-

proach to one-dimensional heat addition in a constant area duct. Heat is added directly to

the flow in each scramjet duct without the addition of mass, assuming uniform flow across

the ducts. The nomenclature for the analysis is shown in Figure 3.16, with subscripts 1

and 2 defining the upstream and downstream conditions respectively.

Without modelling the dynamic features of combustion, suchas mixing rate and rate

of combustion, the length of the combustor does not factor inthe flow analysis. Also,

by having the combustors parallel to the vehicle axis of symmetry, they do not contribute

to the force and moment calculation. The purpose of the combustor model is therefore

to evaluate the flow conditions(M, p, T, ρ), after combustion, thereby describing the flow

presented to the nozzles. Despite the potential for high core flow temperatures in the com-

bustor (>2000 K), the air is treated as a perfect gas. One of the limitations of the present

modelling and flight trajectory chosen is that the simulatedcombustion temperatures ex-

ceed those generally desired for efficient engine operation[112].
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Figure 3.16: One dimensional heat addition.

The fuel addition in the simulation model is controlled by the fuel to air equivalence

ratio,φ. It defines the fuel/air mixing ratiof , in relation to the stoichiometric mixing ratio

fst,

φ =
f

fst

actual fuel/air
stoichiometric fuel/air

(3.20)

Since the fuel addition is not actively controlled, a nominal equivalence ratio of one is

maintained, representing a stoichiometric mix of fuel and air. Using ethane as a fuel, this

occurs when hydrocarbon fuel molecules are mixed with just enough air such that all the

hydrogen atoms form water vapour and all the carbon atoms form carbon dioxide. Such

a combination usually results in the greatest liberation ofsensible energy. The general

stoichiometric equation for the combustion of hydrocarbonwith air is as follows:

CxHy +
(

x+
y

4

)

(

O2 +
79

21
N2

)

−→ xCO2 +
y

2
H2O +

79

21

(

x+
y

2

)

N2.

The stoichiometric mixing ratio on a mass basis is thereforegiven by the expression

fst =
36x+ 3y

103(4x+ y)

kg Fuel
kg Air

. (3.21)

For ethaneC2H6, fst = 0.0624 kg Fuel
kg Air . So, given the equivalence ratio as a fuel input

setting, the mass flow rate of fuel into the combustor can be evaluated.

ṁfuel = φfstṁair (3.22)
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The mass flow rate of air is defined relative to the upstream combustor conditions,

ṁair = ρ1ACU1,

where the combustor areaAC is equivalent to the height of the combustor for the simplified

axisymmetric scramjet, andU1 = M1

√
γRT1, is the combustor upstream velocity.

Knowing the amount of fuel added to the flow, the conditions downstream are obtained

by the application of the governing equations of continuity, momentum, and energy, to a

control volume [8], see Figure 3.16. The amount of heat addedper kilogram of air,q, is

proportional to the fuel to air mass flow ratio and the heatingvalueH (J/kg-fuel), of the

fuel,

q = ηcH
ṁfuel

ṁair
. (3.23)

whereηc represents the combustor efficiency, discussed further in Section 3.5.1. Applying

the energy equation for a calorically perfect gas shows the heat additionq to directly

change the total temperature of the flow,

q = cp(T02 − T01), (3.24)

wherecp is the constant pressure specific heat andT02 − T01 the increase in total temper-

ature. The ratio of properties across the control volume arederived from the momentum

and continuity expressions and the perfect gas equation of state.

p2

p1

=
1 + γM2

1

1 + γM2
2

(3.25)

T2

T1
=

(

1 + γM2
1

1 + γM2
2

)2(
M2

M1

)2

(3.26)

To find the downstream Mach number the isentropic flow relation describing the ratio of

total and static temperatures is employed.

T0

T
= 1 +

γ − 1

2
M2 (3.27)

Combining Equations 3.26 and 3.27 provides a relationship for the ratio of total tempera-

ture,

T02

T01

= f (M1,M2) . (3.28)

Equation 3.28 is iteratively solved to give the downstream Mach number,M2. Heat ad-
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Figure 3.17: Fuel input during flight along the nominal trajectory for theupper (U) and lower (L)
engine modules.

dition drives the Mach number towards 1, so with the assumption of supersonic flow

throughout the combustor, the downstream Mach number is subject to the constraint

1 < M2 < M1. Choking of the flow occurs when enough heat is added for the flow to

become sonic. To prevent this occurrence, the fuel mass flow rate necessary for choking

is monitored to provide an adaptive limit for the maximum heat addition. The choking

limit is set conservatively by assuming 100% combustion efficiency. If the fuel setting

breaches this limit the fuel mass flow rate is adjusted to 90% of the choke limit. Follow-

ing the default flight trajectory discussed in Section 2.2, the fuel rate requires adjustment

up to a flight Mach number of around Mach 10. Figure 3.17 compares the fuel input for

the nominal conditionα = 0, to the operation of the upper and lower engine modules at

angle of attackα = 2◦. The variation against flight Mach number reflects the changing

air flow rate through the combustor, with a fixed fuel equivalence ratio setting ofφ = 1.

Active control of the fuel addition has not been used. Typically, fuel control would

be warranted for trajectory maintenance and stability augmentation through differentially

throttling the engine modules. However, the vehicle functions as an accelerator, and con-

sidering the marginal acceleration capabilities the simple geometry achieves, it was con-

sidered desirable to run the engines at their maximum settings. The lack of demand on the

accelerating capability is reflected in the trajectory reference which correlates the flight

velocity against altitude rather than time. In addition, the geometry of the nozzle does not

allow effective use of differential throttling as a means ofattitude control. The potential

stabilizing moment generated by the nozzle thrust surface is diminished by the normal

force acting on the cowl section.
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3.3.3 Nozzle Analysis

Flow exiting the combustor enters the nozzle by expanding around a corner, increasing

the Mach number downstream and lowering the pressure. Conventional wisdom includes

a cowl geometry which extends far enough downstream to capture the expansion fan. The

geometry used here simplifies the downstream interactions by confining the flow struc-

ture further, with an extended cowl section. To map the pressure profile along the cowl

and thrust surfaces, a two-dimensional wave interaction model has been constructed. It

is roughly equivalent in application to the characteristics method, which has been used in

other studies to determine the thrust production in two dimensional scramjet [4]. Consis-

tent with the simulation of the other scramjet elements, this model assumes a perfect gas

and neglects viscous effects.

Figure 3.18 summarizes the features of the two-dimensionalnozzle analysis. It shows

the construction of a supersonic flow pattern using weak finite waves. An expansion fan

originating from the corner, propagates across the air stream. What follows is a series

of interaction zones as the fan reflects of the cowl surface and then the thrust surface.

For low upstream Mach numbers this process may repeat itselfwithin the length of the

nozzle. With increasing flight speed the nozzle upstream Mach number increases, pushing

the initial fan further downstream.

The expansion fan is represented by equal strength, weak, finite waves, where the

wave strengthδ represents the absolute flow deflection produced by each wave, or the

total expansion angle divided by the number of waves. Individual waves are defined as

either left or right running, relative to the upstream flow direction. Cells with uniform

properties divide the flow and are referenced by the coordinates(m,n), see Figure 3.18,

representing the number of right running wavesm, and the number of left running waves

n, crossed to arrive at the location. Governing the expandingflow are the flow deflectionθ,

and the Prandtl-Meyer functionν(M), previously expressed by Equations 3.13 and 3.14.

Applying the argument that the strength of a weak wave is not affected by intersection

with other waves [134], the flow properties(θ, ν) within each cell are expressed through

the number of left and right running waves crossed to reach the cell.

θ(m,n) = θ1 + δ (m− n) (3.29)

ν(m,n) = ν1 + δ (m+ n) (3.30)

The upstream conditions for this case areθ = 0, andν1 = ν(M1) using Equation 3.14.

Equations 3.29 and 3.30 then allow a complete mapping of the flow condition throughout

the flow structure. The Mach number of the flow within each cellis evaluated using the

polynomial functions described by Equations 3.15-3.17. Since the total pressure remains
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(2,6) (3,6)
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1st interaction zone

Cowl pressure trace

Thrust surface
pressure trace

Figure 3.18: Wave interaction model for the expansion fan, showing a reduced number of waves
to simplify the picture. Adjacent to each nozzle surface is an internal pressure profile showing
the step changes in pressure coincident with wave reflection, and the transitions used to generate
forces and moments. Also shown is the method of indexing regions within the expansion fan,
using the number of right (m) and left (n) running waves crossed to reach the region.
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constant through an isentropic expansion, the pressure foreach cell is evaluated using the

isentropic flow relation for the ratio of total and static pressure, see Equation 3.18.

Knowing the distribution of flow properties within the expansion, the surface pres-

sure profiles are simply obtained by following the expansionfan geometry, starting at

the corner. Each wave is orientated by averaging the local Mach lines in adjacent cells.

For example, the angleψr of the right running wave in between cells (2,5) and (3,5) is

expressed as,

ψr(2 : 3, 5) =
1

2
[(θ − µ)2,5 + (θ − µ)3,5] ,

whereµm,n = sin−1 1
Mm,n

. By describing the wave angles in this manner, perfect reflec-

tion of the waves is not guaranteed. The quality of the interaction geometry improves

with an increase in the number of waves used to subdivide the expansion fan.

Cells adjacent to the cowl and thrust surfaces provide the data necessary to build

their respective pressure profiles. As the flow properties are assumed uniform within

each cell, the step profiles shown in Figure 3.18 result. To smooth out the profile, linear

transitions between the steps are used, which for a large enough number of waves provides

an adequate approximation to a continuous expansion. The net axial and normal forces

are formed by a summation along the surfaceS, where the surface normal relative to

vehicle reference frame is(nx, 0, nz).

Fx =
N−1
∑

i=1

nx
P (i) + P (i+ 1)

2
∆Si (3.31)

Fz =

N−1
∑

i=1

nz
P (i) + P (i+ 1)

2
∆Si (3.32)

The net pitching moment is likewise expressed as a summation, separated into compo-

nents generated by the axial and normal forces for each surface segment.

My =
N−1
∑

i=1

(

sgn(nx)

∫

zP (z)dz − sgn(nz)

∫

xP (x)dx

)

(3.33)

The integrals in Equation 3.33 are evaluated over each linear segment of the pressure

profile. They are expressed in terms of their bounding points, referenced by the indices

(i, i+ 1):

∫

xP (x)dx =
|∆x|

6
(Pi(2xi + xi+1) + Pi+1(2xi+1 + xi)) . (3.34)
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The expression for
∫

zP (z)dz is equivalent to Equation 3.34.

Figure 3.19 shows the convergence of the nozzle and cowl surface pressure profiles

with an increasing number of waves within the expansion fan.A mid-trajectory flight

condition has been used withM∞ = 11.7 andh = 26682 m. The sudden changes in

trends below a flight Mach number of 10 reflect the clipping of the fuel added to the

combustor, to avoid conditions which could choke the flow. The nozzle calculation can

represent a majority of the vehicle simulation time, so in cases such as designing the

flight controller, the 10 wave model is considered sufficient. For the example shown in

Figure 3.19 the error in the 10 wave approximation relative to the 20 wave case, is 1.1 %

for Fx and 1.7 % forMy.
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Figure 3.19: Thrust (T) and moment (M) evaluation for various expansion fan resolutions. The
indexing (5,10,20) refers to the number of waves used to describe the expansion fan.

The effect of flight speed on the expansion fan structure is shown in Figure 3.20.

As the vehicle accelerates the nozzle upstream Mach number increases, increasing the

strength of the expansion, and spreading the interaction zones downstream. It was pre-

viously stated that the nozzle configuration is not conducive to generating stabilizing

moments. Figure 3.21 shows the combined nozzle moments generated by a fixed fuel

equivalence ratio setting and the difference in airflow through the modules with non-zero

angles of attack. Up to the point where the net nozzle moment changes sign, the contribu-

tions from the internal cowl surface dominate the nozzle moment. So, despite the greater

fuel and air flow rates in the lower engine module, the nozzlesgenerate a destabilizing

moment. A stabilizing effect is only produced when, with theincrease in fuel addition
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to the upper module, the dominance of the cowl surfaces is reduced and the net nozzle

moment is driven the thrust surfaces.

M∞ = 8.4

M∞ = 11.7

M∞ = 15.0

M∞ = 16.2

Figure 3.20: Nozzle flow variation with flight Mach number.

To check the implementation of the expansion fan interaction method, a series of CFD

simulations were performed for the two-dimensional nozzlegeometry, using a Navier-

Stokes code [110, 111]. A Mach 15 flight condition was examined with the vehicle having

a zero and a small non-zero angle of attack of2◦. The axial and normal forces acting on

the thrust surface were all within 0.6 % of the CFD values. Forthe normal force generated

along the internal cowl surface, a 2 % difference was observed.

3.3.4 Lifting Wing and Elevator Analysis

Along with the cowl, the wings and elevator provide the only external aerodynamic anal-

ysis required for the vehicle simulation. Aerodynamic modelling of these components

considers the surfaces as two-dimensional wedges, and applies an oblique shock or a

Prandtl-Meyer expansion analysis [134], depending on the local flow turning angle. For

the lifting wing, the flow structure is simply dependent on the vehicle angle of attack.

In between the lifting wing and rear wing arrangement the flowis assumed to return to

freestream conditions. Force and moment calculations for the all-moving rear wing use

surface normals and area centres calculated from the actuation angle and the wing geom-

etry. All surfaces are treated as having uniform pressure.
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Figure 3.21: Stabilizing capability of the engine nozzles without active control of the fuel ad-
dition. With a fixed the fuel/air equivalence ratio, a differential fuel flow rate supply to the two
engine modules is due to the differential air flow rate through the modules.

3.4 Vehicle Performance

Figure 3.22 shows the broad range performance of the scramjet vehicle in terms of the

net thrust and specific impulse. There are several features worth noting. Firstly, the initial

rise in thrust is due to the lessening threat of choking the combustor with the nominal fuel

input, as the flight Mach number increases. Secondly, there is a substantial performance

penalty for operating at a non-zero angle of attack. This makes the design of the vehicle

geometry difficult, as a fixed geometry vehicle is unable to match the lifting requirements

for the entire trajectory, and angle of attack perturbations will be required to track the

desired trajectory. The final remark on Figure 3.22 refers tothe relatively low specific

impulse, which declines with increasing flight speed. Performance estimates for hydro-

carbon fueled scramjets are generally provided for the low hypersonic flight conditions,

see Figure 1.1, reflecting the limited Mach number range for which they are expected to

be useful. The specific impulse measured for this scramjet isof the same order as that of

modern rockets.

3.5 Performance Uncertainty

The hypersonic air-breathing vehicle model (HABV) presented so far represents a nomi-

nal performance assessment of the vehicle’s aerodynamics,propulsion, structural compo-

nents. It provides a deterministic, instantaneous description of the net forces and moments

acting on the vehicle, as a function of the freestream conditions, the vehicle attitude, and
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Figure 3.22: Net thrust and specific impulse performance of the engine along the default flight
trajectory.

the control settings, applicable for the hypersonic flight trajectory. Unmodelled features

and time dependent flow processes generate uncertainty in the vehicle performance.

It is important to examine the robustness of the flight controller in the presence of

vehicle uncertainty. For this purpose, parametric uncertainty has been used to describe

stochastic perturbations in the engine performance, control effectiveness, and the physical

properties of the vehicle. Combustion efficiency, elevatorsurface pressure, and fuel centre

of mass have been use to represent general performance variations. Each is implemented

in the flight simulation as an uncertainty filter, based on a Nyquist frequency of 50 Hz. The

low-pass filters are coded as difference equations with white noise of unit variance,W0,1,

providing the source signal. Aerodynamic and propulsive uncertainties are assumed to be

driven by atmospheric turbulence. Uncertainty in the freestream conditions is discussed a

little later in Section 3.6.

3.5.1 Combustor Efficiency

Engine flow processing uncertainty has be lumped into one parameter, using the effi-

ciency of the combustion process. In the model described in Section 3.3.2, the efficiency

represents a fraction of the available heat release of the fuel. A nominal combustor effi-

ciencyηnom = 0.75, allows a reasonable thrust generation, though generatingcombustion

temperatures 3000 - 4000 K, which exceed generally desirable values. This is perhaps an

indication that the flight dynamic pressure is to high.

To evaluate the combustion efficiency variation, a randomized additive perturbation
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∆η is applied about the nominal efficiency. Using a low-pass first-order filter, the cut-

off frequency is set to provide the same frequency content asthe longitudinal turbulence

model, see Section 3.6.2.

ηc = ηnom + ∆η

∆η = 2.3525×10−3(W0,1[n] +W0,1[n− 1] + 0.99686∆η[n− 1]
(3.35)

The Nyquist frequency based on the nominal integration timestep, is significantly less

than that associated with the transit time of flow through thecombustor, which is roughly

0.0004 s. The first order filter equation above allows the possibility of low frequency

engine surges and some higher frequency variations, with a maximum perturbation of

±15 %. Each combustor module is considered independently.

3.5.2 Elevator Surface Pressure

Control effectiveness has been represented by uncertaintyin the elevator surface pres-

sure, equivalent to±5 % variation about the nominal value. Again, with reference tothe

turbulence filter properties described in Section 3.6.2 thefollowing filter equation is used,

P = (1 + ∆p)Pnom

∆P = 7.8417×10−4(W0,1[n] +W0,1[n− 1]) + 0.99686∆P [n− 1]
(3.36)

Separate signal histories are kept for the upper and low surfaces of the elevator.

3.5.3 Fuel Centre of Mass

In addition to the variation in mass properties due to fuel consumption, the location of

the center of mass of the fuel is allowed to fluctuate by±0.25 m. Since high frequency

oscillations are unlikely to be present in the fuel sloshingbehaviour, a second filter with

a cut-off frequency of 2 Hz has been used.

cmf = cmnom + ∆cm

∆cm = 2.1472×10−4(W0,1[n] +W0,1[n− 2]) + 0.43445W0,1[n− 1]

+1.9556∆cm[n− 1]− 0.95654∆cm[n− 2]

(3.37)

3.6 Environment Model

The environment model encompasses the description of the physical properties of the

Earth and its atmosphere. Table 3.2 summarizes the defining physical parameters of the
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Table 3.2: General definition of the simulation environment.

Description Value...
Earth Radius,RE. 6738.4 km

Gravity at sea level,g0. 9.81 m/s2

Rotation,ωE. 7.29246×10−5 rad/s
Atmosphere Sea level temperature. 288.15 K

Sea level pressure, (1 atm). 101.325 kPa
Sea level density. 1.225 kg/m3

Gas properties Ideal gas constant, R. 287 J/kgK
Specific heat ratio,γ. 1.4

simulation environment. Altitude has been include in the system state to account for the

atmospheric and gravity gradients. The local gravityg variation with altitude is simply

described using the absolute altitudeha = hG + RE, wherehG is the geometric height

above the surface of the Earth whose radius isRE.

g = g0

(

RE

ha

)2

(3.38)

Atmospheric modelling describes the variation in temperature, pressure, and density with

altitude. Relative to the rotating Earth, the atmosphere isassumed stationary. Distur-

bances in the velocity field, due to turbulence or wind, are applied uniformly to the ve-

hicle. For a more detailed representation of the atmosphere, a complete inertial based

atmosphere model could be applied [68].

3.6.1 Atmospheric Modelling

Natural variations in atmospheric properties exist as functions of altitude, longitude, lat-

itude, time of day, season, and solar activities. As it is generally impractical to simulate

these variations, a standard atmosphere is used to provide mean values of pressure, tem-

perature, density, and other properties, as a function of altitude. Central to these models

is a defined variation of temperature with altitude. Figure 3.23 shows the temperature

profile for the U.S. Standard Atmosphere, 1976 [1]. It definesthe temperature regions as

being either isothermal or of constant gradient, up to a geometric altitudehG, of 86 km.

The geopotential altitudeh, is used as a reference for temperature, simplifying the math-

ematics for defining pressure, by accounting for the variation of gravity with altitude [6].

The conversion between geometric and geopotential altitude is made with the following
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expression, whereRE represents the radius of Earth at the equator.

h =

(

RE

RE + hG

)

hG (3.39)
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Figure 3.23: Temperature profile for U.S. Standard Atmosphere, 1976, up to hG = 86 km. See
Table 3.3 for the supporting data.

Table 3.3: Standard atmosphere data, for the 7 fundamental layers up tohG = 86 km, of U.S.
Standard Atmosphere, 1976. Subscripts 1 and 2 respectivelyrefer to the lower and upper boundary
of each layer.

h1 (km) h2 (km) T1 (K) dT/dh (K/km) p1 (Pa)
0 11 288.15 -6.5 101.325×103

11 20 216.65 0.0 22.632×103

20 32 216.65 1.0 5474.9
32 47 228.65 2.8 868.02
47 51 270.65 0.0 110.91
51 71 270.65 -2.8 66.939
71 84.852 118.65 -2.0 3.9564

To predict the pressure and density given the temperature profile in Figure 3.23, the

hydrostatic equation is used to construct a force balance onan element of fluid. Using

the definition for altitude given by 3.39, the force balance gives the change in pressure dp
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across an element of fluid of height dh,

dp = −ρg0 dh, (3.40)

whereρ is the density at altitudeh andg0 is the acceleration due to gravity at the surface

of the Earth. Integration of Equation 3.40 over the isothermal and gradient temperature

regions then provides the general expressions for atmospheric pressure for a perfect gas,

where the subscript1 refers to properties at the low altitude end of the relevant temperature

region and the temperature gradienta = dT/dh is in K/m:

Isothermal regions:
p

p1
= e−(g0/RT )(h−h1) (3.41)

Gradient regions:
p

p1
=

(

T

T1

)−g0/aR

(3.42)

Perfect gas equation of state: p = ρRT (3.43)

The data to apply these equations is provided in Tables 3.2 and 3.3.

Uncertainty in the nominal atmospheric description is included by the addition of ar-

tificial noise to the atmosphere. Temperature variation is driven by turbulence, so the

uncertainty is based on duplicating the frequency content of the turbulence functions de-

fined in Section 3.6.2. Using the same format as the parametric uncertainty functions,

the temperature variation∆T is evaluated using difference equation to define a first order

filter sourced with white noise of unit variance.

T = (1 + ∆T )Tnom

∆T = 3.921×10−4(W0,1[n] +W0,1[n− 1]) + 0.99686∆T [n− 1]
(3.44)

The intensity of the white noise input was chosen to provide coefficients that generated

temperature variations up to±2 %. Pressure is assumed to follow the standard atmosphere

model and the density is provided by the perfect gas law.

3.6.2 Atmospheric Turbulence Model

For engineering purposes, the conventional approach to turbulence modelling as a stochas-

tic process uses the Dryden spectra [150]. The Dryden spectra can be implemented as

filters through which white noise of unit variance is passed.In a digital simulation the

frequency content of the artificially generated noise is truncated by the Nyquist frequency,

π/∆t rad/s. The Nyquist frequency describes the maximum frequency which can be gen-

erated by a sampling time∆t. To account for the band-limited noise, the intensity of
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the input noise sequence is set to the inverse of the Nyquist frequency. The discrete time

domain transfer functions for the longitudinal (Fu) and vertical (Fw) turbulence filters are

therefore defined as follows:

Fu(s) =

√

π

∆t
σu

√

2V

πLu

(

1

s+ V
Lu

)

(3.45)

Fw(s) =

√

π

∆t
σw

√

3V

πLw







s+ V√
3Lv,w

(

s+ V
Lw

)2






(3.46)

Both filters are parameterized by the standard deviation of the turbulence,σ, and an

integral scale length,L. Also featured in the above equations is the air relative vehicle

velocity, V , excluding turbulence. The length scale determines the power distribution

over the frequency range, whileσ changes the power level without changing the relative

distribution.

Since the numerical flight simulation is discretized by the integration time step, the

longitudinal and vertical turbulence filters are implemented as difference equations. For a

digital filter the outputy(k) at thekth sampling is defined in terms of the inputx(k) and

the filter input/output history.

y[k] =

N
∑

i=0

bix[k − i]−
M
∑

i=1

aiy[k − i] (3.47)

In much the same as thes domain is used for continuous time systems, thez-domain is

applied to discrete-time simulation. Thes andz domains are related by

z = esT , (3.48)

whereT is the sampling period. To transfer thes-domain transfer function to thez-

domain discrete equivalent, a simple conformal mapping between the two domains is

provided by the bilinear transform, also known as Tustin’s approximation to 3.48 [175,

233],

s← 2

T

(1− z−1)

(1 + z−1)
. (3.49)

The bilinear transform is based on the Taylor series approximation ofeTs. Following the

substitution of 3.49 into thes-domain transfer functions, the resulting z-transform, H(z),
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can be written as a polynomial fraction.

H(z) =
Y (z)

X(z)
=

N
∑

i=0

biz
−i

M
∑

i=0

aiz
−i

(3.50)

From the definition of thez-transform of a number sequence,z−iY (z) can be equated

with y[k − i]. The difference equation of 3.47 can then simply be expressed by allowing

a0 = 1, and matching the coefficients with those in thez transfer function.

In the flight simulation code, atmospheric turbulence has been implemented using a

single reference flight condition, thereby avoiding any consistency issues with switching

between turbulence parameters. A mid-trajectory reference altitude of25 km was used to

source the filter parameters, using the severe turbulence data in [150]:

σu = 4.34 m/s σw = 3.34 m/s

Lu = 12000 m Lw = 6560 m

The filters are discretized according to a nominal integration timestepT = 0.01 s. With

unit variance white noise input data expressed asW , the difference equation for the lon-

gitudinal and vertical turbulence velocities are defined asfollows:

∆u[n] = 0.1655 (W [n] +W [n− 1]) + 0.9971∆u[n− 1] (3.51)

∆w[n] = 0.2105W [n] + 6.474×10−4W [n− 1]− 0.2098W [n− 2] (3.52)

+1.98936∆w[n− 1]− 0.98939∆w[n− 2]

White noise refers to a random process with a characteristicGaussian distribution.

A sample turbulence velocity history is shown in Figure 3.24. For this example the

standard deviations of∆u and∆w are 3.065 m/s and 3.42 m/s respectively. Given a long

enough sequence, the simulated standard deviations approximately match the parameter

values used to define the filters, as required.

3.7 Flight Dynamics

A flight simulator requires the coupling of a mathematical description of the vehicle’s per-

formance, with the dynamical and kinematical equations describing aircraft flight. The

first half of this chapter presented the basis of the vehicle performance model, featuring

a numerical aero-propulsive simulation and a description of the vehicle’s physical prop-
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Figure 3.24: Simulated history of longitudinal and vertical turbulencevelocities.

erties. Through the following sections, the kinematics anddynamics will be developed

for the hypersonic flight of a rigid body aircraft. To capturefeatures relevant to launching

into orbit, a general six degree-of-freedom dynamic model is derived from the force and

moment equations, for high speed flight about a spherical, rotating Earth [68]. The centre

of the Earth is assumed to be fixed in inertial space with its atmosphere at rest relative to

its surface.

3.7.1 Coordinate Reference Frames

Newton’s law of motionF = ma is defined relative to an inertial frame of reference.

For convenience however, the equations of motion for atmospheric flight are generally

written in terms of a non-inertial frame fixed to the aircraft. The mapping between the two

frames is through a series of coordinate transformations which are based on describing

the rotation of the circular Earth, and the vehicle attituderelative to a known reference.

Figure 3.25 shows the reference frames used for the hypersonic flight simulator, following

a conventional arrangement for aircraft simulators [68].

The Earth is assumed fixed in inertial space. Two Earth-fixed frames,FEC andFE, are

used. The Earth-centre frameFEC has its origin at the centre of the Earth, such that the

Earth’s rotation is given by an angular velocityωE about axisOECzEC . Axes directions

are further set by reference points on the Earth’s axis and the equator - zero latitude(λ)

and zero longitude(µ) for xEC is used here. Earth-fixed surface frameFE is also located

by latitude and longitude(λE , µE), and arranged withOEzE directed vertically down,

while OExE andOEyE are directed north and east respectively. It provides a reference

point on Earth for the motion of the aircraft.
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Figure 3.25: Reference frames used for hypersonic flight dynamics simulator.

Two vehicle based frames,FV andFB, are used.FV , a vehicle carried vertical frame,

accounts for the curvature of the Earth. Its originOV is attached to the vehicle at its

centre of mass with axisOV zV directed vertically down along the local gravity vector

g. AxesOV xV andOV yV are arranged similarly to frameFE, describing northerly and

easterly travel respectively.FB, the body-fixed frame, is used as a reference for the final

form of the force and moment equations. Wind axes could also be used as the body-

fixed frame, but is inconvenient for the description of angular motion. TypicallyFB is

arranged to coincide with the principal axes of inertia of the flight vehicle, providing a

simplification of the moment equations. InFB coordinates the vehicle velocity relative

to Earth isvB = (u, v, w) and the angular velocity isωB = (p, q, r). Here a superscript

describes the reference frame the vector is measured relative to and a subscript is used to

indicate the coordinate frame in which the vector components are written. Further, the

angular velocity vectorω generally represents the rotation relative to the inertialframe,

of the frame of reference indicated by the superscript.

Transferring information between reference frames depends on their relative angular

position and angular velocity. To define the orientation of the vehicle, Euler angles have

been used. Euler angles describe a transformation that movesFV into alignment withFB,

through a sequence of rotations(ψ, θ, φ). The transformation is described by the matrix
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LBV , transferring the coordinates of vectorv from frameFV to frameFB, vB = LBV vV .

LBV =







cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ







(3.53)

The relative angular velocity between the two vehicle-based frames is based on the Euler

angles, and is written here in terms of body coordinates.

ωB
B − ωV

B =







P

Q

R






=







φ̇− ψ̇ sin θ

θ̇ cos φ+ ψ̇ cos θ sinφ

ψ̇ cos θ cos φ− θ̇ sinφ






(3.54)

Equation 3.54 provides a path to defining the Euler rates(φ̇, θ̇, ψ̇), and tracking the attitude

of the vehicle, by further development ofωV
B. Starting with the Earth’s rotation based on

a sidereal day,ωE can be expressed in the various reference frames of Figure 3.25:

ωE
EC =







0

0

ωE






; ωE

E =







cosλE

0

− sinλE






ωE; ωE

V =







cosλ

0

− sin λ






ωE (3.55)

Reference frameFV rotates according to the curvature of the Earth, and as such is depen-

dent on the rate at which the vehicle is travelling across thesurface,
(

λ̇, µ̇
)

. The angular

velocity of frameFV relative to the inertial frame is therefore written usingωE
V and the

relative motion between framesFE andFV .

ωV
V =







(

ωE + µ̇
)

cosλ

−λ̇
−
(

ωE + µ̇
)

sinλ






(3.56)

To be compatible with the body angular ratesωB
B, the left hand side of Equation 3.54 is

transformed through a transformation,ωV
B = LBV ωV

V .

For the simplification to a flat Earth model whereωV andωE are neglected, such that

ωB
B − ωV

B ≡ ωB
B, and[P,Q,R]T = [p, q, r]T. In terms of the reference frames, ignoring

the rotation of the Earth leavesFE as the inertial frame, and ignoring the curvature of the

Earth makesFV equivalent toFE.



84 Simulation of Hypersonic Flight

3.7.2 General Equations of Motion

Using the reference frames of Figure 3.25, the general equations of motion for a rigid-

body flight vehicle are developed. This is presented in two sections. The first deals with

the application of Newton’s laws of motion to the vehicle, providing the general force and

moment equations. To complete the equation set, the inertial acceleration of the vehicle

centre of mass is then derived. Much of the complexity in these equations results from the

transformation from inertial to body-fixed coordinates, with the inclusion of the rotation

of the Earth throughωE, and its curvature throughωV .

The primary assumption in this dynamic model is that of a rigid body vehicle. For the

force expression, further simplification results from neglecting the momentum of the fuel

through the engine and potential operational mass losses such as ablation. The magnitude

of these terms are small compared to the momentum change imparted to the air flowing

through the engine. In the development of the moment equations, the contributions from

moving aerodynamic surfaces have been neglected.

Dynamics - force and moment equations

In Figure 3.26, an elemental massdm, moving within an inertial reference frame, is acted

upon by a forcedf . The following general force and moment equations result from

applying Newton’s laws of motion to the flight vehicle.

force equation : df = v̇ dm (3.57)

moment equation : r × df = r × v̇ dm (3.58)

Defining the vehicle mass centreC by the expressionmrC =
∫

r dm, the integration

of Equation 3.57 becomesf = maC , whereaC is the inertial acceleration of the vehicle

mass centre. Transferring the components from the inertialframe to the body-fixed frame

then provides the force equation in the desired form.

fB = maCB
(3.59)

Force vectorfB is the resultant of all externally applied forces acting on the vehicle,

including airframe aerodynamics, propulsive, control, and gravitational forces. The ac-

celeration vectoraCB
, describes the acceleration of the vehicle mass centre relative toFI ,

and is developed further in the following section.

The moment equation is also simplified by definingC as the mass centre, and refer-
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Figure 3.26: Nomenclature for the application of Newton’s Law to an element of a body.

encing the integral over the vehicle to the moving pointC,

M I = ḣI , (3.60)

whereM I =
∫

RI × df I is the resultant external moment aboutC, and

hI =

∫

RI × vI dm, (3.61)

is the resultant angular momentum aboutC. Again it is desired to express the compo-

nents of (3.60) in terms of body-fixed coordinates rather than inertial coordinates. This

transformation is achieved through the expansion

MB = LBIM I = ḣB + ω̃B
BhB (3.62)

whereMB represents the aerodynamic, propulsive, and control moments applied to the

vehicle, andhB = LBIhI , is the transformation of (3.61). Neglecting deformation com-

ponents - elevator motion, fuel sloshing, and elastic deformation, for example -hB be-

comes

hB = IBωB, (3.63)
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where

IB = −
∫

R̃BR̃B dm

=







Ix −Izx −Izx

−Ixy Iy −Iyz

−Izx −Iyz Iz






. (3.64)

The moments of inertia and products of inertia defined in matrix IB (3.64) respectively

take the formIx =
∫

(y2 + z2) dm andIxy =
∫

xy dm. The rotation of the Earth though

not explicitly appearing in 3.62 and 3.63, occurs implicitly in ωB.

Inertial acceleration

The reference frames used to derive the equations of motion move relative to inertial

space, including an acceleration of the origin and a rotation. To define the position, inertial

velocity, and inertial acceleration of the vehicle parallel to FB, we are therefore required to

deal with the arbitrary motion of these frames relative to inertial space. Figure 3.27 shows

the framework for developing the necessary expressions. The flight vehicle with mass

centreC is represented as a point moving within the arbitrarily moving Earth reference

frameFE. To simplify the notation, the origin ofFE is written asO rather than the explicit

OE.

xI

zI

FI

yI

OI

OEC

RO

O
zE

xE

yE

OV

r'
FE

ωE

RC

Figure 3.27: Moving reference frame, with reference to Figure 3.25

For two frames moving relative to each other, the expressionnb = Lbana describes

the transformation of the vectorn - observable in both frames - from frame Fa to Fb.

Assuming frameFa is fixed and frame Fb moves relative to it, then the components of the
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derivative of the vector in the moving frame are transformedto Fb using

Lbaṅa = ṅb + ωb × nb, (3.65)

whereωb describes the relative angular velocity between the two frames. This expression

was used to form Equation 3.62. Applying (3.65) to the derivative of the vehicle position

vector, provides the following expression for the components parallel to the axes of FE,

of the inertial velocity ofOV .

vCE
= LEIvI = LEI (vOI

+ ṙ′
I)

= vOE
+ ṙ′

E + ωE
E × r′

E (3.66)

DifferentiatingvI and using (3.66), the components of inertial acceleration parallel toFE

are found:

aCE
= LEIv̇I = v̇CE

+ ω̃E
EvCE

= aOE
+ r̈′

E + ˙̃ω
E

Er′
E + 2ω̃E

E ṙ′
E + ω̃E

Eω̃E
Er′

E, (3.67)

whereaOE
= v̇OE

+ ω̃E
EvOE

, the accelerationO relative toFI . The matrix equivalent to

the vector product has been used, as indicated by the tilde accent. For example,2ωE
E ×

ṙ′
E ≡ 2ω̃E

E ṙ′
E.

The form of Equation 3.67 can be considered a general expression for the inertial

acceleration of a point within a moving reference frame. In the case of flight vehicle

simulation, the Earth-fixed surface frame is the moving frame, and the vehicle centre of

mass the moving point within that frame. The terms of 3.67 maythen be defined as

follows:

aOE
: inertial acceleration of the origin ofFE. Following the assumption that the

Earth’s axis is fixed in inertial space, and thatω̇E = 0, this term is the

centripetal acceleration associated with the Earth’s rotation, ω̃Eω̃ERE. The

maximum value foraOE
occurs at the equator, and at less than1% of gravity,

this term is neglected here.

r̈′
E : v̇E

CE
, the acceleration of the vehicle mass centre in the moving frameFE.

˙̃ω
E

Er′
E : the tangential acceleration of frameFE is zero as the Earth spins at a constant

rate, ˙̃ω
E

E = 0.

2ω̃E
Eṙ′

E : the Coriolis acceleration due to motion of the vehicle within the moving

frameFE. It is dependent on the magnitude and direction of the vehicle

velocity, and at orbital speed is around 10% of gravity.



88 Simulation of Hypersonic Flight

ω̃E
Eω̃E

Er′
E : the apparent acceleration of the vehicle mass centre due tothe angular veloc-

ity of the moving frameFE. Being less thanaOE
, this term is also neglected.

If the simulation was concerned with accurate navigation orpositioning, then

this term would not be negligible.

Transforming Equation 3.67 into the moving body fixed frameFB, makes use of the

propertyω̃a = Labω̃bLba, and again uses (3.65). In this case, the angular velocity in

(3.65) represents the angular velocity ofFB relative toFE, (ωB
B − ωE

B). The inertial

acceleration of the vehicle is thus written with componentsparallel toFB:

aCB
= LBEaCE

= LBE

(

v̇E
CE

+ 2ω̃E
EvE

CE

)

= v̇E
B +

(

ω̃B
B + ω̃E

B

)

vE
CB
, (3.68)

wherevE
CB

is the flight velocity of the vehicle relative to the Earth,

vE
CB

=







u

v

w






, for a stationary atmosphere, (3.69)

andωB
B andωE

B are respectively the angular velocities of framesFB andFE, relative to

inertial space

ωB
B =







p

q

r






, ωE

B =







pE
B

qE
B

rE
B






= LBV ωE

V . (3.70)

3.7.3 System of Equations

The complete system of dynamic and kinematic equations for hypersonic flight simulation

are assembled here. They are presented in a form compatible with numerical integration,

for the purpose of tracking flight velocity, vehicle position, and vehicle orientation. The

dynamics state vector describes the vehicle position, attitude, angular velocity, and flight

velocity.

xd = [(R, µ, λ), (ψ, θ, φ), (p, q, r), (u, v, w)]T (3.71)

For the combined trajectory and attitude motions, a body-axes form of the equations has

been used.
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Force equations - for motion of the vehicle centre of mass

The force equations are described in terms of body coordinates by Equation 3.59. Here,

fB is the sum of the aero-propulsive force vector[Fx, Fy, Fz]
T and the gravity vectorgB.

Following the transformationgB = LBV gV , with LBV defined by (3.53), the force vector

becomes

fB =







Fx −mg sin θ

Fy +mg cos θ sinφ

Fz +mg cos θ cosφ






. (3.72)

Combining the force and acceleration expressions, the vehicle inertial acceleration com-

ponents inFB are

u̇ = (Fx −mg sin θ) /m−
(

q + qE
B

)

w +
(

r + rE
B

)

v,

v̇ = (Fy +mg cos θ sinφ) /m−
(

r + rE
B

)

u+
(

p+ pE
B

)

w, (3.73)

ẇ = (Fz +mg cos θ cosφ) /m−
(

p+ pE
B

)

v +
(

q + qE
B

)

u.

Integration of these equations provides the vehicle velocity, vB = [u, v, w]T , in body

coordinates.

Moment equations - rotational motion about the centre of mass

The simplest form of the moment equations given by expressions (3.62) and (3.63), comes

from using principal axes forFB with a plane of symmetry aligned alongCXZ . A diagonal

inertia matrix is thus provided. If the time derivative terms of inertia are neglected, the

moment equations can be arranged as,

ṗ = (Mx + (Iy − Iz) qr) /Ix,
q̇ = (My + (Iz − Ix) rp) /Iy, (3.74)

ṙ = (Mz + (Ix − Iy) pq) /Iz,

where the vehicle net aerodynamic moments are given by[Mx,My,Mz]
T . Integration of

(3.74) provides the vehicle angular rates,ωB = [p, q, r]T .

Vehicle attitude

Recalling that the orientation of the vehicle relative to the local vertical frameFV is given

by the Euler angle sequence(ψ, θ, φ). The matrix equation for integrating the Euler rates

and therefore tracking the angular position, is found from Equation 3.54, requiring the
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relative angular velocity[P,Q,R] between the two body framesFV andFB, as input.







φ̇

θ̇

ψ̇






=







1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cos φ sec θ













P

Q

R






(3.75)

Relative angular velocity

Expressions for the relative angular velocity are formed from considering
(

ωB
B − ωV

B

)

using Equations 3.54 and 3.56,







P

Q

R






=







p

q

r






− LBV







(

ωE + µ̇
)

cosλ

−λ̇
−
(

ωE + µ̇
)

sinλ






. (3.76)

Earth’s angular velocity

The vehicle acceleration in body coordinates (3.68) requires the angular velocity compo-

nents associated with the Earth’s rotation, and expressed in body coordinates,

ωE
B =







pE
B

qE
B

rE
B






= LBV







cosλ

0

− sin λ






ωE . (3.77)

Vehicle position

Spherical polar coordinates are used to locate the vehicle centre of mass relative to the

Earth. (R, λ, µ), represent geocentric radius, latitude, and longitude respectively. Their

derivatives are related to the movementvE
V , of frameFV relative to the Earth, giving

Ṙ = −vE
Vz
,

µ̇ =
1

R cosλ
vE

Vy
, (3.78)

λ̇ =
1

Rv
E
Vx
.

To provide the components ofvE
V , the velocity vectorvE

B = [u, v, w]T for a still atmo-

sphere, is transferred to the frameFV .

vE
V = LV BvE

B, (3.79)

whereLV B = LT
BV , the transpose of the orientation matrix used to rotate frameFV to the

body axes, defined by (3.53).
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Figure 3.28: Altitude response comparison between the general six degree-of-freedom model and
the simplified longitudinal equations.

Longitudinal Flat-Earth Flight Dynamics

To check the derivation of the general six degree-of-freedom dynamic model, the longitu-

dinal dynamics were separately derived for a flat Earth system. These equations can also

be produced by the following simplifications to the general equations:

Attitude: ψ =
π

2
, φ = 0

Angular rates: p = r = 0 ; pE
B = rE

B = 0

Forces and moments: Z = 0 ; L = N = 0

The simplification of the flight dynamics in this manner noticeably changes the altitude

response characteristics of the vehicle. By example, the simulated altitude responses

shown in Figure 3.28 where produced during a flight guidance simulation. The difference

is due to the Coriolis acceleration component which appearsin the six degree-of-freedom

equations, and contributes to altitude gain. This does not appear in the flat Earth model.

3.8 Control Actuator Dynamics

In this hypersonic vehicle study, a rear wing/elevator combination provides the means

for active control. The elevator action is specified by an inner loop attitude controller

providing an angular rate command,θ̇e,cmd. An instantaneous change in the angular rate

following the command has been assumed. Depending on the quality of the control func-

tion, this simplification may contribute to controller sensitivity to high frequency noise
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generated in the simulation by performance uncertainty andsignal noise.

Fuel settings are not actively controlled, but are considered part of the vehicle input

vector for the purpose of tracking the rate of mass loss. Changes in the fuel rate to each

combustor occur independently as a function of the fixed nominal fuel/air equivalence

ratio and a variable mass flow rate of air through the engine modules due to changes in

flight condition and vehicle attitude. These changes are assumed to be instantaneous.

3.9 Numerical Integration

The flight simulation history is provided by numerical integration of the flight dynamics

equations of motion. In the flow structure shown in Figure 3.4the integrator is used as

a single step procedure for the integration interval∆t. The initial value problem is thus

written for the intervalt = [ti, ti + ∆t].

ẋ = f (t,x) for t ∈ [ti, ti + ∆t]

x(ti) = xi

(3.80)

where the state vectorx is described by Equation 3.1. One step methods tested for the

flight simulation task included a fixed timestep Runge Kutta,and the predictor corrector

method of Heun [65].

The fixed timestep Runge Kutta scheme is a fourth order explicit Runge Kutta proce-

dure. An advantage of the scheme is a fixed local error orderO((∆t)4), but this is offset

by requiring the calculation of four functional values witheach integration step. Like all

explicit one-step schemes, the fixed timestep Runge also suffers from the need for very

small stepsize for solution convergence when dealing with stiff equations. A system of

differential equations are said to be stiff if the componentfunctions exhibit very different

growth behaviours. For the scramjet flight simulation, altitude and angle of attack have

potentially large growth rates relative to the rest of the vehicle states, and are therefore

sources of stiffness in the flight dynamics equations. Thereis also the potential for dis-

continuities in aerodynamics and propulsion modelling, which can lead to step changes

in the vehicle pitching moment.

A stiff set of equations implies that over the time period of interest, there are important

features characterized by a much small timescale. To capture these features, an adaptive

stepsize Runge Kutta scheme can be employed. However, experiments with a 4th order

scheme showed discontinuities in the system model can result in severe reductions in the

integration timestep without much gain in overall accuracy, as the algorithm attempts to

precisely follow the derivative function. Since the vehicle flow processes are simulated

with each functional evaluation, there is a significant computational gain by to be realized
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by a procedure with fewer function calls, while not subject to the failings of an explicit

routine.

The predictor-corrector method of Heun combines explicit and implicit formulae,

making it suitable for integrating a system of stiff differential equations. With two cor-

rector iterations, Heun’s method has three function calls per integration step, with a fixed

local error orderO((∆t)4). Over the intervalt = [ti, ti+1], the path fromxi toxi+1 follows

two intermediate evaluations.

Starting withxi = x(ti), the first valuex(0)
i+1 is determined by the explicit Euler method.

The implicit update forxi+1 is provided by the trapezoidal rule for evaluating the integral
∫ ti+1

ti
f (t,x(t))dt, and is solved here with two iterations. The predictor and corrector

steps are thus summarized:

Predictor: x
(0)
i+1 = xi + ∆t

2
f (ti,xi)

Corrector: x
(ν+1)
i+1 = xi + ∆t

2

(

f (ti, xi) + f(ti+1,x
(ν)
i+1)
)

, for ν = 0, 1
(3.81)

After the corrector iterations,

xi+1 := x
(2)
i+1. (3.82)

To minimize the corrector iteration error, the integrationstep size∆t, should be cho-

sen according to the Lipschitz condition [65],

K = ∆tLi ≤ 0.20 , (3.83)

whereLi is the local Lipschitz constant forxi ∈ [xi,xi+1],

Li = max
1≤r,k≤n

∣

∣

∣

∣

∂fr

∂xk

∣

∣

∣

∣

. (3.84)

Applying the Lipschitz condition to the integration of the scramjet vehicle dynamics sug-

gested a timestep of 0.00005 s is required. This value is consistent with the stepsize

reduction that the adaptive Runge Kutta scheme undergoes. Due to the computational

effort required in evaluating the state derivatives, it wasnecessary to sacrifice integration

accuracy by using a stepsize (∆t = 0.01 s), whereby∆tLi ∼ 30. Experiments showed

the simulated response for the Heun scheme was equivalent tothe Runge Kutta scheme

with the same timestep. The results also indicate that satisfying the Lipschitz condition

was not required to accurately generate the flight response history. Consequently, for this

thesis Heun’s method with a timestep of 0.01 s was used for allflight simulations needed

by the control design procedure.
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3.10 Concluding Remarks

This chapter presented the simulation tools by which hypersonic flight simulation of an

air-breathing launch vehicle concept is possible. Featured amongst the simulator compo-

nents are the estimated vehicle geometry and mass distribution, a vehicle aero-propulsive

response model, a high speed flight dynamics model, and a system for integrating the

flight dynamics to generate a flight history. The implementation of the flight simulation

software is available as FORTRAN code in a supporting technical report [18].

Flight simulation is a major component of the flight control design problem. For

the design procedure applied in this thesis, the control lawis evolved on the basis of the

performance of simulated flight responses. The design and performance of the two control

loops (longitudinal control and guidance), are the topics of the following chapters.
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Control System Design Tools

The two defining features of a control design approach are thefunctional representation

of the control law and the algorithm by which the control function is designed. Closed-

loop control design requires the capturing of system behaviour through a model derived

from knowledge about the process to be controlled. Historically, control theory has been

developed using linear time invariant models of the system and providing an analytical

solution to the control design problem. Within this framework the system knowledge is

generally described by transfer functions, frequency response functions, or state space

representations. The manipulation of system properties inthe frequency domain and con-

tinuous time domain has provided the basis for much of the control theory being used

today. In the frequency domain, measures such as phase and gain margin are used to con-

figure the control law. Such measures are also used to examinethe closed loop stability

of controlled system and to provide robustness guarantees.In the continuous time do-

main, performance measures such as percent overshoot, steady-state error response and

response time are applied.

An alternative to the conventional analytical descriptionis the heuristically derived

rule-based control. The use of rule base systems is generally related to process control

situations, where the action to be taken is reliant on a combination of events of systems

states. For ill-defined industrial processes, conventional control methods may fail, either

due to the inability in obtaining an analytical system modelor because controller input

information is imprecise. Uncertainty in the system model used to design the control has,

over recent times, led to the development of robust control theories within the continuous

time domain. Fuzzy control (FC), as a specific implementation of rule-based control, has

also emerged as an alternative to conventional control systems, particularly for complex

ill-defined problems where it is difficult to form precise mathematical statements of the

system performance. In the realm of process control applications, fuzzy control provides

a convenient means of converting a linguistic control strategy based on expert knowledge,

into an automatic control strategy [143].

Fuzzy control is considered part of the intelligent controlfield since it emulates the

human decision making process. It has been argued that this constitutes an intelligent
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system rather than simply an intelligent designer [11]. Together with neural networks,

fuzzy control has received increasing attention as a methodfor the implementation of

truly nonlinear control laws. According to the representation theorem of Kosko [124], any

continuous nonlinear function can be described by a finite set of fuzzy variables, values

and rules. In flight control, nonlinearities are typically represented in a discrete manner,

through gain scheduling and mode switching, for example. The skilled human pilot is an

excellent example of a highly nonlinear control strategy, which can be duplicated using

fuzzy logic control or neural networks [207, 135]. However,due to the difficulty in val-

idating neural network and fuzzy control systems, they are often used to augment more

conventional control approaches. Applications include flight control law design through

gain scheduling [135], incorporating intelligent behaviour in the outer loop trajectory

maintenance [207], and on-line learning [208]. The aircraft carrier landing problem pre-

sented by Steinberg [206, 207] shows the performance enhancement FC offers by being

able to represent pilot actions and knowledge as an automatic control strategy.

The decision of which control methodology to apply to a problem rests with the unique

demands of the system to be controlled. It is generally thought that fuzzy control is left

to problems such as process control, which are not readily dealt with by conventional

analytic approaches. There is, however, no systematic procedure for the analysis of a

system to assess the viability of applying a fuzzy control strategy. Advocates of fuzzy

control do not see this as the only area of application [141].In closed-loop control there

are two major classes of applications for fuzzy control: (i)supervision of closed loop

operation thereby complementing and extending conventional control algorithms, and (ii)

the direct realization of closed loop operation, replacingthe conventional control system.

In terms of the hypersonic flight control problem, there havebeen limited studies on

the application of fuzzy control. Christian [43] reported the application of a fuzzy logic

controller for the regulation of the acceleration of a hypersonic interceptor. Robustness

against large aerodynamic parameter variation was shown. Zhouet al. [244] used a hy-

personic transporter concept and applied a fuzzy logic based control system to provide

longitudinal stability and attitude command tracking. Zhou based the development of the

controller on the behaviour of a human pilot. Favourable comparisons were made with a

linear proportional-derivative feedback controller and robustness of the FC to variations

in flight condition were shown. Despite the simplicity of thesystem models used in these

studies, the non-linear FC laws offer promising performance and appear to be robust in

the presence of system uncertainty.

For this thesis, the flight control approach is determined bytwo constraints. The first

is the desire to configure the control law without reducing the vehicle model to an analyt-

ical function. The design is thus based on capturing the control function from simulated

flight responses, covering the full nonlinear operating characteristics of the vehicle. The
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second constraint was the desire to use a single control function that provided good per-

formance over a broad range of operation conditions of the vehicle. A fuzzy logic rule

base controller was considered due to the reported robustness fuzzy control offers against

system uncertainty, and the capacity to represent a complexnonlinear control law. De-

spite the simplicity of the rule base format there are numerous control parameters which

define both global and local features of the control surface.

Though procedures for the design of fuzzy controllers have been developed for special

cases, there is no systematic procedure for the design of an FC. The construction of fuzzy

control systems is generally a trial and error process. While the trial and error process can

be circumvented by first developing a linear controller using conventional techniques and

fine-tuning the fuzzy equivalent, the computing power available today makes it possible to

automate the trial and error design using a “brute force” approach. The design procedure

considered for this thesis uses a genetic algorithm to provide a numerical optimization of

the control surface. Such an approach presents the possibility of generating novel solu-

tions to the control problem which may not be reachable from the linear controller. The

design procedure is configured as a black box design process,where the only interaction

the design algorithm has with the control problem, is the supply of a parameter set and the

receipt of a performance measure. The core of the design procedure is a parameter op-

timization problem based on a genetic search algorithm, with simulated flight responses

providing the performance measure needed to direct the search.

Genetic algorithms belong to a collection of zero-order algorithms based on the global

search and optimizing capabilities of natural and biological systems. Due to their search

robustness over highly dimensional and complex search spaces, they have been widely

applied as a way to automate the learning of fuzzy control rules. To configure the flight

controller of this thesis, a real-coded genetic algorithm was developed.

This chapter introduces the fuzzy controller and the genetic algorithm. The structural

components of the FC are defined and the construction of the control law is discussed

with reference to the flight control problem. A general introduction to evolutionary opti-

mization is provided and the implementation of the real-coded genetic algorithm, as used

in this study is presented. Further discussion on the genetic algorithm is provided in Ap-

pendix A, where standard test functions are use to examine the performance of a modified

mutation operator.

4.1 Fuzzy Logic Control

Fuzzy logic models the logic of perception and, in so doing, provides an abstraction of

human reasoning. It is a recently defined term promoted by themarketing appeal it offers
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in favour of the more conventional descriptors of fuzziness, such as “vagueness” or “mul-

tivalence”. In contrast to the binary logic which, stated byAristotle aseverything must

either be or not be, fuzzy logic is inspired by the philosophy of Buddha [125], building

on the expression “A and not-A”. The fuzzy controller is built from a collection ofif-then

style rules which are applied in parallel using the mathematics of fuzzy logic.

The principles of multivalued logic were worked on by logicians in the 1920’s, form-

ing the mathematical foundations of fuzzy logic. Further development led to the first

fuzzy sets being drawn in 1937 [125]. At the time they were referred to as vague sets.

Lotfi Zadeh, a mathematical theorist, was the first to describe vague sets as fuzzy. His

seminal papers on the linguistic approach and system analysis using the theory of fuzzy

sets [240, 241, 242], were the motivation for the development of fuzzy control. Control

applications have since dominated the practical application of fuzzy logic. The ability

of fuzzy logic to interpret human operation and reasoning has been particularly attrac-

tive in the field of process control where traditional automatic control strategies are out-

performed by human operators. Mamdani and his research colleagues pioneered fuzzy

logic control applications. Their work during the 1970s on the design of a fuzzy con-

troller for a steam engine [140], was the first practical application of fuzzy logic.

Fuzzy control in its simplest form is described by a set of rules which provide a func-

tional relationship for the set of actions given a set of states. Human language forms

the basis of the rules, allowing actions to be taken according to vague descriptions and

a reasoning model. The inherent vagueness of fuzzy sets allows the convenient use of

linguistic rules in an heuristically defined automatic control strategy. The combination of

rule-based systems with fuzzy parameters and fuzzy reasoning, as used by Mamdani, was

the framework for subsequent fuzzy control applications. Fuzzy theory has since been

applied to a broad range of problems, in a variety of forms: cement kiln control [102],

automatic train operation [237], and consumer products such as washing machines. There

have also been developments in fuzzy hardware such as fuzzy memory devices and fuzzy

computers, promoting the effective utilization of fuzzy control [131].

The relatively recent appeal of fuzzy control (FC) is largely the result of a marketing

inspired consumer demand. The washing machine market is a typical example [126, 125],

where new sensors have been configured to provide similar information to that used by

humans, and fuzzy logic therefore provides a more user friendly interface. Another reason

for the appeal of FC are the benefits afforded by upgrading linear controllers to nonlinear

algorithms. An additional field of application is for complex, ill-defined systems where

analytical or experimental models are limited. In many of these applications, controller

design can be performed by writing rules directly.

The potential of fuzzy control has been premised on the basisthat fuzzy controllers

provide greater robustness than conventional control and that they are more appropriate to
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the control of nonlinear processes [114]. Research offering support for these superior fea-

tures is, however, not conclusive. Excluding adaptive forms of fuzzy control, the control

law is essentially a static nonlinearity. The possibility that it is more robust to parameter

variations relies on being able to recognize the parameter variations and being able to

encode them in the rule base. In this manner it is possible to provide seamless transfer

between control parameters. In a study by Kortmann [123], a comparison was made be-

tween a classical proportional-derivative (PD) controller and a PD-like fuzzy controller,

applied to an unstable vertical take-off and landing plane model. The fuzzy controller

tested proved to be particularly sensitive to unfiltered noise if the sampling time was too

small. It is possible that the inference method used by Kortmann contributed to the ob-

served poor noise robustness, due to the introduction of nonlinearities in the control sur-

face. With regards to robustness against parameter variations, Kortmann’s FC was shown

to be superior to a conventional PD controller.

If the basic input/output mapping of the fuzzy controller isbased on PD control, then

its superiority over the linear case for nonlinear systems is reliant on the nonlinearities

being a function of the inputs used. Often this requires the use of reference signals in

addition to the conventional error and derivative inputs. For example to capture the per-

formance nonlinearities with the vehicle attitude it couldbe necessary to include the angle

of attack in addition to the error, as an input. It is possiblethat nonlinearities expressed

in terms of the state error and its derivative can offer improved performance over linear

controllers. This leads to one of the main application areasfor fuzzy control, namely the

enhancement of linear control laws by using fuzzy logic to separately manipulate different

regions of the state space, thereby generating a nonlinear control law. The parameteriza-

tion of the fuzzy controller allows independent manipulation of the global characteristics

generated by the complete rule base and the localized features associated with individual

rules.

One of the issues which has tempered the general acceptance of fuzzy logic control

is the assurance of stability. Being a nonlinear controller, it is difficult to obtain general

results for stability analysis and design [63]. Stability proofs for fuzzy control have been

limited to simple proportional-derivative style controllers and for processes which are

themselves stable [139]. Stability of FC has therefore generally been addressed through

prototype testing. A compelling argument presented by Mamdani [141] is that prototype

testing is more important in terms of assessing controller performance. The suggestion

is that mathematical stability is not a necessary and sufficient requirement for controller

acceptance. The basis for Mamdani’s position is that stability proofs require a mathemat-

ical model of the process, which may not be available. With regard to stability features

of the flight controller in this thesis, extensive flight simulations are performed and thesis

include several disturbances and uncertainty features. Ina similar manner, flight con-



100 Control System Design Tools

trol law evaluation for the Hyper-X research vehicle [52] performed numerous parametric

variations and Monte Carlo analyses with nonlinear flight simulations.

The fuzzy approach to system modelling is distinguished by linguistic variables in

place of numerical variables, the use of conditional statements to characterize simple

relations between variables, and the characterization of complex relations by fuzzy algo-

rithms [242]. Fuzzy control actions are determined using a knowledge base built from sys-

tem knowledge (including constraints), fuzzy rules, and aninference mechanism to evalu-

ate the rules. The following sections provide the detail of some key concepts of fuzzy sys-

tems, using the configuration of an attitude control law as anexample. Further discussion

on fuzzy system theory applied to fuzzy control is availablefrom numerous publications,

reflecting the now widespread interests in fuzzy systems. The following references were

particularly useful in providing an overview to fuzzy control, [125, 131, 132, 114, 63, 58].

4.1.1 Fuzzy Sets and Fuzzy Variables

Classical sets are based on bivalent logic, where crisp boundaries allow an element to

either belong or not belong to the set. The membershipµA(x) of a classical setA, being

a subset of the universeX, is defined by

µA(x) =







1 iff x ∈ A
0 iff x ∋ A

(4.1)

These sets are referred to as crisp sets, allowing the membership function to take on only

two values, 1 or 0, according to cases wherex does or does not belong toA.

Fuzzy sets are a generalization of the ordinary set. Formally defined by Zadeh [240]

in 1965, fuzzy sets allow the possibility of degrees of membership, defined by a charac-

teristic function that can take on any value in the interval[0, 1]. In contrast to the crisp sets

defined by Equation 4.1, the value ofµA(x) atx represents the grade of membership ofx

inA. To differentiate the membership function from probability ideas, it has been referred

to as a “possibility” function. A functional representation for fuzzy sets,µA(x) = f(x), is

often a convenient way to define the membership function. In control applications func-

tion forms typically take the form of triangular, trapezoidal, or Gaussian functions. The

simplest definition is available with symmetric triangularor Gaussian functions, which

are parameterized by a central locationa and a half-widthb.
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Figure 4.1: Triangular and Gaussian membership functions.

triangular: µ(x) =







1− |x−a|
b

iff |x− a| ≤ b

0 otherwise
(4.2)

Gaussian: µ(x) = exp

(

−9

2

(

x− a
b

)2
)

(4.3)

For the Gaussian set, the width is assumed to be 3 standard deviations. Fuzzy sets were de-

signed to represent the ambiguity associated with classifying elements into classes. They

can be used to represent vague concepts such large and small.Consider, for example, the

variableαerr representing the angle of attack error internal to the flightcontroller. The

condition statement such as “αerr is large”, implies a decision to be made according to

the degree that value ofαerr is large.

In system modelling or control, fuzzy sets are used to discretize a fuzzy variable across

its domain. The fuzzy variable forαerr represents a linguistic interpretation of the error

variable. A possible discretization of theαerr fuzzy variable is shown in Figure 4.2. Fuzzy

sets abbreviated by NL, NS, ZE, PS, and P characterize the error as being negative large,

negative small, zero, positive small or positive large. In FC with a continuous variables,

the quantization levels of the input variables expresses the sensitivity of the controller to

the observed variable. To reduce the sensitivity of the controller to noise it is necessary to

have sufficiently wide membership functions [131]. The partitioning is traded off against

the benefits of additional degrees of freedom available through finer partitions. For all

cases considered in this thesis, an odd number of partitionshave been used to discretize

the fuzzy variables.

There is considerable scope for fine-tuning the shape of the membership functions to

match the variable description, accounting for known nonlinearities, or to enhance fine-

tuning. The higher the density of fuzzy sets the more complexthe control surface which

can be configured. Using nonlinear functions to define the setmembership results in a

nonlinear interpolation between rules. Though this induced non-linear characteristic may
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Figure 4.2: Fuzzy sets partitioning angle of attack error.
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Figure 4.3: Membership function impact on a proportional derivative rule set, with each variable
partitioned by three fuzzy sets. (a) Triangular membershipfunctions produce a linear interpolation
between the rules, and (b) Gaussian membership functions producing a nonlinear interpolation.

provide the desired control surface, it is considered to be not in accordance with the basic

idea of a fuzzy controller. The nonlinearity should be defined by the fuzzy rules, which

depend upon the number and distribution of fuzzy sets [114].Figure 4.3 shows the impact

of a nonlinear interpolation on the control surface of a linear PD controller.

4.1.2 Fuzzy Rules and Reasoning

The basis for reasoning with fuzzy logic is a collection of fuzzy propositions. A fuzzy

proposition takes the form “x is A”, wherex is a variable andA is a linguistic variable

represented by a fuzzy set. For example, “x is large” inquires to what degreex fits the de-

scriptionlarge. The evaluation of a fuzzy proposition measures the degree of membership

of x to the linguistic variable, using a membership function,µA(x), which is continuous

over the domain ofA.

Fuzzy propositions are combined using logical connectivessuch as “and” and “or”.

General forms of these are represented by triangular norms (T-norms) and triangular

conorms (T-conorms or S-norms) [114, 132], respectively. The following set operators
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Figure 4.4: Control surfaces generated by two common ”and” connectivesfor a linear PD equiv-
alent fuzzy controller. The normalize input variables werediscretized by three partitions.

were originally proposed by Zadeh [240].

and ≡ µA1∩A2
(x) = min{µA1

(x), µA2
(x)} (4.4)

or ≡ µA1∪A2
(x) = max{µA1

(x), µA2
(x)} (4.5)

Another commonly used T-norm has theand connective represented by a product,

µA1∩A2
= µA1

(x) ∗ µA2
(x). (4.6)

One or more fuzzy propositional statements can be used in thepremise of a fuzzy rule. For

the general case where the premise is constructed using variables from different domains,

the premise for two inputs may be written as:

p : x1 isA1 and x2 isA2 (4.7)

The evaluation of the proposition, set by the definition of the and connective in 4.7, is

nontrivial. In Figure 4.4 the effect of the ”min” and ”product” operators on the controller

surface is demonstrated. The controller rules were based ona proportional-derivative

linear attitude controller with three partitions per inputvariable. Nonlinearities generated

by the minimum operator are not adjustable by the design process. The finer the partition

of the input space, the greater the frequency of nonlinear features on the control surface.

It is interesting to note that, of all the possible definitions for theand connective, only the

productoperator doesn’t introduce nonlinearities in the control surface [114, 131].

Reasoning with fuzzy logic requires each fuzzy rule to be written as an implication,

anif-thenstatement, where the antecedent and the consequent are formed by fuzzy propo-

sitions. Fuzzy rules provide a way of expressing control policy and domain knowledge by

characterizing a dependency between system variables or features. To describe a multi-
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input multi-output (MIMO) rule, multiple propositions in the condition and consequence

statements are used, with each consequent proposition treated independently. Two types

of rules are used in fuzzy control: Mamdani rules and Sugeno rules. Mamdani fuzzy rules

originate from the first reported applications of fuzzy control [142]. For a MIMO system

with NX inputs andNY outputs, Mamdani rules have the following general form:

rk : if x1 isA1,k and · · ·xNX
isANX ,k then y1 isB1,k, · · · , yNY

isBNY ,k

The output of the rule, expressed here in terms of a fuzzy set,can be a constant numerical

consequent. This provides greater freedom in generating the control surface and a sim-

pler rule base evaluation. An alternative format for fuzzy rules which is often used, was

devised by Takagi and Sugeno [215] for control of a model car.In the so called TS rules,

the rule consequents are written as functions of the controller inputs.

rk : if x1 isA1,k and · · ·xNX
isANX ,k then

y1 = f1,k(x1, . . . , xNX
), · · · , yNY

= fNY ,k(x1, · · · , xNX
)

Using Sugeno rules provides a mechanism for interpolating between a set of control

functions, effectively providing a fuzzy gain scheduling technique. The main drawback of

conventional gain schedulers is the potential for abrupt changes in the control parameters

and the need for accurate linear time-invariant models Sugeno rules represent a possible

solution to the problems by using a fuzzy reasoning mechanism to determine the control

parameters. The rule condition values could also be used to capture nonlinearities with

respect to the flight condition and vehicle attitude, while the rule consequents are based

on linear controllers designed with conventional control design techniques.

The processing of a fuzzy rule base requires the aggregationof the set of fuzzy rules

using the sentence connectivealso. All rules are evaluated in parallel, with the aggre-

gation procedure providing a means to generate a single output description. Along with

the method of implication which generates the output for a single rule, the connective

also has a substantial influence on the quality of a fuzzy model. Lee [132] reports on

a study of fuzzy implication and aggregation methods and assembles appropriate pairs

for fuzzy control. Of the approaches, those commonly applied are Mamdani’sRc (min

implication) and Larsen’sRp (product implication) combined with the union operator for

the connective “also”. A simplified inference mechanism uses numerical constants in the

consequents, allowing the single result to be obtained arithmetically, thus bypassing the

complexity of dealing with fuzzy sets in the consequence.
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4.1.3 Fuzzy Controller Operation

In fuzzy control as used in this thesis, the control law is evaluated by the parallel action of

a set of Mamdani fuzzy rules which, in general, describe a nonlinear mapping of inputs

to outputs. Also, the application of fuzzy control has used asimplified fuzzy inference

method, because of the computational savings and the flexibility it offers in defining the

control surface. The general fuzzy rule using the simplifiedinference method is described

as follows, for a multiple-input single-output controller,

if x1 isAi,1 and x2 isAi,2 and . . . xn isAi,n then y iswi

whereAi,j defines the membership function of thej-th input of thei-th rule, andwi is the

scalar output value for thei-th rule. The procedure for evaluating the numerical output,

using the simplified inference method, is described by the following steps:

Step 1: Input variables are scaled, mapping the physical values of the state variables onto

a normalized domain. The normalization factors can be equivalent to the inverse

of the gains used in conventional linear controllers. Each fuzzy propositionxj

is Ai,j used in the premise of the rules is evaluated by matching the appropriate

membership function to the the input. The membership degrees µAi,j
(x∗j ) of the

j-th input are calculated, wherex∗j represents the scaled numerical value of thej-th

input.

Step 2: The firing strength, or degree of fulfilment (DOF)βi of rule i, is evaluated using

the appropriate T-norm for theand connective in the condition statement. Results

in this thesis have used the product operator with all conditional statements of equal

importance,

βi =

n
∏

j=1

µAi,j
(x∗j ). (4.8)

Step 3: The calculation of the output from the rule base combines theimplication relation

for each rule, as defined by the theif-then relationship, and the aggregation of the

rules with thealsoconnective. Using the simplified inference method, the control

commandu, is evaluated by a weighted average of the rule outputs basedon the

firing strength of the rules,

u = ku

Nr
∑

i=1

βi yi

Nr
∑

i=1

βi

(4.9)
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whereku is the scaling factor used to transfer the normalized outputvariable to a

physical control command.

Though the preceding steps are applied to Mamdani fuzzy rules, an equivalent expres-

sion can also be applied to Sugeno type rules. The method is considered a special case

of the product-sum-gravity method [81, 114], where the terms product, sum, andgravity

respectively refer to the product operator for the condition statement, the sum operator for

combining the output fuzzy sets from each rule, and the centre-of-gravity method to find

the numerical output from the aggregated rule outputs.

4.1.4 Designing the Fuzzy Controller

The fuzzy controller (FC) can be represented in functional form, in the same manner as a

conventional control law:

u(k) = kuF (kee(k),kxx(k)) (4.10)

where the controller outputu at some sampling instantk, is expressed as a nonlinear

functionF of the system statex and the state errore. The scaling factorsku, ke, andkx

have a similar role to the gains in conventional controllers. In the flight control problem

of this thesis, the FC is applied in a regulatory manner for the maintenance of vehicle

stability and attitude. The basic structure of its operation is defined in Figure 4.5. Trans-

formation of the control input signals (αerr, q, θe,err) to the elevator actuation command

θ̇e,cmd is achieved via the parallel processing of an array of rules,according to the steps

set out in the previous section, and using the knowledge basedefined by the data base and

rule base. The data base describes the storage of input variable definitions and the array

of outputs. The rule base defines the structure of each rule using the various combinations

of condition statements available through the partitioning of the input space.

Where conventional control systems have a control algorithm based on a set of ana-

lytical equations, FC’s are knowledge based system. They require a means of knowledge

representation (a set of rules), a reasoning strategy (a definition of how the rules are pro-

cessed), and a means of acquiring the knowledge. The four principal means of knowledge

acquisition are expert human knowledge, based on operator control actions, based on a

fuzzy model of the process, and learning based on experience[131, 63]. The overall de-

sign requires the specification of many parameters and, as a trial and error process, can be

very time consuming. Without an expert to provide the knowledge, a learning or adaptive

process is required. One approach to simplify the development of the fuzzy controller

is to first establish a linear controller using conventionalanalytic design methods and to

then fine tune the fuzzy equivalent. Such an approach has beenused by Ying [239]. The
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Figure 4.5: Structure and operation of the inner-loop fuzzy controller.
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approach allows the transfer of local stability analysis from the linear case to the tuned

nonlinear fuzzy controller.

A popular approach over the last decade has been the couplingof the search capa-

bilities of evolutionary algorithms to the automated design of the fuzzy controller. The

knowledge acquisition process is transformed into a numerical optimization procedure,

where the evolution of control parameters is directed towards providing optimal per-

formance relative to desired performance characteristics. Other naturally inspired algo-

rithms, such as simulated annealing [44], have also been applied to the design of fuzzy

control [107]. Genetic algorithms (GAs), as used in this thesis, are zero-order search

procedures based on the mechanics of natural genetics. Theydiffer from most other

search methods used for optimization, in that the search works with a population of pos-

sible solutions and the transition rules are probabilisticrather than deterministic. As a

direct consequence of these differences, GAs are capable ofperforming a global search

on large complex problems which may be characterized by a stochastic cost function. In

addition to the design of fuzzy controllers, GAs have also been used in rule discovery sys-

tems [90], to search a stochastic robustness cost function in robust control design [144], in

combination with gradient-based optimization for robust control design of multivariable

systems [169], and applied to the optimization of various aerospace control systems [128].

A summary of the application of genetic algorithms to offlineand online design of

fuzzy control system is provided by Linkens and Nyongesa [136]. The work contained

in this thesis has been developed concurrently with the appearance in the literature of

applications combining genetic algorithms and fuzzy control. Many propose the simulta-

neous design of membership functions and the rule sets [103,224], providing a general

knowledge acquisition procedure. However, the present design approach is focused on

the learning of rule consequent valuesy, assuming a fixed rule base structure and a fixed
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set of input variable definitions. With each rule having an independent consequent value,

the design allows manipulation of the local features of the control function throughout

the full range of the input variables. Experiments were alsoconducted on the additional

design freedom of tuning the input scaling parameters, thereby affecting global features

of the control function.

In designing the fuzzy controller, it is desirable for the rule base to display the prop-

erties of continuity, and completeness [131]. Continuity follows the general preference

for smooth control surfaces, and depends on exposing the design procedure to as many

simulation examples as is practicable, ensuring full coverage of the input space and con-

sideration of the range of possible variations in system performance. Completeness infers

a proper control action for every state of the system within the bounds of the input vari-

ables. The realization of completeness is attainable through the appropriate discretization

of the input space and the formation of the rule base.

Evolutionary design of a controller is often characterizedas abrute forceapproach,

as computational power is exploited in place of more conventional analytical approaches.

The main contributor to the often considerable computational effort, is the coupling of

the large number of function evaluations required in the search for goodsolutions, and

the evaluation of the objective function used to classify the quality of the control solu-

tion. Computational power continues to increase however, and with the application of

parallel computation, the impact of large populations can be mitigated by the simultane-

ous evaluation of individuals in the population. The remaining hurdle is then the desire

for a realistic representation of the design environment. Uncertainty models may cover

the robustness requirements of the controller, but their worth relies on a base model of

sufficient complexity.

Part of the experiment of this thesis is the use of relativelysmall populations and

generations. The main reason is the large cost associated with performing many flight

simulations for each evaluation of the objective function.Using the full non-linear ve-

hicle dynamics with a vehicle performance simulation modelcomputed in-line with the

dynamics integrator, the control design approach is well deserving of thebrute forceti-

tle. The applicability of intelligence based techniques tothe design is thus dependent

on the optimization performance of the genetic algorithm. Application of the GA to test

functions as shown in Appendix A, indicated that high quality solutions are found with

a relatively small scale search. In designing the flight controller, the population size and

generations required are strongly related to the criteria used to evaluate control perfor-

mance. Chapter 5 provides a complete description of the design setup and the objective

function evaluation. The remainder of this chapter describes the genetic algorithm used to

design the flight controllers and a simplex method which was used for fine-tuning a linear

fuzzy controller.
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4.2 Evolutionary Design

Evolution, as defined by Darwin [51], is a process of gradual change driven by natural se-

lection, where natural selection is a process which selectsultimately for reproductive suc-

cess. Modern evolutionary theory has been established since the 1930’s, through the syn-

thesis of Darwin’s theory of evolution and Mendelian genetics [152]. Though Mendel’s

experiments on pea plants in 1865 had little impact at the time, they would eventually

profit him the title ofthe father of genetics. The robustness, efficiency, and flexibility

of biological systems inspired the development ofevolutionary algorithms, or heuristic

search techniques in the form of directed probabilistic procedures. In general, methods

which simulate evolution are characterized by a population-based search approach that

relies on selection and random variation. They are well suited to search through large and

complex solution spaces, such as those associated with designing control strategies, finan-

cial market predictions, and function optimization. Another similarly inspired algorithm

is simulated annealing[44, 197], which uses random processes to help guide a searchfor

minimal energy states. On many nonlinear optimization problems classical techniques

such as gradient descent, deterministic hill climbing, andpurely random search, have

proven unsatisfactory.

Evolutionary computation can be traced back to the late 1950’s, through the works of

Box [33], Friedberg [80], Bremermann [34], and others. The majority of applications to-

day draw from the three main algorithmic approaches: evolution strategies, evolutionary

programming, and genetic algorithms. These areas have beendeveloped almost indepen-

dently, each for a specific application and each emphasizingdifferent features as being

necessary for a successful evolutionary process.

Evolutionary strategies, developed in Germany by Rechenberg [179] and Schwe-

fel [193], began as numerical optimizers for both continuous and discrete problems. They

are self-adaptive with deterministic, extinctive selection, and use normally distributed mu-

tation as the main operator. The self-adaptive feature controls the strategy parameters for

the mutation probability density functions.

Evolutionary programming was introduced by Fogel [76, 75] as a technique for search-

ing through a space of small finite state machines, with the aim to predict environmental

changes by creating an artificial intelligence. Also self-adaptive, evolutionary program-

ming used a selection scheme which was probabilistically extinctive and employed muta-

tion as the only operator.

Genetic algorithms were formulated by Holland [101] in the 1960’s and further devel-

oped by Holland and colleagues [55] at the University of Michigan. Originally devised as

a means to model the adaptive processes as it occurs in nature, Holland also recognized the

potential of incorporating the mechanisms of natural adaption into an adaptive search al-
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gorithm. Genetic algorithms introduced a population-based algorithm, with probabilistic

selection as a form of natural selection, and reproduction through crossover and mutation.

Of the genetics-inspired operators, crossover is the main operator with mutation being

considered a background operator.

Darwinian evolution appears as an optimization process andit is this nature which

is generally exploited in the application of evolutionary algorithms. Comparative per-

formance of different evolutionary algorithms indicate that one type is not universally

preferable to others, often leaving the choice of algorithmto personal preference. For the

work in this thesis, a genetic algorithm approach was chosento design parameters of a

fuzzy flight controller, see Section 4.1.4. Like other general iterative nondeterministic al-

gorithms - simulated annealing [197] and tabu search [189, 59], for example - the genetic

algorithm is computationally simple and easy to implement,yet has proven to be robust

and effective in producing high quality solutions for large, complex problems. They ex-

hibit hill climbing capability, show asymptotic convergence to an optimal solution, and

are able to exploit domain specific heuristic information tobias the search [189]. Be-

ing a blind search however, a stopping criteria must be supplied to indicate a sufficiently

evolved solution.

What follows is a general introduction to the application and performance of a genetic

algorithm. This is then extended to the structure and operation of the GA used in the

controller design task of this thesis.

4.2.1 A General Description of Genetic Algorithms

There is no strict definition for structure and operation genetic algorithms, however, it

is generally accepted that a population of individuals is evolved through the selection of

individuals for mating according to fitness, and the creation of new offspring by crossover

and random mutations. The general aim of the GA is to improve the fitness of individuals

across generations. The basic structure and operation of a simple genetic algorithm, as

defined by Goldberg [83] and others, is summarized in Figure 4.6. The general purpose

of the algorithm is: for a function ofk variables,f (x1, . . . , xk) : R
k → R, evolve

a population of individuals with the aim of maximizingf . The length of the search is

typically constrained by a maximum number of generations. For each generation, parents

are selected to mate and properties from mating pairs are recombined through crossover

and mutation. Parents are replaced by their children with the proviso that the best indi-

vidual so far, according to the relative objective functionvalue, is copied into the next

generation. This is the so-called elitist strategy.

The beginning of GA research is considered to be the publication of Holland’s book,

Adaption in Natural and Artificial Systems[101], in 1975. Holland provided theoreti-
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begin genetic algorithm (par,Fobj)

{
t := 0;

init P (t); % randomly initialize the population

evaluate(P (t), Fobj); % evaluate the fitness of all initial individuals

while (t ≤ T ) do

t := t + 1; % index the generation counter

P ′(t) := selectP (t); % select parents for reproduction

recombineP ′(t); % recombine the genes of selected parents

mutateP ′(t); % perturb the mated population

evaluate(P ′(t), Fobj); % evaluate the new population

P := elite (P ,P ′(t)); % transfer the new population

end

end

}

Figure 4.6: Structure and operation of a simple genetic algorithm.

cal and empirical proof of the capacity of genetic algorithms to robustly search complex

spaces. Using a binary alphabet to encode information, Holland’s theory used a building

block referred to as schema, a set of genes representing a partial solution to a problem.

The idea is thatgoodsolutions to a problem are generated by discovering, emphasizing,

and recombining good building blocks of a solution in a highly parallel manner. Schemata

were used to define subsets of similar chromosomes, representing hyperplanes in ann-

dimensional space, where n is the number of genes in an individual. Schemata are a

pattern matching devices, or templates, used to explore similarities among chromosomes.

However, they are not explicitly dealt with in GA operation.The performance of a genetic

algorithm is expressed by the growth equation, see [83], which relates the effect of selec-

tion, crossover, and mutation on the number and type of schema processed. It indicates

that selection increases, exponentially, the sampling rates of above-average schemata, but

does not introduce new information (schemata). Crossover enables structured, yet ran-

domized information exchange allowing new schemata to be introduced, while mutation

introduces greater variability into the population. The efficient operation GAs relies on

the exchange of information in a highly parallel manner, referred to as implicit paral-

lelism. Without extra processing requirements, the solution space is searched through a

simultaneous search effort in many hyperplanes.

The representation of problem information rests with: (i) the choice of alphabet used

to encode information within an individual chromosome; and(ii) the distribution of in-
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formation amongst a population of individuals. Both the encoding and distribution issues

are fundamental to the operation of the genetic algorithm.

Ever since Holland’s work on the schema theorem proving the operation of GAs, a

binary alphabet has been favoured [83]. From the perspective of a genetic algorithm be-

ing an algorithm that processes schemata, the binary alphabet ensures the relevance of

short low-order schemata and provides the maximum schema processing per bit of infor-

mation of any coding [101]. A side effect of an alphabet with low cardinality is that, for

parameter optimization problems, large string lengths arerequired to encode the problem

information. For example, for a function with 100 variablesrequiring minimization with

precision to two decimal places between−10.00 and10.00, a string length of 1100 bits

is needed. Performance, in terms of the search time required, can be relatively poor for

problems of this size, however, improvements in fine local tuning and processing time

can be achieved through smart operators or using Gray coding[200]. Gray coding uses a

binary alphabet, with a representation scheme that ensuresadjacent integers differ by one

digit only.

Since the properties of Holland’s schema theorem are not limited to binary strings,

other alphabets have been used, but proof of performance is generally reliant on empiri-

cal results. Though contradicting the idea of low cardinality being optimal, the benefits

offered by a floating point encoding scheme for continuous variables problems are many.

By a near-direct mapping of variables in the chromosome, theGA is moved closer to the

problem space, thus removing the abstract nature of binary encoding. Because precision

depends on that available in the computing machine, real-coded genetic operators offer

fine-tuning capabilities, and a computational saving is obtained when compared to a bi-

nary encoded GA. There is also support for an improvement in search robustness when

using real-valued vectors within the GA [154].

The other representation issue asks the question of how to distribute problem infor-

mation amongst the individuals of a population. There is generally a choice between two

approaches: the Pitt approach and the Michigan approach. The Pitt approach gained its

name from De Jong and his students from the University of Pittsburg, who used it to code

parameter values in individuals [56]. Each individual in the population is encoded with

all the parameters of a possible solution. The alternative is to have each member of the

population representing a single parameter or subset of parameters (say a single rule for a

controller) and the entire population forming a complete solution to the problem. This ap-

proach was introduced by Holland at the University of Michigan as a model for classifier

systems and subsequently became know as the Michigan approach. For all applications

in this thesis the Pitt approach [56] was used to code parameter values in individuals. For

the controller design procedure this has each individual representing an entire rule set so

that each generation consists of a population of possible rule sets.
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Numerous variations of the simple algorithm shown in Figure4.6 are possible. Appli-

cations are generally described through chromosomal representation, selection schemes,

population and generation control, and genetic operators.Other biological inspired fea-

tures can also be included in the algorithm, but have not beenexamined in this work: for

example, virus infection [130], and age structure [129].

Despite their description as a general purpose algorithm, they remain, as do all search

algorithms, subject to the “no free lunch” (NFL) theorem foroptimization [235]. Accord-

ing to the NFL theorem, an algorithm that does particularly well on average for one class

of problems, must do worse on average over the remaining problems. The implication

is that for optimal performance the definition of the GA must be tuned to the specific

problem. There are a number of implementation issues which influence the efficiency and

efficacy of the global search. A typical issue addressed while formatting the algorithm

is the potential for premature convergence of the population to a sub-optimal solution.

Obvious causes that could be suggested include: insufficient population, insufficient gen-

erations, and function characteristics such as many local minimum or plateaus. More

important, however, are algorithmic issues such as the information encoding scheme, se-

lection mechanism, and the genetic operators.

Premature convergence occurs when rapid convergence earlyin the evolutionary pro-

cess allows the population to be dominated by better than average individuals which then

stagnate the search at a less than optimal solution. Most attempts to improve the con-

vergence of GAs have looked at the selection process, which directs the search across

generations [83]. However, since premature convergence isrelated directly to the di-

versity of individuals within a population, perturbation operators also play a role in the

efficacy of the search. Further discussion on this topic is included in Appendix A.

Another implementation issue relates to the performance benefits available with fine-

local tuning of the solution space. To achieve fine-local tuning when using a GA, a num-

ber of options are available. Holland recognized that localsearch required higher order

schemata while the driving force of a GA was the processing ofshort, low-order schemata.

This prompted the suggestion that GAs be used to perform the initial search and then em-

ploy a local search technique on the best individuals. Integration of two schemes can be

such that a simplex method [166] may be used inline with a genetic algorithm to provide

faster convergence rates along with fine-tuning capabilities [238]. Grefenstette [89] also

noted the usefulness of invoking a local search technique once high performance regions

of the search space have been identified by the GA. Also, it is possible to improve the

fine-tuning capabilities of a genetic algorithm through smart genetic operators with muta-

tion typically targeted for this task. The formation of a fine-tuning feature is dependent on

the chromosome alphabet and the encoding scheme. For a binary encoded chromosome

fine-tuning can be initiated through limiting available mutations to the least significant
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digits in genes as the search proceeds [155]. When using a floating-point encoding where

each gene is a real-number, a fine-tuning mutation operator can be formed by limiting

the magnitude of possible mutations, indexed against the iteration (or generation) num-

ber. An adaptive operator operator of this form was formulated for genetic algorithms

by Michalewicz [154], and referred to as non-uniform mutation. A modification of the

operator was necessary for this thesis, and is discussed in detail in Appendix A.

It is worth noting at this point, that the real valued capabilities of the genetic algorithm

have existed for some time in evolutionary strategies and evolutionary programming [24].

For example, the fine-tuning mutation function of evolutionary strategies is controlled by

the standard deviation of the randomly distributed additive mutation. Chromosomes in

evolutionary strategies consist of a pair of vectors where one defines the search space

and the other a vector of standard deviations used by the mutation operator. The possi-

bilities for the acceleration of optimization through reducing the variance of a Gaussian

mutator function have been discussed by Atmar [15]. Since gross evolutionary optimiza-

tion generally occurs quite quickly, reducing the effect ofunconstrained variation across

generations accelerates the optimization process.

4.2.2 Real-Coded Genetic Algorithm (RCGA)

The genetic algorithm implemented in this thesis is based onthe simple genetic algorithm

structure presented by Goldberg [83], and employing real-valued chromosome represen-

tation. Real-coding for genetic algorithms refers to the representation of an individuals’

chromosome as an array of floating-point values. The length of the chromosome is there-

fore the same as the length of the solution vector to a problem, so that each gene represents

a variable of the problem. Since the controller design requires many expensive flight sim-

ulations to evaluate the performance of each potential control solution, it is desirable to

rapidly acquire good solutions. From this perspective, andfor parameter optimization

problems in continuous search spaces, the real-coded genetic algorithm is superior to a

binary-coded algorithm [154].

Following the simple algorithmic structure shown in Figure4.6, the design of the ge-

netic algorithm involves the specification of the followingitems: a parameter encoding

scheme; a means of describing the initial population; a scaling function to convert the

objective function into a non-negative fitness value for compatibility with the GA selec-

tion scheme; a selection scheme to decide which individualsare allowed to reproduce;

reproduction operators that produce offspring from parentindividuals; and finally; a ter-

mination scheme. The following sections develop the RCGA interms of these features.

The notion of population entropy is also introduced as meansof examining the dynamics

of the population. For a complete listing of the FORTRAN codeused to implement the
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algorithm, a technical report is available [19].

Encoding

Genetic algorithms are a population-based search technique. For the control design prob-

lem of this thesis, each individualCj, of the populationP k, is encoded with all the control

design parameters. Each individual therefore represents apossible solution to the control

problem.

Using real-coding, thejth individual is defined by a chromosome vectorCj, where

each elementx is a floating point value within a predefined rangexj ∈ [aj , bj],

Cj = (x1,j, x2,j , . . . , xn,j) . (4.11)

The population for thekth generation,P k, consists of an array of chromosomes,

P k = [C1, . . . ,Cn] (4.12)

Initialization

The initialization process for genetic algorithms requires the construction of a popula-

tion P 0, of individuals. Mirroring the primordial population of natural evolution, the

initial population is typically constructed of randomly generated solution vectors. Of the

alternatives to random initialization, many advocate seeding the initial population with ex-

isting solution vectors. Grefenstette [89] showed that seeding the initial population with

members thought to have high performance can be beneficial. This result can be used in

micro-GAs [47] where small populations are used and the process is continually restarted.

Davis [53] suggests extending the random search for each member and selecting the best

for the initial population. The idea is that even if the same number of function evaluations

are performed, an improved final solution can be achieved by extending the initial random

search.

Since the primary experiments of this thesis relate to the abstraction of a control de-

sign without prior knowledge, a randomly initialized population was generally used. The

potential of seeding the initial population was investigated for the flight control problem

and further discussion is provided in Chapter 6. The algorithm is constructed such that

each parameter can be described by a search domain independent of all other parameters,

allowing a direct mapping of the problem space to that used bythe algorithm. In the

case of the flight control design problem, all parameters arerandomly sourced from the

range [0,1]. Since procedures were required to map the algorithm parameter set to various

parameters defining the controller, scaling was consideredpart of the conversion.
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Population Entropy

A useful measure of the diversity of the population is established by population entropy.

It applies the concept of entropy as it is used in informationtheory [172], where it is

referred to as Shannon’s entropy [195]. Bessaou and Siarry [28] used the entropy mea-

sure in deciding whether to accept a new chromosome in the initialization process of

sub-populations. The definition of population entropy provided in their text is reproduced

here. It has been used in the results presented in Chapter 6 toexamine the search be-

haviour of the genetic algorithm.

For a population of sizeNP , the entropy of thejth gene is

Hj(NP ) =

NP
∑

i=1

NP
∑

k=i+1

−Piklog(Pik) (4.13)

wherePik represents the probability that the value of thej th gene of thei th chromosome

is different to the value of thej th gene of the thek th chromosome.Pik is evaluated using

the following expression:

Pik = 1− |xj(i)− xj(k)|
aj − bj

(4.14)

where[aj, bj ] describes the search domain for thejth gene. The average entropyH(NP )

of the population is then equal to the average of the entropies of the different genes.

H(NP ) =
1

n

n
∑

j=1

Hj(NP ) (4.15)

H(NP ) scales with the size of the population. In Chapter 6 the search behaviour of

different sized populations is considered, so the entropy measure is normalized by the

entropy of the initial population.

Individual Evaluation

The relative worth of a solution is judged using a scalar variable called the objective

function,fobj. The objective function is a property of the problem space and is, of course,

application dependent. In the control design problemsfobj is evaluated from simulated

flight responses, using performance measures such as settling time, steady state error,

and the integral of absolute error. A weighted sum of the multiple objectives provides

the required scalar value. Constraint violation can be readily incorporated in the form of

penalties.

Scalarization of the objective is mandatory when applying evolutionary algorithms.
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However, because candidate solutions are processed in parallel, the algorithm is particu-

larly suited to multi-objective optimization. The most common approach when dealing

with a multi-objective problem uses an aggregation (or weighted sum) of the individ-

ual objectives. In many cases this may require a profound understanding of the solu-

tion domain. For situations where the performance objectives are noncommensurate, it

may therefore be desirable to provide a nondominated set of solutions, known as Pareto-

optimal solutions [77, 245]. Pareto-optimal refers to the set of solutions for which the cor-

responding objective vectors cannot be improved in any dimension without degradation

in another. A commonly encountered example in design would be the dual optimization

of cost and performance. For the ultimate selection of a solution, however, it remains

necessary to scale the relative importance of the various objectives.

Evolutionary algorithms are notoriously opportunistic, making the construction of the

objective function for complex systems a far from trivial task. While this property readily

exposes flaws in the definition of the objective function, it also enables the generation of

solutions for situations when the parameter encoding or a simulation component is erro-

neous. For the flight control problem both these situations were repeatedly encountered.

Further discussion on the objective function used for the flight controller is contained in

Chapters 5 and 6.

Fitness Scaling

The two extremes of population behaviour, in terms of the relative performance of indi-

viduals, occurs at the beginning and end of the simulated evolutionary process. Early in

the evolutionary stages there may be a small number of very fitindividuals which could

tend to dominate the next generation and lead to premature convergence, whereby the

search direction is focused early rather than later. With later generations, there may be

little difference between the average and best performing individual, resulting in average

members being given the same reproductive chances as the best members. To regulate

the competition between members of a population, it is necessary to scale the objective

functions of a population. This process is referred to as fitness scaling, and describes

the transformation of an objective functionfobj to a fitness valuef . The fitness value is

then used by the selection procedure to discriminate between the reproductive chances of

individuals.

In Holland’s original GA [101], the fitness value was implicitly assumed to be non-

negative. The reliance of non-negative fitness values by theselection scheme means the

algorithm is formatted as a maximization procedure. Fitness scaling therefore has the

additional purpose of transforming the objective functionto non-negative fitness values

where the greater the fitness the better the individual. The detailed formulation of the

objective function for the flight control design problem is covered in Chapter 5.



118 Control System Design Tools

For RCGA, the individual objective function values are mapped to scaled fitness val-

ues using sigma truncation followed by linear scaling. The scaled fitness values ensure

the selection pressure remains relatively constant through the generations. Here selection

pressure refers to the degree to which highly fit individualsare allowed many offspring.

The following steps convert the raw fitness valuesf to a scaled fitness measuref ′ of

generationt:

1. The raw fitness dataf is simply the objective function data

fj(t) =

{

fobj,j(t)−min(fobj)(t) if min(fobj)(t) < 0

fobj,j(t) otherwise
(4.16)

where the subscriptj refers to thej’th individual of the population.

2. Sigma scaling is applied to transform the fitness values relative to the fitness distri-

bution of the population.

fj(t) =

{

fj(t)− f̄(t) + CMσ(t) if f(Cj(t)) > (f̄(t)− CMσf (t))

0 otherwise
(4.17)

whereσf (t) is the standard deviation of the current population,f̄(t) is the mean

(non-negative) objective value of the current population,andCM is a constant. The

value f̄(t) − CMσf (t) represents the minimum acceptable objective measure for

any reproducing individual, and withCM = 2, implies5% of the population on

average are allocated zero fitness. This avoids the potential of poorly performing

individuals, that may be created through crossover or mutation, to bias the selec-

tion pressure. This would happen if fitness scaling were referenced to the worst

performing individuals [55].

3. Linear scaling is applied with the transfer parametersa andb evaluated so that the

average scaled fitness is equal to the average pre-scaled value, and the maximum

scaled fitness is a preset multipleCM , of the average fitness, see Figure 4.7.

f ′
j = afj + b (4.18)

where

a = f̄
CM − 1

fmax− f̄
(4.19)

b = f̄(1− a) + afmin

If f ′
min is evaluated to be less than zero then the parametersa andb are adjusted to
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providefmin = 0 andf̄ ′ = f̄ .

a =
f̄

f̄ − fmin

(4.20)

b =
−a
fmin

According to the recommendation from Goldberg [83],CM is typically set in the

range [1.2,2.0] for populations in the rangeNP ∈ [50, 100]. The implication is

that for small populations the selection pressure needs to be large enough such that

the fitter individuals benefit, but not so large that population diversity is lost early

in the evolutionary process. For the control design resultspresented in Chapter 6,

populations ranging in size from 6 to 100 were used, withCM = 2.
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Figure 4.7: Application of linear scaling to map raw fitness values to scaled fitness values.

Selection

According to the theory of natural evolution, natural selection selects for reproductive

success. Selection is one of the main operators of an evolutionary algorithm, providing

the driving force behind the search process by emphasizing better solutions in the pop-

ulation. The algorithmic form of natural selection is to allocate the offspring generating

chances of an individual according to its fitness. Using thisapproach, individuals with a

greater than average fitness have their reproductive chances enhanced, while still allow-

ing the below average members a chance to reproduce. Selection is typically described

with a probabilistic nature, requiring the fitness values tobe non-negative and the search

procedure to be configured as a maximization task. The algorithm is also provided with a

degree of robustness against a noisy objective function [94].

Like all facets of evolutionary algorithms, the implementation of selection has been
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approached in numerous ways [84, 22, 94]. Proportional selection [86] allocates the re-

productive chances of an individual in proportion to its fitness relative to the popula-

tion. Tournament selection [30] conducts a series of tournaments between individuals

randomly chosen from the population, with the winner inserted in the next generation.

Ranking selection [87] is similar in operation to proportional selection, however the prob-

ability of selection is based solely on the ranking of individuals (according to fitness)

within the population. The principles of simulated annealing have also been employed in

evolutionary algorithms, through Boltzmann selection mechanisms [138].

Proportional selection as introduced by Holland [101], first creates a probability dis-

tribution proportional to fitness, and then draws samples from this distribution. Roulette

wheel selection is one such scheme, where the selection proceeds by consecutive spins of

a roulette wheel, with each slot sized according to the individuals probability of selection,

pi,

pi =
f ′

i

NP
∑

i

f ′
i

. (4.21)

There is the possibility that, with the roulette wheel procedure, the fittest individual in the

population may be assigned no offspring in a particular generation.

The mechanism used in RCGA follows the proportional selection schemes established

by De Jong [55], and improved by Brindle [35] and Booker [31].De Jong proposed the

use of expected value selection, whereby the selection probability is expressed on the

basis of the expected offspring generating chances of an individual,

ei = Np
f ′

i

NP
∑

i

f ′
i

, (4.22)

whereNp is the population size. A procedure referred to asstochastic remainder selection

without replacement[83], has been implemented in RCGA. It is a two step process, with

the construction of a mating array of individuals, followedby the stochastic sampling of

the array to establish mating pairs.

The method of constructing the mating population is to first assign positions equal to

the integer value ofei. The preselection process is then completed by filling the mating

array using probabilistic selection, with the fractional part of the expected valuesei de-

scribing the probability of selection to the mating population. At this stage, once a copy

of an individual is added to the mating population further contributions are not permitted.

With the fitness scaling scheme previously described, the best individual in the popula-
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tion is guaranteed to haveCM copies in the mating population. Following preselection,

mating pairs are then formed by randomly selecting parents from the mating population,

and then removed to assure each preselected parent generates offspring.

An additional feature of the selection policy used in RCGA isthe application of

elitism. It provides an assurance that the maximum objective function value within a

population is not reduced across generations. If none of theoffspring of the new genera-

tion constitute an improvement in the best individual, the best-so-far individual is copied

into the new population by replacing the worst individual.

Crossover

The regeneration of a population of parental individuals issubject to the variation opera-

tors of crossover (or recombination) and mutation. For genetic algorithms the emphasis

is typically on the search capabilities of crossover and selection. Crossover once distin-

guished genetic algorithms from other evolutionary algorithms, though this is no longer

the case, with crossover also being used in evolutionary strategies [193, 24]. For parent

individuals selected for reproduction, crossover achieves a recombination of chromosome

data, providing a structured but randomized mechanism for the offspring to inherit char-

acteristics of both parents. Atmar [15] suggests the biological function of crossing over

serves an informational maintenance purpose, which is similar to the role it plays in ge-

netic algorithms. By exchanging information between diverse chromosomes, crossover in

genetic algorithms enables new parts of the solution space to be tried. There is no guar-

antee however, that good chromosomes will generate even better ones through crossover.

The likelihood of two mating parents undergoing crossover is preset by the crossover

rate (or probability),pc ∈ [0, 1]. If crossover is not performed, parent values are copied

directly to the offspring chromosome, with the possibilityof subsequent mutations.

Compared to the crossover operation for binary strings, recombination with real-

valued vectors can be implemented in many forms [99]. Due to the history of evolutionary

strategies with real parameter optimization, many of theseforms are derived from efforts

in that field [32]. The simplest form of crossover is based on exchanging information

using a randomly chosen reference pointi ∈ {1, 2, . . . , n− 1} along the chromosome. If

the two chromosomesC1 = (x1,1, . . . , xn,1) andC2 = (x1,2, . . . , xn,2) are selected for

recombination, simple crossover generates the following offspring,

C ′
1 = (x1,1, . . . , xi,1, xi+1,2, . . . , xn,2)

C ′
2 = (x1,2, . . . , xi,2, xi+1,1, . . . , xn,1)

(4.23)

The simple crossover is readily extended to multiple-pointschemes or a uniform crossover

where each element of the new chromosomes will typically be sourced with equal prob-
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ability from the parents. An alternative to the simple exchange of information between

parents is available with intermediate operators, which attempt to blend the components

across the parents. The general procedure for generating a weighted average of the par-

ent chromosomes is referred to as arithmetic crossover [154]. Given two chromosome

vectorsC1 andC2, arithmetic crossover results in the following linear combination of

chromosome information.

C ′
1 = λC2 + (1− λ)C1

C ′
2 = λC1 + (1− λ)C2

(4.24)

whereλ ∈ [0, 1] is simply chosen at random for each mating pair, and applied uniformly

across the chromosome. Variations on this scheme include having λ calculated indepen-

dently for each pair of chromosome elements, and a non-uniform operator whereλ is

variable and dependent on the age of the population.

The preferred crossover form is dependent on the characteristics of the search space,

as defined by the objective function. One of the limitations of the uniform arithmetic

crossover is that the bounded operation favours exploitation of the chromosome features

rather than exploration. This places greater emphasis on permutation operators such as

mutation to explore the fitness domain. If the search objective is to find the global opti-

mum to high precision, then a degree of experimentation withthe crossover definition is

worthwhile. However, if the search objective is to find a solution which satisfies some per-

formance bounds, then the search is robust for a range of crossover forms. Both the single

point and the arithmetic crossover proved capable of designing the flight control functions

for this thesis. Herreraet al [99] provides an empirical study of the performance of sev-

eral crossover operators. The best operators were those that considered the exploration

intervals for obtaining offspring genes. Appendix A contains further discussion on the

performance of the crossover operator.

Mutation

The original formulation of genetic algorithms emphasizedrecombination, with mutation

being a dedicated background operator via a low level of activation [101]. This reflects

the occurrence of mutation in nature, where it is rare with often disastrous consequences.

The primary functions of mutation in the genetic algorithm can be separated into the

maintenance of population diversity, and the initiation ofnew search paths through the

introduction of new information. As a perturbation function, it can also be used to fine-

tune the search, by including a self-adaption feature whichreduces the magnitude of the

perturbations as the search proceeds.

In binary coded schemes, mutation simply involves the inversion of bits. However,
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like crossover, there are many mechanisms for the perturbation of floating point val-

ues [99, 193]. To be equivalent to the binary case, the probability of mutation is typically

much higher in real-coded GAs.

Some evolutionary schemes use mutation as the primary or only regeneration oper-

ator [26]. The mechanism has therefore been investigated asa means to improve the

velocity and reliability of the genetic search. Recent studies have shown the benefits of

using high rates of mutation, which decrease over the courseof the evolution [21, 73, 205].

With gross evolutionary optimization occurring quite rapidly, it has also been shown that,

by reducing the variance of a Gaussian mutator function as the optimum is approached,

the search can be dramatically accelerated [15, 26].

The non-uniform operator introduced by Michalewicz [155] provides a step-size con-

trol mechanism for the mutation of real-valued vectors, by reducing the likelihood of large

mutations as the search proceeds. In effect, the operator performs similarly to those used

in evolutionary strategies, where the width of a Gaussian mutation function is adapted

through the search. The basis of the non-uniform operator isthe perturbation of a chro-

mosome element through an addition or subtraction to the original, with the probability of

large mutations decreasing across the generations. Duringthe course of this thesis, a bias

to the centre of the search domain was observed through the unreliable design of the inner

loop flight control function, see Chapter 6. A simple redefinition of the operator allows

the non-uniform mutation to exhibit the desirable properties of a random walk for early

generations and, as the search progresses, fine-tuning of anindividual’s chromosome. An

empirical study of the non-uniform mutation operator and a proposed modification is pre-

sented in Appendix A. The modified operator is defined as anadaptive rangemutation

and has been used to generate the flight control designs presented in this thesis.

Each genexi of the newly formed offspring chromosomes, undergoes mutation with

a preset probability,pm. The mutation is effected within the variable range,xi ∈ [ai, bi],

producing the mutated valuex′i. There are two steps to the mutation process. The first

establishes the mutation range[σL, σU ]← x±∆(t, δmax) based on the generation number

t, a fixed maximal half-rangeδmax, and the perturbation function∆,

∆(t, δmax) = δmax ·
(

1− rγ(t)
)

(4.25)

with r a uniform random number from the range[0, 1], andγ(t) providing the fine-tuning

capability according to the function

γ(t) =

(

1− t

T

)β

(4.26)

HereT is the maximum number of generations andβ the strategy parameter which sets
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the degree of non-uniformity across the generations. Figure 4.8 plots the normalized

perturbation function∆(t, y)/y as a function of the random variabler for β = 2. It

shows the possible mutation magnitude decreasing across the generations. To ensure the

mutation remains bounded by the variable search range, the mutation range is limited by

the variable bounds,

σL = max {ai, xi −∆}
σU = min {bi, xi + ∆}

(4.27)

The second stage is the actual mutation of the gene, which returns a random value with

the range[σL, σU ], with the assurance of symmetry about the parent valuexi.

x′i =







xi − (1− 2p) (xi − σL) if p ≤ 0.5

xi + (2p− 1) (σU − xi) otherwise
(4.28)

wherep is a random number uniformly distributed within the range[0, 1]. Figure 4.9

shows the relative mutation frequency for mutations about initial values near the centre

and edge of the search domain. Reflecting the behaviour shownin Figure 4.8, the oper-

ator uniformly accesses the space for early generations, and with increasing generations,

becomes more localized in its search. The mutation profile issimilar to a Gaussian distri-

bution which is often used to described the mutation in evolutionary strategies.
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Figure 4.8: Behaviour of the normalized perturbation function∆(t, y)/y =
(

1− rγ(t)
)

, in terms
of the random numberr, with β = 2.

The adaptive rangedefinition of Michalewicz’s non-uniform mutation operator, im-

proves the reliability of the genetic search. It removes thebias of the Michalewicz non-

uniform operator for the centre of the search domain by fixingthe maximal possible muta-

tion magnitude rather than having it dependent on the variable position within the search
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Figure 4.9: Mutation behaviour (β = 2) for an initial value near the centre of the search domain
(left) and a value near the edge (right). The relative frequency represents the probability that a
value in the search domain is reached through mutation.

domain. The search potential for arbitrarily complex functions remains constrained by the

rapid reduction (dependent onβ) in the probability of large mutations. As discussed in

Appendix A, this feature does not prevent the algorithm fromfinding goodcontrol solu-

tions. Rather, for some function minimization problems, itmay be the difference between

a very good solution and the global minimum. However, the algorithm performance using

the adaptive range mutation can be augmented by the crossover operator, increasing the

generation number, the parameterization of the mutation operator, or a change to the per-

turbation function to allow the possibility of large mutations further into the evolutionary

process. The operator as defined in the above equations has proved sufficient for the flight

control design problem of this thesis.

Termination

From the viewpoint of optimization by a genetic algorithm, criteria for terminating the

search generally fall into two categories, expressed in terms of the search characteristics.

The first, which is explicitly coded in the RCGA, measures thesearch progress (using

the objective function) in a predefined number of generations. If no progress is made,

or if progress is less than some tolerance, then the search isterminated. The second

method is based on a comparison of the chromosome structure amongst the population.

Termination is based on the number of converged chromosome elements being a preset

percentage of the total number of elements. Depending on theobjective function proper-

ties, the population convergence test represented in the RCGA implies that chromosome

elements are converged. For the flight control problem, relatively few generations are

used, and a termination criteria based on convergence is notneeded. The applicability of

the above methods is further limited by the control objective function changing across the

generations.

From an engineering perspective, the termination can be expressed in terms of satis-
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fying criteria for the control performance quality. The control parameters can therefore

be optimized against an acceptable level of system performance. Though control solu-

tions may be well established early in the genetic search, the fine-tuning capability of the

RCGA can significantly improve the solution quality. For thehypersonic flight control

problem it was considered desirable to fully exploit the tuning potential within a prede-

fined number of generations.

4.2.3 RCGA Parameterization

Despite evolutionary algorithms possessing considerablerobustness to the parameter set-

tings for a given set of evolutionary mechanisms, there are benefits in terms of solution

quality, search robustness, and computation time, in the careful selection of parameter

settings. One of the implications of theno free lunchtheorem is that, for optimal search

performance, the algorithm must be tuned to the objective function. The tuning pro-

cess typically involves findinggoodvalues through experimentation [83, 88]. Parameter

control mechanisms have also been used to provide some meansof adaptive the settings

during the design process [64].

For the application of the RCGA to the control design problem, the emphasis was

search efficiency. Due to the computation cost of evaluatingthe objective function, it was

necessary to minimize the population size and the number of generations. Over a range

of experiments it was found that suitable solutions could beobtained with relatively few

function evaluations, 150 000 - 250 000 for problems having on the order of 30 - 250 pa-

rameters. The search performance was seen to be relatively insensitive to the setting

of operator rates,pc andpm. When using standard minimization tests such as those in

Appendix A, the aim is to find the global solution to a high precision, so much larger

populations are often evolved over thousands of generations. Though the design of the

flight controller is also described as an optimization problem, it is not an absolute require-

ment that the design generated be a global optimum. The success of the design is largely

dependent on the use of sufficient generations to establish agood solution base and for

fine-tuning solution performance. Table 4.1 summarizes theoperational parameters of

the RCGA used for the control design problem. Some discussion on the application of

alternative mechanisms is included in Appendix A.

4.3 Nelder-Mead Simplex Method

The hybridization of evolutionary algorithms and hill-climbing methods provide a tool

which exploits global search capabilities of evolutionaryalgorithms with a means of sys-

tematic fine-tuning. Methods of coupling the two search mechanisms vary from the sim-
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Table 4.1: Parameterization of the real-coded genetic algorithm. Thenumbers in brackets indicate
the typical values used for the control design problem, withdimension ranging from 27 to 250
design variables.

Operation Mechanism Parameterization
Initialization: Random and seeded populations. NP (30-50)

Search length: NG (500-1000)
Fitness Scaling: Sigma truncation with linear scaling. CM (2)

Selection: Stochastic remainder without replacement.
Recombination: Whole arithmetic crossover. pc (0.6)

Mutation: Adaptive range mutation. pm (0.1-0.3),β (2-5)

ple augmentation of the solution returned by the evolutionary search, to the intermittent

application of a localized search throughout the global search [181]. To provide a means

of fine-tuning an existing control solution (which may have been evolved through appli-

cation of the genetic algorithm), the Nelder-Mead Simplex Method was used. Simplex

optimization methods are class of gradient-search algorithms that do not require the eval-

uation of derivatives to determine the search direction. They are therefore suitable for

situations where the analytical description is complex or unavailable. The simplex ap-

proach to optimizing physical processes or mathematical functions was introduced by

Spendleyet al. [201]. The methods derive their name from the geometric figure which is

moved along the surface defining the objective function, in search of the minimum. In the

Nelder-Mead method [161, 165], the simplex is able to reflect, extend, contract, or shrink,

to conform to the surface topology of the objective function. Modifications by Routhet

al. [185] and Parkeret al. [168] led to improvements in the speed and accuracy of the

minimization search. As a minimization procedure, the adaption of the simplex is such

that it moves away from high values of the objective function, rather than moving directly

towards the minimum.

The application of simplex methods generally requires a design space possessing a

well defined global minimum. As a general N-dimensional minimization code it benefits

from the simplicity of the code organization and the robustness of operation. The al-

gorithm is entirely self-contained, not requiring one-dimensional minimization methods

such as is needed for Powell’s method [173]. The Nelder-Meadprocedure used is based

on the Fortran code presented by O’Neill [166]. While the genetic algorithm works to

maximize the performance objective, Nelder-Mead acts to minimize. In light of the sug-

gestion by Olsson and Nelson [165] that the procedure is lessdesirable for large problems

with many constraints, it is to be expected that the fine-tuning of the control parameters

be relatively inefficient. However, for the final stages of tuning the control parameters

and for a moderate number of parameters, the computational effort may be justified by a

significant improvement in the performance of the controller.
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Configuration of the Flight Control Design

Experiments

In its most general form, the control design approach used here is described as ablack box

optimization problem. Such an approach can be easily dismissed with arguments of inel-

egance and lacking in theoretical grounding, but there are potential advantages. The main

asset is that, outside of computational time, there are no restrictions on what is placed

inside the black box. From the optimizer’s perspective, it sends out a set of parameters

and receives a scalar performance measure. For the control design problem this means

that the design can be based on the full-nonlinear flight response characteristics of the

vehicle, which can include realistic representations of uncertainty (through fluctuations

in the nominal performance), disturbances, and noise. On the down side, the assurance

of performance and stability robustness does not come cheaply. Covering the full range

of state variations requires a large number of sample conditions. This requirement is es-

pecially important for a rule based control arrangement since each sample condition may

activate only a small number of rules. In contrast, with a constant gain controller, all

control parameters continuously contribute to the controlcommand.

The principal computational results of this thesis focus onthe capability of an evolu-

tionary based optimizer algorithm to design, withouta priori knowledge, a robust fuzzy

control law for a hypersonic concept vehicle. This work experiments with the potential

of fuzzy control to represent a complex, nonlinear, and robust control function, the incor-

poration of robustness features in the control performancemeasure, and the capability of

the genetic algorithm as a search procedure. The design procedure is similar to the offline

learning of a neural net. The structure of the fuzzy rule basedefines the mapping proce-

dure and the design procedure learns the output profile through numerical optimization. It

also has similarities with the modern developments in stochastic robustness, where Monte

Carlo evaluation provides an assessment of controller performance in terms of the proba-

bility that a collection of performance metrics are satisfied, and the design maximizes the

probability of success.

In the preceding chapters the flight control structure and the design tools were intro-
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duced. The flight simulator described in Chapter 3 provides the means of computing the

dynamic behaviour of an air-breathing hypersonic aircraftfor the purpose of evaluating

the controlled flight performance. To provide a link with thepreceding chapters and the

results in Chapter 6, this chapter discusses the practical features of generating the robust

longitudinal flight control laws. These include the overallcontrol design arrangement, the

controller parameterization, and the specification of the objective function.

5.1 Overall Approach to Controller Design

The core of the control design approach is a genetic search for control parameters using

numerical flight simulations to assess the performance of possible solutions. Within the

longitudinal autopilot configuration introduced in Chapter 2, there are two control func-

tions which require specification, the guidance function and the inner-loop attitude con-

trol function. These are specified by first addressing the inner-loop controller such that

the vehicle is stable and can robustly track attitude commands. For this design stage, the

performance analysis is based on stability and attitude maintenance over a short timescale

(2 seconds), using a step response in angle of attack. The second stage of defining the

gains for the guidance function makes use of the stable inner-loop design and performs

simulations over 30 seconds.

The focus of this work was the design of a fuzzy rule base controller for the inner-loop.

Through the many degrees of freedom available in detailing the transformation of input

values to a control command, an extremely complex control function can be configured.

There are obvious benefits for the configuration of an optimalcontrol law, however, it

also means the search for a solution is of high order, over a potentially complex design

space. Because the evaluation of the objective function is computationally demanding,

it was desirable to have a design procedure which would allowrapid determination of

the control function. To this end, a real-coded genetic algorithm was constructed and

used to search for an optimal control configuration. The real-coded form has been shown

to be both more efficient and more reliable in numerical optimization problems of high

dimension [154].

There are many variations on this theme and, to simplify the description of each spe-

cific design arrangement, a set of indices are used to define the setup for the genetic

algorithm (GAi), the controller (Ci), and the objective function (Fi). The following sec-

tions discuss the initialization of the genetic algorithm,and the design options available

with the inner-loop and outer-loop control functions.
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5.1.1 Genetic Algorithm Setup and Operation

Considerable effort is usually undertaken to investigate both the arrangement of genetic

operators and their parameterization. For the real-coded genetic algorithm (RCGA), the

performance was examined using a benchmark control problem[17] and a collection

of function minimization problems, see Appendix A. The original format of the opera-

tor [155] greatly inhibited the ability of the genetic algorithm design process to satisfy the

target criteria of the control problem. It was through this experimentation that the need

for a modification to a well known mutation operator was recognized. Appendix A details

the new mutation operator and also addresses some general performance characteristics

of the RCGA. Primarily, for the RCGA, the reliable generation of good solutions was

relatively insensitive to the setting of activation rates of the variation operators. The re-

sults of Chapter 6 also show that relatively small populations (30 - 50) and relatively few

generations (∼ 500) were sufficient for the design of controllers ranging in size from 27

to 228 parameters. This is due, in part, to the definition of anobjective function which

changes as the search proceeds, gradually providing greater demands on the controller in

terms of the vehicle response. With the function minimization problems which feature in

Appendix A, there is no avoiding the complexities of the topology of the function and the

use of large populations together with large generation numbers is often unavoidable.

The basic construction of the real-coded genetic algorithm(RCGA) was established

in Chapter 4. VectorGA is used to classify the RCGA application:

GA = [NP , NG, pc, pm, β] (5.1)

Since the operators used for the flight control problem were predominately arithmetic

crossover and adaptive range mutation, their selection hasnot been included inGA.

Table 5.1 collects the various GA settings used for the results presented in Chapter 6.

Table 5.1: GA parameterization.

GAi Np Ng pc pm β
1 6 100 0.6 0.3 5
2 6 30 0.6 0.5 4
3 30 500 0.6 0.2 2
4 30 500 0.6 0.2 4
5 30 500 0.6 0.1,0.2 2,5
6 50 500 0.6 0.2 4
7 10 - 100 500 0.6 0.2 2

Through the course of experimenting with the control designproblem, the genetic al-

gorithm was applied in a number of distinct forms. These included seeding the population
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with existing solutions, dividing the initial search effort into sub-populations which are

then recombined, and using the algorithm as a fine-tuning tool. Despite the obvious attrac-

tion of these variations, there was in general, no clear benefit over applying the algorithm

in its conventional form: evolution of a single population which is randomly initialized.

All the applications presented in Chapter 6 employ the conventional algorithm structure of

randomly initialized population which is exposed to the full extent of the design problem

for all generations. The present application also performsthe design as a single processor

operation. Since the genetic algorithm is an inherently parallel process, there are signifi-

cant performance gains to be had by distributing the evaluations of individuals to separate

processors. In this manner, the computation could be reduced from 24 hours to an hour

say, and the genetic algorithm would then be more attractiveas a design tool.

5.1.2 Longitudinal Attitude Controller

Vehicle stability with attitude maintenance is provided bya longitudinal fuzzy attitude

controller, positioned in a feedback loop. The rule base which forms the control function

consists of three inputs,(αerr, θ̇, θe,err), and one output,u = θ̇e,cmd. Symmetric triangu-

lar memberships are used to uniformly partition the input space and a scalar output is

used for the control command. Design trials with Gaussian membership functions were

generally unsuccessful compared to those using triangularpartitions, though a thorough

examination of the design possibilities has yet to be completed. The number of rules is

implied by the degree of partitioning of the input space,Nr =
∏Nj

j=1 pj , wherepj is the

number of partitions for thej th input variable. Since each partition of an input variable

corresponds to a possible condition statement of the form “if xi isAij”, this arrangement

provides a rule base with all possible combinations of condition statements. With a high

level of partitioning, there will be rules (once the controlsolution is reasonably evolved)

which are never fired since they would represent an unrecoverable vehicle condition.

The basic rule base structure is fixed for all design examples. Within this constraint

two design cases are presented in the results. The first uses predefined input scaling values

and a design task of determining the rule output arrayy, of dimensionNr. In the second

case, input scaling,k, is included in the design task, meaning the search is performed for

Nr+NI parameters. Table 5.2 defines the controller definitions andthe design parameters,

for the results generated in Chapter 6.

A constant gain linear feedback controller was also considered, providing a bench-

mark for the fuzzy controller. The design task for the linearcontroller is simply the

evaluation of the feedback vector,K = [Kα, Kq, Kθe].
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Table 5.2: Fuzzy controller definitions.

Rules Partitions Design parameters
αerr θ̇ θ̇e,err

27 3 3 3 y

125a 5 5 5 y

125b 5 5 5 y, k

225a 9 5 5 y

225b 9 5 5 y, k

5.1.3 Longitudinal Guidance System

The design of the longitudinal guidance laws is reliant on having a stable inner-loop re-

sponse. Since the focus of the control design was vehicle stabilization and attitude main-

tenance, a relatively simple feedback law was used to guide the vehicle along the nominal

trajectory,

αcmd = KG · [herr, ḣerr]
T . (5.2)

The guidance design problem is therefore the evaluation of the gain vectorKG.

5.2 Construction of the Objective Function

In optimal control theory the desired performance is expressed by an objective function,

which may incorporate a range of performance metrics. For linear-quadratic type prob-

lems the objective is an integral squared function, representing weighted state and control

energies, which are minimized. In this thesis the objectivefunction is extracted from a

collection of simulated flight responses, using performance measures such as the steady

state error and the integral of absolute error.

Evolutionary design procedures are often associated with searching within a design

space which is a complex, nonlinear, and multimodal function of the design parameters.

However, the search performance is not independent of an arbitrarily complex search

domain. One of the guidelines for forming the objective is therefore to avoid so-called

needle in a haystackproblems. This is especially relevant for the design of the inner-loop

controller as the vehicle is highly unstable and rapid failure occurs unless the appropriate

control action is commanded. With an initially random set ofsolution vectors, there

needs to be some beneficial discrimination to provide the selection pressure. If the cost

of evaluating the objective were not so computationally expensive then this would not

be such a problem. However, with many expensive flight simulations contributing to the
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objective function, it is necessary to encourage the growthof good control solutions by

providing a path to the final performance goals. To achieve this, the multiple objectives

used to evaluate the controller performance, are scheduledthrough weights expressed as

a function of generation number. The avoidance of vehicle failure is given the highest

priority at the start of the search.

While the performance measures reflect the desirable features of the controlled flight

response, the objective must also encourage the development of a robust control solution.

This is achieved with the inclusion of parametric uncertainty, disturbance, and signal noise

in the flight simulation, and by assessing the controller performance over a large set of

initial conditions covering the entire flight envelope. In the case of the inner-loop design

the flight simulations are only performed fortf = 2 seconds, with an emphasis on attitude

maintenance and stability. Since the altitude response occurs over a much longer time

scale, simulations of lengthtf = 30 seconds were conducted for the outer-loop design.

Genetic algorithms are extremely opportunistic, and are therefore proficient at expos-

ing failings in the relationship between the objective and the intended measure. This can

be a frustrating way of exposing inadequacy in the reasoningbehind the performance

measures, but can also lead to a greater appreciation of the behaviour of the system. The

remainder of this chapter details the formation of the initial condition set and the perfor-

mance measures used to evaluate the controlled flight response.

5.2.1 Simulation Initialization

In addition to satisfying robustness concerns, the size of the initial condition set is also

a reflection of the parameterization of the control function. When using the fuzzy con-

troller, a single flight response may only activate a fraction of the complete rule base. To

guarantee completeness in the fuzzy controller it is necessary to provided full coverage

of expected variations in the controller input values. Performance and stability robustness

can then be addressed by combining the input variable combinations with varied flight

conditions and with a vehicle simulation corrupted by parametric uncertainty and signal

noise.

There are two basic classes of simulation used in the design of the vehicle autopilot,

with both being set by a single flight objective. For the inner-loop, the target is to trim

the vehicle to an angle of attack (αcmd), while the outer-loop target is simply to maintain

the dynamic pressure (q∞) of the desired flight trajectory. The complete initial condition

set is formed by the vehicle flight condition, vehicle attitude, guidance command, and

actuator setting:

x0
0

= [h, V,mf , (αcmd, q∞), α, θ, θ̇, θe]
T (5.3)
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Six nominal operating points along the flight trajectory, are used to generate the vehicle

flight condition [h, V,mf ]
T . Table 5.3 presents the selection of flight conditions along

with the vehicle centre of mass (cmx) and inertia (Iy). With the fuel tank positioned near

the vehicle structural centre of mass, there is little variation in the centre of mass or inertia

along the trajectory. The purpose of including different flight conditions is therefore to

include the variation in the vehicle aerodynamics and propulsion performance along the

flight trajectory. Each flight condition selected was allowed to be randomly perturbed

within the following ranges,

[h, V,mf ]
T =







hi ± 200 m,

Vi ± 200 m/s,

mfi ± 100 kg






. (5.4)

Initialization bounds were also provided for the vehicle attitude, the guidance command,

and the initial control setting. These are summarized in Table 5.4.

Table 5.3: Nominal flight conditions along a trajectory defined byq∞ = 188 kPa.

Ti Velocity (m/s) Altitude (m) Fuel (kg) cmx(m) Iy (kg/m2)
1 2500 22420.4 2485 5.199 11187
2 3000 24745.0 2000 5.176 10941
3 3500 26682.3 1685 5.158 10804
4 4000 28450.0 1300 5.132 10655
5 4500 30000.0 985 5.107 10547
6 4900 31043.4 635 5.072 10437

Table 5.4: Initial condition bounds which also represent constraintson the perturbation of the
vehicle from nominal operating conditions.

Parameter Constraint

α ±5◦

αcmd ±3◦

αerr ±3◦

θ ±5◦

q 0.1 rad/s
θe θe,trim± 1◦

Four means of initialization were arranged,IC1, . . . , IC4. The first allows user spec-

ification of the initial condition set and was primarily usedfor analysis of the controller

after it had been configured. For the second method, all elements of the initial condition

set are randomly generated within preset bounds. This method was used to experiment
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with varying the simulations throughout the design process, and for examining the ro-

bustness of the final control solution. The third method provided systematic coverage of

possibleα andαref combinations with 42 sets of initial conditions. Of the results pre-

sented in Chapter 6, this approach was predominately used. Finally, IC4 was arranged for

the design of the guidance control function. This was the only case where the flight objec-

tive was specified using the dynamic pressure of the nominal trajectory. Flight condition

values for casesIC2 throughIC4, were drawn from six predefined combinations ofh, V

andmf defined in Table 5.3. For the guidance design (IC4), it was necessary to limit the

perturbation applied to the nominal flight conditions and the flight angle (γ = θ − α), to

prevent excessive departure from the nominal flight trajectory.

5.2.2 Inner-Loop Performance Measures

The following performance measures are configured for a maximization task. Each is

defined such that the maximum contribution to the overall objective is 100. The overall

objective function is simply a weighted sum ofm performance measures,

Fobj =

m
∑

i=1

wj Ji . (5.5)

For all the results presented in Chapter 6 the test simulation length wastf = 2 seconds.

Simulation completion:

The primary selection pressure early in the evolution of thecontroller is the establishment

of a controller function which can at least prevent vehicle failure. To do this, simulation

time is represented as a performance measure,

Jtf = wtf

t (α < αlim)

tf
, (5.6)

wherewtf = 100, andαlim is an angle of attack limit marking vehicle failure.

Settled system status:

Following simulation completion, the next target is the reduction in the final state error.

Two performance measures are used to evaluate the quality ofthe response after a timets,

which was typically set totf − 1 seconds for the inner-loop design. These incorporate the

desire for the angle of attack and pitch rate to be below a given tolerance. The contribution

of each to the overall objective function is scheduled according to the generation number

g relative to the length of the searchNG, allowing simulation completion to dominate
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during the early stages of design. For the angle of attack history:

Jα = wα

(

1− max [αerr (t > ts)]

αtol

)

, (5.7)

whereαerr = αcmd− α and

wα = min

(

1,

(

2 g

NG

)2
)

· 100

(5.8)

αtol =







0.0523 radians ifg < NG

2

max
(

0.00873,−0.04362g−NG

NG
+ 0.0523

)

otherwise

Similarly for the pitch rate response:

Jq = wq

(

1− max [q (t > ts)]

qtol

)

(5.9)

whereqtol = 0.2 rad/s andwq = wα. The reason for having the pitch rate tolerance set

at a constant and relatively large value is that, with systemnoise, large pitch rates can

be induced in the attitude response and dominate the overallobjective. The weighting of

bothJα andJq prevents the generation of large negative performance measures during the

early stages of design, when the vehicle fails.

Integrated absolute error:

The overall vehicle response is measured by the integrationof the absolute error (IAE)

versus time. Since there is no benefit in using IAE to discriminate against individuals

early in the design evolution, it is gradually made more significant during the design.

Applied to the angle of attack response,

IAEα =

∫ tf

0

|αerr|dt. (5.10)

The performance functionJR α follows the same structure of the functions used for the

settled system response,

JR α = wR α

(

1− IAEα

IAEα,tol

)

, (5.11)
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where

IAEα,tol =
αerr(t0)ts

2
+ αtol(tf − ts)

(5.12)
wR α = wα

The inclusion ofαtol in the reference response measure IAEα,tol keeps the flight response

demands inline with those for the settled system response. It represents an initial response

rate of 0.1 rad/s following which an attitude maintenance tolerance of set byαtol.

5.2.3 Outer-Loop Performance Measures

The performance measures for the guidance design follow thesame format as those for the

inner-loop, except the focus is the altitude response history. Though vehicle closed-loop

stability is considered a prerequisite for the outer-loop design, system failure is possible

through the growth of large altitude errors. For large enough departures from the nomi-

nal trajectory, the vehicle dynamics grow sufficiently different to those represented in the

inner-loop design that the inner-loop fails. If the objective function for the guidance per-

formance were simply stated as an integral error, the searchprocedure rapidly ascertains

that by forcing the inner-loop to fail, it can provide superior performance measures. This

is an example of the opportunistic nature of the genetic algorithm as a search procedure.

Two performance measures are used to assess the altitude response, with test simula-

tions typically over the interval[0, tf = 30] seconds. Since the design of the guidance law

is simply to determine two feedback gains, it is not necessary to schedule the performance

measures.

Altitude response:

With the potential for large departures from the nominal trajectory (if the flight angle

is not close to that required to follow the trajectory), it isdifficult to establish a desired

response to cover the initial stages. The altitude responsemeasures therefore consider the

response history after a time of 15 and 20 seconds, with the assumption that the vehicle

should be tracking the nominal trajectory. The following performance function combines

the integral of absolute error and the settled response measure,

Jh = 100

[(

1− max [herr (t > 20)]

htol

)

+

(

1− IAEh

IAEhtol

)]

(5.13)

The integral error term is expressed in the same form as that used for the angle of attack

response. A tracking tolerance of 50 m was typically appliedand the integral evaluated

over the time range [15,tf ] seconds.
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5.2.4 Specific Objective Functions

The performance measure defined in the previous sections were applied in a number of

ways. For example, with the design of the linear controller the scheduling of performance

measures was considered unnecessary. Table 5.5 summarizesthe specific objective func-

tions used to design the linear controller, the fuzzy inner-loop controller, and the linear

guidance function.

Table 5.5: Objective function specification. Tolerance values indicated refer to radians for angles
and radians/s for angular rates.

OFi Application Components
1 CGLF Jtf

, Jα(αtol = 0.00873, wα = 1), Jq(qtol = 0.02, wq = 1), JR α(wR
α = 1)

2 CGLF Jtf
, Jα(αtol = 0.00873, wα = 1), JR α(wR

α = 1)

3 FC Jtf
, Jα(αtol(g), wα(g)), Jq(qtol(g), wq = (g)), JR α(αtol, wR

α(g))

4 KG Jh
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Results - Controlled Hypersonic Flight

Aside from the acceleration capabilities of the scramjet vehicle, the most basic longitudi-

nal performance characteristics refer to stability. Inherent stability for longitudinal flight

relates to the dynamic stability of the perturbed longitudinal motion and the static sta-

bility. Static stability is typically expressed through stability derivatives describing the

variation in forces and moments with respect to the vehicle state and control variables.

For example, the sign of the stability derivativeMw (or Mα), which refers to the pitch-

ing moment variation with the angle of attack, determines the longitudinal static stability.

With Mw < 0, a change in the angle of attack generates a restoring moment. For a fixed

geometry vehicle,Mw is principally dependent on the location of the aerodynamiccentre

relative to the vehicle’s centre of gravity. Without the need for manoeuvrability in the

scramjet-powered launcher, it would seem desirable to havesome degree of passive sta-

bility. However, the long inlets needed for scramjet operation and a large drag penalty

associated with aerodynamic surfaces, makes inherent longitudinal stability an unreason-

able objective. The inner-loop control system is thereforeused to provide stability and

guidance command tracking.

Dynamic stability is typically expressed by considering the sensitivity of the short pe-

riod and phugoid poles to variations in the flight condition and vehicle attitude, following

a linearization of the vehicle dynamic equations. Dynamic stability is not possible without

static stability.

One of the features of the configuration studied in this thesis is the rate of system

failure without any stabilizing control action. Here system failure is considered to be

the vehicle reaching an angle of attack equal to the inlet angle. Beyond this point, the

shadowed engine flow path would have no flow and it would be verydifficult to return

the vehicle to a smaller angle of attack. Figure 6.1 shows theestablishment of trimmed

flight conditions for the nominal vehicle, following which the controller is switched off

(at t = 2 s). Growth in the control-free response is due to the non-equilibrium flight con-

ditions altering the trim condition, through changes in altitude and velocity. If a small

disturbance such as atmospheric turbulence is included in the simulation, then the time to

failure is reduced to less than 0.5 s. The potential for rapidsystem failure, combined with
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Figure 6.1: Control free stability following the establishment of various trimmed conditions. The
controller is switched off att = 2 s.

performance variation and disturbances, places great demands on the control system.

Previous chapters established the control structure, the flight simulation tools, and the

fuzzy control definition and design procedure. The purpose of this chapter then, is to ex-

amine the capability of the evolutionary design procedure in configuring the control laws

needed for stable altitude tracking of the scramjet vehicleacross its hypersonic trajectory.

Since the principal design problem was the specification of the longitudinal inner-loop

controller, the results deal primarily with this aspect of the vehicle autopilot. The organi-

zation of the results seeks to address issues relating to thecontroller parameterization, the

design procedure, and vehicle operation. These are as follows:

Control law parameterization: This is essentially a comparison of the design and per-

formance of a constant gain linear controller and a fuzzy controller. While the

greater design freedom available with a fuzzy controller enhances the general per-

formance of the inner-loop controller, it also presents a considerably more demand-

ing design problem.

Design procedure: This examination covers the issue of designing with an uncertain

system model and the many variations available with the genetic algorithm and the

design objective.

Vehicle operation: The control design results reveal operating characteristics such as:

the necessary feedback variables; control sampling requirements; sensitivity to per-

formance uncertainty, disturbances, and signal noise; andthe broad range vehicle

performance.
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6.1 A Results Guide

The controlled flight examination begins with a comparison of a linear controller to a

fuzzy equivalent which has undergone tuning. Due to the relative slowness of the Nelder-

Mead procedure for high order problems, the tuning process is limited to a fuzzy con-

troller with the minimum rule set. The comparison represents the primary control param-

eterization issue, namely the basic structure for describing the control function.

With the application of a fuzzy controller there are many additional parameterization

issues due to the additional degrees of freedom available indefining the control function.

Of these, input scaling and rule base size are addressed. Theeffect of an uncertain vehicle

model on the control solution and the design procedure is also considered. Following

the discussion of inner-loop controller, a guidance designis presented for the purpose of

providing a full trajectory simulation. The results conclude with the considerations of

issues relating to the performance of the genetic algorithm.

For the most part, three basic plots are used to represent theoperation of the controller

and the mechanics of the design procedure. To present the performance of the inner-

loop controller, a series of step commands inα are issued. In most cases, with each step

command the vehicle is also shifted along the trajectory by resetting the flight velocity,

altitude, and fuel load, according to the nominal conditions provided in Table 5.3. This

allows the broad range performance of the controller to be presented. In cases where a

single flight condition was used, the trajectory indexTi refers to one of six flight condi-

tions along the nominal trajectory. Further analysis of thecontrollers considers the flight

response to a large set of randomly generated initial conditions (IC2) and applies the

performance measures of the integral of absolute error and the steady state error. For

these tests, 500 simulations of length 4 seconds were performed, with a step command at

2 seconds. The number of completed simulation,NC , represents the total number of tests

minus those that failed due to the violation of the vehicle angle of attack limit. All the

flight simulations are for the vehicle design specified in Chapter 3, and use the general

flight dynamics equations formulated for a spherical, rotating Earth.

Two types of plots are used to represent the behaviour of the design procedure, us-

ing the measures of objective function and population entropy. The objective function

describes the performance of the controller design and its history is averaged over the

number of initial conditions used for each performance evaluation during the design. Fur-

ther consideration of the objective function evolution looks at the relative contribution of

the performance measures through the design process. Population entropy is a measure of

the diversity of the population of potential control solutions, and is defined in Chapter 4.
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6.2 Constant Gain Linear Feedback (CGLF)

The control function for a linear feedback controller is written as a linear combination

of scaled state variables, using a gain matrix and a state vector. Evaluating the feedback

gains typically follow the linearization of the system behaviour about a nominal oper-

ating point and applying optimal control theories such as the linear quadratic regulator

(LQR) approach [211]. Due to the limitations of the linearized model in representing the

nonlinear dynamic behaviour of the vehicle, performance and stability robustness can be

generated by gain scheduling a set of controllers, thereby interpolating between locally

optimal gains. It is generally accepted that the application of a linear state feedback con-

troller to the hypersonic air-breathing vehicle would require scheduling against numerous

operating variables,(h, V, α, θe) for example. For the flight envelope considered in this

thesis, the potential complexity of this arrangement is significantly reduced. Broad range

variations due to the changing flight condition are temperedby flying along a constant dy-

namic pressure trajectory. Further, the vehicle attitude constraint of a few degrees means

the nominal vehicle behaviour at a given flight condition is likely to be reasonably linear.

Robust control theory extends the capability of linear feedback by providing a means

for representing performance uncertainty in the design process. Following the thoughts

in the previous paragraph, it is therefore considered reasonable that, by applying a de-

sign procedure based on the full nonlinear vehicle behaviour across the flight envelope, a

functional constant gain linear feedback (CGLF) controller can be established. The de-

sign of the CGLF controller provides a benchmark for the additional complexity (degrees

of freedom) associated with designing a fuzzy controller (FC). Applying the general (GA)

design procedure, set out in Chapters 4 and 5, allows parametric uncertainty and signal

noise to be included in the evaluation of the controller performance. With a design di-

mension of three, and a genetic search procedure, the designprocedure is the archetypal

brute force approach. The design based on the nominal vehicle model used the genetic

algorithm and objective function specifications (GA1,OF1), see Chapter 5.

Due to the relative simplicity of the design task, the linearcontrol example was used

to examine possible input arrangements and the control sampling time required. The

input combinations tested included,[αerr, θ̇], [α, αerr, θ̇], [αerr, θ̇, θe], and[αerr, θ̇, θe,err], of

which only [αerr, θ̇, θe,err] proved capable of forming a useful control law. Not all of the

input combinations were trialled for the fuzzy controller,though, from the ones tested,

[αerr, θ̇, θe,err] was generally superior. It was also noted that improved performance was

possible with more states included in the feedback loop, however since one objective of

the linear design was to establish relative gain sizes for the fuzzy controller, the states

used were limited to the attitude and control variables.

With regards to the control sampling time, closed loop stability could be achieved
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for sampling times(∆tc) up to 0.04 s. This is, of course, a reflection of the actuation

capabilities, the vehicle operating constraints, and the inherent dynamics of the vehicle.

All the results in this chapter use a control sampling time∆tc = 0.02 s.

Feedback gains were sourced from the range,Ki ∈ [−50, 50]. For the nominal vehicle

model, the following feedback vector was generated,

K = [44.887, − 5.731, − 17.287].

Figure 6.2 shows the control response of the nominal vehicleto a series of step changes

in the reference angle of attack (αref). The main obstacle in generating the feedback gains

comes from the approximation of the trim elevator condition, which is used to determine

θe,err. Since the trim condition follows a predefined function of angle attack, averaged

over the entire trajectory, the controller represents a best fit to the trim uncertainty. With

only three inputs, the maintenance of a steady state response where the pitching rate is

zero requires eitherαerr = 0 andθe,err = 0, or thatKααerr = −Kθe
θe,err. Consequently,

errors in the trim estimate are transferred to a steady stateattitude error. The effect of

trim uncertainty also means the controller is sensitive to the flight condition variation

along the trajectory, as shown in Figure 6.3. The oscillations that appear in Figure 6.2

after 6 s, are due to the non-tracking of the nominal flight trajectory which places the

vehicle several kilometres off-course. Since unchecked altitude travel is not desirable

(in terms of the vehicle loads and engine performance), the initial condition variation

used to assess the controller performance during the designdoes not include these large

variations. Further departure from the nominal trajectoryultimately leads to the failure

of the vehicle. Though the performance robustness of the controller is limited by the trim

errors, the gains appeared sufficient to provide stability robustness.

With the inclusion of system uncertainty and signal noise inthe design, all the control

gains are increased in magnitude relative to the nominal case,

Kunc = [48.816, − 8.639, − 19.44].

The main difference in the design setup compared to that for the nominal system, is the

removal of the pitch rate penalty from the objective function (OF2). Noise in the vehi-

cle performance can generate relatively large pitching rates, which can overwhelm the

objective measure if the small tolerance from the nominal design is applied. Figure 6.4

compares the flight response using the two gain settingsK andKunc in the feedback loop.

The design path for the uncertain system model generates a more gradual response, with

smaller angle of attack oscillations than that provided byK. If Kunc was to be applied

to the nominal vehicle, the oscillations which appear between six and eight seconds in

Figure 6.2 are no longer seen.
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Figure 6.2: Nominal vehicle response to a series of step commands in angle of attack, using the
CGLF controller. The flight condition corresponds toT5, whereV0 = 4500 m/s.
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6.3 Fine-Tuning the Linear Fuzzy Controller

One of the mechanisms for generating a nonlinear fuzzy control law is to fine-tune an

established linear control law. For the three input variables used in the linear controller,

an exact fuzzy control copy of the linear controller within the angle of attack constraint,

can be realized with a rule base containing 27 rules, see Table 5.2. Uniform variable

coverage is provided by 50 % overlap amongst neighbouring partitions. This represents

the minimal discretization of the input space. To preserve the relative contributions of the

linear controller inputs to the control function, the inputand output scaling factors used

to normalized the fuzzy variable domains, must be scaled in proportion to the feedback

gains.

[kα, kq, kθe
] = a

[

1

Kα
,

1

Kq
,

1

Kθe

]

(6.1)

wherea in this case is used to spread the rules over the full angle of attack range. It is

also necessary to set the output scaling in accordance with the linear gains,

ku = k ·KT (6.2)

wherek is the scaling vector for the fuzzy controller. Using the nominal gains for the

CGLF controller, the input and output scalings for the fuzzycontroller are as follows,

k = [0.05236, 0.41, 0.1364]

ku = 7.051
(6.3)

These values mean the control surface formed by the fuzzy rule base is bound by an angle

of attack error of 0.05236 radians, a pitch rate of 0.41 rad/s, and an elevator trim error of

0.1364 radians. Though the output scaling states that an individual rule can generate an

elevator actuation command of 7.051 rad/s, the maximum actuation rate returned by the
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controller is limited to 2.0 rad/s.

Once the input and output scalings are defined, the linear controller can be transferred

to an arbitrarily large fuzzy rule base. The possibilities for fine-tuning the rule base extend

to all degrees-of-freedom available, but only tuning of therule consequents is considered

here. A Nelder-Mead procedure (described in Section 4.3) was used to fine-tune the

vector of rule outputsy. The relative slowness of the procedure in terms of the number

of objective function evaluations, meant that for large rule bases, the tuning process could

require as much computation as that needed to evolve the rules without prior knowledge.

For example, 3000 objective function evaluations were usedto tune 27 rules. After 7000

function evaluations for a 125 rule case the objective was equivalent to the 27 rule case,

but the 24 hours of computation time used is roughly the same as that need to evolve a

superior rule base from scratch. Consequently, only the results for the fuzzy controller

with 27 rules are presented.

An additional limitation on the Nelder-Mead application isthe need to provide con-

sistent objective function evaluations so that the local gradient of search space is itself

consistent. The inclusion of performance variation through uncertain system parameters

would require the time history of inputs to the uncertainty filters to be fixed during the

fine-tuning process, but this has not been considered. The objective function is the same

form as that used for designing the linear controller.

The performance advantage available with the fuzzy controller is due to the capacity

of the FC to allow local manipulation of the control surface.Figure 6.5 shows the con-

trol surface before and after fine-tuning of the linear controller. Each surface maps the

normalized inputs (α∗, q∗) to the normalized control command (u∗), for a given elevator

trim error (θ∗e ). The capping of the output to±0.3 represents the control command con-

straint of 2 rad/s. With so few partitions for each input variable, there is limited scope

for manipulation of the control surface. The tuned rule baseprovides high actuation rates

over a larger range, thereby mitigating the error in the trimcondition. While the response

rate for large attitude errors remains the same as the linearcase, the additional control

authority for smaller errors aids the reduction of the steady state error.

The benefits of manipulating the control surface are shown inFigures 6.6, as a reduced

sensitivity to the variation in vehicle performance with flight condition. In Figure 6.7 the

tuned fuzzy controller is compared to the CGLF controller using a series of step com-

mands. The flight condition was chosen since it highlights both the benefits and dangers

with fine-tuning the fuzzy controller. While the large actuation rates available with the

FC provides a faster approach to the settled response, the downside is the potential for

significant overshoot. Without an overshoot penalty in the objective function, this feature

is allowed because it is not a large component of the integralerror function and it im-

proves the steady state cost function. A further limitationof the design is that, without
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(a) Linear fuzzy controller (b) Tuned fuzzy controller
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Figure 6.5: Tuned control surfaces.
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Figure 6.6: Sensitivity of the tuned 27 rule fuzzy controller, to the flight condition.

any performance variation through uncertainty, the controller can be tuned more precisely

to the collection of test conditions provided. If the test conditions do not provide suffi-

ciently large angles of attack, then control inputs exceeding the scaling bounds can lead

to system failure. The first step response of Figure 6.7 is an example of a response which

may lead to an unrecoverable position.

The fuzzy rules used for attitude controller are bound by theinput scalings used to

normalize the variable domains. Regardless of how large theinput signals to the controller

are, the maximum contribution of a single rule is set by its consequent value. One of the

dangers in fine-tuning the rules is that the boundary condition may contribute to instability

if the inputs exceed the scaling of the input variables. Now,part of the avoidance of this

situation comes from the selection of the input scalings. With this in mind the angle of

attack range used in the optimizer’s test condition set mustextend beyond the boundary.

A summary of the performance of the linear and fuzzy controllers is provided in Ta-

ble 6.1. The performance measures include the number(NC) of completed simulations

out of the test set of 500, and the average integral error and settled response error for

the simulations which did not lead to vehicle failure. It is clear that the tuning process

based on a nominal system model leads to a loss in robustness of the fuzzy controller.

This is also a reflection of the bounded nature of the FC and thedesign would likely be

improved by increasing the input scaling parameters, adding an overshoot penalty, or by

extending the design set of initial conditions. However, from the set of simulations that

were completed the FC provided much improved response characteristics over both linear

controllers.
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Figure 6.7: Improved trimming of the vehicle with the tuned 27 rule fuzzycontroller (FC27),
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Table 6.1: Performance assessment for the CGLF controller and the tuned fuzzy controller over
500 test simulations.NC refers to the number of completed simulations.

Controller NC (/500)
∫

|αerr|dt (rad.s) αerr(ts) (degs)
K 499 0.03861 0.701

Kunc 497 0.04539 0.719
FC27 450 0.01640 0.325
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6.4 Evolutionary Design of the Inner-Loop FC

The previous section demonstrated the worth of the fuzzy rule base, provided care is taken

in the specification of the input gains and the range of input conditions used to evaluate

the performance. In this section the evolutionary design procedure is applied directly to

the fuzzy controller, generating the control parameters without any prior knowledge. The

results address a number of issues relating to the design procedure:

• Design with uncertainty addresses the effect of an uncertain vehicle model on the

control solution and the evolutionary process.

• The mechanics of evolution examines the process by which useful control laws are

evolved from a random population of potential solutions.

• To evaluate the impact of the level of discretization of the rule base, the design of

fuzzy controllers ranging in size from 27 to 225 rules is examined.

• An extended design case is considered whereby the input scaling parameters are

designed simultaneously with the rule consequents.

Design with Uncertainty:

To address the impact of system uncertainty on the evolutionof the controller, the de-

sign of a fuzzy controller with 125 rules (FC125a) is presented. The rules are established

by discretizing each fuzzy input variable with five uniformly distributed partitions. The

design follows the specification(GA3, OF3), established in Chapter 5. Figure 6.8 com-

pares the performance on the uncertain vehicle model, of thecontrollers designed without

(FC125) and with uncertainty (FC125,unc) present in the system model. In the same manner

as the design ofKunc for the CGLF controller, the presence of uncertainty in the design

objective function results in a more conservative (slower)angle of attack response with a

small penalty in the steady-state error. It also appears that the characteristic frequencies

of the performance uncertainty models and the signal noise are manifested through an

elevator command history of higher frequency.

The overall performance of the two controllers are summarized in Table 6.2. In gen-

eral, the controller designed with uncertainty offers greater robustness. The rapid response

associated withFC125 leads to failure of the vehicle when exposed to large angle ofattack

errors. If the initial condition used in Figure 6.7 was applied, then failure occurs within

0.4 s. Though less frequent in theFC125,unc design, failure also occurs for extreme initial

conditions. While the direct cause is likely a combination of signal noise and large angle

of attack errors, it is also a result of the design process being exposed to a fixed arrange-

ment of initial conditions. Certain extreme combinations of attitude and control values

can, with performance uncertainties, lead to failure.
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Figure 6.8: Response of 125 ruled fuzzy controller with an uncertain system model. The top
plot shows the angle of attack and elevator command responsefor the controller designed for the
nominal vehicle model. In the bottom plot the controller wasdesigned with an uncertain vehicle
model.

Due to the many more degrees of freedom in designing the fuzzycontroller, it is much

more susceptible than the linear controller, to conditionsunseen during the design. The

reasoning is that the additional degrees of freedom can provide a more precise match

to a fixed set of initial conditions, with precision leading to reduced generalization and,

consequently, robustness problems. Support for this argument can be seen in the greater

stability available in the evolved design of a rule base with27 rules, which is also shown

in Table 6.2. While the response characteristics of the 27 rule set are mostly inferior to

the large rule bases, the extra generality required of each rule augments the controller ro-

bustness. For the larger rule bases, once solutions are established in the population which

prevent vehicle failure across the majority of test, there are likely to be a number of unused

fuzzy rules. When exercised against more varied test simulations, these untuned rules can

contribute to undesirable control commands. Since simulation failure was generally the

result of actuator overshoot, it is felt that a series of stepresponses would provide a more

appropriate assessment on performance during the design.

Figure 6.9 shows the evolution of the objective function during the design ofFC125

andFC125,unc. Oscillations in theFC125,unc trace are due to the inconsistent evaluation of

the best solution from one generation to the next. The most important feature, in terms of

the performance of the genetic algorithm, is that the growthprofile forFC125,unc follows

the same form asFC125. The transition at generation 250 is due to the objective com-
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Table 6.2: Performance comparisons of controllers designed on the nominal vehicle model and
the uncertain vehicle model. A total of 500 tests simulations were run over 4 seconds, providing
1000 step responses. The performance measures are averagedover the simulations (NC) which
did not fail.

Controller RCGA Vehicle NC (/500)
∫

|αerr|dt (rad.s) αerr(ts) (degs)
FC125 GA3 Nominal 485 0.01124 0.047

” Uncertain 453 0.01550 0.248
FC125,unc ” Nominal 500 0.01635 0.089

” Uncertain 497 0.02371 0.282
FC27,unc ” Uncertain 500 0.02357 0.363
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Figure 6.9: Evolution of the objective function with and without systemuncertainty.Fobj refers
to the average response for the best solution at each generation.
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ponent weightings reaching their maximal value of one. Overthe later generations, the

gradual decrease is due to the continued decrease in the angle of attack tolerance, plac-

ing greater demands on reducing the steady state error. For both designs, the population

is well established withgoodcontrol solutions by generation 250. An indication of the

quality of the control solutions present in the population is revealed in the reduction of

the objective function noise for theFC125,unc profile.

The fuzzy control solutions generated by the genetic algorithm demonstrate the en-

hancement of controller robustness with the inclusion of uncertainty in the vehicle model.

Having made the argument for the benefits to stability robustness, all remaining results

relate to the controller design using the uncertain system model.

Mechanics of Evolving Control Solutions:

One of the remarkable attributes of evolutionary design is to see the rapid development of

good control solutions from an initially random set of possible solutions. The 125 ruled

fuzzy controller (FC125) is again used here, to illustrate the evolutionary process. The

selection(GA4, OF3, FC125) defines the design configuration.

Figures 6.10 and 6.11 show the evolution of the controlled flight response using a set

of step responses at the trajectory pointT3, corresponding to flight at 3500 m/s. The first

series (Figure 6.10) covers the best solution available from generations 0 to 100, while the

second (Figure 6.11) covers generations 120 through to 500.As expected with a random

initial population, even the best solutions available fromthe initial population lead to

rapid vehicle failure. However, through the bonus available in preventing vehicle failure,

there is a general lengthening of the responses, which ultimately leads to the development

of closed-loop stability. From this point on, the search is performing the function of fine-

tuning the control surface to better satisfy the desired response characteristics. It is worth

noting that, for this small set of initial conditions, thereis practically no difference in the

response history from generations 300 to 500. In general, bythe half way point (g=250)

of the evolutionary search, the control solution has been well established.

The reason for using a non-uniform objective function to direct the search, was to pro-

mote the rapid evolution of desirable response characteristics. UsingOF3, the four per-

formance measures where scheduled according to the relative stage of the search (g/NG).

In Figure 6.12 the contributions of the various performancemeasures to the overall ob-

jective are displayed for the best solution at every10th generation. Across the first 100

generations, theJtf measure dominates the objective function, resulting in therapid rise

of the robustness of the control solution. By the time the majority of test conditions sat-

isfy the simulation time measure, the remaining performance measures lead to a rapid rise

in the quality of the solution. As was previously noted, the drop in the values ofJα and
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JR α in the later half of the search reflect the establishment of near optimal solutions by

generation 250 and a reduction in the tolerance for angle of attack error (αtol).
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Figure 6.12: A history of performance measures during controller evolution. The best control
solution is sampled every 10 generations, and evaluated over the design set of initial conditions
(IC3). Each performance measure is averaged across the initial condition set.

To check that the design set of initial conditions provides sufficient coverage for the

development of a robust controller, the best control solution available after every10th

generation is tested against a large set of random initial conditions. The comparison

is shown in Figure 6.13. In general, the performance comparison supports the use of

IC3 initial condition set for the design. Most notable is that, in terms of the settled

response, by generation 300 the available control solutionis effectively equivalent to the

final solution. Contributing to this search feature is the characterization of the mutation

operator withβ = 4 (see Appendix A), which provides a very localized variationafter the

half-way point of the search. After the controller solutionhas managed to prevent vehicle

failure across the full set of test conditions, there is a rapid reduction in the final angle of

attack error, which is then maintained through tog = NG. While the rise in completed

simulations for theIC2 set closely follows that for the design set, it is only for thecontrol

sample at generations 200 and 210, that the full compliment of IC2 are fully executed.

Though hesitant in reading too much into this single design example, a possible cause is

that further refinement of the control solutions against a fixed set of test conditions results

in a loss in generality.

A final point of interest is the topology of the control surface for the evolved control

solution. Figure 6.14, for the 125 rule FC can be compared with Figure 6.5 for the 27

rule FC derived from the linear controller. Features from the tuned 27 rule FC and the
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Each of theIC2 tests involved a 4 s simulation with a step command after 2 s, with theαerr measure
taken for the second step.

original linear controller appear in the evolved solution.With the advantage of additional

degrees of freedom, the evolved solution provides greater manipulation of the gradient

surfaces. The more complicated surface may, in part, be due to spurious rule consequents

which exist since some rules in rule base of high dimension are likely to not impact on

the controlled response.

Rule Base Size:

For a given application the optimal number of fuzzy control rules is influenced largely

by the desired performance and the means of constructing thecontroller function. This

section considers the evolution of rule bases ranging in size from 27 rules to 225 rules

and, in so doing, assesses the flight response performance ofthe control designs and the

capability of the genetic algorithm to configure both small and large design spaces.

Table 6.3 summarizes the results of the design experiments,based on the controller

performance over a set of 500 randomly generated initial conditions. The expectation is

that, with greater partitioning of the input variables, thecontroller can better provide for

the varied demands across the range of input space. There is also the possibility to better

deal with uncertainty in the trim estimate which forces a smaller rule base to compromise

on the performance. With reference to the simulated response of selected designs shown

in Figure 6.15, there is a general improvement in the angle ofattack response, due mainly

to a reduction in the error of the settled responses. Though the solution quality is relatively
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Figure 6.14: Control surface topology for the evolved 125 rule fuzzy controller.

poor for the 27 rule design, it also the only configuration which did not generate any

vehicle failures across the set of test simulations. The need for greater generalization of

the rules in the case ofFC27, improves the robustness of the controller relative to the

limitations of the initial condition set and the performance measures.

Table 6.3: Quantitative comparison of controller performance for difference sized rule bases.

Rules RCGA NC (/500)
∫

|αerr|dt (rad.s) αerr(ts) (degs)
27 GA3(β = 2) 500 0.02357 0.363
125 GA3(β = 2) 497 0.02371 0.282
125 GA4(β = 4) 498 0.02047 0.271
225 GA4(Np = 30) 498 0.02093 0.242
225 GA6(Np = 50) 499 0.01799 0.193

The different settings used for the genetic algorithm (indicated in Table 6.3), reflect

the needs of the evolutionary search to achieve the full potential available with the specific

controller definition over a search length of 500 generations. The evolution of the objec-

tive function and population entropy, as shown in Figure 6.16 reveal a number of features

of the search procedure. Not surprisingly the smallest rulebase (FC27) has the fastest

initial growth in the design performance. As the rule base size increases the search time
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Figure 6.15: Comparison of controlled attitude response for rule bases ranging in size from 27
rules to 225 rules.

required to match the quality of the (FC27) also increases. This turns out to be the critical

element in terms of fully realizing the potential of a given controller definition. Compar-

ing the two traces forFC225, the larger population example (GA6) provides a more rapid

improvement in the solution quality over the early generations which ultimately generates

a superior control solution. With average mutation magnitude decreasing across the gen-

erations, the search benefit of mutation relies on the early development of good control

solutions. Population size is not the only factor influencing the growth of the objective

function however. For example, if theFC125 configuration were designed using a muta-

tion strategy parameter ofβ = 2, the more disruptive mutation delays the growth in the

objective and the final design only just manages to match the 27 rule design.

The noise present in the objective function traces is due to the representation of uncer-

tain features in the vehicle model. The magnitude is coupledto the quality of the control

solution and the population convergence. For theFC125(GA3) andFC225(GA6) designs,

the delayed growth in the solution quality means that the noise persists further into the

search, until the point where the performance of the controlsolutions are less susceptible

to modelling noise.

Input Scaling Design:

For the control designs presented so far the input scaling values have been derived from

the gains generated by the design of the linear controller. The main reason for this was the

removal of three design variables which impact on the globalfeatures of the fuzzy control

function, and could potentially disrupt the search. It is reasonable to expect however,

that tuning the input scalings for the particular rule base configuration should improve the
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utilization of the discretization of the input space. This type of experimentation is often

extended to the complete design of all features of the rule base, including fuzzy variable

definitions, individual rule structure, and the overall combination of rules [103, 136, 224].

While some of these possibilities were tested, the assessment requires additional work

and is not presented here. Table 6.4 summarizes the results for the design of the input

scalingsk and the output arrayy for controllers with 125 rules and 225 rules.

Table 6.4: Overall performance of controller with rules and input scaling as part of the design.
The input scaling values bound the rule base and are represented as:kα radians;kq rad/s; andkθe

radians.

Rules RCGA kα kq kθe
NC (/500)

∫

|αerr|dt (rad.s) αerr(ts) (degs)
125 GA4 0.08788 1.0312 0.2601 500 0.02047 0.318
225 GA4 0.07237 0.08211 0.1914 500 0.01826 0.261

Figure 6.17 shows the evolution of the input scaling values for the 125 rule design.

The large variations significantly alter the behaviour of the rule base, however, within 100

generations they have effectively reach their final levels.This process can take longer with

a larger rule base and be disruptive to the evolution of control solutions. The performance

of the final control solutions indicate that they are more robust (ie. NC = 500) then

their counterparts from Table 6.3. The robustness is derived from allowing the global

features to be adjusted to the demands of the test simulations rather than being forced
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to compromise with fixed bounds. There is also a flight response benefit as shown in

Figure 6.18. Though there is little difference in the behaviour of the 125 rule example,

the tuned input scaling values provide a more rapid attituderesponse for the 225 rule

controller.
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Figure 6.17: Evolution of the input variable scaling parameters during the design of the 125 rule
controller. The values have been normalized by the search range of each parameter.
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6.5 Longitudinal Autopilot

To provide a demonstration of the scramjet powered vehicle flying over the full hyper-

sonic trajectory, a guidance loop was designed, thus completing the longitudinal autopilot

specification. The outer-loop guidance control function issimply defined by the linear

feedback vectorKG, where the inputs are altitude error and the climb rate error, and the

output is an angle of attack command. The nominal altitude isdetermined by flight along

a constant dynamic pressure trajectory, while the nominal climb rate is evaluated by com-

bining the vehicle acceleration with the nominal trajectory. Since the guidance vector is

designed using the simulation of the uncertain vehicle model, a small population genetic

algorithm search was used to design theKG gains. The design configuration, following

the evolutionary approach used for the inner loop, is (GA2,OF4). The objective function

is established from 12 simulations (tf = 30 s) selected from the full flight envelope of the

vehicle.

Using the 225 rule controller presented in Table 6.4 (FC225b), guidance gains were

designed for an update period of∆tg = 0.5 s and 1.0 s,

KG(0.5) = [−8.307×10−4, − 2.396×10−3] (6.4)

KG(1.0) = [−2.004×10−4, − 1.054×10−3]. (6.5)

The top part of Figure 6.19 shows the simulated altitude response using the two guidance

timesteps. Both show a long-period mode associated with longitudinal motion, with the

∆tg = 0.5 s simulation displaying superior tracking of the nominal trajectory. The lower

two parts of Figure 6.19 show the angle of attack command (with response) and the ele-

vator history for the∆tg = 0.5 s simulation. Most notable is the cycling of angle of attack

between the two command limits, generating the flight angle (γ) oscillation about what

should be a near constant flight angle. Of importance to the stability of the inner-loop con-

troller is the lack of any significant overshoot in the angle of attack responses. The noise

in the elevator response is a direct result of the uncertainty in the vehicle performance

model plus the signal noise.

A full trajectory simulation is displayed in Figure 6.20 forthe∆tg = 0.5 s arrange-

ment. The 240 seconds of flight approximately represents thefull flight time allowed by

the fuel supply. Further consideration of the vehicle configuration and the guidance law

development is required to fully appreciate the requirements for improved altitude track-

ing performance, but is beyond the scope of the present work.The inner-loop controller

is also deserving of further study, particularly in terms ofproviding improved attitude

response for the typical command series generated by the autopilot.
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Figure 6.19: Autopilot response for two guidance update timesteps:∆tg = 0.5, 1.0 seconds.
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Figure 6.20: Full trajectory simulation of the hypersonic air-breathing vehicle,∆tg = 0.5 sec-
onds.

6.6 Genetic Algorithm Considerations

The application of the genetic algorithms to a new design problem invariably leads to

experimenting with the structure and parameterization of the algorithm. As part of the

overall control design approach of this thesis, the GA experiments investigated the effect

of the genetic operations of mutation and crossover, and thedimension of the search

as specified by the population size and the generation number. The following sections

discuss the crossover and mutation operators, and population size.

With regard to the crossover operation, it was noted in Appendix A that the potential

benefits of an operator which provided exploration as well asexploitive qualities, depends

on the nature of the objective function. It appears that withthe non-uniform objective

function used for the inner-loop control design, rapid evolution of the control solution

is possible, and the design benefits from the exploitive nature of arithmetic crossover.

The arithmetic crossover used to generate the results of this chapter provided superior

performance to a single point crossover and the BLX crossover used in Appendix A. The

tendency of the arithmetic crossover to converge to the centre of each parameter domain

is mitigated by the use of high mutation rates. However, it ispossible that the initial rapid

decrease in population entropy (see Figure 6.21) is due to the crossover action. Further

investigation is required to fully understand the population behaviour in the initial stages

of the search.

Given the search behaviour is closely linked to the crossover and mutation operations,

there also appeared to be little benefit in extending the search over more generations. In

particular, the non-uniform action of the mutation operator is coupled to the generation
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number rather than the fitness of the individuals, so that themutation behaviour, and

consequently the population behaviour, scales with the length of the search (NG). The net

result is that the objective function profile also scales with search length and the increased

computation does not necessarily lead to improved solutions.

6.6.1 Mutation Operator

During the description of the real-coded genetic algorithmin Chapter 4 it was noted that

the non-uniform mutation operator proposed by Michalewicz, displayed a bias to the

centre of the search range. Using a collection of standard test functions, Appendix A

details an empirical study of the mutation operator and a beneficial modification. The

modified operator, referred to as an adaptive range mutation(ARM), displayed greater

search reliability and was less sensitive to the parameterization of the genetic algorithm.

In this section, the performance of the mutation operators are assessed using the con-

trol design problem for a 125 ruled inner-loop controller, with the design specification

(GA5, OF3, FC125a). It was because of initial difficulties with the control design that the

performance of the mutation operator was first examined.

Figure 6.21 shows the evolution of the objective function (Fobj) and the population, for

the two mutation operators and various parameter settings.NUM refers to the Michalewicz

non-uniform operator and ARM is the adaptive range mutationformed by redefining

NUM. The collection of settings for the action of NUM (pm andβ) address the gen-

eral need for low activation rates and a rapid reduction in the available mutation with

generation numberg. When using the NUM operator the quality of the solution provided

by the genetic algorithm is sensitive to the parameterization of the genetic operators. In

general, the lower value ofβ generates more noise in the objective function. The fact

that the noise level forpm = 0.2 andβ = 2 is maintained through all the generations

indicates that the population is slow to converge, with the converged solutions being far

from optimal. The trend is also observed in the population entropy lines. By reducing the

mutation probability (pm) and increasing the rate of fine-tuning (β), the performance of

the genetic algorithm withNUM improves but remains inferior to the solution provided

when usingARM .

Figure 6.22 shows the operation of the various control solutions on a series of step

commands in angle of attack,α. In addition to the set from Figure 6.21, a design us-

ing ARM with pm = 0.2 andβ = 2 is shown to highlight the relative insensitivity of

the search performance with the modified mutation operator.Though the assessment of

search reliability requires a number of independent control design simulations, the trends

observed here follow those for the more thorough investigation in Appendix A: specifi-

cally, that fewer generations were required to recover frombias, and that the solution was
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Figure 6.21: Evolution of the objective function and the population entropy using Michalewicz’s
non-uniform mutation (NUM) and the modified version proposed for this thesis (ARM).
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less sensitive to its placement in the search domain and the parameterization of the opera-

tor. The search bias of the original non-uniform operator isdemonstrated in the scattering

of the rule consequents for the control solution in Figure 6.23. Despite the mutation pref-

erence for values in the centre of the search domain, the inherent search robustness of the

genetic algorithm is still able to generate a reasonable control solution.
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Figure 6.22: Impact of the mutation operator on the angle of attack performance of the evolved
controller. Every 2 secondsαcmd is reset and the flight condition is shifted to another pointTi on
the trajectory, starting withT1.

6.6.2 Population Size

The choice of population size is fundamental to the operation of the genetic algorithm,

affecting both the convergence rate of the search and the quality of the final solution. Too

small a population and premature convergence will likely lead to a poor solution, while

increasing the population must be considered against the time required to generate the

final solution. In the population experiments here, the design time on a single processor

of an SGI Origin 3000 ranged from 9.2 hours forNP = 10 to 81.3 hours forNP = 100,

see Table 6.5. The most efficient arrangement is likely to utilize a moderate population

size to capture agoodsolution, and then apply a fine-tuning procedure to enhance the

controller performance.

Figure 6.24 shows the growth of the best objective function and the population dynam-

ics throughout the evolution of a controller of 125 rule controller. The design arrangement

is specified as (GA7, OF3, FC125a). The most consistent growth in the quality of the con-

troller is provided by the two larger populations. With smaller populations, there is less

variation amongst individuals in the population, and they are therefore more susceptible

to large variations in the quality of the solution across generations. Population entropy is
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Figure 6.23: Rule consequents designed by the two mutation operators, NUM (pm = 0.1, β = 5)
and ARM.

Table 6.5: Quantitative performance comparison of the controller design generated using popula-
tions 10, 30, 50, and 100. Design times refer to the CPU time used on a single processor of an SGI
Origin 3000.

NP RCGA Design time (hours)NC (/500)
∫

|αerr|dt (rad.s) αerr(ts) (degs)
10 GA7 9.2 495 0.04211 0.636
30 ” 25.4 497 0.02371 0.282
50 ” 42.9 497 0.02097 0.300
100 ” 81.3 499 0.02129 0.318

used as a measure of the chromosomal variation amongst individuals in the population.

As the population size is increased, it is able to maintain greater diversity while still pro-

viding superior solutions. The history for a population of 10 individuals stands apart from

the others, with rapid convergence of the population and large variations in the entropy.

Table 6.5 summarizes the performance of the solutions generated and Figure 6.25 shows

the performance for a particular series of step commands. Here again, the population size

of 10 stands out as providing a solution of significantly lower quality. The greater explo-

ration of the search space available with larger populations allows the early generation of

good solutions while maintaining population diversity, and an extension of the time for

which the search is effectively performing a fine-tuning role. However, there is no benefit,

in terms of the response characteristics, for the doubling of the design time going from a

population of 50 to 100. It also appears from the results in Table 6.5 that the robustness

issue addressed in previous sections, is due to the limitations of the objective function

rather than insufficient search time.
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Conclusions

The aim of this thesis was to investigate the application of an evolutionary design ap-

proach for the configuration of a robust flight control systemfor a hypersonic air-breathing

vehicle. It is a problem recognized (characterized) by the strong interaction of engine op-

eration with the flight condition and attitude, its nonlinear performance, uncertainty in the

performance of system components, and its highly constrained operating envelop. Con-

sequently, most other investigations of flight control approaches for hypersonic vehicle

applications have centered on applications of robust control theory, generally involving

a linear description of the vehicle with uncertainty modelsaccounting for performance

variation and unmodelled features, included in the design process. For this work a full

nonlinear flight simulation module was constructed for the purpose of provided control

performance assessment during the design procedure

In Chapter 2 the basic arrangement of a the longitudinal autopilot for the hypersonic

vehicle was introduced. Two control loops were defined: a longitudinal inner-loop pro-

viding stability augmentation and attitude tracking; and an outer guidance loop for the

maintenance of the nominal flight trajectory. The guidance function generates attitude

commands for the inner-loop to follow. To satisfy vehicle operating requirements, a nom-

inal trajectory with constant dynamic pressure was used. Chapter 2 also introduced the

evolutionary design approach to be used for the determination of the control functions.

Since the control design procedure was dependent on the simulated response of the

vehicle, considerable time was spent developing a detailednumerical flight simulation

module. This is in contrast to previous studies where the vehicle model is either defined

by linear analytical expressions, or extracted from a database of performance parame-

ters. The general arrangement for the hypersonic vehicle istaken from a small payload

launch vehicle application with an axisymmetric scramjet powered second stage. De-

spite the ultimate desire to accurately portray the vehicleproperties and behaviour, it

was necessary to simplify the vehicle model, to ease the computational burden while

maintaining the essential operating features. The principal simplification was the use of

two-dimensional flow paths, thereby representing the axisymmetric scramjet vehicle as a

box section. Chapter 3 detailed the representation of the vehicle physical properties, the
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aerodynamic and propulsive simulation, an environment model, and the description of the

general six degree-of-freedom flight dynamics equations.

Though the aerodynamics and propulsion performance were described by a combi-

nation of one-dimensional and two-dimensional flow models,the basic longitudinal be-

haviour of the vehicle is captured. Primarily, this includes the performance dependency

on angle of attack and the flight condition. The aerodynamicsand propulsion analysis

describe an instantaneous representation of the flow structures throughout the vehicle.

External aerodynamics are treated separately to the gas dynamics within the engine flow

paths, which themselves are divided into inlet, combustion, and nozzle processing re-

gions. For the engine analysis, 75 % of the computational effort is directed toward the ex-

pansion fan interaction model used to described the pressure profiles generated along the

nozzle surfaces. Significant reduction in the design time would be available through the

parameterization of the nozzle forces and moments in terms of the upstream Mach num-

ber, with the upstream pressure applied as a multiplier. Since the vehicle performance is

inherently uncertain, parametric uncertainty was introduced to describe stochastic pertur-

bations in the engine performance, control effectiveness,and the vehicle centre of mass.

These processes were implemented as low-pass filters (basedon a Nyquist frequency of

50 Hz, with cut-off frequencies representing the characteristic behaviour), and a white

noise input whose variance is adjusted to realize the appropriate perturbation magnitude.

Atmospheric turbulence and input signal noise were also simulated as random processes.

The inclusion of uncertainty and disturbances in the flight simulation provides a means

for the control design to be robust against unmodelled behaviour.

The use of two-dimensional flow paths makes the vehicle particularly difficult to con-

trol. Moments generated by the inlet wedge (in contrast to the conical forebody for an

axisymmetric configuration) place great demands on the control actuators, requiring large

control surfaces and actuation rates. Due to the extension of the cowl over the full length

of the nozzle, there was no stabilizing benefit from the differential throttling of the en-

gines. Stabilizing capability of the nozzle would be greatly improved with a shortened

cowl section, lessening the actuation required by aerodynamic surfaces. Such an arrange-

ment is used for the American Hyper-X project, which also benefits from having the

scramjet engines on one side of the vehicle only. In terms of the overall vehicle perfor-

mance, being a hydrocarbon fuel scramjet, the specific impulse is quite low. Even though

viscous losses were neglected in the analysis, the relatively poor acceleration capability

can be apportioned to the non-optimal vehicle geometry and the two-dimensional flow

paths.

Chapter 4 introduced the overall approach to control design, as applied to the hy-

personic vehicle. The central control problem was considered to be the specification of

longitudinal inner-loop controller and, for this role, a fuzzy controller was used. The
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reasoning was that fuzzy control offers desirable robustness characteristic and provides

a relatively simple means of describing a complex, nonlinear control function. With the

fuzzy controller defined by a set of fuzzy variables, a rule base array, and an inference

mechanism, the design approach is one of knowledge acquisition. A real-coded genetic

algorithm (GA) was constructed to evolve the necessary knowledge, using the simulated

vehicle response as a performance indicator. Evolutionaryalgorithms such as the GA,

have shown to be efficient search tools for complex, nonlinear, and noisy design spaces.

Prompted by initial difficulties in designing the control functions, an investigation of ge-

netic algorithm operation led to modification of a well knownmutation operator to avoid

the bias it generated in the solutions. An empirical investigation of this modification is the

focus of Appendix A, where a set of standard minimization test functions were used to

analyze the performance of the genetic algorithm. Reliableperformance of the real-coded

genetic algorithm, with the modified operator, was shown to be relatively insensitive to

the parameterization of the algorithm and the use of different crossover operators.

The evolutionary design procedure uses full nonlinear vehicle simulations in the de-

sign loop. With the search starting from a random set of initial solutions the approach is

well deserving of thebrute forcetitle. Using vehicle simulations in the design loop is a

scheme with great potential, but one where considerable care is required. On the positive

side system features exposed to the controller configuration during the design, are not

constrained by the reduction of the system to a set of analytical expressions. Performance

uncertainty can readily be considered through the inclusion of models which can describe

expected variations on the basis of their physical origins.There is also considerable flexi-

bility in the configuring of the cost function, in terms of thepossible characteristics which

may be used to encourage rapid response, minimum overshoot,steady state error, and sta-

bility for example. However, with the genetic algorithm being extremely opportunistic,

the coupling of competing performance measures requires close attention to avoid the de-

sign procedure exploiting any loop-holes in the definition of the cost function. To provide

robustness assurances, it is also necessary to provided a large sample of test conditions.

This is particularly important as the discretization of thecontrol function through a set of

fuzzy rules, means that for each flight response, only a portion of the total rule is likely to

be activated.

Chapter 5 was used to introduce the specific details of the current experiment in evo-

lutionary design, specifically those relating to development of performance and stability

robustness in the control design and the promotion of rapid evolution of good solutions.

A large set of initial conditions, covering the full range ofallowed attitude, control and

flight condition variations, are used to generate desirableperformance and stability qual-

ities in the control solutions. The genetic algorithm is a population based search tool, so

with each performance evaluation requiring many flight simulations, a non-uniform ob-
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jective function was introduced to provide useful selection pressure. For the case where

the search begins from an initially random set of potential solutions, avoidingneedle in

a haystacktype problems is critical for the design using small populations and relatively

few generations.

For the design of the fuzzy controller a preset discretization of the input variables was

used. This provided a structure to the rule base, based on providing all possible condition

statements for the input variable definitions. Two design problems are therefore created,

the first configuring the output array and the second including the input scaling values.

The inclusion of input scaling in the list of design variables, allows the global features of

the rule base to be influenced.

The results presented in Chapter 6 focus on the design of the inner-loop control func-

tion, used for stability and attitude maintenance. An initial investigation of a linear con-

troller showed that, while a robust controller could be configured, the performance was

compromised by the uncertainty in the vehicle trim condition. Through experiments with

the design of the linear controller, the set of necessary control inputs (attitude error, pitch

rate, and elevator trim error) were established. Experiments with the control update fre-

quency revealed the sensitivity of the vehicle to disturbances, with a maximum timestep

of 0.04 seconds being possible while still providing stablevehicle operation. Using the

gains provided by the linear controller to evaluate the input scalings of the fuzzy variables,

a tuned fuzzy controller was generated using the nominal vehicle model (no uncertainty)

and a Nelder-Mead optimization procedure. Though it was evident that the fuzzy con-

troller could provide improved attitude response, the lackof any variation in the vehicle

model and test conditions meant the optimization process reduced the generality of the

controller and consequently its robustness suffered. For the most part, the improved re-

sponse characteristics were realized by the extension of the input range over which large

actuation rates could be applied. The fuzzy controller provides this capability through

the discretization of the control function which allows local manipulation of the control

surface.

The bulk of the results related to the evolution of fuzzy controllers. By using the

genetic algorithm as the design tool, performance uncertainty could be included in the de-

sign process, which ultimately generated controllers withgreater robustness. The genetic

algorithm demonstrated a remarkable ability to rapidly evolve good solutions. Due to the

non-uniform nature of the mutation operator, the earlier good (stable) solutions appear

in the population the better the performance of the design. While the objective function

promoted this behaviour, it is also desirable to use a largerpopulation to realize the true

potential of larger rule bases. In general, however, the genetic algorithm proved very ca-

pable of configuring controllers ranging in size from 27 to 225 rules, over 500 generations

and with relatively small populations (30-50). It was also observed that the set of initial
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conditions and step responses used during the design, closely mirrored the behaviour of

the controller against a much larger set simulation experiments. It was also noted that,

due to the bounding of the rule base with predefined input scalings, the controller stabil-

ity was susceptible to extreme combinations of initial conditions which were not directly

included in the design. Extending the design set or introducing variations in the design

set throughout the evolutionary process, may allow controller robustness guarantees to be

met. The experiment with a variable initial condition set was not included in the results

but showed promise in terms of improving the overall controller performance.

The representation capability of the fuzzy controller covers both the inherent capabil-

ity of a fuzzy rule base to encode a desired multi-dimensional function and the means of

achieving the representation. Though better control mightbe realized with larger rule base

(through greater partitioning of the input space), there isa tradeoff between the control

accuracy and the tuning cost. The larger the rule base the greater the capacity for special-

ization, which can lead to robustness issues if the test set of simulations does not provide

sufficient coverage of possible environmental conditions.Essentially, for the simulation-

based optimization used in this work, the representation capability of the fuzzy controller

is strongly dependent on the preparation of suitable test conditions. Various means of

specifying the test set of flight responses were discussed ranging from varying the test set

during the design and using a series of step responses from each trial initial condition.

Further study on these approaches is needed to assess their worth.

With input scaling included amongst the design variables itwas possible to improve

the attitude response characteristics of the vehicle. Thisamounted to a faster initial re-

sponse while still providing reasonable settled-responsefeatures, and avoiding overshoot

which could lead to vehicle failure. It would be desirable inthe future to extend the de-

sign set of simulations to multiple step responses and to provide better stability guarantees

through the objective function.

Given the successful design of an inner-loop controller, a simple guidance law was

designed, using linear feedback of the altitude error and the climb rate error. As a demon-

stration of the broad range operation of the vehicle, it showed the steady climb along the

nominal trajectory with persistent oscillations in the flight angle. The inner-loop con-

troller was also shown to perform adequately over the full flight trajectory. Further in-

vestigation of the guidance arrangement is desirable, withparticular consideration to the

vehicle configuration and the design of the guidance function.

Recommendations and future work

The design freedom available with the combination of fuzzy control, genetic algorithms,

and numerical flight simulations, generates considerable experimentation which, has led
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to many open questions and avenues for future research. A fewthese are now mentioned.

To begin with there is much work possible in improving the accuracy of the vehi-

cle simulation module. This may involve the inclusion of more advanced computational

techniques for the performance analysis and a more accuraterepresentation of the vehicle

structure. Of particular interest is the modelling of aeroelastic effects (which have been

neglected in the present work) as small variations in the surface angle relative to the flow

path can significantly impact the flow structures. Since the control actuation in this the-

sis used a rear all-moving wing, further work is warranted onthe validity of alternative

control actuators with the aim of reducing the large penalties associated with the current

aerodynamic surfaces.

In terms of the fuzzy controller, the full design freedom available has not been con-

sidered here. The potential of including fuzzy variable definitions and rule generation

in the design is worth consideration. To prevent an explosion of the design complex-

ity it may be preferable to maintain a predefined rule base structure and, for large rule

bases, to provide a mechanism for removal of rules which are essentially unused. An-

other approach to improving the representation capabilityof the fuzzy controller is the

application of coevolutionary algorithms [167]. A coevolutionary scheme works simul-

taneously on two populations. One provides a set of possiblecontrol solutions while the

other describes a set of test simulations (initial conditions) used to evaluate the fitness of

the control solutions. Evolution of the environmental conditions is based on the success

rate of controllers, meaning candidate solutions can evolve against worst case scenarios.

One of the pitfalls of working with the genetic algorithm is that there are so many

ways of manipulating the operation of the algorithm that oneends up in an experimenta-

tion cycle from which is difficult to escape. Though GAs are well established algorithms,

research continues on the efficiency and reliability of the search they provide. The major

avenue for enhancement of the design performance would be toexploit the inherent par-

allelism of the genetic algorithm. In so doing, it is possible to reduced the design time

from days to a small number of hours.

At the beginning of this research, automation of the fuzzy control design was com-

monly associated with genetic algorithms. This led to choosing them for the flight con-

trol design problem. They have generally been applied usingbinary-coding however,

real-valued coding, as was used here, has been shown to provide better performance in

real-value parameter optimization problems. Evolutionary strategies have since shown

generally superior performance on real-valued problems and would be particularly suited

to the flight control problem. The reasoning follows the argument by Salomon [190], that

GA’s are very time consuming if the parameters exhibit epistatis, where epistatis describes

the interaction of parameters with respect to the fitness of the individual. Further, it has
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been indicated that the high global convergence performance of GAs is reliant on the in-

dependence of the parameters. For control problems the fitness of a set of parameters is

generally highly dependent on the interaction of the parameters. For evolutionary strate-

gies, which have been especially designed for real-valued applications, the performance

is invariant with respect to epistatis and would therefore be an ideal candidate for the con-

trol design problem presented in this thesis. However, in the case of this thesis, the GA

was able to provide a control solution which represents a near optimal formulation.



A P P E N D I X A

An Adaptive Range Mutation Operator for a

Real-Coded Genetic Algorithm

This appendix presents an empirical study of a modification to the Michalewicz non-

uniform operator for real-coded genetic algorithms. The modification aims to improve

the reliability of a genetic algorithm applied to function minimization problems. Both

the original non-uniform operator and a more recently proposed adaptive non-uniform

operator are shown to direct the search to certain areas of the search space. This search

bias reduces the potential benefits of mutation in generating useful solutions, reducing

the robustness of the genetic algorithm as a general search tool. An alternative operator

definition is presented, and is described as anadaptive rangemutation. It displays a

general improvement in search quality and less sensitivityto the evolutionary mechanisms

and parameterization of the algorithm.

A.1 Background

Genetic algorithms have, in the past, been distinguishablefrom other evolutionary algo-

rithms by their use of crossover as the primary method of producing variation. Crossover

generates new offspring and new search vectors by sharing the parents’ chromosomal

information. Mutation, initially introduced as a background operator through small acti-

vation probabilities, provides a randomized perturbationof chromosome elements. This

provides a mechanism for reintroducing data that which was previously lost because of

selection pressures and allows the exploration of new areasof the search space. Studies

have shown that higher rates of mutation can improve the velocity and reliability of a ge-

netic search, see for example [21]. To allow fine-tuning of optimal solutions the mutation

can be configured to provide a random walk through the search space for early genera-

tions, and refinement in the later stages by gradually reducing the mutation magnitude. In

real-coded genetic algorithms [116], where an individual’s chromosome is represented by

an array of floating point numbers, such a mutation has been referred to as a non-uniform

mutation operator.
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The motivation for modification of the mutation operator came from the application

of the genetic algorithm to the design of a flight controller for a hypersonic vehicle, dis-

cussed in the main body of this thesis. Configured as a numerical optimization task, the

controller design requires many expensive flight simulations to evaluate the performance

of each potential controller. It is therefore desirable to rapidly acquire a good solution in

order to limit the number of function evaluations, hence theuse of a real-coded algorithm

scheme over the binary coded algorithm. Whilst examining the performance of the ge-

netic algorithm, a potential source of the design difficulties was identified as a mutation

preference for values in the centre of the search range. Thisproperty of the Michalewicz

non-uniform operator had also been recognized by Neubauer [162] who provided a the-

oretical analysis on the mutation variance and the expectedvalue following mutation.

Apparently unsighted was the preference of this corrected form to the extremes of each

variable’s feasible range. The full potential of the mutation operator in terms of search

velocity and reliability is lessened by the operator’s bias. The relative success of both mu-

tation forms in other optimization problems may be attributed to the robust nature of the

basic genetic algorithm structure, problem specific features, and the setting of exogenous

parameters to mitigate the mutation bias.

This appendix examines the performance of the real-coded genetic algorithm, dis-

cussed in Chapter 4, to standard function minimization problems. The focus is a compar-

ison of the mutation operators proposed by Michalewicz and Neubauer, and a modified

non-uniform operator described here as anadaptive range mutation.

A.2 Real-coded Genetic Algorithm (RCGA)

Real-coding for genetic algorithms refers to the representation of an individual’s chro-

mosome as an array of floating-point values. We have configured our genetic algorithm

using real-coding for the benefits it offers in reliability and search velocity on numerical

optimization tasks. The evolutionary mechanisms used to construct the algorithm are de-

tailed in Chapter 4. Before focusing on the mutation operators, a brief summary of the

real-coded genetic algorithm is provided.

A simple algorithm structure has been used, as shown in Figure A.1, starting with

a randomly generated initial population. Each individual in the population represents a

search point in the space of potential solutions to the optimization problem. The problem

definition provides an evaluation measure, referred to as the objective function. When

scaled using linear scaling with sigma truncation, the objective function becomes the

fitness measure used to direct the search. Stochastic remainder selection without replace-

ment is used to select parents for mating, with complete replacement of the population for

each generation. New individuals are created via the perturbation operations of crossover
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begin
t = 0
initialize population (random)
evaluate population
while (t < T ) do
t = t+ 1
select parents for reproduction biasing fittest
recombine individuals via crossover with mutation
evaluate new population

end
end

Figure A.1: The basic genetic algorithm structure.

and mutation. Arithmetic crossover [155] at a fixed probability pc is used with the mixing

parameter randomly generated each time recombination occurs. It is applied uniformly to

the parent chromosomes. A single point crossover scheme hasalso be used to generate re-

sults for this appendix. Each gene in the children’s chromosome also undergoes mutation

with probabilitypm.

The non-uniform mutation operator was introduced by Michalewicz and Janikow in

their modified genetic algorithm [155], which they applied to numerical optimization

problems. It has subsequently been reproduced (often with favourable results) in nu-

merous publications, as one of a number of potential mutation operators for real-coded

genetic algorithms, see for example [99, 154, 74]. Each genethat undergoes a mutation

does so within the variable range,xi ∈ [ai, bi], producing the mutated valuex′i following

an addition or subtraction to the original valuexi.

x′i(t) =







xi(t) + ∆(t, bi − xi(t)) with probabilityq

xi(t)−∆(t, xi(t)− ai) with probability1− q
(A.1)

where∆(t, y) is the perturbation function, dependent on the generationt and the position

y of the original value relative to the search boundaries,

∆(t, y) = y ·
(

1− rγ(t)
)

(A.2)

with r a random number uniformly distributed in [0,1], andγ(t) providing the fine-tuning

capability according to

γ(t) =

(

1− t

T

)β

. (A.3)

HereT is the maximum number of generations andβ the strategy parameter which sets
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the degree of non-uniformity across the generations. An alternative representation of the

perturbation function described in Equation A.2 is provided in [156],

∆(t, y) = y r γ(t). (A.4)

Though Equation A.4 can improve the fine-tuning capability of the operator, it does so

by reducing the maximal possible mutation with time, ratherthan simply reducing the

probability of the maximum mutation being applied, see Figure A.2. Since many prob-

lems may benefit from large mutations in later generations, Equation A.2 is considered

the more robust of the two, and is used here. The control design problem is one such

problem which benefits from using Equation A.2. To match the controller design when

using the two forms of∆, it was necessary to offsetT in Equation A.4 against the actual

final generation, thereby allowing mutations of greater magnitude.

(a)∆/y = 1− r(1−t/T )2 (b) ∆/y = r (1− t/T )2
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Figure A.2: Perturbation function for the non-uniform mutation operator, with β = 2. The four
curves representt/T ratios of 0, 0.3, 0.6, and 0.9.

Michalewicz [154] originally proposed that mutation to theleft or right of the original

value be equally likely, that isq = 1/2. When used with the variable scaling factory in

Equations A.1 and A.2, the result is a preference over time for values in the middle of the

search range. This was noticed in the control design problemand supported by numerical

experiments on the mutation operator. Figure A.3(b) shows the convergence of a random

data set, under the action of mutation, to the centre of the search region. Neubauer [162]

provided theoretical proof of the non-uniform mutation notbeing a zero-mean deviation

operator. By forming an expression for the expected value ofmutation and using the

delta function represented by Equation A.2, the mutation was shown to concentrate the

search between the parent valuex and the centre of the search range. The effect lessens

with increasing generations, as the possible mutation magnitude decreases. It is therefore

possible to offset the potential for poor performances on some function minimization tasks
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by evolving the population over a large number of generations.

To change the non-uniform mutation to a zero-mean operator,Neubauer [162] sug-

gested the use of an adaptive probabilityq, for the additive mutation of the parent value,

q =
xi − ai

bi − ai
. (A.5)

The analysis of the new operator was based on the mutation variance and the expected

value following mutation. While the modification provides zero-mean mutation, it does

so by disproportionately sending values to the boundaries of the search space. From

Equations A.5 and A.1, the closer a parent value is to the edgeof the search space the

more likely it is to be perturbed closer to that edge. By managing zero-mean mutation in

this manner the population mean following mutation is maintained, but not by maintaining

the population diversity. For example, a hundred data points each starting with the same

value,xi = 0.9 andxi ∈ [0, 1], i = 1, 100, undergoes a hundred consecutive mutations

according to Neubauer’s adaptive non-uniform mutation. The result is that ninety points

are placed along the upper boundary and ten points along the lower boundary, maintaining

the initial population mean of 0.9. The effect of consecutive mutations on the random data

set of Figure A.3(a) is shown in part (c) of the same figure. To allow for reliable solution

finding a large number of generations are needed to counter the mutation bias, as well as

an independent means to restore or maintain population entropy. The bias is more severe

than Michalewicz’s original operator, though the effect lessens as generations progress

and the mutation is generally confined to a smaller range.

A.3 Adaptive Range Mutation

The mutation operators mentioned so far suffer from not allowing a random walk through

the search space. For Michalewicz’s operator, it is due to the operation not having zero-

mean deviation, orE(x′) 6= x, while Neubauer’s correction is biased in the perturbation

direction. A simple redefinition of the operator allows the non-uniform mutation to exhibit

a random walk for early generations and, as the search progresses, provide the fine-tuning

of the non-uniform operator. Instead of adding or subtracting increments to the parent

value, the modified operator establishes a mutation rangex±∆(t, y) based on the gener-

ation numbert and a fixed preset valuey, and randomly selects a point within this range.

For these reasons we have named the mechanismadaptive rangemutation.

There are two steps to the modified mutation operator: establishment of the available

mutation range, followed by a mutation yielding a value within that range. The maximal

mutation is fixed by the search rangexi ∈ [ai, bi], meaning early mutations are likely to

access the entire range. Non-uniformity across generations is achieved by gradually re-
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Figure A.3: The effect of 100 consecutive mutations on a random set of data points. The left
column shows the individual data and the right shows the distribution as a histogram.

ducing the probability of large mutations, using the perturbation function of Equation A.2

to scale the mutation range relative to the maximal allowed mutationy. The mutation

range[σL, σU ], is thus described by the following,

σL = max {ai, xi −∆(t, y)} (A.6)

σU = min {bi, xi + ∆(t, y)} (A.7)

wherey = bi − ai and the maximum and minimum functions ensure bounded mutation.

The act of mutation returns a random value within the range[σL, σU ], with the assurance

of symmetry about the parent valuex.

x′i =







xi − (1− 2p) (xi − σL) if p ≤ 0.5

xi + (2p− 1) (σU − xi) otherwise
(A.8)
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wherep is a random value uniformly distributed within the range[0, 1]. Figure A.4 shows

the adaptive range mutation operating on initially random and linear data sets. Without

any selection pressure the population entropy is maintained as each undergoes a random

walk with fine-tuning. The distribution of points across thesearch range following 100

mutations is shown in the histogram beside each mutated dataset.

Mutated random data
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Figure A.4: Adaptive range mutation in isolation, perturbing initially random and linearly dis-
tributed data sets. The dashed line indicates the initial linear distribution.

Figures A.5 and A.6 show the mutation profiles for the mutation of a central (x =

0.45) and an edge (x = 8) initial value. Snapshots are taken for generations att/T =

0.01, 0.3, 0.6, and0.9. The plots show the general symmetry of the adaptive range opera-

tor across the generations. To correct the bias of the non-uniform operator to the centre of

the search space, Neubauer’s adaptive scheme reduced the likelihood of mutations moving

towards the centre. The Figures also show how with a largeβ, the resulting rapid reduc-

tion in mutation magnitude can mitigate the bias of the operators defined by Michalewicz

and Neubauer. With the mutation magnitude described by Equation A.2, settingβ = 5

effectively means that past half way through the evolutionary process, the mutation pro-

duces negligible changes to the chromosome values.

A.4 Test functions

To compare the performance of the mutation operators, a set of six benchmark functions

are used. These are sourced from a much larger collection which have been applied to
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Figure A.5: A history of mutation profiles withβ = 5. The left column shows the mutation of a
value near the centre of the search range (x=0.45). The rightcolumn describes the mutation of a
value near the edge of the search range (x=0.8).
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Figure A.6: A history of mutation profiles withβ = 2. The left column shows the mutation of a
value near the centre of the search range (x=0.45). The rightcolumn describes the mutation of a
value near the edge of the search range (x=0.8).
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evolutionary algorithms [55, 193, 26, 23], and include unimodal and multimodal func-

tions. Each of the objective functionsfi(x), are generalizable to an arbitrary dimension

n, with the lowest minimum in the search range denoted byf ∗
i (x∗). For each of the

following functions a two-dimensional version is plotted in Figure A.7.

Sphere Model,f1:

The sphere model is a continuous, convex, unimodal function[193]. It has been used

in all fields of evolutionary algorithms, providing a test for convergence velocity. The

topology of the two-dimensional sphere model is shown in Figure A.7(a). An additional

generalization of the model places the minimum objective atxmin.

f(x) =
n
∑

i=1

(xi − xmin,i)
2 , for n = 30 (A.9)

where

−10 ≤ xi ≤ 10 ∀i ; x∗ = (xmin,i, . . . , xmin,n) ; f1(x
∗) = 0.

Neubauer [162] used this function to illustrate the performance improvement of his

adaptive mutation scheme over the original non-uniform operator. Two solution vectors

were used in the experiments: (a) at the centre of the search rangexmin,i = 0 ∀i, and (b)

near the boundaryxmin,i = 8 ∀i.

Step Function,f2:

The step function is generated by discretizing the sphere model to introduce small plateaus

to the topology. With⌊x⌋ denoting the largest integer value less than or equal tox, the

step function is formalized as follows:

f2(x) =

n
∑

i=1

(⌊xi + 0.5⌋)2 , for n = 30 (A.10)

where

−100 ≤ xi ≤ ∀i 100 ; x∗ = ([−0.5, 0.5))n ; f2(x
∗) = 0.

Generalized Rosenbrock Function,f3:

Rosenbrock developed a method for the finding the greatest orleast value of a function

of several variables [182]. To evaluate the method he used a continuous, unimodal, bi-

quadratic function of two variables, generally referred toas the Rosenbrock function. It
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formed part of the function set used by De Jong [55] and has since been generalized forn

variables. The difficulty that evolutionary algorithms have with the Rosenbrock function

is finding the global minimum within the flat valley, see Figure A.7(c).

f3(x) =
n−1
∑

i=1

100
(

xi+1 − x2
i

)2
,+ (xi − 1)2 , for n = 30, (A.11)

where

−30 ≤ xi ≤ 30 ∀i ; x∗ = (1, . . . , 1) ; f3(x
∗) = 0.

Ackley’s Function, f4:

The function presented here is a generalized version [23] ofthe continuous, multimodal

function by Ackley [3]. Ackley’s function is obtained by modulating an exponential func-

tion with a cosine wave of moderate amplitude. The term20 + e is added to move the

global minimum function value to zero.

f4(x) = 20exp



−0.2

√

√

√

√

1

n

n
∑

i=1

x2
i



− exp

(

1

n

n
∑

i=1

cos(2πxi)

)

+ 20 + e, for n = 30,

(A.12)

where

−32 ≤ xi ≤ 32 ; ∀i ; x∗ = (0, . . . , 0) ; f4(x
∗) = 0.

Schwefel’s Function,f5:

This function is from Schwefel’s catalogue of functions [193]. It is a multimodal function

characterized by the second-best minimum being far away from the global minimum.

f(x) = −
n
∑

i=1

(

xisin
(

√

|xi|
))

, for n = 30 (A.13)

where

−500 ≤ xi ≤ 500 ; ∀i ; x∗ = (420.9687, . . . , 420.9687) ; f5(x
∗) = −12569.5.

Fletcher Powell Function,f6:

First introduced by Fletcher and Powell in 1963 [72], this function is also multimodal.

The objective function lacks any symmetry due to the use of random matricesA andB
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in the definition of the problem [193, 23]:

f6(x) =
n
∑

i=1

(Ai − Bi(x))
2

Ai =

n
∑

j=1

(aijsinαj + bijcosαj) (A.14)

Bi(x) =
n
∑

j=1

(aijsinxj + bijcosxj)

whereaij and bij are random numbers in the range [-100,100], andαi are random

numbers in the range[−π, π]. The search domain and minimum for this function are

n = 10 ; − π ≤ xi ≤ π ∀i ; x∗ = α ; f6(x
∗) = 0

For the experiments presented in this appendix the following arrays were generated:

A =

26666666666666666664
−93.40 6.84 78.21 86.33 43.16 6.22 −45.73 66.68 33.68 6.83

6.79 58.18 −23.22 46.42 4.20 99.65 63.18 59.25 −93.57 84.43

−86.65 66.28 −74.64 −94.09 91.64 −1.43 −26.70 −2.04 −97.17 −35.26

58.73 −7.84 −24.44 48.66 −90.76 36.80 −31.89 96.79 28.27 5.97

−60.54 42.88 −44.92 35.91 −47.90 64.18 14.16 39.90 −90.19 −60.45

−14.33 −9.31 83.47 79.77 71.49 53.53 −93.25 28.77 46.80 −43.83

69.70 45.59 −36.21 −19.19 −35.80 −82.60 24.83 62.03 23.65 −46.67

95.93 72.50 −8.11 86.77 −7.72 38.13 92.16 −67.77 −69.95 27.94

18.16 77.97 −4.42 19.13 −84.16 −78.21 −56.08 −91.17 −15.13 51.67

36.26 −44.86 −69.11 −69.85 1.60 67.22 −73.33 −35.40 78.07 77.54

37777777777777777775
B =

26666666666666666664
74.88 26.32 −48.49 −44.55 −3.32 −63.31 20.61 −54.39 5.81 −69.56

52.24 35.22 −50.37 −73.16 −30.27 −23.08 23.49 86.77 98.68 88.58

78.71 −81.98 24.43 70.03 47.91 55.45 −93.05 43.65 −81.04 79.90

8.10 −76.66 54.33 −79.75 −0.09 −61.20 −91.78 −15.11 78.82 43.59

−10.17 18.19 −68.67 11.21 −49.98 79.34 −23.46 −1.83 −71.43 −22.36

−95.68 15.98 −35.93 −11.43 −16.95 27.80 94.55 78.00 35.65 38.85

−77.73 53.14 17.53 1.42 99.05 72.10 −14.06 36.13 26.31 89.11

11.17 −90.36 30.96 −65.62 47.76 −86.56 −31.73 65.86 −78.56 −43.88

−6.06 31.87 −77.96 −13.89 48.89 −53.43 −68.43 53.42 −68.44 −49.24

42.93 −46.06 7.97 −59.45 −92.81 73.27 74.14 28.58 −16.95 1.89

37777777777777777775
α =

[

1.35 −2.64 −2.70 −1.36 −2.89 2.87 2.88 2.37 1.96 −0.63
]

.
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Figure A.7: Topology of two-dimensional versions of the minimization test functions.
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A.5 Experiments

For the functions defined in the previous section, each minimization experiment involved

running the genetic algorithm 50 times. The following algorithm parameters were used:

population sizeNP = 30, generationsNG = 1000, the crossover probabilitypc = 0.6,

the mutation probabilitypm = 0.2, and the strategy parameterβ = 5. These values

represent a compromise on the overall performance on the sixtest functions. With the

evolution taking place over a relatively small number of generations, the emphasis is on

a fast global search. The three mutation operators are tested: Michalewicz’s non-uniform

mutation, Neubauer’s adaptive non-uniform, and the adaptive range operator described in

Section A.3. Each test result is represented by an average ofthe best objective function

from each of the 50 experiments,f ∗
avg, the standard deviation of the best solutionσf∗ , and

the best overall solution,f ∗
best.

Tables A.1 and A.2 summarize the performance of mutation operators when used

in combination with arithmetic crossover and single point crossover [154]. Arithmetic

crossover produces values bounded by the parent values, andas such offers superior fine-

tuning. It also provides a mechanism for the reintroductionof parameter values which

may have been lost to the extremes of the search domain through the bias of the adaptive

non-uniform mutator. However, the generations needed for this reintroduction means that

the time for which fine-tuning can improve the solution precision is reduced. The experi-

ments run with the single point crossover isolate the behaviour of the mutation operation

by removing the exploitation bias of the arithmetic crossover. The simple transfer of par-

ent features provides greater access to the search domain which can aid the global search

on some functions.

Table A.1: Performance of the mutation operators in combination with whole arithmetic
crossover, on a set of benchmark functions. The mean and standard deviation apply to the best
solutionf∗, from each of the 50 runs, andf∗

best is the best solution found.

Function Non-uniform Adaptive non-uniform Adaptive range
f∗

avg std. dev. f∗

best f∗

avg std. dev. f∗

best f∗

avg std. dev. f∗

best
f1a 2.716e-7 1.643e-7 4.43e-9 2.086e-7 1.36e-7 4.543e-8 8.198e-7 5.573e-7 1.540e-7

f1b 2.25 1.13 0.740 0.2 0.734 0.00278 8.778e-7 5.387e-7 6.891e-8

f2 0 0 0 0 0 0 0 0 0

f3 39.37 37.09 27.32 1311.6 6064.8 26.43 116.6 174.7 26.78

f4 9.303e-4 3.012e-4 3.844e-4 8.438e-4 3.229e-4 3.0e-4 1.611e-3 5.564e-4 6.688e-4

f5 -9658.8 610.0 -10680.1 -10336.2 585.4 -11615.6 -10263.6 404.8 -11186.2

f6 1253.2 2630.3 5.608 2689.8 3714.8 16.4 735.9 1263.0 0.0707

The sphere functionf1 emphasizes convergence velocity on convex problems. Though

not a test for the global search capability of the algorithm,it provides a simple examina-
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Table A.2: Performance of the mutation operators in combination with single point crossover, on
a set of benchmark functions. The mean and standard deviation apply to the best solutionf∗, from
each of the 50 runs, andf∗

best is the best solution found.

Function Non-uniform Adaptive non-uniform Adaptive range
f∗

avg std. dev. f∗

best f∗

avg std. dev. f∗

best f∗

avg std. dev. f∗

best
f1a 2.514e-6 1.247e-6 6.505e-7 48.25 64.04 5.086e-7 5.712e-6 2.514e-6 1.438e-6

f1b 0.151 0.0813 0.0245 32.6 10.25 15.71 4.91e-6 4.1e-6 1.30e-6

f2 0 0 0 7660.7 7533.8 0 0 0 0

f3 174.8 272.8 20.33 1.28e7 2.96e7 26.4 304.2 587.8 20.12

f4 2.778e-3 9.084e-4 1.403e-3 12.56 8.148 2.181e-3 1.386e-3 4.623e-4 6.007e-4

f5 -10761.2 366.3 -11497.7 -10479.5 539.7 -11495.8 -11019.7 428.3 -11799.6

f6 1327.0 1434.1 0.0505 5778.7 4576.9 324.4 2139.1 2522.8 0.0196

tion of the search bias of the mutation and crossover operators. With the solution lo-

cated in the centre of the search domain, greater solution precision is provided by the

non-uniform operator of Michalewicz, due to the search biasand the lower maximum

mutation possible for a given generation. For the edge solution (f1a), the average error in

the solution values from the 50 runs was 0.224, compared to7.381×10−5. The drop in

solution precision reflects the time need to counter the mutation bias. In comparison, the

adaptive range operator performance appears indifferent to the position of the solution,

with solution errors of1.321×10−4 and1.273×10−4 for f1a andf1b respectively. Due

to the mutation range being consistently scaled off the domain boundary, the maximum

mutation possible throughout the evolution is greater thanfor the Michalewicz operator,

and the solution precision for thef1a is marginally reduced. As expected, the arithmetic

crossover provides greater solution precision for the sphere problem, due to its exploitive

nature.

The experimental verification performed by Neubauer used the sphere function, with

the same dimension, solution set, and search range off1a andf1b. It is worth considering

therefore, why those experiments supported the adaptive non-uniform operator, while

the results contained in Tables A.1 and A.2 clearly do not. Inthe results presented by

Neubauer [162], the non-uniform and the adaptive non-uniform operator were shown to

provide equivalent solutions forf1a. For the edge solution off1b, the modified mutation

operator of Neubauer provided superior results, though interestingly, a three orders of

magnitude drop in the precision of the best function. The results generated benefited

from the large number of generations, 10 000 were used, and the use ofβ = 5 to rapidly

reduce the chances of large mutations. If there were no bias to the location of the solution

in the search domain, then it would be reasonable to expect a similar return for the best

function value. A similar drop in solution precision was observed when the RCGA used

in this thesis was run over 10 000 generations. However, out of 100 test runs forf1a,
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9 returned solutions with one or two values on the search boundary rather than on the

actual solution. The affect can be explained by search corruption due to the repeated

cycle of mutation bias with crossover recovery. The single point crossover has no means

of reintroducing values lost through mutation bias so, as shown in Table A.2, the solutions

are consistently poor. Therefore, with due consideration to the simulation setup and the

relative performance between the edge and central solution, the assertion that the modified

mutation operator is more effective is inappropriate.

By discretizing the sphere model, as inf2, the search is made considerably easier. In

most cases the population converged to the global minimum within 800 generations. If

the search length is reduced to 500 generations, the global minimum could likewise be

found within 80 % of the available generations.

The non-uniformity of the mutations across the generationsis expressed throughβ. In

function minimization test problems this usually set toβ = 5 for the fine-tuning benefits.

When combined with arithmetic crossover the search can be hindered if the solution is

away from the centre of the search domain. For functions withthe solution located in

near the centre of the search domain,f1a, f2, f3, andf4, the bias of the non-uniform

operator provides superior results. This results in a reduction of the fine-tuning capability

of the mutation operation. In the case of the flight control problem for this thesis, it was

more desirable to remove search bias than to maintain the fine-tuning.

One of the potential concerns of the GA application to the flight control problem, is

the sensitivity of the genetic algorithm to parameter epistatis. Epistatis refers to the inter-

action of variables with respect to the fitness function. Of the functions tested here, the

Rosenbrock function exhibits a dependency on the relative value of neighbouring param-

eters. Results from Salomon [190] indicate that the high global convergence performance

of the genetic algorithm relies on the independence of the parameters. For control prob-

lems the fitness of a set of parameters is generally highly dependent on the interaction of

the parameters, and could therefore form a deceptive problem for GAs. It is not clear from

the tests done whether the performance of the GA on the Rosenbrock is due to parameter

epistatis or the general difficulty of finding the global minimum within the relatively flat

valley that contains it.

None of the experiments conducted on the Rosenbrock function were able to find the

global minimum. Tuning the parameterization of the RCGA canreduce the variation

amongst the solutions found, but the global minimum remainselusive. Of the 21 forms

of RCGA tested by Herreraet al. [99], only one provided an objective function which

indicated a global optimum. The implementation included non-uniform mutation, a fuzzy

connectives based crossover, and a very low probability of mutation (pm = 0.005). Evo-

lutionary strategies are suggested to be unaffected by epistatis. Using a population size

of 100 and 20 000 generations, Yaoet al. [236] reports a mean best from 50 runs of 5.06.
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Table A.3: Solution quality forf5. N(x∗
i ) represents the number of values per solution within

±10 of x∗
i andx̄i,err describes the average error of those values.

Mutation N(x∗i ) x̄i,err

non-uniform 18.16/30 1.984
adaptive-range 19.34/30 0.0357

Simulated annealing has also been applied with some successto the Rosenbrock func-

tion [197].

Ackley’s functionf4 was generally well solved by the various combinations of crossover

and mutation. If the search range is shifted such that the global minimum is no longer

centrally located, the performance trend observed with thesphere functions is duplicated.

For example, by setting the search range to [-10,30],f ∗
avg using the Michalewicz opera-

tor becomes 0.53, while the adaptive-range operator maintains the solution accuracy with

f ∗
avg = 1.03×10−3.

Apart from the deceptive nature of the Rosenbrock function,functionsf5 andf6 rep-

resent the most challenging problems in the set considered here. The results presented in

Tables A.1 and A.2 are merely to compare the mutation operators, and do not represent

the best arrangement for the RCGA. For both functions, the adaptive range operator offers

improved performance over Michalewicz’s original form. Byexamining the average error

of those solution values which are near the global minimum (x∗i,err), the behavior of the

two operators is clear. If a near optimal value is within± 10 of the global optimum, then

the results in Table A.3 shows the average number of near optimum values per run and the

average error in those values. The differences in the function values reported in Table A.2

are therefore due to the reduction in solution precision dueto bias of the non-uniform

mutation.

Knowing the general properties of the Schwefel function, analgorithm configuration

can readily be formed to dramatically improve the global search performance. Primarily,

searching Schwefel’s function benefits from a mix of exploitation and exploration in the

crossover operator, so that the corner solution can be reliably reached. The BLX-α op-

erator from Eshelman [67] provides an extension of the crossover range for a given set

of parent values. It was implemented in the RCGA to provide two offspring,C ′
1andC

′
2,

from two parentsCj = (x1,j , . . . , xi,j , . . . , xn,j) j = 1, 2. The BLX-α operator uniformly

picks the new individual valuesx′i,j from the interval[cmini
− αIi, cmax,i + αIi], where

cmin,i = min(xi,1, xi,2), cmax,i = max(xi,1, xi,2), andIi = cmax,i − cmin,i. The offspring

values are therefore expressed as follows:

x′i,j = cmin,i + rj (cmax,i − cmin,i), for i = 1, n; j = 1, 2, (A.15)
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Table A.4: Improved performance of RCGA forf5 using the BLX-0.5 crossover operator. The
results are taken from 50 runs with(NP = 30, NG = 1000, pc = 0.6, pm = 0.01, β = 5).

Mutation f∗
avg std. dev. f∗

best N(x∗
i ) x̄i,err

non-uniform -12175.0 314.7 -12569.3 28.34/30 0.3442
adaptive-range -12345.6 236.3 -12569.5 28.68/30 0.0569

wherer1 andr2 are uniform random numbers∈ [0, 1].

Using the BLX-α crossover operator, the results in Table A.4 were generated. Like the

previous results, the effect of the mutation bias when usingthe non-uniform operator is a

reduction in the solution precision when compared to the modified operator. It was also

noted that the return of the global minimum from 50 runs is insensitive to the mutation

rate.

Compared to the large number of published results for experiments involving the

Schwefel function, there are far fewer examples of experiments with high order Fletcher-

Powell functions. Bäcket al. [25] used the Fletcher-Powell function withn = 30 to

compare the performance of evolutionary strategies with a binary-coded genetic algo-

rithm. A population size of 100 was used and the search performed over 2000 genera-

tions. In a paper by Takahashiet al. [216] a real-coded genetic algorithm was applied to

the Fletcher-Powell function for the purpose of examining an extension to the unimodal

normal distribution crossover. A remarkable feature of theexperiments was the use of

populations ranging in size from 1500 to 12 000. The application of the RCGA in this

thesis is targeting the rapid development of solutions, which it seems, is not readily at-

tainable for the Fletcher-Powell function. It would also seem, from Bäcket al. [25], that

the greater degree of freedom resulting from working withn different self-adaptive muta-

tion parameters per individual is a significant advantage over the single uniform mutation

rate typically used for genetic algorithms.

The purpose here is not to compete with alternative algorithms, but to provide an

assessment of a modification to a flawed mutation operator. Results presented for the

10 variable Fletcher-Powell case, further support the adaptive range operator. Additional

experiments showed that over 500 generations near optimal solutions were generated for

mutation rates ranging from 0.05 to 0.9 and for the three crossover operators previously

discussed (single point, arithmetic and BLX-α).

The issue of parameterization of evolutionary algorithms for optimal search perfor-

mance has been addressed in many ways [64, 83]. Heuristic rules have been developed

(typically applying to a certain class of problems), varying the activation rates of the per-

turbation operators with time has been recommended, self-adaptive schemes are used by

evolutionary strategies, and parameters can be included inthe the self-adaption of param-
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eters during the evolutionary process. It is inevitable however that a trial and error process

is applied, as one set of evolutionary mechanisms and parameters cannot be universally

superior.

Across variations in population size, generation scale, mutation probabilities and crossover

types, the modification to Michalewicz’s mutation operatorprovided a general improve-

ment in performance. One significant observation was that the adaptive-range operator

is able to generate near optimal solutions out of set of experiments, for a broad range of

mutation rates, generation scales and crossover types.

A.6 Summary

The aim of this appendix was to demonstrate the performance advantage of an alternative

definition of the non-uniform mutation operator proposed byMichalewicz, for real-coded

genetic algorithms. Established operators, through theirsearch bias, were shown to ad-

versely affect the reliability and precision of the algorithm. They are sensitive to the

algorithm structure and the setting of parameters such as population size, mutation prob-

ability, and the rate of fine-tuning. In some cases, effective fine-tuning was delayed by

the extra time needed to generate gene values lost by the biasof the mutation operator.

By redefining the non-uniform mutation operator as anadaptive rangemutation, the gen-

eral performance of the genetic algorithm was improved. Though the objective was not

the measuring of the RCGA performance with other evolutionary algorithms, favourable

comparisons can be made with published results included those using genetic algorithms,

evolutionary programming, and evolutionary strategies.

Favourable comparisons can be made with other published results such that the ap-

plication of genetic algorithms to real-valued parameter optimization should not be dis-

counted, see for example [42, 26].
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