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Abstract

An evolutionary design approach is used to construct anpdatdor a hypersonic air-

breathing aircraft. Flight control for this class of veleids an extremely challenging
problem due to the combination of nonlinear dynamics, patamuncertainty and com-
plex constraints. Consequently, simultaneous controt the flight path, aerodynamic
attitude and propulsion is required.

This thesis develops and applies a design procedure whickxgdicitly address the
challenges of hypersonic flight control. The principal cartgpional results of this the-
sis focus on the capability of an evolutionary based op&mia design, withoué priori
knowledge, a robust fuzzy control law for a hypersonic visheoncept. This work is not
meant as an expression of the superiority of a particulairobapproach or an optimiza-
tion procedure. Rather, it experiments with the potentidumzy control to represent a
complex, nonlinear, and robust control function, the ipooation of robustness features
in the control performance measure, and the capabilityeofjinetic algorithm as a search
procedure. The structure of the fuzzy rule base defines thppimg procedure and the
design procedure learns the output profile through a numlesjatimization procedure.
The evolution of the controller design requires the definitof a scalar objective function
which assesses the merit of the particular control solupeing tested. For this work
the design objective is extracted from a collection of sexed flight responses. Such an
approach is computationally demanding, but the benefitshatefewer simplifying as-
sumptions are required in the flight dynamics and aero-psoumodels. There is also
the capacity to represent features in the objective funatibich encourage the develop-
ment of a robust control law. These include the evaluatiohefllight response at many
points along the trajectory, the full range of expectedwa# and control states, and the
inclusion of realistic variations in engine operation, ioéd aerodynamics, and physical
properties. Essentially, the controller can be configur@sed on the best available and
most practical model of the system. Stability and perforoeammbustness are therefore a
natural derivative of the design exposure to the variedoperéince of the system.

A conventional autopilot structure has been used for thgitadinal motion study. An
outer guidance loop provides vehicle attitude commandsdgctory maintenance, while
an inner-loop attitude controller tracks the commandeidud and provides stability
augmentation. The control design focus is on the specificadf the control function for
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the inner-loop. Aside from the evolutionary based desiga,decond prominent feature
of the control application is the parameterization of thieuate controller through a fuzzy
rule base. Afuzzy controller has been used for its inhe@nistness, and its simplicity in
representing a nonlinear control function. The main penéomce benefit over a constant
gain linear controller is derived from the capacity to Idgahanipulate the control surface
of the fuzzy controller during the design. This allows rapttitude response while still
providing the appropriate control authority about the tried condition. In addition, the
control surface can be configured to any nonlinearities vare a function of the control
inputs.

The development of the flight simulation models and the cbulesign procedure are
described in detail in the thesis. For the flight simulat@rtioular attention was paid
to a realistic representation of the flight dynamics behavibrough an aero-propulsive
simulation module and a dynamics formulation that used tiesix degree-of-freedom
equations of motion for flight about a spherical, rotatingtEa Successful application
of the evolutionary control design procedure to the hyparseehicle is demonstrated
through a series of design experiments. These cover sonteohany variants avail-
able with both the specification of the control function ahd &pplication of the genetic
algorithm. Within this scope, the benefits and potentidbfpg of the overall procedure
are considered. Significantly, the genetic algorithm igdblcapture the necessary con-
trol features for a design of large dimension, with reldgifew function evaluations. To
provide guarantees of performance and stability robustriee fuzzy controller must be
assessed against an extensive set of test conditions tioouthe design process.

As part of the numerical experiments it was found that to@ahgood quality control
designs, a modification to a well know non-uniform mutatige@tor was required. This
minor enhancement to the genetic algorithm greatly impitdhe quality of the control
solution. The search performance benefits have also beeordérated on a collection of
standard minimization test problems, as documented in AgigeA.
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CHAPTER 1

Introduction

In Germany during the second World War Eugen Sanger ané Beaendt conducted re-
search on a long range antipodal bomber. The Sanger “Sidi vehicle was to be
launched from a rocket driven sled, climb to an altitude dd B&, and descend through
a series of aerodynamic skips off the atmosphere [186, & ,nranner similar to the op-
eration of today’s space shuttle. Sanger had first proptteedinged hypersonic vehicle
in the late 1920’s. His work was the genesis of hypersonieaiet, inspiring the “higher
and faster” pursuit of the aerospace industry to achievenediunar return and the space
shuttle. Ultimately, as a long term project the Sanger egdane was abandoned for the
V1 and V2 missiles favoured by the German military.

Hypersonic flight is defined by a Mach number greater than firesenting a flight
speed five times the local speed of sound in the atmosphef@6ihthe rocket powered
North American X-15 was piloted to Mach 5.3 [6], becomingfingt hypersonic aircraft.
The vehicle was an essential stepping stone to realizingatential of rocket powered
aircraft which ultimately led to the space shuttle. Rocketppilsion remains today as
the only mechanism for achieving hypersonic speeds an@tmrching objects into earth
orbit.

Modern rocket propelled launch systems operate close wretieal limits. Their
continued development is driven by a demanding space mathkieh covets reliability,
flexibility, and a reduction in the cost of raising payloattspursuit of the lucrative satel-
lite market, a broad range of rocket propelled space tratesgohave been developed,
offering variations in size, staging, operation, and ldung [108]. They are however
constrained by large infrastructure requirements and bpdypenalty incurred from the
need to carry oxidant for combustion. Presently, the onlggeeable practical alternative
to chemical rockets is the air-breathing supersonic cotitiusamjet engine, or scramjet
engine. A popular contemporary vision of scramjet applceis the civilian transporter,
capable of cruising at speeds three to five times greaterdinaant propulsion capabili-
ties [95]. Despite the allure of high speed passenger fligbtprimary motivation for the
development of hypersonic air-breathing vehicles is tpetential as transatmospheric
aircraft, capable of accelerating to orbit. Advanced ldusgstems utilizing scramjets



2 Introduction

promise to make space more accessible by reducing the castesting payloads into
orbit.

Aerospace engines are customarily rated using specificlgapar thrust per weight of
fuel per second. A convenient map of the operational cajiakibf high speed propulsion
options may be formed by charting the variation of specifipuise with Mach number.
Figure 1.1 shows the performance of rockets and existingra@thing engines, along
with predictions for the operation of a scramjet engine-l&igathing engines in general,
offer superior cycle-efficiency compared to chemical roeegines, because the oxygen
needed for operation is captured from the atmosphere aidstebeing carried on board.
Scramjets, in particular, circumvent the material tempueealimitations encountered in
ramjets and turbomachinery, and allow more efficient wtlan of propellant than chem-
ical rockets [12]. In Figure 1.1 these two features appeanasxtension of air-breathing
capabilities to hypersonic Mach numbers and, comparedetitydrogen and hydrocar-
bon fuel rockets, have a higher specific impulse at high Machlrers. The high specific
impulse of a scramjet translates to a capacity to accelarate mass than a rocket of the
same size [118]. The weight saving can be used to providderipetyload fraction while
allowing a greater “empty weight” which, in turn, can be died towards augmenting
vehicle ruggedness and flexibility of use. Realizing thegmabilities would be a big step
towards improving the performance and efficiency of spagedh vehicles.
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Figure 1.1: Vehicle propulsion alternatives for high speed flight. Facte class of propulsion
system both hydrocarbon and hydrogen fueled performarsgteoisn. (Source: References [118,
121, 105])
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Serious consideration of scramjets for hypersonic fligiibfeed the post-war pe-
riod of development of hypersonic vehicle concepts [118e Ppioneering period was
the 1950s and 1960s, beginning with the demonstration dlessupersonic combus-
tion. Dorsch and others at NACA Lewis Labs, used experimentexternal and inter-
nal combustion in supersonic airstreams [29] to catalysed#velopment of the ramjet
cycle using supersonic combustion. With the first steps maday researchers and or-
ganizations made significant contributions towards theeliggment of the ramjet cycle
using supersonic combustion. For example, Weber and Mde®&}, Ferri [71, 70], and
Swithenbank [214] helped establish the basic conceptsiieduramjet operation. Sev-
eral important aspects of scramjet operation were addiessatering on the practical
issues of supersonic combustion and establishing metHadsatysis. They included the
behaviour of supersonic combustion flames, chemical @aptiocesses, fuel-air mixing,
multidimensional interaction between combustion and filyidamics. Simultaneous with
the development of the propulsion system was the evoluti@rew aerospace vehicle
configuration. To address the unique requirements of tle¢ iobmbustor, and nozzle, the
airframe and propulsion system formed an integrated dekgding to some configura-
tions being dubbed “flying engines”. The extreme conditiassociated with hypersonic
flight have also promoted the development of lightweighhhgmperature resistant ma-
terials, active cooling of the vehicle structure, dual sutds and supersonic combustion
capability, intelligent trajectory and propulsion cons;osimulation codes, and ground
testing facilities [95].

The supersonic combustion ramjet remains a conceptuafipleiconcept. Despite
this, the development period resembles that which precéuz=dVright brother’s first
powered flight, rather than the 20- 30 year evolution periost 900. Forty years of
hypersonic air-breathing research has been dominated dipeerelated issues. Only
recently was a small scale scramjet demonstrated to prathki¢brust in an experimental
facility. In 2001 there were engine-centered flight testthl@yAmerican Hyper-X program
and the Australian HyShot program. Such tests are an impostapping stone to a
practical scramjet powered vehicle suitable for sustafresiflight.

Along with engine/airframe research, another key enaliegnology is flight con-
trol. It is this challenge that provided the stimulus forstlhesis orthe application of
intelligence based methods to the longitudinal flight colrdf a scramjet powered launch
vehicle The vehicle concept follows the proposal for the develapinoé an Australian
small scale launch vehicle, with a scramjet powered stag4, [294]. Closed-loop flight
control is required to stabilize the vehicle, provide tcapey maintenance, and stabil-
ity robustness against performance uncertainty, comssraand disturbances. With the
vehicle additionally defined by highly nonlinear time-viewy dynamics, it is generally
accepted that most conventional linear control system ogetlogies are unsuitable [39].
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Hence the application of methods borrowed from intelligasitrol, which promise the
ability to design a complex non-linear controller capabieabustly dealing with vari-
ations and uncertainty in vehicle and propulsion perforteanNorking with a conven-
tional longitudinal autopilot structure, the inner loopépresented by a fuzzy logic rule
base while the outer loop guidance is provided by linearldaek. They are designed
sequentially using a genetic algorithm (GA) to maximizettigontrol performance. The
design procedure builds robustness through the contqedidormance randomly sourc-
ing simulated flight responses. These responses can ingyistiem model uncertainties,
constraints and disturbances. With a noisy, evolving diyjedunction, and a potentially
large number of control parameters to configure, it is a delimgroptimization problem.
GAs are a general global search algorithm inspired by niguddution. They have gained
a reputation for their robustness in the presence of naigktteeir ability to search highly
non-linear, multimodal, and multivariate problems. Ashwény brute force approach
however, there is a potential for the design to be computalip expensive.

The remainder of this chapter introduces the hypersonibra@thing vehicle, and
explores issues important to high speed flight and controforfnal statement of the
research objectives is then provided, together with a guidlee remaining chapters.

1.1 Issues of Hypersonic Flight Propulsion

Convention separates supersonic and hypersonic flighhesgby associating hypersonic
aerodynamics with flows greater than Mach 5 or, for exam@@0km/hr at an altitude
of 30km. The distinction represents an increased impogt@dVach numbers much
greater than 1, of physical flow effects such as viscousaotam, high temperatures, and
low density flow. In a laboratory setting, hypersonic is art@ften used when describing
high speed flows in wind tunnels where the high Mach numbesss@ated with a low
stream temperature, as is typical of large “blow down” tuari20]. In real high speed
flight such as atmospheric reentry, the high temperaturesugriered through airstream
interaction with the vehicle are important for vehicle dgsand performance. The term
hypervelocity flow is then used to describe the generatiothe$e high energy flows,
where there are both high Mach numbers and high temperat8ege this thesis is
concerned with flight conditions where the term hypersositypically applied, there is
no further distinction made with these definitions.

Air-breathing engine selection for hypersonic flight essly deals with the thermal
barriers imposed by structural heating and heat releasg [23]. In Figure 1.1 the per-
formance range of several air-breathing engines indicanaition from turbojets at low
Mach numbers, to ramjets up to low hypersonic and finally tarsgets for hypersonic
flight. The Mach 3 limit for turbojets represents a constraimthe turbine inlet temper-
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ature, which increases with Mach number, ultimately commpsing structural integrity.
As the Mach number increases, the continued drop in turloge efficiency gives the
advantage to ramjets. Assuming forecasted technologmaavements are met the op-
eration range of hydrogen fueled ramjets extends to a mariftight speed of around
Mach 7. This operational limit is imposed by the heat releas®mpanying the slowing
down of the highly energetic airstream to locally subsomnditions prior to combus-
tion. Material and structural limits are compromised anal benefits of combustion are
reduced through higher initial temperatures and the diagon of reactants. Both ram-
jets and scramjets compress the air stream by the forwastisige¢he aircraft. In ramjets
the passive surfaces generate strong normal shock wavedosgies that increase with
flight speed. Above Mach 6 a scramjet configuration provi@ss inlet compression,
lower shock losses, lower combustion temperatures, anetsoipic combustor flow. The
lower static temperature and pressure mean less heataraaghe airframe and lower
structural loads, and enable an increased benefit from timegLfuel. Scramjet superior-
ity at hypersonic speeds is thus a result of the thermal andtatal advantages of adding
heat to a supersonic rather than a subsonic combustor flow.

In addition to bounding high speed propulsion, the extremeenhal environment im-
pacts greatly on the actual engine design and successftatapeof the aircraft. The
effects of high temperatures in combination with other mgpeic flow features such as
shock layers, entropy layer, low density flows, and viscosraction [6] present many
potential problems. For example, interaction between thentary layer and the invis-
cid flow reduces the core flow to the engine, and can greatbctathe surface pressure
distribution and therefore the lift, drag, and vehicle gtab Also, the high tempera-
ture flows can cause dissociation and ionization within #eand influence the vehicle’s
aerodynamic parameters. These issues have also inspgeydiution of experimental
and computational techniques which are used to prediatitifeience.

One of the many contributions made through flight testing4tb rocket plane [45,
97] was the practical importance of hypersonic effects. A7l&st flight had a dummy
ramjet suspended by a pylon below the X-15 [6]. Localizedtihgacaused by shock
wave-boundary-layer interactions prematurely endedt@enal test flight of the axisym-
metric ramjet model. The model was completely removed filoeptylon when the shock
wave from the ramjet nacelle burnt through the connectingrpsurface. Further damage
was caused by local surface heating from the pylon bow shagkniging on the bottom
of the X-15, allowing the penetration of the hot boundaryelay

The difficulties associated with the hypersonic environhte&ve contributed to the
long development time of scramjet technologies. In cohtrath the simplicity of the
scramjet engine, aerodynamicists continue to face manledgas which obstruct the
practical application of scramjet engines.
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1.2 The Hypersonic Air-Breather

Air-breathing vehicles generate thrust in direct promortio the amount of air processed
by the engine. A basic scaling argument shows that as thatpgispeed increases, the
cross-sectional area required for the intake becomes erlémaction of the total frontal
area. For hypersonic air-breathing aircraft, there is ttditeonal need of a high dynamic
pressure flight trajectory to achieve optimum combustorafmn. Therefore, generation
of the high specific impulse predicted for scramjets at higttMnumbers, not only brings
concerns of heating and structural loads, but also reqtheegngine intake area to be a
large fraction of the vehicle frontal area. The resultingéaengine surface area attracts
significant drag penalties. Early tests on scramjet coscgpiwed the high external drag
of the engine negated the benefits of the scramjet, if it haddonted in the traditional
manner, isolated from the airframe [118]. More recentljore$ to optimize a Mach 12
axisymmetric scramjet showed that, due to the large vistmass, the net axial force on
the optimized scramjet was actually a drag force [48]. Rtediengine designers are able
to build a useful vehicle-engine configuration, the dragéowill likely remain a large
percentage of the total thrust, so that a small increasegmerperformance can provide
a large increase in acceleration capability.

The basic shape of the hypersonic air-breather is formedétyaiidressing the inlet
processing requirement. Shown in Figure 1.2 are two geaéframe integrated scram-
jets. Both the accelerator and cruiser configuration haeg@tbpulsion system integrated
with the airframe structure. In addition to inlet procesgsithese configurations also ad-
dress other issues critical to hypersonic operation. Theynmze external drag of the
airframe and propulsion system combination, minimize tieltvehicle weight, and ad-
dress the cooling requirements of the airframe and engimedyycing the internal surface
area thereby reducing the surface area to be protected fgintilermal loads. The slen-
der configurations also allow weak bow shocks to be maintitimeninimize shock losses
within the propulsive flow path.

Major international hypersonic air-breathing projects being pursued in the United
States of America, Europe, and Japan. Their focus is thevalalarge, hydrogen-fueled
scramjet powered space-plane concept, for which costte#eess is achieved through
their continual reuse. The cruiser configuration of Figur2 i$ representative of the
space-plane concept. Leading the way for space-planerchssahe American Hyper-X
project [79]. Early development of this concept was via t#eéSIR (National Aero-Space
Plane) and HySTP programs of the 1980s and 1990s [79]. Qaticelof the NASP
program led to Hyper-X, a less ambitious sub-scale hyp&sesearch plane. Presently,
it is the only project with the capability of testing the friight operation of a scramjet
powered vehicle. Hyper-X testing uses a modified Pegasust&oio deliver the vehicle
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Figure 1.2: Generic hypersonic air-breathing vehicles. (Source: Refwes [227, 97, 221])

to the hypersonic test condition, before separation aredffight.

The large containment volume required when using hydrogehrheans the space-
plane is a relatively large vehicle. The size of the operatiaconcept vehicle behind
the Hyper-X sub-scale project is approximately 61 m, sigaiftly larger than the shuttle
orbiter which is 35m in length. Integration of the airfram@daengine is such that the
lower portion of the vehicle forms the propulsion systemlelihe upper portion is the
airframe. The entire forebody performs the initial compres of the freestream air, with
further compression by the inlets of the engine modules. réaeof the airframe is also
used, being shaped as a nozzle and producing thrust fronxgam&on of combustion
products. A benefit of using the fore and aft surfaces of tifeaane for engine operation
is the generation of lift which would otherwise require kasgings and attract large drag
penalties.

An alternative configuration to the Hyper-X vehicle typehs taxisymmetric scram-
jet accelerator. This vehicle, shown in Figure 1.2 b), mazas the airflow capture area
relative to the airframe area, promoting an adequate thmasgin while minimizing con-
figuration drag at near zero angle of attack. The axisymmetnfiguration was used
in the first flight tests, of a scramjet engine by the Russiamti@elInstitute of Aviation
Motors (CIAM). These tests began in Russia in 1991 with thedh, to Mach 5.5, of an
axisymmetric scramjet atop a surface-to-air missile [12@]. The test configuration was
essentially the same as the American Hypersonic Reseaghd(HRE) project. Dur-
ing the 1960s, part of the HRE project involved preliminagts where an axisymmetric
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Figure 1.3: CIAM scramjet testing using the Hypersonic Flying Laborgto(Source: Refer-
ence [183])

ramjet was mounted below the X-15 rocket plane [79, 45].

Supporting CIAM’s testing was the hypersonic flying laborgtRussia developed
using modified surface-to-air missiles [184]. Figure 1.8vgh the arrangement used in
the Russian tests. The hypersonic flying laboratory wasréided as being capable of
testing a hydrogen-fueled scramjet up to Mach 6. A numbeestistwere performed
with the aim of collecting data to validate predictive nuioar codes. The tests also
served to provide validation of systems such as the fuellgupging a truncated nozzle,
thrust was not measured directly, but sustained supersombustion at hypersonic flight
speeds was reported as being achieved [46, 97, 100].

The Russian flight test capability separately attractedidgand America. France’s
vested interest was their own high speed air-breathingitdolyies program which began
in the 1950s with an emphasis on missile applications. Ttiuaygh, there is the addition
of a long term goal of a single stage to orbit plane. The CIABtitey provided the first
steps to validation of the scramjet and its real propulsapacities [69, 57, 119]. America
was also attracted by the opportunity to cost-effectivélyam valuable flight data for their
space-plane program. The National Aeronautics and Spaonenmgtration of the United
States of America (NASA) worked with CIAM to reassess thasyget design used in the
Franco-Russian tests. The higher heat loads associateduNiscramjet operation at a
higher Mach number, required redesign of the combustor etivkacooling system. The
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culmination of the NASA and CIAM contract was a flight test @96 which achieved a
new maximum flight Mach number of over 6.4 and provided useéétid for the Hyper-X
project [183].

At The University of Queensland (UQ), scramjet research $iase the early 1980's,
prompted the development of ground based testing fasiliel computational modelling
capabilities. The basis for scramjet development was thenpial of an axisymmetric
configuration operating as an acceleration stage in a sauwaith vehicle application. UQ
researchers within the Department of Mechanical Engingesere the first to demon-
strate, in a shock tunnel, a flight-style scramjet genegatiore thrust than drag [171].
Presently, a UQ team heads an international effort to fliggttthe supersonic combustion
process in a scramjet, under the banner of the HyShot profitd@j. For these hyper-
sonic air-breathing experiments, a two-dimensional sgtars fitted to a Terrier/Orion
rocket. The experiments use a flight trajectory which presithe capability of testing at
a flight speed of Mach 8. Extensive instrumentation is itestialo measure the pressure
rise produced by supersonic combustion, allowing cotieatvith measurements from
shock tunnel experiments performed at the university.

An early application concept, shown in Figure 1.4, uses tm¥entional scout rocket
configuration with a scramjet powered second stage [194dloEsement for this type of
scramjet application is provided by the scaling argumeas@nted by Stalker [204]. The
basis for the analysis is a comparison of the cost to paymi@alover a wide range of pay-
loads, for traditional all-rocket launchers and one usisgramjet powered second stage.
The scaling argument reinforced the belief that scrampetgred vehicles are relatively
insensitive to scale effects, compared to the quite strangease in cost with payload
for rockets. As such, it was considered that a scramjet peavirunch vehicle capa-
ble of placing a relatively small 1000 kg payload into lowtkaorbit, could be operated
competitively against all-rocket launch vehicles.

e — -
|
- . First stage
. Third st
Scramjet powered Anltrar(Ssalgfl A Algol 111A

stage

Figure 1.4: A small payload launch vehicle concept formed by integoainscramjet powered
second stage with a conventional scout rocket configuration

One of the benefits of the axisymmetric design for the smahdaer application, is
the potential for integration with conventional rocketgeta [113]. In addition, changes
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in angle of attack would not be required to balance the vianain thrust level with
increasing velocity and altitude. Figure 1.5 shows a basetiesign for the scramjet
powered stage, developed and tested in the Department didavieal Engineering at
UQ [229, 230]. A conical forebody delivers the hypersoneeitream air into six scram-
jet engines modules which surround the centre body. Thasvalcontrol of the circum-
ferential distribution of mass flow, and provide the meanditierentially throttling the
ducts as a method of controlling the vehicle attitude. Intast, the alternative of a sin-
gle axisymmetric flow path would, with small angles of attals&ve the bulk of the air
mass flow on the lee side, making the vehicle very hard to obnrhe axisymmetric
configuration of engine modules is designed to run optimatlgero angle of attack at
roughly constant altitude. Conversely, non-zero angletiaick operation produces an
uneven distribution of freestream flow amongst the engindutes. Such off-design op-
eration means a significant impairment of engine perforraama vehicle operation, and
generates large destabilizing moments. Successful opertaerefore requires accurate
attitude control of the vehicle in level flight.

Figure 1.5: Baseline design for the scramjet powered stage. The axiggritnscramjet propul-
sion system is shown with the cowl removed. It features acadfdrebody, swept inlets providing
three-dimensional compression, and scramjet modulesayiitindrical combustors.

Operation of the axisymmetric scramjet as depicted in EJu8, is conceptually sim-
ple. There are no moving parts within the engine flow path and firocesses are neatly
divided into compression, combustion, and expansion. ©heal forebody redirects the
freestream into the combustor through a series of obliqaeksh raising the temperature
and pressure of the airstream. Fuel is mixed with the sup&rsirstream, undergoes tur-
bulent mixing and “auto-ignites” due to the high temperatukfter traveling the length
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of the combustor, the combustion products and unburnt fiteégpanded by the vehicle
aft-body. Net thrust is then the difference between thesthgenerated by the expansion
of exhaust gases and the total drag of the engine. Pracpeahtion of such an engine,
in contrast to the simple flow structures shown in Figure fefains an enigma. What
is certain is that continued advancement of simulation lo#ipes is required to provide
analysis of the complex flow interactions which makeup hgpeic aerodynamics and
supersonic combustion. Also required are innovative nagho limit the impact of skin
friction on the overall performance, and the effect of baanydayer development on the
performance of the engine.

Forebody / Inlet Combustor Nozzle

M shock . e
processing .. |
fuel
; injection

Figure 1.6: Flow schematic of the fully integrated axisymmetric scraimj

1.3 Early Flight Control

Around the turn of the nineteenth-century, George Caylégbdished the fundamental
defining concepts of an airplane. The majority of modernraftcstill conform to his
basic definition: a machine with fixed wings, a fuselage, atadl awith separate systems
providing lift, propulsion, and control [115]. Despite Qay's insight and decades of
aerodynamic research, it wasn’t until the later half of timeteenth century that the real
surge toward powered flight began. At this stage, poweredanutight was no longer a
flight of fantasy, and engineers began approaching it asajusther technical challenge.
This era of research has been popularized in museums arbanaarld, and through
numerous texts [115, 2, 218, 7, 9].

It is worth noting several of the contributions during theig¥it era, to contrast with
the development of the scramjet vehicle and hypersonictftightrol.

There was a seemingly widespread belief among scientistseofate nineteenth-
century that enough was known about aerodynamics to acipewered flight. They
were confident that the flying problem could be simply tamegllaging a large enough
engine on a strong enough airframe capable of generatinfd 16, 7]. Hiram Maxim
belonged to this group of thinkers. He assembled a hugetésumachine powered by
two very efficient steam engines, but without many of the elet® needed for practical
flight. Likewise, Clement Ader attempted to fly a steam-paaeaircraft whose only
method of control was a highly impractical method of movihg wings fore and aft.
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Both Maxim (1890’s) and Ader (1890), through their brutecmapproach, managed to
briefly lift their vehicles during tests. Maxim'’s vehicleaghed after it managed to break
free from the guard rail of his test track. To his credit thibpug control augmentation
device was installed, in apparent recognition of the inhiglangitudinal instability of the
vehicle [2, 148].

A more productive approach was followed by Samuel P. Landitepically, it also re-
sulted in the most heralded aeronautical failure of thelesagley began with flight tests
on models, conducting a number of successful tests withqoiaeter scale, unpiloted
steam-and-gasoline- powered aircraft models. Unforipdbr Langely, his success
ended when the piloted full-scale version of his successfuilels collapsed following
takeoff. As an internationally respected scientist heaated considerable ridicule for the
failure of his much publicized, late 1903 attempts.

In contrast with both Langley and Maxim, Otto Lilienthal im®ed it was necessary to
obtain a feel of the airplane and thereby understand itstfigiperties, before attempting
to fly with an engine. In this respect he followed Cayley'sded performing aeronau-
tical studies using gliders. Lilienthal recognized thedé&a control but his method of
shifting mass was limited. The other great limitation of thesign was the use of flapping
wings for propulsion. Despite many successful flights, reldn 1896, as a result of
injuries sustained when a wind gust stalled his glider aellito the ground. However,
the “aviator” philosophy established by Lilienthal cobtrted significantly to the aero-
dynamics and practical design of an airplane, and ultingatelpired the success of the
Wright Brothers.

The Wright brothers, like Lilienthal, were concerned withat was needed to fly,
rather than the principles behind it. Combining estabtisherodynamic principles with
their own research, they established the design featuesdedeto fly an airplane. The
key obstacles as they saw it were the wings for generatihgalimeans of propulsion,
and a method of balancing and steering. The first two elenfeadsalready been well
investigated and were considered to be attainable andlyagegieloped as required. As
Wilbur Wright put it during a presentation before the WestBociety of Engineers:

“... When this one feature (balance and steering) has begwedout, the age
of flying machines will have arrived, for all other difficuds are of minor im-
portance.” Wilber Wright speaking before the Western Sgaé Engineers,
September 1901, as quoted in [115], page 48.

To address the control problem the Wrights followed the tavighilosophy, learning
to fly controlled gliders. Dynamic stability within conttable limits set the boundary
for their research. This approach was perhaps a benefit infetkgerience with bicycle
building, and provided the concept of a stable system ctingisf the machine and the
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pilot, rather than simply a stable airframe. Nine days dfeangley’s failed attempt, the
Wrights’ research culminated with the epochal flight of thearently unstable Wright
Flyer. It showed that with relative safety, one could fly a pogd aircraft.

In the century following the Wright brothers’ success, cohtechnology has evolved
from a pilot dependent era to an era of computerized autonoatitrol of both piloted
and unpiloted vehicles. There was a brief foray into aitovath inherent stability, as
the demanding task of flying as performed by the Wright bnatheas not practical for
early aircraft with lesser pilots. Also, the more stable moraft, the easier the autopilot
was to design. Abandoning inherent stability in favour ohamic stability followed
the realization of the performance gains available throtighreduction in the weight
and drag from stabilizing surfaces. Active flight controklsance, been at the forefront
of developments in control theory. From the Wright Flyer bhe Space Shuttle these
advances have seen the application of methods such as pathudiog, adaptive control,
robust control, and optimal control techniques.

The “higher and faster” ideology has catalysed aviatiorouation for a hundred
years, allowing aircraft to access a greater range of spmatialtitudes. Consequently, it
became apparent that vehicle behaviour was dependent 8igtiteondition. In particu-
lar, the aerodynamic and propulsive differences requioegddibsonic, supersonic, hyper-
sonic, and rarefied flight regimes, place varied demandsefiigit control system. The
following section considers various issues important edrgonic flight control.

1.4 Hypersonic Flight Control

While many aviation pioneers pursued the development optveer plant, the success
of the Wright brothers lay with their appreciation of flighardrol. The Wrights argued
that a propulsion system is of little use without the capghidf controlling the vehicle in
flight. This is of course, generally true for applicationswgpersonic air-breathing flight.
However, what sets the hypersonic era apart is that prasticamjet engine operation
is considered one of the greatest challenges in modern @giios. There are a host
of recognized aerodynamic, material, and propulsion molslwhich continue to attract
the majority of hypersonic research interest [118, 45, 1@inilarly though, there are
numerous issues central to controlled hypersonic flight.

Broadly speaking, the hypersonic air-breathing flight calfeér must provide stable,
robust operation of a vehicle over a broad operating range easure maximal engine
performance subject to a highly constrained operatinglepvén other words, simulta-
neous control over the flight path, aerodynamic attitudd,@opulsion is required. This
key control requirement is a direct descendant of the iategrvehicle configuration and
the conditions needed for efficient engine operation. Emgerformance depends on the
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inlet’s capability to capture the airflow, translating toteoag dependency on flight con-
dition and the vehicle angle of attack. Such is the antieigpaensitivity of the propulsion
system to variations in flight conditions, it has been sutggkjel5] that tracking tolerances
of the order of0.1° could be required for some configurations. Since local floflede
tions control the engine operation, vehicle performaneeatso be critically affected by
structural deformations [191, 41, 45].

Efficient engine operation also requires tracking an agiwesrajectory of high dy-
namic pressure, constrained by structural and thermalrigadThe extreme operating
environment places considerable demand on the instrutmntaf sensors and the at-
tachment of actuated stabilizing surfaces to the vehiclmyfiad of sensors are required
throughout the vehicle, allowing for example, the detettbstructural vibration modes,
fuel flow rate, internal engine flow conditions, and the fte=mm. Air data measure-
ments can be used to determine the pressure altitude andeveltiitude. Due to the
surface exposure to high temperature flow it is likely thbsa@hsors will require cooling.
Flow intrusive methods used for subsonic and supersonicadir[85] are not suitable
for hypersonic vehicles as the sensors protruding from tindse would not survive the
high energy environment of hypersonic flow. Also, boomsrursented with pitot tubes
are sensitive to vibration and alignment error, and candeadiight instabilities which
may degrade aircraft handling [231]. An alternative is tha4time flush air-data sensing
(FADS) system [232, 117, 52], which couples a collection k#gsure tappings located
flush with the surface and an airdata estimation algorithnch& system has been flown
on the shuttle orbiter [174, 13]. However, since the geoynetithe scramjet vehicle is
not conducive to such arrangements, further developmes¢émsor design is required.
A FADS system for the sharp-nose geometry needed by hypersehicles has been
developed for flight at Mach 3 to 8 [54].

Two of the critical parameters needed for the guidance antr@osystems are the
dynamic pressure and angle of attack. Though FADS systeenbeang developed for
this purpose it is likely that air-data sensors will be augted by estimates available
from inertial measurement units (IMU). The gyroscopes arwkekerometers of an IMU
are used to compute estimates for the vehicle velocityudki, and attitude, with respect
to a fixed coordinate system.

For most launch vehicle applications a high degree of magraindity during the ac-
celeration stage, is not a desirable feature. A stable le2bém be configured through the
appropriate distribution of mass and the use of fixed wingsreby simplifying the au-
topilot design. In early rocket launcher concepts, massings and fins were used to sat-
isfy stability and control requirements. A fine example a$tis the 81 m tall space ferry
concept designed by von Braun [186]. The multi-staged laenshown in Figure 1.7,
incorporated three recoverable stages, each fitted wigie lstabilizing fins. The final
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stage was to function in a manner similar to the more famdégace shuttle orbiter. Like
the space shuttle orbiter, the final stage of von Braun'sgthessed aerodynamic surface
to generate lift and augment stability for a gliding reentlffhe complexities of practi-
cal operation do not follow linearly from existing propulsisystems. Scramjet powered
vehicles have a fundamentally different operation bounttarocket-only launchers like
the von Braun concept and the space shuttle. Scramjetgeqouoionged access to high
dynamic pressure conditions, implying the need to minintheeexposed area. Inherent
stability through large aerodynamic surfaces would séyarempromise the vehicle’s
application as an acceleration stage. While marginal l#iabharacteristics may be de-
sirable for maneuverability, in the scramjet vehicle theme stringent constraints on the
vehicle attitude and the dynamic pressure variations.

Figure 1.7: A space ferry concept from the early 1950'’s, designed by YWarkgon Braun. Stand-
ing 81 m tall with a launch mass of 6350 tonnes, it had threeve&mable stages. (Source: Refer-
ence [186])

The selection and performance of control stabilizers idlzrokey issue for hyper-
sonic flight control. Aerodynamic surfaces and thrust veatpare the primary choices
available from modern aircraft and also find applicationimbaeathing vehicles. Their
potential is very much dependent on the vehicle configunatithe Hyper-X configura-
tion, shown in Figure 1.2 a), by virtue of lift generated bg thlet and nozzle surfaces, can
make do with relatively small wings. Between the wings arabators, pitching stability
can be achieved at an angle of attack without unreasonaiyly feerodynamic losses. The
axisymmetric scramjet on the other hand requires a relgtiaege wing area to generate
lift and also large elevators to counter disturbances toogitenal zero angle of attack
flight condition. The necessary control authority is therefmore difficult to achieve
and may require a combination of control mechanisms, likedgamic surfaces and
differential throttling. Whatever the vehicle configuaatj high bandwidth, high strength
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control actuators are required. Due to the long forebodyi@eand the generation of
large thrust forces, the controller must perform a delitai@ancing act.

Thrust vectoring has been used with increased frequen@cent years. It has found
application in commercial airliners for safe landing afiero-surface failure and military
aircraft to enhance manoeuvrability. On modern rocketsisthvectoring through gim-
balling of the nozzle has significantly reduced and in marsgsaliminated, the need for
aerodynamic surfaces. For scramjet vehicles, thrust viagtoan be achieved by manip-
ulation of the thrust surface [122, 213], external burnid@]] surface blowing [243, 146]
and differentially throttling the engine modules [234]. rtGadering the potential distur-
bance to the engine and airframe flow - especially with coreptsibeing optimally con-
figured - these methods will require accurate simulatiomtguee critical vehicle opera-
tion is not lost. Also, the necessary fuel for thrust vectgris in competition with the
primary usage of fuel for thrust generation and coolings lthierefore likely that thrust
vectoring on scramjet vehicles will be used to augment Velstability and control, rather
than act as the primary controller.

Without unconstrained access to hypersonic flight testimg,methods of assessing
control feasibility are in the form of numerical and expeemal simulations. The most
relevant and accessible experimental capability availédol hypersonic vehicles are im-
pulse test facilities. Though these facilities are ablegioroduce the hypersonic flight
condition, they are unable to make dynamic measuremenid)aze uncertain and con-
taminated test flows, require scaling of models or partifiale simulation, and are still
developing their capability, especially in relation to alabeasurement techniques. The
alternative to physical experiments is to perform numésaaulations of the flow in-
teracting with the vehicle. The most advanced numericdlisocomputational fluid dy-
namics (CFD) [223]. CFD avoids many of the constraints aased with experimental
facilities, but introduces additional unique constrain®&imarily, CFD applications are
constrained by the time needed for accurate simulationefldw structures, while the
accuracy is dependent on the mathematical models used ¢alethe flow structures
and the integration procedure. The continued developnidrath numerical and physical
experimental techniques is crucial to the development péhgonic flight technologies.

The status of scramjet vehicle development means that ttigiirol design utilizes
system models based on the aerodynamics, propulsion ameblcparformance oton-
ceptvehicles. Accordingly, the system models are generallypbfired numerical rep-
resentations of the interactions between the vehicle aadldlv path, or performance
coefficients abstracted from experimental data. Due toithiations of the these ap-
proaches and those of more advanced simulation techniqoespl design must con-
sider the effects of uncertain and unmodelled system featuHence, there is a focus
on robust control techniques by those researchers inagisiigthe design of hypersonic
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flight controllers, see for example [188, 145, 157, 41, 38 bbstness in this case refers
to both stability robustness and performance robustn@8.[ZThe former refers to main-

tenance of vehicle stability subject to parameter vanmgtichile the latter is the assurance
of proper response to commands and the reduction of respemsgbations caused by
disturbances. Contributions to hypersonic control areeme®d later in Chapter 2.

The primary causes of control failure leading to aircrafuf@ are insufficient control
authority, actuator failure, and the effects attributablencertain or unmodelled system
features. An early space shuttle orbiter reentry providesgent example of the effect
of system uncertainty and the robustness required by flightrallers. Discrepancies
in the predictions of pitching moment with those inferrednfr flight data, meant body
flap deflections twice those predicted were required to raairtim during the orbiter’'s
first reentry [92]. This issue was finally resolved with a nege of computational fluid
dynamics (CFD) codes and experimental data [228], addrg$ke real-gas effects and
viscous effects, and their influence on vehicle pitching ranta and control effectiveness.
Compared to air-breathing hypersonic vehicles, the shotthfiguration is relatively sim-
ple and CFD codes can be readily applied. The added complaixg#cramjet operation
means the accurate representation of flow features, toeensderstanding of the vehicle
performances, continues to be an area of research.

Additional vehicle operating complexity arises from thglly nonlinear nature of
its operation. Nonlinearities appear in the vehicle dyranaind the aerodynamic char-
acteristics through dependencies with angle of attacktfligndition, fuel setting, and
elevator position. Following a conventional approach totoa design, the vehicle be-
haviour would be represented as a linearized model and tasaljools used to design
the control system. If necessary the system parameterscgmibkcparameters would be
“scheduled” [180] along the flight trajectory, with flightespd and altitude being probable
reference variables. Working against this approach in yipetsonic regime is the broad
operation range, rapid variations in aerodynamic respaitbechanging flight condition,
and the need for numerous indices such as Mach number, ahgteack, altitude, and
dynamic pressure, to schedule the system behaviour. Sysialimearities also place a
greater importance on the modelling of the system behayaurontrol design. Fewer
simplifications are appropriate for the dynamics and prsigalmodels if a reasonable
representation of system performance is expected.

The combination of sensor requirements, actuator desygtemm uncertainty, and the
extreme operating environment, has the potential to makeeak the practical applica-
tion of the scramjet engine to hypersonic flight. It is a coxpmulti-dimensional task
where isolation of components for analysis is generallypuassible, and an integrated
approach to trajectory, control, airframe, and propulssomecessary. The aviator philos-
ophy so deservedly revered by Lilienthal and the Wright liieod has been transformed
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by the restriction of testing to experimental facilitieslasomputerized numerical simula-
tions. Though full-scale testing is possible with numdraades, real flight tests remain
desirable for the gradual buildup to full-scale vehiclergpien. The prohibitive costs of
tests with full-scale models mean scaled down versions asdkmerica’s Hyper-X will
require thorough exploration. The combination of exteasivb-scale simulation experi-
ments with CFD is necessary for avoiding the scaling proslesnich thwarted Langley’s
efforts towards powered flight.

Considering the broad range of issues influencing contrsigtleand performance,
the results of this thesis have been based on the more tedtpgmoblem of longitudinal
control of a scramjet powered, hypersonic concept vehidMe are not in a position
to examine the complete operational characteristics. Bldhe purpose of this thesis
to demonstrate through simulation, the successful sixedsional operation of a real
scramjet launcher concept. Rather, the purpose is to igagstthe application of some
“intelligence based” techniques to the design of a hypecsitight controller. The field
of artificial intelligence has developed ways of dealingwvatvery wide range of system
uncertainties, non-linear systems, and many degreeseafdra, in the same manner that
human intelligence has shown this ability.

1.5 Thesis Outline

The primary motivation for this thesis was the opportundyatidress the flight control
challenge presented by air-breathing hypersonic flighhpugh intelligence modelling
and novel optimization techniques. Towards this, the aifisis thesis were:

e To develop a numerical system model to describe the aeraugnpropulsive, and
physical properties of a scramjet powered launch vehiakeept, operating in the
hypersonic flow regime.

e To develop a simulation program for the dynamic simulatibeantrolled hyper-
sonic flight about a spherical, rotating Earth. This is thedaf performance anal-
ysis used for the control design, and contrasts with the eminonal use of linear
models or look-up tables.

e Assemble a real-coded genetic algorithm for the optimazedif arbitrary functions.

¢ To investigate the use of genetic algorithms in designinglbaist fuzzy logic con-
troller using a benchmark problem as a test case. This besréhrontrol problem
is presented in a separate technical report [17].

¢ To demonstrate the evolution of a robust flight control fimrtfor a scramjet pow-
ered vehicle using full-nonlinear flight simulations as a@enance measure.
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e To evaluate the performance of the longitudinal autopiiodtigh a full hypersonic
trajectory flight simulation.

The organization of the thesis is described by the followisig

Chapter 2. Provides a review of developments in flight control, patacy those being
applied to hypersonic air-breathing flight. A formal intrardion to the autopilot design
used for this thesis is also presented.

Chapter 3. Discusses the flight simulation package used for the desigraaalysis of
the flight control laws. Attention is paid to the geometri@sification of the scramjet
powered vehicle concept, aerodynamic and propulsive nraglehass properties specifi-
cation, and the provision of a flight response history thiotige integration of the flight
dynamics model.

Chapter 4. In this chapter the control system design tools are discus&duzzy logic
controller has been used in this thesis to describe theadutrction for inner loop of the
autopilot. Fuzzy logic control represents a human basesbreag implementation of a
rule based system. An introduction to the application arsiigshepossibilities is provided.
The second major component of this chapter is the controgddeol. Here a genetic
algorithm is introduced as a powerful optimization tool Fegh order, highly nonlinear,
and noisy functions. In the control design case, the objedtinction used to direct the
search is sourced from controlled flight simulations.

Chapter 5. Implementation issues for designing a robust flight coterdbr the hyper-
sonic scramjet are addressed. Control design is essgrdralevolution of the control
function using full non-linear flight simulations to buildféness function. A number
of techniques are used to encourage the rapid developmemtst#ble robust control
function. These include a large sampling of initial corahs to test the controller perfor-
mance, and a non-uniform objective function.

Chapter 6. Reports on the results of simulated flight control experitaéor the hyper-
sonic scramjet. The results are organized with the aim ofess$thg a series of questions
relating to the parameterization of the control functidme tlesign procedure, and the
performance of the genetic algorithm. Performance andlgyatobustness are the key
requirements of the inner-loop attitude controller, arekthare examined for a constant-
gain linear controller and a range of fuzzy control laws. sTbhapter also presents a
longitudinal guidance configuration for the purpose of o a full trajectory simula-
tion.

Chapter 7. A summary of this thesis is presented in the final chapter.c{tisions are
made relating to the major components of this thesis: veldekign and operation, the
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inner loop fuzzy controller, overall autopilot design, tenetic algorithm, and the evo-

lutionary design procedure. Some proposals and recomrtiengare also drawn from
these main areas.



CHAPTER 2

Approaches to Flight Control

Developments in flight control are driven by the continualelepment of flight tech-
nologies and the potential for disaster following cont@ilure. This combination has
placed flight control at the forefront of many advances intadntheory. For exam-
ple, the first type of adaptive controllers were designedafgplications to aircraft con-
trol problems [93, 187, 127]. Advances in overall systenfqgremrance have increased
maximum flight speeds and operation range but, simultahgbase presented vehicles
with marginal stability and exposure to more extreme andenvariable environments.
Throughout this period of improvement in propulsion systamd aircraft hardware, the
contributing factors to control failure have remained &miunmodelled effects, inade-
guate control authority, and actuator failure. The inddgancreased demands placed on
pilots have led to the evolution of flight control from a pittgpendent era to computerized
automatic control of both piloted and unpiloted vehicles.

In June of 1903, a few months prior to the maiden flight of thegWrflyer, aeronau-
tical theoretician G. H. Bryan made the following prediatio

“The problem of artificial flight is hardly likely to be solvathtil the condi-
tions of longitudinal stability of an aeroplane system hbgen reduced to a
matter of pure mathematical calculation.” Quoted in [218]ge 2.

The Wrights had clearly developed an understanding of theeiptes of flight and the
dynamic characteristics of their vehicle. By 1911, Bryad éstablished the mathematical
theory for the motion of aircraft in flight, which are essaiiyi the rigid body, six degrees
of freedom equations used today [36]. The linearizationhef équations of motion to
form perturbation equations, thus simplifying the simwlatof vehicle responses, was
also a product of Bryan.

The need for a strong analytical approach to aircraft stgfsihd control came much
later, with the extension of the flight capabilities to poattere piloting became difficult.
Classical control theory developed from this need, empigyrequency domain meth-
ods such as pole placement, root locus, and frequency resp@épplying conventional
methods relies on interpreting the system’s dynamic respdimough descriptions such
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as settling time, oscillation frequency, rise time, overhand so on. The approach is
generally most useful when dealing with single-input stagutput (SISO) systems and
linear time-invariant (LTI) systems.

The development of what is commonly referred to as moderrnrabtheory, was
based on design with a state variable model and the use oématically precise perfor-
mance functions to provide a solution for the control gaitisl]. Modern control theory
is applicable to multiple-input multiple-output (MIMO) stems, which may be linear or
nonlinear, time-invariant or time varying. Compared tossiaal control theory which
requires successive loop closure to select control gainwitivariable systems, modern
control theory allows the simultaneous determination béahtrol gains. In general, the
control element is introduced in a linear manner, with a ga@clperformance index used
to provide an algebraic equation for optimal gain design.

Though many aircraft may behave in a locally linear manter application of linear
control theory over a broad operational envelope requioesesmeans of adapting the
control gains to maintain performance over the range of fflagimditions to be encoun-
tered. Traditional flight control designs thus involve lnizing the vehicle dynamics
about several operating conditions throughout the flightelape, designing linear con-
trollers for each, and using an interpolation scheme todtée design points. “Gain
scheduling” typically follows some predetermined schedol the variation in the con-
trol gains, and is often expressed in terms of flight speedleaof attack, altitude, or
dynamic pressure. Gain scheduling is generally sufficieminsure acceptable dynamic
performance, though there are some situations where iot@asily provide acceptable
performance. These include rapid climbing and diving wattgé variations in dynamic
pressure, rapid manoeuvres involving large angles oflgtéa booster separation which
involves considerable mass change.

In cases where gain scheduling is not feasible a self-adgaptintrol system can be
implemented. The two types of adaptive systems are modelerede (direct adaptive)
and parameter-adaptive. The basic idea of an adaptiveat@ystem is the maintenance
a constant or invariant closed loop dynamic response timauighe vehicle flight range.
There was a large effort toward adaptive control researechgiuhe 1950's and 60’s,
including those by General Electric, Honeywell and MIT [14he early attraction of
adaptive control of aircraft was the promise of a universdbpilot. The Honeywell
adaptive control system was flight tested on the X-15 hypecsesearch vehicle [202],
though it was considered partially responsible for theufailof a vehicle flight test which
tragically resulted in the loss of the pilot [202, 187].

As vehicle design advances, the level of certainty asstiaith representation of
system model for the purpose of control design, is of inéngasnportance. Parametric
uncertainties describe unknown parameters in an othekmie&n model structure, such
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as that arising from linearized equations of motion. Exampicertainties include per-
formance dependency on variations in the flight environngéytamic pressure, Mach
number, angle of attack), and large configuration variati@hating to location of center
of gravity, fuel and payload, and geometric variations. #eo form of uncertainty con-
sists of unknown and unmodelled dynamic processes at hegfuéncies. These include
structural resonances and unsteady distributed aerodgsalm the application of classi-
cal control theory, gain and phase margins are used toysatisfistness of SISO systems.
Multivariable techniques such as the linear quadratic leggu (LQR), provide optimal
control strategies with guaranteed multivariable robessnproperties. Recent develop-
ments in modern control theory through the use#qf and ;. synthesis, have developed
methods of including uncertainty in the mathematical repn¢ation of the system, thus
forming “robust control” theory. The aim of robust contrslthe development of control
algorithms which guarantee a certain level of performandbe presence of uncertainties
and disturbances.

The challenges posed by hypersonic air-breathing flightessgmt a development and
application opportunity for advanced control techniquéot surprisingly then, there
have been many approaches presented as solutions to the@ighol problem: sliding
mode control, predictive control, quantitative feedbdoiary, nonlinear control, robust
control theory, stochastic optimal control, and intellige based control for example.
Contributions in some of these areas are covered in thewenrithe following section.

The work of this thesis centres on the application of an dimhary design approach,
whereby the control parameters are evolved according tpehfermance of simulated,
nonlinear, controlled flight responses. With a fuzzy caifgrgerforming the active stabi-
lization of the vehicle, the control design procedure isdfively a search for knowledge
process. Performance and stability robustness are dexlop exposing the design to
the full range of hypersonic flight conditions, and by représg parametric uncertainty
and disturbance through randomized variations.

The remainder of this chapter provides a review of inteamati efforts towards hy-
personic vehicle control, followed by an introduction topesific autopilot configuration
and its evolutionary design.

2.1 Developments in Hypersonic Flight Control

Despite the relatively unproven concept of hypersonibesathing flight, there have been
many contributions to the hypersonic flight control problefirhe interest is driven by
the challenges posed by hypersonic air-breathing flighterea in Chapter 1, and the
desire for control theory not to be trailing the developmaiftight hardware. The high
performance of the first jet aircraft stepped ahead of stalaihd control technology [2],
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as did the first supersonic flight, where the difference betwsuccess and failure was
getting the elevators to work.

In terms of hypersonic flight control design, the challengeserated are twofold.
The first relates to the flight constraints of a highly nordineme-varying vehicle perfor-
mance and the second is due to the degree of uncertainty petfmance of airframe,
propulsive and control components. The common theme andegslopments in con-
trol theory is therefore the optimal design of a robust caliér. Another recognized
feature is the integration of guidance and control [192,, P&}, due to the coupling of
airframe and propulsion systems and the the sensitivityott o the flight conditions
and vehicle attitude. The following reviews some of the gbntions to hypersonic air-
breathing flight from the past decade, under the headingstelfigent control, adaptive
control, stochastic robustness and parameter tuningivauiitble robust control, optimal
control, fuzzy control and hypersonic maneuvering.

2.1.1 Robust Intelligent Control

Chamitoff’s thesis [39] applied “intelligent” optimizatn methods to the development of
a robust predictive flight control strategy. The flight cohtvas formulated as receding
horizon optimal control problem, which provides stableckiag of a desired trajectory.
Lyapunov stability was combined with an enhancédptimization algorithm, to search
through possible short term trajectories. With the indasof parametric uncertainty,
a robust control solution can be obtained by minimizing thestcase tracking error.
The performance of candidate solutions was assessed byasimguthe full nonlinear
dynamics, which incorporate vehicle constraints and patamuncertainty. Due to the
emphasis on the development and analysis of the trajecboityat system, an appropriate
inner-loop feedback is assumed for the rejection of highQuemcy disturbances while
tracking the outer-loop commands. The results clearly sth@\benefits of a multi-step
trajectory prediction compared to a single step optimatratier. A feature of the work
was the development of a simulation environment for reprisg the dynamic behaviour
of the vehicle.

2.1.2 Adaptive Control

The two forms of adaptive control referred to here are thedahling of control gains
with respect to the flight condition and the vehicle attit{is{2], and the adaption of con-
troller parameters using model reference adaptive cofits®]. With the proven success
of gain scheduling in flight control, it is not that surprigithat, for the first flight testing
of a flight style hypersonic air-breathing vehicle [79, 13Z], a gain scheduled controller
has been adopted. The flight control laws for NASA’s Hyper-e6Barch Vehicle are re-
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quired for stage separation, maintenance of the designtcmmduring the engine tests,
and a controlled descent. Conventional longitudinal amerdh control loops are used
with guidance commands and sensor feedbacks combiningierage aerodynamic sur-
face commands. For the longitudinal control law, angle tdckt and pitch rate are used
to derive a symmetric command for the all-moving wing. Thetoal laws were designed
using classical linear control design techniques with liee#t gains scheduled with angle
of attack, Mach number, and dynamic pressure. Robustnedgsanincluded full non-
linear simulations of numerous parametric arrangemenisyws Monte Carlo analysis.
Stability analysis concluded that gain and phase margine wéhin guidelines. With
the spectacular failure of the booster elevators in a reftight test [199], it remains to
be seen whether the flight control developed for the hypérgmtion of the flight test is
successful.

Another form of adaptive control is model reference ada&ptiontrol (MRAC), where
the feedback element is based on matching the vehicle peaftoe with that of a ref-
erence model. A paper published by Mooij [158], provides merical investigation of
MRAC for a hypersonic aircraft. The vehicle model is the vedegcone configuration,
representing a generic accelerator vehicle. [196]. Thetdete of aerodynamic properties
for the accelerator vehicle has been widely used in contwmliss [225, 145]. For the
reference model, a linearized model of the rotational dyinamwas used, following the
assumption that the translational motion has no influende@rotational model. Itis in-
teresting that the vehicle is described by nonlinear dffiéial equations, yet the adaptive
algorithm assumes a linear time-invariant system. Themrdsis a stability requirement
that the controlled nonlinear system is almost strictlyspas Though the fundamen-
tal design of the MRAC control system is relatively easyréhare many control design
parameters, of which quite a number are configured in a tn@dlearor process.

2.1.3 Stochastic Robustness and Parameter Tuning

Stochastic robustness [178] characterizes a compensatemns of the probability that
the closed loop system will have unacceptable behaviounvgbjected to parametric
uncertainties. The stability and performance metrics tsetlicate the system behaviour
can include classical and frequency domain metrics, suchoasd loop eigenvalues for
stability of the locally linearized system, settling timend overshoot. Since the scalar
robustness cost function is simply a weighted sum of indialdehaviour probabilities,
it is also possible to include bounds on the operating epvaia actuator constraints as
performance metrics.

Marrison and Stengel [145] combined Monte Carlo evaluadiot genetic algorithms
to design robust, linear-quadratic control parametengedéent on a stochastic cost func-
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tion. Monte Carlo evaluation allows a finite set of samplesrahe expected system
parameter space, thus providing a practical method for stiemation of the behaviour
probabilities and cost functions. The subsequent comiputtpenalty of the large num-
ber of Monte Carlo evaluations to design the controller carrdduced by an efficient
search procedure such as that provided by genetic algaitbangitudinal flight dynam-
ics were modelled using aerodynamic coefficients from thegeudl-cone configuration
model of [196], with 28 uncertain parameters, each basedmormal probability den-
sity function. Aerodynamic coefficients and air data arerpolated from lookup up
tables or spline fits, to data around the nominal cruisingdg@mm. Their stochastic ro-
bustness analysis was also used to design robust compentata benchmark control
problem [144], and through stochastic robustness analysed to compare the robust-
ness of compensators designed by different groups [21@.approach appears to be an
effective basis for flight control design and analysis yespite the large number of un-
certainty parameters, the system features are limiteddogdmplexity available with the
winged-cone data. Another limitation of the analysis id tih@ uncertainty parameters
appear to be applied as constants throughout each simuta@d rather than carrying
frequency components according to the physical natureefititertainty. As with any
multi-objective optimization problems, care must be aftat to the specification of the
weights used for each performance metric.

Continuing the work on flight control by Marrison and Stengslthe contribution
from Wang and Stengel [225]. Here control laws based on nealidynamic inversion
of the aircraft model are developed with stochastic robesgn Apart from the dynamic
inversion aspect, the work follows directly that coveredbgrrison and Stengel in Ref-
erence [145]. To characterize the system robustness, dhalpility of instability and the
probabilities of violations of 39 performance metrics asedl

Research motivated by the development program for the BXopapanese reentry
space vehicle has applied the stochastic robust analysieodseestablished by Ray and
Stengel [178], in the form of a stochastic parameter tunirghod [157]. More than
100 uncertain properties were modelled, with the perforreamnalysis based on landing
performance requirements. The parameter optimizatiobleno is characterized by a
noisy performance index which can be computationally egperto evaluate, and by the
potential for many adjustable design parameters. A meskitig technique was adopted
as the optimization algorithm, citing its reliability anffieiency. However with the mean-
tracking technique being equivalent to gradient-basedhous, the solution returned may
not be the global optimum. The authors advocate the use wildited computation for
the Monte Carlo flight simulation and have developed pdratenputing software for
the implementation of the design over a TCP/IP network matoThey also envisage
the application of the stochastic parameter tuning methadmbination with advanced
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robust control theory and design methods.

2.1.4 Multivariable Robust Control

Though all the hypersonic flight control developments haai$ed on robustness, this
section refers to the application of advances in modernrabtiteory in the direction of
multivariable robust control techniques usif, and u-synthesis techniques. Because
the literature on these techniques has become very largalm/past few years, readers
interested in the development and applicatiotigf andu-synthesis are directed toward
the review references [62, 61, 163, 220, 37]. The objectivéiQ control is to find
the compensator transfer function matrix such tkgt norm of the closed-loop transfer
function is minimized. H,, theory does not take into account the possible structure in
the uncertainty, and may therefore lead to conservativeaitgrs unable to satisfy per-
formance measuresu-synthesis allows the introduction of uncertainty struetin the
controller design process.

The vehicle configurations tested include both the hypécsonise aircraft [10] and
the winged-cone accelerator configuration [91, 38]. Thasbfas the synthesis of the
controllers is a linear time-invariant system model whiomgequently means the anal-
ysis point is generally an equilibrium condition (as oppgbs® one where the vehicle is
accelerating) or has some steady state flight condition.g@yeet al. [91], using the
winged-cone model with an updated propulsion model, remtesl the time varying pa-
rameters by a multiplicative uncertainty for the system gipallowing the linear system
to be considered time invariant over some interval. Forrtingial application of robust
control theory to the problem, the structured uncertaiefyrésenting parameter varia-
tion with time, was described for elevator effectivenesd furel flow rate. Atmospheric
turbulence and signal noise were also included in the dedigre controller.

Buschek and Calise [38] have developed a fixed-order desegtingy with mixed
real/complex uncertainties. To reduce the conservatisithendesign procedure, @a
synthesis method is used, providing an iterative procedurere theH,, design is a
subproblem in the mixeg-synthesis procedure. The hypersonic vehicle model was the
winged-cone configuration of [196], with the linear modehfigured for a trimmed, ac-
celerated flight condition. A limitation of the source dasahat the propulsion system
model does not include sensitivity to angle of attack vaores. Following the same rea-
soning as Gregoret al., the inclusion of signal noise is not simple for realistiansar
data, but the application df,, theory to output feedback problems requires the corrup-
tion of all measurement signals by noise. Performance thatsio angle of attack is
represented by parametric uncertainty in the pitching nrareensitivity to angle of at-
tack variations. It was included in the system model throagicalar perturbation to the
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nominal model. There was also an attempt to represent tegehaodes of the vehicle,
by introducing uncertainty in the rigid-body behaviour.tie results presented, the con-
trollers demonstrated robustness to atmospheric turbelland a worst-case disturbance
model. However, due to the linear nature of the control sgsit) gain scheduling would
be required for the different flight conditions. Anotherrsfgcant result was the illustra-
tion of the general superiority of the fixed-order desigrtegue over the order reduction
approach which had previously being used to reduce the ofdEr, controllers. Since
the fixed order controller synthesis requires a numerieahiive approach to defining the
optimal design, the potential for numerical ill-conditing for large systems led to the
suggestion that alternative numerical approaches suclerastig algorithms and simu-
lated annealing may be useful.

Chavez and Schmidt [41] have also reported on the applicafionultivariable con-
trol robustness, but the focus was on the modelling of uac#st with underlying physics
of the real system in mind. Three forms of uncertainty aresered: real parameter,
unstructured, and structured uncertainty. Multivariaioleustness analysis requires the
representation of uncertainty as some combination of stred uncertainty (allowing
specific sources to be identified and represented) and ehsted uncertainty (where el-
ements are arbitrary, mutually independent, and compR&presenting the uncertainty
in a feedback system allows augmentation of the system xnakthe application of the
generalized Nyquist theory [137] to establish stabilityustness produces a conservative
inequality criteria, which can be mitigated if the actuatertainty has some structure.
Chavez and Schmidt used a generic hypersonic vehicle sitildne X-30, which was
the predecessor to the Hyper-X project. The model inclugeslastic degree of freedom,
the neglect of which was shown to be not justified. The aeradya, propulsive, and
structural models where described analytically in the fofrstability derivatives which
are nonlinear functions of vehicle geometry and mass pti@seatmospheric pressure,
structural-vibration mode shapes, and flight number [40].

2.1.5 Optimal Control

In addition to an emphasis on robust control, all the corapplications also fall under
the umbrella of optimal control. The original format of apal control in modern control
theory was the derivation of the optimal feedback law usimgglinear quadratic regulator
(LQR). McLean and Zaludin [149] applied LQR theory to desamnoptimal feedback
control law robust to modelling uncertainties in the aifcdynamics. A linear quadratic
Gaussian regulator solution was considered unnecessariodhe assumption of negli-
gible atmospheric turbulence. The complexity ofidr controller was also considered
unnecessary, due to the resulting high order controlleclwmakes it difficult to assure
the degree of controller reliability necessary to ensuabibty. Analysis was based on a
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linear state equation for the longitudinal motion whiclgnirinspection of the eigenval-
ues, was both statically and dynamically unstable. In amdito ensuring stability, the
controller design would need to limit the change in anglettdck due to the coupling
between the aerodynamics and propulsion systems. Sonteadtiflying qualities were
qguantified in relation to the pitch, height, and speed respsn The main focus of the
work presented was to address the difficulty associatedassgigning the state and con-
trol weighting matrices. Their approach was to determieestate weighting matrix based
on matching the closed-loop eigenvalues with a predefinedibe linear state equation
describing the longitudinal motion of the hypothetical Bygonic transport aircraft was
based on the mathematical model defined in [40], with the stattor representing small
perturbations about an equilibrium condition and includadables for flexible mode.
A single altitude response simulation was plotted, shoveingry slow height response
generated by very small angle of attack and pitch angles.

2.1.6 Fuzzy Control

Fuzzy control is seemingly well suited to the hypersonictaamproblem due its robust-
ness to variations in the vehicle performance, and the dltgaif describing a nonlinear
control law [131]. There have been many proposals for thdiegifn of fuzzy logic
based guidance and control, including conventional priogaal derivative control, adap-
tive control, sliding mode control, hierarchical systemgtimal control, and fuzzy gain
scheduling [135].

There have been limited studies on the application of funngrol to hypersonic flight
control. Christian [43] reported the application of a fuzagic controller for the regula-
tion of the acceleration of a hypersonic interceptor. Adineed longitudinal dynamics
model was used with the aerodynamic coefficients defined bjimear functions of an-
gle of attack, providing an unstable airframe. The primasjeotive of the study was the
design of a broad range fuzzy controller to express the tlheusl as a function of accel-
eration error and pitch rate. It appears that the rules weueistically determined. That
the controller was so effective is probably a reflection efshmple system model used in
the analysis. With the addition of an adaptive scheme basetianging the membership
functions, the acceleration response showed considemamlestness to large changes in
the aerodynamic parameters.

A Sanger-type hypersonic transporter was the study vefoclan application of fuzzy
logic based flight control by Zhoet al. [244]. The purpose of the controller was to
provide longitudinal stability and attitude command triagk The flight characteristics
were defined through the longitudinal linearized equatwingmotion about a horizontal
reference flight condition, with elevator deflection angsetiae control variable. Four
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reference flight conditions were used, the two hypersonmditimns possessing short-
period modes which were dynamically unstable. Angle ofciattand pitch rate were
used as inputs, and the rule base was developed according behaviour of a human
pilot. Simulated angle of attack responses depicted a fabbeicomparison between the
fuzzy controller and standard linear proportional-daneafeedback control system, and
showed the robustness of the fuzzy controller to variatiarthe flight condition. The
superiority of the fuzzy control law in this case is attriole to the non-linear control
law which was generated by localized manipulation of thermbsurface.

2.1.7 Hypersonic Maneuvering

Maneuvering in hypersonic flight is significantly affectedlny the operating constraints
of the vehicle and high speed flight effects such as centlfugjief, requiring a non-
zero normal load factor required to maintain a constantualéi. This was one of the
conclusions drawn by Raney and Lallman [176] while addressi control concept for
maneuvering in hypersonic flight. The overall control sgst®nsisted of outer loop con-
trols to track guidance commands and reject disturbaneesy iloop controls to provide
stability augmentation and a resolver to communicate betvibe two loops by trans-
lating acceleration commands to a normal load factor andn& bagle. Lateral flight
simulation experiments of the resolver concept were peréar with the winged-cone
configuration [196], trimmed at several Mach numbers for @stant dynamic pressure.
Angle-of-attack commands were limited €).4° about the trim value, representing the
performance degradation likely with small angle of attaekiyrbations. The assumption
of perfect angle-of-attack control and negligible propudsand aerodynamic variations
with angle-of-attack could be expected to make real fliggdngonic maneuvering con-
siderably more difficult.

2.2 A Longitudinal Autopilot for Hypersonic Flight

In Chapter 1, the demands of flight control for the hypersangzlerator where discussed.
The inherently unstable vehicle operates over a large feghtlope for which there is
significant uncertainty over all facets of its performanied the environmentin which it is
traveling. It exhibits non-linear behaviour on account effprmance variation with flight
condition and altitude, and also due to non-linear flightaiyics. The principal aim of
this thesis is the production of an autopilot for the airathéng hypersonic stage of a small
launch vehicle concept with an emphasis on inner-loop otlatr The objectives of the
autopilot are to provide robustness of stability and traglkperformance over the entire
hypersonic regime, subject to the presence of modellinguainty and disturbances;
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and to satisfy operational constraints represented bydion the vehicle attitude, flight
envelope, and actuator limits.

The block diagram shown in Figure 2.1 represents a conveltiongitudinal autopi-
lot structure. The overall control system consists of twomsabsections: (i) an outer
loop guidance system which provides trajectory mainteaamd (ii) an inner loop sta-
bility augmentation and attitude controller for the trawkiof guidance commands and
the rejection of disturbances. Each of the major blocks tiduced in the following
sections.

Desired
Trajectory
A4
Longitudinal Xet) e(t) Longjtudinal u(t) X(t)
Guidance Attitude > HABV >
System Dy Y Control
PO X(t)
X(t)
')?(t) Sensor X(t)
Noise

Figure 2.1: Longitudinal autopilot for the hypersonic air-breathirghicle.

Hypersonic Air-Breathing Vehicle Model, (HABV):

The vehicle concept considered in this study is represeatat an axisymmetric scram-
jet powered accelerator stage of a small scale launch eebartfiguration [194, 113].
Aerodynamic and propulsive modelling has been confined eohifpersonic operation
of the vehicle. A full description of the hypersonic vehidenfiguration and its flight
simulation is provided in Chapter 3.

A simplification for the purpose of aerodynamic and propdsinalysis describes the
flow paths as two-dimensional ducts. The six degree-ofdfsaerigid-body motion of the
vehicle is described about a spherical, rotating Earthhbynonlinear set of differential
equations describing the vehicle state dynamics:

= f(z, F(t,z,A,d),M(t,x,A,d)) (2.1)

The force FF and momentM vectors are evaluated from surface pressure distributions
along the exposed vehicle surfaces, arising from aerodinana propulsive effects. A
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numerical simulation of the vehicle’s aerodynamic and ptsige behaviour describes
the internal and external flow processing in terms of the apheric flight conditions, the
vehicle geometry, the orientation of the vehicle, and thetrab actuator position. Para-
metric performance uncertaintyh, provides a stochastic time history of perturbations
in the propulsive performance, mass properties, contfec#feness, and atmospheric
conditions. Atmospheric turbulence provides a disturbanputd = [Au, Aw], where
Au andAw representative additive longitudinal and vertical tudmde velocities respec-
tively. Though aeroelastic effects can have a significaffu@mce on the vehicle perfor-
mance, they have not been considered in this analysis.

The vehicle state, combines the vehicle position, attitude, angular veiesjttrans-
lational velocities, mass, and control settings,

x=[R,u, N\, 1,0,0),(p,qr), (uv,w),m, (e, Occms VU, yL)]T ) (2.2)

The inclusion of altitude in the state vector accounts fadgents in the atmospheric
properties and gravity. Longitudinal flight control reli@s the symmetric action of a rear
wing-elevator combination, appearing in the state vectoama elevator anglé.. Fuel
input settingsy, ), for the two scramjet engine modules, are included in thécleh
state description to account for the mass loss and subsegaeations in the vehicle
mass properties. The subscripts U and L refer to the uppetcavet engine modules
respectively.

For control design, it is common practice to simplify the natd dynamics by lin-
earizing the differential equations. This is generally elby retaining only the first-order
terms from the Taylor series expansion of the non-lineaagqguas of motion, relative to
a non-equilibrium or steady-state flight condition. If thentroller design is based on
linear time invariant analysis, special care must be takiémtive time varying aspects of
the vehicle operation. In robust control analysis, parameariations with time can be
accounted for by augmenting the system model using a muhiple uncertainty [91],
such that the linear system can be considered time invamartsome interval and LTI
control design can be used. In the present study, contrgjmés not reliant on such a
conventional representation of the vehicle. Instead, gllenbn-linear model is used to
configure the controller such that simulated flight respsmgade the development of an
optimal control law.

Desired Trajectory:

Operation of the hypersonic scramjet depends on maintathmvehicle within a narrow
flight envelope. Trajectory planning and maintenance is tharitical feature of the flight
plan and autopilot role. The desired flight path may be salficen ana priori solution
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to a global optimization problem to provide, for examplegamminimum fuel trajectory,

or it may be computed on-line during flight as a means to pesgichultaneous mainte-
nance of optimal engine performance and vehicle attitudieature of many hypersonic
control studies is the development of an integrated trajgananagement and control
strategy [192, 191, 96].

Conventional launch trajectories are often expressedigiira time history of velocity
and altitude, so that stage separation can be schedulekislfotm, the role of longitu-
dinal guidance is the simultaneous tracking of altitude ipgaling the flight path angle
and the tracking of flight velocity via throttle control. Tenbased trajectory management
for the hypersonic air-breathing vehicle is inappropri&iae to the likely marginal thrust
capabilities of the vehicle, its operation as an accelenagtage relies on the maintenance
of optimal inlet conditions and maximal fuel settings. Simtynamic pressure constraints
bound the hypersonic flight regime, a constant dynamic pressajectory is generally
considered desirable. There are alternative specificatguch as a constant climb rate,
constantpl” which roughly corresponds to constant thrust, const&itt corresponding
to constant aerodynamic pressure, andV2"/2 corresponding to constant aerodynamic
heating rate [194]. In this thesis, a constant dynamic presg., = %poovfo) trajec-
tory is used to provide the nominal flight path as a mappingebbaity versus altitude,
hret = f(g, Vo). The role of the autopilot is therefore to be at the corretituale for
the flight velocity. Since the vehicle configuration usedhis tstudy does not support
differential throttling for stability augmentation, thele of thrust modulation as a control
variable is effectively removed. The constant dynamic §ues trajectory is plotted in
Figure 2.2 forq,, = 188 kPa. The flight profile describes an acceleration from 25@0 m/
at 22.4 km altitude to 4900 m/s at an altitude of 31 km. It déssra gradual climb which
allows sustained scramjet operation in the narrow airthieg corridor. The “desired tra-
jectory” block in Figure 2.1 takes the flight velocity andrégvely solves for the altitude,
with reference to a standard atmosphere model. More detdli@atmosphere model is
provided at the end of Chapter 3.

An estimation of the instantaneous trimmed condition is @iovided as part of the
trajectory data, though not strictly written in terms of thght path. The trimmed condi-
tion for the elevator is expressed as a function of angletathty, using a least squares
fit to the trim variation across the trajectory. Trimmed flignas been described by the
elevator position which provides a zero net pitching monwnthe vehicle. This state
is not a steady-state flight condition, as an imbalanceddifte will rapidly disturb the
trim condition. Using the vehicle configuration defined inapter 3, the trim equation is
written as the following polynomial approximation, withetlangles defined in radians.

Oerim(ct) = —117.40° 4 0.1091a” + 2.078a — 0.0033 (2.3)
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Figure 2.2: Hypersonic flight trajectory for a constant dynamic preesyy = 188kPa. The
Mach number profile assumes a standard atmosphere, destriSection 3.6.

Figure 2.3 shows a sampling of the source data for the abgwegsion. Each dashed
line represents the variation of the trim elevator positiensus angle of attack, for a
specific flight condition. The thick solid line representsuBtion 2.3. A consequence
of the estimated trim condition being used by the controtesys is a requirement of the
controller to be robust against trim uncertainty. Vehictfprmance variation will also

contribute to errors in the trim estimate.

Longitudinal Guidance System(Outer loop):

Tracking the desired trajectory is the role of the longihadiguidance system. The guid-
ance law generates an angle of attack commaggl, for the longitudinal attitude con-
troller. It is based on the altitude errbg, and climb rate errohe,,, such that

Qemd = FG(herra herr)- (2-4)

Rather than having a preset nominal climb rate, the referenadition is estimated ac-
cording to the current acceleration performance of thealehwith the assumption that
the nominal trajectory is being followed. For simplicitycanstant gain guidance law
is used with a bandwidth that provides the inner loop witHiskint time to trim the
vehicle. The proportional and derivative guidance gaimscanfigured to optimize the
trajectory tracking performance. To be compatible withd¢apabilities of the inner loop,
the guidance command and equivalent attitude error arecooy3°.
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Figure 2.3: Variation in the elevator trim condition across the hypaisdlight envelope. Each
dashed line represents a flight condition selected fromdhestant dynamic pressure flight trajec-
tory. The solid line describes the approximation used byatitepilot.

Longitudinal Attitude Control (Inner loop):

Closed loop stability and attitude control is provided byoalmear feedback control law.
It expresses a functional relationship between a subséeoféhicle state relative to the
guidance commands, and the actuation command for the symrettvators. Due to

the nozzle configuration used in this study, differentiabtting of the engines for the

purpose of stability augmentation or attitude control, & a practical option. Results
in Chapter 6 use both a linear constant gain feedback ctertrahd a fuzzy rule base
controller to express the elevator control law. Each cdletracan represented by the
functional relationship,

Ue = Fatt(aem 97 ee,err)a (2-5)

where the inputs are angle of attack errag.{), pitch rate { = 6), and the elevator trim
error @eer). It is assumed that accurate full state information islate. In the Hyper-X
testing program [52], an inertial measurement unit is ugesupply accurate angle of
attack data at a high bandwidth. Flush air data systems soéaing considered, relying
on accurate flow simulations to provide a functional relagltp between the pressure
differential amongst surface pressure ports and angldaxdlat

The control commandy,, describes the actuation rate for the symmetric rear wing-
elevator combination, which is the only active stabiliaatand control device. Though
there is no strict constraint applied to the steady-stditidé¢ error during the design, a
component of the objective function is the minimization o€ settled response error. It
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is expected that the longitudinal attitude controller ble ab maintain an angle of attack
error less than 0.5 degrees. With the assumption thatahemgasurements are available
for specifying the vehicle angle of attack, perturbatiomsf atmospheric turbulence are
not included in the control input signal. The turbulencenisaduced into the simulation
as a freestream disturbance rather than additive noisadardntrol input.

2.3 Evolutionary Design for Robust Flight Control

As mentioned earlier, the basis of the control design amprégto use simulated flight

responses to guide a parameter optimization procedure basie structure of the con-

trollers is predetermined, see Chapters 4 and 5, and thepaemmeters are then op-
timized by a genetic algorithm, so that the simulated flighgponses for a variety of

initial conditions display desirable properties, such @wglterm stability, fast settling,

disturbance rejection and broad range performance. Thetigexigorithm is a zero-order

search procedure, where the only information used to dinectearch process is a perfor-
mance measure, referred to as the objective function, ctedfrom a set of simulations.

Though the design procedure is essentially a brute forceaph, it has been configured,
in terms of the controller structure, the search algoritang the adaptive performance
measure, to moderate the computation time required.

There are a number of advantages to designing the contrifleran optimization
tool and a performance metric abstracted from the randomyubed flight responses.
Firstly, it relieves a common issue faced by many controigfeapproaches, namely rep-
resenting the vehicle mathematically in an appropriatsafofhe accuracy of the model
is a function of available computing power and the knowledféhe vehicle physical
properties and the processes governing the performartbey than being bound by the
structure of the control design procedure. In conventialesign theories the system is
typically assumed to be LTI and, in the case of robust cob@bry, uncertainty added
to the system to account for system nonlinearities and tanist with time. Represen-
tation of performance uncertainty is critical for the deyhent of a robust control law.
Much work in robust control theory is directed towards thealepment of compatible
structured and unstructured uncertainty models. Whenithelated flight responses are
used, the inclusion of parametric uncertainty can desc¢hibg@hysical process leading to
the variations in the vehicle performance, through theusidn of appropriate simulation
models.

Another advantage of the design approach is that the cdawalevelopmentis linked
directly to the time history responses, allowing stabiityd performance measures to be
easily quantified. The genetic algorithm does not need thgpoments of the objective
function to be the same throughout the design. They too calmewith the controller de-
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sign so that as the controlled flight responses improvejgreé@mands can be placed on
the performance of the controller. The only constraint adbjective function with the
design procedure implemented in this thesis, is that it aaed to a scalar performance
measure. Further supporting the evolutionary design piuresis the inherent robustness
to noisy objective functions. The source of the noise isdglly due to randomly sourced
uncertainty models and sensor noise, but may also be geddrgtvariation in the initial
condition set used to assess the controller performanoee $ine search is probabilistic,
a significant level of noise in the objective function can dlerated, while still allowing
the genetic algorithm to successfully configure the coréwl

Though the genetic algorithm is noted for its global seagbadbilities, it is also ex-
tremely opportunistic. Considerable care is thereforededevhen defining objective
functions, and when combining multiple and possibly cotifiggdesign objectives. How-
ever, this is a feature which must be addressed in all optoraiol theories. In problems
where noncommensurate objectives are unavoidable, ewoduy algorithms are consid-
ered to be particularly suited since a set of solutions aveqssed in parallel. One means
of dealing with such problems is to use a multi-objectiveagenalgorithm [77, 245] to
obtain Pareto-optimal solutions.

One potential problem in an iterative design approach isdahese of dimensionality”.

As the number of design parameters increases there may bganential increase in
the effort required to arrive at the solution. Though this b& mitigated by providing
some structure to the design, it is important that a largebmimaf design parameters can
be dealt with. Evolutionary based search procedures addyegpplied to problems of
high dimension, and are able to rapidly extract useful desig spite of the size of the
problem. If the absolute global minimum or maximum of a coexphulti-modal search
space is required, then the computing effort remains censide. However there are few
algorithms capable of performing well on such functions #mel notion of an efficient
search procedure is still being established.

The focus of this effort is the design of an inner-loop attéwcontroller which would
offer closed-loop vehicle stability, subject to system entainties, broad range perfor-
mance variations, disturbances, sensor noise, and seperational constraints. In the
chapters that follow, a detailed description of the majerarof the research is provided.
These include the hypersonic aerodynamics and propulsaaehing, flight simulation,
control system configuration and design, and the constmicti an evolutionary design
tool.



CHAPTER 3

Simulation of Hypersonic Flight

A fundamental step in the development of an aircraft is a me&asimulating the dynamic

behaviour of the vehicle. The aviation pioneers of the Wirigtothers era set the stan-
dard by flying model aircraft and constructing simple windrals. With well understood

propulsion units, their principal intent was the thorougkting of vehicle aerodynam-
ics and stability and control features. For the developroétiypersonic technologies,
the test flights of the X-15 aircraft allowed, amongst othends, the investigation of

materials, flight systems and vehicle control requiremente X-15 marked the first ap-
plication of hypersonic theory and wind tunnel work to aruathypersonic vehicle and,
as a simulation tool itself, was extremely productive. tilitated the transition to space
flight, leading to the space shuttle orbiter.

As flight technologies have evolved, the simulation toolgehbecome more spe-
cialized and less accessible. Today, flight access to hgperspeeds is only available
via rocket propulsion. The most familiar vehicle that regly accesses the hypersonic
regime is the space shuttle orbiter. Compared to the hyperao-breather there is a sig-
nificant gap in the operating characteristics. The shuttléogpmance differences are due
to its flight envelope, method of operation, and the vehiolefiguration. Shown in Fig-
ure 3.1, is the ascent and reentry trajectories of the ghaitihg with the ascent trajectory
for a scramjet powered vehicle. In the ascent phase of thitleshnigh Mach numbers
are reached only at high altitudes, and the severe thermgb@ssure loading of an air-
breathing vehicle are not duplicated. Reentry of the orlstas an unpowered glider and
like the Apollo reentry, the descent involves deceleratibmuch higher altitudes than
those needed for scramjet operation. The significance gfigmot minor. By example,
engineering estimates of aerodynamic heating show theceeghstagnation point heating
of a hypersonic air-breathing concept to be an order of ntadeigreater than that for
reentry heating of the shuttle [217, 6].

A further constraint to generating real flight test data & ¢bst of model production
and the supporting launch vehicle needed to reach test ttmmgli The Hyper-X test
program is a recent example of the demands of flight testingparsonic air-breathing
vehicle. It uses a Pegasus launcher, released from cardeafg to deliver the vehicle to
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Figure 3.1: Comparison of a typical ascent trajectory for a scramjetgred flight vehicle and the
ascent and reentry operation of the shuttle. The dashesl direecontours of constant freestream
dynamic pressurg = %poo V2, using the atmospheric model from U.S. Standard Atmosphere
1976 [1], and described in Section 3.6. (Source: Adaptad fieference [29])

the hypersonic conditions needed for scramjet operatibi.tést vehicle is not a simple
concept model, rather an advanced subscale (m) vehiclgrd@scorporating decades of
vehicle and engine research in the configuration. The aédacanfiguration reflects the
need for optimal airframe and engine coupling, to realizecpcal scramjet propulsion.
Hyper-X has the support of an extensive ground based simonlptogram [151, 222, 66]
which has allowed stability and control aspects to be wektdshed. While a flight
test program such as Hyper-X is not realizable for the migjofi research groups, there
is potential in less ambitious flight test projects whicht @mplified vehicle concepts
or simple engine units attached to rocket launchers. We hheady seen a number
of programs of this nature: the X-15 rocket plane with anyaxisietric scramjet [45],
Russian axisymmetric tests [120, 100], and the HyShot regfrpm [170].

An implication of the divide between hypersonic rocketrg air-breathing hyperson-
ics is a shift in the approach to vehicle design and analybicles such as the shuttle
orbiter and reentry probes have a relatively simple gegnmefposed to the flow, in con-
trast to the complex internal and external flow structurea stramjet powered vehicle.
Integration of the engine with the airframe also means thldivision between aerody-
namics and propulsion does not exist. Without the benefitmilarly performing vehi-
cles, hypersonic air-breathing development has focusepammd-based testing facilities
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and the exploitation of computational modelling. Thesecamplementary technologies
as experimental facilities help validate computer modetsia return, computer models
aid the understanding of flow interactions observed in erpents.

Presently, impulse facilities such as shock tunnels andresipn tunnels [212, 5], are
the most effective method of experimentally reproducirggftbw conditions experienced
by a scramjet. These facilities are capable of reproducoty the high temperatures
and high pressures of hypersonic flight. The trade-off fpreduction of the hypersonic
flight condition are short test times, of the order of 0.1 t6 frillliseconds. Experimenters
must also contend with uncertainty in flow quality, a hoggigting environment, a limited
testing range, scaling issues resulting from matching flevperties with a subscale flight
model, long turn-around times, and the still developingadsigies of flow and force
measurement techniques.

Computational modelling avoids many of the constraintsasgul on experimentalists.
Provided the computing power is available, detailed flowysis of complex geometries
is possible over the entire hypersonic trajectory. It i®glsessible to conduct flight dy-
namics simulations with numerical vehicle models or encpirperformance data. The
primary limitations of a computational approach is the kllity of sufficient computing
power for accurate simulation in a reasonable time scakbtt@accuracy (and/or com-
pleteness) of the physical models used to represent the fidvite processing features.
State of the art computation is a fully three dimensional gaa analysis of a complete
vehicle [223, 153]. However, depending on the needs of theysteduced order mod-
els [219, 12] may provide sufficient insight into the perfamae of a hypersonic vehicle.
Existing vehicles are also making use of developments irpeaational analysis. One po-
tentially fruitful area of research is the optimization eéntry vehicles. Uncertainty over
the interaction of the ablative surface of reentry vehigléh hypersonic flows, has gen-
erated over-designed configurations which limit the paséptyload return. The level of
detail available in computational fluid dynamics (CFD) hesnpoted it as a valuable tool
in the actual design of real components.

The potential of numerical analysis in aircraft design waxsdnstrated in the success-
ful development of the Pegasus launch vehicle. Pegasusesaged as a small payload
launcher through a joint venture between Orbital Sciencg@ation and the Hercules
Aerospace Company [108]. Shown in Figure 3.2, Pegasus ig®e-#tage, winged space
booster, configured for launching from a carrier aircraiitifg the development of the
vehicle apart was the sole use of computational aerodynandcfluid-dynamic meth-
ods for the purpose of aerodynamic design and analysis [1BR]ing the success of
the design approach was the relatively simple geometry evtiex propulsion system is
uncoupled from the airframe, accessible rocketry expeegand the availability of em-
pirical data from the X-15 rocket plane to validate compotal codes. A range of meth-
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ods were used, from panel methods and other relatively simpdineering approaches,
to the numerical solution of the Navier-Stokes equationapi® aerodynamic analysis
techniques were used for the majority of the configuratioith wiore computationally
expensive approaches left for localized interaction zaues as control surfaces.
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Figure 3.2: General configuration of a Pegasus vehicle - an air-launsbéd-propellant space
booster with wings - used for launching small payloads imtmto(Source: Reference [153])

Pegasus is particularly relevant to this study due to itsehggnic flight capability
and the similar target market it shares with the air-bregthauncher presented in this
thesis. After first stage burnout, Pegasus reaches Mach 8(0kan altitude, a velocity
of roughly 2.7 km/s. On the velocity-altitude map shown igl¥e 3.1, the trajectory is
similar to the shuttle ascent. Like the shuttle, the Pegasuend stage accelerates the
vehicle through the velocity range of a scramjet vehiclé aba much higher altitude.

Unlike the Pegasus vehicle, hypersonic air-breathingtfighot an extrapolation of
existing technologies. After fifty years of scramjet resbathe continuing focus of ex-
perimental studies is on component analysis, specifidadlyehgine, rather than full vehi-
cle simulation. To date, the generation of broad range padace information has been
largely in the realm of computational techniques. The eavlylution of concept geome-
tries was supported by simple computational models whildwald rapid determination
of the airframe performance. A collection of routines bagednon-interfering constant
pressure finite-element analysis” [82] were used to sapsliminary design require-
ments for drag, lift, and moment coefficients, and some obulerivatives [147, 159].
These relatively simple engineering approaches have ksshan a range of hypersonic
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vehicles including the North American X-15 and the spacdtihurhey have also found
application in air-data calibration [117] and as a compeeabol for experimental pres-
sure measurements for blunt body flows such as those aroenttyeehicles [198]. For
these cases, the application of Newtonian flow analysis§l& often suitable, as the
shock shape follows closely that of the blunt body exposethé¢oflow. The scramjet
vehicle has a propulsion system integrated with the airfram, in addition to impact
methods for the external airframe, the complete vehicleehulist also include internal
flow processing. See, for example [39].

For the purpose of this thesis, the role of the scramjet Weprerformance model is the
computation of forces and moments which, together with thesyproperties of the vehi-
cle, allow the time integration of the flight dynamics. Beagomplex function of shape
and motion, the aerodynamic and propulsive modelling datemthe development of a
numerical flight simulation. One of the approaches for emapthe vehicle operation is
the assembly of an aerodynamic, propulsion and controficagfts database. In the case
of longitudinal hypersonic flight, the database would bemdiszed with respect to flight
speed, altitude, angle of attack and actuator position. |femreative approach is to have
the aerodynamics and propulsion simulated as requireddf§igfnt dynamics integration
routine. Simulation as required offers greater flexibilityt at the expense of computation
time. Presently the time required for full vehicle simubais through CFD represents a
very large computational cost, prohibiting the fashiorafig complete system model for
a flight simulator. It is possible however, to reduce the cotatonal effort by repre-
senting the flow paths as two-dimensional or axisymmetrar. this thesis, a simplified
geometric representation of the axisymmetric scramjefigoration is considered suffi-
cient for longitudinal flight simulation and the assessnwdritight control performance.
Two-dimensional flow paths are featured, for which anafttannd quasi-numerical meth-
ods are used to represent principal flow phenomena. It isretatel that the practicality
of simplified analysis is contrary to the expected realityevehcomplex multidimensional
flow effects are exploited, however, the exercise of trying mew control design ideas
does not require such precise flow path simulation.

The remainder of this chapter details the numerical flighmtusator, built to portray
the operation of a hypersonic air-breathing launch condegptowing an introduction to
the design specifications of the aircraft, models are dgeeldo represent the physical
properties of the vehicle, hypersonic aerodynamics andysmn performance, the at-
mosphere, and the vehicle motion. Some details on the cmtisin and operation of the
longitudinal guidance and attitude control modules hawenh@ovided in Chapter 2 and
are developed further in Chapters 4 and 5.
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3.1 Simulator Overview

A numerical simulation environment called FACDS (Flightda@ontrol Design Simula-
tor) was constructed as a tool for the development and eNvatuaf control strategies for
hypersonic aircraft. Incorporated within FADS are thedwaling code modules:

e an instantaneous aerodynamics and propulsion vehicl®ermpsahce model, de-
scribed by one and two-dimensional quasi-numerical flovottles. Parametric
uncertainty is also represented by randomized pertunhatio the fuel centre of
mass, engine performance and control effectiveness.

e an environment module described by a standard atmosphetel mith turbulence
and temperature perturbations, and a variation in the [greadity with altitude.

e a dynamics and kinematics module describing rigid-bodygek of-freedom mo-
tion about a spherical, rotating Earth.

e methods for the numerical integration of the flight dynammusdel.
e control modules for the generation of guidance and innep-lmcommands.

e optimization procedures for control design, headed by agemlgorithm, and
supported by a Nelder-Mead simplex method.

Along with these primary modules there are numerous pergbheodules which, among
other things, provide performance assessment from fligie $tistories [18].

A supporting guide to the hierarchy of the simulation modugeshown in Figure 3.3.
The flight simulation component of FACDS is described by tloevftiagram shown in
Figure 3.4. FACDS integrates the dynamics of an aircraft NAB1 a discrete time
simulation, partitioned by the sampling timesteps for the@gnce loop and inner loop
control,(Atg, At). The state vectat, describes the vehicle position, orientation, attitude
rates, velocities, mass, and actuator settings,

2= (R X),(6,0,0), (.. 1), (w0, w) o, (GeBomarorn) |- BD)

Initialization of the flight simulation requires the specidfiion of the vehicle geometric
and mass properties, the initial state veatgrand the controller configuration. For each
guidance update, the trajectory module provides the tattjgide/es = f(g0, V') given
the aircraft velocity, and for this thesis, a predefineddtessam dynamic pressugg . This
information is fed into the longitudinal guidance routimégng with state data, to return
a reference attitude and a trim actuation position. Therigoatrol loop represents the
longitudinal attitude tracking and stabilization componef the flight control. Actuator
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Figure 3.3: Hierarchy of code modules for HABV simulation. Higher levdbcks make use of
information from lower level blocks.

commands are describe by a control function dependent amiljie of attack error, pitch
rate and the elevator trim errary = f (e, ¢, e ern)-

The flight dynamics are integrated between longitudinakratler updates, using a
single step integrator over the integration timesfep and working on the state vector
x. The block denoted by HABV represents a numerical simutadibthe instantaneous
aerodynamics and propulsion of the hypersonic air-bregthircraft. No timescales are
used to represent the flow processing dynamics, implyingstantaneous change in flow
structures. With each call from the integrator to evalubte dtate derivatives, HABV
generates the net forces and moments acting on the vehicédsol translates the fuel
command settinggy, v, ), into fuel flow rates which define the rate of mass loss of
the vehicle. Though simplified models have been used wit#BY, during the control
design phase the aero-propulsive modelling represents &xk& computational effort.
Other studies generally use equivalent analytical statésnef the general performance
characteristics [43], use an analytical or numerical Mehiecodel to establish a table of
aerodynamic and control derivatives [39], or schedule Eectibn of linearized models.

3.2 Scramjet Vehicle Design

The scramjet vehicle concept studied for this thesis waslaptaon of the axisymmetric
configuration investigated at The University of Queensl@gu@). In Chapter 1 the vehi-
cle was introduced as a potential acceleration stage inrelhevehicle concept for small
payloads. Figure 1.5 (page 10) showed a possible configarfr the scramjet stage, in-
corporating many of the design features which were prinlsig&olved from decades of
scramjet engine research at NASA. In particular, the engimeept features round com-
bustors, swept compression surfaces, a cut-back cowl, amduanferential distribution
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Figure 3.4: HABYV flight simulation flow diagram.
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of the engine modules around the vehicle axis of symmetrghEagine module incor-
porates a forebody-inlet region, a combustor, and a nozzlerest generating expansion
surface. Accurate representation of these features fquuh@ose of generating a numer-
ical model, is a demanding task. The inevitable computatisgimplification must be
traded against the importance of realistic engine operatinch, amongst other aspects,
will exploit multi-dimensional flow effects.

This thesis considers only the longitudinal performandbefcramjet powered stage.
Its representation as a vehicle model within the flight satnid must facilitate the cal-
culation of airframe and engine performance charactesistnd the estimation of mass
properties. The principal geometric simplification is tree wf two-dimensional flow-
paths, providing a box-section representation rather themound body associated with
an axisymmetric geometry. Importantly, the basic shapéefehicle and engine are
maintained, along with the operational dependencies otearfattack and flight con-
ditions. A fixed geometry is used with reference to a singtghflicondition, providing
the best compromise for broad range operation. Acting aseglerator, the vehicle is
generally not at the design condition, resulting in sigaificvariation in longitudinal per-
formance, dependent on the engine and airframe flow pramesSonsideration has also
been given to the description of lifting and rear stabiligsurfaces, and the positioning
of the payload and fuel, sufficient to reasonably repredenirtternal mass distribution.

3.2.1 Engine Specification

The level of integration of airframe and engine featuredcnramjet vehicle designs have,
for the axisymmetric configuration, earned the demonstditie of aflying enging105].
The implication of the extreme integration is that the eegirometry largely defines the
dimensions of the vehicle. Here, a fixed geometry scramgseribed, using a nominal
flight condition set at the high Mach number end of a typicgbdrgonic air-breathing
trajectory. This represents a compromise for propulsiveraion when performance is
required over a range of Mach numbers. According to StalRe8], the losses in net
thrust for off-design operation are less when the propalsiuct is configured using a
design Mach number at the maximum end of the range. The emigisign condition
was thus set at a flight Mach number of 15, at an altitude of 30dad with zero angle
of attack. This places the vehicle at the edge of the airtbieg corridor, customarily
defined by a dynamic pressure range of 24 to 100 kPa [105],igeeeR3.1. The design
dynamic pressure of roughly38 kPa, is recognized as exceeding the structural predictions
of the past twenty years. Favour has been afforded to engiagation, in preference
to the vehicle structural capability. Though lower dynamiessures are preferable for
designing a vehicle structure, the scramjet engine becteas®ffective.
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The key engine elements of a scramjet are the inlet, combhasto nozzle. Figure 3.5
shows the arrangement of these elements for an axisymrsetamjet. It is representa-
tive of a baseline concept where no effort has been made itmiaptthe exposed surfaces
for broad range performance. The practical need for optirbtmad range performance
can also be augmented with a variable geometry engine. ticplar, a variable inlet ge-
ometry can improve the efficiency of the inlet in capturing treestream air. Henry and
Anderson [98] showed a maximum performance increase of 1GPoawariable geome-
try. When traded off with an associated penalty due to irsgdaystem complexity and
increased weight, their conclusion was a preference fofixked inlet scramjet. Interest-
ingly, it is the three-dimensional features of the inlet ethmake a fixed inlet geometry
feasible. Three-dimensional compression reduces thealbwarning angle needed for
broad range operation, and the swept inlets shown in Fig@raidl inlet starting at low
speeds and reduce boundary layer separation from the iatiiev Variable geometry has
also been considered for the combustor and nozzle regiahg @ngine. A variable noz-
zle geometry has the added potential of acting as a contehte. It is likely, however,
that the only variable feature of the first generation sceasnyvould be through provid-
ing dual mode operation, where the engine is able to opendieth ramjet and scramjet
modes [227, 50].

1m

cowl

Figure 3.5: Geometric specification of the Mach 15 scramjet engine with-dimensional flow
paths. A compression ratio of 12.213 has been used

The purpose of the inlet is to direct the freestream flow i@ ¢ombustor, whilst
compressing the flow to a pressure and temperature desfattembustion. If struc-
tural considerations were not a factor, the most effectie¢thod of doing this would be
through isentropic compression of the freestream. ThougViging shock free compres-
sion, such an inlet is prohibited by the low structural sgténof a long sharp nose and
by excessive viscous drag and heat transfer. Practicaréypie inlet designs typically
incorporate a combination of external and internal congoesthrough oblique shocks,
thereby providing half angles large enough to allow the troiesion of structures that can
withstand the high dynamic loads. There is also a desire ntralothe inlet bow shock
with changes in angle of attack and flight Mach number, egfigaén relation to the en-
gine cowl lip [133]. The physical limitations are excessivave drag if the bow shock
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is too far away from the vehicle, excessive local heatindvwhiock impingement, and
potentially harmful shock reflections propagating throtlghengine when the bow shock
is swallowed into the cowl. Several inlet designs for thesgwimetric scramjet where
investigated by Craddock [48]. A short multi-shock inletlwa bent cowl was favoured,
due to its low drag and being the least prone to boundary legaration. This also ap-
pears to be the configuration used for the scramjet flighs fgstformed in Russia during
the 1990s, and discussed in Section 1.2.

The inlet geometry shown in Figure 3.5 is the simplest repregion of a mixed exter-
nal and internal compression system. It consists of a $traiet surface orientated &at°
to the vehicle axis of symmetry, and a cowl aligned parallel toand positioned to pro-
vide a vehicle half height of 1 m. The shock produced by thertlet wedge compresses
the freestream flow and directs it along the inlet surface.th&tdesign condition this
shock intersects the cowl leading edge and the correspgnelilected shock redirects the
flow uniformly into the combustor, with the shock being cdlezkat the upstream corner
of the combustor. The net result at the design conditionaslstiree uniform combustor
flow at a pressure of approximately one atmosphere. Thisnsidered sufficient on the
basis that, for a reasonable length combustor, the conalouisitietics are fast enough to
bring the combustion composition nearly to its equilibristate [121]. Inlet performance
away from the design point is discussed in Section 3.3.1.

A constant area combustor sits downstream of the inlethatigparallel to the vehicle
axis of symmetry. Experimental studies at The Universitfokensland [229] utilized
a 350 mm long combustor for tests on a Mach 7.6 Composite $erdnotor, figuring
this was long enough to allow near complete mixing of the fuigh the incoming air.
The length of 1 m used here, follows the recommendation byeeock [121], with
consideration to the rate of energy release from the conusuptocess for an engine
with a flight speed of Mach 15, and assuming a combustor imétqure of 1 atm. There
is an alternative view supported through numerical stuiyeSraddock [48], that a short
combustor is desirable in terms of limiting viscous lossa) the combustor and nozzle
combination providing greater net thrust. This conclusi@s also based on the use of
an axisymmetric combustor rather than the arrangementgihermodules used here.
Practical engine designs may also utilize relief througlvarding duct [50]. This is to
counter the heat addition limit before steady flow breaksrmowa constant area duct
which, for low supersonic entry conditions, means verjelitteat can be added.

Expansion of the supersonic combustion products is the amsim of thrust gen-
eration in the scramjet. This is achieved here by a stralghisurface. The cowl has
been extended axially to the extremity of the nozzle surfacenarily to simplify the
nozzle flow simulation. Practical arrangements generallyehthe cowl terminated at a
length sufficient to capture the expansion fan generatdteaipstream corner of the noz-



3.2 Scramjet Vehicle Design 49

zle. Like the inlet and combustor surfaces, significantgrenbince gains are realizable
through optimization of the expansion surface [112, 48].

3.2.2 Overall Vehicle Configuration

The engine geometry of Figure 3.5 defines the primary flowgadtessary to determine
the propulsive performance of the engine. It also desctibedasic dimensions of the
overall vehicle, in affect shaping and sizing the fuselage.complete the physical de-
scription of the vehicle, the payload and fuel is positiomethin the internal volume,
structural densities are specified, and lifting wings aradbifizing surfaces are defined.
Without access to any advanced scramjet vehicle desigissndt possible to accurately
represent the distribution of elements within the vehiEler. the structure, densities of ad-
vanced materials envisaged for hypersonic applicatiomsised. Despite the conceptual
approach, the mean vehicle density compares favourablythvt Pegasus vehicle. It is
worth repeating that assembling a practical hypersonibraiathing vehicle is not simply
a matter of adding the necessary flight components to thenengisage of the internal
volume is critical for vehicle stability, and the necessapyimization of the airframe and
propulsion system combination means the entire vehicleayspn the design equation
from the beginning. In contrast, many traditional airceaih be designed using the engine
simply as a peripheral component to be added to the fuselage.

The physical layout and properties of the scramjet poweeditle are summarized in
Figure 3.6 and Table 3.1. In most respects, the simplifinaifdhe axisymmetric vehicle
to that with two-dimensional flow paths means the vehicledated as a two-dimensional
vehicle, with the vehicle depth set to 1 m. For convenienwe, ¢oordinate frames are
used for defining the vehicle geometry. The leading edgeeiéhicle body is used as
a fixed reference for the initialization and storage of vishdimensions. Frameér,y)
as defined in Figure 3.6, also provides a fixed reference &neht centres of pressure.
These are updated relative to the vehicle centre of madse asdss of the vehicle changes
during flight. The axes$xp, z5) represent the body-fixed coordinate fradig, used in
the vehicle dynamics model. Frank& has its origin at the vehicle centre of mass, with
axes aligned along the principal inertia axes of the vehicle

Surface Description and Force Accounting:

The basic structure of the vehicle is an assemblage of umiurface elements. Their
geometry is specified by a general spatial distribution,raa,aand vectors for the centre
of area and an inward surface normal. The surface normalmanatained in terms of
(xp, zB), providing a direct translation to body axial and normaktés. For all except
the nozzle internal surfaces, a uniform surface pressuaesgmed. Since the origin of
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Sectional view of scramjet engine.

Figure 3.6: Overall physical layout of the scramjet vehicle.
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Table 3.1: Physical definition of the Mach 15 two-dimensional scramgdiicle. See Figures 3.6
and 3.5 for schematics of the vehicle assemblage.

Feature Part description Value
General Overall length. 8.246m
Vehicle height. 2m
Inert mass. 2487 kg
Maximum vehicle mass. 4972.0kg
Maximum pitch axis inertia. 11825 kgn?
Full fuel load centre of massz). 52m
Surface element density. 30.0kd/m
Inlet Leading edge locationiz, y), see Figure 3.6. (0,0)m
Ramp angle. 11°
Compression ratio, or inlet area ratio. 12.213
Combustor  Length. 1m
Combustor area, or height. 0.0819m
Nozzle Ramp angle. 20°
Upstream height. 0.0819m
Cowl Design shock angle. 14.319°
Leading edge locatioriy, y). (3.918,£1.0) m
Fuel Ethane. CyHg
Liquid density. 544 kg/nt
Heating value or energy density,. 47.484 MJ/kg-fuel
Stoichiometric mixing ratio, mass basis. 0.0624 kg-fugplédir
Nominal combustion efficiencyy./100 %. 0.75
Tank Maximum width. 1.56m
Storage capacity for ethane. 2485 kg
Nominal centre of massz]. 541m
Payload Mass, including stage 3 motor. 500 kg
Leading edge(x). 1.5m
Axial location of mass centre. +1.19m
Lifting wing Density. 25.0kg/nt
Angle of attack. 3°
Axial location. 5.794m
Area. 8.25 m?
Fore section half angle. 3°
Aft section half angle. 6°
Rear wing  Density. 25.0kg/nt
Half angle. 3°
Axial location. 8.2m
Area. 3.0n¥
Elevator Half angle. 6.0°
Axial length. 0.43m
Area. 1.5n?
Actuation limit. 20°
Acutation rate limit. 2.0rad/s
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Fz changes with fuel consumption, the centre of area vectersnaintained in terms of
(z,y), and transferred to framig as required, for the summation of element moments.

Mass Properties:

Overall, the physical properties of the vehicle are assedhbl two parts, a fixed com-
ponent containing all structural elements and fixed pergdhelements, and a variable
fuel component. This allows an initial evaluation of the iofdn components to provide
the inert values for mass, inertia, and centre of nfass,, cm)seq. INcluded in the es-

timation are the main structural elements, payload, tanHl, &l external aerodynamic
features. The vehicle mass is tracked through the fuel copsan rate, and a simple
updating procedure combines the fuel properties with tlegt ialements to provide the
overall vehicle centre of mass and inertia.

m = Miixed T Miuel
cmy = (CMiixedMiixed + CMituelMiuel) /M (3.2)
2
I, = Iixed + Tiuel + Migei(cmy — cMiyel)

Table 3.1 contains the default physical properties for theciM15 scramjet vehicle,
carrying a full fuel load. Since the fuel rate changes aldrgyflight trajectory and with
vehicle attitude, additional nominal fuel loads were defiakong the trajectory, see Chap-
ter 5. It is worth comparing the physical representatiorhefdcramjet properties to those
for the second and third stage combination of the Pegasusle¢h09]. The scramjet’s
inert mass density is double that of the Pegasus vehicleshwhay be supported by the
argument that part of the weight saving from not having toycaxidant for combus-
tion, can allow a greater empty weight to improve vehiclegedness. Overall, the mean
vehicle density is roughly equivalent to that for Pegasus.

Apart from the payload and fuel, each element of the vehgctepresented as a rigid
panel of uniform thickness, with a mass per unit area refigcthe properties of the
advanced materials that are expected to be used for suatieHhractored into the struc-
tural densities is a component associated with expectdihgaequirements, which may
take the form of ablative material or an active cooling medsra. Inertia calculations
for each structural element, including the wings and etay&bllow those for a thin plate
of uniform density, see for example [27]. Without any defabte components in the
dynamics model, elevator motion is not modelled as a cautich to the variation in
vehicle inertia or center of mass. For the fuel and payloadpmments, we assume a uni-
form distribution of their respective masses within thewoé available to them. Further,
the inertia calculation of the fuel is based on the volumeuei femaining, assuming a
constant storage density and a centre of mass fixed relatihe tank. Modelling uncer-
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tainty has been represented through a perturbation in thieecef mass of the fuel, see
Section 3.5.

Fuel and Payload:

Modern rocket propelled launch systems rely on the comimnatf highly energetic and
light propellants to achieve a high specific impulse. Forgpace shuttle this is realized
with the combination of hydrogen and oxygen. Liquid hydnogethe generally accepted
fuel for high speed applications due to its high energy dgnisigh combustion rate and
high combustion temperature. However, due to the low mddeeueight of hydrogen, ex-
ternal tanks are needed to provide the shuttle with sufficiEmage to execute the launch.
Such an arrangement is the antithesis of the integrateshefagiframe configuration of
hypersonic air-breathing vehicles. Using hydrogen fordindoreathing launcher is there-
fore generally associated with vehicle concepts large ginoo store the fuel internally.
By example, the operational concept behind the NASA Hype@rdfect, is a hydrogen
fueled vehicle of approximately 61 m in length, compared®35 m long shulttle orbiter.

On a small scale launcher like that envisaged for the axisgimascramjet, the higher
liquid density of hydrocarbons combined with reasonabkcE impulse values, make
them a suitable fuel. An additional advantage is the muclplenstorage needs than
the cryogenic storage needed for hydrogen. Because smpersonbustion timescales
are of the order of milliseconds for a combustor of length itra,critical parameters for
selection of a hydrocarbon fuel are the ignition and reactelay times at combustor
conditions [160, 104, 229]. Ethane, being the fastestiiggidf alkane hydrocarbons, has
been considered suitable for small scale launch vehicleapis [229, 160], and is used
here.

As with any aircraft, the internal mass distribution of thielf payload, and ancillary
equipment, is critical for vehicle performance. The mogtamant issue to address is the
location and variation of the vehicle centre of mass. Acurapresentation of this is
required to assess the inherent stability of the airframd,ta position and size stability
augmentation devices and lifting surfaces. For hypersaingcraft, though, the possible
configuration options are limited due to the available spaca slim airframe, where
the external surface area is necessarily minimized. Fyrthere are operational issues
relating to delivering a payload to orbit, which constrdie internal arrangement. For
the axisymmetric concept [204], final orbit insertion is egfed to be achieved through
a rocket motor and the positioning of this stage relativen® payload, as well as the
primary fuel supply, is restrictive.

The maximum cross-sectional area is used to house the fileldae Figure 3.6. This
roughly coincides with the location of the vehicle centrerafss, thereby minimizing the
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influence of fuel consumption on the rotational behaviouthefvehicle. The maximum
fuel capacity has been set at 2900 kg, providing roughly 280sds of engine operation.
Though ethane is stored as an LPG (liquefied petroleum dnsjuél tank mass uses the
approximation for cryogenic storage of 10 kg per cubic mefrpropellant [39]. Mass
not needed for cryogenics is assumed available for additiparipheral components.
Positioned forward of the fuel is the payload compartmernttvincludes the stage three
orbit insertion motor. The arrangement supports a possdaeario whereby the forebody
is disposed of before releasing the payload for the finakstdignserting into orbit.

Lifting Wings and Stabilizing Surfaces:

Wings are used here to generate enough lift to allow the leldictravel a near-level
flight trajectory at zero angle of attack, and to augment itowignal stability. To limit
the total wing area a lifting wing and rear stabilizing wing @onfigured similar to that
used for the Pegasus vehicle, shown in Figure 3.2. The sveejitdesign typical of high
speed vehicles is not reproduced since two-dimensionalgkiws are assumed through-
out the vehicle. Operating along a constant dynamic predtight trajectory, the lifting
wing requirements are relatively independent of flight sbheBhough the lift generated
decreases gradually as the vehicle accelerates and clings,is also a drop in the fuel
load. Depending on the actual trajectory followed, thetbéspossibility of a net positive
lift developing which would aid the gradual climb of the vellei. With this in mind, the
lifting wing was configured to provide sufficient lift with alf fuel load, at the low speed
end of the flight trajectory.

Figure 3.7 shows the general configuration of the wing, ddfiog the parameter
values recorded in Table 3.1. Axially, the wing is locatethgghe division between the
fore and aft sections of the wing. Tests showed the optinial prsition for a given wing
size, to be relatively independent of flight velocity, basedthe acceleration, attitude,
and altitude hold performance of the vehicle for controldixgeration. The symmetric
wedge sections are orientated relative to the vehicle batlyam angle of attack, which,
in combination with the wing surface area produces sufftdiéiio approximately match
the maximum weight flight condition.
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Figure 3.7: Lifting wing specification.

The principal stabilizing feature used in this thesis is @ neing and elevator ar-
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rangement. A number of configurations were investigatedHeir capacity to control
the vehicle. Figure 3.8 shows the arrangements and theiembaperation. In the
case where the rear wing is fixed and the elevator a wedgeeyrtfé control moment
dead zone caused by shadow cast by the rear wing, significatards the flight control
performance. To achieve stable flight the rear wedge armmagemust be prohibitively
long. The two alternatives where symmetrically operated feaps, and an all-moving
rear wing arrangement. These proved to be roughly equivadeheir flight control per-
formance. The all-moving wing allows a lower surface arehiamsed for the simulations
presented in this thesis. When sizing the rear wing surfacess noted that successful
flight control design required trim angles of roughly the saorder as the angle of attack.
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Figure 3.8: Possible arrangements for the rear wing and elevator catibim a) fixed rear wing
with an elevator wedge, b) fixed rear wing with elevator flapsimal set parallel to the wing
surface, and c) an all-moving rear wing.

3.3 Airframe and Propulsion Models

The practical realization of a scramjet powered vehiclesabn a sound understanding of
the real flow features encountered in hypersonic flight. Héghperatures, viscous effects,
boundary layer action, and three dimensional effects afeatures of hypersonic flow,
and all significantly impact on vehicle design and operatids previously mentioned,
numerical simulation of these features is very demandigiggae not without uncertainty.
The approach typically employed is to approximate the tetanathematical function
needed to obtain accurate performance characteristicglied models have been used
to provide performance insights on a range of studies, amd@rsidered sufficient for a
stability and control analysis of a concept vehicle.

An example of the level of modelling is the widely used cdilec of engineering
methods representing the Aerodynamic Preliminary Analgsistem (APAS) [159, 49,
60]. These impact-type finite element models simulate thereal aerodynamics of the
airframe, and have been used to estimate the forces and negenerated by various
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control actions on a range of hypersonic vehicles [147]. Ukmg the engine flow re-
guires additional analysis techniques, as in [12, 219, B8hengaud et al. [12] used the
approximation of one-dimensional thermodynamic equattorexamine performance re-
lationships for the scramjet. They considered the ideahgadel useful for exhibiting the
general characteristics of scramjets, reporting a 20%rmiffce in comparison to real gas
characteristics. Tsukikawet al. [219] applied a quasi-one-dimensional model for flow
through the scramjet, aimed at determining the optimum gardiion of the engine.

For this thesis the vehicle simulation task is simplified ®gctibing the geometry
with two-dimensional flow paths and by assuming an instauas representation of flow
structures. A multi-domain quasi-numerical descriptidrthe vehicle can therefore be
formulated using a combination of simple one-dimensiondltavo-dimensional gas flow
models, whereby, for a given freestream condition, the orees and moment relating to
longitudinal vehicle motion can be evaluated. As the extkeaerodynamics is relatively
straight forward, scramjet engine operation dominatesribdeling requirements. Fig-
ure 3.9 schematically shows the basic engine processaagségd by inlet, combustor,
and nozzle regions. Freestream air is ingested into theanie is processed by a series
of oblique shocks, raising its pressure and temperatureer@ring the combustor the
airflow continues to be supersonic. Fuel is added and comoloust the supersonic flow-
stream is represented by a simple heat addition model. Thdetiow is then detailed
with an expansion fan model capable of tracking the intevacbf a finite number of
waves.

heat addition _
shock processing through combustion nozzle expansion

e ——

freestream flow
_—

Figure 3.9: Processing of flow through the two-dimensional hypersoaiarsjet.

Perhaps the most significant features not representedsimibdlel are those relating
to viscous effects. Computational experiments by Crad{#@kon a similarly simple ax-
isymmetric configuration indicated that, even when thetjrdembustor, and nozzle sur-
faces were optimized, the viscous contribution to drag rméenscramjet engine did not
produce a net propulsive thrust. The only redeeming coimiusas that the majority of
the skin friction was associated with the axisymmetric costor of the wrap-around con-
figuration used. Significant improvement is available with tonfiguration depicted in
Figure 1.5, which incorporates separate engine modulésayiindrical combustors. An
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engineering approach to skin friction such as that used anoff [39] could be used,
but with skin friction forces being of similar magnitude asrh drag, it would only serve
to augment the vehicle drag to such a degree that it becomestaltag vehicle”. Ac-
cordingly shear forces have been neglected in the progudsid aerodynamic modelling
of the scramjet vehicle in this thesis. Further criticalté®as such as shock-boundary
layer interaction, viscous-inviscid interactions, flowartsition, mixing and combustion,
and radiation, remain serious issues with respect to thenpeance of the propulsion
system, particularly in terms of setting the maximum spéédtky are however assumed
to be secondary effects with respect to control. The smalsttmargin achieved through
neglecting these features is an accepted limitation ofithple geometry being used.

Figure 3.10 summarizes the aerodynamics and propulsiigssmaf the scramjet
vehicle. For a given vehicle staige and centre of massn, the vehicle model returns the
net aero-propulsive forces and moment from the contribgtaf the inlet (1), nozzle (N),
cowl (C), lifting wing (LW) and rear wing (RW).

Faero-prop: F|+FN+FC+FLW+FRW (3-3)
Maero—prop: Ml +MN+MC+MLW+MRW (3-4)

The environment module provides the atmospheric conditi@hp, p) through a stan-

dard atmosphere model augmented by temperature perturbatnd turbulence veloci-
ties(Au, Aw). In the following sections the application of the flow progieg models is

described.

3.3.1 Inlet Flow Processes

The inlet’s function is to raise the pressure and densithefteestream air and direct the
flowstream into the combustor. A uniform wedge and a cowlisegierform this func-
tion, through the action of external and internal obliqueckhwaves. The shock configu-
ration, and therefore the inlet performance is dependetti®freestream flight condition
(M, h), defining the flight Mach number and altitude, and the veladigle of attacke.
At the zero angle of attack design condition of Mach 15 fligham altitude of 30 km,
the inlet processes the flow through two oblique shocks, esisin Figure 3.11(a). The
primary shock generated by the inlet wedge, redirects #esfream air parallel to the
inlet surface, with the shock intersecting the leading eofgine cowl. The delivery of
uniform flow to the combustor is provided via cancellatiortlué reflected shock at the
combustor upstream corner. External flow over the cowl far ¢bondition is simply the
undisturbed freestream air.

For any non-zero angle of attack, the flow processing in tleedngine modules is
asymmetric. This can greatly influence the overall perforoeaof the vehicle, not just
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Figure 3.11: Schematic examples of the modelled flow processing throglsd¢ramijet inlet for
various flight Mach numbers and angle of attack. Note thaw#tecle and flow geometries are
drawn as true shape.
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in the flow conditions presented to the combustor, but alghendestabilizing moment
generated by the pressure difference over the long inlédces. The net effect is the ap-
plication of an operational limit on the possible angle aéek of the vehicle. One clear
boundary is to limit the angle of attack to a value less thannlet wedge angle, thereby
avoiding the effective shut down of one of the engine moduiigsvever, the pitching mo-
ment generated by the inlet, rises rapidly with angle ofckttg and a practical operation
limit of a just a few degrees is necessary. The generatiorstilalizing moment through
wings, elevators, or other means, can thus be achieved wtith@essive thrust penalty.
A similar operational tolerance could be expected for thpeétyX style air-breathing ve-
hicle described in Section 1.2. Although operating at aikedly high o, manipulation of
vehicle attitude to maintain optimum engine performancéigist conditions change, is
likely to be limited to a few degrees about the nominal caodit

The matching of the inlet shock structure to the inlet geoynas in Figure 3.11,
represents inlet processing at a single precise flight ciondiTo simplify the off-design
modelling, the basic two-shock inlet arrangement is assahall times. Approximating
the inlet flow structure in this manner neglects any furtherck interaction in the inlet
and any follow on flow features downstream. Figure 3.11¢¢)sbows a selection of off-
design inlet flow structures. Noticeably there is littlevegbof the primary shock relative to
the leading edge of the cowl. Despite the similarity of thevfiructures in the Mach 10
examples, the pressure differential between the upstreambuastor flows atv = 3° and
a = 0° is around 50 % of that for the = 0° condition, see Figure 3.12. The variation of
inlet performance with flight Mach number and angle of attackhown in this figure. If
the vehicle is assumed to follow a constant dynamic predsajextory then the pressure
downstream of the inlets would increase linearly with Macimber, for the two-shock
model.

In Figure 3.13 a more accurate representation of the inketstoucture simplified in
Figure 3.11(d) is shown using a computational fluid dynan@sD) simulation [110,
111]. Although there are more waves in the combustor, thé&iaddl complexity makes
little difference to the integrated pressure over the islgface, or to the average flow
properties presented to the combustion. The shock interscare important for the pro-
cesses in the combustion, but these are considered an mseadine designers, and
beyond the scope of this study.

The external flow over the engine cowl varies according tgthsation of the primary
shock relative to the cowl leading edge. It will generallgut in either expansion of
the freestream about a small angle, or expansion of the poskglow through the inlet
angle. No shock/expansion interaction has been modellefiole over the cowl. The
movement of the shock about the cowl leading edge is a drfeedure, as step changes
in pitching moment may result from changes in pressure dweekternal cowl surface.
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Figure 3.12: Inlet pressure ratio for the engine module on the upper kalezz) of the vehicle.

Figure 3.13: Pressure contours (in 5 kPa increments) from a computatidch diynamics (CFD)

simulation of the hypersonic inlet flow. The freestream d¢tods correspond to flight in a stan-
dard atmosphere at 4900 m/s and an altitude of 31.04 km, iaguat a flight Mach number of
16.2. An angle of attack af° has been used.
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It is also important for engine designers, as the local mspressure and heat transfer
resulting from the condition where the bow shock generatexh the inlet ramp strikes
just inside the inlet, can cause structural problems. Eurdletails regarding inlet design
can be found in references [97, 98, 133].

Force and moment calculations for the inlet assume a carnstessure along the pri-
mary compression surface and the internal cowl section. Aerdetailed representation
could be achieved by including the additional shock inteéoaassociated with off-design
operation. Again, the simple two-shock arrangement isidensd sufficient to reason-
ably represent the inlet surface pressure and to captureatigion in combustor inlet
conditions with flight condition. To simulate the flow arramgents of Figure 3.11, the
inlet model makes use of the oblique shock relations and pareston analysis for a calor-
ically perfect gas. The theoretical foundations of theseblmfound in compressible flow
texts, for example [134, 8]. Their solutions are summarirdtie following sections.

Obligue Shock Analysis

A shock wave is generated whenever supersonic flow is turneditself. Provided the
turning angle is less than a (Mach number dependent) maxideffaction angle, the
shock will generally be an attached oblique shock wave. Thation used for the oblique
shock procedure is shown in Figure 3.14. Using #hé-) relationship for oblique

Figure 3.14: Oblique shock nomenclature.

shocks, the flow deflection anglds defined as a unique function of the upstream Mach
number)M; and the shock wave angtg

M?2sin® 3 — 1

tanf = 2 cot .
o cot § M2 (v + cos2(3) + 2

(3.5)

With 6 andM; known, Equation 3.5 is solved iteratively to provide thedhangles, rel-
ative to the freestream flow direction. The solution regiaseimplemented, restricts the
shock to the weaker of the two possible solutions availgiieyiding supersonic down-
stream conditions. A strong shock solution would requir@sandependent mechanism
to increase the downstream pressure, such as choking afitieustor, and results in sub-
sonic flow downstream of the shock. The bounds for the iteatlution of Equation 3.5
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are provided by the high Mach number limit for smalind3, and for the upper bound, a
polynomial fit for the maximum shock angle achievable assgraiweak shock solution:

+1
Brow = ”70,

(3.6)
1.5556  1.3844  0.0797

max — M3 M2 + M

+ 1.1839.

Having evaluated’, the conditions downstream are expressed by the obliqueksiee
lations, where upstream and downstream conditions areteléty subscripts 1 and 2,
respectively.

M3+ 12/ (v—1)]

Mach number normal to wave: M2, = (3.7)
R/ (- M -1
M,,
Post shock Mach number: M, = —— (3.8)
sin (6 — 0)
(. D2 27 2 2
Pressureratio: — =1+ ——(M;sin“f—1 3.9
Sl (fsnte—1) (39)
: : 1) M2 sin?
Density ratio: 22 — (+1) L S;n b (3.10)
pl  (y—1)Mjsin® [+ 2
: T
Temperature ratio: =2 — 22721 (3.11)
T p1p2

An additional constraint on the model is associated withntlagimum flow deflection
anglebfnay, for a given Mach number. The form of ti#e5-M function in Equation 3.5 is
such that i) > 0. then no solution exists for a straight oblique shock wanghét case
a detached curved shock is required to process the flow andecomplex downstream
flow field results. Using data drawn from Equation 3.5 a testtiie existence of an
oblique shock solution is expressed as a polynomial funcigu = f(1/M),

1.6137  2.418 | 0.0171
S VER VSV

+0.7972. (3.12)

An analytical expression fdk, .« can also be derived by differentiating Equation 3.5 with
respect tgs, see [39]. Inlet design and vehicle operation for this stisdyuch that depar-
ture from attached oblique shocks will only occur with opierawell outside acceptable
operating conditions.

Prandtl-Meyer Expansion Analysis

Prandtl-Meyer expansion describes the isentropic turafregsupersonic flow through an
angle, for a calorically perfect gas. Expansion at a corneurs through aentered wave
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Figure 3.15: Nomenclature for expansion around a corner. The expana@rigle is bounded
by the upstream and downstream Mach angles, indicated lasteed lines.

consisting of an infinite number of Mach waves which spreadrddiream, as sketched
in Figure 3.15. The relationship between the expansioneahgind the upstream and
downstream Mach numbers is given by

0= V(Mz) - V(Ml), (313)

wherer describes the Prandtl-Meyer function,

V(]M):HW—+1 tan~! 7—_l(ZMQ—l) —tan ' VM2 — 1. (3.14)
v—1 v+1

Thus, knowing and M, v(M,) can be evaluated, and Equation 3.14 iteratively solved
to provide the downstream Mach numhdk. To provide the limits for this numerical
solution a set of polynomial functions expressiig= f(v) were used, withv defined in

degrees. Two of these were provided by Fraser [78], acctodtaur significant figures
and covering the region < v < 65° for vy = 1.4. For0 < v < 5°:

M =1.047.932x10"%*3(1 + 3.681 x 10 %v — 5.99x 1073* 4+ 5.719x 10~ »%),
(3.15)

and for5° < v < 65°;

M = 1.071 4+ 3.968 x 102 — 4.615x 10~ %1% + 1.513x 10753

3.16
—1.840x 10~ "v* + 1.186 x 10795 ( )

For Mach numbers greater than 4 (corresponding te 65°), another polynomial was
assembled,

1
77 = 0.6724 = 8.647x 1072y 4 4.096x 10 "% — 1.088 x 10~ . (3.17)

The only downstream information needed for the externadaramics simulation is
the Mach number and pressure. As the expanding flow is igantithe ratio of total and
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static pressure is

~

-1 =1
%: (1 VTMQ)” . (3.18)

So, for constant total pressupg, the pressure ratio across the expansion fan is expressed
as

Do 2+(7—1)M12)%
- = . 3.19
D1 (2+(7—1)M22 (3:19)

The downstream surface pressuyreis assumed to be uniform over the entire surface,
when applied to any external feature. Expansion within titadt nozzle considers the
wave reflections and is treated in more detail in Sectior83.3.

3.3.2 Combustor Analysis

Achieving supersonic combustion in a scramjet engine migtess a broad range of is-
sues, including fuel injection, mixing, burning, chemikaletics, shock interaction and
boundary layer interaction. It continues to be the mostaesdeed feature of scramjet
related technology [164, 50], however, even for the mosaaded computational tech-
niques, modelling the combustor flow processes is an extyeteenanding task and, it
is not without uncertainty [203]. Consequently, in pursafitapid analysis techniques,
approaches of varying complexity have been used to provetergl engine operating
characteristics [219, 12, 39]. The basic processes of leésdse in fuel-air combustion
are fuel injection, fuel-air mixing, and chemical reactiothe HABV model avoids the

details of the combustion process by describing combustsimg a control volume ap-

proach to one-dimensional heat addition in a constant areta Heat is added directly to
the flow in each scramjet duct without the addition of massyasng uniform flow across

the ducts. The nomenclature for the analysis is shown inrEigul6, with subscripts 1
and 2 defining the upstream and downstream conditions riagglgc

Without modelling the dynamic features of combustion, sagimixing rate and rate
of combustion, the length of the combustor does not factdhénflow analysis. Also,
by having the combustors parallel to the vehicle axis of sytmmthey do not contribute
to the force and moment calculation. The purpose of the cetobunodel is therefore
to evaluate the flow conditior8/, p, T, p), after combustion, thereby describing the flow
presented to the nozzles. Despite the potential for high ftow temperatures in the com-
bustor ¢-2000 K), the air is treated as a perfect gas. One of the limitatof the present
modelling and flight trajectory chosen is that the simulatechbustion temperatures ex-
ceed those generally desired for efficient engine oper#tibva).
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Figure 3.16: One dimensional heat addition.

The fuel addition in the simulation model is controlled b flael to air equivalence
ratio, ¢. It defines the fuel/air mixing rati@, in relation to the stoichiometric mixing ratio

st

f actual fuel/air
 fat stoichiometric fuel/air

¢

(3.20)

Since the fuel addition is not actively controlled, a nonhieguivalence ratio of one is

maintained, representing a stoichiometric mix of fuel amdlsing ethane as a fuel, this
occurs when hydrocarbon fuel molecules are mixed with jnstigh air such that all the

hydrogen atoms form water vapour and all the carbon atonms éarbon dioxide. Such

a combination usually results in the greatest liberatiosefsible energy. The general
stoichiometric equation for the combustion of hydrocartath air is as follows:

Y 79 Y 79 Y
CoHy + (v+ 4) <02+ 21]\72) — 200, + SHO + (= + 2)]\72.

The stoichiometric mixing ratio on a mass basis is therefioren by the expression

36z + 3y kg Fuel

Ja= 103(4z +y) kg Air

(3.21)

For ethaneCsHg, fo = 0.0624'%'2??'. So, given the equivalence ratio as a fuel input

setting, the mass flow rate of fuel into the combustor can b&uated.

mfuel = (bfstmair (3-22)
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The mass flow rate of air is defined relative to the upstreambostor conditions,
Mair = p1AcUi,

where the combustor arel is equivalent to the height of the combustor for the simglifie
axisymmetric scramjet, anid, = M,+/yRT}, is the combustor upstream velocity.

Knowing the amount of fuel added to the flow, the conditionsuisiream are obtained
by the application of the governing equations of continuitpmentum, and energy, to a
control volume [8], see Figure 3.16. The amount of heat agaedkilogram of airg, is
proportional to the fuel to air mass flow ratio and the heatialgie 4 (J/kg-fuel), of the
fuel,

q=n.H"1 (3.23)

wherer), represents the combustor efficiency, discussed furthexatic 3.5.1. Applying
the energy equation for a calorically perfect gas shows e hdditiong to directly
change the total temperature of the flow,

q = Cp(T02 - T01)> (3.24)

wherec, is the constant pressure specific heat @pd- 75, the increase in total temper-
ature. The ratio of properties across the control volumelar&ved from the momentum
and continuity expressions and the perfect gas equatiomaiaf. s

p2 14+ M?

= — 3.25
pr 1+ ME 3.29)
T, (1L4yME (M) 3.26)

To find the downstream Mach number the isentropic flow refatiescribing the ratio of
total and static temperatures is employed.

TO Y — 1 9

—=14+—M 3.27
=1t (3.27)
Combining Equations 3.26 and 3.27 provides a relationgdrifhie ratio of total tempera-
ture,

Tin

=1 (M, Am). (3.28)

Equation 3.28 is iteratively solved to give the downstreaachNnumber)/,. Heat ad-
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Figure 3.17: Fuel input during flight along the nominal trajectory for tingper (U) and lower (L)
engine modules.

dition drives the Mach number towards 1, so with the asswnpdif supersonic flow
throughout the combustor, the downstream Mach number iecuto the constraint
1 < M, < M;. Choking of the flow occurs when enough heat is added for the ttho
become sonic. To prevent this occurrence, the fuel mass #8tmwnecessary for choking
is monitored to provide an adaptive limit for the maximum th@addition. The choking
limit is set conservatively by assuming 100% combustiorciefficy. If the fuel setting
breaches this limit the fuel mass flow rate is adjusted to 90%eochoke limit. Follow-
ing the default flight trajectory discussed in Section h2,fuel rate requires adjustment
up to a flight Mach number of around Mach 10. Figure 3.17 coewpdre fuel input for
the nominal conditiorx = 0, to the operation of the upper and lower engine modules at
angle of attacky = 2°. The variation against flight Mach number reflects the chamgi
air flow rate through the combustor, with a fixed fuel equinakeratio setting op = 1.

Active control of the fuel addition has not been used. Tyibycéuel control would
be warranted for trajectory maintenance and stability argation through differentially
throttling the engine modules. However, the vehicle funtdias an accelerator, and con-
sidering the marginal acceleration capabilities the sengglometry achieves, it was con-
sidered desirable to run the engines at their maximum gettifhe lack of demand on the
accelerating capability is reflected in the trajectory mefiee which correlates the flight
velocity against altitude rather than time. In additiore geometry of the nozzle does not
allow effective use of differential throttling as a meansatiftude control. The potential
stabilizing moment generated by the nozzle thrust surfackminished by the normal
force acting on the cowl section.
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3.3.3 Nozzle Analysis

Flow exiting the combustor enters the nozzle by expandiograd a corner, increasing
the Mach number downstream and lowering the pressure. @oawal wisdom includes

a cowl geometry which extends far enough downstream to capite expansion fan. The
geometry used here simplifies the downstream interactigreobfining the flow struc-
ture further, with an extended cowl section. To map the presprofile along the cowl
and thrust surfaces, a two-dimensional wave interactiodehbas been constructed. It
is roughly equivalent in application to the charactersstitethod, which has been used in
other studies to determine the thrust production in two disienal scramjet [4]. Consis-
tent with the simulation of the other scramjet elements, thodel assumes a perfect gas
and neglects viscous effects.

Figure 3.18 summarizes the features of the two-dimensioraile analysis. It shows
the construction of a supersonic flow pattern using weakefiweives. An expansion fan
originating from the corner, propagates across the aiastreWhat follows is a series
of interaction zones as the fan reflects of the cowl surfacethen the thrust surface.
For low upstream Mach numbers this process may repeat walin the length of the
nozzle. With increasing flight speed the nozzle upstreamhiviaenber increases, pushing
the initial fan further downstream.

The expansion fan is represented by equal strength, weale Wiaves, where the
wave strengthy represents the absolute flow deflection produced by each, wavbe
total expansion angle divided by the number of waves. |addial waves are defined as
either left or right running, relative to the upstream flowedtion. Cells with uniform
properties divide the flow and are referenced by the cooreia:, ), see Figure 3.18,
representing the number of right running wawesand the number of left running waves
n, crossed to arrive at the location. Governing the expanitbagare the flow deflectiof,
and the Prandtl-Meyer functian M), previously expressed by Equations 3.13 and 3.14.
Applying the argument that the strength of a weak wave is ffeti@d by intersection
with other waves [134], the flow propertié, ») within each cell are expressed through
the number of left and right running waves crossed to reaelceii.

f(m,n) =6, +3(m—n) (3.29)
vim,n)=v;+4d(m+n) (3.30)

The upstream conditions for this case @re 0, andv; = v(M;) using Equation 3.14.
Equations 3.29 and 3.30 then allow a complete mapping of thedbndition throughout
the flow structure. The Mach number of the flow within each iselvaluated using the
polynomial functions described by Equations 3.15-3.1Ac8ithe total pressure remains
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Cowl pressure trace

Thrust surface
pressure trace

Figure 3.18: Wave interaction model for the expansion fan, showing acedunumber of waves
to simplify the picture. Adjacent to each nozzle surfacerisraernal pressure profile showing
the step changes in pressure coincident with wave reflediuth the transitions used to generate
forces and moments. Also shown is the method of indexingoregivithin the expansion fan,
using the number of right (m) and left (n) running waves ceds® reach the region.
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constant through an isentropic expansion, the pressueafir cell is evaluated using the
isentropic flow relation for the ratio of total and static gsare, see Equation 3.18.

Knowing the distribution of flow properties within the exgon, the surface pres-
sure profiles are simply obtained by following the expandem geometry, starting at
the corner. Each wave is orientated by averaging the locahMiaes in adjacent cells.
For example, the angle, of the right running wave in between cells (2,5) and (3,5) is
expressed as,

Vr(2:3,5) = = [(0 — p)as + (0 — p)ss)

DO | —

wherep,, , = sin™* M#M By describing the wave angles in this manner, perfect reflec
tion of the waves is not guaranteed. The quality of the imtBya geometry improves

with an increase in the number of waves used to subdividexpansion fan.

Cells adjacent to the cowl and thrust surfaces provide tha deacessary to build
their respective pressure profiles. As the flow propertiesamsumed uniform within
each cell, the step profiles shown in Figure 3.18 result. Toamout the profile, linear
transitions between the steps are used, which for a largeggbnaumber of waves provides
an adequate approximation to a continuous expansion. Tihexia and normal forces
are formed by a summation along the surfatewhere the surface normal relative to
vehicle reference frame %, 0, 7).

N-1 . .

F,— anp(” + 5(” Das, (3.31)
=1
N-1 . .

F.=Y n, L0+ 5@ D As, (3.32)

The net pitching moment is likewise expressed as a summateparated into compo-
nents generated by the axial and normal forces for eachceustsgment.

-1

M, = Z <Sgr(nm)/zP(z)dz —sgnn,) /xP(:c)dx) (3.33)
i=1

The integrals in Equation 3.33 are evaluated over eachrlisegment of the pressure

profile. They are expressed in terms of their bounding ppneferenced by the indices

(4,4 1):

A
/:EP(x)dx = % (F(22i + Tiv1) + P 220 + 1)) (3.34)
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The expression fof zP(z)dz is equivalent to Equation 3.34.

Figure 3.19 shows the convergence of the nozzle and covdsigressure profiles
with an increasing number of waves within the expansion fArmid-trajectory flight
condition has been used with,, = 11.7 andh = 26682m. The sudden changes in
trends below a flight Mach number of 10 reflect the clipping e fuel added to the
combustor, to avoid conditions which could choke the flowe Hlozzle calculation can
represent a majority of the vehicle simulation time, so isesasuch as designing the
flight controller, the 10 wave model is considered sufficidfdr the example shown in
Figure 3.19 the error in the 10 wave approximation relaivthe 20 wave case, is 1.1 %
for F, and 1.7 % forlM/,,.
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Figure 3.19: Thrust (T) and moment (M) evaluation for various expansiam fesolutions. The
indexing (5,10,20) refers to the number of waves used toritresthe expansion fan.

The effect of flight speed on the expansion fan structure @vshin Figure 3.20.
As the vehicle accelerates the nozzle upstream Mach numbezases, increasing the
strength of the expansion, and spreading the interactioezdownstream. It was pre-
viously stated that the nozzle configuration is not condeitty generating stabilizing
moments. Figure 3.21 shows the combined nozzle momentsajedeby a fixed fuel
equivalence ratio setting and the difference in airflow tigtothe modules with non-zero
angles of attack. Up to the point where the net nozzle monteges sign, the contribu-
tions from the internal cowl surface dominate the nozzle mmSo, despite the greater
fuel and air flow rates in the lower engine module, the nozgksserate a destabilizing
moment. A stabilizing effect is only produced when, with therease in fuel addition



72 Simulation of Hypersonic Flight

to the upper module, the dominance of the cowl surfaces iscestiand the net nozzle
moment is driven the thrust surfaces.

Figure 3.20: Nozzle flow variation with flight Mach number.

To check the implementation of the expansion fan interagtiethod, a series of CFD
simulations were performed for the two-dimensional noggemetry, using a Navier-
Stokes code [110, 111]. A Mach 15 flight condition was examhivih the vehicle having
a zero and a small non-zero angle of attackofThe axial and normal forces acting on
the thrust surface were all within 0.6 % of the CFD values.tRemormal force generated
along the internal cowl surface, a 2 % difference was obskerve

3.3.4 Lifting Wing and Elevator Analysis

Along with the cowl, the wings and elevator provide the ontyeenal aerodynamic anal-
ysis required for the vehicle simulation. Aerodynamic nibag of these components
considers the surfaces as two-dimensional wedges, antes@pl oblique shock or a
Prandtl-Meyer expansion analysis [134], depending ondhbal Iflow turning angle. For
the lifting wing, the flow structure is simply dependent oe trehicle angle of attack.
In between the lifting wing and rear wing arrangement the fl®@ssumed to return to
freestream conditions. Force and moment calculationsh®matl-moving rear wing use
surface normals and area centres calculated from the extuatgle and the wing geom-
etry. All surfaces are treated as having uniform pressure.
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Figure 3.21: Stabilizing capability of the engine nozzles without agtsontrol of the fuel ad-
dition. With a fixed the fuel/air equivalence ratio, a diffatial fuel flow rate supply to the two
engine modules is due to the differential air flow rate thiotlge modules.

3.4 Vehicle Performance

Figure 3.22 shows the broad range performance of the sdramstpcle in terms of the
net thrust and specific impulse. There are several featurds woting. Firstly, the initial
rise in thrust is due to the lessening threat of choking tmelmestor with the nominal fuel
input, as the flight Mach number increases. Secondly, tilseaesubstantial performance
penalty for operating at a non-zero angle of attack. Thisemdke design of the vehicle
geometry difficult, as a fixed geometry vehicle is unable tecm#he lifting requirements
for the entire trajectory, and angle of attack perturbatiall be required to track the
desired trajectory. The final remark on Figure 3.22 referthéorelatively low specific
impulse, which declines with increasing flight speed. Fennce estimates for hydro-
carbon fueled scramjets are generally provided for the lgpersonic flight conditions,
see Figure 1.1, reflecting the limited Mach number range fuckvthey are expected to
be useful. The specific impulse measured for this scramgdttise same order as that of
modern rockets.

3.5 Performance Uncertainty

The hypersonic air-breathing vehicle model (HABV) preserdo far represents a nomi-
nal performance assessment of the vehicle’s aerodynapn@s,lsion, structural compo-
nents. It provides a deterministic, instantaneous desanipf the net forces and moments
acting on the vehicle, as a function of the freestream candit the vehicle attitude, and
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Figure 3.22: Net thrust and specific impulse performance of the enginegalbe default flight
trajectory.

the control settings, applicable for the hypersonic flighjetctory. Unmodelled features
and time dependent flow processes generate uncertainty wrethicle performance.

It is important to examine the robustness of the flight cdlgron the presence of
vehicle uncertainty. For this purpose, parametric ungastdnas been used to describe
stochastic perturbations in the engine performance, cbeffectiveness, and the physical
properties of the vehicle. Combustion efficiency, elevatoface pressure, and fuel centre
of mass have been use to represent general performanceoreridach is implemented
in the flight simulation as an uncertainty filter, based on gNst frequency of 50 Hz. The
low-pass filters are coded as difference equations withentotse of unit variancéd} ;,
providing the source signal. Aerodynamic and propulsiveentainties are assumed to be
driven by atmospheric turbulence. Uncertainty in the fireasn conditions is discussed a
little later in Section 3.6.

3.5.1 Combustor Efficiency

Engine flow processing uncertainty has be lumped into onanpater, using the effi-
ciency of the combustion process. In the model describe@ati@ 3.3.2, the efficiency
represents a fraction of the available heat release of #le A&lnominal combustor effi-
ciencynnom = 0.75, allows a reasonable thrust generation, though generetimdpustion
temperatures 3000 - 4000 K, which exceed generally desiradues. This is perhaps an
indication that the flight dynamic pressure is to high.

To evaluate the combustion efficiency variation, a randechizdditive perturbation
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An is applied about the nominal efficiency. Using a low-pass-@rder filter, the cut-
off frequency is set to provide the same frequency contettt@bngitudinal turbulence
model, see Section 3.6.2.

Ne = Mnom + A77

(3.35)

The Nyquist frequency based on the nominal integrationgisye is significantly less
than that associated with the transit time of flow throughabmbustor, which is roughly
0.0004s. The first order filter equation above allows the ipdgg of low frequency
engine surges and some higher frequency variations, witlwamum perturbation of
+15 %. Each combustor module is considered independently.

3.5.2 Elevator Surface Pressure

Control effectiveness has been represented by uncertairihe elevator surface pres-
sure, equivalent te-5 % variation about the nominal value. Again, with referencéh®
turbulence filter properties described in Section 3.6.2dlewing filter equation is used,

P = (1+ Ap)Prom

3.36
AP = 7.8417x10~4(Wo1[n] + Wo1[n — 1]) + 0.99686 AP[n — 1] (3:36)

Separate signal histories are kept for the upper and lovasesfof the elevator.

3.5.3 Fuel Centre of Mass

In addition to the variation in mass properties due to fuelstonption, the location of
the center of mass of the fuel is allowed to fluctuatetiy25 m. Since high frequency
oscillations are unlikely to be present in the fuel slosthefaviour, a second filter with
a cut-off frequency of 2 Hz has been used.

cmy = CMipom + Acm
Acm = 2.1472 x 1074(W071[n] + WOJ[TL — 2]) + 043445W071[n — 1] (337)
+1.9556 Acem(n — 1] — 0.95654Acmn — 2]

3.6 Environment Model

The environment model encompasses the description of theiqath properties of the
Earth and its atmosphere. Table 3.2 summarizes the defihygjqal parameters of the
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Table 3.2: General definition of the simulation environment.

Description Value...
Earth RadiusfR . 6738.4km
Gravity at sea level. 9.81m/$
Rotationw®. 7.29246 x 10~° rad/s
Atmosphere Sea level temperature. 288.15K
Sea level pressure, (1 atm). 101.325kPa
Sea level density. 1.225 kg/m?
Gas properties ldeal gas constant, R. 287 J/kgK
Specific heat ratioy. 1.4

simulation environment. Altitude has been include in thetem state to account for the
atmospheric and gravity gradients. The local grayityariation with altitude is simply

described using the absolute altituble = hs + Rz, Wherehg is the geometric height
above the surface of the Earth whose radiug is

9= g (%) (3.38)

Atmospheric modelling describes the variation in tempegtpressure, and density with
altitude. Relative to the rotating Earth, the atmospherassumed stationary. Distur-
bances in the velocity field, due to turbulence or wind, anglieg uniformly to the ve-
hicle. For a more detailed representation of the atmosplaecemplete inertial based
atmosphere model could be applied [68].

3.6.1 Atmospheric Modelling

Natural variations in atmospheric properties exist astions of altitude, longitude, lat-
itude, time of day, season, and solar activities. As it isegalty impractical to simulate
these variations, a standard atmosphere is used to prowde walues of pressure, tem-
perature, density, and other properties, as a functiontiviidé. Central to these models
is a defined variation of temperature with altitude. Figurg33shows the temperature
profile for the U.S. Standard Atmosphere, 1976 [1]. It defthestemperature regions as
being either isothermal or of constant gradient, up to a ggomaltitudeh, of 86 km.
The geopotential altitudg, is used as a reference for temperature, simplifying thdvmat
ematics for defining pressure, by accounting for the vanatif gravity with altitude [6].
The conversion between geometric and geopotential adtittidnade with the following
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expression, wher& g represents the radius of Earth at the equator.

Rp
h=———1|hg 3.39
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Figure 3.23: Temperature profile for U.S. Standard Atmosphere, 1976pup;t= 86 km. See
Table 3.3 for the supporting data.

Table 3.3: Standard atmosphere data, for the 7 fundamental layers ap te 86 km, of U.S.

Standard Atmosphere, 1976. Subscripts 1 and 2 respectefelyto the lower and upper boundary
of each layer.

hi (km) ho (km) 171 (K) dZ/dh (KIkm) p, (Pa)

0 11 288.15 -6.5 101.325x 103
11 20 216.65 0.0 22.632x10?
20 32 216.65 1.0 5474.9

32 47 228.65 2.8 868.02

47 51 270.65 0.0 110.91

51 71 270.65 -2.8 66.939

71 84.852 118.65 -2.0 3.9564

To predict the pressure and density given the temperatoféepin Figure 3.23, the
hydrostatic equation is used to construct a force balancanoglement of fluid. Using
the definition for altitude given by 3.39, the force balansegthe change in pressure d
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across an element of fluid of height,d
dp = —pgo dh, (3.40)

wherep is the density at altitudk andg, is the acceleration due to gravity at the surface
of the Earth. Integration of Equation 3.40 over the isotredramd gradient temperature
regions then provides the general expressions for atmaspgiressure for a perfect gas,
where the subscrigtrefers to properties at the low altitude end of the relevamigerature
region and the temperature gradient d7'/dh is in K/m:

Isothermal regions: P om(eo/RT)(h=h) (3.41)
P1
. . T e
Gradient regions: L. (—) (3.42)
jZ1 T
Perfect gas equation of state: p = pRT (3.43)

The data to apply these equations is provided in Tables 3 3&h

Uncertainty in the nominal atmospheric description isunded by the addition of ar-
tificial noise to the atmosphere. Temperature variationriged by turbulence, so the
uncertainty is based on duplicating the frequency contktiteoturbulence functions de-
fined in Section 3.6.2. Using the same format as the paramatigertainty functions,
the temperature variatiol7 is evaluated using difference equation to define a first order
filter sourced with white noise of unit variance.

T = (14 AT)Thom
(3.44)
AT = 3.921 x 1074(Wo71[n] + Wo,l[n — 1]) + 099686AT[TL - 1]

The intensity of the white noise input was chosen to provifficients that generated
temperature variations up te2 %. Pressure is assumed to follow the standard atmosphere
model and the density is provided by the perfect gas law.

3.6.2 Atmospheric Turbulence Model

For engineering purposes, the conventional approachlialemce modelling as a stochas-
tic process uses the Dryden spectra [150]. The Dryden speatr be implemented as
filters through which white noise of unit variance is passkda digital simulation the
frequency content of the artificially generated noise in¢ated by the Nyquist frequency,
m/Atrad/s. The Nyquist frequency describes the maximum freggueshich can be gen-
erated by a sampling timAt¢. To account for the band-limited noise, the intensity of
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the input noise sequence is set to the inverse of the Nyqeigtiéncy. The discrete time
domain transfer functions for the longitudinai,) and vertical §,) turbulence filters are
therefore defined as follows:

T 2V 1
= ) —oy | — 3.45
Atg wL, (s—i— L1> ( )
b ‘9+ Lw

Both filters are parameterized by the standard deviatiomeftarbulenceg, and an

integral scale lengthl.. Also featured in the above equations is the air relativacleh
velocity, V, excluding turbulence. The length scale determines theepalstribution
over the frequency range, whitechanges the power level without changing the relative
distribution.

Since the numerical flight simulation is discretized by th&egration time step, the
longitudinal and vertical turbulence filters are implensehas difference equations. For a
digital filter the outputy(k) at thekth sampling is defined in terms of the inpt(t:) and
the filter input/output history.

vk = 3 balk —i] -

1=0 =1

M=

aylk — 1] (3.47)

In much the same as thhedomain is used for continuous time systems, sfdomain is
applied to discrete-time simulation. Th@ndz domains are related by

z=eT, (3.48)

whereT" is the sampling period. To transfer tkedomain transfer function to the-
domain discrete equivalent, a simple conformal mappingvéen the two domains is
provided by the bilinear transform, also known as Tustippraximation to 3.48 [175,
233],

(12

se2u=2 )
T (14271

(3.49)

The bilinear transform is based on the Taylor series appration ofe”*. Following the
substitution of 3.49 into the-domain transfer functions, the resulting z-transfornmg)H(
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can be written as a polynomial fraction.

N
E biz_l
=0

H(z) = = (3.50)

M
g a; 2"
i=0

From the definition of the-transform of a number sequence, Y (z) can be equated
with y[k — i]. The difference equation of 3.47 can then simply be expdelgeallowing
ap = 1, and matching the coefficients with those in thigansfer function.

In the flight simulation code, atmospheric turbulence hanbmplemented using a
single reference flight condition, thereby avoiding anysistency issues with switching
between turbulence parameters. A mid-trajectory referatitude of25 km was used to
source the filter parameters, using the severe turbulenaerdg 50]:

o, = 4.34m/s 0w = 3.34m/s
L, = 12000m L, = 6560m

The filters are discretized according to a nominal integratimestep/’ = 0.01 s. With
unit variance white noise input data expressetligghe difference equation for the lon-
gitudinal and vertical turbulence velocities are definetbews:

Auln] = 0.1655 (W[n] + W[n — 1]) 4+ 0.9971Au[n — 1] (3.51)

Awln] = 0.2105W[n] + 6.474x 10~ W[n — 1] — 0.2098W[n — 2]  (3.52)
+1.98936 Aw[n — 1] — 0.98939 Aw[n — 2]

White noise refers to a random process with a characte@sticssian distribution.

A sample turbulence velocity history is shown in Figure 3.%ér this example the
standard deviations aku andAw are 3.065 m/s and 3.42 m/s respectively. Given a long
enough sequence, the simulated standard deviations ap@atexy match the parameter
values used to define the filters, as required.

3.7 Flight Dynamics

A flight simulator requires the coupling of a mathematicaagtion of the vehicle’s per-
formance, with the dynamical and kinematical equationsmleisg aircraft flight. The

first half of this chapter presented the basis of the vehielopmance model, featuring
a numerical aero-propulsive simulation and a descripticth® vehicle’s physical prop-
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Figure 3.24: Simulated history of longitudinal and vertical turbulenegocities.

erties. Through the following sections, the kinematics dydamics will be developed
for the hypersonic flight of a rigid body aircraft. To captéeatures relevant to launching
into orbit, a general six degree-of-freedom dynamic moslelarived from the force and
moment equations, for high speed flight about a spheric@ting Earth [68]. The centre
of the Earth is assumed to be fixed in inertial space with iteoaphere at rest relative to
its surface.

3.7.1 Coordinate Reference Frames

Newton’s law of motionF’ = ma is defined relative to an inertial frame of reference.
For convenience however, the equations of motion for atimesp flight are generally
written in terms of a non-inertial frame fixed to the aircrafthe mapping between the two
frames is through a series of coordinate transformationishwdre based on describing
the rotation of the circular Earth, and the vehicle attituelative to a known reference.
Figure 3.25 shows the reference frames used for the hygeifight simulator, following

a conventional arrangement for aircraft simulators [68].

The Earth is assumed fixed in inertial space. Two Earth-firatiés F o andFg, are
used. The Earth-centre frani&,- has its origin at the centre of the Earth, such that the
Earth’s rotation is given by an angular velocity about axisOzczpc. Axes directions
are further set by reference points on the Earth’s axis am@dtuator - zero latitude\)
and zero longitudéu) for z ¢ is used here. Earth-fixed surface frafigis also located
by latitude and longitudé\g, 1), and arranged witlV 2z directed vertically down,
while Ogzr andOgyr are directed north and east respectively. It provides agrte
point on Earth for the motion of the aircraft.
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Figure 3.25: Reference frames used for hypersonic flight dynamics simula

Two vehicle based frames;, and 'z, are usedFy,, a vehicle carried vertical frame,
accounts for the curvature of the Earth. Its origky is attached to the vehicle at its
centre of mass with axi®y zy directed vertically down along the local gravity vector
g. AxesOyxy andOyyy are arranged similarly to framgg;, describing northerly and
easterly travel respectively:z, the body-fixed frame, is used as a reference for the final
form of the force and moment equations. Wind axes could a¢saded as the body-
fixed frame, but is inconvenient for the description of amguhotion. TypicallyFy is
arranged to coincide with the principal axes of inertia @ flight vehicle, providing a
simplification of the moment equations. Iy coordinates the vehicle velocity relative
to Earth isvp = (u,v,w) and the angular velocity i®”? = (p, ¢, r). Here a superscript
describes the reference frame the vector is measured/estatand a subscript is used to
indicate the coordinate frame in which the vector companen¢ written. Further, the
angular velocity vectow generally represents the rotation relative to the ineftahe,
of the frame of reference indicated by the superscript.

Transferring information between reference frames dependheir relative angular
position and angular velocity. To define the orientationhaf vehicle, Euler angles have
been used. Euler angles describe a transformation thatswgvieito alignment withFz,
through a sequence of rotatiofs, ¢, ¢). The transformation is described by the matrix
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Ly, transferring the coordinates of vectofrom frameFy, to framef’z, vg = Ly vy.

cos 6 cos cos 6 sin —sin6
Lpy = |sin¢sinf cosy — cosdsiny  sin ¢ sin @ sin ) + cos ¢ cos1)  sin ¢ cos §
cos ¢psinfcosyy + sin psiny cos ¢ sinfsiny — sin @ cosyy cos ¢ cosf
(3.53)

The relative angular velocity between the two vehicle-Dds@mes is based on the Euler
angles, and is written here in terms of body coordinates.

P ¢ — 1hsind
= Q| = [6cos ¢+ 1) cosOsin (3.54)
R 1) cos 0 cos ¢ — Osin

Equation 3.54 provides a path to defining the Euler rateg, ), and tracking the attitude
of the vehicle, by further development®of;. Starting with the Earth’s rotation based on
a sidereal dayw” can be expressed in the various reference frames of Fig2ise 3.

COS A\ Ccos A
whe=10|; wh = 0 w¥; wi = 0 w¥ (3.55)
wk —sin Ag —sin A

Reference framéy, rotates according to the curvature of the Earth, and as sutdpen-
dent on the rate at which the vehicle is travelling acr03$m@ace,<>\, /LL). The angular
velocity of frameF relative to the inertial frame is therefore written usia§ and the
relative motion between framés; and Iy,

(w? + f1) cos A
Wy, = -\ (3.56)
— (wE + ,u) sin A

To be compatible with the body angular rate§, the left hand side of Equation 3.54 is
transformed through a transformatiany, = Ly wy..

For the simplification to a flat Earth model whes& andw?” are neglected, such that
wB —wY = w8 and[P,Q,R]" = [p,q,7]". In terms of the reference frames, ignoring
the rotation of the Earth leavds: as the inertial frame, and ignoring the curvature of the
Earth maked, equivalent toF .
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3.7.2 General Equations of Motion

Using the reference frames of Figure 3.25, the general mmsadf motion for a rigid-
body flight vehicle are developed. This is presented in tvatiges. The first deals with
the application of Newton’s laws of motion to the vehiclegyiding the general force and
moment equations. To complete the equation set, the ihadizleration of the vehicle
centre of mass is then derived. Much of the complexity inerezgiations results from the
transformation from inertial to body-fixed coordinatesthwthe inclusion of the rotation
of the Earth throughv”, and its curvature through" .

The primary assumption in this dynamic model is that of adrlgpdy vehicle. For the
force expression, further simplification results from megihg the momentum of the fuel
through the engine and potential operational mass lossésasuablation. The magnitude
of these terms are small compared to the momentum changetedpa the air flowing
through the engine. In the development of the moment equsattbe contributions from
moving aerodynamic surfaces have been neglected.

Dynamics - force and moment equations

In Figure 3.26, an elemental mags, moving within an inertial reference frame, is acted
upon by a forcedf. The following general force and moment equations resoiinfr
applying Newton'’s laws of motion to the flight vehicle.

force equation: df =vdm (3.57)

momentequation: r xdf =r xvdm (3.58)

Defining the vehicle mass centféby the expressiomr. = [ r dm, the integration
of Equation 3.57 becomef = mac, wherea is the inertial acceleration of the vehicle
mass centre. Transferring the components from the inérdiade to the body-fixed frame
then provides the force equation in the desired form.

Jf 5 =mac, (3.59)

Force vectorf ; is the resultant of all externally applied forces acting ba vehicle,
including airframe aerodynamics, propulsive, controkl gmavitational forces. The ac-
celeration vectoa,, describes the acceleration of the vehicle mass centrieveeta £7,
and is developed further in the following section.

The moment equation is also simplified by defintfigas the mass centre, and refer-
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Figure 3.26: Nomenclature for the application of Newton'’s Law to an elatraf a body.
encing the integral over the vehicle to the moving pa@int
M, = hy, (3.60)
whereM; = [ R; x df, is the resultant external moment ab6ytand
h; = /R[ X v;dm, (3.61)

is the resultant angular momentum aba@ut Again it is desired to express the compo-
nents of (3.60) in terms of body-fixed coordinates rathen tinartial coordinates. This
transformation is achieved through the expansion

Mpg =L M;=hg+&5hg (3.62)

where M 5 represents the aerodynamic, propulsive, and control mtsvagplied to the
vehicle, andhg = Ly;hy, is the transformation of (3.61). Neglecting deformatiome
ponents - elevator motion, fuel sloshing, and elastic ae&tion, for example 4p be-
comes

hB :IBUJB, (363)
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where

IB:—/IE{BIE{Bdm

[m _[zm _sz
= |-1 I —1I

Ty Y Yz

_]zar _Iyz Iz

(3.64)

The moments of inertia and products of inertia defined in mdtg (3.64) respectively
take the form/,, = [ (y* + 2*) dm andl,, = [ zy dm. The rotation of the Earth though
not explicitly appearing in 3.62 and 3.63, occurs impliciti w?.

Inertial acceleration

The reference frames used to derive the equations of motmre nelative to inertial
space, including an acceleration of the origin and a rataflo define the position, inertial
velocity, and inertial acceleration of the vehicle pardtief’s, we are therefore required to
deal with the arbitrary motion of these frames relative &riilal space. Figure 3.27 shows
the framework for developing the necessary expressiong. flight vehicle with mass
centreC' is represented as a point moving within the arbitrarily nmgviEarth reference
frameFz. To simplify the notation, the origin dfi is written a0 rather than the explicit
Og.

Figure 3.27: Moving reference frame, with reference to Figure 3.25

For two frames moving relative to each other, the expressips L;,n, describes
the transformation of the vectar - observable in both frames - from frame ® F,.
Assuming frameF), is fixed and frame fmoves relative to it, then the components of the
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derivative of the vector in the moving frame are transforntel, using
Ly,n, = 1y + w° x ny, (3.65)

wherew® describes the relative angular velocity between the twodés This expression
was used to form Equation 3.62. Applying (3.65) to the dérresof the vehicle position
vector, provides the following expression for the compdsgrarallel to the axes off;
of the inertial velocity 0iOy,.

-/
Vo, = Lgv;r = L (’Uo, + 7))

=vo, + 7y +wh x 1y (3.66)

Differentiatingv; and using (3.66), the components of inertial accelerataralfel to F'i;
are found:

ac, = Lpiv; = ve, + Opve,
= ap, + ¥y + Opr’y + 2057, + @B, (3.67)
whereap, = 10, + @5vo,, the acceleratio® relative tof;. The matrix equivalent to
the vector product has been used, as indicated by the tiltenacFor examplew® x

-/ ~FE
TE = 2WpTy.

The form of Equation 3.67 can be considered a general expre&w the inertial
acceleration of a point within a moving reference frame. Ha tase of flight vehicle
simulation, the Earth-fixed surface frame is the moving f#aand the vehicle centre of
mass the moving point within that frame. The terms of 3.67 iiegn be defined as
follows:

inertial acceleration of the origin df;. Following the assumption that the
Earth’s axis is fixed in inertial space, and thaf = 0, this term is the
centripetal acceleration associated with the Earth’dimiao”o” Ry;. The

aopg -

maximum value for,,, occurs at the equator, and at less th&nof gravity,
this term is neglected here.

#, 1 g, the acceleration of the vehicle mass centre in the movargée .

wir'E . the tanbgential acceleration of framig is zero as the Earth spins at a constant
rate,w, = 0.

2w+, © the Coriolis acceleration due to motion of the vehicle witthe moving
frame Fg. It is dependent on the magnitude and direction of the vehicl
velocity, and at orbital speed is around 10% of gravity.
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wholrt. . the apparent acceleration of the vehicle mass centre dbe emgular veloc-

ity of the moving framel;. Being less tham,, this term is also neglected.
If the simulation was concerned with accurate navigatigmositioning, then
this term would not be negligible.

Transforming Equation 3.67 into the moving body fixed frafg makes use of the
propertyw, = Lw,Ly,, and again uses (3.65). In this case, the angular velocity in
(3.65) represents the angular velocity i8¢ relative to Fr;, (w? — wk). The inertial
acceleration of the vehicle is thus written with componeguatsallel toF'z:

) ~E_ E
acy = LBEaCE = LBE (’UCE + QLUE’UCE)

=0p + (W} + @5) vé,, (3.68)

wherev  is the flight velocity of the vehicle relative to the Earth,

Uu
vgB: v |, fora stationary atmosphere, (3.69)
w

andw?® andw® are respectively the angular velocities of franfésand F, relative to
inertial space

_ —y (3.70)
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3.7.3 System of Equations

The complete system of dynamic and kinematic equations/eetsonic flight simulation
are assembled here. They are presented in a form compatthlewnerical integration,
for the purpose of tracking flight velocity, vehicle positjand vehicle orientation. The
dynamics state vector describes the vehicle positioniud#j angular velocity, and flight
velocity.

xq =[(R, 1, \), (¥, 0,0), (p.q,7), (u,v,w)]" (3.71)

For the combined trajectory and attitude motions, a bodysdarm of the equations has
been used.
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Force equations - for motion of the vehicle centre of mass

The force equations are described in terms of body coomelriay Equation 3.59. Here,
f 5 is the sum of the aero-propulsive force vediby, F,, FZ]T and the gravity vectog ;.
Following the transformatiop; = Lgy gy, with Lg, defined by (3.53), the force vector
becomes

F, —mgsin@
fp=|F,+mgcosfsing| . (3.72)
F, +mgcosfcos ¢

Combining the force and acceleration expressions, thekeimertial acceleration com-
ponents inFz are

i = (F, —mgsin®) /m— (¢+q5)w+ (r+r5) v,
0 = (F, +mgcosfsing) /m — (r+r§) u—+ (p+p§) w, (3.73)
w = (F, + mgcosfcos @) /m — (p+p§)v+ (q+q§) u.

Integration of these equations provides the vehicle vBlpoiz = [u,v,w]T, in body

coordinates.

Moment equations - rotational motion about the centre of mas

The simplest form of the moment equations given by exprasgi®.62) and (3.63), comes
from using principal axes faFz with a plane of symmetry aligned alodg, . A diagonal
inertia matrix is thus provided. If the time derivative texyof inertia are neglected, the
moment equations can be arranged as,

p= (M:v + ([y - IZ) qT) /I:va
g= (M, + (I, —1,)rp) /1, (3.74)

where the vehicle net aerodynamic moments are givefdhy M,,, M.]”. Integration of
(3.74) provides the vehicle angular rates; = [p, ¢, r]”.

Vehicle attitude

Recalling that the orientation of the vehicle relative te kbcal vertical framée, is given
by the Euler angle sequen¢e, ¢, ¢). The matrix equation for integrating the Euler rates
and therefore tracking the angular position, is found frogu&ion 3.54, requiring the
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relative angular velocityP, @, R| between the two body framég, and Fg, as input.

b 1 singtanf cos¢tand| |P
] =10 coso —sing | |Q (3.75)
V) 0 singsect cos¢gsecl| |R

Relative angular velocity

Expressions for the relative angular velocity are formeﬂrfrconsidering(wg — wg)
using Equations 3.54 and 3.56,

P D (wE + ,u) cos A
Q| = |q| —Lsv )\ . (3.76)
R r — (u)E + ;l) sin A

Earth’s angular velocity

The vehicle acceleration in body coordinates (3.68) reguine angular velocity compo-
nents associated with the Earth’s rotation, and expresseddy coordinates,

L cos A
rk —sin A

Vehicle position

Spherical polar coordinates are used to locate the vehariere of mass relative to the
Earth. (R, A, n), represent geocentric radius, latitude, and longitudpeetively. Their
derivatives are related to the movemetit of frameFy relative to the Earth, giving

= —’U‘E/z’
1 E
= 3.78
. R cos A Vo ( )
1
A = %U‘i

To provide the components ef, the velocity vectow = [u, v, w]” for a still atmo-
sphere, is transferred to the frarhg.

1)5 = LVB'Uga (379)

whereLy g = L}gv, the transpose of the orientation matrix used to rotatedramto the
body axes, defined by (3.53).
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Figure 3.28: Altitude response comparison between the general six degfrieeedom model and
the simplified longitudinal equations.

Longitudinal Flat-Earth Flight Dynamics

To check the derivation of the general six degree-of-freedgnamic model, the longitu-
dinal dynamics were separately derived for a flat Earth syshese equations can also
be produced by the following simplifications to the generplaions:

Attitude: o = g ¢ =0
Angular rates: p

E
B
Forcesand moments: Z=0 ; L=N=0

The simplification of the flight dynamics in this manner netibly changes the altitude
response characteristics of the vehicle. By example, tmellated altitude responses
shown in Figure 3.28 where produced during a flight guidaimoelation. The difference
is due to the Coriolis acceleration component which appedls six degree-of-freedom
equations, and contributes to altitude gain. This doespmo¢ar in the flat Earth model.

3.8 Control Actuator Dynamics

In this hypersonic vehicle study, a rear wing/elevator ciovation provides the means
for active control. The elevator action is specified by aremioop attitude controller
providing an angular rate commartdcme An instantaneous change in the angular rate
following the command has been assumed. Depending on thiéyqafahe control func-
tion, this simplification may contribute to controller siivity to high frequency noise
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generated in the simulation by performance uncertaintysaghl noise.

Fuel settings are not actively controlled, but are considgrart of the vehicle input
vector for the purpose of tracking the rate of mass loss. Gésin the fuel rate to each
combustor occur independently as a function of the fixed nahfuel/air equivalence
ratio and a variable mass flow rate of air through the engindules due to changes in
flight condition and vehicle attitude. These changes angnasd to be instantaneous.

3.9 Numerical Integration

The flight simulation history is provided by numerical intagon of the flight dynamics
equations of motion. In the flow structure shown in FiguretBg& integrator is used as
a single step procedure for the integration intecdal The initial value problem is thus
written for the intervat = [t;, ¢; + At].

xr = f(t,w) fort € [ti,ti + At]

2(t) = x, (3.80)

where the state vectar is described by Equation 3.1. One step methods tested for the
flight simulation task included a fixed timestep Runge Kudta] the predictor corrector
method of Heun [65].

The fixed timestep Runge Kutta scheme is a fourth order ekplimge Kutta proce-
dure. An advantage of the scheme is a fixed local error abdéat)?), but this is offset
by requiring the calculation of four functional values wehch integration step. Like all
explicit one-step schemes, the fixed timestep Runge al$ersudfom the need for very
small stepsize for solution convergence when dealing withegjuations. A system of
differential equations are said to be stiff if the comporfenttions exhibit very different
growth behaviours. For the scramjet flight simulationtaite and angle of attack have
potentially large growth rates relative to the rest of thhieke states, and are therefore
sources of stiffness in the flight dynamics equations. Theedso the potential for dis-
continuities in aerodynamics and propulsion modellingiclttan lead to step changes
in the vehicle pitching moment.

A stiff set of equations implies that over the time periodraérest, there are important
features characterized by a much small timescale. To aafitese features, an adaptive
stepsize Runge Kutta scheme can be employed. However,mques with a 4th order
scheme showed discontinuities in the system model cantiessdvere reductions in the
integration timestep without much gain in overall accurasy/the algorithm attempts to
precisely follow the derivative function. Since the vehiflow processes are simulated
with each functional evaluation, there is a significant cataponal gain by to be realized
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by a procedure with fewer function calls, while not subjecthe failings of an explicit
routine.

The predictor-corrector method of Heun combines expliod @anplicit formulae,
making it suitable for integrating a system of stiff diffat&l equations. With two cor-
rector iterations, Heun’s method has three function catamegration step, with a fixed
local error orde((At)*). Over the intervat = [t;, ¢;,1], the path from; to z;, ; follows
two intermediate evaluations.

Starting withz; = x(¢;), the first valuezr;g(f1 is determined by the explicit Euler method.
The implicit update fore; ., is provided by the trapezoidal rule for evaluating the ina&g

fttf“ f(t,z(t))dt, and is solved here with two iterations. The predictor andemor

steps are thus summarized:

Predictor: :pﬁ)l =x; + %f(ti, x;)
) (3.81)
Corrector: /1" = x; + 4t (f(tl-,xi) + f(tm,wf.fl)) ,forv=0,1

After the corrector iterations,

Ty = x). (3.82)

To minimize the corrector iteration error, the integratgtep sizeAt, should be cho-
sen according to the Lipschitz condition [65],

K =AtL; <0.20, (3.83)
whereL; is the local Lipschitz constant far; € [x;, ;1]

max
1<r,k<n

af,

| (3.84)

i

Applying the Lipschitz condition to the integration of theramjet vehicle dynamics sug-
gested a timestep of 0.00005s is required. This value isistens with the stepsize
reduction that the adaptive Runge Kutta scheme undergoas. t®the computational
effort required in evaluating the state derivatives, it wasessary to sacrifice integration
accuracy by using a stepsizA#{ = 0.01 s), wherebyAtL; ~ 30. Experiments showed
the simulated response for the Heun scheme was equivalém ®unge Kutta scheme
with the same timestep. The results also indicate thatfgatisthe Lipschitz condition
was not required to accurately generate the flight respassayn Consequently, for this
thesis Heun’s method with a timestep of 0.01 s was used fdligiit simulations needed
by the control design procedure.
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3.10 Concluding Remarks

This chapter presented the simulation tools by which hypeecsflight simulation of an
air-breathing launch vehicle concept is possible. Fedtamsongst the simulator compo-
nents are the estimated vehicle geometry and mass digbnbatvehicle aero-propulsive
response model, a high speed flight dynamics model, and amsyfst integrating the
flight dynamics to generate a flight history. The implemeaataof the flight simulation
software is available as FORTRAN code in a supporting tesa@imeport [18].

Flight simulation is a major component of the flight contr@sayn problem. For
the design procedure applied in this thesis, the controligasvolved on the basis of the
performance of simulated flight responses. The design arfidrpence of the two control
loops (longitudinal control and guidance), are the topidhe following chapters.



CHAPTER 4

Control System Design Tools

The two defining features of a control design approach aréutingional representation
of the control law and the algorithm by which the control ftioo is designed. Closed-
loop control design requires the capturing of system behaihrough a model derived
from knowledge about the process to be controlled. Hisadlgiccontrol theory has been
developed using linear time invariant models of the systath@oviding an analytical
solution to the control design problem. Within this framekthe system knowledge is
generally described by transfer functions, frequencyaase functions, or state space
representations. The manipulation of system propertigssifrequency domain and con-
tinuous time domain has provided the basis for much of thérabtheory being used
today. In the frequency domain, measures such as phase iand@gin are used to con-
figure the control law. Such measures are also used to exdhgredosed loop stability
of controlled system and to provide robustness guaranteethe continuous time do-
main, performance measures such as percent overshoaly-stiede error response and
response time are applied.

An alternative to the conventional analytical descriptisrthe heuristically derived
rule-based control. The use of rule base systems is geneeddited to process control
situations, where the action to be taken is reliant on a coatlzin of events of systems
states. For ill-defined industrial processes, conventiooitrol methods may fail, either
due to the inability in obtaining an analytical system moaiebecause controller input
information is imprecise. Uncertainty in the system moddito design the control has,
over recent times, led to the development of robust corttiemties within the continuous
time domain. Fuzzy control (FC), as a specific implementeatiorule-based control, has
also emerged as an alternative to conventional controésystparticularly for complex
ill-defined problems where it is difficult to form precise mamatical statements of the
system performance. In the realm of process control agmits, fuzzy control provides
a convenient means of converting a linguistic control stgatbased on expert knowledge,
into an automatic control strategy [143].

Fuzzy control is considered part of the intelligent confreld since it emulates the
human decision making process. It has been argued thatdh#&iwtes an intelligent
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system rather than simply an intelligent designer [11]. efbgr with neural networks,
fuzzy control has received increasing attention as a metbothe implementation of
truly nonlinear control laws. According to the represeptatheorem of Kosko [124], any
continuous nonlinear function can be described by a finit@kizzy variables, values
and rules. In flight control, nonlinearities are typicalgpresented in a discrete manner,
through gain scheduling and mode switching, for example Skilled human pilot is an
excellent example of a highly nonlinear control strategljol can be duplicated using
fuzzy logic control or neural networks [207, 135]. Howewdue to the difficulty in val-
idating neural network and fuzzy control systems, they di@ncused to augment more
conventional control approaches. Applications includghtlicontrol law design through
gain scheduling [135], incorporating intelligent behawion the outer loop trajectory
maintenance [207], and on-line learning [208]. The aitcrafrier landing problem pre-
sented by Steinberg [206, 207] shows the performance eahemt FC offers by being
able to represent pilot actions and knowledge as an autoeiirol strategy.

The decision of which control methodology to apply to a penbrests with the unique
demands of the system to be controlled. It is generally thotlgat fuzzy control is left
to problems such as process control, which are not readajt deth by conventional
analytic approaches. There is, however, no systematieedtoe for the analysis of a
system to assess the viability of applying a fuzzy contratsegy. Advocates of fuzzy
control do not see this as the only area of application [1#1losed-loop control there
are two major classes of applications for fuzzy control:s{pervision of closed loop
operation thereby complementing and extending convealtimontrol algorithms, and (ii)
the direct realization of closed loop operation, repla¢hgconventional control system.

In terms of the hypersonic flight control problem, there hiagen limited studies on
the application of fuzzy control. Christian [43] reportde tapplication of a fuzzy logic
controller for the regulation of the acceleration of a hygoeic interceptor. Robustness
against large aerodynamic parameter variation was sholwau &t al. [244] used a hy-
personic transporter concept and applied a fuzzy logicdaeatrol system to provide
longitudinal stability and attitude command tracking. dhmased the development of the
controller on the behaviour of a human pilot. Favourable gansons were made with a
linear proportional-derivative feedback controller andustness of the FC to variations
in flight condition were shown. Despite the simplicity of thestem models used in these
studies, the non-linear FC laws offer promising perforneaand appear to be robust in
the presence of system uncertainty.

For this thesis, the flight control approach is determinetilayconstraints. The first
is the desire to configure the control law without reducing\tahicle model to an analyt-
ical function. The design is thus based on capturing therobfitnction from simulated
flight responses, covering the full nonlinear operatingabti@ristics of the vehicle. The
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second constraint was the desire to use a single contrdiifumihat provided good per-
formance over a broad range of operation conditions of ticlee A fuzzy logic rule
base controller was considered due to the reported rolssstazzy control offers against
system uncertainty, and the capacity to represent a conmgliebnear control law. De-
spite the simplicity of the rule base format there are numeimntrol parameters which
define both global and local features of the control surface.

Though procedures for the design of fuzzy controllers haenlteveloped for special
cases, there is no systematic procedure for the design d€amnte construction of fuzzy
control systems is generally a trial and error process. $\thi trial and error process can
be circumvented by first developing a linear controller ggianventional techniques and
fine-tuning the fuzzy equivalent, the computing power aldé today makes it possible to
automate the trial and error design using a “brute force’treagh. The design procedure
considered for this thesis uses a genetic algorithm to geoainumerical optimization of
the control surface. Such an approach presents the paysibigenerating novel solu-
tions to the control problem which may not be reachable froenlinear controller. The
design procedure is configured as a black box design prosbese the only interaction
the design algorithm has with the control problem, is theobupf a parameter set and the
receipt of a performance measure. The core of the desigreguoe is a parameter op-
timization problem based on a genetic search algorithnh githulated flight responses
providing the performance measure needed to direct thelsear

Genetic algorithms belong to a collection of zero-ordeoetgms based on the global
search and optimizing capabilities of natural and biolabgystems. Due to their search
robustness over highly dimensional and complex searchesp#itey have been widely
applied as a way to automate the learning of fuzzy contr@sulfo configure the flight
controller of this thesis, a real-coded genetic algorithas developed.

This chapter introduces the fuzzy controller and the geragjorithm. The structural
components of the FC are defined and the construction of theatdaw is discussed
with reference to the flight control problem. A general inlwotion to evolutionary opti-
mization is provided and the implementation of the realezbdenetic algorithm, as used
in this study is presented. Further discussion on the geakgorithm is provided in Ap-
pendix A, where standard test functions are use to examéedtormance of a modified
mutation operator.

4.1 Fuzzy Logic Control

Fuzzy logic models the logic of perception and, in so doingyjes an abstraction of
human reasoning. It is a recently defined term promoted byndrdeting appeal it offers
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in favour of the more conventional descriptors of fuzzinesgh as “vagueness” or “mul-
tivalence”. In contrast to the binary logic which, statedAystotle aseverything must
either be or not befuzzy logic is inspired by the philosophy of Buddha [125}jl8ing
on the expression4 and notA”. The fuzzy controller is built from a collection d@ftthen
style rules which are applied in parallel using the mathesaif fuzzy logic.

The principles of multivalued logic were worked on by logias in the 1920’s, form-
ing the mathematical foundations of fuzzy logic. Furthevelepment led to the first
fuzzy sets being drawn in 1937 [125]. At the time they weremefd to as vague sets.
Lotfi Zadeh, a mathematical theorist, was the first to descvdgue sets as fuzzy. His
seminal papers on the linguistic approach and system asaiymg the theory of fuzzy
sets [240, 241, 242], were the motivation for the developréfuzzy control. Control
applications have since dominated the practical apptinatif fuzzy logic. The ability
of fuzzy logic to interpret human operation and reasoning l@en particularly attrac-
tive in the field of process control where traditional auttimeontrol strategies are out-
performed by human operators. Mamdani and his researcbagples pioneered fuzzy
logic control applications. Their work during the 1970s e design of a fuzzy con-
troller for a steam engine [140], was the first practical aapion of fuzzy logic.

Fuzzy control in its simplest form is described by a set oésulkhich provide a func-
tional relationship for the set of actions given a set ofetatHuman language forms
the basis of the rules, allowing actions to be taken accgrtbrvague descriptions and
a reasoning model. The inherent vagueness of fuzzy setssatlee convenient use of
linguistic rules in an heuristically defined automatic cohstrategy. The combination of
rule-based systems with fuzzy parameters and fuzzy reagoas used by Mamdani, was
the framework for subsequent fuzzy control applicationazZy theory has since been
applied to a broad range of problems, in a variety of formsnext kiln control [102],
automatic train operation [237], and consumer productl agavashing machines. There
have also been developments in fuzzy hardware such as fuemony devices and fuzzy
computers, promoting the effective utilization of fuzzyntwl| [131].

The relatively recent appeal of fuzzy control (FC) is laygile result of a marketing
inspired consumer demand. The washing machine market aatyxample [126, 125],
where new sensors have been configured to provide similamnation to that used by
humans, and fuzzy logic therefore provides a more userdiyanterface. Another reason
for the appeal of FC are the benefits afforded by upgradirgaticontrollers to nonlinear
algorithms. An additional field of application is for comp)ell-defined systems where
analytical or experimental models are limited. In many asth applications, controller
design can be performed by writing rules directly.

The potential of fuzzy control has been premised on the hhaisfuzzy controllers
provide greater robustness than conventional controllzaictthey are more appropriate to
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the control of nonlinear processes [114]. Research offesurpport for these superior fea-
tures is, however, not conclusive. Excluding adaptive ®ohfuzzy control, the control
law is essentially a static nonlinearity. The possibilliat it is more robust to parameter
variations relies on being able to recognize the parametgations and being able to
encode them in the rule base. In this manner it is possibleadwaige seamless transfer
between control parameters. In a study by Kortmann [123@maparison was made be-
tween a classical proportional-derivative (PD) contmodiad a PD-like fuzzy controller,
applied to an unstable vertical take-off and landing plarseleh The fuzzy controller
tested proved to be particularly sensitive to unfilteredgadi the sampling time was too
small. It is possible that the inference method used by Kantmcontributed to the ob-
served poor noise robustness, due to the introduction dineanities in the control sur-
face. With regards to robustness against parameter \arsgtkortmann’s FC was shown
to be superior to a conventional PD controller.

If the basic input/output mapping of the fuzzy controlleb&sed on PD control, then
its superiority over the linear case for nonlinear systesn®liant on the nonlinearities
being a function of the inputs used. Often this requires e af reference signals in
addition to the conventional error and derivative inputsr &ample to capture the per-
formance nonlinearities with the vehicle attitude it coénecessary to include the angle
of attack in addition to the error, as an input. It is possthi nonlinearities expressed
in terms of the state error and its derivative can offer imprbperformance over linear
controllers. This leads to one of the main application afeaizzy control, namely the
enhancement of linear control laws by using fuzzy logic fwesately manipulate different
regions of the state space, thereby generating a nonlioa&iot law. The parameteriza-
tion of the fuzzy controller allows independent manipwatof the global characteristics
generated by the complete rule base and the localized ésatissociated with individual
rules.

One of the issues which has tempered the general accepthhcay logic control
is the assurance of stability. Being a nonlinear contrpitas difficult to obtain general
results for stability analysis and design [63]. Stabilitpgfs for fuzzy control have been
limited to simple proportional-derivative style conter6 and for processes which are
themselves stable [139]. Stability of FC has therefore gdlyebeen addressed through
prototype testing. A compelling argument presented by Mamfl41] is that prototype
testing is more important in terms of assessing controkgfgpmance. The suggestion
is that mathematical stability is not a necessary and seifficiequirement for controller
acceptance. The basis for Mamdani’s position is that stapiloofs require a mathemat-
ical model of the process, which may not be available. Witiard to stability features
of the flight controller in this thesis, extensive flight silations are performed and thesis
include several disturbances and uncertainty featuresa dimilar manner, flight con-
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trol law evaluation for the Hyper-X research vehicle [52ijfpemed numerous parametric
variations and Monte Carlo analyses with nonlinear flightiudations.

The fuzzy approach to system modelling is distinguisheditguiistic variables in
place of numerical variables, the use of conditional stat@sito characterize simple
relations between variables, and the characterizatioomftex relations by fuzzy algo-
rithms [242]. Fuzzy control actions are determined using@kedge base built from sys-
tem knowledge (including constraints), fuzzy rules, anthéerence mechanism to evalu-
ate the rules. The following sections provide the detaibohe key concepts of fuzzy sys-
tems, using the configuration of an attitude control law aexample. Further discussion
on fuzzy system theory applied to fuzzy control is availdhden numerous publications,
reflecting the now widespread interests in fuzzy systems. f@lowing references were
particularly useful in providing an overview to fuzzy cooltf125, 131, 132, 114, 63, 58].

4.1.1 Fuzzy Sets and Fuzzy Variables

Classical sets are based on bivalent logic, where crispdarigs allow an element to
either belong or not belong to the set. The memberghifp) of a classical seti, being
a subset of the univers¥, is defined by

1 ffze A
pa(z) = , (4.1)
0 iffzsA

These sets are referred to as crisp sets, allowing the mehipdunction to take on only
two values, 1 or 0, according to cases wheoes or does not belong th

Fuzzy sets are a generalization of the ordinary set. Foyrdefined by Zadeh [240]
in 1965, fuzzy sets allow the possibility of degrees of mership, defined by a charac-
teristic function that can take on any value in the intef9al]. In contrast to the crisp sets
defined by Equation 4.1, the valueof (x) atx represents the grade of membership of
in A. To differentiate the membership function from probabpiliteas, it has been referred
to as a “possibility” function. A functional representatifor fuzzy setsya(z) = f(z), is
often a convenient way to define the membership functionohtrol applications func-
tion forms typically take the form of triangular, trapezaidor Gaussian functions. The
simplest definition is available with symmetric triangutarGaussian functions, which
are parameterized by a central locatioand a half-widthb.
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Figure 4.1: Triangular and Gaussian membership functions.

‘ 1—‘:”?;“‘ iff [z —a|l<b
triangular: p(z) = 4.2)

0 otherwise

Gaussian: u(z) = exp <—g (x ; a) ) (4.3)

For the Gaussian set, the width is assumed to be 3 standaadides. Fuzzy sets were de-
signed to represent the ambiguity associated with clasgiglements into classes. They
can be used to represent vague concepts such large and Goradider, for example, the
variablea,,, representing the angle of attack error internal to the flagrttroller. The
condition statement such as.,, is large”, implies a decision to be made according to
the degree that value of,,., is large.

In system modelling or control, fuzzy sets are used to dieera fuzzy variable across
its domain. The fuzzy variable far.,, represents a linguistic interpretation of the error
variable. A possible discretization of the,,. fuzzy variable is shown in Figure 4.2. Fuzzy
sets abbreviated by NL, NS, ZE, PS, and P characterize tbeastbeing negative large,
negative small, zero, positive small or positive large. G1With a continuous variables,
the quantization levels of the input variables expressesémsitivity of the controller to
the observed variable. To reduce the sensitivity of therotlet to noise it is necessary to
have sufficiently wide membership functions [131]. The piarting is traded off against
the benefits of additional degrees of freedom availableutjindiner partitions. For all
cases considered in this thesis, an odd number of partihans been used to discretize
the fuzzy variables.

There is considerable scope for fine-tuning the shape of #malmrship functions to
match the variable description, accounting for known nuedrities, or to enhance fine-
tuning. The higher the density of fuzzy sets the more comgblexcontrol surface which
can be configured. Using nonlinear functions to define thergghbership results in a
nonlinear interpolation between rules. Though this induten-linear characteristic may
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Figure 4.3: Membership function impact on a proportional derivativie iset, with each variable
partitioned by three fuzzy sets. (a) Triangular member&mptions produce a linear interpolation
between the rules, and (b) Gaussian membership functiatkiping a nonlinear interpolation.

provide the desired control surface, it is considered todie@maccordance with the basic
idea of a fuzzy controller. The nonlinearity should be defibg the fuzzy rules, which
depend upon the number and distribution of fuzzy sets [1Higre 4.3 shows the impact
of a nonlinear interpolation on the control surface of adineéD controller.

4.1.2 Fuzzy Rules and Reasoning

The basis for reasoning with fuzzy logic is a collection a4y propositions. A fuzzy
proposition takes the form:*is A”, wherez is a variable and is a linguistic variable
represented by a fuzzy set. For exampleis‘large” inquires to what degree fits the de-
scriptionlarge. The evaluation of a fuzzy proposition measures the dedgmreembership
of x to the linguistic variable, using a membership functipn(x), which is continuous
over the domain ofl.

Fuzzy propositions are combined using logical connectsteh as “and” and “or”.
General forms of these are represented by triangular nofamerfns) and triangular
conorms (T-conorms or S-norms) [114, 132], respectivelye Tollowing set operators
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Figure 4.4: Control surfaces generated by two common "and” connecfinea linear PD equiv-
alent fuzzy controller. The normalize input variables weiseretized by three partitions.

were originally proposed by Zadeh [240].

and = HA1NA, (:E) = min{:u/h (l‘), HAy (l‘)} (4.4)
or = [lA1UA, (:E) = maX{MAl ("E)nqu (l‘)} (4.5)

Another commonly used T-norm has thied connective represented by a product,

HAainA; = KAy (l‘) * Ay (:E) (4.6)

One or more fuzzy propositional statements can be used prémeise of a fuzzy rule. For
the general case where the premise is constructed usiraplesifrom different domains,
the premise for two inputs may be written as:

p: 1 is A1 and - is A2 (47)

The evaluation of the proposition, set by the definition af @&md connective in 4.7, is
nontrivial. In Figure 4.4 the effect of the "min” and "prodtioperators on the controller
surface is demonstrated. The controller rules were basea mmoportional-derivative
linear attitude controller with three partitions per inpatiable. Nonlinearities generated
by the minimum operator are not adjustable by the designgsocThe finer the partition
of the input space, the greater the frequency of nonlinedufes on the control surface.
It is interesting to note that, of all the possible definisdar theand connective, only the
productoperator doesn't introduce nonlinearities in the contuface [114, 131].

Reasoning with fuzzy logic requires each fuzzy rule to bdtemias an implication,
anif-thenstatement, where the antecedent and the consequent asglfbynfuzzy propo-
sitions. Fuzzy rules provide a way of expressing contralogyand domain knowledge by
characterizing a dependency between system variablestrés. To describe a multi-
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input multi-output (MIMO) rule, multiple propositions ité condition and consequence
statements are used, with each consequent propositidadriemependently. Two types
of rules are used in fuzzy control: Mamdani rules and Sugetesr Mamdani fuzzy rules
originate from the first reported applications of fuzzy cohf142]. For a MIMO system
with Nx inputs andVy outputs, Mamdani rules have the following general form:

rp: tfxisAipand---xn, ISAN, pthen y iSBig, - ,yny IS Bny i

The output of the rule, expressed here in terms of a fuzzyaetbe a constant numerical
consequent. This provides greater freedom in generategdhtrol surface and a sim-
pler rule base evaluation. An alternative format for fuzales which is often used, was
devised by Takagi and Sugeno [215] for control of a modellcathe so called TS rules,
the rule consequents are written as functions of the cdetrolputs.

rp: tf x1isAipand---xy, IS An, i, then

Y1 = fl,k(xlv"'ax]\fx)a"' y YNy = fNy,k(:Ela"' 7xNx)

Using Sugeno rules provides a mechanism for interpolatetgvéen a set of control
functions, effectively providing a fuzzy gain schedulieghinique. The main drawback of
conventional gain schedulers is the potential for abruphgles in the control parameters
and the need for accurate linear time-invariant models Sugeales represent a possible
solution to the problems by using a fuzzy reasoning mechatosdetermine the control
parameters. The rule condition values could also be usedptuie nonlinearities with
respect to the flight condition and vehicle attitude, whifle tule consequents are based
on linear controllers designed with conventional contesign techniques.

The processing of a fuzzy rule base requires the aggregattithe set of fuzzy rules
using the sentence connectiakso. All rules are evaluated in parallel, with the aggre-
gation procedure providing a means to generate a singleibdgscription. Along with
the method of implication which generates the output forrglsi rule, the connective
also has a substantial influence on the quality of a fuzzy modek [182] reports on
a study of fuzzy implication and aggregation methods andrabtes appropriate pairs
for fuzzy control. Of the approaches, those commonly appdiee Mamdani’'sk. (min
implication) and Larsen’s, (product implication) combined with the union operator for
the connective “also”. A simplified inference mechanismsusemerical constants in the
consequents, allowing the single result to be obtainetragtically, thus bypassing the
complexity of dealing with fuzzy sets in the consequence.
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4.1.3 Fuzzy Controller Operation

In fuzzy control as used in this thesis, the control law ideated by the parallel action of
a set of Mamdani fuzzy rules which, in general, describe dimear mapping of inputs
to outputs. Also, the application of fuzzy control has usesinaplified fuzzy inference
method, because of the computational savings and the figxibioffers in defining the
control surface. The general fuzzy rule using the simpliiderence method is described
as follows, for a multiple-input single-output controller

tfr1isA 1 and s is Ao and ... x, 1S A;, then yisw;

whereA, ; defines the membership function of thih input of thei-th rule, andw; is the
scalar output value for theth rule. The procedure for evaluating the numerical oytput
using the simplified inference method, is described by tHeving steps:

Step 1: Input variables are scaled, mapping the physical valudsedsdtiate variables onto
a normalized domain. The normalization factors can be aigm to the inverse
of the gains used in conventional linear controllers. Eactry propositionz;
is A, ; used in the premise of the rules is evaluated by matching ppeoariate
membership function to the the input. The membership degrge (z}) of the
J-thinput are calculated, wherg represents the scaled numerical value ofjttie
input.

Step 2: The firing strength, or degree of fulfilment (DOE) of rule i, is evaluated using
the appropriate T-norm for thend connective in the condition statement. Results
in this thesis have used the product operator with all coovthd statements of equal
importance,

B = na., (). (4.8)
j=1

Step 3: The calculation of the output from the rule base combinegtipdication relation
for each rule, as defined by the tii¢henrelationship, and the aggregation of the
rules with thealso connective. Using the simplified inference method, the rmbnt
commandu, is evaluated by a weighted average of the rule outputs basede
firing strength of the rules,

u=k, = (4.9)
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wherek, is the scaling factor used to transfer the normalized outptiaible to a
physical control command.

Though the preceding steps are applied to Mamdani fuzzg raleequivalent expres-
sion can also be applied to Sugeno type rules. The methoch&d®yed a special case
of the product-sum-gravity method [81, 114], where the sgpnoduct sum andgravity
respectively refer to the product operator for the condisitatement, the sum operator for
combining the output fuzzy sets from each rule, and the eesftigravity method to find
the numerical output from the aggregated rule outputs.

4.1.4 Designing the Fuzzy Controller

The fuzzy controller (FC) can be represented in functioaahf in the same manner as a
conventional control law:

w(k) = ko F(koe(k), kox(k)) (4.10)

where the controller output at some sampling instat, is expressed as a nonlinear
function £ of the system state and the state errat. The scaling factorg,,, k., andk,
have a similar role to the gains in conventional controllénsthe flight control problem
of this thesis, the FC is applied in a regulatory manner ferrtaintenance of vehicle
stability and attitude. The basic structure of its operateodefined in Figure 4.5. Trans-
formation of the control input signalsw:, ¢, feer to the elevator actuation command
fe.cmais achieved via the parallel processing of an array of ridesprding to the steps
set out in the previous section, and using the knowledgedetseed by the data base and
rule base. The data base describes the storage of inpubieadiefinitions and the array
of outputs. The rule base defines the structure of each ririg tiee various combinations

of condition statements available through the partitigrohthe input space.

Where conventional control systems have a control algoribased on a set of ana-
lytical equations, FC’s are knowledge based system. Tragyire a means of knowledge
representation (a set of rules), a reasoning strategy (aitit&fi of how the rules are pro-
cessed), and a means of acquiring the knowledge. The fowipal means of knowledge
acquisition are expert human knowledge, based on operatdrat actions, based on a
fuzzy model of the process, and learning based on exper[@Bade 63]. The overall de-
sign requires the specification of many parameters and,r&s artd error process, can be
very time consuming. Without an expert to provide the knalgks a learning or adaptive
process is required. One approach to simplify the developmiethe fuzzy controller
is to first establish a linear controller using conventicaralytic design methods and to
then fine tune the fuzzy equivalent. Such an approach hasuseehby Ying [239]. The
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Figure 4.5: Structure and operation of the inner-loop fuzzy controller

approach allows the transfer of local stability analyswsrfrthe linear case to the tuned
nonlinear fuzzy controller.

A popular approach over the last decade has been the couglithg search capa-
bilities of evolutionary algorithms to the automated desig the fuzzy controller. The
knowledge acquisition process is transformed into a nuwsakdptimization procedure,
where the evolution of control parameters is directed tdagroviding optimal per-
formance relative to desired performance characteris@ither naturally inspired algo-
rithms, such as simulated annealing [44], have also beeleddp the design of fuzzy
control [107]. Genetic algorithms (GAs), as used in thisstbeare zero-order search
procedures based on the mechanics of natural genetics. difiey from most other
search methods used for optimization, in that the searchswith a population of pos-
sible solutions and the transition rules are probabilisiter than deterministic. As a
direct consequence of these differences, GAs are capalplerfarming a global search
on large complex problems which may be characterized byanastic cost function. In
addition to the design of fuzzy controllers, GAs have alserbgsed in rule discovery sys-
tems [90], to search a stochastic robustness cost functi@bust control design [144], in
combination with gradient-based optimization for robusttcol design of multivariable
systems [169], and applied to the optimization of varioussgace control systems [128].

A summary of the application of genetic algorithms to offlened online design of
fuzzy control system is provided by Linkens and Nyonges#&][13he work contained
in this thesis has been developed concurrently with the axppee in the literature of
applications combining genetic algorithms and fuzzy aantvlany propose the simulta-
neous design of membership functions and the rule sets P03, providing a general
knowledge acquisition procedure. However, the presengdegproach is focused on
the learning of rule consequent valugsassuming a fixed rule base structure and a fixed
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set of input variable definitions. With each rule having asheipendent consequent value,
the design allows manipulation of the local features of thetiol function throughout
the full range of the input variables. Experiments were atsoducted on the additional
design freedom of tuning the input scaling parametersetheaffecting global features
of the control function.

In designing the fuzzy controller, it is desirable for théerbase to display the prop-
erties of continuity, and completeness [131]. Continudldws the general preference
for smooth control surfaces, and depends on exposing thgndpsocedure to as many
simulation examples as is practicable, ensuring full cagerof the input space and con-
sideration of the range of possible variations in systerfop@ance. Completeness infers
a proper control action for every state of the system withahounds of the input vari-
ables. The realization of completeness is attainable girdlue appropriate discretization
of the input space and the formation of the rule base.

Evolutionary design of a controller is often characteriasdabrute forceapproach,
as computational power is exploited in place of more congeat analytical approaches.
The main contributor to the often considerable computafi@ffort, is the coupling of
the large number of function evaluations required in thece#or good solutions, and
the evaluation of the objective function used to classify ¢uality of the control solu-
tion. Computational power continues to increase howevet,aith the application of
parallel computation, the impact of large populations camiitigated by the simultane-
ous evaluation of individuals in the population. The renrarhurdle is then the desire
for a realistic representation of the design environmentcddtainty models may cover
the robustness requirements of the controller, but thenthwelies on a base model of
sufficient complexity.

Part of the experiment of this thesis is the use of relatigshall populations and
generations. The main reason is the large cost associategaiforming many flight
simulations for each evaluation of the objective functidsing the full non-linear ve-
hicle dynamics with a vehicle performance simulation magtehputed in-line with the
dynamics integrator, the control design approach is wededeng of thebrute forceti-
tle. The applicability of intelligence based techniqueghe design is thus dependent
on the optimization performance of the genetic algorithrppkcation of the GA to test
functions as shown in Appendix A, indicated that high qyasivlutions are found with
a relatively small scale search. In designing the flight cal&r, the population size and
generations required are strongly related to the critesiduo evaluate control perfor-
mance. Chapter 5 provides a complete description of thgdestup and the objective
function evaluation. The remainder of this chapter dessrthe genetic algorithm used to
design the flight controllers and a simplex method which waesidor fine-tuning a linear
fuzzy controller.
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4.2 Evolutionary Design

Evolution, as defined by Darwin [51], is a process of gradhahge driven by natural se-
lection, where natural selection is a process which selgtitsately for reproductive suc-
cess. Modern evolutionary theory has been established #iecl930'’s, through the syn-
thesis of Darwin’s theory of evolution and Mendelian gec®{il52]. Though Mendel’s
experiments on pea plants in 1865 had little impact at the tiiney would eventually
profit him the title ofthe father of geneticsThe robustness, efficiency, and flexibility
of biological systems inspired the developmenewblutionary algorithmsor heuristic
search techniques in the form of directed probabilisticpdures. In general, methods
which simulate evolution are characterized by a populatiased search approach that
relies on selection and random variation. They are welesliv search through large and
complex solution spaces, such as those associated witindegicontrol strategies, finan-
cial market predictions, and function optimization. Aratisimilarly inspired algorithm
is simulated annealinf#4, 197], which uses random processes to help guide a stmarch
minimal energy states. On many nonlinear optimization [enmis classical techniques
such as gradient descent, deterministic hill climbing, podely random search, have
proven unsatisfactory.

Evolutionary computation can be traced back to the late '$980ough the works of
Box [33], Friedberg [80], Bremermann [34], and others. Thegarity of applications to-
day draw from the three main algorithmic approaches: ewwoigtrategies, evolutionary
programming, and genetic algorithms. These areas havedesetoped almost indepen-
dently, each for a specific application and each emphasthifgrent features as being
necessary for a successful evolutionary process.

Evolutionary strategies, developed in Germany by Rechgnf@&9] and Schwe-
fel [193], began as numerical optimizers for both contiraiand discrete problems. They
are self-adaptive with deterministic, extinctive selestiand use normally distributed mu-
tation as the main operator. The self-adaptive featureralsithe strategy parameters for
the mutation probability density functions.

Evolutionary programming was introduced by Fogel [76, &4 &chnique for search-
ing through a space of small finite state machines, with thetaipredict environmental
changes by creating an artificial intelligence. Also sel&tive, evolutionary program-
ming used a selection scheme which was probabilisticatipetive and employed muta-
tion as the only operator.

Genetic algorithms were formulated by Holland [101] in tl®&Q’s and further devel-
oped by Holland and colleagues [55] at the University of Niyeim. Originally devised as
a means to model the adaptive processes as it occurs in ftdaliend also recognized the
potential of incorporating the mechanisms of natural adaphto an adaptive search al-
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gorithm. Genetic algorithms introduced a population-basgorithm, with probabilistic
selection as a form of natural selection, and reproduchicouigh crossover and mutation.
Of the genetics-inspired operators, crossover is the maémador with mutation being
considered a background operator.

Darwinian evolution appears as an optimization processitaiscthis nature which
is generally exploited in the application of evolutionatgaithms. Comparative per-
formance of different evolutionary algorithms indicatatione type is not universally
preferable to others, often leaving the choice of algoritbrpersonal preference. For the
work in this thesis, a genetic algorithm approach was chéselesign parameters of a
fuzzy flight controller, see Section 4.1.4. Like other gahderative nondeterministic al-
gorithms - simulated annealing [197] and tabu search [18p fér example - the genetic
algorithm is computationally simple and easy to implemgat,has proven to be robust
and effective in producing high quality solutions for largemplex problems. They ex-
hibit hill climbing capability, show asymptotic convergento an optimal solution, and
are able to exploit domain specific heuristic informatiorbtas the search [189]. Be-
ing a blind search however, a stopping criteria must be seghpd indicate a sufficiently
evolved solution.

What follows is a general introduction to the applicatiod @erformance of a genetic
algorithm. This is then extended to the structure and ojeratf the GA used in the
controller design task of this thesis.

4.2.1 A General Description of Genetic Algorithms

There is no strict definition for structure and operationegenalgorithms, however, it
is generally accepted that a population of individuals shwd through the selection of
individuals for mating according to fitness, and the creatibnew offspring by crossover
and random mutations. The general aim of the GA is to improegditness of individuals
across generations. The basic structure and operationiofpesgenetic algorithm, as
defined by Goldberg [83] and others, is summarized in Figuse #he general purpose
of the algorithm is: for a function of variables,f (z1,...,7;) : R* — R, evolve
a population of individuals with the aim of maximizing The length of the search is
typically constrained by a maximum number of generatioms.gach generation, parents
are selected to mate and properties from mating pairs acentgioed through crossover
and mutation. Parents are replaced by their children wighpttoviso that the best indi-
vidual so far, according to the relative objective functi@lue, is copied into the next
generation. This is the so-called elitist strategy.

The beginning of GA research is considered to be the puldicaf Holland’s book,
Adaption in Natural and Artificial Systenj$01], in 1975. Holland provided theoreti-
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begin genetic algorithm (pakop)
{
t:=0;
init P(t); % randomly initialize the population
evaluate( P (t), Fopj); % evaluate the fitness of all initial individuals
while (¢t < T') do
t:=t+1; % index the generation counter
P'(t) :=selectP(t); % select parents for reproduction
recombineP’ (t); % recombine the genes of selected parents
mutateP’ (t); % perturb the mated population
evaluate( P’ (t), Fopj); % evaluate the new population
P =elite (P, P'(t)); % transfer the new population
end
end
}

Figure 4.6: Structure and operation of a simple genetic algorithm.

cal and empirical proof of the capacity of genetic algorighim robustly search complex
spaces. Using a binary alphabet to encode informationaHd theory used a building
block referred to as schema, a set of genes representindial gaftution to a problem.
The idea is thagoodsolutions to a problem are generated by discovering, engphgs
and recombining good building blocks of a solution in a hygbdrallel manner. Schemata
were used to define subsets of similar chromosomes, repiregéryperplanes in an-
dimensional space, where n is the number of genes in an thdilii Schemata are a
pattern matching devices, or templates, used to exploréesities among chromosomes.
However, they are not explicitly dealt with in GA operatidrhe performance of a genetic
algorithm is expressed by the growth equation, see [83]¢chvielates the effect of selec-
tion, crossover, and mutation on the number and type of salmocessed. It indicates
that selection increases, exponentially, the sampliregsrat above-average schemata, but
does not introduce new information (schemata). Crossavables structured, yet ran-
domized information exchange allowing new schemata to tsednced, while mutation
introduces greater variability into the population. Thecefnt operation GAs relies on
the exchange of information in a highly parallel manneremnefd to as implicit paral-
lelism. Without extra processing requirements, the sotusipace is searched through a
simultaneous search effort in many hyperplanes.

The representation of problem information rests with:{g thoice of alphabet used
to encode information within an individual chromosome; &indthe distribution of in-
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formation amongst a population of individuals. Both theahng and distribution issues
are fundamental to the operation of the genetic algorithm.

Ever since Holland’s work on the schema theorem proving fhexation of GAs, a
binary alphabet has been favoured [83]. From the perspectia genetic algorithm be-
ing an algorithm that processes schemata, the binary adplesisures the relevance of
short low-order schemata and provides the maximum scheotagsing per bit of infor-
mation of any coding [101]. A side effect of an alphabet witvicardinality is that, for
parameter optimization problems, large string lengthsegeired to encode the problem
information. For example, for a function with 100 variabteguiring minimization with
precision to two decimal places betweemn(0.00 and10.00, a string length of 1100 bits
is needed. Performance, in terms of the search time requagdbe relatively poor for
problems of this size, however, improvements in fine localrtg and processing time
can be achieved through smart operators or using Gray cf2id@j. Gray coding uses a
binary alphabet, with a representation scheme that enadjasent integers differ by one
digit only.

Since the properties of Holland’s schema theorem are natelihio binary strings,
other alphabets have been used, but proof of performananierglly reliant on empiri-
cal results. Though contradicting the idea of low cardigabeing optimal, the benefits
offered by a floating point encoding scheme for continuouiglées problems are many.
By a near-direct mapping of variables in the chromosome(Aes moved closer to the
problem space, thus removing the abstract nature of bimergding. Because precision
depends on that available in the computing machine, redad@enetic operators offer
fine-tuning capabilities, and a computational saving ialed when compared to a bi-
nary encoded GA. There is also support for an improvemeng¢anchk robustness when
using real-valued vectors within the GA [154].

The other representation issue asks the question of hovwstobdite problem infor-
mation amongst the individuals of a population. There isegalty a choice between two
approaches: the Pitt approach and the Michigan approach.Pithapproach gained its
name from De Jong and his students from the University o$lRittg, who used it to code
parameter values in individuals [56]. Each individual ie fpopulation is encoded with
all the parameters of a possible solution. The alternase have each member of the
population representing a single parameter or subset ahpeters (say a single rule for a
controller) and the entire population forming a completetson to the problem. This ap-
proach was introduced by Holland at the University of Mi@ngs a model for classifier
systems and subsequently became know as the Michigan apprBar all applications
in this thesis the Pitt approach [56] was used to code pammealues in individuals. For
the controller design procedure this has each individyalsenting an entire rule set so
that each generation consists of a population of possitdeseis.
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Numerous variations of the simple algorithm shown in FiguGare possible. Appli-
cations are generally described through chromosomalseptation, selection schemes,
population and generation control, and genetic operattker biological inspired fea-
tures can also be included in the algorithm, but have not bgamined in this work: for
example, virus infection [130], and age structure [129].

Despite their description as a general purpose algorithay, temain, as do all search
algorithms, subject to the “no free lunch” (NFL) theorem dptimization [235]. Accord-
ing to the NFL theorem, an algorithm that does particularii\wn average for one class
of problems, must do worse on average over the remaininggrsh The implication
is that for optimal performance the definition of the GA mustthned to the specific
problem. There are a number of implementation issues whitleince the efficiency and
efficacy of the global search. A typical issue addressedenfbiimatting the algorithm
is the potential for premature convergence of the populaiioa sub-optimal solution.
Obvious causes that could be suggested include: insuffisaulation, insufficient gen-
erations, and function characteristics such as many logahmm or plateaus. More
important, however, are algorithmic issues such as therdtion encoding scheme, se-
lection mechanism, and the genetic operators.

Premature convergence occurs when rapid convergenceie#nly evolutionary pro-
cess allows the population to be dominated by better tharageendividuals which then
stagnate the search at a less than optimal solution. M@shpts to improve the con-
vergence of GAs have looked at the selection process, whiebts the search across
generations [83]. However, since premature convergencelased directly to the di-
versity of individuals within a population, perturbatioperators also play a role in the
efficacy of the search. Further discussion on this topicdkioted in Appendix A.

Another implementation issue relates to the performanoefiie available with fine-
local tuning of the solution space. To achieve fine-locairtgnvhen using a GA, a num-
ber of options are available. Holland recognized that Isearch required higher order
schemata while the driving force of a GA was the processirshoft, low-order schemata.
This prompted the suggestion that GAs be used to perfornnttial search and then em-
ploy a local search technique on the best individuals. haign of two schemes can be
such that a simplex method [166] may be used inline with a@eatgorithm to provide
faster convergence rates along with fine-tuning capaslit238]. Grefenstette [89] also
noted the usefulness of invoking a local search techniqae bigh performance regions
of the search space have been identified by the GA. Also, ibssiple to improve the
fine-tuning capabilities of a genetic algorithm through grganetic operators with muta-
tion typically targeted for this task. The formation of a fituming feature is dependent on
the chromosome alphabet and the encoding scheme. For § keimewded chromosome
fine-tuning can be initiated through limiting available m@iibns to the least significant
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digits in genes as the search proceeds [155]. When usingtenfgzoint encoding where
each gene is a real-number, a fine-tuning mutation operatotbe formed by limiting

the magnitude of possible mutations, indexed against énatibn (or generation) num-
ber. An adaptive operator operator of this form was fornadabr genetic algorithms
by Michalewicz [154], and referred to as non-uniform muwiati A modification of the

operator was necessary for this thesis, and is discussedait th Appendix A.

It is worth noting at this point, that the real valued cap#ibg of the genetic algorithm
have existed for some time in evolutionary strategies anthéenary programming [24].
For example, the fine-tuning mutation function of evoluipnstrategies is controlled by
the standard deviation of the randomly distributed additiwutation. Chromosomes in
evolutionary strategies consist of a pair of vectors where defines the search space
and the other a vector of standard deviations used by thetionigperator. The possi-
bilities for the acceleration of optimization through redhg the variance of a Gaussian
mutator function have been discussed by Atmar [15]. Sinosgyevolutionary optimiza-
tion generally occurs quite quickly, reducing the effecuotonstrained variation across
generations accelerates the optimization process.

4.2.2 Real-Coded Genetic Algorithm (RCGA)

The genetic algorithm implemented in this thesis is baseti@simple genetic algorithm
structure presented by Goldberg [83], and employing raaled chromosome represen-
tation. Real-coding for genetic algorithms refers to th@esentation of an individuals’
chromosome as an array of floating-point values. The lenigtieachromosome is there-
fore the same as the length of the solution vector to a profderninat each gene represents
a variable of the problem. Since the controller design meguinany expensive flight sim-
ulations to evaluate the performance of each potentialrobsolution, it is desirable to
rapidly acquire good solutions. From this perspective, famgpbarameter optimization
problems in continuous search spaces, the real-codedigeaiggrithm is superior to a
binary-coded algorithm [154].

Following the simple algorithmic structure shown in Figdté, the design of the ge-
netic algorithm involves the specification of the followiitgms: a parameter encoding
scheme; a means of describing the initial population; airsgdlinction to convert the
objective function into a non-negative fitness value for patibility with the GA selec-
tion scheme; a selection scheme to decide which individar@sallowed to reproduce;
reproduction operators that produce offspring from paresividuals; and finally; a ter-
mination scheme. The following sections develop the RCGfeims of these features.
The notion of population entropy is also introduced as me&esamining the dynamics
of the population. For a complete listing of the FORTRAN caded to implement the
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algorithm, a technical report is available [19].

Encoding

Genetic algorithms are a population-based search teahnkepr the control design prob-
lem of this thesis, each individuél;, of the populatiorP;, is encoded with all the control
design parameters. Each individual therefore represgmssible solution to the control
problem.

Using real-coding, thgth individual is defined by a chromosome vec@y, where
each element is a floating point value within a predefined rangec [a;, b;],

C;= (551,3', L2, - - ,SCn,j) . (4.11)
The population for théth generationP,,, consists of an array of chromosomes,
P, =[Cy,...,C,] (4.12)

Initialization

The initialization process for genetic algorithms regsitbe construction of a popula-
tion Py, of individuals. Mirroring the primordial population of taal evolution, the
initial population is typically constructed of randomlyrgrated solution vectors. Of the
alternatives to random initialization, many advocate segthe initial population with ex-
isting solution vectors. Grefenstette [89] showed thatsegthe initial population with
members thought to have high performance can be benefidia.r@sult can be used in
micro-GAs [47] where small populations are used and thegqe®es continually restarted.
Davis [53] suggests extending the random search for eachoereamd selecting the best
for the initial population. The idea is that even if the saraenber of function evaluations
are performed, an improved final solution can be achieveatanding the initial random
search.

Since the primary experiments of this thesis relate to ttstrattion of a control de-
sign without prior knowledge, a randomly initialized poatibn was generally used. The
potential of seeding the initial population was investaghtor the flight control problem
and further discussion is provided in Chapter 6. The alforits constructed such that
each parameter can be described by a search domain indepehd# other parameters,
allowing a direct mapping of the problem space to that usethbyalgorithm. In the
case of the flight control design problem, all parametergamdomly sourced from the
range [0,1]. Since procedures were required to map theitdlgoparameter set to various
parameters defining the controller, scaling was consideaedof the conversion.
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Population Entropy

A useful measure of the diversity of the population is esséield by population entropy.
It applies the concept of entropy as it is used in informatiogory [172], where it is
referred to as Shannon’s entropy [195]. Bessaou and Si28jyused the entropy mea-
sure in deciding whether to accept a new chromosome in thi@lisation process of
sub-populations. The definition of population entropy ded in their text is reproduced
here. It has been used in the results presented in ChapteeXatnine the search be-
haviour of the genetic algorithm.

For a population of sizé/p, the entropy of thgth gene is

Np
=> Z —Pylog(P, (4.13)

i=1 k=i+1

whereP;;, represents the probability that the value of jlik gene of thé th chromosome
is different to the value of thgth gene of the thé th chromosomeP,;, is evaluated using
the following expression:

Pt ) = nlh) w14

J J

where[a;, b;] describes the search domain for iftle gene. The average entropy( Np)
of the population is then equal to the average of the entsagfi¢he different genes.

_ % zn: H,(Np) (4.15)

H(Np) scales with the size of the population. In Chapter 6 the sebhehaviour of
different sized populations is considered, so the entropgsure is normalized by the
entropy of the initial population.

Individual Evaluation

The relative worth of a solution is judged using a scalaraldd called the objective
function, fo,;. The objective function is a property of the problem spaakianof course,

application dependent. In the control design probleiagsis evaluated from simulated
flight responses, using performance measures such asngditlie, steady state error,
and the integral of absolute error. A weighted sum of the ipleltobjectives provides
the required scalar value. Constraint violation can beilgatorporated in the form of

penalties.

Scalarization of the objective is mandatory when applyimgi@ionary algorithms.
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However, because candidate solutions are processed ilepatee algorithm is particu-
larly suited to multi-objective optimization. The most coron approach when dealing
with a multi-objective problem uses an aggregation (or wisd sum) of the individ-
ual objectives. In many cases this may require a profounctnstanding of the solu-
tion domain. For situations where the performance objestare noncommensurate, it
may therefore be desirable to provide a nondominated setiatiens, known as Pareto-
optimal solutions [77, 245]. Pareto-optimal refers to thiess solutions for which the cor-
responding objective vectors cannot be improved in any dgio& without degradation
in another. A commonly encountered example in design woalthb dual optimization
of cost and performance. For the ultimate selection of atewluhowever, it remains
necessary to scale the relative importance of the variojgstes.

Evolutionary algorithms are notoriously opportunistigking the construction of the
objective function for complex systems a far from triviadkaWhile this property readily
exposes flaws in the definition of the objective function)sbaenables the generation of
solutions for situations when the parameter encoding omalsition component is erro-
neous. For the flight control problem both these situatioesewepeatedly encountered.
Further discussion on the objective function used for thgghflcontroller is contained in
Chapters 5 and 6.

Fitness Scaling

The two extremes of population behaviour, in terms of thatine¢ performance of indi-
viduals, occurs at the beginning and end of the simulatetliggoary process. Early in
the evolutionary stages there may be a small number of veinydiitiduals which could
tend to dominate the next generation and lead to prematumeeggence, whereby the
search direction is focused early rather than later. Witérlgenerations, there may be
little difference between the average and best performmdgyidual, resulting in average
members being given the same reproductive chances as thmésders. To regulate
the competition between members of a population, it is reexggo scale the objective
functions of a population. This process is referred to agd$nscaling, and describes
the transformation of an objective functigi, to a fithess valugf. The fithess value is
then used by the selection procedure to discriminate betweereproductive chances of
individuals.

In Holland’s original GA [101], the fitness value was imptigiassumed to be non-
negative. The reliance of non-negative fitness values bgelection scheme means the
algorithm is formatted as a maximization procedure. Fan&saling therefore has the
additional purpose of transforming the objective functiomon-negative fitness values
where the greater the fitness the better the individual. Tetailed formulation of the
objective function for the flight control design problem @vered in Chapter 5.
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For RCGA, the individual objective function values are meghpo scaled fitness val-
ues using sigma truncation followed by linear scaling. Tteded fitness values ensure
the selection pressure remains relatively constant throlug generations. Here selection
pressure refers to the degree to which highly fit individ@as allowed many offspring.
The following steps convert the raw fitness valyeto a scaled fithess measufé of
generatiort:

1. The raw fitness datais simply the objective function data

£ = { Jobig(£) = min( fory) () i min( fosi)(£) < 0 4.16)

Jobi,; () otherwise

where the subscriptrefers to the’th individual of the population.

2. Sigma scaling is applied to transform the fitness valuesive to the fitness distri-
bution of the population.

) (4.17)
0 otherwise

fi(t) = { fi(0) = F(8) + Caso(®) i F(C(1) > (F(1) = Caros (1)

whereo;(t) is the standard deviation of the current populatif(t) is the mean
(non-negative) objective value of the current populataondC), is a constant. The
value f(t) — Cyo(t) represents the minimum acceptable objective measure for
any reproducing individual, and with’,;, = 2, implies5% of the population on
average are allocated zero fitness. This avoids the padtefeorly performing
individuals, that may be created through crossover or nwtato bias the selec-
tion pressure. This would happen if fithess scaling werereefeed to the worst
performing individuals [55].

3. Linear scaling is applied with the transfer parameteasndb evaluated so that the
average scaled fitness is equal to the average pre-scalesl @ad the maximum
scaled fitness is a preset multiglg,, of the average fitness, see Figure 4.7.

fi=af;+b (4.18)
where
. 7C]w —1
“ - ffmax_ f
(4.19)

b = f(l — (l) +afmin

If fiin IS evaluated to be less than zero then the parametanslb are adjusted to
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provide fin = 0 and f’ = f.

f
a = —=
f - fmin

(4.20)

—a

fmin

According to the recommendation from Goldberg [83] is typically set in the
range [1.2,2.0] for populations in the rangg < [50,100]. The implication is
that for small populations the selection pressure needs tarfe enough such that
the fitter individuals benefit, but not so large that popuolatiliversity is lost early
in the evolutionary process. For the control design requtsented in Chapter 6,
populations ranging in size from 6 to 100 were used, With = 2.
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Figure 4.7: Application of linear scaling to map raw fitness values tdestditness values.

Selection

According to the theory of natural evolution, natural setet selects for reproductive
success. Selection is one of the main operators of an evpary algorithm, providing
the driving force behind the search process by emphasizttgrsolutions in the pop-
ulation. The algorithmic form of natural selection is tooakte the offspring generating
chances of an individual according to its fitness. Usingdpisroach, individuals with a
greater than average fitness have their reproductive chamteanced, while still allow-
ing the below average members a chance to reproduce. ®eléstiypically described
with a probabilistic nature, requiring the fitness valuebémon-negative and the search
procedure to be configured as a maximization task. The #fgoiis also provided with a
degree of robustness against a noisy objective functioj [94

Like all facets of evolutionary algorithms, the implemedida of selection has been
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approached in numerous ways [84, 22, 94]. ProportionatBefe[86] allocates the re-

productive chances of an individual in proportion to its dgs relative to the popula-
tion. Tournament selection [30] conducts a series of tauerds between individuals
randomly chosen from the population, with the winner irsgrin the next generation.

Ranking selection [87] is similar in operation to propomniibselection, however the prob-
ability of selection is based solely on the ranking of indivls (according to fitness)
within the population. The principles of simulated annegihave also been employed in
evolutionary algorithms, through Boltzmann selection haegsms [138].

Proportional selection as introduced by Holland [101]t fareates a probability dis-
tribution proportional to fitness, and then draws samplesifthis distribution. Roulette
wheel selection is one such scheme, where the selectiorguiedy consecutive spins of
a roulette wheel, with each slot sized according to the idd&ls probability of selection,

Pi,
fi
Pi= N
> 1

There is the possibility that, with the roulette wheel pahoe, the fittest individual in the

(4.21)

population may be assigned no offspring in a particular gern.

The mechanism used in RCGA follows the proportional sedecichemes established
by De Jong [55], and improved by Brindle [35] and Booker [3DE Jong proposed the
use of expected value selection, whereby the selectionapility is expressed on the
basis of the expected offspring generating chances of avidiocl,

fi

= P NP s

> i

whereN,, is the population size. A procedure referred te@Ehastic remainder selection
without replacemenB3], has been implemented in RCGA. It is a two step proceih, w
the construction of a mating array of individuals, followeglthe stochastic sampling of
the array to establish mating pairs.

(4.22)

€;

The method of constructing the mating population is to fissign positions equal to
the integer value of;. The preselection process is then completed by filling thenga
array using probabilistic selection, with the fractionaltpof the expected values de-
scribing the probability of selection to the mating popuaat At this stage, once a copy
of an individual is added to the mating population furthemtcdbutions are not permitted.
With the fitness scaling scheme previously described, tkeibdividual in the popula-
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tion is guaranteed to havé,, copies in the mating population. Following preselection,
mating pairs are then formed by randomly selecting pareata the mating population,
and then removed to assure each preselected parent gsrafspeing.

An additional feature of the selection policy used in RCGAthis application of
elitism. It provides an assurance that the maximum objediimction value within a
population is not reduced across generations. If none offfispring of the new genera-
tion constitute an improvement in the best individual, testbso-far individual is copied
into the new population by replacing the worst individual.

Crossover

The regeneration of a population of parental individuasugject to the variation opera-
tors of crossover (or recombination) and mutation. For geragorithms the emphasis
is typically on the search capabilities of crossover andcten. Crossover once distin-
guished genetic algorithms from other evolutionary aldponis, though this is no longer
the case, with crossover also being used in evolutionaayegfies [193, 24]. For parent
individuals selected for reproduction, crossover actievecombination of chromosome
data, providing a structured but randomized mechanismhoffspring to inherit char-
acteristics of both parents. Atmar [15] suggests the biolddunction of crossing over
serves an informational maintenance purpose, which idairta the role it plays in ge-
netic algorithms. By exchanging information between ddeathromosomes, crossover in
genetic algorithms enables new parts of the solution spgabe tried. There is no guar-
antee however, that good chromosomes will generate evesr bees through crossover.

The likelihood of two mating parents undergoing crossosqareset by the crossover
rate (or probability)p. € [0, 1]. If crossover is not performed, parent values are copied
directly to the offspring chromosome, with the possibibfysubsequent mutations.

Compared to the crossover operation for binary stringspmdxnation with real-
valued vectors can be implemented in many forms [99]. Dueddnistory of evolutionary
strategies with real parameter optimization, many of ttiesas are derived from efforts
in that field [32]. The simplest form of crossover is based rchanging information
using a randomly chosen reference poiat{1,2,...,n — 1} along the chromosome. If
the two chromosome€’y = (z11,...,2,1) andCy = (2129, ...,2,2) are selected for
recombination, simple crossover generates the followffspaong,

!
Cl = ({['171, e ,%‘,1, I‘H_LQ, v ,{Emg)

(4.23)

!
02 = (.CCLQ, e 7.’,172‘727 .riJrl’l’ e ,xn,l)

The simple crossover is readily extended to multiple-psehiemes or a uniform crossover
where each element of the new chromosomes will typicallydueced with equal prob-
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ability from the parents. An alternative to the simple exa@aof information between
parents is available with intermediate operators, whiténapt to blend the components
across the parents. The general procedure for generatirgjghted average of the par-
ent chromosomes is referred to as arithmetic crossovel].[16&en two chromosome
vectorsC'; and C',, arithmetic crossover results in the following linear conation of
chromosome information.

Co+(1-XC,

A
(4.24)
ACL+ (1—X)Cy

where € [0, 1] is simply chosen at random for each mating pair, and appligdumly
across the chromosome. Variations on this scheme incluwdeda calculated indepen-
dently for each pair of chromosome elements, and a non{umifiperator where\ is
variable and dependent on the age of the population.

The preferred crossover form is dependent on the charsiitsrof the search space,
as defined by the objective function. One of the limitatiohsh@ uniform arithmetic
crossover is that the bounded operation favours exploitaif the chromosome features
rather than exploration. This places greater emphasis onytation operators such as
mutation to explore the fitness domain. If the search oljeds to find the global opti-
mum to high precision, then a degree of experimentation thighcrossover definition is
worthwhile. However, if the search objective is to find a siolowhich satisfies some per-
formance bounds, then the search is robust for a range dfaresforms. Both the single
point and the arithmetic crossover proved capable of dasyghe flight control functions
for this thesis. Herrerat al[99] provides an empirical study of the performance of sev-
eral crossover operators. The best operators were thoseathsidered the exploration
intervals for obtaining offspring genes. Appendix A contgfurther discussion on the
performance of the crossover operator.

Mutation

The original formulation of genetic algorithms emphasiestbmbination, with mutation
being a dedicated background operator via a low level ofaittin [101]. This reflects
the occurrence of mutation in nature, where it is rare witkroflisastrous consequences.
The primary functions of mutation in the genetic algorithende separated into the
maintenance of population diversity, and the initiatiomefv search paths through the
introduction of new information. As a perturbation functjat can also be used to fine-
tune the search, by including a self-adaption feature wtrednces the magnitude of the
perturbations as the search proceeds.

In binary coded schemes, mutation simply involves the sieer of bits. However,
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like crossover, there are many mechanisms for the pertarbaf floating point val-
ues [99, 193]. To be equivalent to the binary case, the piibtyadd mutation is typically
much higher in real-coded GAs.

Some evolutionary schemes use mutation as the primary grregeneration oper-
ator [26]. The mechanism has therefore been investigatedrasans to improve the
velocity and reliability of the genetic search. Recent ssdhave shown the benefits of
using high rates of mutation, which decrease over the cadtbe evolution [21, 73, 205].
With gross evolutionary optimization occurring quite m@lyj it has also been shown that,
by reducing the variance of a Gaussian mutator function @®phimum is approached,
the search can be dramatically accelerated [15, 26].

The non-uniform operator introduced by Michalewicz [156)\des a step-size con-
trol mechanism for the mutation of real-valued vectors,dgucing the likelihood of large
mutations as the search proceeds. In effect, the operatormes similarly to those used
in evolutionary strategies, where the width of a Gaussiatatan function is adapted
through the search. The basis of the non-uniform operatibreiperturbation of a chro-
mosome element through an addition or subtraction to tiggnadi, with the probability of
large mutations decreasing across the generations. Dilmengpurse of this thesis, a bias
to the centre of the search domain was observed through théabie design of the inner
loop flight control function, see Chapter 6. A simple redéfm of the operator allows
the non-uniform mutation to exhibit the desirable progerif a random walk for early
generations and, as the search progresses, fine-tuningrafigilual's chromosome. An
empirical study of the non-uniform mutation operator andappsed modification is pre-
sented in Appendix A. The modified operator is defined aagaptive rangeanutation
and has been used to generate the flight control designapedsa this thesis.

Each gener; of the newly formed offspring chromosomes, undergoes nautatith
a preset probabilityy,,. The mutation is effected within the variable ranggge [a;, b;],
producing the mutated valug. There are two steps to the mutation process. The first
establishes the mutation range,, o/] < x + A(t, dmax) based on the generation number
t, a fixed maximal half-rangé&, .. and the perturbation functiafy,

A(ta 5max) = Omax * (1 - TW(t)) (4.25)

with r a uniform random number from the rane1], and~(¢) providing the fine-tuning
capability according to the function

() = <1 _ %)ﬁ (4.26)

HereT is the maximum number of generations ahthe strategy parameter which sets
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the degree of non-uniformity across the generations. Eigu8 plots the normalized
perturbation functiom\(¢,y)/y as a function of the random variabtefor 5 = 2. It
shows the possible mutation magnitude decreasing acreggetierations. To ensure the
mutation remains bounded by the variable search range, titetion range is limited by
the variable bounds,

o, = max{a;, r; — A}

. (4.27)
oy = min {b;, z; + A}

The second stage is the actual mutation of the gene, whigmeea random value with
the rang€o,, oy|, with the assurance of symmetry about the parent vajue

i—(1—2 .- if p<0.5
o = ;i — ( p) (z; —oL) p (4.28)
r;+(2p—1) (oy —x;) otherwise

wherep is a random number uniformly distributed within the rarjgel]. Figure 4.9
shows the relative mutation frequency for mutations aboiial values near the centre
and edge of the search domain. Reflecting the behaviour shofigure 4.8, the oper-
ator uniformly accesses the space for early generationswiéh increasing generations,
becomes more localized in its search. The mutation profgdendar to a Gaussian distri-
bution which is often used to described the mutation in evamhary strategies.
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Figure 4.8: Behaviour of the normalized perturbation functidut, y) /y = (1 - M(t)), in terms
of the random number, with 5 = 2.

The adaptive rangadefinition of Michalewicz’s non-uniform mutation operagtan-
proves the reliability of the genetic search. It removeshias of the Michalewicz non-
uniform operator for the centre of the search domain by fixmegmaximal possible muta-
tion magnitude rather than having it dependent on the Vigradsition within the search
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Figure 4.9: Mutation behaviour § = 2) for an initial value near the centre of the search domain
(left) and a value near the edge (right). The relative freguaepresents the probability that a
value in the search domain is reached through mutation.

domain. The search potential for arbitrarily complex fumas remains constrained by the
rapid reduction (dependent @f) in the probability of large mutations. As discussed in
Appendix A, this feature does not prevent the algorithm fifoxding goodcontrol solu-
tions. Rather, for some function minimization problemsyity be the difference between
a very good solution and the global minimum. However, thedllgm performance using
the adaptive range mutation can be augmented by the crossoemtor, increasing the
generation number, the parameterization of the mutati@natpr, or a change to the per-
turbation function to allow the possibility of large mutats further into the evolutionary
process. The operator as defined in the above equationsdwelgufficient for the flight
control design problem of this thesis.

Termination

From the viewpoint of optimization by a genetic algorithmitaria for terminating the
search generally fall into two categories, expressed msaf the search characteristics.
The first, which is explicitly coded in the RCGA, measures skarch progress (using
the objective function) in a predefined number of generatidh no progress is made,
or if progress is less than some tolerance, then the searnennsnated. The second
method is based on a comparison of the chromosome struchorgst the population.
Termination is based on the number of converged chromosteneeats being a preset
percentage of the total number of elements. Depending oolijeetive function proper-
ties, the population convergence test represented in ti@ARBplies that chromosome
elements are converged. For the flight control problemively few generations are
used, and a termination criteria based on convergence isesoled. The applicability of
the above methods is further limited by the control objexfinction changing across the
generations.

From an engineering perspective, the termination can beesged in terms of satis-
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fying criteria for the control performance quality. The ¢ah parameters can therefore
be optimized against an acceptable level of system perfacenaThough control solu-
tions may be well established early in the genetic searehjiie-tuning capability of the
RCGA can significantly improve the solution quality. For tmgpersonic flight control
problem it was considered desirable to fully exploit theitignpotential within a prede-
fined number of generations.

4.2.3 RCGA Parameterization

Despite evolutionary algorithms possessing consideralblestness to the parameter set-
tings for a given set of evolutionary mechanisms, there aresfits in terms of solution
quality, search robustness, and computation time, in thefldaselection of parameter
settings. One of the implications of time free lunchtheorem is that, for optimal search
performance, the algorithm must be tuned to the objectiwetian. The tuning pro-
cess typically involves findingoodvalues through experimentation [83, 88]. Parameter
control mechanisms have also been used to provide some rokadaptive the settings
during the design process [64].

For the application of the RCGA to the control design prohléne emphasis was
search efficiency. Due to the computation cost of evaluatiegbjective function, it was
necessary to minimize the population size and the numbeemémgtions. Over a range
of experiments it was found that suitable solutions coul@bi@ined with relatively few
function evaluations, 150 000 - 250 000 for problems havinghe order of 30 - 250 pa-
rameters. The search performance was seen to be relathsdpsitive to the setting
of operator ratesp. andp,,. When using standard minimization tests such as those in
Appendix A, the aim is to find the global solution to a high psean, so much larger
populations are often evolved over thousands of genematidhough the design of the
flight controller is also described as an optimization peaflit is not an absolute require-
ment that the design generated be a global optimum. The ssio€¢he design is largely
dependent on the use of sufficient generations to establiglod solution base and for
fine-tuning solution performance. Table 4.1 summarizesofperational parameters of
the RCGA used for the control design problem. Some discnssnothe application of
alternative mechanisms is included in Appendix A.

4.3 Nelder-Mead Simplex Method

The hybridization of evolutionary algorithms and hill+olbing methods provide a tool
which exploits global search capabilities of evolutionalyorithms with a means of sys-
tematic fine-tuning. Methods of coupling the two search rme@ms vary from the sim-
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Table 4.1: Parameterization of the real-coded genetic algorithm.niimebers in brackets indicate
the typical values used for the control design problem, withension ranging from 27 to 250
design variables.

Operation Mechanism Parameterization
Initialization:  Random and seeded populations. Np (30-50)
Search length: N¢ (500-1000)
Fitness Scaling: Sigma truncation with linear scaling. Cu (2)
Selection: Stochastic remainder without replacement.
Recombination: Whole arithmetic crossover. pe (0.6)
Mutation:  Adaptive range mutation. pm (0.1-0.3),43 (2-5)

ple augmentation of the solution returned by the evolutipsaarch, to the intermittent
application of a localized search throughout the globalef 81]. To provide a means
of fine-tuning an existing control solution (which may haweeh evolved through appli-
cation of the genetic algorithm), the Nelder-Mead Simpleativbd was used. Simplex
optimization methods are class of gradient-search algostthat do not require the eval-
uation of derivatives to determine the search directioneyTare therefore suitable for
situations where the analytical description is complex mavailable. The simplex ap-
proach to optimizing physical processes or mathematicattions was introduced by
Spendleyet al.[201]. The methods derive their name from the geometric éguinich is
moved along the surface defining the objective functiongarsh of the minimum. In the
Nelder-Mead method [161, 165], the simplex is able to refledend, contract, or shrink,
to conform to the surface topology of the objective functidfodifications by Routlet
al. [185] and Parkeet al. [168] led to improvements in the speed and accuracy of the
minimization search. As a minimization procedure, the &dapf the simplex is such
that it moves away from high values of the objective functiather than moving directly
towards the minimum.

The application of simplex methods generally requires agdespace possessing a
well defined global minimum. As a general N-dimensional miization code it benefits
from the simplicity of the code organization and the robastof operation. The al-
gorithm is entirely self-contained, not requiring one-dimsional minimization methods
such as is needed for Powell's method [173]. The Nelder-Mmadedure used is based
on the Fortran code presented by O’Neill [166]. While theeaganalgorithm works to
maximize the performance objective, Nelder-Mead acts twmikze. In light of the sug-
gestion by Olsson and Nelson [165] that the procedure iglesisable for large problems
with many constraints, it is to be expected that the finergmif the control parameters
be relatively inefficient. However, for the final stages afihg the control parameters
and for a moderate number of parameters, the computatitiodl may be justified by a
significant improvement in the performance of the controlle



CHAPTER 5

Configuration of the Flight Control Design
Experiments

In its most general form, the control design approach useglib@escribed astadack box
optimization problem. Such an approach can be easily degdiwith arguments of inel-
egance and lacking in theoretical grounding, but there arenpial advantages. The main
asset is that, outside of computational time, there are sicgons on what is placed
inside the black box. From the optimizer's perspectiveeiids out a set of parameters
and receives a scalar performance measure. For the coeBgrdproblem this means
that the design can be based on the full-nonlinear flightaesg characteristics of the
vehicle, which can include realistic representations afantainty (through fluctuations
in the nominal performance), disturbances, and noise. @mthvn side, the assurance
of performance and stability robustness does not come the@pvering the full range
of state variations requires a large number of sample condit This requirement is es-
pecially important for a rule based control arrangementesgach sample condition may
activate only a small number of rules. In contrast, with astant gain controller, all
control parameters continuously contribute to the cortoohmand.

The principal computational results of this thesis focughencapability of an evolu-
tionary based optimizer algorithm to design, withaytriori knowledge, a robust fuzzy
control law for a hypersonic concept vehicle. This work expents with the potential
of fuzzy control to represent a complex, nonlinear, and sbbantrol function, the incor-
poration of robustness features in the control performameasure, and the capability of
the genetic algorithm as a search procedure. The desigadguoeis similar to the offline
learning of a neural net. The structure of the fuzzy rule loiefes the mapping proce-
dure and the design procedure learns the output profileghroumerical optimization. It
also has similarities with the modern developments in isettb robustness, where Monte
Carlo evaluation provides an assessment of controlleopegnce in terms of the proba-
bility that a collection of performance metrics are sattfend the design maximizes the
probability of success.

In the preceding chapters the flight control structure aeddgsign tools were intro-
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duced. The flight simulator described in Chapter 3 provilesteans of computing the
dynamic behaviour of an air-breathing hypersonic aird@fthe purpose of evaluating
the controlled flight performance. To provide a link with {eceding chapters and the
results in Chapter 6, this chapter discusses the practaslifes of generating the robust
longitudinal flight control laws. These include the overalhtrol design arrangement, the
controller parameterization, and the specification of thiective function.

5.1 Overall Approach to Controller Design

The core of the control design approach is a genetic searaofdrol parameters using
numerical flight simulations to assess the performance s$ipte solutions. Within the
longitudinal autopilot configuration introduced in Chap2e there are two control func-
tions which require specification, the guidance functiod #re inner-loop attitude con-
trol function. These are specified by first addressing therihmop controller such that
the vehicle is stable and can robustly track attitude contwaRor this design stage, the
performance analysis is based on stability and attitudat®aance over a short timescale
(2 seconds), using a step response in angle of attack. Thadeatage of defining the
gains for the guidance function makes use of the stable Hloogr design and performs
simulations over 30 seconds.

The focus of this work was the design of a fuzzy rule base odiatrfor the inner-loop.
Through the many degrees of freedom available in detaimegitansformation of input
values to a control command, an extremely complex contrattion can be configured.
There are obvious benefits for the configuration of an opticoaltrol law, however, it
also means the search for a solution is of high order, overtengally complex design
space. Because the evaluation of the objective functioonspeitationally demanding,
it was desirable to have a design procedure which would atagmd determination of
the control function. To this end, a real-coded genetic rdlgm was constructed and
used to search for an optimal control configuration. The-ceded form has been shown
to be both more efficient and more reliable in numerical ofation problems of high
dimension [154].

There are many variations on this theme and, to simplify #sedption of each spe-
cific design arrangement, a set of indices are used to defenadtup for the genetic
algorithm (G A,), the controller (;), and the objective function{). The following sec-
tions discuss the initialization of the genetic algorittand the design options available
with the inner-loop and outer-loop control functions.
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5.1.1 Genetic Algorithm Setup and Operation

Considerable effort is usually undertaken to investigatid bhe arrangement of genetic
operators and their parameterization. For the real-coéeétg algorithm (RCGA), the
performance was examined using a benchmark control profl&nand a collection
of function minimization problems, see Appendix A. The arg format of the opera-
tor [155] greatly inhibited the ability of the genetic algbm design process to satisfy the
target criteria of the control problem. It was through thiperimentation that the need
for a modification to a well known mutation operator was retogd. Appendix A details
the new mutation operator and also addresses some gendoahpance characteristics
of the RCGA. Primarily, for the RCGA, the reliable generatiof good solutions was
relatively insensitive to the setting of activation ratéghe variation operators. The re-
sults of Chapter 6 also show that relatively small poputei¢80 - 50) and relatively few
generations~ 500) were sufficient for the design of controllers ranging iresicom 27
to 228 parameters. This is due, in part, to the definition oblajective function which
changes as the search proceeds, gradually providing goeateinds on the controller in
terms of the vehicle response. With the function minim@agproblems which feature in
Appendix A, there is no avoiding the complexities of the gy of the function and the
use of large populations together with large generationbarsis often unavoidable.

The basic construction of the real-coded genetic algortR@GA) was established
in Chapter 4. Vecto6 A is used to classify the RCGA application:

GA = [NpuNG7p07pm7ﬁ] (51)

Since the operators used for the flight control problem weeslgminately arithmetic
crossover and adaptive range mutation, their selectiomnbadeen included ilGA.
Table 5.1 collects the various GA settings used for the teguésented in Chapter 6.

Table 5.1: GA parameterization.

GA@ Np Ng Pe Pm B
1 6 100 06 0.3 5
2 6 30 06 05 4
3 30 500 0.6 0.2 2

4 30 500 0.6 0.2 4

5 2

6 4

7

30 500 0.6 0.1,0.2 2,
50 500 06 0.2
10-100 500 0.6 0.2 2

Through the course of experimenting with the control depigiblem, the genetic al-
gorithm was applied in a number of distinct forms. Theseudel seeding the population
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with existing solutions, dividing the initial search effanto sub-populations which are
then recombined, and using the algorithm as a fine-tuninig Bespite the obvious attrac-
tion of these variations, there was in general, no clearfitener applying the algorithm
in its conventional form: evolution of a single populatiohish is randomly initialized.
All the applications presented in Chapter 6 employ the cotiweal algorithm structure of
randomly initialized population which is exposed to thd é&xtent of the design problem
for all generations. The present application also perfdiraglesign as a single processor
operation. Since the genetic algorithm is an inherentlplelrprocess, there are signifi-
cant performance gains to be had by distributing the evalusibf individuals to separate
processors. In this manner, the computation could be rednom 24 hours to an hour
say, and the genetic algorithm would then be more attraat\ve design tool.

5.1.2 Longitudinal Attitude Controller

Vehicle stability with attitude maintenance is provided dyongitudinal fuzzy attitude
controller, positioned in a feedback loop. The rule basecivforms the control function
consists of three inputi*eaen,é,@e,e”), and one outputy = ée,cmd- Symmetric triangu-
lar memberships are used to uniformly partition the inpwtcgpand a scalar output is
used for the control command. Design trials with Gaussiamb@zship functions were
generally unsuccessful compared to those using triangalditions, though a thorough
examination of the design possibilities has yet to be cotagleThe number of rules is
implied by the degree of partitioning of the input spade, = Hjﬁlpj, wherep; is the
number of partitions for thg™ input variable. Since each partition of an input variable
corresponds to a possible condition statement of the fafrm s A;;”, this arrangement
provides a rule base with all possible combinations of cibmdlistatements. With a high
level of partitioning, there will be rules (once the contsolution is reasonably evolved)

which are never fired since they would represent an unreabievehicle condition.

The basic rule base structure is fixed for all design exampéthin this constraint
two design cases are presented in the results. The first tegefiped input scaling values
and a design task of determining the rule output agragf dimensionyV,.. In the second
case, input scalingk, is included in the design task, meaning the search is peddifor
N,+ N; parameters. Table 5.2 defines the controller definitiongtendesign parameters,
for the results generated in Chapter 6.

A constant gain linear feedback controller was also comedieproviding a bench-
mark for the fuzzy controller. The design task for the lineantroller is simply the
evaluation of the feedback vectds, = [K,,, K, Ky,|.
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Table 5.2: Fuzzy controller definitions.

Rules Partitions Design parameters

e 0 ee,err
27 3 3 3 y
125a 5 5 5 ]
125b 5 5 5 y, k
225a 9 5 5 ]
225 9 5 5 y, k

5.1.3 Longitudinal Guidance System

The design of the longitudinal guidance laws is reliant ovitigaa stable inner-loop re-
sponse. Since the focus of the control design was vehidbdigetion and attitude main-
tenance, arelatively simple feedback law was used to ghleehicle along the nominal
trajectory,

oemd = K¢ - [hEI’I’u herr]T . (5-2)

The guidance design problem is therefore the evaluationeo§&in vecto ;.

5.2 Construction of the Objective Function

In optimal control theory the desired performance is exggddy an objective function,
which may incorporate a range of performance metrics. Feali-quadratic type prob-
lems the objective is an integral squared function, repitasg weighted state and control
energies, which are minimized. In this thesis the objediivetion is extracted from a
collection of simulated flight responses, using perforneameasures such as the steady
state error and the integral of absolute error.

Evolutionary design procedures are often associated wahching within a design
space which is a complex, nonlinear, and multimodal fumctibthe design parameters.
However, the search performance is not independent of dtraaily complex search
domain. One of the guidelines for forming the objective ierdiore to avoid so-called
needle in a haystagkroblems. This is especially relevant for the design of timer-loop
controller as the vehicle is highly unstable and rapid failoccurs unless the appropriate
control action is commanded. With an initially random setsofution vectors, there
needs to be some beneficial discrimination to provide thectieh pressure. If the cost
of evaluating the objective were not so computationallyemgive then this would not
be such a problem. However, with many expensive flight sitraria contributing to the
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objective function, it is necessary to encourage the grafipood control solutions by
providing a path to the final performance goals. To achieig the multiple objectives
used to evaluate the controller performance, are schedluledgh weights expressed as
a function of generation number. The avoidance of vehidlariais given the highest
priority at the start of the search.

While the performance measures reflect the desirable &satirthe controlled flight
response, the objective must also encourage the develaopfreerobust control solution.
This is achieved with the inclusion of parametric uncetiaidisturbance, and signal noise
in the flight simulation, and by assessing the controllefquarance over a large set of
initial conditions covering the entire flight envelope. hetcase of the inner-loop design
the flight simulations are only performed fgr= 2 seconds, with an emphasis on attitude
maintenance and stability. Since the altitude responsersaver a much longer time
scale, simulations of length = 30 seconds were conducted for the outer-loop design.

Genetic algorithms are extremely opportunistic, and ageetiore proficient at expos-
ing failings in the relationship between the objective amelintended measure. This can
be a frustrating way of exposing inadequacy in the reasobetgnd the performance
measures, but can also lead to a greater appreciation oétteviour of the system. The
remainder of this chapter details the formation of the @ahitondition set and the perfor-
mance measures used to evaluate the controlled flight respon

5.2.1 Simulation Initialization

In addition to satisfying robustness concerns, the sizé@fiitial condition set is also
a reflection of the parameterization of the control functi®hen using the fuzzy con-
troller, a single flight response may only activate a fractidthe complete rule base. To
guarantee completeness in the fuzzy controller it is n@cgds provided full coverage
of expected variations in the controller input values. &anlance and stability robustness
can then be addressed by combining the input variable catibirs with varied flight
conditions and with a vehicle simulation corrupted by pagtaio uncertainty and signal
noise.

There are two basic classes of simulation used in the desitie wehicle autopilot,
with both being set by a single flight objective. For the inloap, the target is to trim
the vehicle to an angle of attackdq), while the outer-loop target is simply to maintain
the dynamic pressured,) of the desired flight trajectory. The complete initial cdrah
set is formed by the vehicle flight condition, vehicle atli¢&) guidance command, and
actuator setting:

CU:) = [hv V7 mf7 (acmda q<>o)7 «, ‘97 ‘97 06]T (53)
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Six nominal operating points along the flight trajectory ased to generate the vehicle
flight condition [h, V,m;]". Table 5.3 presents the selection of flight conditions along
with the vehicle centre of mass (¢jrand inertia (,). With the fuel tank positioned near
the vehicle structural centre of mass, there is little \taomein the centre of mass or inertia
along the trajectory. The purpose of including differergtti conditions is therefore to
include the variation in the vehicle aerodynamics and pisdpn performance along the
flight trajectory. Each flight condition selected was allowtie be randomly perturbed
within the following ranges,

[, V,mg]" = | V;£200m/s | . (5.4)
my; = 100kg

Initialization bounds were also provided for the vehiclgtatle, the guidance command,
and the initial control setting. These are summarized irerait.

Table 5.3: Nominal flight conditions along a trajectory defineddgy = 188 kPa.

T, Velocity (m/s) Altitude (m) Fuel (kg) cm(m) I, (kg/n¥)

1 2500 22420.4 2485 5.199 11187
2 3000 24745.0 2000 5.176 10941
3 3500 26682.3 1685 5.158 10804
4 4000 28450.0 1300 5.132 10655
5 4500 30000.0 985 5.107 10547
6 4900 31043.4 635 5.072 10437

Table 5.4: Initial condition bounds which also represent constraoristhe perturbation of the
vehicle from nominal operating conditions.

Parameter Constraint

« +5°
Qemd +3°
Clerr +3°
0 +5°
q 0.1rad/s
96 ee,trim +1°
Four means of initialization were arrangdd,’, . . ., IC,. The first allows user spec-

ification of the initial condition set and was primarily usked analysis of the controller
after it had been configured. For the second method, all eltswé the initial condition
set are randomly generated within preset bounds. This rdetlas used to experiment



5.2 Construction of the Objective Function 135

with varying the simulations throughout the design processl for examining the ro-
bustness of the final control solution. The third method led systematic coverage of
possiblea and aef combinations with 42 sets of initial conditions. Of the rksypre-
sented in Chapter 6, this approach was predominately useall\i-/C, was arranged for
the design of the guidance control function. This was thg oase where the flight objec-
tive was specified using the dynamic pressure of the nomiajgatory. Flight condition
values for casesC', throughlCy, were drawn from six predefined combinationsof”
andm defined in Table 5.3. For the guidance desiffi), it was necessary to limit the
perturbation applied to the nominal flight conditions anel fiight angle { = 6 — «), to
prevent excessive departure from the nominal flight trapgct

5.2.2 Inner-Loop Performance Measures

The following performance measures are configured for a miaation task. Each is
defined such that the maximum contribution to the overalkedije is 100. The overall
objective function is simply a weighted sum»afperformance measures,

Fobj = ZU}j Jz . (55)
=1
For all the results presented in Chapter 6 the test simulétiogth was ; = 2 seconds.

Simulation completion:

The primary selection pressure early in the evolution otthroller is the establishment
of a controller function which can at least prevent vehialidure. To do this, simulation
time is represented as a performance measure,

t (Oé < Oé|im)

J
t .

: (5.6)

= Wiy

wherew;, = 100, andayy, is an angle of attack limit marking vehicle failure.

Settled system status:

Following simulation completion, the next target is theuetibn in the final state error.
Two performance measures are used to evaluate the qualitg ofsponse after a tinig
which was typically set to; — 1 seconds for the inner-loop design. These incorporate the
desire for the angle of attack and pitch rate to be below angmerance. The contribution

of each to the overall objective function is scheduled adiogrto the generation number

g relative to the length of the searcly;, allowing simulation completion to dominate
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during the early stages of design. For the angle of attackyis

I —w, (1 _ max [averr (T > ts)]) ’ 5.7)

Qrtol

Whereaen’ - acmd — and

2g 2
o=min [ 1, | — - 100

(5.8)

0.0523 radians ifg < 2o

Qo] =
max (0.00873, ~0.04362 e 0.0523) otherwise
Similarly for the pitch rate response:
max|q (t > t,
J, = w, (1 _ maxg )]) (5.9)
Gtol

whereqo = 0.2rad/s andw, = w,. The reason for having the pitch rate tolerance set
at a constant and relatively large value is that, with systemse, large pitch rates can
be induced in the attitude response and dominate the owdjelttive. The weighting of
both.J, and.J, prevents the generation of large negative performanceunesduring the
early stages of design, when the vehicle fails.

Integrated absolute error:

The overall vehicle response is measured by the integrafidine absolute error (IAE)
versus time. Since there is no benefit in using IAE to diserate against individuals
early in the design evolution, it is gradually made more iigent during the design.
Applied to the angle of attack response,

ty
IAEa:/ |t |dt. (5.10)
0

The performance functiod |, follows the same structure of the functions used for the
settled system response,

IAE
= 1— @ 511
Jfa wfoz ( IAEa,tol) ) ( )
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where

IAE o ol =

Qepy t ts
% + Oéto|(tf — ts)

(5.12)
Wia = W

The inclusion ofryg in the reference response measure JAEkeeps the flight response
demands inline with those for the settled system respohegpriesents an initial response
rate of 0.1 rad/s following which an attitude maintenandertmce of set by.

5.2.3 Outer-Loop Performance Measures

The performance measures for the guidance design follosaime format as those for the
inner-loop, except the focus is the altitude response tyisithough vehicle closed-loop
stability is considered a prerequisite for the outer-loepidn, system failure is possible
through the growth of large altitude errors. For large efodgpartures from the nomi-
nal trajectory, the vehicle dynamics grow sufficiently ditnt to those represented in the
inner-loop design that the inner-loop fails. If the objeetfunction for the guidance per-
formance were simply stated as an integral error, the sgaodedure rapidly ascertains
that by forcing the inner-loop to fail, it can provide supemperformance measures. This
is an example of the opportunistic nature of the geneticrédlya as a search procedure.

Two performance measures are used to assess the altitpd@seswith test simula-
tions typically over the intervdl), ¢ = 30] seconds. Since the design of the guidance law
is simply to determine two feedback gains, it is not necgsseschedule the performance
measures.

Altitude response:

With the potential for large departures from the nominagjettory (if the flight angle

is not close to that required to follow the trajectory), idifficult to establish a desired
response to cover the initial stages. The altitude respmesesures therefore consider the
response history after a time of 15 and 20 seconds, with thengstion that the vehicle
should be tracking the nominal trajectory. The followingfpemance function combines
the integral of absolute error and the settled responseureas

Jy = 100 {(1 _ max [he;t:f ~ 20)]) + (1 - I"fEEh’;)} (5.13)

The integral error term is expressed in the same form as #eat for the angle of attack
response. A tracking tolerance of 50 m was typically appéied the integral evaluated
over the time range [13,] seconds.
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5.2.4 Specific Objective Functions

The performance measure defined in the previous sectiores apglied in a number of
ways. For example, with the design of the linear controherdcheduling of performance
measures was considered unnecessary. Table 5.5 sumniaezgcific objective func-
tions used to design the linear controller, the fuzzy inobep controller, and the linear
guidance function.

Table 5.5: Objective function specification. Tolerance values intidaefer to radians for angles
and radians/s for angular rates.

OF; Application Components

1 CGLF Jt;y Ja(oo = 0.00873, wa = 1), Jg(go = 0.02,wg = 1), Jy (w0 =1)
2 CGLF Jt ;s Ja(owo = 0.00873, we = 1), Jfoé(wf(l =1)

3 FC Jtsr Ja(ao(9), wa(9)), Jo(ato(9), wg = (9))1Jfa(atol7wfa(g))

4 Kq JIn




CHAPTER 6

Results - Controlled Hypersonic Flight

Aside from the acceleration capabilities of the scramjéicle, the most basic longitudi-
nal performance characteristics refer to stability. lené¢istability for longitudinal flight
relates to the dynamic stability of the perturbed longitadimotion and the static sta-
bility. Static stability is typically expressed througtability derivatives describing the
variation in forces and moments with respect to the vehitdeesand control variables.
For example, the sign of the stability derivativé, (or M, ), which refers to the pitch-
ing moment variation with the angle of attack, determinesémgitudinal static stability.
With M, < 0, a change in the angle of attack generates a restoring mofena fixed
geometry vehicle),, is principally dependent on the location of the aerodynareitre
relative to the vehicle’s centre of gravity. Without the dder manoeuvrability in the
scramjet-powered launcher, it would seem desirable to hawee degree of passive sta-
bility. However, the long inlets needed for scramjet operatind a large drag penalty
associated with aerodynamic surfaces, makes inherentdaingal stability an unreason-
able objective. The inner-loop control system is therefmed to provide stability and
guidance command tracking.

Dynamic stability is typically expressed by considering ensitivity of the short pe-
riod and phugoid poles to variations in the flight conditionl aehicle attitude, following
a linearization of the vehicle dynamic equations. Dynartab#ity is not possible without
static stability.

One of the features of the configuration studied in this thesihe rate of system
failure without any stabilizing control action. Here systéailure is considered to be
the vehicle reaching an angle of attack equal to the inleteanBeyond this point, the
shadowed engine flow path would have no flow and it would be déficult to return
the vehicle to a smaller angle of attack. Figure 6.1 shows#tablishment of trimmed
flight conditions for the nominal vehicle, following whiché controller is switched off
(att = 2s). Growth in the control-free response is due to treequilibrium flight con-
ditions altering the trim condition, through changes intadte and velocity. If a small
disturbance such as atmospheric turbulence is includdekisimulation, then the time to
failure is reduced to less than 0.5s. The potential for rapglem failure, combined with
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Figure 6.1: Control free stability following the establishment of vaus trimmed conditions. The
controller is switched off at = 2s.

performance variation and disturbances, places greatrmtdsyan the control system.

Previous chapters established the control structure,itire #imulation tools, and the
fuzzy control definition and design procedure. The purpdgsbis chapter then, is to ex-
amine the capability of the evolutionary design procednreonfiguring the control laws
needed for stable altitude tracking of the scramjet velactess its hypersonic trajectory.
Since the principal design problem was the specificatiorheflongitudinal inner-loop
controller, the results deal primarily with this aspectlod ehicle autopilot. The organi-
zation of the results seeks to address issues relating tmtiteoller parameterization, the
design procedure, and vehicle operation. These are asv®llo

Control law parameterization: This is essentially a comparison of the design and per-
formance of a constant gain linear controller and a fuzzytrodler. While the
greater design freedom available with a fuzzy controlldragrtes the general per-
formance of the inner-loop controller, it also presentsrasaterably more demand-
ing design problem.

Design procedure: This examination covers the issue of designing with an uacer
system model and the many variations available with thetgeakgorithm and the
design objective.

Vehicle operation: The control design results reveal operating charactesistich as:
the necessary feedback variables; control sampling rexpgints; sensitivity to per-
formance uncertainty, disturbances, and signal noisetfamtbroad range vehicle
performance.
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6.1 A Results Guide

The controlled flight examination begins with a comparisdra dinear controller to a
fuzzy equivalent which has undergone tuning. Due to theivelalowness of the Nelder-
Mead procedure for high order problems, the tuning proceésnited to a fuzzy con-
troller with the minimum rule set. The comparison represémé primary control param-
eterization issue, namely the basic structure for desagitiie control function.

With the application of a fuzzy controller there are manyiaddal parameterization
issues due to the additional degrees of freedom availalalefining the control function.
Of these, input scaling and rule base size are addressee@ff€otof an uncertain vehicle
model on the control solution and the design procedure © @ssidered. Following
the discussion of inner-loop controller, a guidance desgresented for the purpose of
providing a full trajectory simulation. The results cormduwith the considerations of
issues relating to the performance of the genetic algorithm

For the most part, three basic plots are used to represeopération of the controller
and the mechanics of the design procedure. To present th@mpance of the inner-
loop controller, a series of step commandsviare issued. In most cases, with each step
command the vehicle is also shifted along the trajectorydsgtting the flight velocity,
altitude, and fuel load, according to the nominal condgipnovided in Table 5.3. This
allows the broad range performance of the controller to lesgmted. In cases where a
single flight condition was used, the trajectory indexefers to one of six flight condi-
tions along the nominal trajectory. Further analysis ofdbetrollers considers the flight
response to a large set of randomly generated initial comdit(/C;) and applies the
performance measures of the integral of absolute error laadteady state error. For
these tests, 500 simulations of length 4 seconds were pegthrwith a step command at
2 seconds. The number of completed simulatigp, represents the total number of tests
minus those that failed due to the violation of the vehiclglarof attack limit. All the
flight simulations are for the vehicle design specified in @ba3, and use the general
flight dynamics equations formulated for a spherical, iotpEarth.

Two types of plots are used to represent the behaviour of ¢éseyd procedure, us-
ing the measures of objective function and population @ytrarhe objective function
describes the performance of the controller design andisterly is averaged over the
number of initial conditions used for each performancewtibn during the design. Fur-
ther consideration of the objective function evolutionkeat the relative contribution of
the performance measures through the design process.afopw@ntropy is a measure of
the diversity of the population of potential control sotuts, and is defined in Chapter 4.
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6.2 Constant Gain Linear Feedback (CGLF)

The control function for a linear feedback controller istiemn as a linear combination
of scaled state variables, using a gain matrix and a statervedtvaluating the feedback
gains typically follow the linearization of the system beioair about a nominal oper-
ating point and applying optimal control theories such a&slihear quadratic regulator
(LQR) approach [211]. Due to the limitations of the lineadzamodel in representing the
nonlinear dynamic behaviour of the vehicle, performanad &tability robustness can be
generated by gain scheduling a set of controllers, theneteypolating between locally
optimal gains. It is generally accepted that the applicatiba linear state feedback con-
troller to the hypersonic air-breathing vehicle would riegqscheduling against numerous
operating variablegh, V. «, 0,.) for example. For the flight envelope considered in this
thesis, the potential complexity of this arrangement isiicantly reduced. Broad range
variations due to the changing flight condition are tempésefllying along a constant dy-
namic pressure trajectory. Further, the vehicle attituatestraint of a few degrees means
the nominal vehicle behaviour at a given flight conditionkelly to be reasonably linear.

Robust control theory extends the capability of linear beexk by providing a means
for representing performance uncertainty in the desigiegs®. Following the thoughts
in the previous paragraph, it is therefore considered ressle that, by applying a de-
sign procedure based on the full nonlinear vehicle behaaoross the flight envelope, a
functional constant gain linear feedback (CGLF) controtign be established. The de-
sign of the CGLF controller provides a benchmark for the &oldial complexity (degrees
of freedom) associated with designing a fuzzy controll€)(Applying the general (GA)
design procedure, set out in Chapters 4 and 5, allows paramecertainty and signal
noise to be included in the evaluation of the controller genfance. With a design di-
mension of three, and a genetic search procedure, the dasigedure is the archetypal
brute force approach. The design based on the nominal eemictiel used the genetic
algorithm and objective function specificatiorisA;, O F}), see Chapter 5.

Due to the relative simplicity of the design task, the lineantrol example was used
to examine possible input arrangements and the control Isagniime required. The
input combinations tested includdd,,.., 4], [a, aer, 8], [cer, 0, 6], and[er, 8, O e, OF
which only [aer, é, 0. er] proved capable of forming a useful control law. Not all of the
input combinations were trialled for the fuzzy controllgrpugh, from the ones tested,
[verr, 0, f..en] Was generally superior. It was also noted that improvedoperdnce was
possible with more states included in the feedback loop.evewsince one objective of
the linear design was to establish relative gain sizes ferflazy controller, the states
used were limited to the attitude and control variables.

With regards to the control sampling time, closed loop $tgbtould be achieved
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for sampling timegAt.) up to 0.04s. This is, of course, a reflection of the actuation
capabilities, the vehicle operating constraints, and tiherent dynamics of the vehicle.
All the results in this chapter use a control sampling tifyte = 0.02 s.

Feedback gains were sourced from the raiges [—50, 50]. For the nominal vehicle
model, the following feedback vector was generated,

K = [44.887, —5.731, — 17.287].

Figure 6.2 shows the control response of the nominal vehicéeseries of step changes
in the reference angle of attack.{). The main obstacle in generating the feedback gains
comes from the approximation of the trim elevator conditiwhich is used to determine
. er. Since the trim condition follows a predefined function ofjenattack, averaged
over the entire trajectory, the controller represents afitds the trim uncertainty. With
only three inputs, the maintenance of a steady state respoinsre the pitching rate is
zero requires eithete, = 0 andf. ¢ = 0, or that K, aer = — Ky, 0. . CONsequently,
errors in the trim estimate are transferred to a steady attitade error. The effect of
trim uncertainty also means the controller is sensitivehi® flight condition variation
along the trajectory, as shown in Figure 6.3. The oscilletithat appear in Figure 6.2
after 6s, are due to the non-tracking of the nominal flighgettory which places the
vehicle several kilometres off-course. Since uncheckatudé travel is not desirable
(in terms of the vehicle loads and engine performance), iit&li condition variation
used to assess the controller performance during the ddsiggmnot include these large
variations. Further departure from the nominal trajectatimately leads to the failure
of the vehicle. Though the performance robustness of theatar is limited by the trim
errors, the gains appeared sufficient to provide stabiibystness.

With the inclusion of system uncertainty and signal noistaendesign, all the control
gains are increased in magnitude relative to the nominal, cas

Kune = [48.816, —8.639, —19.44].

The main difference in the design setup compared to thah®nbminal system, is the
removal of the pitch rate penalty from the objective funet{® F»). Noise in the vehi-
cle performance can generate relatively large pitchingstaivhich can overwhelm the
objective measure if the small tolerance from the nominalgteis applied. Figure 6.4
compares the flight response using the two gain seti#tgsnd K . in the feedback loop.
The design path for the uncertain system model generateseagreddual response, with
smaller angle of attack oscillations than that provideddy If K .. was to be applied
to the nominal vehicle, the oscillations which appear betwsix and eight seconds in
Figure 6.2 are no longer seen.
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Figure 6.2: Nominal vehicle response to a series of step commands i afiglttack, using the
CGLF controller. The flight condition correspondsTtg wherel, = 4500 m/s.
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Figure 6.3: Sensitivity of the linear controllerK) to the flight condition. The flight conditioris;
are defined in Table 5.3, and represent a sampling of opgnadimts along the nominal trajectory.
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Figure 6.4: CGLF (K and K nc) response to performance uncertainty and sensor noiseakbr
gain set, a thin line is used to show the angle of attack respohthe nominal vehicle model.

6.3 Fine-Tuning the Linear Fuzzy Controller

One of the mechanisms for generating a nonlinear fuzzy ablaw is to fine-tune an
established linear control law. For the three input vagahlsed in the linear controller,
an exact fuzzy control copy of the linear controller withiretangle of attack constraint,
can be realized with a rule base containing 27 rules, seee Bl Uniform variable
coverage is provided by 50 % overlap amongst neighbouriniggipas. This represents
the minimal discretization of the input space. To presehneerélative contributions of the
linear controller inputs to the control function, the in@und output scaling factors used
to normalized the fuzzy variable domains, must be scaleadapagrtion to the feedback
gains.

(6.1)

1 1 1
[kau kq7 kée] =a |: :|

wherea in this case is used to spread the rules over the full anglé¢tadlarange. It is
also necessary to set the output scaling in accordancehdtinear gains,

k,=k-K" (6.2)

wherek is the scaling vector for the fuzzy controller. Using the moah gains for the
CGLF controller, the input and output scalings for the fuzawntroller are as follows,

k =[0.05236, 0.41, 0.1364]

6.3
k, = 7.051 ©3)

These values mean the control surface formed by the fuzeyasde is bound by an angle
of attack error of 0.05236 radians, a pitch rate of 0.41 raafid an elevator trim error of
0.1364radians. Though the output scaling states that avidodl rule can generate an
elevator actuation command of 7.051 rad/s, the maximuma#oturate returned by the
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controller is limited to 2.0 rad/s.

Once the input and output scalings are defined, the linedralter can be transferred
to an arbitrarily large fuzzy rule base. The possibiliti@sfine-tuning the rule base extend
to all degrees-of-freedom available, but only tuning ofille consequents is considered
here. A Nelder-Mead procedure (described in Section 4.3 wged to fine-tune the
vector of rule outputg. The relative slowness of the procedure in terms of the numbe
of objective function evaluations, meant that for largetodses, the tuning process could
require as much computation as that needed to evolve thewitleout prior knowledge.
For example, 3000 objective function evaluations were wgedne 27 rules. After 7000
function evaluations for a 125 rule case the objective wasvatent to the 27 rule case,
but the 24 hours of computation time used is roughly the sasrtéa need to evolve a
superior rule base from scratch. Consequently, only thaélteetor the fuzzy controller
with 27 rules are presented.

An additional limitation on the Nelder-Mead applicatiorntie need to provide con-
sistent objective function evaluations so that the locadgnt of search space is itself
consistent. The inclusion of performance variation thfougcertain system parameters
would require the time history of inputs to the uncertaintiefs to be fixed during the
fine-tuning process, but this has not been considered. Tjeetoke function is the same
form as that used for designing the linear controller.

The performance advantage available with the fuzzy cdetr@ due to the capacity
of the FC to allow local manipulation of the control surfa¢égure 6.5 shows the con-
trol surface before and after fine-tuning of the linear coltdr. Each surface maps the
normalized inputsd*, ¢*) to the normalized control command*}, for a given elevator
trim error ¢). The capping of the output t&0.3 represents the control command con-
straint of 2rad/s. With so few partitions for each input aaie, there is limited scope
for manipulation of the control surface. The tuned rule h@seides high actuation rates
over a larger range, thereby mitigating the error in the ttandition. While the response
rate for large attitude errors remains the same as the loeess, the additional control
authority for smaller errors aids the reduction of the syestdte error.

The benefits of manipulating the control surface are showiguares 6.6, as a reduced
sensitivity to the variation in vehicle performance witlgft condition. In Figure 6.7 the
tuned fuzzy controller is compared to the CGLF controllengsa series of step com-
mands. The flight condition was chosen since it highlight$ e benefits and dangers
with fine-tuning the fuzzy controller. While the large adioa rates available with the
FC provides a faster approach to the settled response, thiesdte is the potential for
significant overshoot. Without an overshoot penalty in thgcative function, this feature
is allowed because it is not a large component of the integrak function and it im-
proves the steady state cost function. A further limitatdrthe design is that, without
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Figure 6.6: Sensitivity of the tuned 27 rule fuzzy controller, to the filiggondition.

any performance variation through uncertainty, the cdietroan be tuned more precisely
to the collection of test conditions provided. If the teshditions do not provide suffi-
ciently large angles of attack, then control inputs exaegdhe scaling bounds can lead
to system failure. The first step response of Figure 6.7 isxamele of a response which
may lead to an unrecoverable position.

The fuzzy rules used for attitude controller are bound byitipeit scalings used to
normalize the variable domains. Regardless of how largemfhe signals to the controller
are, the maximum contribution of a single rule is set by itssemuent value. One of the
dangers in fine-tuning the rules is that the boundary camitiay contribute to instability
if the inputs exceed the scaling of the input variables. Nmavi of the avoidance of this
situation comes from the selection of the input scalingsthWhis in mind the angle of
attack range used in the optimizer’s test condition set mxtgind beyond the boundary.

A summary of the performance of the linear and fuzzy corerslis provided in Ta-
ble 6.1. The performance measures include the nurmildel of completed simulations
out of the test set of 500, and the average integral error atittd response error for
the simulations which did not lead to vehicle failure. It Isar that the tuning process
based on a nominal system model leads to a loss in robusthéss fuzzy controller.
This is also a reflection of the bounded nature of the FC andié¢isegn would likely be
improved by increasing the input scaling parameters, @damovershoot penalty, or by
extending the design set of initial conditions. Howeveannirthe set of simulations that
were completed the FC provided much improved responsedieaistics over both linear
controllers.
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Figure 6.7: Improved trimming of the vehicle with the tuned 27 rule fuzayntroller FCs7),
compared to the linear controller (CGLF). The vehicle madeludes parametric uncertainty and
signal noise and the flight conditionT$.

Table 6.1: Performance assessment for the CGLF controller and thel tiwzey controller over
500 test simulationsiN¢ refers to the number of completed simulations.

Controller N¢ (/500) [ |cen|dt (rad.s) aen(ts) (degs)
K 499 0.03861 0.701
Kine 497 0.04539 0.719
FCy; 450 0.01640 0.325
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6.4 Evolutionary Design of the Inner-Loop FC

The previous section demonstrated the worth of the fuza/brate, provided care is taken
in the specification of the input gains and the range of inpuatdd@ions used to evaluate
the performance. In this section the evolutionary desigrcg@dure is applied directly to

the fuzzy controller, generating the control parametethauit any prior knowledge. The

results address a number of issues relating to the desigequice:

e Design with uncertainty addresses the effect of an unceviehicle model on the
control solution and the evolutionary process.

e The mechanics of evolution examines the process by whidhlusantrol laws are
evolved from a random population of potential solutions.

e To evaluate the impact of the level of discretization of thke base, the design of
fuzzy controllers ranging in size from 27 to 225 rules is eksed.

e An extended design case is considered whereby the inpuhggqadrameters are
designed simultaneously with the rule consequents.

Design with Uncertainty:

To address the impact of system uncertainty on the evolwidhe controller, the de-
sign of a fuzzy controller with 125 ruleg'(C25,) is presented. The rules are established
by discretizing each fuzzy input variable with five unifogndistributed partitions. The
design follows the specificatioftG A3, O F3), established in Chapter 5. Figure 6.8 com-
pares the performance on the uncertain vehicle model, afdh&ollers designed without
(£'C125) and with uncertaintyK'C'55 unc) present in the system model. In the same manner
as the design of<c for the CGLF controller, the presence of uncertainty in theigh
objective function results in a more conservative (slovaagle of attack response with a
small penalty in the steady-state error. It also appeatdhieacharacteristic frequencies
of the performance uncertainty models and the signal naseranifested through an
elevator command history of higher frequency.

The overall performance of the two controllers are sumnedrin Table 6.2. In gen-
eral, the controller designed with uncertainty offers ¢geeobustness. The rapid response
associated witl#'C',5 leads to failure of the vehicle when exposed to large angigtatk
errors. If the initial condition used in Figure 6.7 was apglithen failure occurs within
0.4 s. Though less frequent in t#&” o5 ,nc design, failure also occurs for extreme initial
conditions. While the direct cause is likely a combinatidsignal noise and large angle
of attack errors, it is also a result of the design processgoexposed to a fixed arrange-
ment of initial conditions. Certain extreme combinatiofstiitude and control values
can, with performance uncertainties, lead to failure.
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Figure 6.8: Response of 125 ruled fuzzy controller with an uncertairtesysmodel. The top
plot shows the angle of attack and elevator command resgondiee controller designed for the
nominal vehicle model. In the bottom plot the controller wigsigned with an uncertain vehicle
model.

Due to the many more degrees of freedom in designing the feaagroller, itis much
more susceptible than the linear controller, to conditionseen during the design. The
reasoning is that the additional degrees of freedom canigeay more precise match
to a fixed set of initial conditions, with precision leadirggreduced generalization and,
consequently, robustness problems. Support for this aegtican be seen in the greater
stability available in the evolved design of a rule base &ithrules, which is also shown
in Table 6.2. While the response characteristics of the B get are mostly inferior to
the large rule bases, the extra generality required of adetaugments the controller ro-
bustness. For the larger rule bases, once solutions atsisiséal in the population which
prevent vehicle failure across the majority of test, theedi&ely to be a number of unused
fuzzy rules. When exercised against more varied test stionkg these untuned rules can
contribute to undesirable control commands. Since sinmndailure was generally the
result of actuator overshoot, it is felt that a series of ségponses would provide a more
appropriate assessment on performance during the design.

Figure 6.9 shows the evolution of the objective functioniniyithe design of'C' 5
and F'Cg5 une. Oscillations in thel’C 95 ync trace are due to the inconsistent evaluation of
the best solution from one generation to the next. The mgsbrtant feature, in terms of
the performance of the genetic algorithm, is that the grqwdfile for F'C' 55 unc follows
the same form a$'C95. The transition at generation 250 is due to the objective-com
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Table 6.2: Performance comparisons of controllers designed on theénabmwehicle model and
the uncertain vehicle model. A total of 500 tests simulaiarere run over 4 seconds, providing
1000 step responses. The performance measures are avevagede simulationsX¢) which
did not fail.

Controller RCGA  Vehicle N¢ (/500) [ |aen|dt (rad.s) aen(ts) (degs)

FCios GAg Nominal 485 0.01124 0.047
" Uncertain 453 0.01550 0.248
FCh25,unc " Nominal 500 0.01635 0.089
" Uncertain 497 0.02371 0.282
FCs7.unc " Uncertain 500 0.02357 0.363
400 T T T T T T
350 +
300 +
250 +
I_Eg 200 Nominal Fobj

150

100

50 7"
JY
P

;
L
b

Uncertain %bj ,,,,,,,,,,

100 150 200 250 300 350 400 450 500
Generation

Figure 6.9: Evolution of the objective function with and without systemcertainty. F,; refers
to the average response for the best solution at each generat
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ponent weightings reaching their maximal value of one. Qlerlater generations, the
gradual decrease is due to the continued decrease in the @ingftack tolerance, plac-
ing greater demands on reducing the steady state error.dd@odesigns, the population
is well established witlyoodcontrol solutions by generation 250. An indication of the
quality of the control solutions present in the populatismavealed in the reduction of
the objective function noise for theC' o5 ync profile.

The fuzzy control solutions generated by the genetic dlgoridemonstrate the en-
hancement of controller robustness with the inclusion alutainty in the vehicle model.
Having made the argument for the benefits to stability roiesg, all remaining results
relate to the controller design using the uncertain systemeh

Mechanics of Evolving Control Solutions:

One of the remarkable attributes of evolutionary desigo &eke the rapid development of
good control solutions from an initially random set of paésisolutions. The 125 ruled
fuzzy controller {'C1o5) is again used here, to illustrate the evolutionary pracdsse
selection(G A4, OF3, FC95) defines the design configuration.

Figures 6.10 and 6.11 show the evolution of the controllgghflresponse using a set
of step responses at the trajectory pdihtcorresponding to flight at 3500 m/s. The first
series (Figure 6.10) covers the best solution availabla fyenerations 0 to 100, while the
second (Figure 6.11) covers generations 120 through toAf@xpected with a random
initial population, even the best solutions available frtme initial population lead to
rapid vehicle failure. However, through the bonus avadablpreventing vehicle failure,
there is a general lengthening of the responses, whichatiiyleads to the development
of closed-loop stability. From this point on, the searchagfgrming the function of fine-
tuning the control surface to better satisfy the desiredarse characteristics. It is worth
noting that, for this small set of initial conditions, thesegoractically no difference in the
response history from generations 300 to 500. In generaghdyalf way point (g=250)
of the evolutionary search, the control solution has bedhestablished.

The reason for using a non-uniform objective function tediithe search, was to pro-
mote the rapid evolution of desirable response charatitsidJsingO F3, the four per-
formance measures where scheduled according to the eetatige of the search (V).

In Figure 6.12 the contributions of the various performamzasures to the overall ob-
jective are displayed for the best solution at eved{ generation. Across the first 100
generations, the;, measure dominates the objective function, resulting irrdiped rise
of the robustness of the control solution. By the time theamyj of test conditions sat-
isfy the simulation time measure, the remaining perfornreaneasures lead to a rapid rise
in the quality of the solution. As was previously noted, thepdin the values of/, and
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Figure 6.10: Evolution of the controlled flight response over the first féherations. The total
generations used in the search is 500.
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Figure 6.11: Evolution of the controlled flight response from generatl@® through to 500. The
total generations used in the search is 500.
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J; o In the later half of the search reflect the establishment af nptimal solutions by
generation 250 and a reduction in the tolerance for angléatkaerror ().
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Figure 6.12: A history of performance measures during controller evoitut The best control
solution is sampled every 10 generations, and evaluatedtibeedesign set of initial conditions
(ICs). Each performance measure is averaged across the imitidlton set.

To check that the design set of initial conditions providefficient coverage for the
development of a robust controller, the best control sofuivailable after everyo™
generation is tested against a large set of random initiatlitons. The comparison
is shown in Figure 6.13. In general, the performance coraparsupports the use of
15 initial condition set for the design. Most notable is that,terms of the settled
response, by generation 300 the available control solugieffectively equivalent to the
final solution. Contributing to this search feature is tharelsterization of the mutation
operator with3 = 4 (see Appendix A), which provides a very localized variaidter the
half-way point of the search. After the controller solutiwas managed to prevent vehicle
failure across the full set of test conditions, there is adapduction in the final angle of
attack error, which is then maintained throughyte= N. While the rise in completed
simulations for thd C; set closely follows that for the design set, it is only for tdaatrol
sample at generations 200 and 210, that the full complime@t’e are fully executed.
Though hesitant in reading too much into this single desigm®ple, a possible cause is
that further refinement of the control solutions againstediget of test conditions results
in a loss in generality.

A final point of interest is the topology of the control sudor the evolved control
solution. Figure 6.14, for the 125 rule FC can be comparet wigure 6.5 for the 27
rule FC derived from the linear controller. Features from thined 27 rule FC and the
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Figure 6.13: Comparison between the evolution of the design set of irdtaditions to the per-
formance on a larger random set. The best control solutisarigpled every 0™ generation, and
evaluated over the design set of initial condition€’() and 500 random initial conditiond ().
Each of thel C5 tests involved a 4 s simulation with a step command after 2B the aer measure
taken for the second step.

original linear controller appear in the evolved solutigyith the advantage of additional
degrees of freedom, the evolved solution provides greagerpulation of the gradient
surfaces. The more complicated surface may, in part, beadsggurious rule consequents
which exist since some rules in rule base of high dimensierlikely to not impact on
the controlled response.

Rule Base Size:

For a given application the optimal number of fuzzy contrdes is influenced largely
by the desired performance and the means of constructingathieoller function. This
section considers the evolution of rule bases ranging i fsa@m 27 rules to 225 rules
and, in so doing, assesses the flight response performarice obntrol designs and the
capability of the genetic algorithm to configure both smaltll éarge design spaces.

Table 6.3 summarizes the results of the design experimeasgd on the controller
performance over a set of 500 randomly generated initiaflitmms. The expectation is
that, with greater partitioning of the input variables, ttumtroller can better provide for
the varied demands across the range of input space. Thdse itha possibility to better
deal with uncertainty in the trim estimate which forces aldenaule base to compromise
on the performance. With reference to the simulated regpohselected designs shown
in Figure 6.15, there is a general improvement in the ang#tatk response, due mainly
to a reduction in the error of the settled responses. Thdwgbdlution quality is relatively
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Figure 6.14: Control surface topology for the evolved 125 rule fuzzy coltér.

poor for the 27 rule design, it also the only configuration ethdid not generate any
vehicle failures across the set of test simulations. Thel meegreater generalization of
the rules in the case df'Cy;, improves the robustness of the controller relative to the
limitations of the initial condition set and the performanueasures.

Table 6.3: Quantitative comparison of controller performance fofati#nce sized rule bases.

Rules RCGA N¢ (/500) [ |aer|dt (rad.s) aen(ts) (degs)

27 GA3(B=2) 500 0.02357 0.363
125  GA;(8 = 2) 497 0.02371 0.282
125  GAB=4) 498 0.02047 0.271
225 GA4(N,=30) 498 0.02093 0.242
225 GAg(N,=50) 499 0.01799 0.193

The different settings used for the genetic algorithm @atkd in Table 6.3), reflect
the needs of the evolutionary search to achieve the fullpiatieavailable with the specific
controller definition over a search length of 500 generatidrne evolution of the objec-
tive function and population entropy, as shown in Figurééelveal a number of features
of the search procedure. Not surprisingly the smallest bake {C5;) has the fastest
initial growth in the design performance. As the rule bage sicreases the search time
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Figure 6.15: Comparison of controlled attitude response for rule baaeging in size from 27
rules to 225 rules.

required to match the quality of thé'(’5;) also increases. This turns out to be the critical
element in terms of fully realizing the potential of a giveantroller definition. Compar-
ing the two traces foF’'Cs,5, the larger population examplé'g) provides a more rapid
improvement in the solution quality over the early generatiwhich ultimately generates
a superior control solution. With average mutation magtetdecreasing across the gen-
erations, the search benefit of mutation relies on the eahgldpment of good control
solutions. Population size is not the only factor influegdihe growth of the objective
function however. For example, if théC';»; configuration were designed using a muta-
tion strategy parameter of = 2, the more disruptive mutation delays the growth in the
objective and the final design only just manages to matchTtrel2 design.

The noise present in the objective function traces is duegodpresentation of uncer-
tain features in the vehicle model. The magnitude is coufgete quality of the control
solution and the population convergence. Foriliey s (G As) and F'Cys(G Ag) designs,
the delayed growth in the solution quality means that theenpiersists further into the
search, until the point where the performance of the costhltions are less susceptible
to modelling noise.

Input Scaling Design:

For the control designs presented so far the input scalingesdnave been derived from
the gains generated by the design of the linear controlleg.rain reason for this was the
removal of three design variables which impact on the gltdztures of the fuzzy control

function, and could potentially disrupt the search. It ias@nable to expect however,
that tuning the input scalings for the particular rule bas&iguration should improve the
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Figure 6.16: Evolution of the objective function and population entrdpy controllers of size
between 27 rules and 225 rules. For clarity, B@,,5(G A3) trace begins at th200" generation.

utilization of the discretization of the input space. Thipé of experimentation is often
extended to the complete design of all features of the rude bacluding fuzzy variable
definitions, individual rule structure, and the overall donation of rules [103, 136, 224].
While some of these possibilities were tested, the assedsmguires additional work
and is not presented here. Table 6.4 summarizes the resulisef design of the input
scalingsk and the output array for controllers with 125 rules and 225 rules.

Table 6.4: Overall performance of controller with rules and input saalas part of the design.
The input scaling values bound the rule base and are repeglsasik,, radians;k, rad/s; andk,
radians.

Rules RCGA ko kg ke, Nc (/500) [ |over|dt (rad.s)  oven(ts) (degs)
125 GA, 008788 10312 0.2601 500 0.02047 0.318
225 GA, 0.07237 0.08211 0.1914 500 0.01826 0.261

Figure 6.17 shows the evolution of the input scaling valwedlie 125 rule design.
The large variations significantly alter the behaviour @ thle base, however, within 100
generations they have effectively reach their final levElss process can take longer with
a larger rule base and be disruptive to the evolution of cbetlutions. The performance
of the final control solutions indicate that they are moreusibje. No = 500) then
their counterparts from Table 6.3. The robustness is defisem allowing the global
features to be adjusted to the demands of the test simutataaher than being forced
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to compromise with fixed bounds. There is also a flight respdyenefit as shown in
Figure 6.18. Though there is little difference in the bebaviof the 125 rule example,
the tuned input scaling values provide a more rapid attingsponse for the 225 rule
controller.

Normalized input scalings

0.2 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Generation

Figure 6.17: Evolution of the input variable scaling parameters durimg design of the 125 rule
controller. The values have been normalized by the seangeraf each parameter.
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o (degs)
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Figure 6.18: Simulated performance of controllers where both the rules the input scaling
are designed. The notation established in Table 5.2 have leed to distinguish between the
extended design example (125b,225b) and the previous@@ugenerated by design of the rule
output array only (125a, 225a).
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6.5 Longitudinal Autopilot

To provide a demonstration of the scramjet powered vehigiaglover the full hyper-
sonic trajectory, a guidance loop was designed, thus camgline longitudinal autopilot
specification. The outer-loop guidance control functiosimaply defined by the linear
feedback vectoK , where the inputs are altitude error and the climb rate gaml the
output is an angle of attack command. The nominal altitudieisrmined by flight along
a constant dynamic pressure trajectory, while the nomimabaate is evaluated by com-
bining the vehicle acceleration with the nominal trajegtdsince the guidance vector is
designed using the simulation of the uncertain vehicle h@demall population genetic
algorithm search was used to design g gains. The design configuration, following
the evolutionary approach used for the inner loop{sl{, O F,). The objective function
is established from 12 simulations (= 30 s) selected from the full flight envelope of the
vehicle.

Using the 225 rule controller presented in Table &4¢,5,), guidance gains were
designed for an update period&f, = 0.5s and 1.0 s,

K(0.5) = [-8.307x107*, —2.396x107?] (6.4)
K(1.0) = [-2.004x 107 —1.054x1077). (6.5)

The top part of Figure 6.19 shows the simulated altitudeaese using the two guidance
timesteps. Both show a long-period mode associated wititiotinal motion, with the
At, = 0.5s simulation displaying superior tracking of the nominajectory. The lower
two parts of Figure 6.19 show the angle of attack command(risponse) and the ele-
vator history for theAt, = 0.5 s simulation. Most notable is the cycling of angle of attack
between the two command limits, generating the flight ang)eoécillation about what
should be a near constant flight angle. Of importance to #i®lgy of the inner-loop con-
troller is the lack of any significant overshoot in the andlattack responses. The noise
in the elevator response is a direct result of the unceptamthe vehicle performance
model plus the signal noise.

A full trajectory simulation is displayed in Figure 6.20 fibre At, = 0.5s arrange-
ment. The 240 seconds of flight approximately representfuthiéight time allowed by
the fuel supply. Further consideration of the vehicle camfigjon and the guidance law
development is required to fully appreciate the requireiér improved altitude track-
ing performance, but is beyond the scope of the present widrk.inner-loop controller
is also deserving of further study, particularly in termspobviding improved attitude
response for the typical command series generated by tbpibnit
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Figure 6.19: Autopilot response for two guidance update timestefig; = 0.5, 1.0 seconds.
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Figure 6.20: Full trajectory simulation of the hypersonic air-breathivehicle, At, = 0.5 sec-
onds.

6.6 Genetic Algorithm Considerations

The application of the genetic algorithms to a new desigrlera invariably leads to

experimenting with the structure and parameterizatiorhefalgorithm. As part of the
overall control design approach of this thesis, the GA expents investigated the effect
of the genetic operations of mutation and crossover, andlitmension of the search
as specified by the population size and the generation nuniltes following sections

discuss the crossover and mutation operators, and papulktie.

With regard to the crossover operation, it was noted in AppeA that the potential
benefits of an operator which provided exploration as wedbgoitive qualities, depends
on the nature of the objective function. It appears that whih non-uniform objective
function used for the inner-loop control design, rapid atioh of the control solution
is possible, and the design benefits from the exploitivereatd arithmetic crossover.
The arithmetic crossover used to generate the results ®fctiapter provided superior
performance to a single point crossover and the BLX crogsased in Appendix A. The
tendency of the arithmetic crossover to converge to theeafiteach parameter domain
is mitigated by the use of high mutation rates. However,piassible that the initial rapid
decrease in population entropy (see Figure 6.21) is dueetartbssover action. Further
investigation is required to fully understand the popuolatoehaviour in the initial stages
of the search.

Given the search behaviour is closely linked to the crogsawe mutation operations,
there also appeared to be little benefit in extending theckearer more generations. In
particular, the non-uniform action of the mutation operasocoupled to the generation
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number rather than the fitness of the individuals, so thatmbgation behaviour, and
consequently the population behaviour, scales with thgtkeof the search/{(;). The net
result is that the objective function profile also scalessgarch length and the increased
computation does not necessarily lead to improved solsition

6.6.1 Mutation Operator

During the description of the real-coded genetic algorithr@hapter 4 it was noted that
the non-uniform mutation operator proposed by Michalewiizplayed a bias to the
centre of the search range. Using a collection of standatdfa@ctions, Appendix A
details an empirical study of the mutation operator and afigal modification. The
modified operator, referred to as an adaptive range mutéiddM), displayed greater
search reliability and was less sensitive to the paranzettgon of the genetic algorithm.
In this section, the performance of the mutation operatogsaasessed using the con-
trol design problem for a 125 ruled inner-loop controllerthathe design specification
(GAs, OF3, F'(35,). It was because of initial difficulties with the control dgsthat the
performance of the mutation operator was first examined.

Figure 6.21 shows the evolution of the objective functibg,j) and the population, for
the two mutation operators and various parameter settivighl refers to the Michalewicz
non-uniform operator and ARM is the adaptive range mutatomed by redefining
NUM. The collection of settings for the action of NUM,{ and 3) address the gen-
eral need for low activation rates and a rapid reduction endtailable mutation with
generation number. When using the NUM operator the quality of the solution jxied
by the genetic algorithm is sensitive to the parametennabif the genetic operators. In
general, the lower value gf generates more noise in the objective function. The fact
that the noise level fop,, = 0.2 and = 2 is maintained through all the generations
indicates that the population is slow to converge, with theverged solutions being far
from optimal. The trend is also observed in the populatianogy lines. By reducing the
mutation probability ,,) and increasing the rate of fine-tuning)( the performance of
the genetic algorithm witivU M improves but remains inferior to the solution provided
when usingARM.

Figure 6.22 shows the operation of the various control gmiston a series of step
commands in angle of attack, In addition to the set from Figure 6.21, a design us-
ing ARM with p,, = 0.2 and = 2 is shown to highlight the relative insensitivity of
the search performance with the modified mutation operdtoough the assessment of
search reliability requires a number of independent cod&sign simulations, the trends
observed here follow those for the more thorough investgah Appendix A: specifi-
cally, that fewer generations were required to recover fooms, and that the solution was



166 Results - Controlled Hypersonic Flight

400 T T T T T T T T T
300
200 +
100
/ /;.7/\,\\\;\/!\\;\;; *:’A‘N\«"llv //r‘/‘""/“ ! ! ! "
z ° LN HERT I P
w Wi o Ao i Wyt 'y
-100 F i i X it S AR §
W iy i
U Y it
-200 | L | .
NUM: p,=0.2,B=2 -
300 L Pm B i
Py=0.1,B=2 -
-400 pmzo_l,B:S [N
ARM: p, =0.2,3=5
_500 1 1 1 1 1 1 1 1
0 50 100 150 200 300 350 400 450 500
100 T T T T T T T T T
NUM: p,=0.2,B=2 -
90 |
| py=0.1,p=2 ---------
80 '\\f";“J\”“’A\ pm:O_llB:S [ _
> 70 YRR ARM: p,=0.2,3=5 —— |
Q. Wy /r\\y\,\
o g AR A R
£ 60 P -
o ) v e ”‘\
c Vo
S B0 -
©
3 40Ff .
@]
a
30 -
20 - .
10 [ .
0 L 1 I 1 LT P
0 50 100 150 200 250 300 350 400 450 500

Generation

Figure 6.21: Evolution of the objective function and the population eptr using Michalewicz's
non-uniform mutation (NUM) and the modified version propgbger this thesis (ARM).
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less sensitive to its placement in the search domain andhtlaenterization of the opera-
tor. The search bias of the original non-uniform operataieisionstrated in the scattering
of the rule consequents for the control solution in Figu@36Despite the mutation pref-

erence for values in the centre of the search domain, theenhsearch robustness of the
genetic algorithm is still able to generate a reasonabléabsolution.
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Figure 6.22: Impact of the mutation operator on the angle of attack peréorce of the evolved
controller. Every 2 seconds.mg is reset and the flight condition is shifted to another p@inon
the trajectory, starting witi;.

6.6.2 Population Size

The choice of population size is fundamental to the opematiothe genetic algorithm,
affecting both the convergence rate of the search and tHgygofthe final solution. Too
small a population and premature convergence will likegdléo a poor solution, while
increasing the population must be considered against ithe tequired to generate the
final solution. In the population experiments here, theglesime on a single processor
of an SGI Origin 3000 ranged from 9.2 hours f9p = 10 to 81.3 hours forN, = 100,
see Table 6.5. The most efficient arrangement is likely tizata moderate population
size to capture goodsolution, and then apply a fine-tuning procedure to enhamee t
controller performance.

Figure 6.24 shows the growth of the best objective functimhtae population dynam-
ics throughout the evolution of a controller of 125 rule cofter. The design arrangement
is specified as(f A;, OF3, FC1s5,). The most consistent growth in the quality of the con-
troller is provided by the two larger populations. With sleapopulations, there is less
variation amongst individuals in the population, and they therefore more susceptible
to large variations in the quality of the solution acrosseagations. Population entropy is
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Figure 6.23: Rule consequents designed by the two mutation operators] (#{), = 0.1, 3 = 5)
and ARM.

Table 6.5: Quantitative performance comparison of the controlleigiegenerated using popula-
tions 10, 30, 50, and 100. Design times refer to the CPU tirad os a single processor of an SGI
Origin 3000.

Np RCGA Design time (hours) N¢ (/500) [ |aer|dt (rad.s) aen(ts) (degs)

10 GA; 9.2 495 0.04211 0.636
30 ? 25.4 497 0.02371 0.282
50 ? 42.9 497 0.02097 0.300
100 ” 81.3 499 0.02129 0.318

used as a measure of the chromosomal variation amongstduodis in the population.
As the population size is increased, it is able to maintagatgar diversity while still pro-
viding superior solutions. The history for a population 6fitidividuals stands apart from
the others, with rapid convergence of the population argkla&ariations in the entropy.
Table 6.5 summarizes the performance of the solutions gexteand Figure 6.25 shows
the performance for a particular series of step command® &tgin, the population size
of 10 stands out as providing a solution of significantly loweality. The greater explo-
ration of the search space available with larger populataiows the early generation of
good solutions while maintaining population diversitydaan extension of the time for
which the search is effectively performing a fine-tuningerdiowever, there is no benefit,
in terms of the response characteristics, for the doublitgeodesign time going from a
population of 50 to 100. It also appears from the results lelé.5 that the robustness
issue addressed in previous sections, is due to the lionsf the objective function
rather than insufficient search time.
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Figure 6.24: Evolution of the objective function and the population epy, for populations rang-
ing in size from 10 to 100. The population entropy historyapresented as a percentage of the
entropy measure for the initial population.
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Figure 6.25: Performance of 125 rule controller solutions provided bpuwlation sizes in the
range 10 to 100.



CHAPTER 7

Conclusions

The aim of this thesis was to investigate the applicationrokeolutionary design ap-
proach for the configuration of a robust flight control systena hypersonic air-breathing
vehicle. Itis a problem recognized (characterized) by theng interaction of engine op-
eration with the flight condition and attitude, its nonlinparformance, uncertainty in the
performance of system components, and its highly congidaoperating envelop. Con-
sequently, most other investigations of flight control agmhes for hypersonic vehicle
applications have centered on applications of robust obttieory, generally involving
a linear description of the vehicle with uncertainty modstsounting for performance
variation and unmodelled features, included in the desigegss. For this work a full
nonlinear flight simulation module was constructed for theppse of provided control
performance assessment during the design procedure

In Chapter 2 the basic arrangement of a the longitudinalpaliotdor the hypersonic
vehicle was introduced. Two control loops were defined: gikowlinal inner-loop pro-
viding stability augmentation and attitude tracking; amdaauter guidance loop for the
maintenance of the nominal flight trajectory. The guidangecfion generates attitude
commands for the inner-loop to follow. To satisfy vehicleeogting requirements, a nom-
inal trajectory with constant dynamic pressure was usedap€n 2 also introduced the
evolutionary design approach to be used for the deternoimati the control functions.

Since the control design procedure was dependent on thdaseduesponse of the
vehicle, considerable time was spent developing a detailgderical flight simulation
module. This is in contrast to previous studies where théclemodel is either defined
by linear analytical expressions, or extracted from a degalof performance parame-
ters. The general arrangement for the hypersonic vehigkken from a small payload
launch vehicle application with an axisymmetric scramjetvpred second stage. De-
spite the ultimate desire to accurately portray the vehpctgerties and behaviour, it
was necessary to simplify the vehicle model, to ease the atatipnal burden while
maintaining the essential operating features. The prai@pnplification was the use of
two-dimensional flow paths, thereby representing the axmgtric scramjet vehicle as a
box section. Chapter 3 detailed the representation of thehkeephysical properties, the
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aerodynamic and propulsive simulation, an environmenteh@ohd the description of the
general six degree-of-freedom flight dynamics equations.

Though the aerodynamics and propulsion performance weserided by a combi-
nation of one-dimensional and two-dimensional flow modils,basic longitudinal be-
haviour of the vehicle is captured. Primarily, this incladbe performance dependency
on angle of attack and the flight condition. The aerodynaraicd propulsion analysis
describe an instantaneous representation of the flow stascthroughout the vehicle.
External aerodynamics are treated separately to the gasrdgs within the engine flow
paths, which themselves are divided into inlet, combustamd nozzle processing re-
gions. For the engine analysis, 75 % of the computationattaff directed toward the ex-
pansion fan interaction model used to described the pregsafiles generated along the
nozzle surfaces. Significant reduction in the design timald/be available through the
parameterization of the nozzle forces and moments in tefrtieeaipstream Mach num-
ber, with the upstream pressure applied as a multipliecceSihe vehicle performance is
inherently uncertain, parametric uncertainty was intstlto describe stochastic pertur-
bations in the engine performance, control effectivenasd,the vehicle centre of mass.
These processes were implemented as low-pass filters (basedlyquist frequency of
50 Hz, with cut-off frequencies representing the charastierbehaviour), and a white
noise input whose variance is adjusted to realize the apiteperturbation magnitude.
Atmospheric turbulence and input signal noise were alsallsited as random processes.
The inclusion of uncertainty and disturbances in the fligimugation provides a means
for the control design to be robust against unmodelled bhehav

The use of two-dimensional flow paths makes the vehicleqaatily difficult to con-
trol. Moments generated by the inlet wedge (in contrast éocinical forebody for an
axisymmetric configuration) place great demands on the clettuators, requiring large
control surfaces and actuation rates. Due to the extensitre @owl over the full length
of the nozzle, there was no stabilizing benefit from the déifeial throttling of the en-
gines. Stabilizing capability of the nozzle would be gregathproved with a shortened
cowl section, lessening the actuation required by aeradynaurfaces. Such an arrange-
ment is used for the American Hyper-X project, which alsodsgs from having the
scramjet engines on one side of the vehicle only. In term&@fbwerall vehicle perfor-
mance, being a hydrocarbon fuel scramjet, the specific isgaalquite low. Even though
viscous losses were neglected in the analysis, the rdiapeo®r acceleration capability
can be apportioned to the non-optimal vehicle geometry hadwo-dimensional flow
paths.

Chapter 4 introduced the overall approach to control desagnapplied to the hy-
personic vehicle. The central control problem was considléo be the specification of
longitudinal inner-loop controller and, for this role, aziy controller was used. The
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reasoning was that fuzzy control offers desirable robsstrobaracteristic and provides
a relatively simple means of describing a complex, nonlimeatrol function. With the
fuzzy controller defined by a set of fuzzy variables, a rulsebarray, and an inference
mechanism, the design approach is one of knowledge adquisiA real-coded genetic
algorithm (GA) was constructed to evolve the necessary kenye, using the simulated
vehicle response as a performance indicator. Evolutioalygrithms such as the GA,
have shown to be efficient search tools for complex, nontjreead noisy design spaces.
Prompted by initial difficulties in designing the controhfttions, an investigation of ge-
netic algorithm operation led to modification of a well knomuitation operator to avoid
the bias it generated in the solutions. An empirical ingzdton of this modification is the
focus of Appendix A, where a set of standard minimization tesctions were used to
analyze the performance of the genetic algorithm. Relipbférmance of the real-coded
genetic algorithm, with the modified operator, was showndadatively insensitive to
the parameterization of the algorithm and the use of diffeceossover operators.

The evolutionary design procedure uses full nonlinearaletsimulations in the de-
sign loop. With the search starting from a random set ofah&olutions the approach is
well deserving of thérute forcetitle. Using vehicle simulations in the design loop is a
scheme with great potential, but one where considerabéeisaequired. On the positive
side system features exposed to the controller configuratising the design, are not
constrained by the reduction of the system to a set of asalygkpressions. Performance
uncertainty can readily be considered through the inciusfanodels which can describe
expected variations on the basis of their physical origliere is also considerable flexi-
bility in the configuring of the cost function, in terms of thessible characteristics which
may be used to encourage rapid response, minimum oversheady state error, and sta-
bility for example. However, with the genetic algorithm bgiextremely opportunistic,
the coupling of competing performance measures requiose @ttention to avoid the de-
sign procedure exploiting any loop-holes in the definitibthe cost function. To provide
robustness assurances, it is also necessary to providegeaskample of test conditions.
This is particularly important as the discretization of doatrol function through a set of
fuzzy rules, means that for each flight response, only aguodf the total rule is likely to
be activated.

Chapter 5 was used to introduce the specific details of thrercuexperiment in evo-
lutionary design, specifically those relating to developtrad performance and stability
robustness in the control design and the promotion of raypatbion of good solutions.
A large set of initial conditions, covering the full range afowed attitude, control and
flight condition variations, are used to generate desirpbtéormance and stability qual-
ities in the control solutions. The genetic algorithm is pylation based search tool, so
with each performance evaluation requiring many flight datians, a non-uniform ob-



174 Conclusions

jective function was introduced to provide useful selatfiwessure. For the case where
the search begins from an initially random set of potentélitions, avoidingnheedle in

a haystackype problems is critical for the design using small popala and relatively
few generations.

For the design of the fuzzy controller a preset discretiratif the input variables was
used. This provided a structure to the rule base, based ordprg all possible condition
statements for the input variable definitions. Two desigbfams are therefore created,
the first configuring the output array and the second inclyidive input scaling values.
The inclusion of input scaling in the list of design variahlallows the global features of
the rule base to be influenced.

The results presented in Chapter 6 focus on the design ohtiee-loop control func-
tion, used for stability and attitude maintenance. An abithvestigation of a linear con-
troller showed that, while a robust controller could be agufed, the performance was
compromised by the uncertainty in the vehicle trim conditibhrough experiments with
the design of the linear controller, the set of necessaryrcbinputs (attitude error, pitch
rate, and elevator trim error) were established. Experieeith the control update fre-
guency revealed the sensitivity of the vehicle to distudesnwith a maximum timestep
of 0.04 seconds being possible while still providing stal@bicle operation. Using the
gains provided by the linear controller to evaluate the trggalings of the fuzzy variables,
a tuned fuzzy controller was generated using the nominatleemodel (no uncertainty)
and a Nelder-Mead optimization procedure. Though it wadei that the fuzzy con-
troller could provide improved attitude response, the lacc&ny variation in the vehicle
model and test conditions meant the optimization procesiscex] the generality of the
controller and consequently its robustness suffered. f@ntost part, the improved re-
sponse characteristics were realized by the extensioreahffut range over which large
actuation rates could be applied. The fuzzy controller ges this capability through
the discretization of the control function which allows denanipulation of the control
surface.

The bulk of the results related to the evolution of fuzzy coltérs. By using the
genetic algorithm as the design tool, performance uncgytaould be included in the de-
sign process, which ultimately generated controllers grdater robustness. The genetic
algorithm demonstrated a remarkable ability to rapidlyle¥g@ood solutions. Due to the
non-uniform nature of the mutation operator, the earlievdystable) solutions appear
in the population the better the performance of the desighilétthe objective function
promoted this behaviour, it is also desirable to use a lgsgpulation to realize the true
potential of larger rule bases. In general, however, thetgealgorithm proved very ca-
pable of configuring controllers ranging in size from 27 t®& 2dles, over 500 generations
and with relatively small populations (30-50). It was aldiserved that the set of initial
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conditions and step responses used during the design|yclogeored the behaviour of
the controller against a much larger set simulation expanis It was also noted that,
due to the bounding of the rule base with predefined inputregs|the controller stabil-
ity was susceptible to extreme combinations of initial ddods which were not directly
included in the design. Extending the design set or introdueariations in the design
set throughout the evolutionary process, may allow coletrobbustness guarantees to be
met. The experiment with a variable initial condition setswmt included in the results
but showed promise in terms of improving the overall comgrgberformance.

The representation capability of the fuzzy controller asueoth the inherent capabil-
ity of a fuzzy rule base to encode a desired multi-dimengitumetion and the means of
achieving the representation. Though better control nbghiealized with larger rule base
(through greater partitioning of the input space), thera ieadeoff between the control
accuracy and the tuning cost. The larger the rule base tla¢egrthe capacity for special-
ization, which can lead to robustness issues if the testf sgthalations does not provide
sufficient coverage of possible environmental conditidissentially, for the simulation-
based optimization used in this work, the representatipalgitity of the fuzzy controller
is strongly dependent on the preparation of suitable testliions. Various means of
specifying the test set of flight responses were discussegiimg from varying the test set
during the design and using a series of step responses framteal initial condition.
Further study on these approaches is needed to assessahéir w

With input scaling included amongst the design variablegi$ possible to improve
the attitude response characteristics of the vehicle. dimsunted to a faster initial re-
sponse while still providing reasonable settled-respfestires, and avoiding overshoot
which could lead to vehicle failure. It would be desirablghe future to extend the de-
sign set of simulations to multiple step responses and tagedetter stability guarantees
through the objective function.

Given the successful design of an inner-loop controlleijgke guidance law was
designed, using linear feedback of the altitude error aadlimb rate error. As a demon-
stration of the broad range operation of the vehicle, it stwbhe steady climb along the
nominal trajectory with persistent oscillations in the filigangle. The inner-loop con-
troller was also shown to perform adequately over the fudhtiitrajectory. Further in-
vestigation of the guidance arrangement is desirable, pathicular consideration to the
vehicle configuration and the design of the guidance functio

Recommendations and future work

The design freedom available with the combination of fuzagtml, genetic algorithms,
and numerical flight simulations, generates consideratperamentation which, has led
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to many open guestions and avenues for future research. fése are now mentioned.

To begin with there is much work possible in improving thewaecy of the vehi-
cle simulation module. This may involve the inclusion of madvanced computational
techniques for the performance analysis and a more acae@iesentation of the vehicle
structure. Of particular interest is the modelling of aéaeic effects (which have been
neglected in the present work) as small variations in thiasarangle relative to the flow
path can significantly impact the flow structures. Since th&rol actuation in this the-
sis used a rear all-moving wing, further work is warrantedtmvalidity of alternative
control actuators with the aim of reducing the large peesléissociated with the current
aerodynamic surfaces.

In terms of the fuzzy controller, the full design freedomikatale has not been con-
sidered here. The potential of including fuzzy variable migéins and rule generation
in the design is worth consideration. To prevent an explosibthe design complex-
ity it may be preferable to maintain a predefined rule basesire and, for large rule
bases, to provide a mechanism for removal of rules which ssergially unused. An-
other approach to improving the representation capalofitthe fuzzy controller is the
application of coevolutionary algorithms [167]. A coevibdunary scheme works simul-
taneously on two populations. One provides a set of posed&ol solutions while the
other describes a set of test simulations (initial condg)aused to evaluate the fitness of
the control solutions. Evolution of the environmental cibinds is based on the success
rate of controllers, meaning candidate solutions can evagjainst worst case scenarios.

One of the pitfalls of working with the genetic algorithm fsat there are so many
ways of manipulating the operation of the algorithm that ends up in an experimenta-
tion cycle from which is difficult to escape. Though GAs ardlwstablished algorithms,
research continues on the efficiency and reliability of #ésarsh they provide. The major
avenue for enhancement of the design performance would é@eptoit the inherent par-
allelism of the genetic algorithm. In so doing, it is possibb reduced the design time
from days to a small number of hours.

At the beginning of this research, automation of the fuzzyticm design was com-
monly associated with genetic algorithms. This led to chapthem for the flight con-
trol design problem. They have generally been applied ubingry-coding however,
real-valued coding, as was used here, has been shown taeroetter performance in
real-value parameter optimization problems. Evolutigretrategies have since shown
generally superior performance on real-valued problerdssauld be particularly suited
to the flight control problem. The reasoning follows the angmt by Salomon [190], that
GA's are very time consuming if the parameters exhibit gpistwhere epistatis describes
the interaction of parameters with respect to the fitnesk@individual. Further, it has
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been indicated that the high global convergence performahGAs is reliant on the in-
dependence of the parameters. For control problems theditfea set of parameters is
generally highly dependent on the interaction of the patarse For evolutionary strate-
gies, which have been especially designed for real-valpptications, the performance
is invariant with respect to epistatis and would therefa@b ideal candidate for the con-
trol design problem presented in this thesis. However, enddise of this thesis, the GA
was able to provide a control solution which represents aog@mal formulation.



APPENDIX A

An Adaptive Range Mutation Operator for a
Real-Coded Genetic Algorithm

This appendix presents an empirical study of a modificatmthe Michalewicz non-
uniform operator for real-coded genetic algorithms. Thalification aims to improve
the reliability of a genetic algorithm applied to functionmmization problems. Both
the original non-uniform operator and a more recently psggoadaptive non-uniform
operator are shown to direct the search to certain areag@erch space. This search
bias reduces the potential benefits of mutation in geneyatseful solutions, reducing
the robustness of the genetic algorithm as a general seawthAn alternative operator
definition is presented, and is described asadaptive rangemutation. It displays a
general improvement in search quality and less sensitivitiye evolutionary mechanisms
and parameterization of the algorithm.

A.1 Background

Genetic algorithms have, in the past, been distinguisHaihe other evolutionary algo-
rithms by their use of crossover as the primary method of oy variation. Crossover
generates new offspring and new search vectors by sharemgarents’ chromosomal
information. Mutation, initially introduced as a backgrmloperator through small acti-
vation probabilities, provides a randomized perturbatbnhromosome elements. This
provides a mechanism for reintroducing data that which wasipusly lost because of
selection pressures and allows the exploration of new arehe search space. Studies
have shown that higher rates of mutation can improve thecitgland reliability of a ge-
netic search, see for example [21]. To allow fine-tuning dfropl solutions the mutation
can be configured to provide a random walk through the segratesfor early genera-
tions, and refinement in the later stages by gradually reduitie mutation magnitude. In
real-coded genetic algorithms [116], where an indiviciialiromosome is represented by
an array of floating point numbers, such a mutation has bderred to as a non-uniform
mutation operator.
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The maotivation for modification of the mutation operator @from the application
of the genetic algorithm to the design of a flight controller & hypersonic vehicle, dis-
cussed in the main body of this thesis. Configured as a nual@jitimization task, the
controller design requires many expensive flight simureito evaluate the performance
of each potential controller. It is therefore desirableapidly acquire a good solution in
order to limit the number of function evaluations, henceube of a real-coded algorithm
scheme over the binary coded algorithm. Whilst examinirggérformance of the ge-
netic algorithm, a potential source of the design diffi@dtivas identified as a mutation
preference for values in the centre of the search range.property of the Michalewicz
non-uniform operator had also been recognized by Neubd6ei jvho provided a the-
oretical analysis on the mutation variance and the expegfge following mutation.
Apparently unsighted was the preference of this correatenh to the extremes of each
variable’s feasible range. The full potential of the mugatoperator in terms of search
velocity and reliability is lessened by the operator’s bilise relative success of both mu-
tation forms in other optimization problems may be attrdalto the robust nature of the
basic genetic algorithm structure, problem specific festuand the setting of exogenous
parameters to mitigate the mutation bias.

This appendix examines the performance of the real-codadtigealgorithm, dis-
cussed in Chapter 4, to standard function minimization jerols. The focus is a compar-
ison of the mutation operators proposed by Michalewicz ardiduer, and a modified
non-uniform operator described here asadaptive range mutation

A.2 Real-coded Genetic Algorithm (RCGA)

Real-coding for genetic algorithms refers to the represdent of an individual’'s chro-

mosome as an array of floating-point values. We have configowe genetic algorithm

using real-coding for the benefits it offers in reliabilitydasearch velocity on numerical
optimization tasks. The evolutionary mechanisms usedigtcact the algorithm are de-
tailed in Chapter 4. Before focusing on the mutation opesata brief summary of the
real-coded genetic algorithm is provided.

A simple algorithm structure has been used, as shown in &igut, starting with
a randomly generated initial population. Each individuathe population represents a
search point in the space of potential solutions to the apétion problem. The problem
definition provides an evaluation measure, referred to aotjective function. When
scaled using linear scaling with sigma truncation, the abje function becomes the
fithess measure used to direct the search. Stochastic enaielection without replace-
ment is used to select parents for mating, with completeaogphent of the population for
each generation. New individuals are created via the getion operations of crossover
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begin
t=20
initialize population (random)
evaluate population
while (¢t < T') do
t=t+1
select parents for reproduction biasing fittest
recombine individuals via crossover with mutation
evaluate new population
end
end

Figure A.1: The basic genetic algorithm structure.

and mutation. Arithmetic crossover [155] at a fixed prolgbjl. is used with the mixing
parameter randomly generated each time recombinatiomnsdtis applied uniformly to
the parent chromosomes. A single point crossover schenmadwbe used to generate re-
sults for this appendix. Each gene in the children’s chramusalso undergoes mutation
with probabilityp,,.

The non-uniform mutation operator was introduced by Mietatz and Janikow in
their modified genetic algorithm [155], which they appliediumerical optimization
problems. It has subsequently been reproduced (often aithufrable results) in nu-
merous publications, as one of a number of potential mutadperators for real-coded
genetic algorithms, see for example [99, 154, 74]. Each ¢jesteundergoes a mutation
does so within the variable range, € [a;, b;], producing the mutated valug following
an addition or subtraction to the original valug

J(t) + A(t,b; — x;(t))  with probabilit
oy {0+ A0b = (o) with probabilityg a1
z;(t) — A(t,z;(t) — a;) with probabilityl — ¢

whereA(t, y) is the perturbation function, dependent on the generatéod the position
y of the original value relative to the search boundaries,

Alt,y) =1y - (1 - W(t)) (A.2)

with ~ a random number uniformly distributed in [0,1], an@) providing the fine-tuning
capability according to

2(t) = <1 _ %)ﬁ (A3)

HereT is the maximum number of generations ahthe strategy parameter which sets
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the degree of non-uniformity across the generations. Aerradtive representation of the
perturbation function described in Equation A.2 is prodde[156],

At y) =yry(t). (A.4)

Though Equation A.4 can improve the fine-tuning capabilityh@ operator, it does so
by reducing the maximal possible mutation with time, rattiean simply reducing the

probability of the maximum mutation being applied, see Fegi.2. Since many prob-

lems may benefit from large mutations in later generatiogsiaion A.2 is considered
the more robust of the two, and is used here. The control dgsigblem is one such
problem which benefits from using Equation A.2. To match thetiller design when

using the two forms of\, it was necessary to offsétin Equation A.4 against the actual
final generation, thereby allowing mutations of greater niiagle.

@A)y =1—rt-t/17 (b) Afy =r(1—t/T)
l T T T T l T T T T
increasing t increasing t
2 05 - . 05} _
0 1 1 1 0 - 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure A.2: Perturbation function for the non-uniform mutation operawith 3 = 2. The four
curves representy/ T ratios of 0, 0.3, 0.6, and 0.9.

Michalewicz [154] originally proposed that mutation to tké& or right of the original
value be equally likely, that ig = 1/2. When used with the variable scaling factoin
Equations A.1 and A.2, the result is a preference over timgdtues in the middle of the
search range. This was noticed in the control design problearsupported by numerical
experiments on the mutation operator. Figure A.3(b) shtsbnvergence of a random
data set, under the action of mutation, to the centre of tarckeegion. Neubauer [162]
provided theoretical proof of the non-uniform mutation betng a zero-mean deviation
operator. By forming an expression for the expected valumutfation and using the
delta function represented by Equation A.2, the mutatioa sl@own to concentrate the
search between the parent valuand the centre of the search range. The effect lessens
with increasing generations, as the possible mutation madgdecreases. It is therefore
possible to offset the potential for poor performances onesfunction minimization tasks
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by evolving the population over a large number of generation

To change the non-uniform mutation to a zero-mean operilupauer [162] sug-
gested the use of an adaptive probabijityor the additive mutation of the parent value,

T; — a;

q= — (A.5)
The analysis of the new operator was based on the mutatigenearand the expected
value following mutation. While the modification providesra-mean mutation, it does
so by disproportionately sending values to the boundaridbeosearch space. From
Equations A.5 and A.1, the closer a parent value is to the efigfge search space the
more likely it is to be perturbed closer to that edge. By mamagero-mean mutation in
this manner the population mean following mutation is meaimetd, but not by maintaining
the population diversity. For example, a hundred data paath starting with the same
value,z; = 0.9 andz; € [0,1],7 = 1,100, undergoes a hundred consecutive mutations
according to Neubauer’'s adaptive non-uniform mutatione fiésult is that ninety points
are placed along the upper boundary and ten points alongwlez boundary, maintaining
the initial population mean of 0.9. The effect of conseativutations on the random data
set of Figure A.3(a) is shown in part (c) of the same figure. [lawefor reliable solution
finding a large number of generations are needed to courgenthation bias, as well as
an independent means to restore or maintain populatioomntfhe bias is more severe
than Michalewicz’s original operator, though the effedsens as generations progress
and the mutation is generally confined to a smaller range.

A.3 Adaptive Range Mutation

The mutation operators mentioned so far suffer from notatlg a random walk through
the search space. For Michalewicz’s operator, it is duedmtheration not having zero-
mean deviation, oF(z’) # xz, while Neubauer’s correction is biased in the perturbation
direction. A simple redefinition of the operator allows tlemruniform mutation to exhibit

a random walk for early generations and, as the search msegeprovide the fine-tuning
of the non-uniform operator. Instead of adding or subtractncrements to the parent
value, the modified operator establishes a mutation rangeé\(¢, y) based on the gener-
ation numbet and a fixed preset valug and randomly selects a point within this range.
For these reasons we have named the mechaasiptive rangenutation.

There are two steps to the modified mutation operator: ashatbént of the available
mutation range, followed by a mutation yielding a value witthat range. The maximal
mutation is fixed by the search rangge [a;, b;|, meaning early mutations are likely to
access the entire range. Non-uniformity across genesaisachieved by gradually re-
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(a) Random data set
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(b) Michalewicz non-uniform mutation
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(c) Neubauer adaptive non-uniform mutation
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Figure A.3: The effect of 100 consecutive mutations on a random set af paints. The left
column shows the individual data and the right shows theiligton as a histogram.

ducing the probability of large mutations, using the pdyation function of Equation A.2
to scale the mutation range relative to the maximal allowedationy. The mutation
range[oy,, oy, is thus described by the following,

or =max{a;, r; — A(t,y)} (A.6)
oy =min{b;, z; + A(t,y)} (A.7)

wherey = b; — a; and the maximum and minimum functions ensure bounded routati
The act of mutation returns a random value within the rdageoy|, with the assurance
of symmetry about the parent value

z;—(1=2p) (z; —or) fp<05

r;+(2p—1) (oy —x;) otherwise

(A.8)
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wherep is a random value uniformly distributed within the ranigel]. Figure A.4 shows
the adaptive range mutation operating on initially randord Bnear data sets. Without
any selection pressure the population entropy is mainteésesach undergoes a random
walk with fine-tuning. The distribution of points across #earch range following 100
mutations is shown in the histogram beside each mutatedsdata

Mutated random data
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Mutated linear data
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Figure A.4: Adaptive range mutation in isolation, perturbing iniyalandom and linearly dis-
tributed data sets. The dashed line indicates the initiabli distribution.

Figures A.5 and A.6 show the mutation profiles for the mutatb a central { =
0.45) and an edgex( = 8) initial value. Snapshots are taken for generations/ &t =
0.01,0.3,0.6,and0.9. The plots show the general symmetry of the adaptive rangeaep
tor across the generations. To correct the bias of the ndoromoperator to the centre of
the search space, Neubauer’s adaptive scheme reducddtii®ldbd of mutations moving
towards the centre. The Figures also show how with a l&ghe resulting rapid reduc-
tion in mutation magnitude can mitigate the bias of the ojpesadefined by Michalewicz
and Neubauer. With the mutation magnitude described by titquA.2, settingd = 5
effectively means that past half way through the evolutigmaiocess, the mutation pro-
duces negligible changes to the chromosome values.

A.4 Test functions

To compare the performance of the mutation operators, & set benchmark functions
are used. These are sourced from a much larger collectiochwtave been applied to
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Figure A.5: A history of mutation profiles witts = 5. The left column shows the mutation of a
value near the centre of the search range (x=0.45). Thec@htn describes the mutation of a
value near the edge of the search range (x=0.8).
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non-uniform --------- adaptive non-uniform --------- adaptive range———

0.05

tT=0.01 tT=0.01

0.025 [\ &

0 . I
0.1
YT =0.3 YT =0.3
0.05 R

0.3
tT=0.6 tT=0.6

0.2 !

0.1 B
I
N \\
- R - .
. >

0.9

Relative frequency of mutation

t/T=0.9 tT=0.9

0.6 i

0.3 n

Figure A.6: A history of mutation profiles wittB = 2. The left column shows the mutation of a
value near the centre of the search range (x=0.45). Thec@htn describes the mutation of a
value near the edge of the search range (x=0.8).



A.4 Test functions 187

evolutionary algorithms [55, 193, 26, 23], and include undlal and multimodal func-
tions. Each of the objective functiorf§(x), are generalizable to an arbitrary dimension
n, with the lowest minimum in the search range denotedfbyrc*). For each of the
following functions a two-dimensional version is plotteoHigure A.7.

Sphere Model, f;:

The sphere model is a continuous, convex, unimodal fundti®B]. It has been used
in all fields of evolutionary algorithms, providing a test foonvergence velocity. The
topology of the two-dimensional sphere model is shown iruFégA.7(a). An additional
generalization of the model places the minimum objective,at.

n

fl@) =" (2 — zmins)”, forn =30 (A.9)

i=1

where

—10<2; <10 Vi ; "= (Tmins,-- -, Tminn) ; fi(x") =0.

Neubauer [162] used this function to illustrate the perfange improvement of his
adaptive mutation scheme over the original non-unifornrajpe. Two solution vectors
were used in the experiments: (a) at the centre of the seangfetmin; = 0 Vi, and (b)
near the boundarymin; = 8 Vi.

Step Function, fs:

The step function is generated by discretizing the sphedehto introduce small plateaus
to the topology. With|xz| denoting the largest integer value less than or equal tbe
step function is formalized as follows:

n

fol) = (| +0.5])*, forn =30 (A.10)

i=1

where
—100 < z; < Vi 100 ; =¥ = ([-0.5,0.5))" ; fo(x™) =0.

Generalized Rosenbrock Function fs:

Rosenbrock developed a method for the finding the greatdstst value of a function
of several variables [182]. To evaluate the method he usexhéintious, unimodal, bi-
guadratic function of two variables, generally referrecsothe Rosenbrock function. It
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formed part of the function set used by De Jong [55] and hag$ieen generalized far
variables. The difficulty that evolutionary algorithms kawith the Rosenbrock function
is finding the global minimum within the flat valley, see Figuk.7(c).

[y

fa(®) =" 100 (241 — 22)*, + (2, — 1)*, forn =30, (A.11)

i=1

where

-30< ;<30 Vi ; x*

(1,...,1) ; fs(=")=0.

Ackley’s Function, f;:

The function presented here is a generalized version [28Jetontinuous, multimodal
function by Ackley [3]. Ackley’s function is obtained by moldting an exponential func-
tion with a cosine wave of moderate amplitude. The téfmt e is added to move the
global minimum function value to zero.

fa(x) = 20exp | —0.2

1 — 1 <

- 21 —exp| =) cog2rz; 20 forn = 30

n;xl p<n; S(7r:c)>+ + e, n ,
(A.12)

where

—32<x;<32; Vi ; @' =(0,...,0) ; fu(z")=0.

Schwefel’'s Function, fs:

This function is from Schwefel’s catalogue of functions319t is a multimodal function
characterized by the second-best minimum being far awawy the global minimum.

flx)=— zn: (xzsm(\/@» , forn =30 (A.13)

1=

where

—500 < x; <500 ; Vi a* = (420.9687,...,420.9687) ; fs(z*) = —12569.5.

Fletcher Powell Function, f:

First introduced by Fletcher and Powell in 1963 [72], thiadtion is also multimodal.
The objective function lacks any symmetry due to the use mdoan matricesA and B
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in the definition of the problem [193, 23]:

fol@) = (Ai = Bi(x))’
i=1
Ai = Z(CLZ']'SinOéj + bijCOSOéj) (A14)
j=1
BZ<.§L’) = Z(CLZ']'SinSL’j + bijCOSSL’j)
7=1

wherea;; andb;; are random numbers in the range [-100,100], apére random
numbers in the range-r, 7|. The search domain and minimum for this function are

n=10; —n<z<ntVi; ¥=a; fo(z*)=0
For the experiments presented in this appendix the follgwimays were generated:

—93.40 6.84 78.21 86.33 43.16 6.22 —45.73 66.68 33.68 6.83
6.79 58.18 —23.22 46.42 4.20 99.65 63.18 59.25 —93.57 84.43
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Figure A.7: Topology of two-dimensional versions of the minimizatiesttfunctions.
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A.5 Experiments

For the functions defined in the previous section, each maation experiment involved
running the genetic algorithm 50 times. The following algon parameters were used:
population sizeVp = 30, generationsVg = 1000, the crossover probability. = 0.6,
the mutation probability,, = 0.2, and the strategy parametér= 5. These values
represent a compromise on the overall performance on thiesiXunctions. With the
evolution taking place over a relatively small number of g@ations, the emphasis is on
a fast global search. The three mutation operators araltégiehalewicz’s non-uniform
mutation, Neubauer’s adaptive non-uniform, and the adapénge operator described in
Section A.3. Each test result is represented by an averatie difest objective function
from each of the 50 experiment§, , the standard deviation of the best solutign, and
the best overall solutioryy..;

Tables A.1 and A.2 summarize the performance of mutatiomatpes when used
in combination with arithmetic crossover and single poirssover [154]. Arithmetic
crossover produces values bounded by the parent valueasanath offers superior fine-
tuning. It also provides a mechanism for the reintroductibparameter values which
may have been lost to the extremes of the search domain thtbadias of the adaptive
non-uniform mutator. However, the generations neededfsréeintroduction means that
the time for which fine-tuning can improve the solution psem is reduced. The experi-
ments run with the single point crossover isolate the behanaf the mutation operation
by removing the exploitation bias of the arithmetic croggo\rhe simple transfer of par-
ent features provides greater access to the search domain g&mn aid the global search
on some functions.

Table A.l: Performance of the mutation operators in combination withol arithmetic
crossover, on a set of benchmark functions. The mean andasthdeviation apply to the best
solution f*, from each of the 50 runs, anf.is the best solution found.

Function Non-uniform Adaptive non-uniform Adaptive range

fag std. dev. St fag std. dev. Soes fag std. dev. St
f1a 2.716e-7  1.643e-7 4.43e-9 2.086e-7 1.36e-7 4.543e-8 &198 5.573e-7  1.540e-7
f1p 2.25 1.13 0.740 0.2 0.734 0.00278 8.778e-7 5.387e-7 6.891le-
f2 0 0 0 0 0 0 0 0 0
f3 39.37 37.09 27.32 1311.6 6064.8 26.43 116.6 174.7 26.78
fa 9.303e-4 3.012e-4 3.844e-4 8.438e-4 3.229%-4 3.0e-4 d-811 5.564e-4  6.688e-4
f5 -9658.8 610.0 -10680.1  -10336.2 585.4 -11615.6 -10263.6 4.840 -11186.2
fe 1253.2 2630.3 5.608 2689.8 3714.8 16.4 735.9 1263.0 0.0707

The sphere functioify emphasizes convergence velocity on convex problems. Thoug
not a test for the global search capability of the algorititprovides a simple examina-
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Table A.2: Performance of the mutation operators in combination witgle point crossover, on
a set of benchmark functions. The mean and standard devigpialy to the best solutiofi*, from
each of the 50 runs, anff.;is the best solution found.

Function Non-uniform Adaptive non-uniform Adaptive range

favg std. dev. St fag std. dev. St fag std. dev. St
fia 2.514e-6 1.247e-6  6.505e-7 48.25 64.04 5.086e-7 5.712e-6614€6 1.438e-6
S1v 0.151 0.0813 0.0245 32.6 10.25 15.71 4.91e-6 4.1e-6 1.30e-6
f2 0 0 0 7660.7 7533.8 0 0 0 0
f3 174.8 272.8 20.33 1.28e7 2.96e7 26.4 304.2 587.8 20.12
fa 2.778e-3  9.084e-4  1.403e-3 12.56 8.148 2.181e-3  1.386e-3H23&4  6.007e-4
f5 -10761.2 366.3 -11497.7  -10479.5 539.7 -11495.8  -11019.7 28.34  -11799.6
fe 1327.0 1434.1 0.0505 5778.7 4576.9 324.4 2139.1 2522.8 96.01

tion of the search bias of the mutation and crossover opatat@/ith the solution lo-
cated in the centre of the search domain, greater solutiecigyon is provided by the
non-uniform operator of Michalewicz, due to the search laiad the lower maximum
mutation possible for a given generation. For the edge isol(f;,), the average error in
the solution values from the 50 runs was 0.224, compar&d3&l x 10-°. The drop in
solution precision reflects the time need to counter the nomdias. In comparison, the
adaptive range operator performance appears indiffecetttet position of the solution,
with solution errors ofi.321 x 10~* and1.273 x 10~* for f,, and f; respectively. Due
to the mutation range being consistently scaled off the doteundary, the maximum
mutation possible throughout the evolution is greater floathe Michalewicz operator,
and the solution precision for thg, is marginally reduced. As expected, the arithmetic
crossover provides greater solution precision for the sgppeoblem, due to its exploitive
nature.

The experimental verification performed by Neubauer usedghere function, with
the same dimension, solution set, and search rangg @ind fy,. It is worth considering
therefore, why those experiments supported the adaptimeundorm operator, while
the results contained in Tables A.1 and A.2 clearly do notthinresults presented by
Neubauer [162], the non-uniform and the adaptive non-umifoperator were shown to
provide equivalent solutions fqf;,. For the edge solution of;;,, the modified mutation
operator of Neubauer provided superior results, thougtrestingly, a three orders of
magnitude drop in the precision of the best function. Theltegyenerated benefited
from the large number of generations, 10 000 were used, andsth of3 = 5 to rapidly
reduce the chances of large mutations. If there were no diaetlocation of the solution
in the search domain, then it would be reasonable to expantisreturn for the best
function value. A similar drop in solution precision was ebsd when the RCGA used
in this thesis was run over 10000 generations. However, D@00 test runs forf;,,
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9 returned solutions with one or two values on the search demynrather than on the

actual solution. The affect can be explained by search ptom due to the repeated
cycle of mutation bias with crossover recovery. The singlmipcrossover has no means
of reintroducing values lost through mutation bias so, asvwhin Table A.2, the solutions

are consistently poor. Therefore, with due consideratotihé simulation setup and the
relative performance between the edge and central sojutierassertion that the modified
mutation operator is more effective is inappropriate.

By discretizing the sphere model, asfin the search is made considerably easier. In
most cases the population converged to the global minimuimm800 generations. If
the search length is reduced to 500 generations, the gloinaihom could likewise be
found within 80 % of the available generations.

The non-uniformity of the mutations across the generati®egpressed through In
function minimization test problems this usually sepite- 5 for the fine-tuning benefits.
When combined with arithmetic crossover the search can meehed if the solution is
away from the centre of the search domain. For functions thiéhsolution located in
near the centre of the search domafp,, f2, f3, and f,, the bias of the non-uniform
operator provides superior results. This results in a reéaluof the fine-tuning capability
of the mutation operation. In the case of the flight controlgbem for this thesis, it was
more desirable to remove search bias than to maintain théuimeg.

One of the potential concerns of the GA application to thentligpntrol problem, is
the sensitivity of the genetic algorithm to parameter epist Epistatis refers to the inter-
action of variables with respect to the fitness function. I@f functions tested here, the
Rosenbrock function exhibits a dependency on the relaaligevof neighbouring param-
eters. Results from Salomon [190] indicate that the higbaloconvergence performance
of the genetic algorithm relies on the independence of tharpaters. For control prob-
lems the fitness of a set of parameters is generally highlgmiggnt on the interaction of
the parameters, and could therefore form a deceptive prololeGAs. Itis not clear from
the tests done whether the performance of the GA on the Roseis due to parameter
epistatis or the general difficulty of finding the global rmmim within the relatively flat
valley that contains it.

None of the experiments conducted on the Rosenbrock funatese able to find the
global minimum. Tuning the parameterization of the RCGA caduce the variation
amongst the solutions found, but the global minimum remalasive. Of the 21 forms
of RCGA tested by Herrerat al. [99], only one provided an objective function which
indicated a global optimum. The implementation included-naiform mutation, a fuzzy
connectives based crossover, and a very low probabilitywdation {,,, = 0.005). Evo-
lutionary strategies are suggested to be unaffected byatipisUsing a population size
of 100 and 20 000 generations, Yabal.[236] reports a mean best from 50 runs of 5.06.
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Table A.3: Solution quality forf5. N(z}) represents the number of values per solution within
+10 of 7 andz; ¢ describes the average error of those values.

Mutation N(zF) Tierr

1

non-uniform 18.16/30 1.984
adaptive-range 19.34/30 0.0357

Simulated annealing has also been applied with some sutzéiss Rosenbrock func-
tion [197].

Ackley’s functionf, was generally well solved by the various combinations aésowver
and mutation. If the search range is shifted such that thieaglminimum is no longer
centrally located, the performance trend observed witlsginere functions is duplicated.
For example, by setting the search range to [-10,80],using the Michalewicz opera-
tor becomes 0.53, while the adaptive-range operator magitiae solution accuracy with
fag=1.03x1072,

Apart from the deceptive nature of the Rosenbrock functiengtions f5 and f rep-
resent the most challenging problems in the set considenex fihe results presented in
Tables A.1 and A.2 are merely to compare the mutation opes;admd do not represent
the best arrangement for the RCGA. For both functions, thpiage range operator offers
improved performance over Michalewicz’s original form. &amining the average error
of those solution values which are near the global minimupg,J, the behavior of the
two operators is clear. If a near optimal value is withii 0 of the global optimum, then
the results in Table A.3 shows the average number of neanaptivalues per run and the
average error in those values. The differences in the fonetlues reported in Table A.2
are therefore due to the reduction in solution precision tduleias of the non-uniform
mutation.

Knowing the general properties of the Schwefel functionakgorithm configuration
can readily be formed to dramatically improve the globatsle@erformance. Primarily,
searching Schwefel’s function benefits from a mix of exitbdn and exploration in the
crossover operator, so that the corner solution can bebhglraached. The BLXx op-
erator from Eshelman [67] provides an extension of the onasrange for a given set
of parent values. It was implemented in the RCGA to provide offspring,C';andC,,
from two parent<; = (z1,...,%ij, ..., %) j = 1,2. The BLX- operator uniformly
picks the new individual values; ; from the interval[cmin, — o, cmaxi + a1;], where
Cmini = MIN(Z;1,%;2), Cmaxi = MaX; 1, ;2), @aNAl; = Cpawi — Cming. The offspring
values are therefore expressed as follows:

T, . = Cmini + 75 (Cmaxi — Cmini), fOri=1,n; j =1,2, (A.15)

7/7]
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Table A.4: Improved performance of RCGA fafs using the BLX-0.5 crossover operator. The
results are taken from 50 runs wittVp = 30, N¢g = 1000, p. = 0.6, p,, = 0.01, 5 = 5).

Mutation fag  Std.dev.  fr o N(z))  Zier

non-uniform -12175.0 314.7 -12569.3 28.34/30 0.3442
adaptive-range -12345.6 236.3 -12569.5 28.68/30 0.0569

wherer; andr;, are uniform random numbees|0, 1].

Using the BLX« crossover operator, the results in Table A.4 were generhtkelthe
previous results, the effect of the mutation bias when usiegion-uniform operator is a
reduction in the solution precision when compared to theifieatoperator. It was also
noted that the return of the global minimum from 50 runs i®sstive to the mutation
rate.

Compared to the large number of published results for emparis involving the
Schwefel function, there are far fewer examples of expenimeith high order Fletcher-
Powell functions. Baclet al. [25] used the Fletcher-Powell function with = 30 to
compare the performance of evolutionary strategies witlnari-coded genetic algo-
rithm. A population size of 100 was used and the search paddrover 2000 genera-
tions. In a paper by Takahastt al. [216] a real-coded genetic algorithm was applied to
the Fletcher-Powell function for the purpose of examiningeatension to the unimodal
normal distribution crossover. A remarkable feature ofékperiments was the use of
populations ranging in size from 1500 to 12000. The appboapf the RCGA in this
thesis is targeting the rapid development of solutionschiii seems, is not readily at-
tainable for the Fletcher-Powell function. It would als@se from Backet al.[25], that
the greater degree of freedom resulting from working withifferent self-adaptive muta-
tion parameters per individual is a significant advantage the single uniform mutation
rate typically used for genetic algorithms.

The purpose here is not to compete with alternative algosthbut to provide an
assessment of a modification to a flawed mutation operatosul®epresented for the
10 variable Fletcher-Powell case, further support the inapange operator. Additional
experiments showed that over 500 generations near optohdians were generated for
mutation rates ranging from 0.05 to 0.9 and for the threesoeer operators previously
discussed (single point, arithmetic and BloX-

The issue of parameterization of evolutionary algorithomrsdptimal search perfor-
mance has been addressed in many ways [64, 83]. Heuristis halve been developed
(typically applying to a certain class of problems), vagythe activation rates of the per-
turbation operators with time has been recommended, dafftve schemes are used by
evolutionary strategies, and parameters can be includise ithe self-adaption of param-
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eters during the evolutionary process. It is inevitable ésv that a trial and error process
is applied, as one set of evolutionary mechanisms and péeesneannot be universally
superior.

Across variations in population size, generation scaleéatian probabilities and crossover
types, the modification to Michalewicz’s mutation opergtosvided a general improve-
ment in performance. One significant observation was treaataptive-range operator
is able to generate near optimal solutions out of set of exyts, for a broad range of
mutation rates, generation scales and crossover types.

A.6  Summary

The aim of this appendix was to demonstrate the performaihangage of an alternative
definition of the non-uniform mutation operator proposedwghalewicz, for real-coded
genetic algorithms. Established operators, through sesrch bias, were shown to ad-
versely affect the reliability and precision of the algbnit. They are sensitive to the
algorithm structure and the setting of parameters such @slgkon size, mutation prob-
ability, and the rate of fine-tuning. In some cases, effective-tuning was delayed by
the extra time needed to generate gene values lost by thefbihe mutation operator.
By redefining the non-uniform mutation operator asadaptive rangenutation, the gen-
eral performance of the genetic algorithm was improved. ufinathe objective was not
the measuring of the RCGA performance with other evolutipadgorithms, favourable
comparisons can be made with published results includesthsing genetic algorithms,
evolutionary programming, and evolutionary strategies.

Favourable comparisons can be made with other publishedtsesich that the ap-
plication of genetic algorithms to real-valued parametgimization should not be dis-
counted, see for example [42, 26].
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