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Overview

» Motivation:
— “why so slow?” (Eilmer User, circa 1990-2021)
» Numerical Methods

— Governing Equations
— Spatial Discretisation
— Temporal Discretisation:

- Explicit vs Implicit
- Newton-Krylov method

» Development History & Demonstration Cases
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Motivation

> Why a steady-state solver?

— Supplement design and analysis of steady flow experiments
— Vebhicle design work requires analysis of many candidate designs

» Benefits of in-house code development:

— Open-source code: no hidden fudge factors
— Full control: features on demand (including bug fixes)
— Direct communication: trouble shooting problematic simulations
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Compressible Flow Governing Equations

Conservation of mass: P
—p+V-pu=0
atﬂ P
Conservation of species mass:
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Conservation of momentum:
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Conservation of total energy:
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Conservation of vibrational energy:
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*Coming soon
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Spatial Discretisation

» Finite Volume Method
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Spatial Discretisation

» Convective Fluxes
— Flux calculators
- EFM, AUSMDV, HLLC, LDFSS,
- Hanel, HLLE, Roe, ASF
— Structured Grids

- Piecewise parabolic reconstruction — O(h*)
- Modified Van Albada limiter

— Unstructured Grids
- Least-squares reconstruction — O(h?)
- Venkatakrishnan limiter
- Limiter freezing available
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Spatial Discretisation

» Viscous Fluxes
— Augmented-face face-tangent method

- Least-squares method to reconstruct gradients

- Special averaging using gradients, flowstates, and cell geometry
- Available with structured and unstructured grids

- Retains high spatial order for multi-block simulations

X
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Temporal Discretisation

» Explicit Euler Time Integration
Recall semi-discrete form of residual

ou

ot =R(U)

Using a forward difference discretization, the scheme is written as

Un+1 o Un

Ar R

where At is the discretised time increment.
Rearranging recovers the explicit Euler time marching iterate

U™ =U" + AtR(U)"
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Temporal Discretisation

> Explicit Euler Time Integration continued...

Stability of the explicit Euler scheme is dependent on the CFL condition:

[/\; + C/\V]
Ax

CFL = At < CFLmax,

where,

Ai = (lu(x)| + a(x)) .
A = (tur)y
Y pPrAx

In practice we know CFLpyayx (e.g. CFLmax = 1 for Euler schemes)

Ax

At= ———
A; + CA,

CFLmax-
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Temporal Discretisation

» Implicit Time Integration

Again recall semi-discrete form of residual

ou
““ _R
5; — R(U)
written in fully discrete form
AU" nal
At R(U)

where,
AU" =U"tt —u”
and At is the discretised time increment.
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Temporal Discretisation

» Implicit Time Integration continued...

Since we do not know R(U)"™, we linearise in time

AU L, OR

n
At ou AU

this is then rearranged to recover the implicit-Euler time marching iterate
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[AI"AU {At au
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Temporal Discretisation

» Rowan's implicit algorithm wish list from 2017:

— able to treat R(U) as a black box

— good for high speed flows (ie. grids with high aspect ratio cells)
— works for both structured and unstructured grids

— avoid the need to derive and code implicit boundary conditions
— easily parallelized and scales well in parallel

— efficient on memory, particularly in 3D
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Temporal Discretisation

» Globalised Newton-Krylov method

[A]"AU" — {il _9R

n__ pn

— note: as 1/At approaches 0, Newton’s method is recovered

— Krylov term comes from the use of a Krylov subspace linear solver:
- We use GMRES which only requires matrix-vector products
- No need to form [A] matrix!*

1y ~ RO+ hv) — R(U)
v h
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Temporal Discretisation

» Looking back at Rowan's implicit algorithm wish list from 2017:

— able to treat R(U) as a black box

— good for high speed flows (ie. grids with high aspect ratio cells)
— works for both structured and unstructured grids

— avoid the need to derive and code implicit boundary conditions
— easily parallelized and scales well in parallel

— efficient on memory, particularly in 3D

The Frechet derivative allows the solver to feel the "full” Jacobian.
This is in contrast to methods that might approximate the
Jacobian. This method makes no assumptions about the flow
gradient directions and full information from the Jacobian is
transmitted to the solution.
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Temporal Discretisation

» Looking back at Rowan's implicit algorithm wish list from 2017:

— able to treat R(U) as a black box

— good for high speed flows (ie. grids with high aspect ratio cells)
— works for both structured and unstructured grids

— avoid the need to derive and code implicit boundary conditions
— easily parallelized and scales well in parallel

— efficient on memory, particularly in 3D

Using a Krylov method, which only requires the result of a
matrix-vector product, and the Frechet derivative means that an
explicit Jacobian is never formed. This means I don’t need to know
about the details of how R(U) is constructed.
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Temporal Discretisation

» Looking back at Rowan'’s implicit algorithm wish list from 2017:
— able to treat R(U) as a black box
— good for high speed flows (ie. grids with high aspect ratio cells)
— works for both structured and unstructured grids
— avoid the need to derive and code implicit boundary conditions
— easily parallelized and scales well in parallel
— efficient on memory, particularly in 3D

The numerical differentiation involved with the Frechet derivative
takes the hassle out of forming implicit boundary conditions.
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Temporal Discretisation

» Looking back at Rowan's implicit algorithm wish list from 2017:

— able to treat R(U) as a black box

— good for high speed flows (ie. grids with high aspect ratio cells)
— works for both structured and unstructured grids

— avoid the need to derive and code implicit boundary conditions
— easily parallelized and scales well in parallel

— efficient on memory, particularly in 3D

The Newton-Krylov methods have been designed to scale well for
use on large supercomputers. The present implementation was
extended to shared-memory (and now MPI) parallel mode with very
little extra code.
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.
2016/2017

> Rowan begins steady-state solver development
» Features included:

— Shared memory

— Structured grid numerics

— Navier-Stokes flows (ie. laminar flows)
— Unpreconditioned GMRES

» Rowan presents steady-state solver at CfH (06-04-2017)

— Classic Cone20 test case
— Laminar flow over a flat plate
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2018

P> Kyle takes over steady-state solver development
> Initial features implemented:

— Operate on unstructured grid numerics

— Complexified Eilmer

— Preconditioned GMRES
- Jacobian formed via complex-step differentiation
- Complex-step Fréchet derivative

» Revisit: Cone20 & Laminar flow over a flat plate
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2018

» Classic Cone20 (Mach 1.5 air flow over a cone)
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2018

» Mach 4.0 laminar air flow over a flat plate
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2019

> Kyle extends solver to operate on the RANS equations
— k-w turbulence model
» Nick adds turbulence model class to Eilmer4 (huzzah!)

— Implements Spalart-Allmaras model (vapourware no longer!)
— Works out of the box for steady-state solver!
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|
2019

» Mach 4.5 turbulent (k-w) air flow over a flat plate (y+ <= 5)
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|
2019

» Mach 5.0 turbulent (SA) air flow over a flat plate (y+ <= 1)
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2020

> Kyle extends steady-state solver capability for reacting flows:
— Thermally perfect gases
— Multi-species
— Finite rate chemistry

» Rowan adds MPI capability to Newton-Krylov solver

> Kyle also extends conjugate heat transfer solver capability:

— 3D domains

Spatial gradients using augmented-face face-tangent method
MPI capability

More on the applicability of this later...
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2020

» Simulation of Lobb experiment
— Mach 14 reacting air (5 species) flow over a sphere

— Axisymmetric simulation
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2021

P> Extensions to steady-state solver:
— Added preconditioning capability for structured grid numerics
— Extended to operate on solid domains
- Enabled implicit Conjugate Heat Transfer calculations (CHT)
- Loosely coupled implementation

y=15L .

<
]
[

dtayi
Fluid domain 19

y=0

L

K. A. Damm CfH Seminar Series



2021

» Reacting, turbulent flow over a hollow sphere with CHT:
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Demonstration Case |

> BolLT-II
— CHT simulation (fluid & solid domains)
— 1.2 million cell (GridPro) structured grid (c/o Damian Curran)
— 800k cells in fluid domain & 400k cells in solid domain

K. A. Damm CfH Semlnar Series 6th May 2021 29/33



Demonstration Case |

> BolLT-II
— Mach 6 tunnel condition
— Structured grid numerics (nominally 3rd order reconstruction)
— 24 hours on 96 cores (2 nodes of Gadi)
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Demonstration Case Il

» HIFIRE-7
— Eilmer4 challenge problem
— 45 million cell (Pointwise) unstructured grid (c/o NASA)
— Grid partitioned into 768 blocks using Eilmer4 METIS wrapper
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Demonstration Case Il

» HIFIiRE-7
— Mach 7.8448 tunnel condition
— Current results: Euler simulation with first order reconstruction
— 16 hours on 768 cores (16 nodes of Gadi)
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N
Future Work

> Extend to include two-temperature modelling
» Improve robustness & efficiency

» Explore application to more complex flows...
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