
The University of Queensland

Development of a Parallel Adaptive

Cartesian Cell Code to Simulate

Blast in Complex Geometries

By

Joseph Tang

B.E. (Mechanical and Space)

A thesis submitted for the degree of

Doctor of Philosophy at

The University of Queensland in June 2008

Principal Supervisor: Doctor Peter Jacobs

Associate Supervisor: Doctor Michael Macrossan

Division of Mechanical Engineering,

School of Engineering,

The University of Queensland,

Australia.

Statement of Originality

This thesis is composed of my original work, and contains no

material previously published or written by another person

except where due reference has been made in the text. I have

clearly stated the contribution by others to jointly-authored

works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as

a whole, including statistical assistance, survey design, data

analysis, significant technical procedures, professional edito-

rial advice, and any other original research work used or re-

ported in my thesis. The content of my thesis is the result

of work I have carried out since the commencement of my

research higher degree candidature and does not include a

substantial part of work that has been submitted to qualify

for the award of any other degree or diploma in any univer-

sity or other tertiary institution. I have clearly stated which

parts of my thesis, if any, have been submitted to qualify for

another award.

I acknowledge that an electronic copy of my thesis must be

lodged with the University Library and, subject to the Gen-

eral Award Rules of The University of Queensland, imme-

diately made available for research and study in accordance

with the Copyright Act 1968. I acknowledge that copyright of

all material contained in my thesis resides with the copyright

holder(s) of that material.

Joseph Tang

i

Publications

Published Works by the Author Incorporated into the Thesis

Tang, J. “Another alternative method for blast wave simulation in complex geometries

using Virtual Cell Embedding”, 10th International Workshop on Shock-Tube Technology,

Brisbane, Australia, 2006. Partially incorporated in Chapters 2, 11, 8 and 11.

Tang, J. “A simple axisymmetric extension to virtual cell embedding”, International

Journal for Numerical Methods in Fluids, Vol. 55, No. 8, 2007, pp. 785–791. Partially

incorporated in Chapter 6 and Appendix D.

Tang, J. “A simple parallel adaptive mesh CFD method suitable for small engineering

workstations”, submitted to Parallel Processing Letters, 2008. Partially incorporated in

Chapters 5 and 14.

Tang, J. “CFD simulation of blast in an internal geometry using a cartesian cell code”,

16th Australasian Fluid Mechanics Conference, Gold Coast, Australia, 2007. Partially

incorporated in Chapters 14 and 15.

Tang, J. “Free-field blast parameter errors from cartesian cell representations of bursting

sphere-type charges”. Shock Waves, Vol. 18, pp. 11–20. Incorporated in Chapter 10.

Tang, J. “Theory manual to OctVCE – a cartesian cell CFD code with special applica-

tion to blast wave problems”, Report 2007/12, Department of Mechanical Engineering,

University of Queensland, 2007. Partially incorporated in Chapter 4.

Published Works by the Author Relevant to the Thesis but not Forming

Part of it

Tang, J. “User guide for shock and blast simulation with the OctVCE code (version

3.5+)”, Report 2007/13, Department of Mechanical Engineering, University of Queens-

land, 2007.

ii

Acknowledgements

I would firstly like to thank the Australian Government for the Australian Postgrad-

uate Research Award and the Mechanical Engineering Department for the Research

Scholarship.

I am grateful to my supervisor Peter Jacobs for his guidance and very helpful advice,

who encouraged and enlightened me on numerous occasions when I felt hindered in my

progress. I am very thankful to have had such a gentle and friendly supervisor. I also

thank my fellow postgraduates Brendan O’Flaherty and especially Rowan Gollan for

their assistance and fruitful discussions on many topics. I also appreciate the help of

Martin Nicholls for his help in answering my questions about the computing facilties

used for this thesis. Without the help of these people, my research would have been

much more daunting.

I am indebted to and grateful to my parents and sister for their love, encouragement

and support during this period. Their presence has helped make this time of my life far

more tolerable than it would have been.

Lastly, but most importantly, I thank my Lord and Saviour, Jesus Christ, for being with

me throughout this period and giving me the strength to arrive at this point, for “much

study wearies the body” (Eccl 12:12). He is my ultimate Supervisor, for I know that

“whatever you do, work at it with all your heart, as working for the Lord ... it is the

Lord Christ you are serving” (Col 3:24-25).

iii

Abstract

The modelling of blast propagation in urban environments generated by explosions

allows prediction of blast loading on structures, which in turn has useful applications

like damage assessment and improvement of structural design. However such an exercise

is often realizable only with Computational Fluid Dynamics simulations, which can be

difficult to perform because of the geometric complexity of the blast environment.

This thesis describes the development of the code OctVCE designed especially for

modelling shock and blast effects in complex structural geometries. This code is designed

for practical engineering use where high resolution is unnecessary. It uses a finite-volume

formulation of the unsteady Euler equations with second-order explicit Runge-Kutta

timestepping and linear interpolation with a minmod-based limiter. Flux solvers used

are the Advection Upwind Splitting Method variant (AUSMDV) and the Equilibrium

Flux Method (EFM). No fluid-structure coupling or chemical reactions are modelled,

and gas models can be perfect gas or the real-gas JWL model.

The code uses the Virtual Cell Embedding (VCE) Cartesian cell method to au-

tomatically generate grids in complex geometries. This method is chosen because of

its simplicity, robustness and generality. Additional efficiency in computational perfor-

mance and memory usage is obtained by implementing an octree-based mesh adaptation

scheme in the code. The parallel implementation of the code using the shared-memory

OpenMP paradigm is also described.

The code is verified to establish reliability of the numerical implementation via test

cases like the method of manufactured solutions, an ideal shock tube problem, supersonic

flow over wedge and cone geometries and a supersonic vortex problem. The code is then

validated to demonstrate its reliability and usefulness in simulating more realistic shock

and blast problems. Test cases presented increase in geometric complexity and include

unsteady shock interaction with wedge and cylinder geometries and blast interaction

with barriers, axisymmetric containers, simple arrangements of cuboidal structures and

complex cityscape buildings.

As part of a design exercise for the development of a static-firing test facility, OctVCE

is applied to modelling internal blast in a shipping container geometry. It is found that

very large amplification of pressures and impulse exists within the structure (by at

least a factor of ten) due to blast confinement. It was not always easy to demonstrate

convergence, especially along edges and corners of the geometry, due to the coarseness

iv

of the grids employed in the simulations. However, the impulse could still be computed

with fairly low error.

The serial and parallel performance of the code is measured for some of these cases.

The performance profiles indicate that substantial savings in storage and execution time

is achieved on adaptive meshes compared to equivalent uniform meshes. Execution

time is also considerably shortened through the use of parallel processing. However,

code performance can still be significantly enhanced, and several aspects of the code

are identified in the last chapter in which improvements can be made in future work.

These include more efficient parallel implementation, better adaptation indicators, less

conservative timestepping and importantly reduction of memory usage.

v

Keywords and Australian and New Zealand

Standard Research Classifications

Keywords

Blast, numerical simulation, Cartesian cell, virtual cell embedding, complex geometry

Australian and New Zealand Standard Research Classifications (ANZSRC)

091501 100%

vi

Contents

Statement of Originality i

List of Publications ii

Acknowledgements iii

Abstract iv

Keywords and ANZSRC vi

Nomenclature xxii

1 Introduction 1

1.1 The Need for Numerical Simulation . 1

1.1.1 Previous CFD Approaches to Blast Modelling 3

1.2 Characteristics of Explosive Blasts . 4

1.2.1 Scaling Laws . 7

1.3 Scope of Thesis . 8

2 Meshes for Complex Geometries 9

2.1 Body-fitted Grids . 9

2.2 Grid-free and Particle Methods . 10

2.3 Cartesian Grid Methods . 11

2.3.1 Cut Cells . 12

2.3.2 Curvature-Corrected Symmetry Technique 12

2.3.3 Surface Approximation . 13

2.4 The Virtual Cell Embedding Method . 13

2.4.1 VCE Resolution Issues . 14

2.4.2 Dealing with Small Cells . 15

2.4.3 VCE Staircased Representation 16

2.4.4 VCE Surface Noise . 17

vii

2.4.5 Geometric Evaluations . 17

2.4.6 Example VCE-generated Mesh . 18

3 Mesh Adaptation 19

3.1 Explicit Storage . 20

3.2 Enforcement of Grid Regularity . 21

3.3 Cell Refinement and Coarsening Method 21

3.4 Degeneracies during Adaptation . 23

3.5 Adaptation Indicators . 24

4 Flow Simulation Algorithm 26

4.1 Governing Equations . 27

4.2 Finite-Volume Discretization . 28

4.2.1 Axisymmetric VCE Method . 29

4.3 Reconstruction . 29

4.3.1 Interpolation . 30

4.3.2 Limiting . 31

4.3.3 No Reconstruction for Intersected Cells 32

4.4 Flux Solvers . 32

4.5 Equations of State . 33

4.5.1 Ideal Gas Equation of State . 33

4.5.2 JWL Equation of State . 33

4.6 Initial Conditions . 34

4.6.1 Calculating Correct Conditions 35

4.7 Boundary Conditions . 35

4.7.1 Wall Boundary Condition . 36

4.7.2 Inflow/Outflow Boundary Conditions 36

4.8 Numerical Instabilities . 37

4.8.1 CFL cut-back Procedure . 37

4.8.2 Axisymmetric Numerical Jetting 38

4.9 Point-inclusion Queries . 38

5 Parallel Computing 40

5.1 Domain Decomposition Methods . 40

viii

5.2 Popular Parallel Architectures . 42

5.3 Parallel Programming . 43

5.4 Parallel Performance Measures . 43

5.5 Parallel Implementation . 45

5.5.1 Parallel Flow Solution and Output 46

5.5.2 Parallel Mesh Adaptation . 48

5.5.3 Problems with the Parallel Method 53

6 Verification and Validation 54

6.1 Verification via the Method of Manufactured Solutions 56

6.1.1 Manufactured Solution for Two-Dimensional Geometry 57

6.1.2 Results from Two-Dimensional Method of Manufactured Solution 59

6.1.3 Manufactured Solution for Three-Dimensional Geometry 61

6.1.4 Results from Three-Dimensional Method of Manufactured Solution 62

6.1.5 Performance of the Method of Manufactured Solutions 62

6.1.6 Concluding Remarks . 63

6.2 Verification with Sod’s Shock Tube Problem 65

6.2.1 Results for Sod’s Shock Tube Problem 66

6.3 Verification of Supersonic Wedge and Conical Flow 69

6.3.1 Program of Simulations . 69

6.3.2 Results for Supersonic Flow past Wedge 71

6.3.3 Results for Supersonic Flow Past Cone 74

6.3.4 Performance of Wedge and Conical Flow Solution 79

6.4 Verification of Supersonic Vortex Flow 80

6.4.1 Results for the Supersonic Vortex Problem 81

7 Validation - Shock Diffraction Over Wedge 84

7.1 Results for the Shock Diffraction Over Wedge 86

7.2 Serial Performance . 92

7.3 Parallel Performance . 93

8 Validation – Shock Diffraction Over Cylinder 97

8.1 Results for Shock Diffraction Over Cylinder 98

ix

9 Validation - One-Dimensional Spherical Blast Waves 101

9.1 Description of Simulations . 101

9.2 Results . 102

9.2.1 Comparison of Helium Charge Solutions 102

9.2.2 Comparison of Different Charge Solutions 103

9.3 Non-reflecting Boundary Condition Test 106

10 Validation – TNT Blast 109

10.1 One-Dimensional TNT Blast . 109

10.2 Axisymmetric TNT Blast . 111

10.3 Error Quantification in the Axisymmetric Solutions 113

10.3.1 Actual Errors . 114

10.3.2 Estimated Errors . 116

10.3.3 Conclusions . 117

10.4 Three-Dimensional TNT Blast . 118

10.4.1 Parallel Performance of the Simulations 119

11 Validation - Blast Walls 122

11.1 Blast Wall Scenario 1 . 124

11.1.1 Performance of the Simulation . 126

11.2 Blast Wall Scenario 2 . 126

11.2.1 Performance of the Simulations 127

11.3 Blast Wave Clearing Simulation . 130

11.3.1 Performance of the Simulations 131

12 Validation - Explosion in Axisymmetric Container 133

12.1 Explosion in Containment Facility – R4 Run 134

12.2 Explosion in Containment Facility – R7 Run 136

13 Validation - Blast in Simple Street and Obstacle Geometries 138

13.1 Blast in Street with Right Angle Bend 138

13.2 Blast in Three-Obstacle Environment . 140

14 Validation - Explosion in Complex Cityscape 145

14.1 Results . 146

x

14.2 Performance . 150

14.2.1 Parallel Performance . 151

14.3 Effect of Adjusting Adaptation Criteria 154

15 Application Study – Modelling Explosion in Shipping Container Ge-

ometries 157

15.1 Results . 158

15.1.1 Selected Pressure Histories . 158

15.1.2 Impulse and Pressure Wall Contours 160

15.1.3 Average wall errors . 163

15.1.4 Pressure Amplification and Failure on the Outlet Wall 165

15.1.5 Performance . 166

15.2 Explosion in a More Complex Facility . 166

16 Summary, Conclusions and Future Work 168

16.1 Comparison with a Similar Code . 171

16.2 Access to the Source Code . 173

Bibliography 174

A Mixing at the Explosion Core 193

A.1 Adaptation Parameters for Blast Simulation 194

B One-dimensional Spherical Code 196

C Finite Energy Release in Cylindrical Charges 198

D Axisymmetric Virtual Cell Embedding (VCE) method 204

D.1 Obtaining cell-centre and interface radial co-ordinates 204

D.2 Obtaining the wall radial co-ordinate . 204

D.3 Euler Equations in Axisymmetric Geometry 205

D.4 Volume per radian expression . 206

D.5 Area per radian of interfaces . 207

D.5.1 Interfaces normal to radial axis 207

D.5.2 Interfaces normal to axial axis . 207

D.5.3 Wall interface . 207

xi

E Integrated Pressure Force Over a Cone 209

E.1 Degeneracies with the Axisymmetric Code 210

F Flux Calculation Schemes 214

F.1 AUSMDV Scheme . 214

F.2 EFM Scheme . 216

G Mixture Equation of State 218

G.1 Sound Speed . 219

H Non-reflecting Boundary Conditions 222

H.1 Outflow . 222

H.2 Inflow . 223

I Alternating Digital Tree (ADT) structures 224

J Linhart’s Point-inclusion Queries 228

J.1 Polygon Query . 228

J.2 Polyhedron Query . 228

K OctVCE Data Structures 231

xii

List of Tables

6.1 Table of constants for 2D manufactured solution 57

6.2 Meshes for 2D manufactured solution . 58

6.3 Order of accuracy for 2D manufactured solution 60

6.4 Table of constants for 3D manufactured solution 61

6.5 Meshes for 3D manufactured solution . 62

6.6 Density-based order of accuracy for 3D Method of Manufactured Solution 62

6.7 Energy-based order of accuracy for 3D Method of Manufactured Solution 62

6.8 Performance statistics for shock tube problem on uniform and adapted

mesh . 67

6.9 Analytic solution for supersonic flow past wedge and cone 69

6.10 AUSMDV grid convergence orders for supersonic vortex problem 82

6.11 EFM grid convergence orders for supersonic vortex problem 82

6.12 AUSMDV subcell convergence orders for supersonic vortex problem . . . 83

6.13 EFM subcell convergence orders for supersonic vortex problem 83

7.1 Initial flow conditions for shock diffraction problem 85

7.2 Serial performance for shock diffraction over wedge simulations (reported

values in percentages) . 93

7.3 Observed speedups for shock diffraction over wedge simulations 93

7.4 Parallel performance statistics for shock diffraction over wedge simulations 95

8.1 Initial flow conditions for shock over cylinder problem 97

10.1 Overpressure error summary statistics . 117

10.2 Impulse error summary statistics . 117

10.3 Parallel performance for axisymmetric TNT blast simulations 120

10.4 Parallel performance for 3D TNT blast simulations 121

14.1 Complex cityscape, gauge 1 peak quantities 148

14.2 Complex cityscape, gauge 3 peak quantities 148

14.3 Complex cityscape, gauge 11 peak quantities 148

xiii

14.4 Complex cityscape, Rose’s gauge 11 peak quantities [175] 148

14.5 Complex cityscape, gauge 21 peak quantities 148

14.6 Complex cityscape, Rose’s gauge 21 peak quantities [175] 149

14.7 Complex cityscape, average relative error for left-end wall 150

14.8 Performance statistics for different mesh levels 150

14.9 Parallel performance statistics for complex cityscape simulations 152

14.10Performance for different refinement criteria (complex cityscape) 154

15.1 Estimated average relative errors for each face 164

15.2 Estimated average relative errors (excluding edges) for each face 164

15.3 Smaller domain error estimates on south face 164

15.4 Better estimate of larger domain errors on south face 165

C.1 Sensor locations for cylindrical warhead explosion (from [11]) 199

C.2 Initial conditions for cylindrical warhead (taken from [11]) 201

xiv

List of Figures

1.1 Typical blast wave profile . 5

1.2 Height-of-burst scenario . 7

2.1 VCE method . 14

2.2 Pseudocode of cell merging algorithm . 15

2.3 Staircased VCE representation . 16

2.4 Comparison of planar and staircased VCE flow over a wedge 16

2.5 VCE-generated surface noise for supersonic wedge flow 17

2.6 Gridding UQ geometry . 18

3.1 Refining an octree . 20

3.2 Cell with multiple neighbours . 21

3.3 Cell refining pseudocode . 22

3.4 Cell coarsen checking pseudocode . 22

3.5 Cell coarsening pseudocode . 22

3.6 Solid cell refinement degeneracy . 24

4.1 Example of numerical jetting for 2D axisymmetric blast simulation . . . 38

5.1 Non-Uniform Memory Access architecture 42

5.2 Domain decomposition from cell list . 45

5.3 Example code for OpenMP parallel implementation 46

5.4 Example code for OpenMP parallel flow update stage 47

5.5 Numerical sub-domains for blast in cityscape problem 49

5.6 Interface connectivity update for parallel adaptation 50

5.7 Vertex groups for parallel adaptation . 51

5.8 Example code for OpenMP parallel adaptation 52

6.1 Analytic density field of 2D manufactured solution 58

6.2 Comparison of density fields for 2D manufactured solution 59

6.3 L2 density norms . 60

xv

6.4 Execution time vs mesh size for Method of Manufactured Solutions . . . 63

6.5 Relative execution time vs mesh size for Method of Manufactured Solutions 64

6.6 Uniform grid for 2D Sod shock tube problem 65

6.7 Two-dimensional shock tube results (0.6 ms) 66

6.8 Two- and three-dimensional shock tube results (0.6 ms) 66

6.9 Adapted mesh and equivalent uniform mesh shock tube result (0.6 ms) . 67

6.10 Shock tube results at 1.3 ms . 68

6.11 Shock tube results at 2.0 ms . 68

6.12 Pressure distribution over cone surface 71

6.13 Wedge pressure contours for various grids, 64 subcells 71

6.14 Wedge solution error vs grid size for various subcells 72

6.15 Wedge solution error vs subcell resolution for various grids 74

6.16 Cone pressure contours for various grids, 64 subcells 75

6.17 Cone solution error vs grid size for various subcells 76

6.18 Cone density contours for various subcells, level 8 mesh (from [204]) . . . 77

6.19 Cone solution error vs subcell resolution for various grids 77

6.20 Maximum errors vs subcell resolution for cone (From [204]) 78

6.21 Performance of wedge and cone solutions on 64 subcells 79

6.22 Pressure contours for supersonic vortex simulations 81

6.23 Solution norm vs subcell resolution for supersonic vortex problem (AUS-

MDV) . 83

7.1 Flow features in shock diffraction over wedge problem (from [189]) 85

7.2 Numerical domain for shock diffraction over wedge study 85

7.3 Frame 2 results for shock diffraction over wedge study 87

7.4 Frame 4 results for shock diffraction over wedge study 87

7.5 Frame 6 results for shock diffraction over wedge study 88

7.6 Frame 8 results for shock diffraction over wedge study 89

7.7 Frame 9 results for shock diffraction over wedge study 89

7.8 Frame 11 results for shock diffraction over wedge study 90

7.9 Frame 11 closeup of Kelvin-Helmholtz instability 91

7.10 Flowfield measurements for shock diffraction over wedge study 91

xvi

8.1 Shock cylinder density contours. Top figure – current results, bottom

figure – Quirk’s [153] . 98

8.2 Adapted grid for shock over a cylinder 99

8.3 Shock cylinder pressure histories . 100

9.1 Comparison of computed traces of one-dimensional blast simulation . . . 102

9.2 Comparison of computed trajectories of one-dimensional blast simulation 103

9.3 One-dimensional blast at 1.5 ms . 104

9.4 One-dimensional blast at 3 ms . 105

9.5 One-dimensional blast at 7.5 ms . 105

9.6 Computed trajectories for one-dimensional blast simulation 106

9.7 One-dimensional blast at 19.5 ms (non-reflecting test case) 107

9.8 One-dimensional blast at 22.5 ms (non-reflecting test case) 107

9.9 One-dimensional blast at 30 ms (non-reflecting test case) 108

10.1 One-dimensional TNT blast parameters 110

10.2 Initial grid for 2D axisymmetric TNT blast simulation 111

10.3 Two-dimensional TNT blast parameters 112

10.4 Example pressure history from TNT blast 113

10.5 Actual axisymmetric TNT parameter relative errors vs distance 114

10.6 Contours for 3D TNT Blast simulation 118

10.7 Three-dimensional blast parameters for TNT blast 119

10.8 Parallel speedup for TNT blast simulations 120

11.1 Blast wall configuration. Source [161] . 122

11.2 Initial grid for blast wall simulation . 123

11.3 Solution to Chapman’s [48] blast wall problem 124

11.4 Solution to Chapman’s [48] blast wall problem, longer domain 125

11.5 Pressure history for blast wall scenario 1 126

11.6 Solution to Rice’s [123] blast wall problem at 146 µs 128

11.7 Solution to Rice’s [123] blast wall problem at 246 µs 129

11.8 Pressure histories for blast wall scenario 2 130

11.9 Blast wave clearing geometry and structure 131

11.10Blast wave clearing trace results . 132

xvii

12.1 Containment facility schematic. Source [129] 133

12.2 Pressure contours for R4 simulation of explosion in containment facility . 135

12.3 Pressure contours in the s-t plane for R4 simulation of explosion in con-

tainment facility . 136

12.4 Lind’s pressure contours in the s-t plane for the R4 simulation [129] . . . 136

12.5 Pressure contours in the s-t plane for R7 simulation of explosion in con-

tainment facility . 137

12.6 Lind’s pressure contours in the s-t plane for the R7 simulation [129] . . . 137

13.1 Right angle bend street layout. Source [173] 139

13.2 Three-obstacle layout. Source [190] . 139

13.3 Results for blast in street with right angle bend 140

13.4 Contours for blast in three-obstacle environment 141

13.5 Results for blast in three-obstacle environment 143

13.6 Example of adaptation-generated noise in pressure trace 144

14.1 Complex cityscape geometry. From [39] 145

14.2 Pressure histories for blast in complex cityscape 147

14.3 Contours on left-end wall of blast in complex cityscape 149

14.4 Parallel speedups for blast in cityscape simulations 152

14.5 Pressure histories from parallel simulations (blast in complex cityscape) . 153

14.6 Grids for different adaptation criteria . 155

14.7 Pressure histories from different adaptation criteria 156

15.1 Diagram of rocket motor testing facility 158

15.2 Selected traces for explosion in shipping container problem 159

15.3 South face contours for explosion in shipping container problem 161

15.4 East face contours (L9 grid) for explosion in shipping container problem . 162

15.5 North face contours (L9 grid) for explosion in shipping container problem 162

15.6 Top face contours (L9 grid) for explosion in shipping container problem . 163

15.7 Initial geometry and contours for more complex motor testing facility . . 167

15.8 Overpressure above duct exit of motor testing facility 167

A.1 Schlieren of 2D axisymmetric blast in its early stages 193

A.2 Experimentation with adaptation parameters for blast simulation 195

xviii

C.1 Cylindrical warhead numerical domain and sensor locations (from [11]) . 199

C.2 Temperature and grid for cylindrical warhead detonation 200

C.3 Pressure histories for cylindrical warhead detonation 202

D.1 Two surface normal configurations . 205

D.2 Axisymmetric cell illustration . 206

E.1 Diagram of cone . 209

E.2 Axisymmetric corner cell . 210

E.3 Axisymmetric cell cut by cone . 211

E.4 Axisymmetric corner cell degeneracy . 212

E.5 Axisymmetric conical degeneracy . 212

H.1 Diagram for non-reflecting BC illustration 222

I.1 Constructing an ADT . 224

I.2 ADT building algorithm . 225

I.3 Bounding box illustration . 226

I.4 General geometric searching algorithm for ADTs 226

J.1 Polygon halfline illustration . 228

J.2 Polyhedron halfline illusration . 229

J.3 Polygon projection . 229

J.4 Halfline passing through polyhedron vertex 230

J.5 Halfline passing through edge and vertex 230

K.1 Basic flow-related data structures . 231

K.2 List data structure . 232

K.3 Vertex data structure . 232

K.4 Cell data structure . 232

xix

Nomenclature

a Sound speed (m/s)

A Area (m2)

AUSMDV Advection Upwind Splitting Method with flux difference and vector splitting

α Angle

b Barrier portion

β Barrier fraction

CFL Courant, Friedrichs, Lewy

Cp, Cv Specific heat J/(kg.K)

DSM Distributed-Shared Memory

e Experimentally determined serial fraction, intensive internal energy (J/kg)

E Elapsed time, total intensive energy (J/kg), error

EFM Equilibrium Flux Method

ε Error, indicator, serial fraction

f Solution, mass fraction

F Face, Force

F Flux

GCI Grid Convergence Index

γ Ratio of specific heats

h Specific enthalpy (J/kg)

H Halfline, Height, Total enthalpy (J/kg)

i, j,k Unit vectors

JWL Jones-Wilkins-Lee

l, L Length (m), level

L2 L2 norm

m Gradient, Mass (kg)

M Mach number

n Problem size

n̂ Normal vector

N Number

xx

NUMA Non-Uniform Memory Access

OctVCE Octree Virtual Cell Embedding

ω Overhead fraction

p Order of accuracy, number of processors

p Point

P Pressure (Pa), number or processors

PPM Piecewise parabolic method

φ Parallel portion of a code

Φ Limiter value

Q Source term, any quantity

r Grid refinement factor, radius (m)

R Distance (m), Gas constant, J/(kg.K)

ρ Density (kg/m3)

s Distance (m), entropy

S Sum

Sp Speedup

σ Serial portion of a code

t Time (s)

T Temperature (K)

u Velocity (m/s)

u,v Velocity vector

U State vector

v Velocity (m/s), Specific volume (m3/kg)

ṽ Relative volume of explosion products

V Volume (m3)

VCE Virtual Cell Embedding

w Velocity (m/s)

W Charge mass (kg)

x, y, z Co-ordinate directions

xxi

Subscripts

∞ Freestream conditions

0 Ambient conditions, solid conditions

a Ambient conditions

avg Average

c Child, Centre

c Centroid

i Interface, cell centre index, species index

i ± 1
2

Cell interface index

if Interface

l, L Left

min Minimum

n Neighbour, Normal

o Parallel overhead

p Parent, Explosion products

r, R Right

s Subcell, entropy, surface

w Wall

x, y, z Co-ordinate directions

Superscripts

L Left

n Number

R Right

xxii

Chapter 1

Introduction

The reliable prediction of blast loading in urban environments has become an important

goal due to the heightened awareness of terrorism in recent times, which usually take

the form of external bomb attacks in the presence of nearby buildings forming street

geometries [159]. Such predictions help in assessing damage, estimating safety distances

and even improving structural design by providing insight into factors that contribute

to the blast resistance of structures [160]. However, this can be a challenging exercise

as many urban geometries can have a complex profile, requiring Computational Fluid

Dynamics (CFD) simulations to obtain the required predictions.

To address this problem, this thesis describes the development and testing of the

Octree Virtual Cell Embedding (OctVCE) code, a CFD code written in the C program-

ming language designed especially for modelling blast propagation in complex geome-

tries. Important objectives behind the development of the code include using simple

numerical methods (to reduce development time and help with code maintainability)

and implementing automated mesh generation, mesh adaptation and parallel process-

ing technology (to increase time and storage efficiency of computations). It is developed

to be suitable for other shock propagation problems and also with a view to making it

available in the CFCFD group’s codes in the University of Queensland, as this is the first

code in the group that has explored adaptive gridding technology in three dimensions.

This chapter first describes in Section 1.1 why CFD simulations are important for

blast propagation problems in complex geometries. A review of previous commercial

and research codes used for such problems is also given in Section 1.1.1. Some general

background information into the major characteristics of explosion-generated blast is

provided in Section 1.2.

1.1 The Need for Numerical Simulation

In recent years CFD simulation has become more prominent as a means of investigat-

ing the blast environment in a complex geometry environment [194]. Estimation of

blast pressure histories is a complex problem as it depends on many factors including

charge size, distance, and the shape, size, orientation and spacing of obstacles. The

1

1.1. THE NEED FOR NUMERICAL SIMULATION

blast loading of a structure is also the result of shielding, focussing and amplification

effects taking place within the blast environment [39, 45, 175] which sometimes occur

in counterintuitive locations.

It has been found that for even simple street geometries the formulation of simple

rules to predict blast resultants is a difficult task [173] and in many experimental and

numerical investigations the channeling and amplification due to confinement of the blast

wave along a street can be very significant, with overpressures being as much as give

times the unobstructed reflected pressure value [160, 172, 173, 191, 195, 194]. Numerical

simulations can also account for the varying topography of the ground terrain [212] and

are often the only alternative in cases where it is difficult to perform experiments or

extract the required design information from them.

There are also some disadvantages in performing scaled experiments and the record-

ing of surface pressures on structures near a high explosive detonation can be difficult

due to the sensitivity of gauges to stress, heat and light [107, 171]. Errors in record-

ing can result from finite response time, spatial averaging or transducer orientation

[156], and transducer vibration (occasionally due to fast-moving stress waves through

the ground or structure) often increases observed peak pressure [165].

Sensors might indicate a finite overpressure well after the event due to shifting of the

record baseline [107, 171], which can affect measurement of the negative phase of the

blast. The experiment must be performed several times to ensure statistical repeatability

of results and to minimize errors resulting from incomplete detonation [171]. This must

be repeated for each case, which may be costly and tedious especially if pressure fields

over multiple surfaces in a complex geometry environment are desired.

Simple semiempirical methods [19, 25, 43, 89, 92, 119, 192] combine the results of

experiments with an analytic component. The structures analyzed are usually limited

to simple rectangular shapes, and usually only ideal one-dimensional blast parameter

curves are used. The structure may be modelled as a simple mass-spring system, and

usually only the positive phase is considered (represented by a triangular shape) with

the assumption of uniform loading.

These methods also consider the angle of incidence and reflection of the blast wave.

The empirical approach might also use correlations determined from a database of exper-

iments [103, 213], making the extension to scenarios not corresponding to the database

difficult [175]. The blast interaction with other structures (which can have a significant

effect) is difficult to incorporate.

Examples of semiempirical software include the Eblast software [70] which relies on

an empirical database. It does not calculate reflections and diffractions from buildings

and accounts for channeling via enhancement factors. The Antiterrorist Planner soft-

2

1.1. THE NEED FOR NUMERICAL SIMULATION

ware [13] uses scaled blast parameters with empirical shielding algorithms to provide

structural damage evaluations. More recent attempts include useage of a large exper-

imental database to train artificial neural networks to predict the blast environment

behind blast barriers [161] much faster than CFD could. A series of numerical simula-

tions was also performed to provide empiricial formulae to predict reflected pressure and

impulse in blast wave interaction with standalone columns [186]. These are useful and

fast design tools, but limited in application and would not model the blast environment

in general complex geometry adequately.

Another more sophisticated semiempirical method are the Low Altitude Multiple

Burst (LAMB) shock addition rules [94]. These rules require path lengths for rays along

which waves travel. The ray paths describing multiple reflections are calculated and

the pressure history from each ray is superposed. The LAMB rules are used by the

BLASTX code [33], the ASLAR code [117] and Needham’s code [139]. All these codes

are much faster than CFD and rely to an extent on empirical formulae and/or CFD

calculations, limiting their applicability to certain classes of simple geometry. It is still

difficult to model multiple complex building blast wave interactions [139, 171], which is

why CFD is the preferred option for such problems.

1.1.1 Previous CFD Approaches to Blast Modelling

This section gives a brief overview of prominent CFD codes used to model blast in

complex geometries. Codes employing unstructured grids have been quite popular due

to automatic grid generation capability. A popular unstructured commercial code is

AUTODYN [104], designed especially for blast propagation problems from high explosive

sources. It employs both finite-element and finite-volume solvers and can model full

fluid-structure interaction.

It also employs a time-saving method where a one-dimensional spherical analysis

between the explosive centre and nearest surface is performed before remapping the so-

lution to higher dimensions, removing the requirement for highly resolved multidimen-

sional grids early in the simulation. AUTODYN has been used to model a variety of

blast propagation problems in complex external and internal geometries [7, 48, 74, 159].

Another commerical unstructured code implementing the remapping capability is Chi-

nook [165] which has been used to model blast in urban scenarios.

A well known research code is Löhner’s unstructured finite element FEM-FCT code

[131], which can also model coupled fluid-structure interaction. This is a sophisticated

code which has been previously used to model explosions in very complex geometries like

tanks and underground carparks and airplanes [21, 22, 23]. A similar research code has

3

1.2. CHARACTERISTICS OF EXPLOSIVE BLASTS

been developed by Timofeev et al [211, 212, 220] which uses finite-volume unstructured

meshes. This has been used to compute blast wave propagation over complex terrains

generated by high explosives and volcanic blasts.

The SHAMRC code is a Cartesian cell Eulerian finite-difference code designed spe-

cially for the calculation of airblast propagation [12]. Rigid boundaries are assumed for

structural surfaces and it appears to allow only grid-oriented obstacles. It has been used

to calculate blast loads on office buildings and in internal room detonations [138]. An-

other well known Eulerian mesh code is CTH [93], which can simulate complex problems

involving fluid-structure interaction like penetration, perforation and explosive detona-

tion. It does not appear to have been used to model blast propagation in complex

geometries.

Cieslak et al [54] developed a cut-cell Cartesian cell code to simulate blast propaga-

tion for geometries like gun attenuators. The CEBAM code [56, 57] has been used to

simulate blast from gas explosions and solid explosives in complex geometries like off-

shore installations. It uses a finite volume formulation within a structured, curvilinear

framework to solve the conservation laws, but does not explicitly represent sub-grid scale

structures, implementing a porosity model to account for the effect of these obstacles.

The code which has the most features in common with OctVCE is Air3d developed

by Rose [171]. It is quite memory-efficient and fast compared to AUTODYN, and uses

Cartesian cells with the assumption of rigid surfaces, originally only handling grid-

aligned structures. It was further extended concurrently with OctVCE to incorporate

more general complex geometries and adaptive octree meshing in the ftt_air3d code1

[174, 177]. Air3d and ftt_air3d has been used extensively to model blast propagation

problems in a variety of simple and complex urban building environments [160, 171,

172, 173, 174, 175, 178, 193, 194]. The development of ftt_air3d and OctVCE has been

independent and has resulted in a number of different design decisions being made.

Sections 14.2 and 16.1 compare some differences between the ftt_air3d and OctVCE

codes.

1.2 Characteristics of Explosive Blasts

This section gives an overview of the main characteristics of blasts from explosive

charges. Fuller treatment of this subject can be found in many texts [19, 92, 119, 192].

An explosion is the phenomenon resulting from a rapid release of energy, usually of

such strength and occuring in such a small volume as to produce an audible pressure

1http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=GR/S04109/01, accessed May 2008

4

1.2. CHARACTERISTICS OF EXPLOSIVE BLASTS

wave [19, 119]. For high explosives, the energy release is caused by chemical detonation

which is nearly all transferred to the blast wave [92, 192], and initially consists mostly

of internal (rather than kinetic) energy [41].

The detonation products (commonly referred to as the explosive fireball) are quite

complex and formed by various processes including dissociation and ionization [119].

Very quickly the density in this fireball becomes lower than the surrounding air due to

a partial vacuum being created from the outward momentum of the air induced by the

primary blast wave. Under the influence of gravity the fireball rises and draws debris

into its centre, forming the well known ‘mushroom cloud’.

Accurate modelling of these products require modelling chemical reactions, but this

is outside the scope of this thesis (see Chapter 4). Many chemical explosives are oxygen-

deficient [101]; the energy release does not all occur at detonation because of insuffi-

cient oxygen to achieve complete oxidization, but also occurs later in combustion of the

explosive products as they mix with air (afterburning). TNT has a significant oxygen-

deficiency of 75% [101] but the effect of afterburning on the incident shock is small [120].

However, afterburning can affect flow speed and thus later parts of the blast wave.

It is well known that all blast waves quickly develop a spherical profile [19, 119, 120],

even for non-spherical charges. As long as energy release is sufficiently rapid the same

general configuration of the blast wave will result. The contact surface between the

detonation products and ambient gas usually becomes irregular with a high level of

mixing [25], but the uniformity of the spherical shock is not affected greatly (even with

afterburning). An analytical solution to the free-field wave structure (i.e. without any

obstacles) is difficult to obtain [25], although early attempts were made for both the

near- and far-field [19]. A numerical solution to the spherically symmetric conservation

equations is the preferred method, and was first attempted by Brode [40].

The blast wave is the dominant damage mechanism when the explosion occurs in

the vicinity of structures. Important features of this wave are shown in Figure 1.1

which shows the overpressure history at a point in space away from the explosion. This

figure only characterizes free-field burst because numerous reflections and shock wave

interactions are expected for a blast environment comprising of structures.

The severity of blast loading is usually characterized by the peak overpressure. How-

ever, damage is usually caused only if the positive phase duration is long relative to the

period of natural vibration of the structure [89]. Hence the peak impulse (the maximum

value of the pressure integral over time) is also an equally (if not more) important blast

parameter [171, 195]. The peak overpressure is usually of the order of gigapascals at the

explosion but decreases rapidly as the shock propagates outward, being quite well de-

scribed by the ideal gas law [119], and usually being too weak for structural engineering

5

1.2. CHARACTERISTICS OF EXPLOSIVE BLASTS

Figure 1.1: Typical blast wave profile

considerations after a scaled distance of 30 m/kg1/3 [171] (scaled distances are explained

on page 7).

A negative phase occurs due to a partial vacuum being created surrounding the

explosion. Eventually the displaced atmosphere will rush inward to fill this volume, thus

creating a suction phase in the explosion process. The negative phase lasts up to three

times as long as the positive phase but is usually less damaging than the positive phase,

and thus ignored [19, 119]. In some cases it can be a significant loading mechanism,

although measuring it experimentally can be difficult [172]. But it is the cause of much

broken glass being blown onto the streets in an urban environment blast.

The relationship with distance of blast parameters like peak overpressure, impulse

etc. for a free-field TNT burst has been measured empirically and documented in many

sources, sometimes supplied with curve fits [19, 25, 92, 103, 119, 192]. These curves

can also be developed from numerical simulation [41, 171] and correlations exist even

for differently shaped charges [43]. These relationships have also been documented for

hemispherical bursts on the ground, which are different from free-field burst because

realistic surfaces are not perfectly reflecting [201].

The profile in Figure 1.1 is not entirely accurate as a weaker secondary shock is

also produced after the explosion, which may have some contribution to the positive

impulse [25, 41, 92]. The deceleration of the contact surface produces an outward

moving rarefaction wave and an imploding secondary shock, which may be initially

swept outward. After implosion this shock expands outward and partially reflects off

the contact surface again, further imploding and repeating the process, although each

time the shock decreases in intensity. Thus only the secondary shock is usually seen,

and it does not usually catch up to the incident shock. Because the secondary shock is

much weaker than the incident shock, it is usually ignored [171].

In a height-of-burst scenario when the charge is detonated above the ground the

blast wave will reflect from the ground, as shown in Figure 1.2. There are three types

6

1.2. CHARACTERISTICS OF EXPLOSIVE BLASTS

of reflections – normal reflection (directly underneath the burst), oblique reflection (an-

gle of incidence less than 40 degrees) and Mach stem reflection for larger angles of

incidence. The overpressure in reflected waves may be much greater than the incident

shock, especially behind the Mach stem [19, 193].

Figure 1.2: Height-of-burst scenario

1.2.1 Scaling Laws

When two spherical charges made of the same explosive are detonated in the same at-

mosphere and have the same geometry but are of different scales, Hopkinson ‘cube-root’

scaling applies [119, 120]. This scaling law is based on fundamentals of geometrical simi-

larity, and can eliminate charge mass as a parameter in describing blast wave properties.

These two charges will exhibit the same property Q behind the primary shock (e.g. in

overpressure) at the same scaled distance.

The scaled distance is Z = R/W 1/3 where R is the distance from the centre of

the explosion and W the mass of the explosive. Pressure history profiles will also be

identical at the same scaled distance if time is also scaled i.e. tsc = t/W 1/3. Impulse

can be scaled either by a time scale (like positive phase duration) or by W 1/3. This

scaling law is approximate when comparing the blast waves between two different types

of explosives with different energy release rates that exhibit afterburning [120]. The

scaling law does not apply if the flowfield is spherically asymmetric [120], but this is an

acceptable limitation as departures from sphericity only occur close to the fireball.

It is also common to compare explosive blast effects in terms of equivalency to the

burst from a spherical TNT charge, expressed as an equivalent mass of TNT. The

simplest equivalency is comparison in terms of blast energy, but equivalencies can also

be based on peak overpressure or impulse [213], which are not always equal (or parallel)

due to factors like the oxygen deficiency [101]. Charge shape can also complicate the

equivalency, and more complex scalings formulate TNT equivalence varying with scaled

distance (looking at either pressure or impulse) [120, 201].

7

1.3. SCOPE OF THESIS

1.3 Scope of Thesis

Chapter 2 reviews different CFD methods used to model flows in complex geometries,

concluding in Section 2.4 with a discussion of the Virtual Cell Embedding (VCE) method

[124], a simple Cartesian cell method that automatically generates a mesh in arbitrary

geometries. This thesis is thus also an application study into the suitability of the VCE

gridding method in simulating blast propagation and loading in complex geometries.

Chapter 3 describes the mesh adaptation procedure implemented by OctVCE, which

uses a recursive octree data structure as its basis for refining and coarsening cells. This

section discusses pseudocode of important adaptation routines, degeneracies encountered

and adaptation indicators.

Chapter 4 reviews and describes various aspects involved in the numerical method-

ology of the code including the scope, governing equations, flux solvers, equations of

state, initial and boundary conditions and point-inclusion queries. More detailed cover-

age of these aspects can also be found in the Appendix. Some discussion will centre on

potential instabilities with the code resulting from the conjuction of the VCE gridding

method with the numerical flow calculation methodology. Chapter 5 reviews parallel

computing methods in general and describes the shared-memory parallel implementa-

tion of the OctVCE code in Section 5.5. While the work in this thesis was being done,

the availability of multiple core processors became common. In the near-future all en-

gineering workstations are expected to have multiple cores. Useful measures of parallel

performance will also be discussed.

Chapter 6 presents four different verification test cases to demonstrate the reliability

of the numerical implementation – the Method of Manufactured Solutions (Section 6.1),

ideal shock tube problem, supersonic flow over wedges and cones and supersonic vortex

flow. Chapters 7 to 14 cover validation test cases to determine the credibility and accu-

racy of the code in solving realistic blast and shock propagation problems. Examples are

shock diffraction over wedges and cylinders (Chapters 7 to 8), explosive bursting sphere

problems (Chapters 9 and 10), blast in axisymmetric containers and in environments

comprising of simple rectangular prismatic geometries (Chapters 11 to 13), and blast in

complex city scape geometries (Chapter 14).

Profiling of the code will also be performed for a number of these test cases to

establish its performance in serial and parallel execution. Chapter 15 focusses on an

application study of the code where an explosion in an internal geometry is modelled.

This shows the code being used in a design process where the geometry, although some-

what simplified, had to retain its essentially complex features. Finally all results are

summarized in Chapter 16 and some improvements to the code are also suggested.

8

Chapter 2

Meshes for Complex Geometries

The simulation of blast propagation in complex geometries usually requires the mesh to

encompass the domain. This can be time-consuming if performed manually, and thus

automated grid generation methods are preferred. To reduce code development and

maintenance time, simple methods are also preferred over complex ones. This section

gives an overview of the three main approaches (body-fitted, grid-free and cartesian grid

methods) used to generate grids and perform numerical simulations in environments with

complex surface geometry.

2.1 Body-fitted Grids

Structured grids basically consist of rectangular or hexahedral cells stored in an array,

with neighbouring connectivities regularly determined by array indices [79]. They can

be ‘body-fitted’ and may require metrics and transformations to map the physical grid

into computational space where flow equations are solved. They are an efficient data

structure as connectivity is fixed and not explicitly stored, and can be organized into

blocks of structured grids when performing simulations in parallel.

Structured grids require some degree of user interaction in their construction, and

can be tedious to create for complex geometries [79, 106]. Metric terms add some

additional complexity to the code, and the fixed connectivity prevents implementation

of h-refinement where cells are added or deleted. Chimera or overset grids [72] are

popular for moving body problems and consist of overlapping patches of structured

grids fitted around each body. Effort still has to be put into generating structured grids

around each body [106] and there is the additional complexity of hole-cutting, stencil

identification, interpolation coefficients and inter-grid communication associated with

the chimera grid approach [72].

Unstructured grids are composed of an arbitrary collection of randomly oriented

cells which do not typically have a repeatable topological structure. They are com-

monly composed of triangles or tetrahedral cells, which can be generated by Delaunay

triangulation, advancing-front methods or tree-based techniques (where an initial Carte-

sian mesh adjusts boundary elements before undergoing tessellation) [29, 79]. All these

9

2.2. GRID-FREE AND PARTICLE METHODS

methods allow a high degree of automation [45]. Unstructured grids can also be body-

fitted, and for some grid construction algorithms like the advancing-front method a

surface mesh composed of triangular panels may also be required.

Compared to structured grids, unstructured grids are much more taxing on memory

and solution time [118], and can also be difficult and cumbersome to code. They are

more inefficient at filling the domain [51] and have poorer shock-capturing ability [27]

due to irregular numerical interfaces causing some refraction and scattering of waves

[64]. Generating an appropriate surface mesh can also be challenging [1, 128], and may

still require a degree of user-interactivity [140]. Research into generating quadrilateral

or hexahedral unstructured grids has also been undertaken [29]. Hexahedral meshes

have more regularity than tetrahedral meshes and are comparatively more accurate,

time-efficient and memory-efficient [1, 27, 29, 30].

However, automated grid generation for unstructured hexahedral meshes has not

reached as advanced a stage compared to tetrahedral meshes [29, 200]. Blacker [31]

provides a good overview of various methods for hexahedral mesh generation, including

use of primitives (applicable only to a class of specialized geometries), decomposition into

recognizable primitive shapes, advancing-front techniques and overlay grids. Advancing-

front techniques for hexahedral meshes include a whisker weaving scheme [207] and

plastering scheme [32, 198]. These methods are still an active area of research and can

be quite complex to implement and time intensive. A surface mesh also needs to be

specified.

One of the more widely used hexahedral grid generation schemes is the overlay grid

method [183]. The volume to be meshed is initially overlayed with a mesh of hexahedral

cells and cell nodes on the body surfaces are adjusted to fit to the surface. Sometimes

mixed cell types (tetrahedral and hexahedral) result due to degeneracies. Depending

on the methods considered, the algorithmic complexity of the overlay grid method may

still be higher than for some Cartesian cell methods.

2.2 Grid-free and Particle Methods

Another method to solve flows in complex geometry is the ‘grid-free’ approach [197].

This approach essentially solves the conservation equations using least squares fitting of

nodes in the domain to approximate derivatives. This method is ‘grid-free’ in the sense

that the nodes can be generated using any means [197]. However these methods do not

guarantee global conservation and are slower than mesh-based counterparts, and need to

introduce some artificial dissipation [132]. The least squares procedure can be complex,

requiring inversion of geometric matricies and thus depends on the stencil of grid points

10

2.3. CARTESIAN GRID METHODS

chosen to prevent ill-conditioning. Other difficult degeneracies include insufficient nodal

density, surface discontinuities and thin bodies.

Particle methods discretize the fluid (a Lagrangian approach) rather than the flow

domain (Eulerian approach). These also can be meshed-based, like the popular Arbi-

trary Lagrangian-Eulerian (ALE) methods [134], and thus suffer from the disadvantages

associated with unstructured grids. Lagrangian mesh-based approaches can result in se-

vere mesh distortion and entangling and thus require remapping, but this introduces

numerical diffusion [84].

A well-known gridless method is the Smoothed Particle Hydrodynamics (SPH) method

[137] in which the fluid is represented by a collection of fluid pseduo-particles. This

method, originally applied to astrophysical problems, is good for simulating flows where

fluid interfaces are important, and has seen extension to other applications in recent

times. However SPH is computationally expensive and offers lower resolution compared

to contemporary finite-volume methods [38], also requiring artificial viscosity. Particle

penetration problems associated for shocked flows exist and boundary conditions (even

just reflecting boundaries) are more difficult to handle than with finite-volume methods

[143]. At least for blast propagation problems, Eulerian methods are still preferrable,

simpler to implement and more established.

Another particle method used to model blast propagation is the Direct Simulation

Monte Carlo (DSMC) method of Sharma et al [184, 185]. This method is derived from

kinetic theory and uses a statistically representative set of particles which are tracked

in their collisions with each other and with boundaries. Sharma et al have modified the

method to use a much larger timestep than the mean collision time. DSMC thus gives

approximate results and is faster than continuum methods, but has lower resolution and

statistical scatter. This method is promising but has not seen wider application and

usage compared to finite-volume methods.

2.3 Cartesian Grid Methods

Cartesian grids are composed of axis-aligned hexahedral (often cubical) finite-volume

cells which treat solid geometries as ‘immersed’ within the mesh. Cells that are com-

pletely obstructed or unobstructed are ignored or treated normally respectively. Various

approaches exist to treat partially obstructed or intersected cells [4, 45, 65, 106, 121, 124,

128, 153, 174]. These methods vary in complexity and accuracy. Because the number of

cells is usually a small fraction of all the cells, the additional calculations on intersected

cells usually involve small overhead [224].

11

2.3. CARTESIAN GRID METHODS

Problems with Cartesian grids usually relate to flaws in surface representation, thin

bodies or very small cells. Very small intersected cells lead to ineffiencies as the global

timestep needs to be drastically reduced to ensure stability of the flow update scheme for

each and every cell. Various methods have been developed to circumvent this problem

[77, 145] but an easy approach is simply to merge a small cell with a larger neighbouring

cell [59, 153].

Cartesian grids have a high degree of automation, can incorporate mesh adaptation

fairly easily. To an extent, they also have the benefits of the structured grids over

unstructured grids like better efficiency and accuracy. They have been used for aero-

dynamics applications [1], incompressible flows [226] and blast propagation problems

in urban geometries [177, 194]. The Cartesian grid approach is chosen for this thesis

because of its past usage and advantages over other methods.

2.3.1 Cut Cells

As bodies are usually surface triangulated, each triangular facet might represent a wall

interface for the Cartesian finite-volume cell intersected by that facet. Cut cell meth-

ods preserve with full fidelity the surface definition for each intersected cell [4, 50, 54].

However these methods are very complex, requiring tedious computational geometry

routines to perform intersections and possible re-triangulations to extract the wetted

body surface for each cell. Further work has to go into accounting for numerous geo-

metrical degeneracies, which arise because of floating point representations of cell and

vertex positions.

2.3.2 Curvature-Corrected Symmetry Technique

This method, developed by Dadone [64, 65], does not require the complex topological

description of intersected cells, insteading relying on reflected ghost cells near surfaces.

An assumed flow-field model represents the effect of the surface; this model satisfies the

normal momentum equation and accounts for surface curvature effects, consisting of a

vortex flow of constant entropy and total enthalpy. Surface values are obtained through

interpolation. This method has been used to solve flows over circular objects and airfoil

geometries. It may still be more complicated to implement than other Cartesian cell

methods because it requires reflecting ghost nodes through a body and calculating body

curvature.

12

2.4. THE VIRTUAL CELL EMBEDDING METHOD

2.3.3 Surface Approximation

This method has many variants (varying in complexity) but generally approximates the

surface by representing the portion of the body in an intersected cell as a single planar

surface. Some methods only admit certain types of intersected cells [66, 106, 128, 153].

By admitting more cell types, the body surface can be represented more accurately,

but this can be a cumbersome exercise. Other methods allow the planar surface to

be computed generally using computational geometry routines or empirical geometric

formulae [121, 124, 145, 174, 224].

Another method, not really suitable here, is the Porosity/Distributed Resistance

(PDR) approach [45, 56, 78] where all (or just small-scale) obstacles are not actually

resolved, but their effect accounted for by introducing appropriate porosities and dis-

tributed resistances into the flow equations. This approach has been used to model

heat exhanger geometries and gas explosions in petrochemical processing installations

[45], and is really only suitable for predicting global flow effects. PDR parameters like

resistance terms are often empirically derived (or calculated from high resolution simu-

lations), and can be difficult and expensive to extend to more complex configurations.

2.4 The Virtual Cell Embedding Method

The Virtual Cell Embedding (VCE) method, developed by Landsberg et al [124, 125]

is chosen for this thesis due to its simplicity and robustness. It is a general surface

approximation method (Section 2.3.3) and is based purely on a point-inclusion test,

being equally suitable for convex or concave bodies or surfaces given by an analytic

or arbitrary polyhedral definition. The VCE method has been used for simulations of

flows over ship superstructures [124], blasts in pressure vessels [129] and dispersion of

contaminants over complex city geometries [37]. This thesis combines the VCE method

with hierarchical grid refinement (Chapter 3) and will explore the suitability of the VCE

to model blast propagation in complex geometries.

The first stage of VCE involves subdividing an intersected cell into a lattice of

‘subcells’ (Figure 2.1(a)) each with its associated centroid. A subcell is labelled as

inside/outside a body if its centroid is inside/outside. In this manner a summation of

subcell volumes will yield the approximate unobstructed cell volume. Each cell face

is also divided into ‘sub-areas’ to determine the approximate unobstructed face area.

These subcells are not stored in memory; they are simply counting aids to determine

the proper cell face areas and volume. Clearly the more subcells are used the better the

obstruction is approximated.

13

2.4. THE VIRTUAL CELL EMBEDDING METHOD

(a) ‘Subcells’ illustration (b) Computing surface properties

Figure 2.1: VCE method

In the second stage, the surface cutting through the cell is approximated as a single

planar wall using the cell’s obstructed areas. This is achieved by calculating the net

obstructed face areas along each axis. For example, in Figure 2.1(b) the net obstructed

area along the x axis is found by subtracting the ‘left’ obstructed area from the ‘right’

obstructed area i.e. lx = lxr − lxl. The average wall surface normal navg is then

navg =
∑

i

n̂ili, i = x, y, z (2.1)

n̂i is the unit vector along axis i. The corresponding wall surface area is

lavg = ||navg|| (2.2)

and the unit surface normal is navg/lavg. Solid wall (i.e. reflection or symmetry) bound-

ary conditions are then implemented for this surface. As the body representation has

greater dependency on obstructed interface areas, normally more subcells are used on

the face areas than the cell volume. Landsberg [124] commonly used 103 subcells for the

cell volume and 202 subcells for each cell face, but this thesis usually uses 163 volume

subcells and up to 642 face subcells.

2.4.1 VCE Resolution Issues

The VCE subcell subdivision potentially lets some cells that should be intersected go

undetected in the presence of small-scale geometrical features (e.g. a knife edge pene-

trating into a cell). However for such cases, the inaccuracy would consistent with the

grid resolution chosen, which would be too coarse in any case to resolve such fine fea-

tures [124]. Another degeneracy occurs when all volume subcells are obstructed though

a small part of the cell is outside a body. The whole cell should then be treated as if

14

2.4. THE VIRTUAL CELL EMBEDDING METHOD

it were fully immersed (a ‘solid’ cell), and if any of its face areas are or were previously

open, they are now closed.

A related degeneracy occurs when a thin wall might be contained within a cell. The

VCE method does not ‘split’ cells, and thus flow can ‘leak’ across the wall as its interfaces

are not properly obstructed. The simplest solution is to choose a cell size to ensure any

walls in the domain are thicker than the longest length within a cell (from corner to

corner) that would be used at surfaces (if cell sizes vary, as for adaptive meshes). This

may require having finer cells at walls than elsewhere.

2.4.2 Dealing with Small Cells

As discussed earlier, very small cells are merged with larger cells to prevent excessively

small timesteps. In OctVCE a cell is regarded as small if its fluid volume is 5–10%

of its basis Cartesian cell volume. The cell merging algorithm searches a small cell’s

neighbours for candidates to merge with into a larger ‘cluster’ cell (which stores the

list of all such cells) treated as one cell by the flow solver. It searches preferentially

for neighbouring large cells but if none are available recursively searches neighbouring

small cells to form a cluster. The C pseudocode for the cell merging algorithm is given

in Figure 2.2.

Figure 2.2: Pseudocode of cell merging algorithm

15

2.4. THE VIRTUAL CELL EMBEDDING METHOD

2.4.3 VCE Staircased Representation

A VCE ‘staircased’ surface representation is also possible, as in Figure 2.3. In this case

each subcell comprising the ‘wetted’ staircase is a cell interface where solid boundary

conditions are set. But as the flux through each subcell interface is the same in each

direction, the total flow through the solid portion in that direction is

∑

subcells

(Fwall · n̂∆A) = (Fwall · n̂)
∑

subcells

∆A (2.3)

where
∑

∆A is simply the net obstructed area normal to the axis normal n̂; in Figure 2.3

it is ∆A = A+ − A−.

Figure 2.3: Staircased VCE representation

The staircased representation is generally inferior to the planar wall approximation

of Figure 2.1(b) as it will result in low flow velocities near surfaces. This is shown in

Figure 2.4 where Mach 4 flow over a wedge is simulated. There are about 100 cells

along the wedge surface. Note that the flow over the staircased surface produces a

thicker shock layer which noticeably deviates from the analytical shock angle (upper

black line), and has low flow velocity at the surface.

(a) Planar surface (b) Staircased surface

Figure 2.4: Comparison of planar and staircased VCE flow over a wedge

16

2.4. THE VIRTUAL CELL EMBEDDING METHOD

2.4.4 VCE Surface Noise

Note from Figure 2.4(a) the flow-field is not entirely uniform behind the shock. This is

as the approximated surface normal in each intersected cell does not always align with

the actual surface or with the surface normals of other intersected cells. This essentially

numerically ‘roughens’ the surface, which produces some noise there. This noise can be

seen in Figure 2.5 where pressure contours for the same Mach 4 flow problem over a

wedge is shown, and the data limits adjusted to better show the generated noise at the

surface. This spurious effect is studied numerically in more detail in Section 6.3.2. The

results of Chapters 6 to 14 indicate that shock and blast propagation problems in com-

plex geometry can still be simulated with reasonable accuracy despite this degeneracy.

Figure 2.5: VCE-generated surface noise for supersonic wedge flow

2.4.5 Geometric Evaluations

Depending on the grid resolution, the VCE method requires the evaluation of poten-

tially O(105) to O(106) point-inclusion tests for every subcell centroid. This may seem

expensive, but the number of intersected cells is generally quite small relative to the

entire grid [124]. Also, these geometric computations need only be done once at startup

if cells at surfaces are not adapted, which is a small fraction of the total execution time.

Tree-based adaptive meshes also allow propagation of geometrical properties from par-

ent cells to children (e.g. unobstructed parents imply unobstructed children) and vice

versa, which can save time as point-inclusion tests need not be performed for many

newly created cells.

To improve the speed of geometric evaluations (especially for large multi-faceted

bodies), the bounding boxes of all component bodies and their associated surface panels

in the domain are also pre-processed and sorted into Alternating Digital Tree (ADT)

structures [36] (see Appendix I). Then cells which are candidates for intersection are

identified, undergoing subcell division to calculate volume and face obstructions. The

point-inclusion algorithm is detailed in Section 4.9.

17

2.4. THE VIRTUAL CELL EMBEDDING METHOD

2.4.6 Example VCE-generated Mesh

An early demonstration of the versatility and robustness of the VCE method in gener-

ating grids over very complex geometries was given in Reference [202] and repeated in

Figure 2.6. In this example the geometry corresponds to the buildings near the Mechan-

ical Engineering building in the University of Queensland, and an explosion is initiated

near this building. The square plan layout is about 200 m along the edge, with the

highest building about 45 m. The geometry was built using CAD in the STL format

(consisting of triangles, Figure 2.6(b)). Grids were adapted to the finest level at building

surfaces, Figure 2.6(c).

(a) Geometry (b) Geometry (showing triangulation)

(c) Grid (d) Surface pressure contours

Figure 2.6: Gridding UQ geometry

18

Chapter 3

Mesh Adaptation

Mesh adaptation is a feature that adapts the grid to important flow features, allowing

more accurate solutions to be obtained with fewer cells, resulting in significant savings

in execution time [174]. One method of mesh adaptation, r -refinement, involves redis-

tributing a fixed number of cells. For Cartesian cell approahces, this method is not as

popular as h-refinement [26] where cells are added or deleted appropriately (and the

width h of a cell is divided) because the grid distortion can be complicated to manage

[228], and in many cases a grid redistribution will not resolve important features as well

as h-refinement [59].

This thesis implements isotropic refinement where only one type of refined cell is

created. Anisotropic refinement allows different types of cells to be created depending

on the state of the local flow. This approach can result in even greater savings in cells

[3, 50] where flow is predominantly unidirectional, but blast propagation in complex

geometries is a more multidirectional problem which is suited to isotropic refinement

[79]. Anisotropic refinement will also involve complicated data structures which would

be more tedious to implement.

The Adaptive Mesh Refinement (AMR) method developed by Berger [24, 26] relies

on adding or deleting entire patches of block-structured meshes rather than refining

or coarsening individual cells (a tree-based method). Different timesteps are used on

different patches (but are appropriately subcycled and interleaved to preserve time accu-

racy), and adaptation is guided by error estimation based on Richardson extrapolation.

Because entire patches are added, about 30% of added cells are usually unnecessary

[1, 118] which might lead to large memory requirements [177].

AMR might still be more memory efficient and faster than tree-based approaches

because of structured mesh usage, which avoids the slower indirect addressing (pointers)

common in tree-based meshes [24]. However, the AMR method is not used for this thesis

due to its complexity [72, 81] in managing a dynamically changing collection of meshes,

which need periodic rebuilding as the solution evolves over time [118].

OctVCE thesis implements the octree structure [51, 181] for mesh adaptation. This

involves an isotropic division of a parent cubical cell undergoing refinement to yield

eight children cells (and vice versa for the coarsening process), as shown in Figure 3.1.

19

3.1. EXPLICIT STORAGE

The two-dimensional analogue is the quadtree. A cell corresponds to a tree node, and

are leaf cells (being a part of the mesh used in the numerical solution) if they have no

children. The creation of new children results in a new level in the tree (higher level

nodes mean smaller children cells for this case). The root cell is the initial cell (without

a parent) that undergoes division. Parent cells are not deallocated from memory during

refinement so they can be quickly recovered during a coarsening phase.

Figure 3.1: Refining an octree

It is a simple data structure to implement, but about 25% of the computing time

is devoted to finding neighbour cells if mesh connectivity is not explicitly stored [66],

and there can be substantial memory overhead to maintain the tree structure [118].

Sections 3.1 to 3.5 discuss various aspects of this adaptation procedure as implemented

in OctVCE. More information on how to set up an adaptive mesh simulation with the

code can be found in the user manual [205].

3.1 Explicit Storage

Because of the overhead from mesh traversal in determining cell neighbour relationships

and the frequency with which these neighbours need to be accessed, a decision was made

in the early stages of code development for each cell to explicitly store all face-adjacent

neighbour cells. The sacrificing of memory for speed felt justified in lieu of the rapid

growth in memory of workstation class machines over the past few years. Also, the main

computing facility used for simulations in this thesis is the Altix supercomputer at the

University of Queensland, which has a very large amount of memory (120 GB).

Geometric cell properties like centroids, which can be inferred from the tree structure,

are also stored explicitly. To further minimize mesh traversal, all current leaf cells are

stored on a dynamically linked list structure (Appendix K). This approach is quite

memory-intensive and perhaps not feasible for smaller scale computing facilities.

A more memory-efficient tree structure is the Fully Threaded Tree (FTT) structure

[118] where cells point to parents of neighbours, thus requiring no extra alteration when

20

3.2. ENFORCEMENT OF GRID REGULARITY

neighbours are coarsened. Because of the better memory efficiency, this approach may

be ultimately more efficient than an explicit storage of all neighbours, and it has been

implemented in Rose’s ftt_air3d code [174, 177] (using about 0.25 kilobytes per cell).

3.2 Enforcement of Grid Regularity

Grid regularity is enforced when the level difference between cell neighbours is no more

than one. This is to prevent too great a disparity amongst neighbouring cell sizes and

minimize resultant noise. Mesh adaptation produces noise in the flow to a degree,

particularly in the case of a shock passing from a coarse to a fine mesh [58, 118, 152],

due to local errors in numerical fluxes in the vicinity of a strong shock. For octree cells

this means a cell interface can have at most 4 neighbours.

However, the grid regularity is relaxed when adjacent neighbours are separated by a

body like a solid wall, as in Figure 3.2. This prevents necessary refinement, especially

for cells completely immersed within bodies. Cells store at most 4 neighbours per face,

meaning that during refinement or coarsening downward or upward mesh traversal is

still required for connectivities to be updated.

Figure 3.2: Cell with multiple neighbours

3.3 Cell Refinement and Coarsening Method

The cell refinement (and mesh traversal) process can be performed recursively, as shown

in the pseudocode of Figure 3.3. Note that neighbour cells might require recursive

refinement to satisfy grid regularity constraints (Section 3.2). The cell refinement step

is done first during the adaptation phase by traversing the list of leaf cells and refining

appropriate cells with this algorithm.

The cell coarsening step is then performed by traversing through the list of leaf cells

again and marking their parents for coarsening if permissible. The list is re-traversed

and parent cells are further checked against grid regularity constraints. This step is

21

3.3. CELL REFINEMENT AND COARSENING METHOD

Figure 3.3: Cell refining pseudocode

performed recursively as sometimes neighbouring cells of different levels can be coars-

ened, despite the list of leaf cells being traversed sequentially and the grid regularity

constraints being temporarily violated whilst cells are coarsened. The pseudocode for

this checking algorithm is shown in Figure 3.4. Coarsening parent cells can then be

performed quite easily, as shown in the cell coarsening pseudocode in Figure 3.5.

Figure 3.4: Cell coarsen checking pseudocode

Figure 3.5: Cell coarsening pseudocode

When cells are adapted, conservation in mass, momentum and energy should be

preserved. When parent cells are coarsened, this is simple; its flow state is the volume-

weighted average of its children [200, 228]. When parent cells are refined, the parent

cell-centered flow state is interpolated to children cell centres using the conservativity-

preserving interpolation procedure [200, 228] of Section 4.3 . The cell pressure is then

calculated via the equation of state.

To enforce conservation of a quantity Q for partially obstructed parental cells p

22

3.4. DEGENERACIES DURING ADAPTATION

undergoing refinement, the quantity ∆ is calculated which represents the degree of non-

conservation where

∆ = QpVp −
n∑

c=1

QcVc (3.1)

Vp is the parent cell volume, and Vc is the child cell volume; summing over n children cells

Vp =
∑n

c=1 Vc. Qc is the interpolated value of Q to child cell c from the reconstruction

procedure of Section 4.3. To preserve conservation, the proper value of Q for the child

cell c is

Q = Qc +
∆

nVc
(3.2)

Based on the conservative timestepping criterion in Equation 4.7 it takes at least 4

timesteps for a shock to cross a cell, so adaptation every 5 timesteps is sufficient to

ensure adapted flow features never leave a fine mesh region and lose resolution [118].

Interleaved timestepping for different cell levels is not implemented. Cells adjacent

to those cells that are actually flagged for refinement are also refined to the highest

permissible level to act as a ‘buffer’ layer.

3.4 Degeneracies during Adaptation

During adaptation geometric properties between cells must be consistent and airtight.

As cell geometric properties are derived from VCE subcell division (Section 2.4), parental

cells (having larger subcells) will not compute areas or volumes as accurately as children

cells, and this must be accounted for. If adaptation of partially obstructed cells is

allowed, one degeneracy occurs during the refinement stage as shown in Figure 3.6.

Here an intersected parent cell is refined but as a result of obstruction, one of its

children are made ‘solid’. Thus an interface area on the parent which was previously

unobstructed is now obstructed. This new information must be remembered if the

parent is coarsened and thus geometric information from children should be used during

coarsening. Adaptation can also break up merged cell clusters that were formed because

of the small cell degeneracy discussed in Section 2.4.2. When this occurs, pointers and

associated data structures must be deallocated properly, and should small cells still exist

after adaptation, re-merging with new cells should be done at this stage.

23

3.5. ADAPTATION INDICATORS

Figure 3.6: Solid cell refinement degeneracy

3.5 Adaptation Indicators

Adaptation indicators used in this thesis are gradient-based due to their simplicity and

effectiveness [141], especially for blast propagation problems [118, 155, 174, 211]. The

first indicator only detects shocks. It takes advantage of the fact that the velocity gradi-

ent through a shock is always negative irrespective of the direction of shock propagation

–

ε1 = L
∂ui/∂xi

amin
, i = 1, 2, 3 (3.3)

L is a length scale, typically the cell’s edge length, and amin is the minimum sound speed

from the cell and its neighbours. Typically if ε1 is smaller than -0.01 in any direction i

the cell can be refined, or else it can be coarsened (by default).

The other indicator is based on Löhner’s indicator [148, 155] and uses the second

derivative of density and a noise filter term (based on the local mean density) to prevent

needless refining around oscillations in the solution. A similar form of this indicator is

also used in the unstructured code by Timofeev et al [211, 212, 220]. It can refine about

contact surfaces and also smoother flow regions like the positive phase behind a blast,

which might be important. It uses density differences along each axis i –

ε2 =

∑
i |2ρc − ρ+ − ρ−|∑

i (|ρc − ρ−| + |ρ+ − ρc|) + α
∑

i (ρ− + 2ρc + ρ+)
(3.4)

where ρc, ρ+ and ρ− are the average densities at the cell centre, its right neighbour(s),

and its left neighbour(s) respectively. The user must set thresholds on ε2 for refinement

and coarsening and also for the noise filter α.

Sometimes the indicators ε1 and ε2 are used jointly as the ε1 indicator refines fewer

cells (resulting in faster solutions), but the ε2 indicator might be more important in

the earlier stages of the explosion. A simple pressure difference indicator (that can be

non-dimensionalized) can also be used [118], but this has not been implemented due to

24

3.5. ADAPTATION INDICATORS

its similarity with the ε1 indicator. Adaptation ‘regions’, which allow one to switch off

mesh adaptation in some regions of the solution domain (implemented in the ftt_air3d

code [177]), is not implemented here.

25

Chapter 4

Flow Simulation Algorithm

This section reviews and describes various important aspects in the numerical method-

ology behind OctVCE, including the governing equations, time integration scheme, flux

solvers used, equations of state, implementation of initial and boundary conditions, in-

terpolation or reconstruction method and point-inclusion query algorithm. It will be

useful first to make some general comments as to the scope of the methodology.

Firstly, where possible, simple methods or methods already implemented in the

MB_CNS code [109] (developed here at the University of Queensland) will be used. This

will help streamline the process of eventually incorporating OctVCE as a submodule of

MB_CNS, and also cuts down on code development time. Viscous effects can be ignored

[160, 185] as blast propagation and loading problems are dominated by convection pro-

cesses. The code will thus solve the unsteady Euler (compressible, inviscid) flow equa-

tions (Section 4.1).

Very accurate modelling of blast interaction with structures would require modelling

fluid-structure interaction and multi-material shock physics, which can be challenging

and tedious to code. This thesis considers only those class of blast propagation problems

where structures are considered rigid and non-deforming and the pressure load is desired

at some point(s) in space. This is a good assumption to hold in many cases even

when buildings are subjected to intense loading because of the strength of modern-day

reinforced concrete or steel-framed structures [160, 193]. The most significant damage to

buildings usually occur at glazed areas like windows, and transfer of momentum to the

building is small, justifying rigid boundary condition implementation and decoupling

blast-structure interaction.

Chemical reactions are not modelled as this is computationally expensive and really

only needed for accurate modelling of the explosive fireball, which is not the focus

of this thesis. It has been demonstrated in numerous blast propagation simulations

[160, 174, 211, 212] that accurate chemical modelling of detonation is not required for

good results in the mid- to far-field (see Sections 1.2 and 1.1.1). The most important

quantity is the energy released [19, 171, 211].

Due to the adoption of the VCE Cartesian grid method (Section 2.3) a finite-volume

scheme [96] is favored for the discretization of the flow equations, as almost all Cartesian

26

4.1. GOVERNING EQUATIONS

grid methods are formulated on a finite-volume approach. Compared to other methods,

the finite-volume scheme is also simple to implement, inherently conservative and can

capture shocks well. Other discretization methods, like the finite difference [9, 96],

finite element [53, 96], spectral [102] and the more recent CESE method [229] are not as

flexible or evolved as finite-volume methods, may require reliance on unstructured grids

(thus subject to the disadvantages discussed in Section 2.1) or be difficult to implement

in complex geometry.

4.1 Governing Equations

The three-dimensional Euler equations in integral form can be expressed as

∂

∂t

∫ ∫ ∫

V

UdV +

∫ ∫

S

F · n̂dS = 0 (4.1)

where U is the vector of conserved quantities (per unit volume) U = [ρ, ρu, ρv, ρw, ρE, ρp]
T

(in three dimensions), t is the time dimension, ρ and ρp are the total density and explo-

sive products (thus at most two gas species are tracked) density, u, v and w are velocity

components in the x, y and z directions respectively. If ρa is the density of the ambient

gas (typically air), the total density is ρ = ρp + ρa.

E is the total intensive energy where E = e + ρ (u2 + v2 + w2) /2, e is the intensive

(internal) energy. n̂ is the outward unit normal on the surface S which bounds the

control volume V . In two dimensions the z components are neglected. The vector of

fluxes is

F =

ρu

ρu2 + P

ρuv

ρuw

ρEu + Pu

ρpu

î +

ρv

ρuv

ρv2 + P

ρvw

ρEv + Pv

ρpv

ĵ +

ρw

ρuw

ρvw

ρw2 + P

ρEw + Pw

ρpw

k̂ (4.2)

where P is the absolute static pressure. The equation of state provides pressure in terms

of energy and density, P = P (ρ, e).

It is also intended for the code to solve for flows in two dimensions with complex

planar and axisymmetric geometry. The planar case uses the same form of the Euler

equations (Equation 4.1) but without the third dimension (or any quantity associated

27

4.2. FINITE-VOLUME DISCRETIZATION

with it); the axisymmetric Euler equations require some modification and in integral

form are expressed as

∂

∂t

∫

A

UdA +

∫

l

rF · n̂dl =

∫

V

QdA (4.3)

where U = [ρ, ρu, ρv, ρE, ρp]
T and F are the same quantities (but without the third

dimension) in Equation 4.1. This time, n̂ is the outward unit normal on the surface l

which bounds the control volume A, which is a volume per radian. If the x axis is the

symmetry axis and y axis the radial axis, then r is the radial co-ordinate at an interface

and the source term Q = [0, 0, P/r, 0, 0]T where P is the pressure in the cell.

4.2 Finite-Volume Discretization

A cell-centered finite-volume discretization of the Euler Equations (Equation 4.1) is

given by

dUc

dt
= − 1

Vc

∑

if

Fif · n̂ifAif (4.4)

where the subscript if stands for interface, Vc is the cell volume, and Uc is the cell-

centered state vector. The interface fluxes Fif are calculated from the procedures de-

scribed in Sections 4.3 to 4.4

These equations are marched forward in time using an explicit scheme (in which

the solution at the next time step depends only on previous solution values). Explicit

schemes are simple to code, easier to parallelize and generally less memory intensive than

implicit schemes [9]. The classical second-order Runge-Kutta [82] method, consistent

with the code’s second-order spatial accuracy (Section 4.3) is used to advance all cells

in time –

U
n+ 1

2

c = Un
c − ∆t

2Vc

∑

if

Fn
if · n̂ifAif (4.5)

Un+1
c = Un

c − ∆t

Vc

∑

if

F
n+ 1

2

if · n̂ifAif (4.6)

This requires storage of the cell flow state at both time n and n + 1/2 to obtain the cell

state at the next time n+1. It is possible for different timesteps to be taken for different

cell levels in the adaptive mesh [118] in an interleaved manner to preserve time accuracy.

For reasons of simplicity and issues with integration of OctVCE into the MB_CNS code,

this approach is not taken here.

28

4.3. RECONSTRUCTION

To prevent instability in the solution the timestep must be chosen to be smaller than

the minimum time taken for physical processes operating in the solution domain, which

in this case is the crossing of an acoustic wave signal across a cell [62]. A conservative

timestep [50] for each cell c is

∆tc

V
=

CFL∑
if Aif(a + |u · n̂if |)

(4.7)

where the CFL number [62] CFL ≤ 1 (typically 0.5), a is the soundspeed in the cell

and u the fluid velocity. Aif is the interface area for a face of the cell, which varies

for Cartesian cells. It is quite conservative, taking into account intersected cells which

might have smaller volumes and interface areas than unobstructed cells, and requires at

least 4 timesteps for a wave to cross an unobstructed cell. The global timestep for the

whole solution with n cells would be

min
n

(∆t1, ∆t2, ..., ∆tn)

4.2.1 Axisymmetric VCE Method

For the axisymmetric Euler equations (Equation 4.3), the cell-centered finite-volume

discretization is given by

dUc

dt
= − 1

Ac

∑

if

rifFif · n̂if lif + Q (4.8)

where the volume per radian Ac = Arc, A is the cell area and rc the cell’s average radial

co-ordinate. An axisymmetric extension to VCE has been developed as part of this

thesis [204] and is repeated in Appendix D.

4.3 Reconstruction

In finite-volume methods, the values of the flow variables in the vector of fluxes Fif

in Equation 4.4 are usually interpolated from the cell centre to the cell interface to

establish greater than first order spatial accuracy. The interpolation process is limited

for flows containing strong gradients or discontinuities as it can overshoot, causing high

frequency noise and even instability and failure in the flow solution [97]. In regions with

high gradients the limiter should cause the interpolation to revert to first order and in

regions of smooth flow should allow normal interpolation to proceed.

29

4.3. RECONSTRUCTION

Limiters must satisfy the Total Variation Diminishing (TVD) constraints [14, 97],

which is a minimum requirement for many CFD codes [171]. TVD schemes prohibit the

generation of new extrema, are monotonicity preserving [97] and are generally restricted

to second-order accuracy [14]. However, because TVD schemes suppress noise in solu-

tions, they may sometimes cause of loss of genuine extrema [14, 110]. The process of

interpolation and limiting is termed reconstruction and in this code is multidimensional

in nature [218] as the Cartesian cells are not always aligned with the flow direction.

4.3.1 Interpolation

The most common interpolation procedure is linear interpolation of flow variables ρ, u

and e from the cell centre to cell interfaces, which achieves second-order spatial accuracy.

This requires computation of flow gradients, which can be an expensive step. Gradients

can be computed using the Green-Gauss approach [5, 66, 80] or least squares approach

[5, 20]. Both these approaches require a cloud of neighbouring points (usually values at

nearby cell centres) around the cell centre.

The least squares gradient calculation is chosen due to its reliability and somewhat

easier implementation [5]. This scheme, also detailed in [50], is as follows. For each cell

c, over all its neighbours n (h-refined cells may have more than one neighbour on each

interface), the difference in centroidal co-ordinates is summed and placed in the inverse

(symmetric) reconstruction matrix –

R−1 =

∑
n (∆x)2

∑
n (∆y∆x)∑
n (∆z∆x)

∑
n (∆x∆y)

∑
n (∆y)2∑
n (∆z∆y)

∑
n (∆x∆z)

∑
n (∆y∆z)∑
n (∆z)2

 (4.9)

where ∆{ · } = { · }n − { · }c. If two-dimensional flow is simulated the third row and

column of this matrix is ignored. If the gradient of a flow quantity Q is desired, the

3 × 1 vector r is calculated as

r =
∑

n

(cn − cc) ((Q)n − (Q)c) (4.10)

where c stands for a cell centroid and subscript c denotes the cell centre. Then the

cell-centered gradient vector of Q would be

∇ (Qc) = Rr (4.11)

The flow quantity Q can now be interpolated to any point p within the cell using the

expression

30

4.3. RECONSTRUCTION

Q (p) = Φ ·∇ (Qc) · (p − cc) (4.12)

Now Φ is a limiter value that ensures no new extrema are created and prevents spuri-

ous oscillations in the numerical solution. It is determined according to the procedure

described in Section 4.3.2.

For reasons of simplicity and efficiency, interpolation to the centre of cell interfaces

is performed and only face-adjacent neighbours are chosen for the reconstruction matrix

(Equation 4.9); neighbours which only share edge or corner connectivity are ignored.

This means that the least squares calculation collapses to one-dimensional differencing

to obtain the gradients for uniform Cartesian cells.

4.3.2 Limiting

Whilst there exist several ways by which the limiter Φ can be determined [218], the

multidimensional min-mod type limiter of Barth [20] is chosen for its simplicity. This

type of limiter is also used in Rose’s Air3d code and has proven to be useful for many

blast simulations [171, 176]. This is a non-differentiable limiter which may hamper

convergence of steady state solutions [218] but is adequate when modelling unsteady

blast waves.

For a flow quantitiy Q and looking over all a cell’s neighbours n, let

Qmin = min
n

(Qc, Qn) (4.13)

and

Qmax = max
n

(Qc, Qn) (4.14)

where subscript c denotes the cell-centred value. Then the unlimited value of Q is

interpolated to a point p coinciding with each cell corner j –

Qj = Qc + ∇ (Qc) · (pj − cc) (4.15)

The limiter value for the flow quantity q at cell corner j is thus φQ
j and is determined

by

φQ
j =

min
(
1, Qmax−Qc

Qj−Qc

)
, if Qj − Qc > 0

min
(
1, Qmin−Qc

Qj−Qc

)
, if Qj − Qc < 0

1 , if Qj − Qc = 0

(4.16)

The global limiter (for a cubical cell there are 8 corners) for this cell is finally

Φ = min
(
φQ

1 , φQ
2 , ..., φQ

8

)
(4.17)

31

4.4. FLUX SOLVERS

It is possible to have multiple limiters for each flow variable, or a single limiter from the

minimum of each limiters, though it has been found that the extreme gradients at the

start of a explosion simulation will cause the code to fail unless a single limiter is used.

After a while multiple limiters can be used safely.

4.3.3 No Reconstruction for Intersected Cells

Because the VCE method (Section 2.4) does not actually store position vectors of par-

tially obstructed cell interfaces for intersected cells, interpolation cannot be performed to

the wall surface. An averaging procedure, much like in axisymmetric VCE extension of

Section 4.2.1 can be developed to compute the position vectors of the interfaces but this

is difficult and potentially expensive to apply to the wall surface itself in three dimen-

sions. Thus for simplicity and efficiency, no reconstruction is performed at intersected

cells, although the scheme is still globally second-order accurate. This may also be pre-

ferrable since the VCE method can generate spurious noise at surfaces (Section 2.4.4)

which can be damped to an extent by reverting to a first-order scheme there.

4.4 Flux Solvers

Once the flow variables are reconstructed appropriately to the interface, the vector of

fluxes Fif (Equation 4.2) is calculated with a flux solver. The most common flux solvers

are one-dimensional, where the flux convection speed is independent of the tangen-

tial interfacial velocity and fluxes are computed through each interface independently.

This approach has worked well in practice [97, 170] and is adopted here because of its

widespread usage and simplicity. Many flux solvers are upwind schemes which account

for the physically correct manner in which information propagates between cells [199].

Upwind schemes broadly include difference splitting schemes which solve the exact

or approximate Riemann problem [85, 154, 214], vector splitting schemes with the flux

combining of forward and backward vectors [217], kinetic theory based [150] methods

or the very popular Advection Upwind Splitting Method (AUSM) type schemes [221]

which use different splittings for convective and pressure terms. These methods vary in

computational expense and accuracy. Exact Riemann solvers are accurate but expensive,

approximate Riemann solvers are cheaper but require some fixes and suffer from odd-

even decoupling [154], kinetic theory methods are quite dissipative and AUSM-based

methods are fairly cheap, nearly as good as difference splitting schemes, but can have

pressure oscillations.

The main flux solver used in this thesis is the AUSMDV scheme [221]. This scheme

32

4.5. EQUATIONS OF STATE

resolves shock waves accurately without excessive dissipation and is also the solver of

choice in the MB_CNS code [109]. AUSM-based schemes are also less dependent on fluid

thermodynamics, which is useful in this thesis as real gas models can be incorporated

(Section 4.5). It is quite simple to code, fairly efficient, and found to be suitable for

blast propagation problems in the Air3d code [171].

The kinetic theory based Equilibrium Flux Method (EFM) [150] is also implemented.

This flux solver is especially useful at shocks to damp oscillations, which can lead to odd-

even decoupling (in which perturbations at a shock are aphysically amplified, leading

to flow instability) even for the AUSMDV method [110, 154]. An adaptive flux solver

(switching from AUSMDV to EFM at shocks) is also employed by the MB_CNS code

[109]. The AUSMDV and EFM flux solvers are covered in greater detail in Appendix F.

4.5 Equations of State

In the code, the ambient gas (usually initially at atmospheric conditions) is modelled

as an ideal, calorically perfect gas, and the detonation products can be modelled either

as an ideal gas or with the real gas JWL equation of state [127]. Despite the significant

non-ideal effects near the fireball, using an ideal gas for both the explosive products and

ambient gas is computationally faster and adequate for many blast effects problems in

which the main objective is the determination of blast loads [41, 144, 166, 174, 211].

4.5.1 Ideal Gas Equation of State

The ideal gas equation of state is P = P (ρ, e) = ρe(γ − 1) where P is static pressure, ρ

density and e intensive energy, and γ is the ratio of specific heats Cp/Cv. It is assumed

the gas is calorically perfect with constant specific heats and internal energy e = CvT .

Thus the temperature-dependent form is P = P (ρ, T) = ρRT where the gas constant

R = Cv(γ−1). If there is a mixture of ambient gas and explosion products, the mixture

specific heat is given by the mass fraction-weighted expression Cv = faCv,a+fpCv,p where

fa and fp are the mass fractions of the ambient gas and explosive products, fa = 1− fp.

A similar expression for Cp can be found for the mixture and thus γ for the equation of

state.

4.5.2 JWL Equation of State

The JWL equation of state [127] is a popular real gas equation of state used to model

explosive detonation. It is an empirical equation of state calibrated based on the cylinder

33

4.6. INITIAL CONDITIONS

expansion test and has been extensively used to model other applications of explosives

[146]. Being empirical, it already takes into account (to some extent) afterburning effects

[101]. The JWLB equation of state [17] is a more advanced version which better describes

the gas behaviour in other states not close to adiabatic expansion e.g. if the detonation

products are re-shocked. The JWL equation of state for the explosion products is

Pp = Pp (ρp, ep) = A

(
1 − ω

R1ṽ

)
e−R1ev + B

(
1 − ω

R2ṽ

)
e−R2ev + ωρpep (4.18)

where ṽ is the relative volume of the explosion products ṽ = ρ0,p/ρp and ρ0,p is the initial

undetonated density of the explosive. ep is the specific internal energy of the explosive

products, and A, B, R1, R2 and ω are expermentally-determined constants. All these

values (including ρ0,p and ep) can be found in References [126, 127].

A temperature-dependent form has been developed by Baker [17, 18] originally for

the JWLB equation of state, but applicable to the JWL form if the additional JWLB

terms are discounted –

Pp = Pp (ρp, T) = Ae−R1ev + Be−R2ev + ρpωCv,pT (4.19)

ep = ep (ρp, T) =
A

R1ρ0,p

e−R1ev +
B

R2ρ0,p

e−R2ev + Cv,pT (4.20)

The specific heat of the explosion products Cv,p is assumed constant, and is usually a

derived value (from Equation 4.19) if temperature and pressure at a given condition is

known (usually the initial explosive condition, like the Chapman-Jouguet condition).

Mader [133] provides initial detonation temperatures for some explosives. If the JWL

equation of state is used in simulations, a combined JWL-ideal gas equation of state

may be required near the fireball where there is some mixing of detonation products

and ambient gas. The derivation is left to Appendix G and G.1.

4.6 Initial Conditions

In OctVCE the charge or bomb is represented by a group of high pressure and temperature

cells tuned to give the correct blast energy which approximate the charge shape, known

as the ‘balloon analogue’ or ‘isothermal bursting sphere’ model [144, 166, 174, 211]. This

approach has been found to be a simple and adequate initial condition to use for the

mid- to far-field regimes, as the dominant variable affecting the primary shock intensity

is the initial energy released [19, 41, 144, 166, 171, 211]. This approach has produced

34

4.7. BOUNDARY CONDITIONS

very good correlation with experimental TNT blast distance curves from as close as 0.3

m/kg1/3 to the charge [171], even using ideal gas for the charge. Afterburning also affects

the blast intensity [166], and the negative phase and secondary shock are more sensitive

to initial conditions [166], but these effects are not so significant for many realistic blast

loading problems [171, 174].

The initial charge shape can be adjusted, which has an effect on the early blast wave

[40, 211], although a spherical blast wave pattern develops fairly close to the charge

(see Section 1.2). To enable better resolution of the early stages of the explosion on

expensive multi-dimensional meshes, a remapping strategy can be used which maps a

highly resolved one-dimensional spherically symmetric solution to higher dimensions be-

fore the blast passes any surface [104, 171, 174]. This requires some effort to implement,

is inapplicable for non-spherical charges, and may be difficult to perform if geometry is

close to the charge. There is also some loss in resolution when solutions are remapped

to lower resolution meshes. Chapters 10 to 14 explore the accuracy of blast propagation

simulations where remapping is not performed.

4.6.1 Calculating Correct Conditions

To ensure correct blast energy and charge mass, the density of the charge is set to

ρ = m/V where V is the volume of the cells representing the charge and m the charge

mass. The balloon gas intensive energy is equal to the intensive blast energy. The

pressure is then calculated via the equation of state. For the JWL equation of state

(Section 4.5.2), the value ρ0,p can be adjusted to this value of ρ, although this is not

necessary. This is a simplistic use of the JWL equation as no simulation of finite-

rate burning of the explosive material is performed, but this initial condition would

correspond roughly to the final state of the detonation products following a confined

explosion. In axisymmetric geometry, the volume V and mass m are expressed as a

volume and mass per radian respectively. The volume per radian of any axisymmetric

volume V is V/(2π). The mass per radian is obtained using the expression ρV . The

volume per radian of a Cartesian cell is Arc where A is the cell’s area and rc the cell’s

average radial co-ordinate.

4.7 Boundary Conditions

As only rigid structures are considered in this thesis, allowable boundary conditions

are wall and inflow/outflow boundary conditions. All these boundary conditions are

implemented by fabricating appropriate state vector values Ub at a given cell’s interface.

35

4.7. BOUNDARY CONDITIONS

4.7.1 Wall Boundary Condition

Solid surfaces in intersected cells are represented as a cell interface with an outward

normal vector n̂ (see Section 2.4). This wall boundary condition Ub (which is identical

to the symmetry boundary condition) has the same state of flow at the interface but

with a reversed normal velocity component to ensure zero mass flux. Thus if u is the

flow velocity at the cell interface Ub = [ρ, ρ (u − 2 (u · n̂) n̂) , ρE, ρp]
T .

4.7.2 Inflow/Outflow Boundary Conditions

Inflow/outflow boundary conditions are implemented at the boundaries of the compu-

tational domain where flow is permitted to flow in or out. In the code, individual flow

variables can be set to fixed or extrapolated values. Usually the domain is sufficiently

large to encompass the entire blast environment and the exiting blast typically induces

outflow. If the flow is supersonic, all variables can be extrapolated [9] as characteristics

all point outward.

Problems with boundary specification arise when the outflow is subsonic. For such

cases, non-reflecting boundary conditions might be implemented which attempt to min-

imize boundary effects from influencing the solution within the domain. This topic has

been a subject of much research [61, 216]. Many non-reflecting boundary conditions

involve linearization at the boundary about uniform conditions and setting all incoming

wave amplitudes to zero [61]. Popular non-reflecting boundary conditions are based on

characteristic analysis [61], like the Thompson boundary conditions [209, 210]. These

methods are usually developed (and possibly exact) for one-dimensional problems and

in multidimensions usually prescribe a predominant direction of wave propagation, typ-

ically normal to the boundary. Some reflections will occur for outgoing non-isentropic

or oblique waves [116, 216].

More advanced approaches use buffer zones or absorbing layers near boundaries

where some filtering or numerical damping is usually performed [61, 162]. This can be

done by introducing artificial dissipation, increasing physical viscosity or adding a linear

friction coefficient to the governing equations. The solution would be aphysical in this

region, and more complicated formulations of this damping (typically called Perfectly

Matched Layers) can be implemented which minimize the reflectivity of the absorbing

layer itself [61, 88]. These methods can be ad hoc and involve parameters which require

manual tuning like the buffer zone size.

As many of these methods are computationally expensive and complicated to im-

plement, only Thompson’s [210] non-reflecting boundary conditions are implemented in

OctVCE. This method is simple and proven to be quite robust [61], and performs best

36

4.8. NUMERICAL INSTABILITIES

when the outgoing wave is normal to the boundary. The selection of non-reflecting

boundary conditions is not so crucial in any case; sufficiently large numerical domains

can usually be set up because mesh adaptation allows coarser (thus fewer) cells near

boundaries [211]. The implementation of the Thompson boundary conditions is de-

scribed in Appendix H. In the code, numerical oscillations at boundaries are further

suppressed by using the more dissipative EFM flux solver at border cells and cells ad-

jacent to border cells.

4.8 Numerical Instabilities

4.8.1 CFL cut-back Procedure

Numerical instability or even failure of the solution can result in simulations of strong

explosions, due to the extreme discontinuities and conditions near the explosion core

[116, 211]; the pressure in this region can vary from about 5× 105 atmospheres to near-

vacuum levels [133]. This can be prevented by keeping fine grids or simply using a

first-order scheme there e.g. Rose proposes a ‘switching-time’ strategy [171] where no

reconstruction is performed until a scaled time of about 1.2 × 10−3 s/kg1/3 after the

explosion.

A CFL cut-back procedure can also be implemented, which reduces the CFL num-

ber to limit the maximum relative change in density and pressure each timestep. This

procedure, originally developed for aerodynamic simulations [58], can be used in con-

junction with the switching-time strategy. At timestep k, first let the minimum timestep

be found for the maximum allowable Courant number CFLmax, and the values of the

density and pressure after the first Runge-Kutta step k∗ is found. Then let

ερ =
|ρk∗ − ρk|

ρk
(4.21)

εP =
|Pk∗ − Pk|

Pk
(4.22)

Then an acceptable CFL can be found for some cut-back fraction εcut using

C =
εcut

max (ερ, εP)

CFL = min (C, CFLmax) (4.23)

εcut = 0.1 is usually a good default value. The CFL cut-back procedure is usually

required at the beginning of an explosion, but afterwards the CFL gradually ramps

back up to CFLmax.

37

4.9. POINT-INCLUSION QUERIES

4.8.2 Axisymmetric Numerical Jetting

Aphysical numerical jetting along the symmetry axis can occur for axisymmetric blast

simulations, as in Figure 4.1 where the density contours are shown. This results from the

axisymmetric correction term for degenerate cells along the axis of symmetry [44, 148].

Using an adaptive mesh would amplify the jetting. This glitch can be fixed if a small

core of cells around the axis is removed or the grid is radially stretched, but using a

dissipative flux solver like EFM (Section 4.4) at the shock has also worked for this case.

Figure 4.1: Example of numerical jetting for 2D axisymmetric blast simulation

4.9 Point-inclusion Queries

The VCE method is based on a point-inclusion query which determines the location

of subcell centroids relative to solid objects. In OctVCE a polyhedral representation of

geometries is chosen because point-inclusion queries for surfaces defined by non-linear

representations are difficult and time-consuming. Moreover, many methods have been

developed for polygonal and polyhedral point-inclusion tests.

Point-inclusion tests are usually based on (or conceptually related to) variants of

the ray-casting approach [100]. Assuming the point is reasonably close to the polygo-

nal/polyhedral body, if a ray beginning at the point is cast in any direction to a suffi-

ciently large distance, it will be inside the body if it intersects it (i.e. pierces the body’s

boundary) an odd number of times, and outside if it never intersects or intersects an

even number of times. Degeneracies need to be accounted for e.g. ray intersection with

an edge of vertex of the body. Many point-in-polyhedron tests also require performing

point-in-polygon tests.

Review articles on various point-in-polygon algorithms can be found in [98, 100].

Other point-in-polygon algorithms include the sum-of-angles method, sum-of-area method

(similar to sum-of-angles, but for convex polygons only), swath method (ray intersection-

based), sign-of-offset method, orientation method (like sum-of-area, but without area

calculation) and wedge method (similar to swath method, but only for convex poly-

38

4.9. POINT-INCLUSION QUERIES

gons). Generally those methods that are based on routine computation of trigonometric

quantities are less efficient, which is why the ray casting method is still a popular and

efficient method [130, 223].

There have also been numerous point-in-polyhedron algorithms developed [75, 99,

111], which can vary in complexity. Many methods reduce dimensionality of the prob-

lem by projecting planar images of the polyhedral facets along with an image of the

point being tested. This thesis implements the simple polyhedral point-inclusion test

by Linhart [130] which is also a ray intersection-based projection method. Degeneracies

are resolved by associating with each point of intersection a certain positive or negative

weight. Linhart’s method is also applicable for the point-in-polygon test, which needs

to be performed for polyhedron queries. This method is described in Appendix J.

39

Chapter 5

Parallel Computing

Simulating blast propagation in three dimensions can involve large meshes, which usually

mean long execution times. More computing power can be achieved if processors are

combined in parallel to solve a single problem. Another motivation for parallel solutions

is the increased memory resources of a multi-processor system, which might be necessary

for large simulations.

Ideally the parallelization strategy should be fairly portable and scale proportionally

with the number of processors. However parallel computing methods can be complicated

to implement, as can determining the theoretical code performance [95]. As most of the

computing time is usually spent in a relatively small portion of the code [147], the

optimal parallelization method requires insight into the underlying algorithms. Scaling

to more processors usually results in scaling in memory resources which can have an

adverse effect on performance; efficient use of memory is also an important consideration

for parallel solutions.

The most common way of solution parallelization in CFD problems is through do-

main decomposition, where the same code is executed on different sections of the nu-

merical domain. A brief survey of popular domain decomposition methods will be given

in Section 5.1. Section 5.2 outlines parallel computing architectures, and Sections 5.3

and 5.4 respectively discuss parallel programming methods and parallel performance

measures. Finally Section 5.5 describes the shared-memory parallelization strategy for

the OctVCE code in particular.

5.1 Domain Decomposition Methods

Domain decomposition is a challenging problem which involves partitioning the mesh

and assigning each portion to a separate processor. Twin goals are achieving a good

load balance (equal amount of computational work per processor) and minimizing the

edge-cut or interprocessor communication. This is a large field of research, and jour-

nals devoted to domain decomposition methods and other aspects of parallel computing

include Concurrency, Journal of Parallel and Distributed Computing and Parallel Com-

puting. A number of review articles have also been written [69, 215]. In many cases,

different methods perform best for different problems [215].

40

5.1. DOMAIN DECOMPOSITION METHODS

A number of methods varying in sophistication have been developed. One of the more

simple and popular methods is the recursive co-ordinate bisection method [187, 215] and

its variations. This method performs well for small numbers of processors [215] (eight

or less) and when the mesh is evenly spread over a simple domain [69]. It basically

partitions the domain according to the co-ordinates of the verticies perpendicular to

the co-ordinate direction to achieve an equal load on either side of the cut [215]. This

process is repeated recursively on each subdomain until the required number of subdo-

mains is obtained. This method can generate decompositions efficiently [69] but does

not minimize the edge-cut as well as other methods. The edge-cut is important for

distributed-memory parallelism because it determines the amount of communication

required between processors.

Other methods involve mapping the mesh into an octree structure and basing the

partition on the octree representation [76]. Recursive bisection can also be applied to

this representation [135]. Octree partitioning involves traversals of the tree structure to

accumulate octants or subtrees into successive partitions. Like the recursive bisection

method, it is incremental in its dynamic load balancing; small changes in the mesh

(through mesh adaptation) produce small changes in the partitions, resulting in little

migration or data movement between processors. This is an important goal of iterative

dynamic load balancing techniques [219] as overheads involved with moving application

data can be high [69].

Other more complicated methods are graph-based, like the recursive spectral (or

eigenvalue) [187], multilevel [91] or diffusive [63] methods. These methods often produce

the best quality partitions for mesh-based partial differential equation simulations [69].

The mesh is seen as a graph where verticies represent data to be partitioned. The goal of

graph partitioning is to assign equal total vertex weight to partitions while minimizing

the weight of cut edges [69]. Well known mesh partitioning tools include METIS [114,

115] and JOSTLE [222] which use multilevel iterative partitioning algorithms. These

libraries are very sophisticated, can be implemented in parallel and seek to minimize

data redistribution times during dynamic load balancing.

Another popular mesh partitioning method is the space-filling curve (SFC) method

[69, 149]. This approach maps the multi-dimensional data to one dimension along the

SFC. An object’s co-ordinates are converted to a key representing its position along the

SFC through a physical domain; sorting the keys orders the objects which are assigned

into weighted pieces for each processor [69]. Like recursive bisection methods, SFC

methods generally incur higher communication costs than graph partitioners, but these

methods are also dynamically incremental.

41

5.2. POPULAR PARALLEL ARCHITECTURES

5.2 Popular Parallel Architectures

This section briefly overviews popular computer architectures used for parallel comput-

ing. A more extensive survey of supercomputing methods can be found in References

[47, 73, 84, 151]. Many parallel programs execute on shared-memory systems where

multiple processes (or threads) run by different processors occupy a single shared ad-

dress space. Communication and coherency of elements in the data set are often done

implicitly via reads/writes of shared variables.

Symmetric Multi-Processor (SMP) systems are one such shared-memory system in

which processors are connected to the memory through a high speed bus and crossbar

switch [84]. All processors have equally fast access to the shared memory, but these

systems have limited scalability due to limited memory bandwidth capability [47]. On

the other extreme are distributed-memory systems like clusters, which are essentially

arrays of networked computers. The memory is distributed and not directly accessible

to all processors, necessitating broadcasting or message passing of data through the

interconnection network. These systems are highly scalable and easy to assemble but

hard to use and have long latencies [157].

Distributed-Shared-Memory (DSM) systems [47] are a combination of the distributed

and shared-memory approaches (Figure 5.1). These systems, which can be scalable to

thousands of processors, create a shared-memory system image but with differing speed

of access to the memory due to its physical distribution. The main computing facility

used for the simulations in this thesis is the SGI Altix 3700 [105] which is a DSM system.

Such systems are also usually called Cache-Coherent Non-Uniform Memory-Access (CC-

NUMA) systems due to the differing memory access speed and the need for coherence

of data across each processor’s cache when processors write different copies of variables

to one another. Highly scalable code must be written exploiting locality of memory to

attain top performance on these systems [47].

Figure 5.1: Non-Uniform Memory Access architecture

42

5.3. PARALLEL PROGRAMMING

5.3 Parallel Programming

The Message Passing Interface (MPI) standard [87, 112, 151] and the OpenMP standard

[34, 47, 112, 151] are popular application programming interfaces for explicit paralleliza-

tion (where the user controls the parallelization) on distributed and shared-memory

systems respectively. They consist of a set of compiler directives, library functions and

environment variables. In MPI, processes can communicate with other processes by

sending and receiving messages. The parallel implementation using OpenMP of the

OctVCE code is discussed in greater detail in Section 5.5, but OpenMP will be described

in some more detail below.

An advantage with OpenMP (and shared-memory parallel programming in general)

is its ability to support incremental parallelism where an application can be parallelized

in stages and usually require little modification to the source code [47, 151]. Parallel

regions like loops are specified through the use of compiler directives which can be

ignored when the code is executed in serial. It uses a fork/join model of parallelism

where a master thread (or process) is forked into a team of threads of execution when a

parallel construct is created, and the threads synchronized and joined again at the end

of the section. However due to limited floating-point representations, operations like

reductions may not yield precisely the same result in parallel as those in serial [47].

Each thread usually corresponds to a processor and executes within the same shared

address space as the serial program, but it can have its own stack and copy of the vari-

ables. Co-ordination of the threads is important (under both shared and distributed-

memory models) when they access shared variables as they may simultaneously mod-

ify/read the same variable, resulting in a race condition and incorrect values of the

variables. Race conditions can be removed by restructuring the code or using explicit

synchronization of threads (a point where each thread must wait for all others to arrive).

Synchronizations require communication between threads, and along with their forking

and joining can have high overhead [28, 47].

5.4 Parallel Performance Measures

In most parallel applications the speedup scales less than linearly with the number of

processors because some portions of the code have not been parallelized and there are

additional overheads like communication time, thread-related overheads like barriers

and syncrhonization and load balancing [47]. Amdahl’s law [8] is a simple but useful

formula that sets limits on the speedup. Let the inherently serial portion of the code be

σ(n) and φ(n) the parallel portion of the code for problem size n. Assuming the serial

43

5.4. PARALLEL PERFORMANCE MEASURES

percentage of the code ε = σ(n)
σ(n)+φ(n)

, and remaining percentage 1− ε can be parallelized,

and neglecting other overheads like memory contention, latencies etc. Amdahl’s law

states

Sp ≤
1

ε + 1−ε
p

(5.1)

where Sp is the maximum speedup and p is the number of processors. This expression

shows the large effect of even a small serial portion in the code; even if 90% of the code

can be parallelized, the speedup will be no larger than 4.7 for an 8 processor simulation.

This derivation assumes ε is independent of the problem size, but it has been observed

occasionally that on some cache-friendly codes ε decreases as a function of problem

size [73, 112], increasing the upper bound on Sp. This can sometimes lead to linear

speedup, and superlinear speedup (Sp > p) can be occasionally observed, although this

is usually due to poor memory access or cache mismanagement on a single processor.

Amdahl’s law ignores parallel overheads, which can be large, especially for memory-

intensive applications due to more communication time [73]. A more realistic limit to

the speedup thus requires knowledge of the overhead time, which can be difficult to

ascertain. However, usually time spent in overhead has lower complexity than time

spent in execution (the Amdahl effect [151]).

The inverse of Amdahl’s law can be used to estimate the experimentally determined

serial fraction of a code (serial portion plus parallel overhead) when it is run on p

processors. This is a very useful formula and is often termed the Karp-Flatt metric [113],

which states that given a parallel computation exhibiting speedup Sp on p processors

where p > 1, the experimentally determined serial fraction e is

e =
1/Sp − 1/p

1 − 1/p
(5.2)

Now e = (σ(n) + to) / (σ(n) + φ(n)) where to is the overhead time. This e would be an

upper bound to the actual serial code fraction, and if the same simulation is performed

in parallel for increasing number of processors p, an increasing e can give an indication

of the magnitude and increase of parallel overhead. Alternatively, it might be possible

to extrapolate the e versus p graph back to a 1 processor result to estimate the true

serial fraction ε. More discussion on the Karp-Flatt metric is also found in Section 7.3

where it is also used to profile the parallel performance of the code.

44

5.5. PARALLEL IMPLEMENTATION

5.5 Parallel Implementation

The parallel method of OctVCE implements domain decomposition and OpenMP [34, 47,

151] for shared-memory parallelism. This approach is chosen as it more fully utilizes the

capabilities of the main supercomputer at the University of Queensland, an SGI Altix

3700, which is a shared-memory NUMA machine. There are also some advantages that

shared-memory parallelism has over distributed-memory parallelism [131]. Distributed

memory systems require extra development effort, debugging time and file structures

to manage the inter-processor data communication. Inefficiencies also result from load

imbalances requiring complex mesh redistribution techniques, which can be tedious to

code, debug and maintain, and introduce overhead. Finally, the limited size for most

simulations limits the useful number of processors.

The parallelism implemented here is particularly simple, but not optimized for effi-

ciency. Although still conforming to the octree structure, all the leaf cells (more pre-

cisely, pointers to the leaf cells) are placed on a list which is then subdivided into smaller

‘sub-lists’ each of which is assigned to its processor or thread to work on, as shown in

Figure 5.2. These ‘sub-lists’ correspond to numerical sub-domains. Each of these smaller

lists has its own local head and tail.

This method is slightly similar to octree partitioning [76] except that the tree struc-

ture is not traversed as only leaf cells are considered for partitioning. This simple

approach is also adopted in the unstructured code by Timofeev et al [220] where cells

are uniformly distributed under a shared-memory paradigm. Some overhead exists dur-

ing the forking, joining and synchronization of threads at the end of parallel sections,

but this decreases for larger problem sizes.

Figure 5.2: Domain decomposition from cell list

In OpenMP this is implemented by a parallel region construct attached to the body

of code that is to be executed concurrently by multiple threads. The number of threads

is specified by using the runtime library routine omp_set_num_threads(). An example

C code using this OpenMP directive is shown in Figure 5.3. A list of all local heads

and tails for each sub-list is stored in the arrays List_of_heads and List_of_tails.

Details of the list and cell data structures are shown in Appendix K. Each list node has

a pointer back to the cell which also points to its list node.

Within the pragma omp parallel clause thread-private variables are declared for

45

5.5. PARALLEL IMPLEMENTATION

each list – the Head, Tail thread_num and the cell pointer C. This thread_num variable is

assigned the actual thread number to specify which sub-list the thread will be operating

on (denoted by its Head and Tail), which utilizes the OpenMP runtime library function

omp_get_thread_num(). This list is then traversed from head to tail using the standard

while loop and the required operation is performed on the cell.

Figure 5.3: Example code for OpenMP parallel implementation

Note in the case of serial execution the above body of code need not be changed.

The OpenMP directives will simply be ignored and the lists’ head and tail become the

head and tail of the list of all cells. This illustrates the effectiveness and simplicity of the

incremental shared memory approach in OpenMP where the same block of code (with

some modification) can be used in both serial and parallel execution [47].

In some cases the parallel work has to be partitioned into several sections to avoid

race conditions e.g. if multiple threads compute interface fluxes and time-integrate their

respective cell sub-lists. If threads finish flux computation at separate times and one

thread proceeds to integrate its cells in time, some interfacial flux values from the

previous timestep (assigned to an adjacent thread) may not have yet been fully updated.

Parallel sections are declared by barrier directives, which synchronizes all threads at

the barrier point.

5.5.1 Parallel Flow Solution and Output

There are three places in the solution computation process that can be readily paral-

lelized without danger of race condition. In these sections the code implementation is

very similar to the generic code fragment in Figure 5.3. These sections are (1) Comput-

46

5.5. PARALLEL IMPLEMENTATION

ing the minimum timestep (2) Gradient and limiter computation and (3) Computing

the adaptation criterion. These computations can be executed concurrently without

race condition as there is no change in cell flow states or connectivity. The other major

sections of the code are the flux calculation and time integration stage, which are at risk

of race condition if performed within the same parallel section.

Flux computation

As fluxes are shared between cell interfaces the fluxes need only be calculated in one

direction per axis per cell. Thus during traversal of the ‘sub-list’ cells assigned to each

thread, the flux calculation stage consists of –

1. Computing wall flux (if the cell is intersected by a solid object)

2. Computing domain boundary flux (if the cell is a boundary cell)

3. Computing inter-cell interfacial fluxes in east, north and upper direction

Time integration

The time integration stage involves simply summing the fluxes (stored at cell interfaces

which have been previously updated) and updating the current cell state vector from

each thread. A code fragment of this process (for one Runge-Kutta step) including the

relevant OpenMP directives is shown in Figure 5.4.

Figure 5.4: Example code for OpenMP parallel flow update stage

47

5.5. PARALLEL IMPLEMENTATION

Solution output

The parallel solution output methodology depends on the file format required by the

grid visualizer. In this case the VTK file format is used [15] where a unique listing of cell

verticies also need to be output. The necessitated the use of the vertex data structure

(shown in Appendix K) which stores pointers to all leaf cells sharing the vertex (and

which is also pointed to by these cells). The verticies are stored in a global list and are

uniquely numbered for each cell sub-domain in which they reside. All verticies belonging

to the sub-domain are first written into the corresponding file. As each cell in the sub-

domain also points to these numbered verticies the mesh connectivity information for

them is then written as the code traverses each sub-list. Finally the required flow

quantities are reconstructed to each vertex, averaged and written.

5.5.2 Parallel Mesh Adaptation

The mesh adaptation process requires significant ‘house-keeping’ code to manage the

changing grid e.g. updating intefacial and vertex connectivities, flux vectors etc. Im-

plementing this in parallel requires even more code, and additional measures must be

adopted to avoid race conditions. Thus it is more difficult to straightforwardly use the

same serial adaptation code. Race conditions will exist as cell connectivity might be

read and written to concurrently.

That the cell merging process is performed in serial for simplicity as it may potentially

require cells from across separate domains. Any cells that require adaptation are no

longer members of the large merged cell cluster, and only after adaptation will cell

merging proceed for remaining small cells and newly adapted cells. This section gives

an overview of the parallel mesh adaptation process.

Adding cells to sub-lists in parallel

With the addition or deletion of cells in each sub-domain (or sub-list), the newly formed

children cells or parent cell are inserted into the sub-list at the location where the original

parent or children cells were respectively. This is done to ensure sub-domains attain a

measure of contiguity which would not occur if new cells are placed at the front or back

of the list. Given the cell numbering scheme, in some cases sub-domains will only be

diagonally contiguous and can occasionally be spatially separated.

After adaptation these sub-lists are all joined into the global list of cells which is

repartitioned to yield an equal number of cells for each sub-domain. This is done via

a simple counting technique. An example of the numerical sub-domains for the blast

48

5.5. PARALLEL IMPLEMENTATION

in a complex cityscape problem (Section 14) is shown in Figure 5.5. The simulation is

performed using 4 processors, meaning 4 sub-domains. It can be seen that the domains

(cell clouds) are fairly contiguous.

(a) Sub-domain 1 (b) Sub-domain 2

(c) Sub-domain 3 (d) Sub-domain 4

Figure 5.5: Numerical sub-domains for blast in cityscape problem

Flagging cells for adaptation in parallel

The cells in each sub-list (Figure 5.2) are first traversed, and the adaptation indica-

tors (Section 3.5) computed and the relevant cells flagged for refinement or coarsening.

However, some cells not flagged for refinement still require refinement because of mesh

smoothness constraints. Therefore, sub-lists are traversed again and cells flagged for

refinement recursively flag their neighbours for refinement if required. Recursive checks

may require visitation of neighbour cells not within the sub-domain in which the program

was originally executed, so there is some redundancy in this stage. The cell refinement

flagging stage is performed first as some cells tagged for coarsening might no longer be

suitable for it after this stage.

Sub-lists are then traversed and parent cells checked for coarsening eligibility. This

algorithm is essentially the same as Figure 3.4, which is recursive. This ensures that

49

5.5. PARALLEL IMPLEMENTATION

the cell coarsening process itself can be performed in one step rather than a number of

stages. As mentioned in Section 3.2 this requires the code to handle adjacency of cells

of very disparate levels, as mesh smoothness will only be ultimately enforced when all

cells are finished coarsening.

Updating mesh connectivities in parallel

The mesh connectivity update has to be performed in stages to avoid race conditions.

Hence, interface connectivity updates must be performed on per-interface basis. As

the domain decomposition is on a per-cell basis, interface connectivities should first be

performed in one direction per axis per cell in one stage, then in the opposite directions

in the next stage. This is similar to the parallel flux calculation routine in Section 5.5.1,

and ensures all interfaces are ‘visited’ by one thread at a time. An example of this

two-stage directional interface connectivity update is shown in Figure 5.6.

Figure 5.6: Interface connectivity update for parallel adaptation

For vertex connectivity it is important to select groups of verticies belonging to leaf

cells so that at each parallel stage, each thread will uniquely visit this group of verticies

belonging to the cell during sub-list traversal. An adapted octree parent cell (whether

newly coarsened or refined) has potentially 27 verticies, as shown in Figure 5.7. These

cell verticies can be placed into 4 unique groups which will only be visited by one thread

at a time. Hence the vertex connectivity update stage consists of 4 stages.

50

5.5. PARALLEL IMPLEMENTATION

Figure 5.7: Vertex groups for parallel adaptation

Parallel refinement stages

Given the necessary steps for parallel connectivity update, the parallel refinement stages

are enumerated below. Each of these stages end in a synchronization barrier.

1. Allocate memory to children cells and set their state vectors accordingly

2. Update interface connectivities in east, north, upper directions, and vertex con-

nectivities for group 1 verticies (from Figure 5.7)

3. Update interface connectivities in west, south, lower directions, and vertex con-

nectivities for group 2 verticies

4. Update vertex connectivities for group 3 verticies (Figure 5.7)

5. Update vertex connectivities for group 4 verticies

Parallel coarsening stages

Similar to (but performed after) the refinement stage, the parallel coarsening stages are

enumerated below. Each of these stages end in a synchronization barrier. Also, sub-lists

are slightly modified prior to this step so that sibling leaf cells are not spread across

different sub-lists.

1. Set parent state vector, update interface connectivities in east, north and upper

directions, and vertex connectivities for group 1 verticies (from Figure 5.7)

51

5.5. PARALLEL IMPLEMENTATION

2. Update interface connectivities in west, south and lower directions, and vertex

connectivities for group 2 verticies

3. Update vertex connectivities for group 3 verticies

4. Update vertex connectivities for group 4 verticies, de-allocate children cells

Code fragment for parallel adaptation process

A code fragment of the adaptation process described above including relevant OpenMP

directives is shown in Figure 5.8. Note the pragma omp single directive which specifies

that one thread only unmerges cells to be adapted and modifies the sub-lists so that

parallel coarsening can be performed.

Figure 5.8: Example code for OpenMP parallel adaptation

52

5.5. PARALLEL IMPLEMENTATION

5.5.3 Problems with the Parallel Method

On NUMA machines like the SGI Altix, locality of data is important for good per-

formance [47]. Recalling the discussion in Section 5.2, NUMA systems have a shared-

memory address space to all processors but memory access times are substantially faster

if a data element is on a node’s cache or in nearby memory. A well-structured code ex-

ploits locality so that the majority of requests are to data residing on a node’s local

memory and thus the majority of references are cache hits. Communication overheads

for referencing memory not connected to the node can be quite high1, as much as 20-50%.

The parallel adaptation method does allocate cells to reside on the local memory of

each node of the cpuset. If the adaptation process were not parallelized there would be a

less uniform distribution of data across nodes, leading to increased communication over-

head. This also means a smaller parallel code fraction, further limiting the theoretical

speedup from Amdahl’s law (Equation 5.1). However, the mesh repartitioning strat-

egy implemented via simple cell counting does not always lead to good locality as it is

problem-depedent; some sub-domains may undergo more refinement and cells allocated

by one thread may be assigned to remote threads that will need frequent access to the

data. A further complication is thread migration from processor to processor, leading

to a higher degree of remote access. The dplace command can help tie threads to pro-

cessors, and the numactl command allows interleaved (round-robin) memory allocation

to prevent bottlenecks. These will only partly increase efficiency.

The code also makes significant storage demands (see Appendix K for the cell data

structure), requiring at a minimum 988 bytes per cell, and a nominal operational storage

of 3 kB per cell (which includes other data structures like lists and pointers). This leads

to performance inefficiencies with more cache misses and longer communication time.

In some cases cpusets consisting of several nodes needed to be requested just for the

memory, even if a single processor simulation was performed.

The parallel method relies on partitioning parallel sections into several stages via

synchronization barriers, which can be quite expensive [47] and cause the parallelism to

become somewhat fine-grained and thus inefficient. Sections 10.4.1, 14.2 and 7.3 display

parallel performance statistics of the code for different simulations. They indicate that

considerable overhead does exist for parallel simulations, but this occurs mainly from

communication and not barrier overheads. The results encouragingly suggest a fairly

high parallel fraction of the code. OctVCE is likely to perform better on SMP systems but

this has not been investigated. Further work would focus on reducing storage and using

a more effective domain decomposition method exploiting locality on NUMA machines.

1http://nf.apac.edu.au/facilities/userguide/, accessed June 2008

53

Chapter 6

Verification and Validation

To establish the credibility of the OctVCE code it must be verified and validated for a

range of test cases. Verification is generally understood to be the activity of establish-

ing the reliability and accuracy of the numerical methodology i.e. solving the equations

right [168, 169]. It typically involves evaluating the discretization error against a known

solution (typically analytic) and establishing the order of accuracy through a grid con-

vergence study. Validation, which is usually done after verification, is demonstrating

how well the mathematical model actually represents the physical system i.e. solving

the right equations [168].

Verification can help demonstrate the stability and robustness of the numerical

scheme and provide good confidence that no programming errors in the code exist

[142, 180], although it cannot identify errors that result in a loss of efficiency [168].

The test cases used in the verification process, having generally analytic solutions, are

usually geometrically simple and not related to problems that the code is normally de-

signed for (in this case blast propagation), and the observed order of accuracy can be

problem-specific [168] and influenced to an extent by boundary conditions [142]. For

CFD problems, verification test cases usually involve smooth flows as analytic solutions

for shocked flows are rare or do not exercise all terms in the numerical scheme.

Validation test cases are typically those problems for which the code is designed,

and usually involve comparison to experimental or previously verified numerical data

[169]. Better confidence in the code’s predictive ability for such problems will be gen-

erally established if a larger number and varied range of such test cases are chosen. In

simulations of validation cases and other complex problems a popular method of esti-

mating the error is through Richardson extrapolation [163, 164], which is a technique

for combining solutions from two different grids to give a more accurate estimate for the

exact solution. If f1 is the fine-grid solution and f2 the coarser-grid solution, the exact

(grid-independent) result can be estimated as

fexact = f1 +
f1 − f2

rp − 1
(6.1)

where r is the refinement factor (which would be 2 if the grid is doubled in each direction)

and p the order of accuracy. This equation is generally p + 1-order accurate for upwind

54

methods [168]. The estimated fractional error to the fine grid solution is thus

E = (f1 − f2) / (f1 (rp − 1)) (6.2)

which is usually a good approximation if E << 1.

Richardson extrapolation may not consistenly work in some situations and is gen-

erally used with caution at those places where the solution is not smooth e.g. peak

overpressure at a shock and in the presence of non-linear flux limiters [168]. It can also

be difficult to determine a value of r for non-uniformly refined meshes [167]. A con-

sistently decreasing value of E (as grids are refined) demonstrates a convergence (the

asymptotic range of solution convergence having been attained) and thus at least three

differently-refined grids need to be employed to ascertain asymptoticity. The quantity

GCI = 3 |E| (6.3)

is the Grid Convergence Index (GCI) proprosed by Roache [168, 179] which provides an

error band where a safety factor of 3 (and the absolute value) is used for conservatism.

If the observed order of accuracy matches the formal order (typically for fine-grid solu-

tions), the safety factor can be reduced to 1.25.

Sections 6.1 to 6.4 of this chapter present four different verification test cases. In

Chapters 7 to 14, a number of different validation test cases will be presented. Not all

of these are blast propagation problems from charge detonations; some (like Chapters 7

and 8) are more mundane shock propagation problems to demonstrate the versatility

and accuracy of the VCE method for different flow problems. As mesh-convergent solu-

tions can be quite difficult to obtain, especially for three-dimensional blast propagation

problems [171], many of these validation cases will use Richardson extrapolation to test

for convergence trends and estimate the magnitude and sign of errors. Profiling of the

code will also be done for some simulations to establish its performance in serial and

parallel executions.

55

6.1. VERIFICATION VIA THE METHOD OF MANUFACTURED SOLUTIONS

6.1 Verification via the Method of Manufactured

Solutions

The first verification exercise uses the Method of Manufactured Solutions, which is a

general and quite robust verification methodology that allows all terms in the governing

equations to be exercised [142, 168, 180]. An analytic solution is chosen (or ‘manu-

factured’) and passed through the flow equations, generating source terms as a result.

These source terms are input into the solution procedure and compared with the an-

alytic solution for code verification. This process is repeated on a series of uniformly

refined grids to obtain an order of accuracy.

The analytic solution bears no relation to any physical problem but is simply used for

verification purposes. It requires the code to specify arbitrary source terms and bound-

ary conditions, which can be difficult to implement [83]. Guidelines for appropriate

choice of manufactured solutions include generality (so that all terms can be exercised),

smoothness, ensuring no derivatives vanish, and ensuring no predominance of any one

particular term in the governing equations [180]. This method cannot be used to detect

code deficiencies affecting efficiency or robustness; its only purpose is to highlight any

spatial discretization errors. Also, it relies on uniform refinement of the grid to properly

obtain the order of accuracy.

The global discretization error for all mesh points can be given by the L2 or ‘root

mean square’ norm –

L2 =

(∑N
n=1 |Qnum,n − Qexact,n|

N

) 1

2

(6.4)

where N is the total number of cells, Qnum is the computed solution (e.g. in density

or energy) and Qexact the exact solution. The order of accuracy p calculated from two

mesh levels k and k + 1 is then

p = ln

(
Lk+1

Lk

)
/ln (r) (6.5)

Alternatively, if a series of L2 norms are obtained for several different mesh levels, p can

be obtained by a power-law fit (in the form of L = c1 + c2r
p, c1 and c2 being constants)

to the curve in the L2 versus r graph (c1 should be theoretically zero). The observed

order of accuracy is compared with the formal order of accuracy, which for the code is

p = 2 due to implementation of reconstruction (Section 4.3).

56

6.1. VERIFICATION VIA THE METHOD OF MANUFACTURED SOLUTIONS

The steps for the method of manufactured solutions are thus summarized below –

1. Choose form of governing equations

2. Choose form of manufactured solution

3. Derive modified governing equations, source terms and analytic boundary condi-

tions

4. Solve discrete form of modified governing equations on multiple meshes

5. Evaluate global discretization error in numerical solution

6. Calculate order of accuracy

6.1.1 Manufactured Solution for Two-Dimensional Geometry

Verification will first be conducted in two-dimensional geometry. This is easily achieved

with the code by constructing a single ‘layer’ of cells and preventing out-of-plane flow.

The manufactured solution chosen for this section follows the solution chosen by Roy et

al in their own verification work [180], and has the following steady-state form –

ρ (x, y) = ρ0 + ρx sin (aρxπx) + ρy cos (aρyπy)

u (x, y) = u0 + ux sin (auxπx) + uy cos (auyπy)

v (x, y) = v0 + vx cos (avxπx) + vy sin (avyπy)

p (x, y) = p0 + px cos (apxπx) + py sin (apyπy) (6.6)

The constants φ0, φx, φy and φxy where φ is the variable ρ, u, v or p are given in

Table 6.1. The analytic solutions for density, velocity and pressure of Equation 6.6 are

Table 6.1: Table of constants for 2D manufactured solution

Equation, φ φ0 φx φy aφx aφy

ρ (kg/m2) 1.0 0.15 -0.1 1.0 0.5

u (m/s) 800.0 50.0 -30.0 1.5 0.6

v (m/s) 800.0 -75.0 40.0 0.5 2/3

p (Pa) 1.0×105 0.2×105 0.5×105 2.0 1.0

substituted into the governing Euler equations (Equation 6.7) to generate the source

terms fm, fx, fy and fE. The energy is obained via the equation of state assuming

calorically perfect gas (γ = 1.4, R = 287 J/(kgK)) as E = P/ (ρ (γ − 1)) + (u2 + v2) /2.

57

6.1. VERIFICATION VIA THE METHOD OF MANUFACTURED SOLUTIONS

∂ρ

∂t
+

∂ (ρu)

∂x
+

∂ (ρv)

∂y
= fm

∂ (ρu)

∂t
+

∂ (ρu2 + p)

∂x
+

∂ (ρuv)

∂y
= fx

∂ (ρv)

∂t
+

∂ (ρvu)

∂x
+

∂ (ρv2 + p)

∂y
= fy

∂ (ρE)

∂t
+

∂ (ρuE + pu)

∂x
+

∂ (ρvE + pv)

∂y
= fE (6.7)

The source terms can be extremely lengthy to derive by hand and for this exercise

were generated using the symbolic mathematical manipulation tool maxima [68]. This

problem is solved on a square domain on the series of meshes listed in Table 6.2. The

density field for the manufactured solution is shown in Figure 6.1.

Table 6.2: Meshes for 2D manufactured solution

Mesh No. cells

1 8 × 8

2 16 × 16

3 32 × 32

4 64 × 64

5 128 × 128

Figure 6.1: Analytic density field of 2D manufactured solution

Simple extrapolated outflow boundary conditions are used on the north and east

boundaries of the domain as the solution is supersonic there, whilst the analytic bound-

ary conditions are used on the west and south boundaries (using Equation 6.6). Initial

conditions correspond to column one of Table 6.1 (the φ0 values), with the solution

marched into time from these conditions until steady-state conditions are reached i.e.

when L2 values appear constant.

58

6.1. VERIFICATION VIA THE METHOD OF MANUFACTURED SOLUTIONS

6.1.2 Results from Two-Dimensional Method of Manufactured

Solution

A comparison of the computed density fields on different grids with the analytic solution

can be seen in Figure 6.2. These solutions were computed with the AUSMDV flux

solver. The trend of increasing agreement with the analytic solution as mesh resolution

is increased can be observed.

(a) 8 × 8 (b) 32 × 32

(c) 128 × 128 (d) Analytic solution

Figure 6.2: Comparison of density fields for 2D manufactured solution

The solutions are determined to be steady state by observing when the L2 norm no

longer changes with time, as in Figure 6.3(a) where the L2 versus time curves for various

mesh resolutions are plotted. The trend of decreasing error (i.e. smaller L2 values) with

increasing mesh resolution is observed. These steady-state L2 norms are plotted against

grid resolution in Figure 6.3(b) to obtain the order of accuracy p. This figure plots

the norms from a low order (no reconstruction) and high order (with reconstruction)

solution for both the AUSMDV and EFM flux solvers.

As expected, the slope of the low-order curves are shallower than than the higher-

order curves, indicating lower order of accuracy. The order of accuracy for the L2 norms

in Figure 6.3(b) has been tabulated in the first and second columns of Table 6.3. It is

apparent that the low order solution exhibit orders of accuracy lower than 1, and high

order solutions have orders of accuracy greater than 1 but substantially less than 2.

59

6.1. VERIFICATION VIA THE METHOD OF MANUFACTURED SOLUTIONS

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.001 0.002 0.003 0.004 0.005 0.006

L2
 n

or
m

Time (s)

8 x 8
16 x 16
32 x 32
64 x 64

128 x 128

(a) Versus time

 1e-04

 0.001

 0.01

 0.1

 0.001 0.01 0.1 1

L2
 n

or
m

Cell size (m)

EFM high order
EFM low order

AUSM high order
AUSM low order

(b) Versus grid resolution

Figure 6.3: L2 density norms

The mismatch between the observed and formal orders of accuracy is strange given the

linear graphs in Figure 6.3(b).

Better solution convergence was attempted using two further strategies. Firstly, as

it is known that limiters (especially of the min-mod variety) can inhibit convergence

[50, 110, 218], a high order AUSMDV solution was run without limiters. Secondly, a

different reconstruction procedure – the piecewise-parabolic-method (PPM) – was used.

This method, used in the MB_CNS code [109], implements quadratic interpolation and a

modified van Albada limiter [110] and should be third order accurate. This approach

was chosen as it could be compared with a previous verification study [83] identically

on this problem using the MB_CNS code. The resulting orders of accuracy can be seen in

columns 3 and 4 of Table 6.3.

Table 6.3: Order of accuracy for 2D manufactured solution

Flux solver Low order High order High order, unlimited High order, PPM

EFM 0.697632 1.29777 - 1.55609

AUSMDV 0.690081 1.32844 1.33298 1.53493

Interestingly, the elimination of limiters from the high order solution only slightly

improved the solution order, whilst the PPM method improved the convergence order

to slightly greater than 1.5. In either case the orders of accuracy are still significantly

lower than 2 for the high order solutions. These figures are fairly consistent with those

obtained from the MB_CNS code in the same verification exercise [83] where for the AUSM

scheme the low order solution had a value of 0.71 and higher order solution was 1.62.

The PPM reconstruction scheme did demonstrate third-order accuracy when tested on

a sine wave profile, and without the van Albada limiter exhibited a convergence order

60

6.1. VERIFICATION VIA THE METHOD OF MANUFACTURED SOLUTIONS

of 1.9. Although this is still substantially less than 3, the single-point quadrature of the

fluxes in the solution integration scheme (Section 4.2) implies truncation orders of 2 at

best [82].

It will be shown in Sections 6.1.4 and 6.4 that better matches between observed

and formal orders of accuracy result for different verification problems. As mentioned

previously, observed orders of accuracy seem quite dependent on both the nature of the

problem and the solution procedure [168].

6.1.3 Manufactured Solution for Three-Dimensional Geometry

The manufactured solution in Equation 6.6 will now be extended to fully test all terms

in the formulation of the three-dimensional Euler equations. In steady-state form, the

solution has the form –

ρ (x, y, z) = ρ0 + ρx sin (aρxπx) + ρy cos (aρyπy) + ρz cos (aρzπz)

u (x, y, z) = u0 + ux sin (auxπx) + uy cos (auyπy) + uz cos (auzπz)

v (x, y, z) = v0 + vx cos (avxπx) + vy sin (avyπy) + vz sin (avzπz)

w (x, y, z) = w0 + wx cos (awxπx) + wy sin (awyπy) + wz sin (awzπz)

p (x, y, z) = p0 + px cos (apxπx) + py sin (apyπy) + pz sin (apzπz) (6.8)

The constants for this solution are given in Table 6.4. Note that these values in two

dimensions are identical to those in Table 6.1 with additional values provided for the

third dimensional component. Like in Section 6.1.1, the source terms are generated by

substituting the analytic solution into the Euler equations.

Table 6.4: Table of constants for 3D manufactured solution

Equation, φ φ0 φx φy φz aφx aφy aφz

ρ (kg/m2) 1 0.15 -0.1 0.12 1 1.5 2

u (m/s) 800 50 -30 20 1.5 0.6 0.5

v (m/s) 800 -75 40 -25 0.5 2/3 1

w (m/s) 800 40 -40 20 0.3 0.5 2

p (Pa) 1.0×105 0.2×105 0.5×105 0.25×105 2.0 1.0 0.5

The solution methodology is identical to the two-dimensional verification exercise

in Section 6.1.1. However, due to the large number of cells that would be required

in a three-dimensional solution, only three mesh resolutions are considered, which are

tabulated in Table 6.5.

61

6.1. VERIFICATION VIA THE METHOD OF MANUFACTURED SOLUTIONS

Table 6.5: Meshes for 3D manufactured solution

Mesh No. cells

1 8 × 8 × 8

2 16 × 16 × 16

3 32 × 32 × 32

6.1.4 Results from Three-Dimensional Method of Manufac-

tured Solution

L2 norms were computed in both density and total energy for the AUSMDV and EFM

flux solvers. The PPM reconstruction scheme was also used to observe the increase in

order of accuracy when used with the AUSMDV scheme. The orders of accuracy are

shown in Tables 6.6 and 6.7 respectively.

Table 6.6: Density-based order of accuracy for 3D Method of Manufactured Solution

Flux solver Low order High order High order, PPM

EFM 0.820488 1.42164 -

AUSM 0.813862 1.43043 1.46816

Table 6.7: Energy-based order of accuracy for 3D Method of Manufactured Solution

Flux solver Low order High order High order, PPM

EFM 0.874216 1.34335 -

AUSM 0.865135 1.35793 1.42389

The computed order of accuracy also varies depending on the variable under con-

sideration, although the differences are not large. The convergence orders for both

reconstruction-off and reconstruction-on are higher than with the 2D verification exer-

cise (Table 6.3), and thus closer to ideal behaviour. The PPM-based order of accuracy

is interestingly lower than the values in Table 6.3, and its improvement over the linear

reconstruction values is less pronounced.

6.1.5 Performance of the Method of Manufactured Solutions

The total number of cells in a square mesh undergoing uniform refinement scales by

nx
2, where nx is the number of cells along one side. As the allowable time step per cell

62

6.1. VERIFICATION VIA THE METHOD OF MANUFACTURED SOLUTIONS

decreases proportional to cell size, a scaling of nx
3 in two dimensions is expected. The

scaling for a three-dimensional cubical mesh is nx
4. Alternatively if the total number of

cells is N , the scaling will go according to N 3/2 for two dimensions and N 4/3 for three

dimensions.

Graphs of total execution time versus nx for the two- and three-dimensional verifi-

cation exercise of this section are shown in log-log plots respectively in Figures 6.4(a)

and 6.4(b). Power-law curve fits are also shown. The linear nature of these graphs (at

least for larger nx values) and the values of their gradients are well predicted by the

scaling principle. Other aspects of the code execution e.g. geometry interrogation, file

output etc. may account for any non-linearities.

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
)

No. cells along mesh edge

Execution time
Curve fit, 2.59 + 0.0015x^2.93

(a) 2D verification time profile

 10

 100

 1000

 10000

 1 10 100

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
)

No. cells along mesh edge

Execution time
Curve fit, 2.23 + 0.0024x^4.05

(b) 3D verification time profile

Figure 6.4: Execution time vs mesh size for Method of Manufactured Solutions

The GNU compiler gprof profiler tool was used to ascertain the relative time spent

in executing reconstruction-related operations (e.g. computing gradients, limiters and

reconstruction). The percentage of execution time spent in this process is plotted with

respect to nx in Figures 6.5(a) and 6.5(b) for the two- and three-dimensional problem

respectively. Also plotted is the percentage of execution time spent in simply advancing

the solution (computing fluxes, time integration).

These results indicate that nearly half of the time spent executing the code is used in

reconstruction-related operations, whilst around 30% is actually spent on flux computa-

tion and time integration. The cost of reconstruction might be lowered for this problem

if one-dimensional interpolation is used as opposed to the generalized multi-dimensional

interpolation scheme implemented in the code (Section 4.3).

6.1.6 Concluding Remarks

As the results from the two- and three-dimensional tests indicate convergence, it is

reasonable to assume OctVCE has passed this verification test case. A convergence order

63

6.1. VERIFICATION VIA THE METHOD OF MANUFACTURED SOLUTIONS

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 20 40 60 80 100 120 140

P
er

ce
nt

 o
f t

ot
al

 e
xe

cu
tio

n
tim

e

No. cells along mesh edge

Reconstruction-related operations
Solution-related operations

(a) 2D verification relative time

 25

 30

 35

 40

 45

 50

 55

 60

 65

 5 10 15 20 25 30 35

P
er

ce
nt

 o
f t

ot
al

 e
xe

cu
tio

n
tim

e

No. cells along mesh edge

Reconstruction-related operations
Solution-related operations

(b) 3D verification relative time profile

Figure 6.5: Relative execution time vs mesh size for Method of Manufactured Solutions

lower than first-order was observed without reconstruction, and an order of accuracy

greater than 1 (but considerably less than 2) was seen with reconstruction. The sub-

optimal performance could in part be due to flow non-uniformities and misalignments

with mesh edges [148]. Similar figures for these convergence orders have been reported

for similar verification problems of the two-dimensional Euler equations on formally

second-order codes [50, 110, 148]. Removing the limiter, or using smoother limiters (as

investigated in Section 6.1.2) did not always improve the convergence order drastically.

Future work should also be given to reducing the cost of solution reconstruction, given

that it is the largest part of the computational effort.

64

6.2. VERIFICATION WITH SOD’S SHOCK TUBE PROBLEM

6.2 Verification with Sod’s Shock Tube Problem

In this section the ideal shock tube problem based on Sod’s initial conditions [196]

will be simulated. This relatively simple, unsteady, one-dimensional problem has a

well-known analytic solution that can be computed using iterative techniques (see for

example Reference [10]). The code can thus be compared against this solution and also

run in two-dimensional, three-dimensional, adaptive mesh and axisymmetric modes as

the solutions should all be equivalent.

The shock tube has a length of 1.0 m, and the high-pressure conditions to the left

of the imaginary diaphragm at x = 0.5 m are

u = 0, ρ = 1.0 kg/m3, P = 105 Pa, x ≤ 0.5

and the conditions to the right are

u = 0, ρ = 0.125 kg/m3, P = 104 Pa, x ≥ 0.5

For the two-dimensional simulations, the domain is a rectangle of 128 cells length-wise

and 3 cells height-wise (totalling 348 cells) as shown in Figure 6.6. The three-dimensional

simulation has 3 additional cells width-wise (thus 1152 cells). The gas is calorically

perfect air (γ = 1.4), and solid wall boundary conditions apply to shock tube walls.

Only AUSMDV will be used in this example.

Figure 6.6: Uniform grid for 2D Sod shock tube problem

The adaptive mesh simulation (done in two dimensions) has 3 working levels (levels

7, 8 and 9) corresponding to cell sizes 7.8125×10−3, 3.90625×10−3 and 1.953125×10−3

m. The density-based adaptation indicator (Equation 3.4) was used with refinement

threshold, coarsening threshold, and noise filter values of 0.08, 0.05 and 0.01.

This shock tube problem also provides a good testing ground for the effectiveness

of the Thompson non-reflecting boundary conditions (Appendix H) which are applied

at the tube ends. The left end of the tube allows applies the subsonic inflow boundary

conditions after the expansion wave exits the domain, and the right end applies the

subsonic outflow boundary conditions following exit of the shock. This test was also

performed by Thompson [209] in which errors of less than 1% reflection following the

outgoing shock were reported.

65

6.2. VERIFICATION WITH SOD’S SHOCK TUBE PROBLEM

6.2.1 Results for Sod’s Shock Tube Problem

The density solution at time 0.6 ms is displayed in Figure 6.7 where the two-dimensional

solutions in planar and axisymmetric geometry are displayed. Both higher-order planar

and axisymmetric calculations have better resolution of discontinuities and the expan-

sion fan compared to the first-order solution.

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

 (
kg

/m
^3

)

x (m)

Analytical
2nd order
1st order

2nd order, axisymmetric

Figure 6.7: Two-dimensional shock tube results (0.6 ms)

A comparison of the planar two- and three-dimensional higher order solutions at

t = 0.6 ms is shown in Figure 6.8. There is very good agreement between both solutions,

which is expected.

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

 (
kg

/m
^3

)

x (m)

Analytical
2D
3D

Figure 6.8: Two- and three-dimensional shock tube results (0.6 ms)

A final comparison at 0.6 ms is between an adaptive mesh solution and an equivalent

uniform grid solution with cells at the minimum cell size of the adaptive mesh solution

(i.e. at 1.953125× 10−3 m), shown in Figure 6.9. The resolution of discontinuities with

these solutions is even sharper than previous graphs (e.g. Figure 6.8, and both solutions

are very similar (the uniform mesh actually has slightly oscilliatory behaviour at the

contact surface which is not evident with the adaptive mesh solution).

66

6.2. VERIFICATION WITH SOD’S SHOCK TUBE PROBLEM

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

 (
kg

/m
^3

)

x (m)

Analytical
Fine, fixed mesh

Adaptive mesh

Figure 6.9: Adapted mesh and equivalent uniform mesh shock tube result (0.6 ms)

Performance statistics for the uniform and adaptive mesh solutions are shown in

Table 6.8. The adaptive mesh solution has time and space savings of around a factor

of 3 and 3.4 respectively. As mentioned in Section 6.3.4, time savings are typically

smaller than storage savings as additional work needs to be implemented to manage the

adaptation e.g. managing connectivities, computing adaptation indicators etc. Savings

for this problem should be more significant with finer adaptation levels and/or extension

to three-dimensional flow.

Table 6.8: Performance statistics for shock tube problem on uniform and adapted mesh

Uniform grid Adaptive mesh

Max cells 6144 1815

Solution time (s) 457.595 153.517

To test the non-reflecting boundary condition implementation, the solution at t = 1.3

ms is output. This corresponds to a time after the shock has exited the right boundary

but just before the expansion fan reaches the left boundary. The solutions for the

uniform two- and three-dimensional results and adaptive mesh solution are shown in

Figures 6.10(a) and 6.10(b). It is evident that the subsonic outflow boundary condition

seems to be working well with minimal reflection there.

At 2.0 ms both the contact surface and expansion fan have exited the domain, provid-

ing further opportunity to test both subsonic inflow and outflow boundary conditions.

Solutions are shown in Figure 6.11. In Figure 6.11(a) there is a slight reflection at

the subsonic outlet end which is of the order of observed by Thompson [209]. The

non-reflecting subsonic inflow boundary condition appears to work well with hardly any

observable reflections.

67

6.2. VERIFICATION WITH SOD’S SHOCK TUBE PROBLEM

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

 (
kg

/m
^3

)

x (m)

Analytical
2D
3D

(a) Two and three dimensional results

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

 (
kg

/m
^3

)

x (m)

Analytical
Fine, fixed mesh

Adaptive mesh

(b) Adaptive and equivalent uniform mesh results

Figure 6.10: Shock tube results at 1.3 ms

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

 (
kg

/m
^3

)

x (m)

Analytical
2D
3D

(a) Two- and three-dimensional results

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

 (
kg

/m
^3

)

x (m)

Analytical
Fine, fixed mesh

Adaptive mesh

(b) Adaptive and equivalent uniform mesh results

Figure 6.11: Shock tube results at 2.0 ms

The adaptive mesh and equivalent uniform mesh (Figure 6.11(b)) likewise displays a

disturbance at the outflow end that appears to be more noticeable (though still small)

than the coarser grid solutions. Coarser grids are more dissipative and thus tend to

damp these oscillations. At the subsonic inlet end, there are no reflections but the

adaptive mesh solution overpredicts slightly the density whilst the uniform grid solution

performs as well as the coarser, uniform grid solutions in Figure 6.10(a).

The actual non-reflecting implementation as described in Appendix H involves lim-

ited extrapolation, and switch to the more dissipative EFM at border cells (and cells

beside border cells) to damp oscilliatory behaviour. The linear extrapolation on different

sized cells under an adaptive scheme may not be as smooth at the inflow end compared

to a uniform grid. Limiters may also degrade the extrapolation slightly. In any case the

non-reflecting boundary conditions still perform quite well, and in real explosion mod-

elling the predominant non-reflecting boundary condition should be subsonic outflow.

68

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

6.3 Verification of Supersonic Wedge and Conical

Flow

In this section supersonic flow over a wedge and cone geometry will be computed. This

is an important exercise for two reasons. Firstly, analytic solutions to these problems

exist, and thus they constitute a more realistic verification test case than the Method

of Manufactured Solutions (Section 6.1). However, the simplicity of these solutions,

especially for wedge flow, may not exercise all terms of the code. Secondly, a convergence

study can be performed to observe the effect of the VCE surface representation when

both subcell and mesh density are varied. As shown in Section 2.4.4, the VCE method

effectively ‘numerically roughens’ surfaces. Appendix E.1 also demonstrates that further

noise can occur for the axisymmetric VCE method. Measuring the solution errors at

the surface as the grid and subcell resolution is increased can help ascertain the severity

of these surface effects.

The test case here simulates steady-state flow of freestream Mach number M∞ =

2.5 over a 20◦ half-wedge or half-cone. Analytic solutions to the post-shock flow for

the wedge case can be derived from the oblique shock relations, and for conical flow

can be computed from the method of Taylor and Maccoll [208] (in the steady-state

limit, constant property lines are generators from the cone vertex). Published tables of

supersonic conical flow solutions [188] can also be used.

Initial conditions are freestream values, which are P∞ = 104 Pa and ρ∞ = 0.1 kg/m3.

The solution is advanced in time until all errors appear constant. Simple extrapolated

supersonic boundary conditions are used for the outlet. Analytic surface values for the

wedge and conical flow cases are given in Table 6.9.

Table 6.9: Analytic solution for supersonic flow past wedge and cone

Wedge Cone

Shock angle 42.89◦ 32.581◦

Ps/P∞ 3.211 2.309

ρs/ρ∞ 2.2 1.802

6.3.1 Program of Simulations

Only the density and pressure solution on the surface of the wedge or cone will be

monitored, as errors are likely greatest here due to the VCE surface effects. Also a

convergence study of the global solution error may not be so useful as the presence of an

embedded shock will lower the convergence order to at most first-order accuracy [179].

69

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

A dimensionless root mean square error norm (the L2 norm) is computed to quantify

the error over the whole surface –

L2 =

√√√√ 1

N

N∑

n=1

(
Qnum,n − Qtheory,n

Qtheory,n

)2

(6.9)

where N is the number of cells along the surface, Qnum the computed solution and

Qtheory the analytic solution.

Simulations will be performed for three different mesh resolutions (levels 6, 7 and

8) and also for three different subcell resolutions (32, 64 and 128 subcells along the cell

edge). Mesh levels 6, 7 and 8 correspond to a basis Cartesian cell length of 0.015625,

0.0078125 and 0.00390625 m respectively. Computational limits prevent more mesh or

subcell density, although a level 9 mesh just for the 64 subcell case will also be used.

An adaptive mesh simulation for 64 subcells with three working levels (levels 6 to 8)

is also performed. The mesh is adapted to the finest level at the surface. The density-

based adaptation indicator (Equation 3.4) is used with refinement threshold, coarsening

threshold, and noise filter values of 0.3, 0.1 and 0.05 respectively for wedge solutions,

and 0.2, 0.1 and 0.02 respectively for cone solutions. These values were judged from

trial runs to be sufficient at capturing the shock. A low-order, reconstruction-off mesh

refinement study will be also run, just for the 64 subcell case.

Only those cells sufficiently far from the wedge or cone apex will be used to compute

the error norm in Equation 6.9 as the shock is initially smeared over a few cells, giving

high error for cells close to the apex. This is seen in Figure 6.12, which plots the pressure

distribution over the cone surface for the three subcell resolutions and also the analytic

surface pressure. Note the oscillatory nature of the computed distribution due to the

numerical surface roughening, and the finite distance over which the surface pressure

rises before leveling near the analytic value. Also note that the error at a cell can be

abnormally high if the surface normal is computed quite inaccurately there e.g. if the

cell is only slightly intersected. Only those cells greater than a distance of 0.25 m will

be used.

It will also be interesting to measure errors in the evaluation of the integrated force

along the cone surface, since the oscillating noise on the surface may to some extent

‘cancel’ the errors occuring from overly high or low pressure values. Thus force errors

may actually be lower than other errors or even stay roughly constant, which is a

favourable result for practical engineering purposes. The force is calculated according

to the procedure in Appendix E. The error measure for force will simply be the absolute

relative error i.e. |Fnum − Ftheory| /Ftheory.

70

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ss
ur

e

Distance

32 subcells
64 subcells

128 subcells
Analytical

Figure 6.12: Pressure distribution over cone surface

6.3.2 Results for Supersonic Flow past Wedge

Higher-order wedge solutions for various grids (for the 64 subcell case) are shown in

Figure 6.13. Also shown are outlines of the meshes, with the wedge surface and theo-

retical shock angle demarcated by the thicker and thinner black lines respectively. The

diagonal elements in each cell are an artifcat of the grid visualizer Paraview [90].

(a) Level 6 mesh (b) Level 7 mesh

(c) Level 8 mesh (d) Adaptive mesh, level 6-8

Figure 6.13: Wedge pressure contours for various grids, 64 subcells

71

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

The agreement with the theoretical shock angle for all solutions is quite good, and

the increasing shock resolution with finer meshes is obvious. The surface ‘noise’ arising

from inexact surface representation can also be seen. Because of the lack of a length

scale on this problem (the flow is essentially uniform before and after the shock), a

finer mesh can be thought to simply yield the same solution on a coarser mesh but over

a larger distance of the surface, which could explain why the noise (a finer scale flow

structure) is better observed for finer meshes (or larger domains). The shock resolution

on the adaptive solution appears just as sharp as the fully uniform level 8 solution,

whilst decreasing the number of cells used by more than a factor of ten.

Error versus uniform grid resolution

The solution error versus uniform grid spacing for the three different subcell resolutions

is shown in Figure 6.14. Grid-convergent behaviour is not always expected here as only

solution errors at the surface are considered. As metioned above, a finer grid yields the

same solution only at a larger scale, so the surface noise for this problem will decrease

only with better subcell, not grid, resolution (see Figure 6.15).

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

P
re

ss
ur

e
no

rm

Cell size (m)

32 subcells
64 subcells

128 subcells
1st order, 64 subcells

(a) Pressure norm vs grid size

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0.0075

 0.008

 0.0085

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

D
en

si
ty

 n
or

m

Cell size (m)

32 subcells
64 subcells

128 subcells
1st order, 64 subcells

(b) Density norm vs grid size

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

F
or

ce
 r

el
at

iv
e

er
ro

r

Cell size (m)

32 subcells
64 subcells

128 subcells
1st order, 64 subcells

(c) Force error vs grid size

Figure 6.14: Wedge solution error vs grid size for various subcells

72

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

Note in Figure 6.14(a) the surface pressure norm is seen to increase slightly for finer

grids using 32 subcells, whilst for finer subcell resolutions the norms remain somewhat

constant. The low-order density norm is also lower than the higher-order value at one

point (Figure 6.14(b)). These counter-intuitive results might be expected, as depending

on how the surface intersects the mesh, it is possible that coarser mesh or subcell

resolutions actually perform better for a given test case. The low-order pressure solution

closely coincides with the higher-order result; this may be expected given the absence

of reconstruction at surfaces (Section 4.3.3). However, it does not always coincide (e.g.

in the density or force solution) due to the presence of reconstruction away from the

surface. All these errors are fairly low, typically much less than 2%.

The force errors (Figure 6.14(c)) seem to generally decrease for finer meshes. For

nearly all mesh resolutions, these errors do not seem so dependent on subcell resolution

compared to the pressure or density norm. The force errors do not exceed 0.7% even for

the coarsest mesh. This result is quite encouraging, suggesting that obtaining a quite

accurate force value does not require a high grid or subcell resolution.

Error vs subcell resolution

This time the solution errors versus the inverse of the number of subcells are plotted

for the three main uniform grid levels in Figure 6.15. Also shown are adaptive mesh

errors, just for the 64 subcell case. As better subcell resolution means better surface

representation, it should be expected that these graphs show decreasing error for more

subcells.

The fairly linear decrease of the pressure surface norm with increasing subcell res-

olution (for all meshes) can be seen in Figure 6.15(a). The adaptive pressure error

is very close to the finest 64 subcell uniform grid result. The apparently superlinear

decrease of density surface norm with increasing subcell resolution is also observed in

Figure 6.15(b). However, the adaptive density error is significantly lower than the 64

subcell uniform grid result.

The force errors (Figure 6.15(c)) do not seem to display subcell-convergent behaviour

and seem to stay roughly constant. This is probably due to the partial cancellation

of surface pressure noise as described in Section 6.3.1. However, the errors seem to

increase slightly for the 128 subcell case, but this may simply be the accidental result

of the numerical surface roughening described above. The adaptive solution error again

is lower than the finest uniform mesh result (it just may be that cancellation is not so

good for this subcell value).

73

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.005 0.01 0.015 0.02 0.025 0.03 0.035

P
re

ss
ur

e
no

rm

1/(No. subcells)

dx=0.015625
dx=0.0078125

dx=0.00390625
Adaptive

(a) Pressure norm vs subcell resolution

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0.0075

 0.008

 0.005 0.01 0.015 0.02 0.025 0.03 0.035

D
en

si
ty

 n
or

m

1/(No. subcells)

dx=0.015625
dx=0.0078125

dx=0.00390625
Adaptive

(b) Density norm vs subcell resolution

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.005 0.01 0.015 0.02 0.025 0.03

F
or

ce
 r

el
at

iv
e

er
ro

r

1/(No. subcells)

dx=0.015625
dx=0.0078125

dx=0.00390625
Adaptive

(c) Force error vs subcell resolution

Figure 6.15: Wedge solution error vs subcell resolution for various grids

Conclusions

The surface errors for this subcell and mesh refinement study are shown to be quite low

despite the presence of surface noise, showing that the VCE method does not result in

an excessively numerically roughened surface. It is encouraging to see that solutions

generally display fairly good convergent behaviour (at least for surface values) for in-

creasing subcell resolution. The force errors seem to stay roughly constant as subcell

resolution is increased, due to partial cancellation of the pressure noise. The adaptive

mesh solution consistently gave errors as low (or lower than) the finest uniform mesh,

illustrating the effectiveness of adaptive meshes in producing accurate solutions with

fewer computational resources.

6.3.3 Results for Supersonic Flow Past Cone

Higher-order cone solutions for various grids (for the 64 subcell case) are shown in

Figure 6.16. Like the wedge solutions of Section 6.3.2, agreement with the theoretical

shock angle for all solutions and increasing shock resolution with finer meshes is readily

74

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

observed. Surface noise arising from VCE surface effects can be seen again. The adaptive

solution seems to produce a solution of comparable quality to the finest uniform grid.

(a) Level 6 mesh (b) Level 7 mesh

(c) Level 8 mesh (d) Adaptive mesh, level 6-8

Figure 6.16: Cone pressure contours for various grids, 64 subcells

Error versus grid resolution

The solution error versus uniform grid spacing for the three different subcell resolutions

is shown in Figure 6.17. Unlike the wedge solutions in Section 6.3.2, grid-convergence

for surface errors should expected here because finer grids have cells closer to the cone

surface, and the solution here does vary between the shock and the surface. Nonetheless,

occasional counter-intuitive results arising from the VCE surface effects (described in

Section 6.3.2) may occur.

In Figure 6.17(a) the somewhat linear decrease of pressure error with cell size can be

seen, which may be a result of the nominally first-order solution scheme at the surface

(Section 4.3.3). The first-order error is nearly the same magnitude as the higher-order

error (for 64 subcells) for finer cell sizes. Pressure errors are all smaller than 4%.

Figure 6.17(b) plots the density norm, which generally decrease with finer cell size.

This time the first-order solution has a consistently higher error. Errors are all smaller

than 2%.

The force errors (Figure 6.17(c)) display superlinear grid convergence. However, the

error behaves linearly for the first-order solution. Power law fits of the higher-order

75

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

P
re

ss
ur

e
no

rm

Cell size (m)

32 subcells
64 subcells

128 subcells
1st order, 64 subcells

(a) Pressure norm vs grid size

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

D
en

si
ty

 n
or

m

Cell size (m)

32 subcells
64 subcells

128 subcells
1st order, 64 subcells

(b) Density norm vs grid size

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

F
or

ce
 r

el
at

iv
e

er
ro

r

Cell size (m)

32 subcells
64 subcells

128 subcells
1st order, 64 subcells

(c) Force error vs grid size

Figure 6.17: Cone solution error vs grid size for various subcells

curves give convergence orders between 1 and 2. This example shows an interesting

reverse trend that lower subcell resolutions give a more accurate force result. The force

errors here are significantly higher than the wedge case (Figure 6.14(c)), although they

still are lower than 3%.

Error vs subcell resolution

The results of a previous study [204] are repeated here which show the decrease of

solution noise with increasing subcell resolution in Figure 6.18. The surface noise can

be qualitatively seen to decrease as subcell resolution is increased. The graphs of solution

error versus the inverse of the number of subcells are shown in Figure 6.19. Also shown

are adaptive mesh errors, just for the 64 subcell case.

Pressure norms for finer meshes seem to decrease fairly linearly with increasing sub-

cell resolution (Figure 6.19(a)) although they are nearly constant for the coarsest mesh.

The adaptive 64 subcell pressure error is very close to the equivalent finest mesh 64

subcell error. Decreasing values of the density surface norm are also shown in Fig-

ure 6.19(b). The density error on the adaptive 64 subcell solution is lower than the

76

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

(a) 32 subcells (b) 64 subcells

(c) 128 subcells

Figure 6.18: Cone density contours for various subcells, level 8 mesh (from [204])

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.005 0.01 0.015 0.02 0.025 0.03 0.035

P
re

ss
ur

e
no

rm

1/(No. subcells)

dx=0.015625
dx=0.0078125

dx=0.00390625
Adaptive

(a) Pressure norm vs subcell resolution

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0.005 0.01 0.015 0.02 0.025 0.03 0.035

D
en

si
ty

 n
or

m

1/(No. subcells)

dx=0.015625
dx=0.0078125

dx=0.00390625
Adaptive

(b) Density norm vs subcell resolution

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.005 0.01 0.015 0.02 0.025 0.03 0.035

F
or

ce
 r

el
at

iv
e

er
ro

r

1/(No. subcells)

dx=0.015625
dx=0.0078125

dx=0.00390625
Adaptive

(c) Force error vs subcell resolution

Figure 6.19: Cone solution error vs subcell resolution for various grids

77

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

equivalent finest mesh 64 subcell error.

The force errors (Figure 6.19(c)) apparently do not display subcell-convergent be-

haviour. There is a slight increase of error with finer subcell resolution. The consider-

ations of Section 6.3.2 would seem to apply, namely, that this could be an accidental

product of the numerical VCE surface roughening. In [204] a similar subcell conver-

gence study was performed, this time by recording the maximum values in pressure and

density relative error over the surface (rather than the root mean square error). An

additional subcell value of 256 was included in the study. The resulting graph is shown

in Figure 6.20.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

R
el

at
iv

e
er

ro
r

1/N

Density
Density fit: 0.0237 + 205x^2.43

Pressure
Pressure fit: 0.012 + 7.04x^1.55

Force

Figure 6.20: Maximum errors vs subcell resolution for cone (From [204])

In this example, the integrated force relative error does stay roughly constant with

subcell resolution, demonstrating that despite greater noise at lower resolutions, cancel-

lation between positive and negative pressure amplitudes does occur. The force error

is quite low at around 1%. Power-law curve fits for the pressure and density errors

have also been attempted to calculate an approximate ‘convergence order’ for subcell

resolutions. These convergence orders are 2.43 and 1.55 for the density and pressure

errors respectively, which is encouraging given that the underlying flow solver also has

greater than first-order accuracy.

Conclusions

Like with the wedge study of Section 6.3.2, surface errors are quite low despite the

presence of surface noise and additional axisymmetric complications (Appendix E.1).

Nevertheless, there is still observable subcell- and mesh-convergent behaviour. The

decreases in error as both subcell and mesh resolution are successively doubled (Fig-

78

6.3. VERIFICATION OF SUPERSONIC WEDGE AND CONICAL FLOW

ures 6.17 and 6.19) seem to be of similar magnitude. The adaptive mesh solution for

the 64 subcell case likewise consistently gave errors as low (or lower than) the equivalent

finest uniform mesh. The VCE method appears to produce quite satisfactory results

when very high resolution solutions are not required e.g. for practical engineering design

purposes say where the integrated pressure forces are required.

6.3.4 Performance of Wedge and Conical Flow Solution

The solution time versus total number of cells (in turn related to mesh level) for the

wedge and cone simulations is plotted in Figure 6.21. This is done for the 64 subcell

case only as the curve can be directly compared with the adaptive grid solutions which

were also performed with 64 subcells. All solutions were marched from the same initial

condition and terminated at the same flow time.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 10000 20000 30000 40000 50000 60000

T
ot

al
 s

ol
ut

io
n

tim
e

(s
)

Total no. cells

Uniform grid results
Curve fit: -58.18 + 0.00523x^1.47

Adaptive grid result

(a) Wedge solution performance, 64 subcells

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 10000 20000 30000 40000 50000 60000

T
ot

al
 s

ol
ut

io
n

tim
e

(s
)

Total no. cells

Uniform grid results
Curve fit: -179 + 0.012x^1.38

Adaptive grid result

(b) Cone solution performance, 64 subcells

Figure 6.21: Performance of wedge and cone solutions on 64 subcells

A power-law curve fit through the uniform grid results is also seen, with the solution

time scaling with the grid size according to a power of 1.47 and 1.38 for the wedge and

cone simulations respectively. These figures are close to the theoretical scaling of 1.5 on

a square, uniform mesh (Section 6.1.5), but due to the presence of the wedge or cone

geometry the mesh here is not a perfect square.

The performance of the adaptive solution is also shown on these graphs, where the

final (and maximum) number of cells for the adaptive simulation is reported. For the

wedge solution, the number of cells in the adaptive mesh is decreased by nearly a factor

of 10 over the uniform grid, with time savings of a factor of 8.14. For the cone case, the

savings in storage and solution time are 9.3 and 7.1 respectively. These are significant

savings in both time and storage, and adaptive mesh results are at least as accurate

as the equivalent finest level mesh. In three dimensions, the time and storage savings

should be even greater.

79

6.4. VERIFICATION OF SUPERSONIC VORTEX FLOW

6.4 Verification of Supersonic Vortex Flow

This two-dimensional test case is an inviscid supersonic vortex bounded by two circular,

ninety-degree arcs, and is chosen because it has a smooth, analytic solution [6] and can

be compared with previous solutions [110, 148]. This test case is also worth performing

as a global order of convergence can be computed, and this problem has a slightly more

complex geometry compared to the wedge and cone study of Section 6.3. The flow

conditions are chosen to be identical to those of References [6, 110, 148].

The initial flow condition chosen for the domain is

ρ = 1.0, P = 1.0, u = v = 0

The inner arc radius is at ri = 1 and the outer arc radius at ro = 1.384. The analytic

density as a function of radius r for this flowfield is

ρ (r) = ρi

[
1 +

γ − 1

2
Mi

2

(
1 −

(ri

r

)2
)] 1

γ−1

(6.10)

where the inlet Mach number at the inner radius is Mi = 2.25 and density ρi = 1.

The pressure Pi = 1/γ and it varies throughout the flowfield according to the isentropic

relation P = Piρ
γ. The inflow (at x = 0) is distributed inversely proportional to the

radius i.e. ui = (Mi/r) î.

The global discretization error is computed two different ways, a dimensionless L1

norm representing ‘average’ error (Equation 6.11) –

L1 =
1

N

∑∣∣∣∣
Qnum − Qexact

Qexact

∣∣∣∣ (6.11)

where N is the number of cells, Qnum is the computed numerical solution (in this case it

will be density) and Qexact the exact solution. Another error measure is the dimensionless

root mean square norm already enunciated in Equation 6.9.

Like Section 6.1, the grid convergence order is obtained from simulations on three

successivly-refined uniform grids. They are mesh levels 5, 6, and 7 corresponding to

cell sizes of 0.04325, 0.021625, and 0.0108125 m respectively. Three different subcell

resolutions are also used (32, 64, and 128 subcells) to observe error behavior with subcell

refinement.

The flux solvers are AUSMDV and EFM, and a first-order (no reconstruction) grid

convergence study will also be performed with AUSMDV. As the circular walls are rep-

resented by polygons, care was taken to position the points along the arc circumference

such that their distance was at least five times smaller than the smallest cell size, to

minimize errors from the geometry representation itself.

80

6.4. VERIFICATION OF SUPERSONIC VORTEX FLOW

6.4.1 Results for the Supersonic Vortex Problem

The nine pressure solutions (3 mesh levels, 3 subcell resolutions) with overlayed Carte-

sian grid outlines are shown in Figure 6.22. The noisy behaviour at the surface is obvious

on coarser meshes. Due to grid coarseness and the flow visualizer behaviour, contours

can sometimes appear outside walls.

Figure 6.22: Pressure contours for supersonic vortex simulations

Nonetheless, the general smoothness of the solution shows that VCE does represent

the surface fairly well. The smoothness becomes more evident with increasing mesh

refinement. However, the improvement in quality is not as obvious for a fixed mesh

level and increasing subcell resolution.

Grid convergence

The AUSMDV convergence orders are shown in Table 6.10. An additional simulation

was performed where errors only from surface cells were computed, to test convergence

for the locally ‘noisier’ flow there. This simulation, and the first-order one, is performed

only for 64 subcells.

81

6.4. VERIFICATION OF SUPERSONIC VORTEX FLOW

Table 6.10: AUSMDV grid convergence orders for supersonic vortex problem

No. subcells

Norms 32 64 128

First-order, L1 - 1.04416 -

First-order, L2 - 1.20606 -

L1 1.69724 1.72636 1.99776

L2 1.85416 1.90352 2.10717

Surface L1 - 1.63797 -

Surface L2 - 1.73622 -

The convergence orders are even better than reported body-fitted grid values [110,

148], and are comparable to previous Cartesian grid values [2] of 1.82 to 2.11. Wall

boundary representations might improve much better on Cartesian grids undergoing

refinement compared with body-fitted grids, partially explaining why these convergence

orders are so high.

These values are also considerably better than the observed orders in Sections 6.1.2

and 6.1.4 (despite the smoothness of both solutions), confirming again the problem-

dependent nature of convergence orders, and deflating the suspicion that the poorer

convergence behaviour in previous verification studies is the result of coding error. There

is also an apparent trend that convergence order increases for higher subcell resolution.

The convergence is also good even when only surface values are observed, demonstrating

good VCE representation of the curved surface. The EFM convergence orders are shown

in Table 6.11, and the values are comparable with those in Table 6.10.

Table 6.11: EFM grid convergence orders for supersonic vortex problem

No. subcells

Norms 32 64 128

L1 1.58489 1.89283 1.97694

L2 1.75611 1.98967 2.0864

Subcell convergence

Alternatively ‘subcell convergence’ orders can be obtained from curves that plot error

norm with respect to the inverse of the number of subcells (for a fixed mesh resolution),

like in Figure 6.23 for the AUSMDV solution. Figure 6.23 shows the decreasing error

82

6.4. VERIFICATION OF SUPERSONIC VORTEX FLOW

for increasing subcell resolution for a given mesh. All error norms are fairly low, less

than 2.5%.

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.005 0.01 0.015 0.02 0.025 0.03 0.035

D
en

si
ty

 n
or

m

1/(No. subcells)

dx=0.04325
dx=0.021625

dx=0.0108125

Figure 6.23: Solution norm vs subcell resolution for supersonic vortex problem (AUS-
MDV)

The subcell ‘convergence orders’ are shown in Tables 6.12 and 6.13. It is encouraging

to see these convergence orders are similar in magnitude to the formal order of accuracy

for the numerical method, and that for this problem the solutions converge consistently

and roughly equally in both subcell and grid resolution.

Table 6.12: AUSMDV subcell convergence orders for supersonic vortex problem

Mesh level

Norms 5 6 7

L1 2.19552 1.42058 2.0398

L2 2.45689 1.71389 2.71342

Table 6.13: EFM subcell convergence orders for supersonic vortex problem

Mesh level

Norms 5 6 7

L1 1.56195 1.99705 2.12797

L2 1.51753 2.21202 2.86945

83

Chapter 7

Validation - Shock Diffraction Over Wedge

The unsteady diffraction of a Mach 1.3 shock wave over a 55◦ wedge will be simulated.

These results can be compared with the simulations of Sivier et al [189] (which used

Löhner’s FEM-FCT code [131]) and can also be compared with Schardin’s experimental

work [182], and is thus a validation test case.

Figure 7.1(a) shows Sivier’s [189] density contours some time after the initial shock

has diffracted over the wedge. Several flowfield features can be observed – shocks, re-

flected shocks, a slip layer, Mach stems, expansion fan, vortex and entropy layer. There

also exists shock-vortex interaction. Figure 7.1(b) gives a schematic of flow measure-

ments associated with these features. These measurements include –

1. x – horizontal distance from the back of the wedge to the primary shock

2. a – horizontal distance from wedge nose to primary reflected shock (feature ‘B’ in

Figure 7.1(a))

3. r – vertical distance from wedge midline to highest point of primary reflected shock

(B)

4. b – horizontal distance from the back of the wedge to triple point formed at the

intersection of diffracted Mach stem (D) and its reflected shock (H)

5. c – horizontal distance from the back of the wedge to the intersection of the

diffracted Mach stem’s reflected shock (H) and the slip layer (C)

6. d – horizontal distance from wedge midline to the highest point of the shock (I)

7. vcx – horizontal distance from back of the wedge to the geometric centre of the

vortex (F)

8. vcy – vertical distance from wedge midline to the geometric centre of the vortex

(F)

A goal of this validation exercise is to match frame by frame the results of Sivier et

al and demonstrate good agreement in results. This is done by extracting their shock

84

(a) Sivier’s density contours at frame 11 (b) Diagram of measured flow features

Figure 7.1: Flow features in shock diffraction over wedge problem (from [189])

speed, frame rate and initial shock location [189]. The Rankine-Hugoniot relations [10]

can then be used to calculate the post-shock pressure and density ratios and flow speed.

Nonetheless, it is impossible to fully replicate the simulations of Sivier et al [189] as

they use a finite element scheme and unstructured grids. The ambient atmospheric and

post-shock conditions are given in Table 7.1. The present simulations assume perfect

gas air (γ = 1.4) and will use the AUSMDV flux solver.

Table 7.1: Initial flow conditions for shock diffraction problem

Ambient Post-shock

ρ 1.145144 kg/m3 1.73569 kg/m3

P 105 Pa 1.805 × 105 Pa

U 0 154.653 m/s

Figure 7.2: Numerical domain for shock diffraction over wedge study

In this study the computation domain is shown in Figure 7.2. Two different adaptive

meshes will be used to test grid dependence. For the first case, five working mesh levels

(levels 5 to 10) corresponding to cell sizes ranging from 4.38 × 10−3 to 1.37 × 10−4 m

will be used. In the higher resolved case, grid levels 6 to 11 will be used, corresponding

to cell sizes from 2.19 × 10−3 to 6.84 × 10−5 m. Note the minimum cell size of Sivier

et al is 2.8 × 10−5 m [189], so their results might be more resolved, but the goal of

85

7.1. RESULTS FOR THE SHOCK DIFFRACTION OVER WEDGE

this validation exercise is to demonstrate good agreement, not exact correspondence.

The density-based adaptation indicator (Equation 3.4) is used with 0.063, 0.035 and

0.004 for the refinement, coarsening and noise filter thresholds respectively; Sivier et al

[189] also use the same indicator, but their choice of values was inappropriate for this

methodology as it resulted in excessive cell refinement. The number of subcells are 64

and 10 for the cell area and volume respectively.

7.1 Results for the Shock Diffraction Over Wedge

In this section the computed densities at different frames are presented (the results are

from the higher resolution solution). The flowfield corresponding to frame 2 of Sivier

et al [189] is shown in Figure 7.3. The current results seem to lag very slightly behind

the results of Schardin [182] and Sivier et al [189]. This is unfortunate, but the initial

conditions are based on a best estimate on the initial incident shock location in Sivier’s

paper [189]. However, general good agreement with previous results can be seen. The

slip layer can be clearly observed and very close to the wedge surface there appears

to be slight solution noise arising from the VCE approximate surface representation

(Section 2.4.4), but this is relatively small.

The adapted mesh in Figure 7.3(b) also superimposes the schileren image of the

flowfield; note the diagonal lines in the mesh outlines are an artifact of the grid visualizer.

The grid has adapted well to all major flow features, however not all cells along the slip

layer are at maximum level; an additional entropy indicator, as recommended by Sivier

et al [189], would improve the adaptation there.

Figure 7.4 shows the results at Frame 4. Agreement with Sivier’s results is quite

good, but the curled-up entropy fan is not as well resolved. This could be due to their

finer minimum cell size and entropy adaptation indicator. Some contours upstream of

the expansion fan exhibit more noisy behaviour compared to Sivier’s result; this could

be due to the less dissipative AUSMDV scheme being used compared to the FEM-FCT

scheme with artificial viscosity and partly also from the numerically roughened surface.

Also, the mesh is coarser in these regions (from Figure 7.4(b)) and the contours pass

through different sized cells, which makes for uneven visualization.

In Figure 7.5 (frame 6) the diffracted Mach stem has reflected from the bottom wall

(equivalent to the crossing of the Mach stems with a symmetric boundary condition).

Both the still-deforming slip layer and the curled-up entropy fan are moving closer to

each other, in agreement with Sivier’s result. Agreement in all major flowfield features

with experimental and numerical results is quite good (although the computed results

seem to lag slightly in time, as discussed above).

86

7.1. RESULTS FOR THE SHOCK DIFFRACTION OVER WEDGE

(a) Density contours for frame 2 (b) Grid and schlieren for frame 2

(c) Schardin frame 2 (from [182]) (d) Sivier frame 2 (from [189])

Figure 7.3: Frame 2 results for shock diffraction over wedge study

(a) Density contours for frame 4 (b) Grid and schlieren for frame 4

(c) Schardin frame 4 (from [182]) (d) Sivier frame 4 (from [189])

Figure 7.4: Frame 4 results for shock diffraction over wedge study

87

7.1. RESULTS FOR THE SHOCK DIFFRACTION OVER WEDGE

(a) Density contours for frame 6 (b) Schardin frame 6 (from [182])

(c) Sivier frame 6 (from [189])

Figure 7.5: Frame 6 results for shock diffraction over wedge study

In Figure 7.6 (frame 8) the reflected Mach stem (H) has been broken in two by

the vortex. The accelerated end of this shock (I) extends from the back wedge face to

the vortex, and the remnant of the reflected Mach stem (H) is decelerated below the

vortex. The slip layer and entropy layer continue to move closer to each other, but

these features are not as sharply resolved as Sivier’s [189]. Unlike Sivier’s simulation,

Kelvin-Helmholtz instabilities arising from the interaction of shocks I and H with the

vortex are not present, although they do develop at later times. This may be due to the

coarser grid resolution and the associated numerical diffusion because Kelvin-Helmholtz

is sensitive to diffusive effects. In all other respects the results agree quite well with the

previous work.

In frame 9 (Figure 7.7) the shock (I) has passed through the vortex layer and is

growing into a cylindrical configuration. What appears to be the beginnings of a Kelvin-

Helmholtz instability in the vortex layer can be seen near the wedge corner. There also

appears to be a triple point arising from interaction with the reflected Mach stem (H)

and the vortex (also visible in Sivier’s simulation).

The flowfield results for the final frame, frame 11, are shown in Figure 7.8. All major

flow features present in Figure 7.8(b) agree well with Sivier’s simulation (Figure 7.8(d)).

The entropy layer (G) is more visible here than at other frames, and the shock (I) is

88

7.1. RESULTS FOR THE SHOCK DIFFRACTION OVER WEDGE

(a) Density contours for frame 8 (b) Schardin frame 8 (from [182])

(c) Sivier frame 8 (from [189])

Figure 7.6: Frame 8 results for shock diffraction over wedge study

(a) Density contours for frame 9 (b) Schardin frame 9 (from [182])

(c) Sivier frame 9 (from [189])

Figure 7.7: Frame 9 results for shock diffraction over wedge study

89

7.1. RESULTS FOR THE SHOCK DIFFRACTION OVER WEDGE

now much more sharply resolved than in Figure 7.7(a). Also present (and observable

in Sivier’s results) is the formation of a triple point at the intersection of the diffracted

Mach stem (D) and reflected Mach stem (H).

The adapted mesh (with overlaid flowfile schlieren) is shown in Figure 7.8(c) and it

is clear that it continues to refine over discontinuities. There seems to be some spurious

refinement at the top wall upstream of the reflected shock (B) whose cause is not exactly

known. However, given that the top wall is not exactly flush with the grid boundary

and the suppression of reconstruction for intersected cells, it is possible that slightly

aphysical disturbances arise that trigger adaptation.

(a) Schardin frame 11 (from [182]) (b) Density contours for frame 11

(c) Grid and schlieren for frame 11 (d) Sivier frame 11 (from [189])

Figure 7.8: Frame 11 results for shock diffraction over wedge study

Most notably the schlieren in Figure 7.8(c) shows a more developed Kelvin-Helmholtz

instability in the vortex layer. This is also observable from the experimental results in

Figure 7.8(a) and is more clearly seen in a closeup of the flowfield at the vortex in

Figure 7.9. The coarser and finer mesh resolution is displayed to compare how well this

instability is captured. It is obvious that the dissipation inherent in the coarser mesh

simulation suppressed the generation of the secondary vorticies (evident in the finer mesh

simulation), although the vortex layer is nonetheless slightly unstable and perturbed.

This demonstrates again the highly grid-dependent nature of these instabilities [16, 84].

Quantitative flowfield measurements from the flow features described in Figure 7.1(b)

90

7.1. RESULTS FOR THE SHOCK DIFFRACTION OVER WEDGE

(a) Frame 11 closeup (coarser resolution) (b) Frame 11 closeup (finer resolution)

Figure 7.9: Frame 11 closeup of Kelvin-Helmholtz instability

-1

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12

D
is

ta
nc

e
(c

m
)

Frame

r

a

x

Lohner CFD
Schardin expt

CFD coarse
CFD fine

(a) Primary structures

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10 11 12

D
is

ta
nc

e
(c

m
)

Frame

b c

d

Lohner CFD
Schardin expt

CFD coarse
CFD fine

(b) Secondary structures

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12

D
is

ta
nc

e
(c

m
)

Frame

vcx

vcy

Lohner CFD
Schardin expt

CFD coarse
CFD fine

(c) Vortex trajectory

Figure 7.10: Flowfield measurements for shock diffraction over wedge study

91

7.2. SERIAL PERFORMANCE

are plotted in Figure 7.10, where results from the two grid resolutions are shown to

observe grid dependence. The primary flow structures (a, r and x) and the secondary

flow structures (b, c and d) are plotted in Figures 7.10(a) and 7.10(b) respectively.

Agreement with previous results is quite good, with nearly grid-independent behaviour.

In Figure 7.10(c) the vortex position (vcx and vcy) is plotted. Agreement with

Sivier’s result is quite good, and possible explanations of discrepancies with Schardin’s

experiments include the difficulty of locating the vortex and the complex interaction of

the reflected Mach stem with the vortex [189]. These results demonstrate that OctVCE,

despite the issues with flow noise at surfaces (Section 2.4.4), has the ability to provide

an accurate and fairly well-resolved simulation of this problem. Along with Sivier et al

[189], it is reasonable to assert that surface wedge pressures would also be estimated

well.

7.2 Serial Performance

The serial performance of the simulations is profiled using the GNU profiler gprof.

The relative percentages of time spent in important portions of the code are shown in

Table 7.2 for the two different resolution simulations. The important sections of the

code are –

1. Reconstruction-related operations – computing gradients, limiters, reconstruction

2. Solution advancement – computing fluxes, timesteps, boundary conditions, time

integration

3. Adaptation – computing adaptation indicators, refining and coarsening the mesh

4. Geometric operations – point-inclusion tests, calculating cell geometric properties

5. Connectivity management – updating mesh connectivity, list operations

6. Output – writing solutions to output files

It is clear that reconstruction-related operations are a large fraction of the computa-

tion time, and the relative difference between these operations and solution advancement

is quite similar to the performance figures in Section 6.1.5. It might be worthwhile for

future work to investigate more efficient ways to perform reconstruction. There ap-

pears to be good efficiency in the adaptation process, but connectivity management is

a necessary overhead on an adaptive scheme, meaning a net overhead of around 10%

for the entire adaptation process. This is actually a fairly significant figure that can

92

7.3. PARALLEL PERFORMANCE

Table 7.2: Serial performance for shock diffraction over wedge simulations (reported

values in percentages)

Code portion Coarser resolution Finer resolution

Reconstruction-related 47.65 49.77

Solution advancement 27.66 32.46

Adaptation 3.36 3.86

Geometric operations 14 9.1

Connectivity management 7.13 4.55

Output 0.2 0.26

Solution run time (hrs) 9.5 44.7

Max. no. cells 1.3 × 105 2.83 × 105

further limit the Amdahl speedup (Section 5.4), so parallelizing adaptation might be

a worthwhile goal. There is very low cost associated with solution output, but this is

dependent on the file output frequency.

Currently with OctVCE the parallelization of adaptation, geometric operations and

connectivity management for two-dimensional problems is not performed. Also, the

relatively high cost of geometric operations in Table 7.2 would probably be lower in

three-dimensional simulations as there is some redundancy in geometric calculations in

two-dimensional simulations. It seems that geometric and connectivity management

operations reduce for the higher resolution simulation, showing that as grids become

finer more time is spent in solving the actual flow equations.

7.3 Parallel Performance

The parallel performance of this problem on 2 and 4 processors is measured, and the

observed speedups in execution time for the coarser and finer resolution simulations are

shown in Table 7.3. These simulations were run on the University of Queensland owned

SGI Altix 3700 supercomputing facility. It is clear that the speedup performance is not

very good, indicating a large serial code fraction and/or high parallel overheads.

Table 7.3: Observed speedups for shock diffraction over wedge simulations

2 processors 4 processors

Coarser resolution 1.69 1.9

Finer resolution 1.59 2.05

93

7.3. PARALLEL PERFORMANCE

The Karp-Flatt Metric [113] (Equation 5.2) can calculate an ‘effective’ serial frac-

tion e given the speedup. This effective fraction incorporates both the actual serial and

parallel overhead code fractions ε and ω respectively. Using the Intel compiler with the

openmp-profile option also permits a degree of parallel code profiling, but although

total time spent in serial and parallel regions is reported, these implicitly include over-

heads and so an accurate value of ε(n) cannot be computed. Nonetheless, other useful

reported measures are the per-thread time spent in barrier (synchronization) regions

b (n, p) and the cumulative imbalance time (the total sum in the course of the simu-

lation of the time difference between threads for each entry to the region). Only the

maximum values of the barrier and imbalance times will be reported, and these values

should ideally be low.

Using the terminology of Section 5.4 for problem size n let to (n, p) be the parallel

overhead given p processors; the important quantities are

β (n, p) = b (n, p) / (σ (n) + φ (n))

e (n, p) = (σ (n) + to (n, p)) / (σ (n) + φ (n))

ε (n) = σ (n) / (σ (n) + φ (n))

ω (n, p) = to (n, p) / (σ (n) + φ (n))

E (n, p) = σ (n) + φ (n) /p + to (n, p) (7.1)

β(n, p) can be thought of as a barrier fraction of the code, and E (n, p) is the total elapsed

time of the simulation. As mentioned in Section 5.4 the Karp-Flatt metric can be used

to plot the behaviour of e (n, p) for different numbers of processors p, and extrapolated

to yield an estimate of e (n, 1) ' ε (n) (no parallel overheads exist for serial execution).

In many cases, it is difficult to determine the actual value of ε(n) due to code complexity

and this extrapolation is the simplest way. It is thus possible also to obtain an estimate

to ω i.e. ω (n, p) = e (n, p) − e (n, 1). As a measure of the extrapolation’s validity, the

elapsed time on p processors can be estimated and compared with the measured elapsed

time using the formula

E ′ = [e(n, 1) + (1 − e(n, 1)) /p + ω(n, p)] t1(n) (7.2)

where t1(n) is the measured serial elapsed time (t1(n) ≡ σ(n) + φ(n)) and e(n, 1) is the

extrapolated serial fraction. The performance statistics discussed above are reported

in Table 7.4, which reports these statistics for the 1, 2 and 4 processor simulations for

the coarser and finer resolutions. The fraction of overhead spent in synchronizations (or

barriers), β/ω is also shown.

A discussion of each performance statistic is given below. Firstly, the effective serial

fraction e for both coarse and fine resolutions is quite significant given the more limited

94

7.3. PARALLEL PERFORMANCE

Table 7.4: Parallel performance statistics for shock diffraction over wedge simulations

1 processor 2 processors 4 processors

Coarse Finer Coarse Finer Coarse Finer

Single processor time (s) t1 34237 160903

‘Effective’ serial fraction e 0.183 0.26 0.367 0.316

Extrapolated serial 0.0915 0.231

fraction e(n, 1)

Overhead fraction ω 0.0919 0.028 0.276 0.0854

Barrier fraction β 0.009 0.0087 0.0793 0.0154

Barrier/overhead β/ω 0.104 0.306 0.288 0.18

Imbalance time/elapsed time 0.0033 0.0029 0.0563 0.0106

Estimated elapsed time (s) E ′ 21831 103623 20347 81847

Measured elapsed time (s) E 20232 101364 17978 78402

parallelization of the two-dimensional code discussed in Section 7.2, and it increases for

more processors due to parallel overhead (time spent in process startup, communication

or synchronization). The increase (between 2 and 4 processors) is 0.184 and 0.056 for

the coarser and finer grid results respectively. The increase is smaller for the finer grid

result, probably due to the Amdahl effect [151] (Section 5.4) where the parallel overhead

fraction typically decreases for larger problem sizes as to has a lower complexity than φ.

The extrapolated serial fraction e(n, 1) ' ε appears to be smaller for the coarser grid

result. Perhaps one cause of this stems from the longer execution time in some serial

operations for larger problem sizes like list traversals which utilize indirect addressing.

However the value of e(n, 1) is an estimate and the serial fraction ε may be different if

executed using the resources of more processors.

The overhead fractions ω are based on extrapolated ε values and for the coarser

grid result are very signficant, being larger than its extrapolated serial fraction, and

increasing by about a factor of 3 between 2 and 4 processors. The overheads for the

finer grid result are consistently smaller (the Amdahl effect) by about 70% and also

increase by about a factor of 3. They are also smaller than its extrapolated serial

fraction. The barrier fractions β are smaller than the overhead fractions as expected,

and are generally smaller for the finer resolution simulation. The predominant parallel

overheads appear to consist of communication overheads.

Imbalance times are quite small (demonstrating good load balancing), and appear

to increase for more processors, and is less significant for the finer resolution, indicating

95

7.3. PARALLEL PERFORMANCE

better performance in parallel regions. Estimated elapsed times E ′ also compare quite

well with actual elapsed times E (indicating a reasonably sound extrapolation of e(n, 1)),

but are somewhat larger. Thus could be due to the conservatism in the ω estimates.

Also, the elapsed 1 processor time t1(n) used to compute E ′ in Equation 7.2 may have

been smaller if it were run with the increased memory resources of a parallel simulation.

The performance statistics suggest a fairly large fraction of the code remains serial

for this problem, limiting parallel efficiency. Moreover, parallel overheads are also quite

significant, and increase considerably with more processors. Synchronization times also

form a significant portion of these overheads, although communication time is apparently

the dominant factor. This behaviour is expected for a NUMA machine like the Altix

and the minimal exploitation of locality of storage (and large memory requirements) of

the code as described in Section 5.5.3.

96

Chapter 8

Validation – Shock Diffraction Over

Cylinder

This two-dimensional validation test case simulates inviscid shock wave diffraction over a

circular cylinder, and was also presented in References [202, 203]. Notable experimental

work on this problem was performed by Bryson and Gross [42] and past numerical work

included inviscid simulations on finite difference [225], body-fitted structured [16, 230]

and adaptive Cartesian [153] grids.

The shock speed is Mach 2.81, and the pre- and post-shock gas conditions are shown

in Table 8.1. The post-shock conditions were obtained from the Rankine-Hugoniot

relations. Perfect gas air (γ = 1.4) is assumed. The domain size is similar to Quirk’s

domain [153]. The numerical results here will also compare solution contours with

Quirk’s adaptive Cartesian code [153] because of similarity in methodology and because

Quirk’s solution, which uses finer grids, is more resolved.

Table 8.1: Initial flow conditions for shock over cylinder problem

Ambient Post-shock

ρ 0.1 kg/m3 0.3674 kg/m3

P 104 Pa 9.04545 × 104 Pa

U 0 765.21 m/s

Two different adaptive meshes are used to observe grid dependence. In the coarser

grid simulation, five working mesh levels (level 5 to 10) corresponding to cell sizes

ranging from 0.2188r to 6.836 × 10−3r will be used, where r is the cylinder radius. In

the finer grid simulation, grid levels 6 to 11 will be used. These might be compared

with Zóltak’s body-fitted structured grid [16, 230], where the smallest circumferential

cell was 0.01304r, and Quirk’s Cartesian grid [153], where the smallest cell was about

2.552 × 10−3r.

All simulations use the density-based adaptation indicator (Equation 3.4) of 0.07,

0.04 and 0.0175 for the refinement, coarsening and noise filter thresholds respectively.

The number of subcells are 64 and 16 for the cell area and volume respectively. The

97

8.1. RESULTS FOR SHOCK DIFFRACTION OVER CYLINDER

adaptive flux solver is implemented (Section 4.4) where EFM operates at shocks and

AUSMDV is used elsewhere.

Pressure traces are recorded at locations around the cylinder corresponding to angles

φ = 0◦, 30◦, 40◦, 60◦, 90◦, 120◦, 150◦ and 180◦. The traces record surface pressure

normalized by ambient pressure against nondimensional time tu/r where t, r and u are

the time, cylinder radius and incident shock velocity respectively.

8.1 Results for Shock Diffraction Over Cylinder

Figure 8.1 compares density contours from the finer grid simulation with Quirk’s con-

tours [153]. The comparison is quite good, and all important flow features are resolved

well (the shock, contact discontinuity, vortex and vortex stem).

Figure 8.1: Shock cylinder density contours. Top figure – current results, bottom figure
– Quirk’s [153]

However, contours behind the bow shock are not smooth and exhibit noticeable

noise, which could be due to noise being generated at the shock (AUSMDV is used in

most of the flow). This results from a discretized stepped representation of the curved

bow shock, creating artifical shear layers which stream into the stagnation region. Also

Figure 8.2, which shows the corresponding grid, has a less uniform distribution of mesh

levels near this region, which makes for a noisier visualization of contours.

98

8.1. RESULTS FOR SHOCK DIFFRACTION OVER CYLINDER

The current results also do not exhibit the developing Kelvin-Helmholtz instability

seen in Quirk’s result [153] at the contact discontinuity, perhaps because the grids are

coarser and/or a more dissipative flux solver than Quirk’s (who uses a Riemann solver).

However the original experimental results [42] also did not seem to show this instability

well. As diffusion regulates the rollup of Kelvin-Helmholtz instabilities and Quirk only

performs an inviscid simulation, it is possible Quirk’s simulation does not contain the

full physics for the shear layers.

Figure 8.2: Adapted grid for shock over a cylinder

Figure 8.3 plots the computed pressure histories at various points along the cylinder

surface and compares it with previous work [225, 230]. Agreement is generally very good,

especially for those positions at the cylinder front (smaller than 90◦), and traces from

the two different mesh resolutions show high similarity and thus grid independence to

an extent. There are some minor differences at those points at the back of the cylinder.

Some grid-dependence in the post-shock pressure history at the separation point

(150◦) can be observed in Figure 8.3(f) where the initial pulse agrees well with previous

results, but differs more noticeably at later times. The peak pressures at the back

stagnation point (Figure 8.3(g)) are also computed to be higher than the structured-grid

simulations, but this appears to also be the case with Zóltak’s adaptive mesh simulation

[230] which consistently gives higher peak pressures (probably because of the better

resolution) especially for the second half of the cylinder. In general, the current results

agree well with previous work on this problem in spite of the VCE surface approximation.

99

8.1. RESULTS FOR SHOCK DIFFRACTION OVER CYLINDER

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

-1 0 1 2 3 4 5 6 7

P
/P

0

t

Yang CFD (1987)
Zoltak CFD (1998)

Coarser grid
Finer grid

(a) Pressure history at 0◦

 0

 5

 10

 15

 20

 25

 30

 35

 40

-1 0 1 2 3 4 5 6 7

P
/P

0

t

Yang CFD (1987)
Zoltak CFD (1998)

Coarser grid
Finer grid

(b) Pressure history at 30◦

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

-1 0 1 2 3 4 5 6 7 8

P
/P

0

t

Yang CFD (1987)
Zoltak CFD (1998)

Coarser grid
Finer grid

(c) Pressure history at 60◦

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-1 0 1 2 3 4 5 6 7

P
/P

0

t

Yang CFD (1987)
Zoltak CFD (1998)

Coarser grid
Finer grid

(d) Pressure history at 90◦

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 0 1 2 3 4 5 6 7

P
/P

0

t

Yang CFD (1987)
Zoltak CFD (1998)

Coarser grid
Finer grid

(e) Pressure history at 120◦

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-1 0 1 2 3 4 5 6 7 8

P
/P

0

t

Yang CFD (1987)
Zoltak CFD (1998)

Coarser grid
Finer grid

(f) Pressure history at 150◦

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

-1 0 1 2 3 4 5 6 7

P
/P

0

t

Yang CFD (1987)
Zoltak CFD (1998)

Coarser grid
Finer grid

(g) Pressure history at 180◦

Figure 8.3: Shock cylinder pressure histories

100

Chapter 9

Validation - One-Dimensional Spherical

Blast Waves

This section simulates spherical blast waves using the second-order one-dimensional code

to solve the unsteady Euler equations in one-dimensional spherical geometry (described

in Appendix B). This will help establish the validity of results obtained from the one-

dimensional code which, in turn, is used to verify OctVCE. The test case will be compared

with the numerical results of Ritzel and Matthews [166], who investigated the use of the

“balloon analogue” model (Section 4.6) to initiate explosions.

9.1 Description of Simulations

The initial charge or balloon conditions are a pressure of 30,000 atmospheres and tem-

perature of 3600 K for the helium gas. The energy of the charge is equivalent to 0.25

kg of Pentolite with a specific energy of 6.55 MJ/kg [166]. The blast energy is related

to the balloon gas pressure and volume via the ideal gas relation

E =
(P − P0) V

γ − 1
(9.1)

where E is the total blast energy, P the initial gas pressure, P0 ambident pressure, V

volume and γ ratio of specific heats. Using Equation 9.1, the initial charge radius and

density of around 0.0441 m and 406.24 kg/m3 are calculated respectively (γ = 1.667).

Assumed ambient conditions for the air are P0 = 101.325 kPa and ρ0 = 1.2 kg/m3.

Ritzel and Matthews used a flux-corrected transport (FCT) scheme with an element

size of 5 mm [166]. To obtain exact correspondence in energy the number of cells within

the charge must be an integer multiple of its radius and the closest cell size to Ritzel’s

that can be used is around 4.9 mm (9 cells in the charge). Further simulations are also

performed assuming the same blast energy but different charge conditions –

1. A first-order simulation without reconstruction, to demonstrate increased accuracy

of the second-order scheme.

101

9.2. RESULTS

2. A second-order simulation using the TNT explosive and the JWL equation of state

(Section 4.5.2), also initiated using the balloon analogue model described in Sec-

tion 4.6. This tests what effect the different initial condition and implementation

of the JWL equation has on the solution. JWL parameters for TNT are taken

from Reference [127], where the initial density and energy density are 1630 kg/m3

and 7 × 109 J/m3 respectively. An initial pressure of 8.384 × 109 Pa is calculated

from the JWL equation of state, and a charge radius of 0.03822 m is computed;

the closest cell size to Ritzel’s values is 4.778 mm (8 cells in the charge).

3. A second-order simulation also using the JWL equation of state with TNT JWL

parameters, but now with the same initial charge volume and density as the helium

charge, and hence the energy density for this balloon gas is not 7 × 109 J/m3.

This soley tests the effect of the JWL equation on the solution. The pressure is

calculated to be 7.651×109 Pa and Cv is backward-calculated using Equation 4.20.

This initial condition is more academic than practical and is beyond the normal

limits of applicability of the JWL equation; the ‘solution order switching time’

strategy (Section 4.8.1) was required to keep this simulation stable.

9.2 Results

9.2.1 Comparison of Helium Charge Solutions

Figure 9.1 shows the computed pressure histories at two sensor locations for the helium

charge. The computed arrival time, peak overpressure and positive-phase behaviour is

in very good agreement with the results of Ritzel and Matthews [166]. The arrival time

and magnitude of the secondary shock is also in good agreement.

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 2 2.5 3 3.5 4 4.5 5 5.5 6

P
re

ss
ur

e
(k

P
a)

Time (ms)

Primary shock

Secondary shock

Ritzel (1997)
Computed results

(a) Trace at 2.048 m

 90

 95

 100

 105

 110

 115

 120

 125

 130

 135

 140

 4 5 6 7 8 9

P
re

ss
ur

e
(k

P
a)

Time (ms)

Primary shock

Secondary shock

Ritzel (1997)
Computed results

(b) Trace at 3.059 m

Figure 9.1: Comparison of computed traces of one-dimensional blast simulation

102

9.2. RESULTS

The wave diagram comparing trajectories of primary and secondary shocks and the

contact surface is shown in Figure 9.2. Note for the spherical shock problem the contact

surface’s position is roughly constant [25]. Very good agreement between current and

past results can be observed. The results give good confidence in the simple spherical

one-dimensional code.

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e
(m

s)

Dist (m)

Ritzel primary shock
Ritzel secondary shock

Ritzel contact surface
Computed results

Figure 9.2: Comparison of computed trajectories of one-dimensional blast simulation

9.2.2 Comparison of Different Charge Solutions

The second-order helium, first-order helium and two JWL solutions are compared at

different times in this section. The solutions at an early time of 1.5 ms are shown in

Figure 9.3. Note the “JWL altered TNT equiv” line corresponds to the simulation where

the “altered” JWL equation of state is used but on a gas with the same volume and

density as the helium balloon gas, as opposed to the “proper” TNT solution (with more

realistic TNT initial conditions), labelled as the “JWL TNT equiv” line.

As expected the first-order solution more poorly resolves the primary and secondary

shocks, and consequently underestimates the peak overpressure. The primary shock

strength and positive phase wave behaviour between all solutions are quite similar,

although primary shocks of the TNT solutions seem to lag in arrival time slightly. The

main difference in solutions occur after the positive phase; the proper TNT solution

exhibits a much larger and delayed secondary shock and even reverse flow. It would

seem this is mainly caused by the different initial condition of the proper TNT solution,

since the altered TNT solution also uses the JWL equation but is much more similar to

the helium solution.

Figure 9.4 shows the solutions at 3 ms. The poorer resolution of the first-order solu-

tion is evident, especially of the secondary shock. The agreement between all solutions

103

9.2. RESULTS

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
re

ss
ur

e
(k

P
a)

Distance (m)

2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

(a) Pressure

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D
en

si
ty

 (
kg

/m
^3

)

Distance (m)

2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

(b) Density

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

V
el

oc
ity

 (
m

/s
)

Distance (m)

2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

(c) Flow velocity

Figure 9.3: One-dimensional blast at 1.5 ms

in the positive phase is also more pronounced, and, as with Figure 9.3, the only signifi-

cant difference occurs with the proper TNT solution after the positive phase, which as

mentioned above is likely mainly due to its different initial condition. The altered TNT

solution has an unusual discontinuity near the explosion core that may be a numerical

artifact triggered by the sudden switching of the solution order.

The solutions at 7.5 ms are shown in Figure 9.5. At this time there is very close

agreement with all solutions in the positive phase region. The pressure near the explosion

core appears to be rising back to the ambient value at this time. The contact surfaces of

the helium and proper TNT solutions are also visible at around x = 0.5 m. This surface

is not captured well for the first-order or altered TNT solutions probably as a result

of being run first-order at earlier times. The proper TNT solution also has apparently

developed a tertiary shock, and its secondary shock continues to be larger in magnitude

and lag behind the other solutions. The first-order solution can no longer represent the

secondary shock effectively.

The wave diagram of all solutions is shown Figure 9.6. Wave trajectories amongst

all solutions agree very well with each other except for the secondary shock trajectory

of the proper TNT solution. It appears the main cause of this different secondary

shock trajectory is due to the different initial condition rather than usage of the JWL

104

9.2. RESULTS

 60

 80

 100

 120

 140

 160

 0 0.5 1 1.5 2

P
re

ss
ur

e
(k

P
a)

Distance (m)

2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

(a) Pressure

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.5 1 1.5 2

D
en

si
ty

 (
kg

/m
^3

)

Distance (m)

2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

(b) Density

-100

-50

 0

 50

 100

 150

 0 0.5 1 1.5 2

D
en

si
ty

 (
kg

/m
^3

)

Distance (m)

2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

(c) Flow velocity

Figure 9.4: One-dimensional blast at 3 ms

 85

 90

 95

 100

 105

 110

 115

 120

 125

 130

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
re

ss
ur

e
(k

P
a)

Distance (m)

2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

(a) Pressure

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
en

si
ty

 (
kg

/m
^3

)

Distance (m)

2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

(b) Density

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
el

oc
ity

 (
m

/s
)

Distance (m)

2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

(c) Flow velocity

Figure 9.5: One-dimensional blast at 7.5 ms

105

9.3. NON-REFLECTING BOUNDARY CONDITION TEST

equation of state. On this scale it is difficult to notice the small differences in primary

shock arrival time between the helium and TNT solutions.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e
(m

s)

Dist (m)

Ritzel primary shock
Ritzel secondary shock

Ritzel contact surface
2nd order, perf gas
1st order, perf gas

JWL TNT equiv
JWL altered TNT equiv

Figure 9.6: Computed trajectories for one-dimensional blast simulation

These results demonstrate that mid- to far-field behaviour of the positive-phase wave-

form is nearly independent of charge initial conditions or equation of state usage. They

confirm that the dominant parameter determining primary shock intensity and positive

phase impulse is the initial explosive energy (Section 4.6), and thus using a perfect gas

balloon model is an acceptable approach for mid- to far-field regimes. Large differences

occur in the negative phase, which are also corroborated by Ritzel’s numerical exper-

iments [166] which indicated that a denser balloon gas caused a more severe negative

phase and stronger secondary shock.

9.3 Non-reflecting Boundary Condition Test

A final test case will investigate the performance of the non-reflecting outlet boundary

condition (Appendix H) after the primary shock exits the domain. The helium solution

is simulated on a truncated domain (8 m long) and compared with the solution on a

longer domain using the same cell size. The solution at 19.5 ms is shown in Figure 9.7

after the primary shock has left the domain (but before the secondary shock). No

reflections can be observed in pressure, density or velocity. Note the velocity in the

positive phase is less than 20 m/s meaning subsonic flow.

The solution at 22.5 ms is shown in Figure 9.8, which is after the secondary shock

has left the domain. The pressure and velocity (Figures 9.8(a) and 9.8(c) respectively)

do not display reflections, but there exists some upstream influence of the boundary

condition that causes the negative phase solution to deviate slightly.

The solution at 30 ms is shown in Figure 9.9 well after the negative phase has left

106

9.3. NON-REFLECTING BOUNDARY CONDITION TEST

 96

 98

 100

 102

 104

 106

 108

 110

 6 6.5 7 7.5 8 8.5

P
re

ss
ur

e
(k

P
a)

Distance (m)

Longer domain
Nonreflecting BC

(a) Pressure

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 6 6.5 7 7.5 8 8.5

D
en

si
ty

 (
kg

/m
^3

)

Distance (m)

Longer domain
Nonreflecting BC

(b) Density

-10

-5

 0

 5

 10

 15

 20

 6 6.5 7 7.5 8 8.5

V
el

oc
ity

 (
m

/s
)

Distance (m)

Longer domain
Nonreflecting BC

(c) Flow velocity

Figure 9.7: One-dimensional blast at 19.5 ms (non-reflecting test case)

 97

 98

 99

 100

 101

 102

 103

 104

 105

 1 2 3 4 5 6 7 8 9

P
re

ss
ur

e
(k

P
a)

Distance (m)

Longer domain
Nonreflecting BC

(a) Pressure

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1 2 3 4 5 6 7 8 9

D
en

si
ty

 (
kg

/m
^3

)

Distance (m)

Longer domain
Nonreflecting BC

(b) Density

-8

-6

-4

-2

 0

 2

 4

 6

 8

 1 2 3 4 5 6 7 8

V
el

oc
ity

 (
m

/s
)

Distance (m)

Longer domain
Nonreflecting BC

(c) Flow velocity

Figure 9.8: One-dimensional blast at 22.5 ms (non-reflecting test case)

107

9.3. NON-REFLECTING BOUNDARY CONDITION TEST

the domain. This time the upstream influence from the boundary is more noticeable,

which extends leftward until the small inward-moving reflection wave. The density

solution (Figure 9.9(b)) still seems to display very good agreement with the longer

domain solution. The subsonic outlet non-reflecting boundary condition seems to work

quite well even some time after the secondary shock has exited the domain, although it

performs more poorly at later times. Similar performance might be expected in multi-

dimensional simulations when a wave parallel to the boundary exits the domain. For

oblique exiting waves, there may be small reflections [116, 210].

 97

 98

 99

 100

 101

 102

 103

 104

 105

 2 4 6 8 10 12

P
re

ss
ur

e
(k

P
a)

Distance (m)

Longer domain
Nonreflecting BC

(a) Pressure

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 2 4 6 8 10 12

D
en

si
ty

 (
kg

/m
^3

)

Distance (m)

Longer domain
Nonreflecting BC

(b) Density

-8

-6

-4

-2

 0

 2

 4

 6

 8

 2 4 6 8 10 12

V
el

oc
ity

 (
m

/s
)

Distance (m)

Longer domain
Nonreflecting BC

(c) Flow velocity

Figure 9.9: One-dimensional blast at 30 ms (non-reflecting test case)

108

Chapter 10

Validation – TNT Blast

The calculation of free-field blast parameters versus scaled distance following the explo-

sion of a spherical TNT charge is an important test case for this code given the wealth of

data on this problem [19, 25, 40, 119, 171, 192]. The material for this section appeared in

Reference [206] by the author. Simulations are first performed with the one-dimensional

spherical code and compared with data from the CONWEP program [103], Kinney’s

explosives text of [119] and the study by Cullis and Huntington-Thresher [101], and the

explosions are initiated using the balloon gas approach like in Chapter 9.

Simulations are also performed in two and three dimensions and compared with

the one-dimensional result. They should ideally be identical to the one-dimensional

result, but this is not always attainable as the charge representation is asymmetrically

‘discretized’ in the radial direction by a Cartesian representation with the balloon gas

or bursting sphere model (Section 4.6). The blast also does not usually propagate along

the mesh direction and will give slightly different results depending on what direction

one is looking. Multi-dimensional simulations are also usually quite expensive and use

coarser grids that may give solutions that are not grid-independent.

The simulations use the JWL parameters for TNT taken from Reference [127], like

in Section 9.1. A charge mass of 1 kg is used, thus all reported distances are also scaled

values. Assumed ambient air conditions are P0 = 101.325 kPa and ρ0 = 1.2 kg/m3.

10.1 One-Dimensional TNT Blast

The initial JWL TNT conditions in Section 9.1 are used here for the TNT charge, and

an initial temperature of 2900 K is assumed [133]. A simulation is also performed where

a mass- and energy-equivalent volume of perfect gas air is used for the balloon gas.

The results are shown in Figure 10.1; note Cullis’ results [101] were only reported to a

distance of 8 m/kg1/3. Grid-independence is virtually attained with 40 cells through the

charge. The impulse is normalized by positive phase duration, and CONWEP data was

not obtainable directly but extracted from Cullis’ paper [101]. Error bars in Cullis’ data

series are used to cover their range of results and for the impulse plot the CONWEP

result lies within this range.

109

10.1. ONE-DIMENSIONAL TNT BLAST

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7 8 9

O
ve

rp
re

ss
ur

e
(k

P
a)

Distance from charge (m)

Kinney (1985)
Huntington-Thresher CONWEP (2001)

Huntington-Thresher results (2001)
1D, air

1D, JWL

(a) Peak overpressure

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8 9

T
im

e
of

 a
rr

iv
al

 (
m

s)

Distance from charge (m)

Kinney (1985)
Huntington-Thresher CONWEP (2001)

Huntington-Thresher results (2001)
1D, air

1D, JWL

(b) Primary shock arrival time

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9

Im
pu

ls
e/

D
ur

at
io

n
(P

aS
/m

S
)

Distance from charge (m)

Kinney (1985)
Huntington-Thresher results (2001)

1D, air
1D, JWL

(c) Scaled peak impulse

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9

D
ur

at
io

n
(m

s)

Distance from charge (m)

Kinney (1985)
Huntington-Thresher CONWEP (2001)

Huntington-Thresher results (2001)
1D, air

1D, JWL

(d) Positive phase duration

Figure 10.1: One-dimensional TNT blast parameters

In general the results agree well with existing data, especially in pressure and impulse

(often the most important quantities), and differences between the JWL and air solutions

are very small. These results indicate that a perfect gas bursting sphere approach can

produce good correlation with experimental data of important blast parameters from as

close as 0.5 m/kg1/3, which has also been observed by Rose [171]. The one-dimensional

solution can thus be used to compute the error from multi-dimensional simulations (see

Section 10.3).

Cullis and Huntington-Thresher mention that the finite gauge rise time may have

caused their arrival time to be overpredicted slightly, as appears evident in Figure 10.1(b).

The greatest discrepancies occur with the positive phase duration (Figure 10.1(d)), al-

though the current results follow Kinney’s line fairly closely. Positive phase duration

appears to be a difficult quantity to measure, and has been known to vary by more

than one order of magnitude in experimental results [146]. Poor agreement in computed

results and CONWEP values was also observed by Rose [171]. Cullis suggests that

CONWEP might overestimate this value due to afterburning effects [101].

110

10.2. AXISYMMETRIC TNT BLAST

10.2 Axisymmetric TNT Blast

Simulations are performed in two-dimensional axisymmetric geometry and with adap-

tive quadtree meshes with typically 4 working levels. To investigate convergence, five

different meshes are used with minimum cell sizes of 0.1875, 9.375 ×10−2, 4.688 ×10−2,

2.344 ×10−2 and 1.172 ×10−2 m (successive grid doubling). The coarser of these grids

can only represent the charge in one cell, and thus not all solutions may be in the asymp-

totic range of convergence (this is demonstrated below). The finest cell size is chosen to

correspond roughly with a common fine cell size used by Rose et al [171, 175] in their

three-dimensional simulations of blast interaction with buildings.

An example of an initial coarse Cartesian cell charge representation is shown in

Figure 10.2. The curved line represents the spherical charge; cells intersected by or

within that volume are initiated to the charge or balloon conditions (again, diagonal

lines are an artifact of the grid visualizer Paraview [90]). A plane of symmetry at x = 0 is

assumed. To save costs, smaller computational domains are used for finer grids. Domain

sizes vary from 6 to 20 m; experience has shown these distances are sufficient for a blast

wave profile to develop. Sensor locations are placed on the radial axis at around 0.2 m

increments close to the charge, and around 1 m increments farther away.

Ideal gas air is used for the balloon gas. The density of this gas depends on the volume

of the cells representing the charge and is adjusted for each grid (using the method in

Section 4.6.1) such that the charge has a mass of 1 kg. The balloon gas pressure is

adjusted to give the correct blast energy equivalent to a 1 kg TNT charge. An adaptive

flux solver (Section 4.4) is used with EFM at shocks and AUSMDV elsewhere. The

density-based adaptation indicator (Equation 3.4) is used and typical values for the

refinement, coarsening and noise filter thresholds are 0.3, 0.02 and 0.008 respectively.

However these thresholds are adjusted slightly for each mesh as the indicators perform

differently for different mesh resolutions, and are chosen to give a good but not excessive

degree of refinement in the region leading up to the primary shock.

Figure 10.2: Initial grid for 2D axisymmetric TNT blast simulation

111

10.2. AXISYMMETRIC TNT BLAST

The calculated blast parameters are shown in Figure 10.3 and compared with the

one-dimensional spherical result. The overpressure plot shows a trend of convergence

toward the one-dimensional result as the cell size decreases, and coarser grids usually

underpredict the overpressure. At distances less than about 1 m the differences between

the solutions are not so consistent; this is probably a result of the near-field effect of

the initial explosive shape, which has a significant effect on the blast waveform at this

range [40, 211]. The scaled impulse plot also shows reasonable agreement between one-

dimensional and axisymmetric solutions with finer grids generally giving a better result.

However it is shown later that convergence is not so easy to demonstrate for (non-scaled)

impulse. Arrival time is quite grid-independent, and positive phase duration seems to

be the most grid-dependent parameter (but its convergence can still be observed).

 1

 10

 100

 1000

 10000

 0.1 1 10 100

O
ve

rp
re

ss
ur

e
(k

P
a)

Distance from charge (m)

1D, air
dx=0.1875 m

dx=9.375e-2 m
dx=4.6875e-2 m

dx=2.34375e-2 m
dx=1.171875e-2 m

(a) Overpressure

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14

T
im

e
of

 a
rr

iv
al

 (
m

s)

Distance from charge (m)

1D, air
dx=0.1875 m

dx=9.375e-2 m
dx=4.6875e-2 m

dx=2.34375e-2 m
dx=1.171875e-2 m

(b) Arrival time

 1

 10

 100

 1000

 10000

 5 10 15 20 25

Im
pu

ls
e/

D
ur

at
io

n
(P

aS
/m

S
)

Distance from charge (m)

1D, air
dx=0.1875 m

dx=9.375e-2 m
dx=4.6875e-2 m

dx=2.34375e-2 m
dx=1.171875e-2 m

(c) Scaled impulse

 0

 1

 2

 3

 4

 5

 0.1 1 10

D
ur

at
io

n
(m

s)

Distance from charge (m)

1D, air
dx=0.1875 m

dx=9.375e-2 m
dx=4.6875e-2 m

dx=2.34375e-2 m
dx=1.171875e-2 m

(d) Positive phase duration

Figure 10.3: Two-dimensional TNT blast parameters

An example pressure history at 11 m radial distance showing convergence of the

axisymmetric solutions is shown in Figure 10.4. The differences between sucessive peaks

become increasingly smaller and the positive phase waveform takes better shape. There

is a noticeable finite rise time to peak overpressure on coarser grids because of the poorer

shock resolution. The secondary shock is very difficult to resolve even on the fine grids,

but this feature is not so important.

112

10.3. ERROR QUANTIFICATION IN THE AXISYMMETRIC SOLUTIONS

-6

-4

-2

 0

 2

 4

 6

 8

 10

 20 25 30 35 40 45 50

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

1D solution
dx=2.34375e-2 m

dx=4.6875e-2 m
dx=9.375e-2 m

dx=0.1875 m

Figure 10.4: Example pressure history from TNT blast

10.3 Error Quantification in the Axisymmetric So-

lutions

This study takes the results of Section 10.2 and quantifies the differences between the

axisymmetric result and the virtually grid-independent one-dimensional spherical result

(Section 10.1) for the different axisymmetric grids1. As mentioned above, these errors

result from grid coarseness and the discretization of the spherical charge volume into a

‘staircased’ Cartesian representation.

Only the peak overpressure and peak impulse parameters (versus distance) will be

considered as these are the most important quantities from an engineering perspective.

Pressure sensors are also placed along both radial and diagonal (parallel to î + ĵ) direc-

tions. Diagonal sensors might be expected to yield least accurate results and suffer most

from numerical diffusion as wave propagation is most misaligned to the mesh along the

diagonal.

It is hoped that this study will provide both a guide to the magnitude of the errors at

a given scaled distance and an assessment of the quality of error estimates computed from

grid refinement studies, which are based on Richardson extrapolation (Equations 6.2

and 6.3). As a guide to the quality of an error estimate, it will be useful to produce

statements like ‘the estimated error has a x% chance of being too large/small, and (i)

it will be too large/small by no more than value y 90% of the time, (ii) it will be too

large/small by an average of z%’. This study might then also be applicable for more

complicated blast problems where fine grid resolution is too costly to attain. A study

of the errors in the near-field may also help determine the scaled range below which the

balloon gas charge representation (and estimated error) is unsuitable.

1This section is taken from Reference [206] and is a more condensed version of that paper.

113

10.3. ERROR QUANTIFICATION IN THE AXISYMMETRIC SOLUTIONS

10.3.1 Actual Errors

At every sensor point, the relative error in blast parameters is computed as (fe − f) /fe

where fe is the ‘exact’ solution (the one-dimensional result) and f the axisymmetric

solution. These errors are plotted in Figure 10.5 along both sensor lines (radial and

diagonal). A discussion of the errors is given below.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 1 10 100

R
el

at
iv

e
er

ro
r

in
 o

ve
rp

re
ss

ur
e

Distance from charge (m)

dx=0.1875 m
dx=9.375e-2 m

dx=4.6875e-2 m
dx=2.34375e-2 m

dx=1.171875e-2 m

(a) Overpressure error (radial)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 1 10 100

R
el

at
iv

e
er

ro
r

in
 o

ve
rp

re
ss

ur
e

(d
ia

go
na

l)

Distance from charge (m)

dx=0.1875 m
dx=9.375e-2 m

dx=4.6875e-2 m
dx=2.34375e-2 m

dx=1.171875e-2 m

(b) Overpressure error (diagonal)

 0.001

 0.01

 0.1

 1

 10

 0.1 1 10 100

A
bs

ol
ut

e
re

la
tiv

e
er

ro
r

in
 im

pu
ls

e

Distance from charge (m)

dx=0.1875 m
dx=9.375e-2 m

dx=4.6875e-2 m
dx=2.34375e-2 m

dx=1.171875e-2 m

(c) Impulse error (radial)

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100

A
bs

ol
ut

e
re

la
tiv

e
er

ro
r

in
 im

pu
ls

e
(d

ia
go

na
l)

Distance from charge (m)

dx=0.1875 m
dx=9.375e-2 m

dx=4.6875e-2 m
dx=2.34375e-2 m

dx=1.171875e-2 m

(d) Impulse error (diagonal)

Figure 10.5: Actual axisymmetric TNT parameter relative errors vs distance

Overpressure

It is clear from the graph of overpressure error along the radial axis (Figure 10.5(a)) that

after about 1 m the solutions are converging. Coarser grids always tend to produce lower

overpressures because of poorer shock resolution. Errors prior to 1 m are very large and

do not behave so consistently because of the still-significant effect of the initial charge

shape on the developing waveform which is forming into a more radially symmetric

pattern. This suggests for this range of cell sizes a ‘cut-off’ distance of 1-2 m at which

the balloon gas approach is appropriate when estimating error based on grid refinement

studies. The curves are not always smooth, and increase slightly for larger distances

probably because of numerical diffusion.

114

10.3. ERROR QUANTIFICATION IN THE AXISYMMETRIC SOLUTIONS

The errors along the diagonal direction (Figure 10.5(b)) are quite similar to those

along the radial direction. Errors also do not behave consistently before about 1 m, and

have steeper increase with distance after 1 m as numerical diffusion is more severe along

this direction. Although the solutions are converging at these distances, the differences

between errors for each grid are not always consistent, which will affect the Richardson

extrapolation-based error estimator.

It is likely that this is at least partly due to the different adaptation indicators

used. Although convergence to the one-dimensional waveform is still generally exhibited

(Figure 10.4), different indicators are used for different grids, and these were adjusted

(by trial and error) to be appropriate for that grid. If used on another grid it might

result in excessive or inadequate refinement. Although the grid near the primary shock

is usually refined, the region leading up to it (i.e. positive phase) does not always have

the same degree of refinement, which ultimately has an effect on the solution.

Ideally in performing grid refinement studies the grid should be uniformly refined, or

at least the same adaptation indicators used. But this can be computationally expensive

for many multi-dimensional blast problems. This study focusses on the quality of the

error estimation procedure in spite of this departure from ideality, and thus might be

more relevant for practical purposes. It appears that a cell size of smaller than the finest

cell (length 0.0117 m) is required to keep errors less than 10%.

Impulse

Convergent behaviour is difficult to observe with impulse (Figures 10.5(c) and 10.5(d)),

and the curves are much less smooth than the overpressure error curves. The absolute

value of the errors are taken because they are sometimes negative and a logarithmic

scale is used for the ordinate to better show the errors. The errors are quite high within

1 m of the charge because of the effect of the initial charge shape, but within that range

it is generally the case that finer grids do give lower errors.

It appears that the selected range of grid sizes is not within the range of convergence,

but it is still interesting to see how well the Richardon extrapolation error estimators

work. Impulse might be a more difficult quantity to converge (perhaps requiring very

costly finer grids) as the area under the finite rise time to the peak pressure (as shown

in Figure 10.4) may offset the loss in area resulting from a lower peak in coarser meshes.

Despite the lack of convergent behaviour at larger distances, all errors for the different

grids are around (or substantially less than) 10%, which is a much lower value than

coarser-grid overpressure errors. This is an encouraging result as impulse is often the

most important engineering quantity.

115

10.3. ERROR QUANTIFICATION IN THE AXISYMMETRIC SOLUTIONS

10.3.2 Estimated Errors

The estimated errors for overpressure and impulse for each grid are computed based

on the GCI (Equation 6.3 p.g. 6) and compared with the actual error for every grid

resolution and at every sensor point. This is done with each graph in Figure 10.5.

Important summary statistics for each graph are the maximum over- and underestima-

tion (the maximum values of how much larger/smaller the GCI is relative to the actual

error), average values of over- and underestimation, 90th over- and under-estimation

percentile (the value below which 90% of the over- and underestimation values fall) and

fraction (out of all sensors) which overestimate. Overestimations are preferred due to

conservatism in the design process.

The GCI error can be signed in the case of overpressure (i.e. 3E from Equation 6.3) as

it is always underestimated but given the erratic impulse error behaviour (Figures 10.5(c)

and 10.5(d)) should be taken as an absolute value for this quantity (i.e. 3|E|, the stan-

dard definition of GCI). The assumed refinement factor r = 2, and p = 1 for overpressure

(the scheme reverts to nominally first-order at shocks) and p = 2 for impulse errors (the

flow is nominally second-order in the smooth positive phase). However only those sen-

sors after 2 m from the charge are used, since it is found that this is the range where

the error estimates start to be more consistently conservative.

The error statistics are shown in Tables 10.1 and 10.2. These tables also display

the statistics for the p = 1.5 case, as it is proposed that this rounded figure may help

the overpressure and impulse GCI to be slightly less and more conservative respectively

(whilst still attaining a good fraction of overestimations). These tables will hopefully

be a reasonable guide to the magnitude and probability of over- and underestimations

that occur when estimating error from grid refinement (due to grid coarseness and the

departure of the discretized charge from the ideal spherical shape).

Overpressure error summary

The overpressure error summary statistics are shown in Table 10.1 and are for the

signed error. With p = 1 the fraction of overestimations is around 90%, but the average

overestimation value is 30-40%, which might be excessively conservative. Taking p =

1.5 reduces the average overestimation (and its 90th percentile) by a factor of 2-4,

whilst keeping average underestimation about the same. The overestimation fraction

is not as high, especially along the diagonal direction at 60%, but this might still be

preferred in lieu of the smaller overestimation magnitude. Because of the low number

of underestimations, the 90th underestimation percentile is computed to be the same

value as the maximum underestimation value.

116

10.3. ERROR QUANTIFICATION IN THE AXISYMMETRIC SOLUTIONS

Table 10.1: Overpressure error summary statistics

Radial Radial Diagonal Diagonal

(p = 1) (p = 1.5) (p = 1) (p = 1.5)

Maximum overestimation 0.587455 0.178413 0.676975 0.226954

Maximum underestimation 0.214859 0.262645 0.122117 0.201611

Average overestimation 0.303943 0.0798927 0.376296 0.152875

Average underestimation 0.114163 0.0802441 0.0480577 0.0665265

90th overestimation percentile 0.527328 0.147001 0.647733 0.220307

90th underestimation percentile 0.214859 0.262645 0.122117 0.122851

Fraction of overestimations 0.941176 0.882353 0.85 0.6

Table 10.2: Impulse error summary statistics

Radial Radial Diagonal Diagonal

(p = 2) (p = 1.5) (p = 2) (p = 1.5)

Maximum overestimation 0.092165 0.157443 0.0452596 0.0767958

Maximum underestimation 0.0338829 0.031263 0.0517206 0.0513935

Average overestimation 0.0246888 0.0427211 0.0215482 0.0433587

Average underestimation 0.0132443 0.0134597 0.021764 0.0202336

90th overestimation percentile 0.0573218 0.100296 0.0434746 0.0745365

90th underestimation percentile 0.0224399 0.031263 0.0439641 0.0513935

Fraction of overestimations 0.588235 0.764706 0.65 0.8

Impulse error summary

The impulse error summary statistics are shown in Table 10.2 and are for the absolute

error. Over- and underestimation magnitudes are substantially smaller than for over-

pressure since impulse errors are lower. In some cases the error is reduced by nearly an

order of magnitude from the equivalent overpressure result. If p = 2 the average overes-

timation is within 2.5%, and if p = 1.5 the average overestimation rises to within 4.5%

(with similar underestimation values), but the fraction of overestimations also increases

to close to 80% in both radial and diagonal directions.

10.3.3 Conclusions

Errors in blast parameters between the axisymmetric simulations and an equivalent one-

dimensional result have been studied. The errors behave similarly along both radial and

117

10.4. THREE-DIMENSIONAL TNT BLAST

diagonal directions. Error estimates based on grid refinement studies have also been

investigated. The absolute error should be taken for the impulse parameter because of

difficulty in convergence of this quantity, but these errors are substantially lower than

overpressure errors. Error estimation based on the GCI with a refinement factor of r = 2

and solution order of p = 1.5 seems to work reasonably well, and data on the quality of

these estimations has been provided in terms of the probability and magnitude of error

over- and underestimations. For this range of grid sizes, a near-field limit of around

2 m/kg1/3 is chosen because of the unreliability of error estimates smaller than this

distance. It remains to be seen if these results are also applicable for the much more

expensive three-dimensional simulations.

10.4 Three-Dimensional TNT Blast

This problem will be finally simulated in three-dimensional geometry. It is performed

only using one grid resolution as it is more computationally expensive than axisymmetric

simulations, and the convergence results computed in Section 10.3 might applicable to

this case too. The simulation has 4 mesh levels with the coarsest and finest grid sizes

being 0.1875 and 2.344 ×102 m respectively. ‘Quarter-space’ symmetry is used where

the x, y and z planes all constitute symmetry planes. Figure 10.6 shows the solution

some time after the initial burst; the left plane plots pressure contours, the right plane

density contours and the bottom plane the grid with superimposed schlieren. There

seems to be excessively dense refinement between the two shocks.

Figure 10.6: Contours for 3D TNT Blast simulation

The blast parameters are plotted in Figure 10.7. Results are plotted for traces along

the vertical [0, 0, 1] direction and the [1, 1, 1] diagonal direction, and compared with

118

10.4. THREE-DIMENSIONAL TNT BLAST

the one-dimensional and axisymmetric solution (that used the same minimum cell size).

Agreement with the equivalent axisymmetric solution is generally quite good; the variant

trace readings often lie to either side of this result.

 10

 100

 1000

 10000

 0.1 1

O
ve

rp
re

ss
ur

e
(k

P
a)

Distance from charge (m)

1D, air
2D

3D (vert)
3D (diag)

(a) Overpressure

 0.01

 0.1

 1

 10

 100

 0.1 1

T
im

e
of

 a
rr

iv
al

 (
m

s)

Distance from charge (m)

1D, air
2D

3D (vert)
3D (diag)

(b) Arrival time

 1

 10

 100

 1000

 10000

 0.1 1

Im
pu

ls
e/

D
ur

at
io

n
(P

aS
/m

S
)

Distance from charge (m)

1D, air
2D

3D (vert)
3D (diag)

(c) Scaled impulse

 0.01

 0.1

 1

 10

 0.1 1

D
ur

at
io

n
(m

s)

Distance from charge (m)

1D, air
2D

3D (vert)
3D (diag)

(d) Positive phase duration

Figure 10.7: Three-dimensional blast parameters for TNT blast

10.4.1 Parallel Performance of the Simulations

Like the test case in Section 7.3 the simulations were run on an SGI Altix 3700 to observe

the parallel performance of the code for this problem. The three-dimensional simulation

was performed on up to 8 processors. Measured speedups are shown in Figure 10.8.

The three-dimensional solution displays overall better parallel performance than the

axisymmetric solution, probably due to the Amdahl effect (Section 5.4) which states

that parallel overhead decreases relative to the parallel code portion for larger problem

sizes.

A table of performance statistics can be constructed similar to that in Table 7.4 in

Section 7.3. Further parallel code profiling using the Intel compiler was not performed

for these simulations. Performance statistics for the axisymmetric simulation are shown

in Table 10.3 and are for the grid with minimum cell size 4.688 ×10−2 m. It is note-

119

10.4. THREE-DIMENSIONAL TNT BLAST

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

No. Cpus

2D simulation speedup
3D simulation speedup

Figure 10.8: Parallel speedup for TNT blast simulations

Table 10.3: Parallel performance for axisymmetric TNT blast simulations

1 processor 2 processors 4 processors

Single processor time (hrs) 1.988

Max no. cells 4.2 ×104

‘Effective’ serial fraction 0.0896 0.2297

Extrapolated serial fraction 0.0195

Overhead fraction 0.07 0.21

Estimated elapsed time (hrs) 1.153 0.9439

Measured elapsed time (hrs) 1.083 0.8394

worthy that the effective serial fractions computed from the Karp-Flatt metric [113] for

all simulations are lower than those of Table 7.4, although there is a similar substantial

increase in this value between 2 and 4 processors indicating significant overhead. The ex-

trapolated serial fraction is quite low at 2%, but this may be an underestimate. However,

relative differences between the columns of this table still indicates the large increase

of overhead. The reasons for this high overhead are discussed in Section 5.5.3 and 7.3

and stem mainly from high communication cost on distributed-memory machines like

the Altix.

The performance statistics for the three-dimensional simulation are shown in Ta-

ble 10.4. It is obviously a much larger simulation with over 2 million cells. Unlike

the axisymmetric simulation, parallelization of adaptation routines is performed (Sec-

tion 7.2). Somewhat curiously the effective serial fraction does not increase uniformly

with more processors. The reason for this behaviour might stem from the 4 proces-

sor simulation benefitting from increased computational resources (which is spread over

120

10.4. THREE-DIMENSIONAL TNT BLAST

Table 10.4: Parallel performance for 3D TNT blast simulations

1 processor 2 processors 4 processors 8 processors

Single processor time (hrs) 137.68

Max no. cells 2.27 ×106

‘Effective’ serial fraction 0.155 0.0918 0.1356

Extrapolated serial fraction 0.0918

Overhead fraction 0.0632∗ 0∗ 0.0438∗

Estimated elapsed time (hrs) 83.86∗ 43.9∗ 34.3∗

Measured elapsed time (hrs) 79.51 43.9 33.54

dual-processor nodes). Hence an extrapolation of the serial fraction cannot be per-

formed, and the minimum effective fraction of 0.0918 is used. This represents an upper

bound to the actual serial fraction, and is consistent with the axisymmetric result.

Because of this the overhead for the 4 processor job is by definition zero, and thus

reported figures of overhead are relative to the 4 processor performance. The estimated

elapsed time is thus equal with the actual elapsed time if the overhead is zero (henced

the starred values). Relative increases in overhead are considerably smaller than the

axisymmetric values in Table 10.3, which is due to the Amdahl effect and also perhaps

the increased code parallelization.

The performance statistics show encouragingly that the code appears to be fairly

well parallelized (less than 10% of operations are serial). Obviously, more work can still

be done to increase performance efficiency. In terms of actual elapsed time the code

can obtain results in an reasonable timeframe on 8 processors, although it would be

advisable to do initial low resolution calculations if rapid hazard analysis is required.

121

Chapter 11

Validation - Blast Walls

Blast walls are a protective measure that reduce the severity of the blast environment

behind the wall by reflecting back some of the incoming blast energy [161]. A typical

blast wall configuration can be seen in Figure 11.1. The different factors which influence

the loading on the structure include charge weight, height of burst, wall height, wall

distance from charge, and distance of structures from the wall.

This problem has been the subject of past experimental and numerical studies [48, 49,

123, 144, 171], and despite the simplicity of the geometry, accurate prediction of airblast

loads behind the wall is realizable only from three-dimensional numerical computations,

due to the complex nature of the post-wall blast environment. To alleviate this lengthy

computational cost, past research has focussed on investigating the predictive ability

of a much cheaper axisymmetric simulation [123], and on the development of a fast

neural network based tool constructed from a database of experiments [161]. However,

in unique geometric arrangements, only full three-dimensional simulations (such as can

be done by OctVCE) will be reliable.

Figure 11.1: Blast wall configuration. Source [161]

As validation, OctVCE is used to simulate two different axisymmetric blast wall sce-

narios conducted by Chapman et al [48, 49] and Rice et al [123]. Both references used

an axisymmetric code to model the blast environment, but also compared numerical

with experimental results. The comparisons were favourable, indicating that despite

the planar geometry of the experiment, good prediction of pressure histories with the

axisymmetric code can still be obtained. These blast wall scenarios are –

122

1. Referring to Figure 11.1, in the scenario of Chapman et al [48, 49], the charge mass

was the equivalent of 60 g of TNT, with a height of burst at 0.15 m, a distance to

the structure L1 = 1.05 m and a distance to the wall L2 = 0.6 m. The wall height

is 0.3 m and its thickness is 0.02 m. The only pressure transducer was located 0.3

m up the structure.

2. In the scenario of Rice et al [123], the charge mass was 0.513 g of PETN at a

height of burst of 0.0134 m, a distance to the structure L1 = 0.167 m and a

distance to the wall L2 = 0.1 m. The wall height was 0.0535 m, and its thickness

is estimated to be about 0.01 m. Rice et al also performed a three-dimensional

simulation, which yielded a similar solution to the axisymmetric result. Three

pressure transducers were located at 0.04, 0.08 and 0.12 m up the structure.

Cell sizes were not specified in either of these references. In both cases, the computa-

tional domain stretches from the symmetry axis to the structure, as shown in Figure 11.2.

This approach avoids the problem with axisymmetric obstructed corner cells (between

the structure and the floor) as discussed in Appendix E.1, although corner cells exist at

the junction of the blast barrier and the ground. A non-reflecting boundary condition

is placed on the top boundary and its effectiveness will also be tested later. Standard

air at atmospheric conditions is used for the ambient gas.

Figure 11.2: Initial grid for blast wall simulation

The JWL equation of state is used to simulate the explosion products. Explosive

JWL parameters are taken from Reference [127]. However, given the balloon method of

charge initialization (Sections 4.6 and 10.2), the charge balloon densities and pressures

have to be modified somewhat to ensure correct blast energy and mass. For both

scenarios, five working mesh levels (level 5 to level 9) are used, but a higher resolution

simulation with level 10 cell sizes are also performed to observe grid dependence. Both

simulations use the density-based adaptation indicator (Section 3.4) of 0.3, 0.1 for the

123

11.1. BLAST WALL SCENARIO 1

refinement and coarsening thresholds respectively. In the first simulation, a noise filter

threshold of 0.017 is used, and in the second simulation this value is 0.04. AUSMDV is

used as the flux solver and 64 subcells are used.

11.1 Blast Wall Scenario 1

This section displays the solution to the blast wall problem of Chapman et al [48]. This

test case was also performed by the author in Reference [202]. Density contours at

various times are shown in Figure 11.3. Note at times some contours appear to pass

through the blast barrier but this is due to the wall being so thin that no coarse cells

are actually fully immersed in it.

(a) Solution at 1.2 ms (b) Solution at 1.8 ms

(c) Solution at 2.4 ms (d) Solution at 3.0 ms

Figure 11.3: Solution to Chapman’s [48] blast wall problem

To test the non-reflecting boundary condition, a simulation with the same minimum

and maximum cell size is performed, but with the upper boundary extended. The

solution on this extended boundary simulation is shown in Figure 11.4. There is very

good agreement between the solutions in Figure 11.3 and 11.4.

124

11.1. BLAST WALL SCENARIO 1

(a) Solution at 1.2 ms (b) Solution at 1.8 ms

(c) Solution at 2.4 ms (d) Solution at 3.0 ms

Figure 11.4: Solution to Chapman’s [48] blast wall problem, longer domain

The pressure history is shown in Figure 11.5, and compared with Chapman’s results

[48]. There appears to be a discrepancy in primary wave arrival time, and it is too large

to be accounted for by the detonation time of the charge if initiated from the centre.

However peak pressures (especially for the finer resolution mesh) and positive phase

behaviour agree well with past results. There is also a large reflection at around 2.8 ms

not present in Chapman’s result, but this is due to reflection from the symmetry axis

which Chapman et al did not model.

It is not known why the discrepancy in arrival time is so large. Although Chapman

et al [48] did not explicitly state the blast energy, there is sufficient agreement in peak

overpressures and positive phase behaviour to suggest only a small discrepancy with

their actual blast energy. Perhaps their results were somehow offset in time, but this

was not specified. In any case, arrival time is not a particularly useful engineering

quantity in blast wave modelling, so this problem is not very serious.

125

11.2. BLAST WALL SCENARIO 2

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.5 1 1.5 2 2.5 3

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Smith experiment (1995)
Smith AUTODYN (1995)

CFD coarser grid
CFD finer grid

Figure 11.5: Pressure history for blast wall scenario 1

11.1.1 Performance of the Simulation

A uniform mesh simulation with all cells at the same size as the minimum cell size in

the lower resolution adaptive mesh simulation was performed to see how significant the

savings in solution time would be. Both were run on 1 processor. The uniform mesh

simulation had 260830 cells with an elapsed time of 22.5 hours. The adaptive mesh

simulation had a maximum of 55000 cells and took 4.9 hours. This means savings of

a factor of 4.74 and 4.59 in storage and solution time respectively. With an increasing

problem size in three-dimensional meshes, the savings would be expected to be even

larger.

11.2 Blast Wall Scenario 2

This section displays the solution to the blast wall problem of Rice et al [123]. As Rice

et al also performed a three-dimensional planar simulation, it also seems appropriate

to perform one here. This simulation has four working mesh levels corresponding to

cell sizes of 6.25 × 10−3 m to 7.8125 × 10−4 m. It is performed in ‘quarter-space’

i.e. assuming two symmetry planes, the ‘in-plane’ symmetry plane corresponding to the

structure centreline, and a ‘back-plane’ symmetry condition at the charge centre parallel

with the barrier. Reflections from the back-plane symmetry condition would arrive too

late to interfere with the presssure histories in the positive phase.

Density contours at 146 µs are shown in Figure 11.6 and compared with the results

of Rice et al. Although there is generally good agreement in major flow features, there

are still noticeable differences, especially near the symmetry axis. Rice’s simulations use

a much finer resolution, so current results do not resolve certain features as well. The

126

11.2. BLAST WALL SCENARIO 2

diffracted shock behind the barrier is so weak that the adaptation criteria fail to refine

it. In the axisymmetric solution, apparent numerical jetting along the axis is seen, but

it is interesting to note that the shadowgraph results also show that detonation products

above the charge have apparently been ejected ahead of the primary blast wave.

Density contours at 246 µs are shown in Figure 11.7. There are some noticeable

differences, especially between the axisymmetric solutions. Unlike Rice’s results the

current solutions seem to be at a more advanced stage; they show the reflected shock

from the structure already interacting with the vortex slip layer. Also, the reflections

behind the blast barrier are so weak no grid adaptation is present there and thus features

there are not well-resolved.

The apparent time-wise difference in solutions is also reflected in the pressure his-

tories (Figure 11.8). Apart from this discrepancy, agreement in peak overpressure and

positive phase wave behaviour with the axisymmetric solution is good, particularly for

gauges 2 and 3. The three-dimensional result, because of the coarser grids and planar

symmetry, has a noticeably lower peak pressure, and a delayed reflection in gauge 2.

Some grid-dependence in the axisymmetric solutions can still be seen. The difficulty of

obtaining mesh convergent solutions in three dimensions to this blast wall problem is

noted in [171].

The discrepancy in arrival time, like in Section 11.1, is puzzling. There may again

be a time offset in Rice’s results. Perhaps the axisymmetric corner cell degeneracy

encountered at the barrier (Appendix E.1) may affect the solution and arrival time,

so it is worthwhile to perform two additional simulations – (a) one where the barrier

dimensions are adjusted slightly to align exactly with the mesh lines (avoiding the

obstructed corner cell degeneracy), and (b) one without the barrier. The arrival times

at gauges 1 and 2 are affected by the presence of the barrier, but there is a direct

‘line-of-sight’ from the charge to gauge 3, so the arrival time at that sensor should be

independent of the barrier’s presence. This result is confirmed in Figure 11.8(d) which

shows the arrival times of the actual barrier, grid-aligned barrier and no barrier cases

to be nearly identical. Thus, it is likely that there is another explanation of the arrival

time discrepancy – probably a misreporting of one or more of the modelling parameters.

11.2.1 Performance of the Simulations

The three-dimensional solution had a maximum of around 1.4 million cells with an

elapsed time of 67.4 hours running on 4 processors. The finer resolution two-dimensional

solution had a maximum of 79000 cells, running for 11.95 hours on 2 processors. Clearly,

significant savings in computation time can be made if the problem can be solved in

127

11.2. BLAST WALL SCENARIO 2

(a) Rice 3D (from [123]) (b) Rice 2D (from [123])

(c) 3D contours (d) 2D contours

(e) 2D grid (f) Shadowgraph (from [123])

Figure 11.6: Solution to Rice’s [123] blast wall problem at 146 µs

128

11.2. BLAST WALL SCENARIO 2

(a) Rice 3D (from [123]) (b) Rice 2D (from [123])

(c) 3D contours (d) 2D contours

(e) 2D grid (f) Shadowgraph (from [123])

Figure 11.7: Solution to Rice’s [123] blast wall problem at 246 µs

129

11.3. BLAST WAVE CLEARING SIMULATION

-50

 0

 50

 100

 150

 200

 250

 0 0.05 0.1 0.15 0.2 0.25 0.3

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Rice 2D result (2000)
Rice 3D result (2000)

CFD 2D finer
CFD 2D coarser

CFD 3D

(a) Gauge 1

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Rice 2D result (2000)
Rice 3D result (2000)

CFD 2D finer
CFD 2D coarser

CFD 3D

(b) Gauge 2

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.05 0.1 0.15 0.2 0.25 0.3

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Rice 2D result (2000)
Rice 3D result (2000)

CFD 2D finer
CFD 2D coarser

CFD 3D

(c) Gauge 3

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Rice 2D result (2000)
Rice 3D result (2000)

Actual barrier
Grid-aligned barrier

No barrier

(d) Gauge 3, barrier test

Figure 11.8: Pressure histories for blast wall scenario 2

axisymmetric geometry.

11.3 Blast Wave Clearing Simulation

As further validation, the blast wave clearing simulation from Rose [171, 176] is per-

formed. This is a fully three-dimensional problem, and strictly not a blast wall simu-

lation as there is only one structure in the blast environment. Details of the problem

geometry are shown in Figure 11.9 and taken from [176]. The charge is equivalent in

energy to 27.26 g of TNT, detonated at a height of 0.1 m and 0.15 m from the structure.

The charge energy density is 4.52 × 106 J/kg, and in the simulation is assumed to be

composed of high density air. In Rose’s simulation, the charge is initially simulated

in a one-dimensional spherical calculation and remapped to two and three dimensions

before the wave reaches the structure. A uniform mesh cell size of 1 cm was used, with

a numerical domain of 2.5 × 0.5 × 0.4 m.

In the simulations here, an adaptive mesh is used with four working levels corre-

sponding to cell sizes of 0.0172 to 0.1375 m. This mesh is so coarse it could only

130

11.3. BLAST WAVE CLEARING SIMULATION

represent the initial charge with 3 cells. Another simulation is also performed with an

additional refinement level (cell size of 8.59 × 10−3 m) to observe grid dependence and

similarity with Rose’s result due to closeness of the cell sizes. Like Section 11.2 quarter-

space symmetry is used. A combined adaptation criterion is used with the density-based

adaptation indicator (Equation 3.4) of 0.3, 0.1 and 0.025 for the refinement, coarsening

and noise thresholds respectively, and 0.005 for the velocity difference indicator (Equa-

tion 3.3). An adaptive flux solver is used with EFM at shocks and AUSMDV elsewhere.

The number of area and volume subcells is 32 and 16 respectively.

(a) Clearing geometry. Source [176] (b) Clearing structure. Source [176]

Figure 11.9: Blast wave clearing geometry and structure

The pressure histories at gauges 1 and 3 are shown in Figure 11.10. Agreement is

generally good, especially for the higher resolution simulation. Note that the arrival

times correspond well with Rose’s results, strengthening the suspicion of a time offset

in the simulations of Sections 11.1 and 11.2. Grid independence in solutions has not

been fully achieved. Rose’s numerical result is still probably more accurate due to its

use of the remapping method and fine uniform mesh. Both Rose’s and the present

simulations do not seem to capture some peaks recorded in the experimental histories,

which suggests that the experimental results might be in error at those locations.

11.3.1 Performance of the Simulations

Both simulations were performed on 4 processors on the SGI Altix. The lower resolu-

tion simulation ran for 2.27 hours (maximum of around 220000 cells), and the higher

resolution simulation for 28.78 hours (maximum of around 1051000 cells). Memory re-

quirements work out to be about 2.6 kB per cell (it is difficult to calculate the exact

memory cost per cell as there are numerous data structures associated with an adaptive

mesh that may not always be allocated).

131

11.3. BLAST WAVE CLEARING SIMULATION

-40

-20

 0

 20

 40

 60

 80

 100

 120

 1.5 2 2.5 3 3.5 4 4.5 5

O
ve

pr
es

su
re

 (
kP

a)

Time (ms)

Rose experimental (2001)
Rose CFD (2001)

Finer grid
Coarser grid

(a) Gauge 1

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 1.5 2 2.5 3 3.5 4 4.5 5

O
ve

pr
es

su
re

 (
kP

a)

Time (ms)

Rose experimental (2001)
Rose CFD (2001)

Finer grid
Coarser grid

(b) Gauge 3

Figure 11.10: Blast wave clearing trace results

This is much larger compared to Rose’s ftt_air3d code of around 0.25 kB per

cell [175], but an adaptive grid necessitates larger storage, and this code also stores

neighbour cell pointers and various list structures. This figure has also not fared well

with the move to 64-bit computer architectures, as pointers are used frequently in the

cell and vertex data structures (see Appendix K), so storage has doubled with respect

to the older 32-bit computers. Certainly more work can be done to reduce costs e.g. by

using the fully threaded tree structure [118] instead of storing neighbour connectivities.

This will also boost performance.

132

Chapter 12

Validation - Explosion in Axisymmetric

Container

This section attempts to reproduce the results of Lind et al [129] in simulating explosions

in a containment facility. This facility is used for safe disposal of unwanted munitions

via partially confined open-air burning and detonation. Lind’s axisymmetric simulations

also used VCE to represent the facility geometry, but they did not specify how the

extra axisymmetric terms were accounted for (Appendix D). They also used a uniform,

structured grid. Figure 12.1 shows a schematic of the containment facility. It consists

of two spherical endcaps, a cylindrical section, and a neck and lip section on the top.

The simulations here draw from two of Lind’s simulations [129], (a) the R4 run (with

a spherical charge) and (b) the R7 run (cylindrical charge). This validation exercise is

thus also a useful test of the usefulness of the balloon analogue model (Section 4.6) in

representing different initial charge shapes.

Figure 12.1: Containment facility schematic. Source [129]

In the R4 run the charge is composed of RDX explosive (assumed to have a yield of

2 × 106 J/kg) with a mass of about 22.68 kg (50 lb) and detonated at a height of 1.82

m above the bottom endcap. Like in Lind’s simulation, perfect gas air is used for the

charge with an assumed density of 1000 kg/m3. In the R7 run the cylindrical charge is

1.22 m in length, 0.26 m in radius and has twice the masss at 45.36 kg, with a detonation

height also at 1.82 m. The energetic yield is the same. Air at standard atmospheric

conditions is assumed for the ambient gas.

133

12.1. EXPLOSION IN CONTAINMENT FACILITY – R4 RUN

Both adaptive-mesh simulations use four working mesh levels (level 5 to 8), but a

higher resolution simulation (levels 5 to 9) is also performed to observe grid dependence.

These correspond to cell sizes of 0.0137 m to 0.21875 m for the finer resolution simulation,

which has a minimum cell size around the nominal fine-grid cell size in Lind’s simulations

(1 cm). The density-based adaptation indicator (Equation 3.4) is used with 0.3, 0.1 and

0.04 for the refinement, coarsening and noise filter thresholds respectively. An adaptive

flux solver is implemented with EFM at shocks and AUSMDV elsewhere, and 64 subcells

are used.

As the code cannot handle thin wall degeneracies, the facility’s walls are set with a

wall thickness larger than the maximum distance within a cell (the diagonal spanning

a cell’s corners). Thus at no point will a cell be split by the container walls and thus

‘leak’ some gas to the exterior. This is unlikely to affect the results much, since the

focus is on loads on the internal walls of the facility. However, cells at the walls are kept

at the highest permissible level both to increase resolution and reduce wall thickness.

Non-reflecting boundary conditions are placed on domain boundaries.

12.1 Explosion in Containment Facility – R4 Run

Pressure contours for the R4 run at selected times are shown in Figure 12.2, and may be

compared with Lind’s snapshots. A transparent outline of the adapted mesh is overlaid

on top of the contours. Note the complex shock interactions, reflections and focussing

that occur in these plots. The top non-reflecting boundary condition also seems to work

well in supressing reflections, as in Section 11.

The pressure as a function of time and distance along the wall for both grids is shown

in Figure 12.3 and is qualitatively comparable to Lind’s result (Figure 12.4) in terms of

shock trajectories and locations of maxima. Note the presence of fairly noisy contours

even prior to the arrival of the primary shock. These pressure variations stem from a

perturbed flowfield because of the degeneracies associated with obstructed axisymmetric

cells discussed in Appendix E.1. However, they are relatively very small, and do not

seem to have a debilitating effect on the contours above the primary shock.

Nonetheless, there is a considerable difference in the maximum values between the

grids, indicating grid independence has not yet been fully achieved. However Lind’s runs

also did not aim for grid-independent solutions as, somewhat curiously, their coarser

resolution simulations were more conservative in terms of overpressure.

It is possible to give a more accurate estimate to the peak overpressure by using

Richardson-extrapolation [163, 164] (Equation 6.1). In this case, with an assumed order

134

12.1. EXPLOSION IN CONTAINMENT FACILITY – R4 RUN

Figure 12.2: Pressure contours for R4 simulation of explosion in containment facility

of accuracy of 1 (as the scheme reverts to first-order at shocks) and a grid refinement

factor of 2, the estimated true solution fe is simply fe = 2f1 − f2, where f1 and f2

are the finer and coarser resolution solutions respectively. Thus the estimated true

peak overpressure for this simulation is 81.55 atm, which is quite close to Lind’s fine-

grid result of 83.3 atm. This is a good indication that the code can give reasonably

accurate solutions in complex geometry even with all the attendant problems involved

with axisymmetric VCE surface representation.

The local maximum near the bottom end of the lower endcap is due to shock fo-

cussing there. The pressure at focus points is a particularly grid-dependent result [54]

as according to analytic theory the pressure is actually infinite at these locations [52].

Thus this pressure is an averaged value in the vicinity of focus, which in turn depends

on grid resolution. However the fine grid result of 48.45 atm is fairly close to Lind’s

coarse grid result of 55.4 atm. Simulations for the R4 run were run on 2 processors in

parallel; the lower resolution simulation had an elapsed time of 25 minutes (maximum

135

12.2. EXPLOSION IN CONTAINMENT FACILITY – R7 RUN

(a) Coarser resolution (b) Finer resolution

Figure 12.3: Pressure contours in the s-t plane for R4 simulation of explosion in con-
tainment facility

Figure 12.4: Lind’s pressure contours in the s-t plane for the R4 simulation [129]

9700 cells), the higher resolution run had an elapsed time of 58 minutes (maximum of

21000 cells).

12.2 Explosion in Containment Facility – R7 Run

The pressure-time history along the wall for the cylindrical charge case is seen in Fig-

ure 12.5. These results are again qualitatively comparable to Lind’s result (Figure 12.6),

although slight differences can be observed. Nonetheless the location of peak overpres-

sures is predicted well. The magnitude of the peak overpressures again varies signifi-

cantly between the two resolution simulations. They all seem to occur at the bottom

of the endcap due to shock focussing there, which is sensitive to the grid resolution, as

mentioned in Section 12.1.

Via the same Richardson-extrapolation procedure the estimated actual peak over-

pressures for the peaks at around 2.5 ms and 9 ms are 188 atm and 489 atm respectively,

136

12.2. EXPLOSION IN CONTAINMENT FACILITY – R7 RUN

which are quite close in value to Lind’s result (186 atm and 496 atm respectively). The

initial peak pressure at this focus point is the most problematic result; the extrapolated

peak pressure there is only 162 atm, which is much lower than Lind’s result of 340 atm.

It is not known why this disagreement is so severe when compared to the other peaks.

Apart from the issues at focus points, it is also possible that Lind’s uniform grid may

have better preserved the peak pressure than the adapted grid given its sensitivity to

charge shape.

(a) Coarser resolution (b) Finer resolution

Figure 12.5: Pressure contours in the s-t plane for R7 simulation of explosion in con-
tainment facility

Figure 12.6: Lind’s pressure contours in the s-t plane for the R7 simulation [129]

The simulations show that OctVCE seems able to give comparably accurate results

to Lind’s results [129]. It is possible, like with Lind [129], to feed the pressure-time data

from Figures 12.3 and 12.5 into a simplified structural loading model to yield the wall

tension. Simulations for the R7 run were run on 1 processor; the lower resolution simu-

lation had an elapsed time of 86 minutes (maximum 10200 cells), the higher resolution

run had an elapsed time of 285 minutes (maximum of 25000 cells). This is significantly

longer than the R4 run (even accounting for the 1 processor), but it is likely due to a

consistently larger number of cells over a longer time.

137

Chapter 13

Validation - Blast in Simple Street and

Obstacle Geometries

This section tests the ability of OctVCE to model the three-dimensional blast environ-

ment in simple street and obstacle geometries, which are essentially arragements of two

or more (typically grid-aligned) rectangular prismatic bodies. In the case of street ge-

ometries, the obstacles are arranged and scaled to represent buildings in realistic street

layouts. Manually gridding the computational domain can still be tedious if the ar-

rangement of objects is complicated. The resulting flow-field can be quite complex with

multiple shock interactions and reflections, and formulation of simple semi-empirical

rules is difficult [194], and can lead to drastic under- or over-predictions of pressures

and impulses.

Blast channeling and shielding in various street configurations has been the subject

of numerous investigations [74, 160, 172, 193, 195]. Significant enhancement (as much

as a factor of four) to both peak overpressure and peak positive phase impulse was

observed, and sometimes the effect of shielding can be reduced considerably by blast

channeling. Reference [194] provides a good overview of these studies. In two-building

simulations, overpressure amplification in the rear wall of the front structure (due to

shock reflection) of more than two times the incident value was observed [160, 191].

Simulations of two different obstacle scenarios are performed here. The first is a

scaled street configuration with a right angle bend which is taken from the blast sim-

ulations of Rose and Smith [173]. The basic layout, dimensions and charge and gauge

locations can be seen in Figure 13.1. Further detail on this simulation is provided in

Section 13.1.

The second simulation is the three-obstacle scenario by Sklavounos and Rigas [190].

The basic geometry is shown in Figure 13.2, and further details on the dimensions are

provided in Section 13.2.

13.1 Blast in Street with Right Angle Bend

This simulation is based on the one performed by Rose and Smith [173] where a blast

propagates around a right angle bend in a street. The basic plan layout of the street

138

13.1. BLAST IN STREET WITH RIGHT ANGLE BEND

Figure 13.1: Right angle bend street layout. Source [173]

Figure 13.2: Three-obstacle layout. Source [190]

is given in Figure 13.1. The street is at 1/40th scale with a constant width of 0.4 m.

The charge has a mass of 15.625 g TNT and is located at the r3 point in Figure 13.1 at

37.5 mm height of burst. Each of the street buildings are 0.6 m high and 0.15 m thick.

Gauges 1–6 are all 75 mm high up the buildings.

From the results in Reference [173] the size of the computational domain is chosen so

that any reflections from the boundary would arrive too late to influence peak positive

impulse results. The adaptive-mesh simulation uses four working mesh levels (level 4 to

7) corresponding to cell sizes of 18.75 mm to 156.25 mm. Cells at surfaces had to be

kept at least at level 6 to avoid thin wall degeneracies. A higher resolution simulation

with level 8 cells is also performed to observe grid dependence, and also because the

minimum cell size (9.375 mm) roughly corresponds to the nominal uniform mesh cell

size (10 mm) employed by Rose and Smith [173].

The AUSMDV flux solver is used. A combined adaptation criterion is used with

the density-based adaptation indicator (Equation 3.4) of 0.3, 0.03 and 0.015 for the

refinement, coarsening and noise filter thresholds respectively, and 0.005 for the velocity

difference indicator (Equation 3.3). The number of interface area and volume subcells

139

13.2. BLAST IN THREE-OBSTACLE ENVIRONMENT

is 32 and 16 respectively. Because all surfaces are rectangular and grid-aligned, a ‘stair-

cased’ wall representation (Section 2.4.3) is used.

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

Coarser grid
Finer grid

Rose experiment (2003)
Rose CFD (2003)

(a) Gauge 6 trace

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Im
pu

ls
e

(k
P

a-
m

se
c)

Distance along street (m)

Coarser grid
Finer grid

Rose experiment (2003)
Rose CFD (2003)

(b) Peak positive impulse along all gauges

Figure 13.3: Results for blast in street with right angle bend

The pressure history at gauge 6 is shown in Figure 13.3(a) and compared with Rose’s

results. The comparison is quite good, especially for the finer grid in the positive phase

region (3–6 ms). Rose’s results are probably more accurate due to their employment

of a multi-dimensional solution remapping technique in the early stages of the blast

(Section 4.6) and a uniform grid. The multiple reflections in the later time period

from 8 to 14 ms are weaker and are not always refined about at the maximum cell

level, so differences with Rose’s solution are more prominent. The finer grid result was

terminated prematurely because of computer system maintenance.

The peak positive impulse at each gauge location is shown in Figure 13.3(b). The

‘distance along the street’ is the distance along the centreline of the street (from the

charge) to a location directly opposite the gauge. The comparison is fairly good, and

there appears to be more grid-independence of results at larger distances. At gauge

1 there is a noticeable discrepancy between the coarser and finer grids, but that is

likely due to initial charge shape effects. At gauges after 1.6 m the current results

underestimate slightly the impulse. It is likely the uniform grids used by Rose and Smith

is still superior to the adaptive scheme even when the minimum cell size is similar to

the uniform grid size.

13.2 Blast in Three-Obstacle Environment

This simulation is taken from Sklavounos and Rigas [190], who modelled blast wave

propagation over three successive obstacles. The basic layout of their experiment is

shown in Figure 13.2. The dimensions are L1 = 1.7 m, A = H = 0.6 m, L2 = 1.2 m,

140

13.2. BLAST IN THREE-OBSTACLE ENVIRONMENT

B = 8.5 m and L3 = 1.8 m. The charge is detonated at the midpoint of the obstacles.

Gauges 1 to 4 are positioned 0.3 m above ground along this central axis (except for

gauge 3 at 0.9 m height) and gauge 5 is at 0.3 m height, but offset 2.215 m to the side.

The total energy of the charge is 1908 kJ, with an explosive mass of about 325 g. High

pressure and density air is used to model the charge.

The boundaries are placed at a sufficiently far distance to ensure reflections do not

intefere with pressure histories. The simulation utilized quarter space symmetry to im-

prove performance, with a symmetry plane parallel to the central axis, and another

symmetry plane parallel to the obstructions passing through the charge centre. A min-

imum cell size was not specified in [190], so the focus of this test case is on matching

Skavounos’ experimental result. Here the adaptive mesh simulation uses four working

mesh levels (levels 4 to 7) corresponding to cell sizes of 78.125 mm to 625 mm. A higher

resolution simulation with level 8 cells (39.0625 mm) is also performed.

An adaptive flux solver is used with EFM at shocks and AUSMDV elsewhere. A com-

bined adaptation criterion is used with the density-based adaptation indicator (Equa-

tion 3.4) of 0.3, 0.035 and 0.02 for the refinement, coarsening and noise filter thresholds

respectively, and 0.005 for the velocity difference indicator (Equation 3.3). A plot of the

contours and grid along the ground and two symmetry planes is shown in Figure 13.4.

These results were also presented by the author in Reference [202].

Figure 13.4: Contours for blast in three-obstacle environment

Pressure histories at the five gauge locations are shown in Figure 13.5 and compared

with Sklavounos’ results. At gauge 1, the agreement between the current computational

and experimental results (especially with the finer grid) is quite good, and seems to be

141

13.2. BLAST IN THREE-OBSTACLE ENVIRONMENT

better than Sklavounos’ own computational results at times. The coarser grid fails to

resolve the distinct peaks in the positive phase period. There is also good agreement

between computation and experiment at gauge 2.

Gauge 3 exhibits an overly high peak experimental pressure which may be due to

amplification by ground shock and/or gauge vibration. This is a possibility because (a)

ground shock is also seen in the gauge 4 trace and (b) this peak seems isolated from

the pressures in the rest of the positive phase period. There is also some apparent drift

in experimental results prior to the arrival of the blast. In other respects agreement

between current computational and experimental results is good, and Sklavounos’ com-

putational result seems to be relatively poor as it has a pronounced finite rise time to

peak pressure (suggesting coarser grids) and a delayed arrival time.

Agreement between the current results and Sklavounos’ experimental result is poor-

est at gauge 4. The positive phase duration seems to be underestimated. Interference

from ground shock may be partly to blame, but the more pronounced finite rise time to

peak overpressure suggests grid refinement is no longer working as well here due to the

lower wave strength, and thus the positive phase is not represented so well. However,

arrival time seems to be calculated well. Note an apparent glitch at about 23 ms that

is too sharp (compared to the initial pulse) to be a shock. The reason for this artifact

is discussed below. Gauge 5 is at about the same horizontal distance as gauge 4, but

the computational results do agree better with experiment here. This suggests that the

more marked disagreement in gauge 4 might not be mainly due to poor mesh adaptation

there. Note again a sharp glitch at about 23 ms.

The reason for this glitch in Figures 13.5(d) and 13.5(e) is probably due to the

cell coarsening process. The cell adaptation method as discussed in Chapter 3 is only

conservative in density, momentum and energy. Thus there will be a discontinuity in

cell pressure between children cells and their just-coarsened parent cell, which will be

more pronounced for larger cells. At gauges 4 and 5 the mesh refinement is no longer

as fine as it was closer to the charge due to weaker shock strength, and cells here are

quite coarse, on the order of the obstacle dimensions.

This phenomenon can also be observed in simulations of free-field TNT burst (as in

Chapter 10). For example, Figure 13.6 shows the free-field pressure history at a gauge

location some distance from the charge, comparing a uniform mesh with an adapted

mesh. A glitch is present at about 16.4 ms in the adaptive mesh solution, but not seen

in the uniform mesh solution. In this case the glitch is not so noticeable as the adaptive

mesh has higher resolution. As long as cells are kept sufficiently fine, the glitch can be

minimized.

The coarser resolution simulation had a maximum of 1.61×105 cells (running for 18.5

142

13.2. BLAST IN THREE-OBSTACLE ENVIRONMENT

-15000

-10000

-5000

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30 35

O
ve

rp
re

ss
ur

e
(P

a)

Time (msec)

Coarser grid
Finer grid

Rigas experiment (2004)
Rigas CFD (2004)

(a) Gauge 1 trace

-8000

-6000

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30

O
ve

rp
re

ss
ur

e
(P

a)

Time (msec)

Coarser grid
Finer grid

Rigas experiment (2004)
Rigas CFD (2004)

(b) Gauge 2 trace

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 5 10 15 20 25 30

O
ve

rp
re

ss
ur

e
(P

a)

Time (msec)

Coarser grid
Finer grid

Rigas experiment (2004)
Rigas CFD (2004)

(c) Gauge 3 trace

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 10 15 20 25 30

O
ve

rp
re

ss
ur

e
(P

a)

Time (msec)

Coarser grid
Finer grid

Rigas experiment (2004)
Rigas CFD (2004)

(d) Gauge 4 trace

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 5 10 15 20 25 30

O
ve

rp
re

ss
ur

e
(P

a)

Time (msec)

Coarser grid
Finer grid

Rigas experiment (2004)
Rigas CFD (2004)

(e) Gauge 5 trace

Figure 13.5: Results for blast in three-obstacle environment

143

13.2. BLAST IN THREE-OBSTACLE ENVIRONMENT

-5

 0

 5

 10

 15

 14 14.5 15 15.5 16 16.5 17 17.5 18

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

1D
Adapted grid
Uniform grid

Figure 13.6: Example of adaptation-generated noise in pressure trace

hours) and the finer resolution simulation had a maximum of 6.25 × 105 cells (running

for 100.75 hours). The elapsed times for these simulations are not a reliable indicator of

computational effort as they were run on a shared interactive Altix cluster with disabled

cpusets.

144

Chapter 14

Validation - Explosion in Complex

Cityscape

The ultimate goal of OctVCE is to simulate explosions in complex three-dimensional

geometries. Brittle et al have investigated in detail an explosion in a complex cityscape

geometry with both scaled experiments and the Cartesian-cell ftt_air3d code [39, 175,

194], making this an ideal validation test case. This test case was also performed by the

present author in Reference [203]. The plan geometry of the cityscape at 1/50th scale

is taken from Brittle [39] and shown in Figure 14.1 with some annotations. The 16 g

spherical TNT charge is detonated at the EC1 location. Coordinates are given relative

to the origin at the lower left corner. The angle α can be computed from the dimensions

of building 1.

Figure 14.1: Complex cityscape geometry. From [39]

The domain size is the same as Rose’s [175] at 2.56 m × 2.56 m × 2.56 m, and three

different, increasingly finer meshes are used to observe grid dependence. The coarsest

resolution is a uniform mesh level 6 (40 mm cells), the next finer grid is an adaptive

mesh with level 6 and 7 cells, and the finest grid has level 6 to 8 cells (10 mm minimum

cell size). These mesh levels are the same ones used by Brittle and Rose [39, 175].

145

14.1. RESULTS

The coarsest mesh represents the charge as a cube because of the relatively large cell

sizes. Due to computational resource constraints, a level 9 mesh simulation could not

be performed.

The assumed specific energy of the charge is 4520 kJ/kg, which is represented with

the ballon analogue model (Section 4.6), and thus its pressure and density is modified to

represent correct blast energy and mass depending on the grid resolution. The ambient

gas is air at standard conditions (density of 1.2 kg/m3 and pressure 101.325 kPa). A

combined adaptation criterion is implemented with the density-based adaptation indi-

cator (Equation 3.4) of 0.3, 0.05 and 0.03 for the refinement, coarsening and noise filter

thresholds respectively, and 0.01 for the velocity difference indicator (Equation 3.3). An

adaptive flux solver is used (Section 4.4) with EFM at shocks and AUSMDV elsewhere.

The number of interface area and volume subcells is 32 and 16 respectively.

14.1 Results

Pressure histories at gauge locations 1, 3, 11 and 21 are shown in Figure 14.2 and com-

pared with the results of Brittle and Rose [39, 175]. There is generally good agreement,

especially for the finest resolution mesh in the positive phase. Agreement in peak over-

pressure is poorest at gauge 11. These results demonstrate that the balloon analogue

model of charge representation can produce acceptable pressure histories, although the

remapping procedure implemented by ftt_air3d [177] which remaps an initial highly

resolved one-dimensional solution to multidimensions would still produce more accurate

results.

In less major details there are more noticeable differences with Rose’s result, like

the poorer resolution of secondary waves e.g. for gauge 21 where the train of waves at

around 6 ms are not captured well. This is probably partly due to the cruder balloon

analogue model, but also because of the time-dependent cell size at surfaces. Intersected

or partially obstructed cells were kept at the maximum level in Rose’s simulation, but

this was not enforced in OctVCE, which allows a varying cell size at surfaces for faster

results. If the resolution of secondary details is not a priority, the current methodology

seems sufficient.

Increments between the coarse, finer and finest mesh solutions in peak pressure and

impulse are shown in Tables 14.1 to 14.6; increasingly smaller differences suggest con-

vergent behaviour. Gauge 1 (Table 14.1), being the gauge least shielded from the blast,

appears to demonstrate the best convergent behaviour in both pressure and impulse.

Coarser resolutions in fact overpredict the peak impulse, a result also observed by Brittle

[39], which might be a useful result if conservatism is desired.

146

14.1. RESULTS

-50

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

Coarsest grid
Medium grid

Finest grid
Rose experiment (2005)

Rose CFD (2005)

(a) Gauge 1 trace

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

Coarsest grid
Medium grid

Finest grid
Rose experiment (2005)

Rose CFD (2005)

(b) Gauge 3 trace

-40

-20

 0

 20

 40

 60

 80

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

Coarsest grid
Medium grid

Finest grid
Rose experiment (2005)

Rose CFD (2005)

(c) Gauge 11 trace

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

Coarsest grid
Medium grid

Finest grid
Rose experiment (2005)

Rose CFD (2005)

(d) Gauge 21 trace

Figure 14.2: Pressure histories for blast in complex cityscape

Gauge 3 (Table 14.2) does not appear to demonstrate convergent behaviour in pres-

sure, and the increments in impulse actually change sign. This behaviour is also repeated

for gauges 11 and 21 (Tables 14.3 and 14.5), however gauge 21 has convergent pressure.

Rose’s data [175] for gauges 11 and 21 are shown in Tables 14.4 and 14.6. Rose’s gauge

21 results also show apparent lack of convergence in overpressure and also impulse.

It is clear that mesh convergence is not always easy to demonstrate, and depends on

the gauge location and quantity under consideration. Convergence may be hampered by

the adaptive mesh and complex nature of the wave interactions [175], or perhaps only

consistently demonstrable on very fine meshes. In the simulations here, constant cell size

at surfaces is also not enforced, which may hinder convergence. It may be particularly

difficult to observe convergence in peak pressure as it is a shock-dependent quantity

and thus quite sensitive to grid resolution and flux limiters. Perhaps the coarsest mesh

is too coarse to be in the asymptotic convergence range. Nonetheless, correspondence

with Rose’s experimental results still seems reasonably good, even if mesh convergence

has not been fully attained everywhere.

Figures 14.3(a) and 14.3(c) show the peak pressure and impulse contours respectively

on the entire surface of the left-end wall (on which is placed gauges 3 to 11). They

147

14.1. RESULTS

Table 14.1: Complex cityscape, gauge 1 peak quantities

No. Pressure Impulse Inc. pressure Inc. impulse

levels (kPa) (kPa-msec) (kPa) (kPa-msec)

1 98 35.58 - -

2 130 29.89 31.9 -5.694

3 149 28.94 19.07 -0.949

Table 14.2: Complex cityscape, gauge 3 peak quantities

No. Pressure Impulse Inc. pressure Inc. impulse

levels (kPa) (kPa-msec) (kPa) (kPa-msec)

1 21 17.12 - -

2 30.8 14.85 9.845 -2.27

3 43.6 15 12.7 0.1503

Table 14.3: Complex cityscape, gauge 11 peak quantities

No. Pressure Impulse Inc. pressure Inc. impulse

levels (kPa) (kPa-msec) (kPa) (kPa-msec)

1 35.5 16.91 - -

2 39.4 16.07 3.83 -0.84

3 43.84 18.02 4.47 1.96

Table 14.4: Complex cityscape, Rose’s gauge 11 peak quantities [175]

No. Pressure Impulse Inc. pressure Inc. impulse

levels (kPa) (kPa-msec) (kPa) (kPa-msec)

1 30.2 16.2 - -

2 44.3 19.3 14.1 3.1

3 53.9 19.7 9.6 0.4

Table 14.5: Complex cityscape, gauge 21 peak quantities

No. Pressure Impulse Inc. pressure Inc. impulse

levels (kPa) (kPa-msec) (kPa) (kPa-msec)

1 46.9 38.4 - -

2 72.1 38.49 25.16 0.997

3 86.2 40.08 14.17 1.584

148

14.1. RESULTS

Table 14.6: Complex cityscape, Rose’s gauge 21 peak quantities [175]

No. Pressure Impulse Inc. pressure Inc. impulse

levels (kPa) (kPa-msec) (kPa) (kPa-msec)

1 47.6 40.4 - -

2 66.5 40.9 18.9 0.5

3 88.1 40.2 21.6 -0.7

were obtained by distributing about 1000 trace points over the wall, and are shown for

the finest resolution mesh. These contours are compared with Rose’s result [175] in

Figures 14.3(b) and 14.3(c). There is generally good agreement in the magnitude and

location of the various ‘hot spots’, some of which are due to wave coalesence. Rose

compared these contours to unshielded CONWEP data to demonstrate the inadequacy

of simple line-of-sight methods for blast problems in complex geometries due to multiple

shock reflection and diffraction [175].

(a) Peak pressure contours (b) Rose’s peak pressure contours [175]

(c) Peak impulse contours (d) Rose’s peak impulse contours [175]

Figure 14.3: Contours on left-end wall of blast in complex cityscape

Although a mesh convergence analysis was performed for individual gauge results,

it is also interesting to perform it for these pressure and impulse contours. The incre-

mentals in peak pressure and impulse are computed for each sensor on the face and

compared with the next higher level mesh to yield an absolute relative error for the

149

14.2. PERFORMANCE

sensor. This quantity is then summed over all sensors to yield an average relative error

per sensor point on this face. A decreasing error might indicate convergence. These

errors are shown in Table 14.7. Convergence in impulse is observed but apparently not

in pressure, although the difference is by less than 1%. This demonstrates again the

difficulty of obtaining convergence consistently for all quantities for the meshes used in

this simulation. Note also that impulse errors are substantially smaller than pressure

errors, sometimes by an order of magnitude.

Table 14.7: Complex cityscape, average relative error for left-end wall

No. levels Avg. pressure error Avg. impulse error

1–2 0.154 0.0347

2–3 0.163 0.0123

14.2 Performance

The performance for the various mesh resolution simulations are shown in Table 14.8

and compared to Rose’s ftt_air3d results [175]. The current simulations were all

conducted on four processors in parallel, and elapsed times cannot be directly compared

with Rose’s results. Thus in the second major column of Table 14.8 the elapsed time is

normalized by the coarsest resolution elapsed time.

OctVCE seems to exhibit slightly poorer scaling in relative time. Rose’s simulation

also used less cells especially for the finest mesh simulation. The most significant dif-

ference is in memory consumption, with the current code using as much as 15 times

more memory. Some of this overhead comes from explicit neighbour connectivities and

also additional data structures for parallel processing e.g. lists. This larger memory

consumption undoubtedly affects performance.

Table 14.8: Performance statistics for different mesh levels

Max no. cells Relative time Max memory (GB)

No. levels OctVCE ftt_air3d OctVCE ftt_air3d OctVCE ftt_air3d

1 2.57 ×105 2.62 ×105 1 1 0.528 0.058

2 5.8 ×105 4.3 ×105 3.42 3.29 1.33 0.088

3 2.06 ×106 1.44 ×106 23.15 18.67 4.65 0.317

A single processor simulation using the finest resolution (3 levels) was performed

for analysis of parallel performance, and this took 234.78 CPU hours, which is much

150

14.2. PERFORMANCE

larger than Rose’s equivalent simulation at 12.47 hours. Even allowing for the greater

number of cells with the current simulation, the code is still slower than ftt_air3d by

around a factor of 10. The single processor simulation could only be performed on the

Altix cluster using a cpuset of at least two memory nodes, as the memory consumption

exceeded the capacity of one node. Thus a considerable number of memory requests

would not be to local memory, which can degrade performance as the Altix system is

fairly ‘NUMA-heavy’, as mentioned in Section 5.5.3. Rose’s simulation was also run on

a single 2 GHz Pentium 4 personal computer, which is slightly faster than an individual

Altix processor (an Intel Itanium 2) – this performance was measured on a similar

workstation and compared with the Altix installed at the University of Queensland.

Clearly more work needs to be done to improve performance of the current code.

For example, many of the efficiency-boosting techniques used by ftt_air3d [177] can be

implemented, like variable timestepping, a less conservative timestep, fully threaded tree

structure [118], solution remapping from lower dimensions, pressure-based refinement

criteria and better memory management. More attention should be given to reducing

storage requirements, which was originally not a high priority as it was thought that

explicit storage e.g. of mesh connectivity would be more efficient. These performance

gains might be outweighed by the performance losses due to memory overhead e.g.

increased cache misses.

14.2.1 Parallel Performance

Parallel performance data is obtained for the finest resolution simulation on 1, 2, 4

and 8 processors. These simulations were done on the Altix 3700 cluster. Speedups

are shown in Figure 14.4, and are similar to those of the three-dimensional simulations

in Section 10.4.1. In this case the 2 processor speedup seems close to the ideal limit,

but as mentioned above the 1 processor simulation may have suffered a performance

degradation due to spreading its memory usage over two nodes . The relative differences

between the 2, 4 and 8 processor jobs are more reliable.

Performance statistics like those in Section 7.3 can be obtained from speedup data

and also the code profiler (the Intel compiler’s -openmp-profile flag), and are shown

in Table 14.9. The effective serial fraction is obtained from the Karp-Flatt metric

(Section 5.4), but as in Section 10.4.1 it could not be extrapolated to estimate the true

serial fraction (on 1 processor) because it did not monotonically increase with increasing

processors.

An explanation, also given in Section 10.4.1, is that the increased memory resources

of the 8 processor simulation enabled better performance, but this may also be explain-

151

14.2. PERFORMANCE

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

No. Cpus

Ideal
Measured speedup

Figure 14.4: Parallel speedups for blast in cityscape simulations

able from variations in memory access due to operation on the NUMA system. The

2 processor effective serial fraction is also probably too low from the discussion above.

Like in Section 10.4.1 the minimum fraction, 0.0466 (a considerably lower bound) is

used, and performance statistics are then relative to the 2 processor performance.

Table 14.9: Parallel performance statistics for complex cityscape simulations

No. processors – 1 2 4 8

Single processor time (hrs) 234.78

Max no. cells 2.063 ×106

‘Effective’ serial fraction 0.0466 0.133 0.13

Extrapolated serial fraction 0.0466∗

Barrier fraction 0.0174 0.052 0.0391

Overhead fraction 0.0174∗ 0.0864 0.0834

Barrier/overhead 1 0.602 0.469

Max imbalance time/elapsed 0.008 0.02701 0.02763

Many of the trends seen in Table 10.4 can also be observed here. In some cases

the values have similar magnitudes, but there are also noticeable discrepancies. Some

of these are due to the lower estimate of the serial fraction. Although the overhead

fraction should be defined to be zero for the 2 processor simulation, the barrier fraction

can still be obtained from the Intel profiler and thus for the 2 processor simulation is

set identical to the overhead fraction. The imbalance fractions are quite low, indicating

fairly good load balancing.

Note that the barrier/overhead fraction decreases with more processors indicating

that communication overhead becomes increasingly important. A reasonable estimate

for the code serial fraction is around 10% given upper bounds of 13% (the 8 proces-

152

14.2. PERFORMANCE

sor effective fraction in Table 14.9) and lower bounds of 4.7% (Table 14.9) and 9.2%

(Table 10.4) respectively. This is fairly good given the relatively crude parallelization

method (Section 5.5).

As a final demonstration that the code parallelization method is functioning prop-

erly, the pressure histories at gauges 1, 3, 11 and 21 from the 1, 2, 4 and 8 processor

simulations are shown in Figure 14.5. The parallelization should not affect the solution

and thus the pressure histories for all simulations should align exactly, which is observed.

There is a very small discrepancy in solutions at gauge 1. The best explanation for this

might be from slightly divergent numerical roundoff errors because the compiled code is

different with and without the -openmp flag. Other traces exhibit exact alignment. The

code was analyzed with the Valgrind memory checker application [67] and no memory

faults were apparent.

-40

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

1 cpu
2 cpu
4 cpu
8 cpu

(a) Gauge 1 trace

-20

-10

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

1 cpu
2 cpu
4 cpu
8 cpu

(b) Gauge 3 trace

-20

-10

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

1 cpu
2 cpu
4 cpu
8 cpu

(c) Gauge 11 trace

-60

-40

-20

 0

 20

 40

 60

 80

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

1 cpu
2 cpu
4 cpu
8 cpu

(d) Gauge 21 trace

Figure 14.5: Pressure histories from parallel simulations (blast in complex cityscape)

153

14.3. EFFECT OF ADJUSTING ADAPTATION CRITERIA

14.3 Effect of Adjusting Adaptation Criteria

It was discovered that the adaptation criteria used resulted in prolonged, needless and

excessive cell refinement near the explosion centre, as shown in Figure 14.6(a) which

plots the schileren and overlaid grid for the medium resolution mesh at an early stage of

the explosion (on the ground). This obviously has a significant effect on the simulation

performance. The adjustment of the adaptation parameters is experimented with to ob-

serve the effect on the solution and its elapsed time. As it is known from Appendix A.1

that the density-based refinement criterion usually refines around the turbulent explo-

sion centre, only the simple velocity-difference based criterion (Equation 3.3) is used.

Figures 14.6(b) to 14.6(d) show the effect on the grid refinement density as this

parameter is varied from 0.01 to 0.1 respectively. The schlieren and overlaid grids are

for the finest resolution. The degree of refinement clearly decreases as this parameter

is increased, and is virtually non-existent for a value of 0.1. For a value of 0.01 the

primary blast wave is still well-captured, but there appears still to be a considerable

degree of refinement near the explosion centre, probably due to the multiple shock

reflections occuring there. However, this is still less than the original simulation using

the density-based criterion (Figure 14.6(a)).

The speedup (relative to the original grid), memory usage and maximum number of

cells for these simulations are shown in Table 14.10. It is clear that significant reduc-

tions in storage and time can be made if the adaptation criteria are selected properly.

However, this is a difficult exercise a priori. A value of 0.01 for the velocity-difference cri-

terion seems to give a maximum number of cells more consistent with Rose’s simulation.

However, the absolute solution time is still much larger.

Table 14.10: Performance for different refinement criteria (complex cityscape)

Original grid VD: 0.01 VD: 0.03 VD: 0.1

Speedup 1 1.76 5.81 12.8

Max memory (GB) 4.625 3.624 1.753 0.791

Max. no. cells 2.063 × 106 1.431 × 106 6.64 × 105 3.49 × 105

154

14.3. EFFECT OF ADJUSTING ADAPTATION CRITERIA

(a) Original grid (b) VD: 0.01

(c) VD: 0.03 (d) VD: 0.1

Figure 14.6: Grids for different adaptation criteria

The pressure histories at gauges 1, 3, 11 and 21 for these simulations are shown in

Figure 14.7 and compared with the original simulation. The lesser refinement causes a

deterioration in the solution quality, especially for secondary features after the positive

phase. However it is surprising that all solutions give good peak overpressure at gauges 1

and 21, even for the very coarse grid with 0.1 as the velocity-difference indicator. Gauges

3 and 11 show how resolution of the peak overpressure becomes poorer as the indicator

is enlargened, and is particularly bad for the 0.1 indicator (as little cell refinement occurs

for this gauge location at this stage).

It appears that a value of 0.01 for the indicator produces results quite close to the

original simulations; some secondary peaks are not captured so well but these are not so

important. Fine-tuning this value between 0.01 and 0.03 may result in further savings

with comparably low deteroriation in accuracy, but this is a costly exercise. Except

in special circumstances, this velocity-difference based criterion seems the most cost-

155

14.3. EFFECT OF ADJUSTING ADAPTATION CRITERIA

-40

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

Original
VD: 0.01
VD: 0.03
VD: 0.1

(a) Gauge 1 trace

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

Original
VD: 0.01
VD: 0.03

VD: 0.1

(b) Gauge 3 trace

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

Original
VD: 0.01
VD: 0.03
VD: 0.1

(c) Gauge 11 trace

-40

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

Original
VD: 0.01
VD: 0.03

VD: 0.1

(d) Gauge 21 trace

Figure 14.7: Pressure histories from different adaptation criteria

effective, and for such blast simulations is preferrable. There is still some unnecessary

refinement near the explosion centre, so perhaps an additional pressure-difference crite-

rion (used in ftt_air3d [177]) might be useful.

156

Chapter 15

Application Study – Modelling Explosion

in Shipping Container Geometries

This application study was originally reported by the author in Reference [203] and

models an explosion in an internal geometry resembling a shipping container. The

stems from the recent consideration by the Centre of Hypersonics (The University of

Queensland) into the possibility of testing rocket motors in a confined facility, which is

a modified shipping container with roof vents for the inlet and outlet. Open-air rocket

testing is not preferred because the noise generated from the turbulent plume is quite

high at 120-130 decibels. This section presents a very simplified numerical simulation of

the worst-case scenario when the mainly nondetonable rocket propellant explodes, with

the goal of obtaining contours of peak overpressures and impulses on the (assumed rigid)

internal walls. This is essentially a design study and no opportunity for a supplemental

experimental study could be performed.

The propellant for the proposed Wagtail rocket [35] weighs 20 kg and is predomi-

nantly composed of ammonium perchlorate, which is normally very difficult to detonate

[158]. In light of this fact and the inability of the code to model propellant burning, a

conservative TNT equivalence value of 1 to 1 is assumed, and thus the charge in the

simulation consists of 20 kg of TNT. Although an explosion of this mass of TNT within

a shipping container with only 5 mm thick walls will result in failure of the facility,

the simulation can be thought to model the explosion in any rigid structure with the

same internal geometry, and it will still be interesting to observe the magnitude of peak

pressures. This study is thus a study into blast confinement effects.

A diagram of the testing facility is shown in Figure 15.1. The walls are modelled as

smooth, flat surfaces. The explosive source is located along the container centerline, 3

m from the intake end and 1 m off the floor. However, a plane of symmetry along the

container centerline is not used. An energy density of 4520 kJ/kg of TNT is assumed

[19]; the charge is initialized with the balloon analogue model (Section 4.6). It is assumed

to be composed of perfect gas air.

Three minimum adaptive grids are used to observe grid dependence. The coarsest

resolution uses four working levels (level 4 to 7) with cell sizes 0.2344 m to 1.875 m, and

is denoted the L7 mesh. Like in Section 12 the cells are kept at level 7 at walls as the

157

15.1. RESULTS

Figure 15.1: Diagram of rocket motor testing facility

code cannot handle thin wall degeneracies; the walls are themselves set with a thickness

larger than the diagonal spanning the cell corners. Computational resource constraints

prevent additionally finer grids to be used. The medium resolution uses five working

mesh levels (levels 4 to 8) and is denoted the L8 mesh. The finest resolution has six

working levels (levels 4 to 9, 0.0586 m the minimum cell size) and is denoted the L9

mesh. The domain size (30 m) is chosen to ensure the primary blast wave can exit all

vents without any boundary effects on the pressure histories.

A combined adaptation criterion is used with the density-based adaptation indicator

(Equation 3.4) of 0.3, 0.1 and 0.09 for the refinement, coarsening and noise thresholds

respectively, and 0.02 for the velocity difference indicator (Equation 3.3). An adaptive

flux solver is used with EFM at shocks and AUSMDV elsewhere. The number of interface

area and volume subcells is 32 and 16 respectively. 225 sensor points are distributed

uniformly over each interior wall to obtain peak impulse and pressure contours.

As this is an internal blast scenario, it is expected that the high degree of confinement

will cause multiple wave reflections and coalesence and produce enhancements in corners,

edges and other local constrictions [193]. Depending on the geometry and explosive,

quasi-static gas pressure can persist for a long time (compared to the wave length of the

initial pulse) due to buildup of hot gas from the detonation products, and can have a

singificant impact on structural loading.

15.1 Results

15.1.1 Selected Pressure Histories

Some pressure histories at different wall locations are shown in Figure 15.2. They

illustrate that convergence in peak pressure is not always attainable depending on the

158

15.1. RESULTS

sensor location. Figures 15.2(a) to 15.2(d) are examples of sensors located at either

corners or edges in the geometry. These histories do not show convergence in peak

overpressure; however Figure 15.2(c) apparently shows convergence in the second peak.

Figures 15.2(e) and 15.2(f) show pressure histories away from edges, and convergence

in peak overpressure is more demonstrable.

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 2 4 6 8 10

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

L7
L8
L9

(a) West face - floor, corner

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2 4 6 8 10 12 14
O

ve
rp

re
ss

ur
e

(k
P

a)
Time (msec)

L7
L8
L9

(b) West face - South face edge

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 5 10 15 20 25 30 35 40

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

L7
L8
L9

(c) East face - floor edge

-500

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

L7
L8
L9

(d) North face - floor edge

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35 40

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

L7
L8
L9

(e) West face convergent example

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (msec)

L7
L8
L9

(f) Top face convergent example

Figure 15.2: Selected traces for explosion in shipping container problem

Numerical convergence in peak overpressure was also found to be difficult in previ-

ous simulations [175] (see also Section 14.1), and particularly with gauge readings at

structural corners in an internal geometry [136]. Rose et al [175] state that convergence

159

15.1. RESULTS

may be difficult to demonstrate when initial pulses are comprised of several (previously)

distinct waves, although secondary pulses might be easier to converge. In this case,

the inconsistent convergent behaviour might be because a shock wave travelling into an

edge or corner geometry is analogous to shock focussing, due to symmetry of the solid

boundary condition. As discussed in Section 12.1 the pressure at such focus points is a

particularly grid-dependent result and difficult to resolve [54].

Hence convergence is more readily expected for sensors away from edges, which is

observed. Another factor influencing non-convergence at edges is that the finest cell sizes

are not always used at surfaces; depending on the geometry and adaptation criteria the

grid may not be adapted to the finest level at some sensor points, especially those far

from the charge. The range of grid sizes for this study may not be in the asymptotic

convergence range, which may need to be quite fine. Also VCE ‘rounds off’ corners unless

a staircased representation is used. The existence of ‘small cells’ (Section 2.4.2) at edges

and corners, and a locally first-order scheme, may also contribute to the deterioration

of accuracy.

15.1.2 Impulse and Pressure Wall Contours

Contours of peak overpressure and impulse along the facility’s interior walls are shown

in Figures 15.3 to 15.5. Figure 15.3 shows peak quantities along the south face, or

inlet-end wall. This figure gives an example of the different peak overpressure solutions

on different resolutions, which do differ noticeably, although general features are pre-

served. These differences are used in computing average wall errors in Section 15.1.3.

Peak overpressures are of the order of tens of megapascals. Maximum values increase

with increasing resolution, and the solution is symmetrical about the centreline. It is

interesting that the local maxima in the higher resolution simulations are slightly away

from the corners and do not correspond to the height of burst. The maximum impulse

occurs along the floor edge due to the shock focussing there and the charge height of

burst.

Figure 15.4 shows the peak quantities along the east face or long side wall for the

L9 grid. Note that peak values occur at the charge location, and are greatest at corners

and edges due to focussing. The impulse is nearly constant along the wall section from

the charge to the outlet vent. The peak pressures and impulse increase at the north face

(or outlet-end wall) due to shock reflection there.

Figure 15.5 shows contours for the L9 grid along the north face, or outlet-end wall,

which is farthest from the charge. By this stage there might have been much coalesence

of waves, and some numerical diffusion has occured, so the contours are more smoothly

160

15.1. RESULTS

(a) Peak ovepressure, L7 grid (b) Peak impulse, L7 grid

(c) Peak ovepressure, L8 grid (d) Peak impulse, L8 grid

(e) Peak overpressure, L9 grid (f) Peak impulse, L9 grid

Figure 15.3: South face contours for explosion in shipping container problem

161

15.1. RESULTS

varying. Peak pressure occurs at the facility floor and has attenuated to the order of

megapascals. Impulse values are also greatest at the floor.

(a) Peak ovepressure

(b) Peak impulse

Figure 15.4: East face contours (L9 grid) for explosion in shipping container problem

(a) Peak ovepressure (b) Peak impulse

Figure 15.5: North face contours (L9 grid) for explosion in shipping container problem

Figure 15.6 plots peak values for the L9 grid along the interior ceiling, or top face.

There exists a local maximum in pressure directly above the charge itself, although peak

values occur at edges (at the charge location) due to focussing. The effect of venting

on reducing peak values can be seen on the impulse plot where a marked decrease can

be observed. The impulse is nearly constant along the section from the charge to the

outlet vent.

162

15.1. RESULTS

(a) Peak ovepressure

(b) Peak impulse

Figure 15.6: Top face contours (L9 grid) for explosion in shipping container problem

15.1.3 Average wall errors

Like in Table 14.7 an average error for the whole wall can be estimated by calculating

the relative error between grids to obtain an average relative error per sensor point. This

relative error is identical to the Richardson-extrapolated error if the refinement factor

and solution order are 2 and 1 respectively. Decreasing errors for higher resolutions

indicate convergence. These errors are shown in Table 15.1. Note that errors in pressure

are quite high, and are as much as an order of magnitude higher than impulse errors.

This behaviour is also seen in Tables 10.1 and 10.2 and 14.7. Although impulse errors

are quite low, convergence has not been achieved either in impulse or pressure (except

for the top face pressure).

As the greatest sources of error typically lie at corners and edges, it might be inter-

esting to calculate this error excluding those sensors at corners/edges. The results are

tabulated in Table 15.2. It is noteworthy that more wall faces do display convergent

behaviour, although not always consistently in both the impulse and pressure. Conver-

gence seems to depend on what quantity is computed, and even how it is computed.

Pressure errors have been reduced by at least a factor of 2 compared to Table 15.1 and

no impulse error exceeds 0.4%. The north face, being located farthest from the charge

and more affected by wave coalesence, interaction, focussing and numerical diffusion,

does not converge in either impulse or pressure.

As a final exercise, a simulation is performed on a series of much finer grids by

reducing the domain size to only encompass the inlet-end (south) wall and the charge

163

15.1. RESULTS

Table 15.1: Estimated average relative errors for each face

Face Impulse error Pressure error

East face (L7-L8) 0.00764954 0.139601

East face (L8-L9) 0.0086392 0.149198

South face (L7-L8) 0.00735129 0.169336

South face (L8-L9) 0.0102446 0.247718

North face (L7-L8) 0.00840221 0.0288078

North face (L8-L9) 0.0120841 0.150225

Top face (L7-L8) 0.00899833 0.17061

Top face (L8-L9) 0.0124166 0.140126

Table 15.2: Estimated average relative errors (excluding edges) for each face

Face Impulse error Pressure error

East face (L7-L8) 0.00322188 0.075768

East face (L8-L9) 0.0031481 0.0710504

South face (L7-L8) 0.00212314 0.0719346

South face (L8-L9) 0.00175235 0.0649372

North face (L7-L8) 0.00289666 0.00655631

North face (L8-L9) 0.00440226 0.0627783

Top face (L7-L8) 0.00308275 0.0817211

Top face (L8-L9) 0.00315627 0.0409477

(with a symmetry boundary condition at the charge). Thus up until an early time

(around 5 ms) the solution on this wall can be compared with the larger domain runs,

until effects from the boundary cause divergences in the solution. Minimum cell sizes

used in these adaptive-mesh simulations are 0.00732 m, 0.0146 m and 0.0293 m. Average

facial errors between these solutions are shown in Table 15.3. In this case convergence

for both impulse and pressure is observed, showing that these finer resolutions appear

to be within the asymptotic convergence range.

Table 15.3: Smaller domain error estimates on south face

Grid Impulse error Pressure error

Medium-coarsest grid 0.00951 0.143

Finest-medium 0.00533 0.0964

164

15.1. RESULTS

A better estimate of the larger-domain errors can be thus computed by comparing the

solution to the finest smaller-domain grid (up until 5 ms). The results are in Table 15.4

and the estimated errors for the south face in Table 15.1 are reproduced here. These

better error estimates show that the larger-domain peak impulse errors are around 3%

(even for the coarsest mesh), which is quite good, but peak overpressure errors are no

smaller than 23%. The pressure errors do in fact converge on this calculation, but

impulse does not converge monotonically.

Table 15.4: Better estimate of larger domain errors on south face

Better estimate Previous estimate

Grid level Impulse error Pressure error Impulse error Pressure error

L7 0.0329 0.353 - -

L8 0.0345 0.33 0.00735 0.169

L9 0.0226 0.232 0.01 0.248

These simulations demonstrate the difficulty of obtaining convergence for this prob-

lem, which is also noted in Section 14.1 and in Reference [171]. The simplest means

to obtain convergent solutions is to employ finer meshes, but this can result in exces-

sive resource usage (time and storage) for the current code. It is still encouraging that

impulse errors have been shown to be quite low (no larger than 3.5%).

15.1.4 Pressure Amplification and Failure on the Outlet Wall

The effect of confinement can be quantified by observing how much larger the overpres-

sures are at the far-end outlet wall and outlet vent compared to a free-field air burst.

It is found that on the finest resolution mesh (L9 mesh) the average peak overpressure

on the outlet wall (north face) and outlet vent is 1.66 MPa and 0.5 MPa respectively.

The peak overpressure at the vent corresponds to a reflected shock from the outlet wall.

Using scaled spherical TNT free-field data from Kinney [119], at the same straight-line

scaled distance to the outlet wall the overpressure is around 0.024 MPa. Assuming a

shock with this overpressure undergoes normal reflection, the reflected overpressure is

calculated via the Rankine-Hugoniot relations to be 0.053 MPa. This means amplifica-

tion factors at the outlet wall and vent of at least 31 and 9.4 respectively.

Approximating the outlet wall as a simply-supported flat plate of thickness 5 mm

subject to the uniform load of 1.66 MPa, it is possible to calculate the maximum wall

stress (located at the wall center) by a simple formula obtainable from a standard

solid mechanics text [227]. As the wall is a nearly square section, the stress is simply

165

15.2. EXPLOSION IN A MORE COMPLEX FACILITY

0.2874q(L/t)2 where q is the load, L and t are the length and thickness respectively. It

is computed to be 110 GPa; this is clearly much higher than the tensile strength of the

steel wall (which is on the order of hundreds of megapascals), making failure a certainty.

If wall failure alone is being investigated, it is unnecessary to use numerical simulation

as hand calculation via Kinney’s free-field scaled data [119] is sufficient to demonstrate

this. As the reflected overpressure is calculated to be 0.053 MPa (based on Kinney’s

curve), the computed stress is 3.5 GPa, which is still too high. In reality the walls are

corrugated, effectively raising stiffness, and are not simply supported at their edges.

More detailed modelling of the wall response is best obtained via a finite element simu-

lation.

15.1.5 Performance

All simulations for the longer-domain simulations (used to generate Tables 15.1 and 15.2)

were run in parallel on the SGI Altix cluster using 8 processors. The L7 mesh had a

maximum of about 106,000 cells, running for 2.5 hours and required about 0.3 GB of

memory. The L8 mesh had a maximum of 452,000 cells, elapsed time 9.6 hours and

required 1.2 GB memory. The L9 mesh had a maximum of 2,120,000 cells, elapsed

time of 69.13 hours and required 5.6 GB memory. Based on these figures the memory

requirements are at most 2.95 kB per cell, which is slightly more than the value of 2.6

calculated in Section 11.3.

15.2 Explosion in a More Complex Facility

A more complicated geometry for the motor testing facility was considered in which

the facility is partially buried on a hill side, with the outlet being a duct to enclose the

rocket plume to reduce noise. A simulation was briefly performed mainly to test how

well the code can handle this more complex geometry. A diagram of this geometry is

shown in Figure 15.7. Also shown are the density contours and the superimposed grid

on the vertical plane along the duct. The charge in this case is equivalent to 60 kg of

TNT (a larger motor size) and three adaptive mesh simulations were performed with a

minimum cell size of about 20 cm (level 7), 10 cm (level 8) and 5 cm (level 9).

The results show that no ‘leakage’ of the gas from inside of the duct to the surround-

ing atmosphere has occured, because the cells are refined to the highest level at the

walls. The focussing of the shock in the duct has resulted in a stronger blast wave at

the duct exit, evident from the better mesh adaptation compared to the blast escaping

from the inlet and entryway. It appears from Figure 15.8 that the overpressure directly

166

15.2. EXPLOSION IN A MORE COMPLEX FACILITY

above the duct can be aligned with the standard free-field overpressure curve obtained

from Kinney’s data [119]. In this case the free-field curve is scaled to the charge weight

and offset by 2.9 m (or 0.74 kg/m1/3). This means that the blast exiting from the duct

outlet can be treated essentially like a free-field blast, but offset by 2.9 m (a relatively

small distance, indicating strong confinement). The behaviour of this offset free-field

curve might be worth exploring for different explosives and geometries.

(a) Initial geometry

(b) Density contour on 2D plane

Figure 15.7: Initial geometry and contours for more complex motor testing facility

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
ea

k
ov

er
pr

es
su

re
 (

kP
a)

Distance (m)

L7 mesh
L8 mesh
L9 mesh

Kinney (offset)

Figure 15.8: Overpressure above duct exit of motor testing facility

167

Chapter 16

Summary, Conclusions and Future Work

This thesis has described the design and testing of the CFD code OctVCE to model the

problem of blast propagation in complex geometries. The main design intent behind this

code is reliable prediction of blast loading in complex environments which is fast enough

to be used in a design process. This in turn can aid assessment of critical damage zones

and improve design of public spaces and structures. The code validation process has led

to a better insight into its accuracy and limitations and has helped identify a number

of areas and problems with the code that can be improved as future work.

Chapter 1 gave reasons why numerical simulation is in many cases the superior or

even necessary approach, compared to empiricial or semiempirical methods, for solving

this problem. An overview of previous attempts and codes also used in modelling blast

propagation in realistic geometries was provided, and the basic characteristics of explo-

sive blasts was discussed. Chapter 2 then presented different CFD methods which could

be used to simulate flows in complex geometries, concluding with a discussion on differ-

ent Cartesian cell methods and their advantages. A detailed discussion was provided of

the VCE method and its associated shortcomings.

Chapter 3 then discussed the octree data structure and how it could be utilized as the

basis for mesh adaptation in the code. Some algorithms in the form of pseudo-code were

presented to demonstrate the recursive nature of the mesh adaptation process. Some

measures that could be taken to increase speed (by sacrificing memory) and handle

degeneracies were also discussed, and the two different adaptation indicators used in

the code (based on velocity and density differences) were presented.

Chapter 4 centered on the numerical methodology of the code. The governing equa-

tions being solved, their method of discretization and integration, flux solvers used

(the AUSMDV [221] and EFM [150] schemes), reconstruction method and equations of

state were described. This section also reviewed the boundary conditions used in the

code and described how initial explosions or charges are represented in the numerical

simulation using the ‘balloon analogue’ or isothermal bursting sphere approach. Some

point-inclusion query methods were also reviewed.

Chapter 5 provided a review of parallel computing, parallel programming methods

and parallel performance measures, like Amdahl’s law [8] and its inverse (the useful

168

Karp-Flatt metric [113]). Section 5.5 described the shared-memory parallel implemen-

tation of the code.

Chapter 6 proceeded to the verification stage of code testing to establish the reli-

ability of the code programming in its implementation of the numerical methodology.

Four different test cases were considered. The first case, the Method of Manufactured

Solutions (Section 6.1), demonstrated higher-order behaviour of the code (between 1

and 2). In the second case (Section 6.2), the code was shown to provide solutions in

good agreement with the classic Sod shock tube problem, and an adaptive mesh solution

had a factor of savings of up to 3 in time and storage compared to the uniform grid

result. The non-reflecting boundary conditions were also tested with this problem and

shown to work well.

Section 6.3 demonstrated convergence as both subcell and grid resolution increased

for supersonic flow over simple wedge and cone geometry. Importantly, the surface so-

lution noise arising from the approximative nature of the VCE method (discussed in

Section 2.4.4) was shown not to be significant for practical engineering purposes e.g. if

integrated pressure forces are desired. Adaptive mesh solutions resulted in savings of

up to 9 times in storage and 7 times in time compared to comparable uniformly-refined

mesh solutions, demonstrating the large gains in efficiency obtainable from mesh adap-

tation. Section 6.4, which dealt with supersonic vortex flow, demonstrated very good

grid convergence (sometimes as high as the formal order of accuracy) of the numerical

result to the analytic solution.

Chapters 7 to 14 then described the numerous validation tests undergone by the

code to establish how well it can solve realistic blast and shock propagation problems.

In Chapter 7 the shock diffraction over a wedge was simulated, and good agreement

with previous experimental and numerical data was shown. The code performance

was also profiled for this simulation. Serial profiling showed that reconstruction-related

operations dominated the calculation, suggesting that future work should target this

area to improve efficiency. However, fairly good efficiency in the adaptation procedure

was achieved. Parallel profiling (using the Karp-Flatt metric) showed a serial fraction

for this calculation of approximately 10-20%, and significant overheads due to execution

of the code on a NUMA system and the non-local nature of parallelization and work

distribution among threads. This suggests that if any future development of the code

is to occur, it should focus on more complex parallel implementations and importantly

on improving the code’s memory efficiency.

Chapter 8 presented a simulation of shock interaction with cylindrical geometry

which showed good agreement with previous numerical work on this problem. Chapter 9

validated the one-dimensional spherical solver and demonstrated the accuracy of the

169

isothermal bursting sphere solution with previous experimental and numerical data. It

confirmed the findings of previous studies [166, 171] that the initial energy release is the

most important factor when peak overpressure or postive impulse in the mid- to far-field

regimes is desired. Non-reflecting boundary conditions were also tested for this problem

and shown to work well. Chapter 10 proceeded to simulate spherical TNT blast for

both the one-, two- and three-dimensional solvers. Convergence of the two- and three-

dimensional solvers to the one-dimensional result was demonstrated, and the errors due

to discretization and staircasing of the charge were measured. Parallel profiling of the

simulations showed large parallel overhead, but around 10% serial fraction to the code.

Chapter 11 concerned simulations of blast near single barrier structures. Good agree-

ment with previous data was shown, although there was a puzzling discrepancy in blast

arrival times. Simulations employing the non-reflecting boundary conditions performed

well when compared with larger-domain simulations. Savings of up to 5 times in time

were observed between adaptive and uniformly-refined mesh solutions. However, the

code was shown to be quite memory inefficient, which can impact performance consid-

erably. Chapter 12 demonstrated the code’s ability to simulate well explosions in com-

plex axisymmetric containers. The current results were somewhat inferior to previous

numerical results of commensurate resolution, but comparable accuracy was obtained

when Richardson extrapolation [163, 164] of the results was performed using solutions

from different meshes.

Chapter 13 tested the code in simulations of blast in three-dimensional environments

consisting of simple grid-aligned rectangular-prismatic geometries, and the results com-

pared well with previous experimental and numerical data. Chapter 14 focussed on

simulations of blast in a more complex urban environment, and fairly good agreement

with past results was achieved without the need for multi-dimensional remapping of an

initial one-dimensional spherical result [171]. Parallel profiling of the code showed a

serial portion of around 10% as before, and significant parallel overheads.

It was also observed that for this simulation, unnecessary and excessive refinement of

the mesh occured near the fireball due to the adaptation criteria employed, and future

work might also consider using a pressure-difference based indicator to prevent needless

refinement in this region. It is difficult to know a priori what values of the adaptation

indicators are optimum for the simulation; only guidelines can be provided. Convergence

of solutions was not always demonstrable, although there were reliable trends. The

previous data for this problem was supplied from Rose’s ftt_air3d code [174], which is

also an octree adaptive mesh, Cartesian cell code developed concurrently with OctVCE.

Comparison of the codes’ performance for this problem showed that ftt_air3d is much

more efficient time-wise and storage-wise.

170

16.1. COMPARISON WITH A SIMILAR CODE

Chapter 15 focussed on an application study of the code in simulations of internal

blast in a shipping container geometry. Regrettably there was no opportunity for ex-

perimental work to supplement the numerical study, but the work was part of a design

process which helped in the evaluation of options for the rocket test facility. Conver-

gence of solutions was not always easy to demonstrate due to the coarseness of the grids,

and shock focussing at the edges and corners of the geometry. Nonetheless the simu-

lations demonstrated very large amplification of pressures and positive impulses within

the structure due to confinement of the blast.

Many of the validation simulations demonstrated that acceptable (but still some-

what inferior) solutions can be obtained without the need for first remapping a one-

dimensional result before the blast passes the nearest surface feature. It would appear

that the OctVCE code has been shown to be a reliable tool in simulating blast propaga-

tion in complex geometries, as per the aims of the thesis, and more generally that the

VCE method and octree mesh adaptation appears suitable for such problems.

16.1 Comparison with a Similar Code

The ftt_air3d code of Rose et al [174] is similar to, more advanced than and developed

at about the same time as the OctVCE code, and has greater time and memory efficiency.

It may be instructive to compare and contrast the two codes in case future work in

improving or extending OctVCE is undertaken.

The ftt_air3d code [174, 177] is written in FORTRAN and due to implementation of

the Fully Threaded Tree (FTT) structure [118] (discussed in greater depth in Section 3.1)

is much more memory-efficient than OctVCE, which stores mesh connectivity, geometric

data and other information explicitly. Lower memory requirements contribute to overall

better performance due to fewer cache misses. ftt_air3d also appears to use a one-

dimensional form of reconstruction whilst OctVCE uses multi-dimensional reconstruction

requiring inversion of matricies. In OctVCE this forms a significant portion (50%) of the

calculation code (as mentioned above) and given the success of ftt_air3d, it may be

that multi-dimensional reconstruction is not required for such problems.

Another very significant time-saving strategy used in ftt_air3d is the use of local

but interleaved timestepping (depending on cell level) and an apparently less conserva-

tive timestep. ftt_air3d seems to use a timestep based on the expression

∆t =
∆x

max (a + |ui|)
(16.1)

with the maximum taken over the three directions i = x, y, z [176]. If this expression is

171

16.1. COMPARISON WITH A SIMILAR CODE

compared with Equation 4.7 and assuming the (a + u) term is constant, Equation 4.7

gives a timestep which is 6 times smaller than Equation 16.1 in three dimensions. As

it is very simple in OctVCE to increase the timestep e.g. by increasing the CFL or

adopting Equation 16.1, this might be worth exploring for future simulations. To ensure

stability and proper shock tracking, the mesh adaptation frequency can be increased and

more aggressive cell merging undertaken to ensure large cells everywhere. Also, a less

conservative CFL “cut-back” procedure (Section 4.8.1, page 37) might be used e.g.

setting a larger value of εcut.

The adaptation indicators in OctVCE were chosen because of past success [148, 155,

211], capability to refine cells about other discontinuities like slip layers and provision of

some refinement in the positive phase region of the blast. This can sometimes result in

excessive refinement about relatively unimportant regions like the explosive products.

This problem may not be present in ftt_air3d, which uses a simple pressure difference

indicator. It also provides for some degree of refinement behind the blast by testing if

the number of times a cell is considered for coarsening reaches some threshold value.

ftt_air3d also allows specification of regions where mesh refinement can be switched

off, which is not implemented in OctVCE.

Unlike OctVCE, ftt_air3d also supports remapping of one-dimensional spherical

solutions to multi-dimensions, which can produce well-resolved blast profiles and save

save solution time in the early stages of the explosion. Compared to OctVCE which

allocated or deallocated memory (corresponding to refining or coarsening respectively)

on a per cell basis, ftt_air3d appears to be more efficient in its handling of memory

by allocating or deallocating stacks of cells. Codes that frequently allocate or deallocate

memory do suffer from performance ineffiencies due to memory management overhead

[105, 174], and the memory in OctVCE might become more fragmented over time than

with ftt_air3d [177].

However, OctVCE does have parallel processing capability, unlike ftt_air3d, and it

can handle geometry constructed of arbitrary surface polygons instead of just convex

polygons (required by ftt_air3d) due to the generality of the VCE method. A disadvan-

tage is possibly more time spent in computing geometrical operations like point-inclusion

queries. Due to the axisymmetric extension to the VCE method, OctVCE can also sim-

ulate axisymmetric flows in complex geometry in addition to the simple height-of-burst

problem. A parallel OctVCE solution conjoined with a less conservative timestepping

strategy discussed above might be competitive with a ftt_air3d run. The parallel im-

plementation (Section 5.5) seems to perform well given the inherently serial portion of

the code, but still could be more efficient, due to the large memory requirements and

locality issues when executed on a NUMA machine (as discussed above).

172

16.2. ACCESS TO THE SOURCE CODE

Further work might thus first focus on reducing memory usage without comprimis-

ing the basic numerical methodology. It may still be possible to achieve performance

competitive with ftt_air3d despite the relatively simple parallelization method, ex-

plicit storage of neighbouring connectivity and use of list structures to access cells. For

example, some relatively simple improvements to the cell data structure (Figure K.4

in Appendix K) can be made without requiring too much alterations to the code.

The gradient and limiters structures could be combined into a single limited

gradient quantity, as in ftt_air3d, and geometric data like interface areas, volumes

and surface normals really only require storage for intersected cells, being easily derived

for unobstructed cells based on cell level. These additional complexities arise because

intersected cells in OctVCE are not always at the finest level (unlike ftt_air3d), which

require more storage to handle these special cases. Given the accuracy of the method, it

may also be sufficient to use a single interface flux vector, even if the interface is shared

by two or more cells at finer level.

16.2 Access to the Source Code

The OctVCE program source code and user manual can be found in

http://www.mech.uq.edu.au/staff/jacobs/cfcfd/.

173

Bibliography

[1] M J Aftosmis. Solution adapative Cartesian grid methods for aerodynamics flows

with complex geometries, 1997. 28th Computational Fluid Dynamics Lecture

Series, VKILS 1997-02.

[2] M J Aftosmis, G Adomavicus, and M J Berger. A parallel multilevel method for

adaptively refined cartesian grids with embedded boundaries. In 38th Aerospace

Sciences Meeting and Exhibit, 2000. AIAA 2000–0808.

[3] M J Aftosmis, M J Berger, and J E Melton. Adaptation and surface modeling for

Cartesian mesh methods, 1995. AIAA–95–1725–CP.

[4] M J Aftosmis, M J Berger, J E Melton, and M D Wong. 3D applications of a

Cartesian grid Euler method. In 33rd Aerospace Sciences Meeting and Exhibit,

1995. AIAA 95–0853.

[5] M J Aftosmis, D Gaitonde, and T Sean Tavares. On the accuracy, stability and

monotonicity of various reconstruction algorithms for unstructured meshes. In

32nd Aerospace Sciences Meeting and Exhibit, 1994. AIAA 94–0415.

[6] M J Aftosmis, D Gaitonde, and T S Tavares. Behaviour of linear reconstruction

techniques on unstructured meshes. AIAA Journal, 33(11):2039–2049, 1995.

[7] Daniel Ambrosini, B Luccioni, A Jacinto, and R Danesi. Location and mass of

explosive from structural damage. Engineering Structures, 27:167–176, 2005.

[8] G Amdahl. The validity of the single processor approach to achieving large scale

computing capabilities. In AFIPS Conference Proceedings, pages 483–485, 1967.

[9] J D Anderson. Computational Fluid Dynamics: the Basics with Applications.

McGraw-Hill, New York, 1995.

[10] J D Anderson. Modern Compressible Flow: With Historical Perspective. McGraw-

Hill Higher Education, New York, 3rd edition, 2003.

[11] J G Anderson, G Katselis, and C Caputo. Analysis of a Generic Warhead Part

I: Experimental and Computational Assessment of Free Field Overpressure, 2002.

DSTO Weapons Systems Division, Australia, DSTO-TR-1313.

174

BIBLIOGRAPHY

[12] B J Armstrong, D D Rickman, J T Baylot, and T L Bevins. Code Validation

Studies for Blast in Urban Terrain. In Proceedings of 2002 HPC User’s Group

Conference, 2002.

[13] U.S. Army. The Antiterrorist Planner Software – A Tool for Vulernability As-

sessment of Facilities and Force Protection Planning, 1988. U.S. Army Engineer

Waterways Experiment Station, 3909 Halls Ferry Road, Vicksburg, MS 39180-

6199.

[14] M Arora and P L Roe. A Well-Behaved TVD Limiter for High-Resolution Calcu-

lations of Unsteady Flow. Journal of Computational Physics, 132(1):3–11, 1997.

[15] L S Avila. The VTK user’s guide. Kitware, Inc., Clifton Park, NY, 2004.

[16] A Bagabir and D Drikakis. Numerical experiments using high-resolution schemes

for unsteady, inviscid, compressible flows. Computer Methods in Applied Mechan-

ics and Engineering, 193:4675–4705, 2004.

[17] E L Baker. An Explosives Products Thermodynamic Equation of State Appropri-

ate for Material Acceleration and Overdriven Detonation: Theoretical Background

and Formulation, 1991. ARAED-TR-911013, U.S. Army Armament Research, De-

velopment and Engineering Center, Picatinney Arsenal, New Jersey.

[18] E L Baker and D L Littlefield. Implementation of a High Explosive Equation of

State into an Eulerian Hydrocode. In AIP Conference Proceedings, volume 706,

pages 375–378, 2004.

[19] W E Baker, P A Cox, P S Westine, J J Kulesz, and R A Strehlow. Explosion

Hazards and Evaluation. Elsevier, New York, 1983.

[20] T J Barth. On Unstructured Grids and Solvers, 1990. von Karman Institute for

Fluid Dynamics, Lecture Series 1990–03.

[21] J D Baum, L Hong, E Mestreau, and C Deel. Assessment of the terrorist attack

on the US Embassy in Nairobi, Kenya. In Proceedings of the 10th International

Symposium on Interaction of the Effects of Munitions with Structures, San Diego,

2001.

[22] J D Baum and R Löhner. Numerical simulation of a shock interaction with a

modern main battlefield tank, 1991. AIAA-91-1666.

[23] J D Baum, H Luo, and R Löhner. Numerical simulation of a blast inside in the

world trade center, 1995. AIAA 95-0085.

175

BIBLIOGRAPHY

[24] J Bell, M Berger, J Saltzman, and M Welcome. Three-dimensional adaptive

mesh refinement for hyperbolic conservation laws. SIAM Journal of Scientific

Computing, 15(1):127–138, 1994.

[25] G Ben-dor, O Igra, and T Elperin. Handbook of Shock Waves, volume 2. Academic

Press, San Diego, 2001.

[26] M J Berger. Adaptive Mesh Refinement for Hyperbolic Partial Differential Equa-

tions. Journal of Computational Physics, 53:484–512, 1984.

[27] M J Berger and R J LeVeque. An Adaptive Cartesian Mesh Algorithm for the

Euler Equations in Arbitrary Geometries, 1989. AIAA 89–1930–CP.

[28] R Berrendorf and G Nieken. Performance characteristics for OpenMP constructs

on different parallel computer architectures. Concurrency: Practice and Experi-

ence, 12:1261–1273, 2000.

[29] R Biswas and R Strawn. Tetrahedral and hexahedral mesh adaptation for CFD

problems. Applied Numerical Mathematics, 26(1–2):135–151, 1998.

[30] T Blacker. Meeting the challenge for automated conformal hexahedral meshing.

In 9th International Meshing Roundtable, New Orleans, 2000.

[31] T Blacker. Auotmated Conformal Hexahedral Meshing Constraints, Challenges

and Opportunities. Engineering with Computers, 17:201–210, 2001.

[32] T D Blacker and R J Meyers. Seams and Wedges in Plastering: A 3-D Hexahedral

Mesh Generation Algorithm. Engineering with Computers, 9:83–93, 1993.

[33] BLASTX, 1996. U.S. Army Engineer Waterways Experiment Station, Mississippi.

[34] OpenMP Architecture Review Board. OpenMP C and C++ Application Program

Interface, 2002. Version 2.0.

[35] D Bond, B Trinh, and D Fox. Wagtail Solid Rocket Project, 2007. University of

Queensland MECH4552 Design Project Report.

[36] J Bonet and J Peraire. An Alternating Digital Tree (ADT) algorithm for 3D geo-

metric searching and intersection problems. International Journal for Numerical

Methods in Engineering, 31:1–17, 1991.

[37] J P Boris. The threat of chemical and biological terrorism: preparing a response.

Computing in Science and Engineering, 4(2):22–32, 2002.

176

BIBLIOGRAPHY

[38] S Børve, M Omang, and J Trulsen. Regularized smoothed particle hydrodynam-

ics with improved multi-resolution handling. Journal of Computational Physics,

208:345–367, 2005.

[39] M A Brittle. Blast propagation in a geometrically complex urban environment.

Master’s thesis, Royal Military College of Science Engineering Systems Depart-

ment, 2004.

[40] H L Brode. Numerical Solutions of Spherical Blast Waves. Journal of Applied

Physics, 26:766–775, 1955.

[41] H L Brode. Blast Wave from a Spherical Charge. Physics of Fluids, 2:217–229,

1959.

[42] A E Bryson and R W F Gross. Diffraction of Strong Shocks by Cones, Cylinders,

and Spheres. Journal of Fluid Mechanics, 10:1–16, 1961.

[43] P S Bulson. Explosive Loading of Engineering Structures. E and FM Spon, UK,

1997.

[44] J L Cambier, S Tokarcik, and D K Prabhu. Numerical simulations of unsteady

flow in a hypersonic shock tunnel facility. In AIAA 17th Aerospace Ground Testing

Conference, Nashville, TN, 1992.

[45] R S Cant, W N Dawes, and A M Savill. Advanced CFD and Modeling of Accidental

Explosions. Annual Review of Fluid Mechanics, 36:97–119, 2004.

[46] Y A Çengel and M A Boles. Thermodynamics: an engineering approach. McGraw

Hill, New York, 4th edition, 2002.

[47] R Chandra, L Dagum, D Kohr, D Maydan, J McDonald, and R Menon. Parallel

Programming in OpenMP. Academic Press, USA, 2001.

[48] T C Chapman, T A Rose, and P D Smith. Blast wave simulation using AU-

TODYN2D: a parametric study. International Journal of Impact Engineering,

16(5/6):777–787, 1995.

[49] T C Chapman, T A Rose, and P D Smith. Reflected blast wave resultants behind

cantilever walls: A new prediction technique. International Journal of Impact

Engineering, 16(3):397–403, 1995.

[50] E F Charlton. An Octree Solution to Conservation–laws over Arbitrary Regions

(OSCAR) with Applications to Aircraft Aerodynamics. PhD thesis, The University

of Michigan, 1997.

177

BIBLIOGRAPHY

[51] E F Charlton and K G Powell. An Octree Solution to Conservation-laws over

Arbitrary Regions, 1997. AIAA 97-0198.

[52] R F Chisnell. An analytic description of converging shock waves. Journal of Fluid

Mechanics, 354:357–375, 1998.

[53] T J Chung. Computational fluid dynamics. Cambridge University Press, Cam-

bridge, 2002.

[54] S Cieslak, S B Kheil, I Choquet, and A Merlen. Cut cell strategy for 3-D blast

waves numerical simulations. Shock Waves, 10:421–429, 2001.

[55] J F Clarke and M McChesney. The dynamics of real gases. Butterworths, London,

1964.

[56] J K Clutter. A reduced combustion model for vapor cloud explosions validated

against full-scale data. Journal of Loss Prevention in the Process Industries,

14:181–192, 2001.

[57] J K Clutter, J T Mathis, and M W Stahl. Modeling environmental effects in

the simulation of explosion events. International Journal of Impact Engineering,

34:973–989, 2007.

[58] W J Coirier. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler

and Navier-Stokes Equations. PhD thesis, The University of Michigan, 1994.

[59] W J Coirier and K G Powell. An Accuracy Assessment of Cartesian-Mesh Ap-

proaches for the Euler Equations, 1993. AIAA 93–3335–CP.

[60] P Colella and H M Glaz. Efficient Solution Algorithms for the Riemann Problem

for Real Gases. Journal of Computational Physics, 49:264–289, 1985.

[61] T Colonius. Modeling Artifical Boundary Conditions for Compressible Flow. An-

nual Review of Fluid Mechanics, 36:315–345, 2004.

[62] R Courant, K Friedrichs, and H Lewy. On the Partial Difference Equations of

Mathematical Physics. IBM Journal, 11(2):215–234, 1967.

[63] G Cybenko. Dynamic load balancing for distributed memory multiprocessors.

Journal of Parallel and Distributed Computing, 7:279–301, 1989.

[64] A Dadone. Cartesian grid computation of inviscid flows about multiple bodies. In

41st Aerospace Sciences Meeting and Exhibit, 2003. AIAA 2003-1121.

178

BIBLIOGRAPHY

[65] A Dadone and B Grossman. An Immersed Body Methodology for Inviscid Flows

on Cartesian Grids. In 40th Aerospace Sciences Meeting and Exhibit, 2002. AIAA

2002–1059.

[66] D De Zeeuw and K G Powell. An Adaptively Refined Cartesian Mesh Solver for

the Euler Equations. Journal of Computational Physics, 104:56–68, 1993.

[67] Valgrind developers. Valgrind. ¡http://www.valgrind.org/¿, accessed May 2008.

[68] Maxima development team. Maxima, a computer algebra system.

¡http://maxima.sourceforge.net/¿, accessed May 2008.

[69] K D Devine, E G Boman, R T Heaphy, B A Hendrickson, J D Teresco, J Faik, J E

Flaherty, and L G Gervasio. New challenges in dynamic load balancing. Applied

Numerical Mathematics, 52:133–152, 2005.

[70] J M Dewey and A van Netten. Calculating Blast-Effects Distances in Urban

Environments. In 17th International Symposium on Military Aspects of Blast and

Shock, Las Vegas, Nevada USA, 2002.

[71] D Drikakis, F Grinstein, and D Youngs. On the computation of instabilities and

symmetry-breaking in fluid mechanics. Progress in Aerospace Sciences, 41:609–

641, 2005.

[72] J A Edwards and T Ren. Vortex Interaction with an Aerofoil Using Chimera

and the AMR algorithm. In AIAA Atmospheric Flight Mechanics Conference and

Exhibit, volume AIAA 2002–4806, 2002.

[73] H El-Rewini and M Abd-El-Barr. Advanced Computer Architecture and Parallel

Processing. John Wiley and Sons, Inc, Hoboken, New Jersey, 2005.

[74] G E Fairlie, N F Johnson, and K C Moran. Validated Numerical Simulations of

Blast Loads on Structures. In 16th International Symposium on Military Aspects

of Blast and Shock, Oxford, England, 2000.

[75] F R Feito and J C Torres. Inclusion test for general polyhedra. Computers and

Graphics, 21(1):23–30, 1997.

[76] J E Flaherty, R M Loy, M S Shephard, B K Szymanski, J D Teresco, and L H

Ziantz. Adaptive Local Refinement with Octree Load-Balancing for the Paral-

lel Solution of Threee-Dimensional Conservation Laws. Journal of Parallel and

Distributed Computing, 47:139–152, 1997.

179

BIBLIOGRAPHY

[77] H Forrer and R Jeltsch. A higher order boundary treatment for cartesian-grid

methods. Journal of Computational Physics, 140:259–277, 1998.

[78] C E Fothergill, S Chynoweth, P Roberts, and A Packwood. Evaluation of a CFD

porous model for calculating ventilation in explosion hazard assessments. Journal

of Loss Prevention in the Process Industries, 16:341–347, 2003.

[79] P J Frey and P L George. Mesh generation : application to finite elements. Hermes

Science Publishing, Paris, 2000.

[80] N T Frink. Upwind Scheme for Solving the Euler Equations on Unstructured

Tetrahedral Meshes. AIAA Journal, 30(1):70–77, 1992.

[81] B Fryxell, K Olson, P Picker, F X Timmes, M Zingale, D Q Lamb, P MacNeice,

R Rosner, J W Truran, and H Tufo. FLASH: An adaptive mesh hydrodynamics

code for modeling astrophysical thermonuclear flashes. The Astrophysical Journal

Supplement Series, 131:273–334, 1999.

[82] C F Gerald and P O Wheatley. Applied Numerical Analysis. Pearson, Boston,

7th edition, 2004.

[83] R Gollan. Verification Exercises for a Compressible Flow Code. In 10th Interna-

tional Workshop on Shock-Tube Technology, Brisbane, Australia, 2006.

[84] R J Goozee. Simulation of a Complete Shock Tunnel Using Parallel Computer

Codes. PhD thesis, The University of Queensland, 2003.

[85] J J Gottlieb and C P T Groth. Assessment of Riemann Solvers for Unsteady One-

Dimensional Inviscid Flows of Perfect Gases. Journal of Computational Physics,

78(2):437–458, 1988.

[86] J A Greenough and J W Jacobs. A Numerical Study of Shock-Acceleration of a

Diffuse Helium Cylinder. In Proceedings of the Fifth International Workshop on

Comrpessible Turbulent Mixing, 1996.

[87] W Gropp, E Lusk, and A Skjellum. Using MPI: Portable Parallel Programming

with the Message-Passing Interface. The MIT Press, Cambridge, Massachusetts,

1994.

[88] M E Hayder, F Q Hu, and M Y Hussaini. Toward Perfectly Absorbing Boundary

Conditions for Euler Equations. AIAA Journal, 37(8), 1999.

[89] M Held. Blast Waves in Free Air. Propellants, Explosives, Pyrotechnics, 8:1–7,

1983.

180

BIBLIOGRAPHY

[90] A Henderson and J Ahrens. The ParaView guide. Kitware, Clifton Park, NY,

2004.

[91] B Hendrickson. Graph partitioning and parallel solvers: Has the emperor no

clothes, 1998. Lecture notes in Computer Science, 1457: 218–225.

[92] J Henrych. The Dynamics of Explosion and Its Use. Elsevier Scientific Publishing

Company, Czechoslovakia, 1979.

[93] E Hertel, J Bell, M Elrick, A Farnsworth, G Kerley, J McGlaun, S Petney, S Silling,

P Taylor, and L Yarrington. CTH: A Software Family for Multi-Dimensional Shock

Physics Analysis. In Proceedings of the 19th International Symposium on Shock

Waves, pages 377–382, France, 1993.

[94] S Hikida and S Needham. Low Altitude Multiple Burst (LAMB) Model, Volume

1: Shock Description. S-Cubed, Albuquerque, New Mexico, 1981.

[95] M D Hill and J R Larus. Cache considerations for multiprocessor programmers.

Communications of the ACM, 33(8):97–102, 1990.

[96] C Hirsch. Numerical Computation of Internal and External Flows. Volume 1:

Fundamentals of Numerical Discretization, volume 1. Wiley, England, 1988.

[97] C Hirsch. Numerical Computation of Internal and External Flows. Volume 2:

Computational Methods for Inviscid and Viscous Flows, volume 2. Wiley, England,

1988.

[98] K Hormann and A Agathos. The point in polygon problem for arbitrary polygons.

Computational Geometry, 20:131–144, 2001.

[99] W P Horn and D L Taylor. A Theorem to Determine the Spatial Containment

Point in a Planar Polyhedron. Computer Vision, Graphics and Image Processing,

45:106–116, 1989.

[100] C W Huang and T Y Shih. On the complexity of point-in-polygon algorithms.

Computers and Geosciences, 23(1):109–118, 1997.

[101] W K E Huntington-Thresher and I G Cullis. TNT blast scaling for small charges.

In 19th International Symposium of Ballistics, pages 647–654, 2001.

[102] M Y Hussaini and T A Zang. Spectral Methods in Fluid Dynamics. Annual

Review of Fluid Mechanics, 19:339–367, 1987.

181

BIBLIOGRAPHY

[103] D W Hyde. CONWEP: Conventional Weapons Effects Program. Waterways Ex-

periment Station, Vicksburg, MS, USA, 1991.

[104] Century Dynamics Inc. Autodyn user’s manual-version 4.2, 1997.

[105] Silicon Graphics Inc. Linux Application Tuning Guide, 2005. SGI Manual 007-

4639-005.

[106] D M Ingram, D M Causon, and C G Mingham. Developments in cartesian cut

cell methods. Mathematics and Computers in Simulation, 61(3–6):561–572, 2003.

[107] M M Ismail and S G Murray. Study of the Blast Wave Parameters from Small

Scale Explosions. Propellants, Explosives, Pyrotechnics, 18:11–17, 1993.

[108] M M Ismail and S G Murray. Study of the Blast Waves from the Explosion of

Nonspherical Warheads. Propellants, Explosives, Pyrotechnics, 18:132–138, 1993.

[109] P A Jacobs. MB CNS: A computer program for the simulation of transient com-

pressible flows, 1996. Department of Mechanical Engineering Report 10/96, The

University of Queensland, Australia.

[110] I A Johnston. Simulation of Flow Around Hypersonic Blunt–Nosed Vehicles for

the Calibration of Air Data Systems. PhD thesis, The University of Queensland,

1999.

[111] Y E Kalay. Determining the Spatial Containment of a Point in General Polyhedra.

Computer Graphics and Image Processing, 19:303–334, 1982.

[112] G E Karniadakis and R M Kirby. Parallel Scientific Computing in C++ and MPI.

Cambridge University Press, United Kingdom, 2003.

[113] A H Karp and H P Flatt. Measuring parallel processor performance. Communi-

cations of the ACM, 33(5):539–543, 1990.

[114] G Karypis and V Kumar. METIS - a Software Package for Partitioning Unstruc-

tured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of

Sparse Matrices. Version 4.0, 1998. University of Minnesota Report.

[115] G Karypis, K Schloegel, and V Kumar. ParMETIS - Parallel Graph Partitioning

and Sparse Matrix Ordering Library. version 3.1, 2003. University of Minnesota

Report.

182

BIBLIOGRAPHY

[116] K Kato, T Aoki, S Kubota, and M Yoshida. A numerical scheme for strong blast

wave driven by explosion. International Journal for Numerical Methods in Fluids,

51:1335–1353, 2006.

[117] M P Kerry, B J Bibby, A J Martin, and R Garforth. Engineering level coupled

blast flow and damage module with rapid input scene generator for multibuilding

environments. In 17th International Symposium on Military Aspects of Blast and

Shock, Las Vegas, Nevada USA, 2002.

[118] A M Khokhlov. Fully Threaded Tree Algorithms for Adaptive Refinement Fluid

Dynamics Simulations. Journal of Computational Physics, 143:519–543, 1998.

[119] G F Kinney. Explosive Shocks in Air. Springer-Verlag Berlin Heidelberg, 2nd

edition, 1985.

[120] H Kleine, J M Dewey, K Ohashi, T Mizukaki, and K Takayama. Studies of the

TNT equivalence of silver azide charges. Shock Waves, 13:123–138, 2003.

[121] A Klomfass. A Cartesian grid finite-volume method for the simulation of gasdy-

namic flows about geometrically complex objects. In 26th International Sympo-

sium on Shock Waves, 2007.

[122] A L Kuhl. Mixing in Explosions, 1993. Lawrence Livermore National Laboratory

Report UCRL-JC-115690.

[123] Rice D L, Giltrud M E, Luo H, Mestreau E, and Baum J. Experimental and

Numerical Investigation of Shock Diffraction About Blast Walls. In Proceedings

of the 16th International Symposium of the Military Aspects of Blast and Shocks,

pages 335–342, Oxford, 2000.

[124] A M Landsberg and J P Boris. The Virtual Cell Embedding method: a simple

approach for gridding complex geometries, 1997. AIAA–97–1982.

[125] A M Landsberg, J P Boris, T R Young, and R J Scott. Computing Complex

Shocked Flows Through the Euler Equations. In Shock waves at Marseille: Pro-

ceedings of the 19th International Symposium on Shock Waves, pages 421–426,

1993.

[126] E Lee, M Finger, and W Collins. JWL Equation of State Coefficients for High

Explosives, 1973. Lawrence Livermore Laboratory Report No. UCID-16189.

[127] E L Lee, H C Horning, and J W Kury. Adiabatic Expansion of High Explosive

Detonation Products, 1968. University of California Report No. UCRL–50422.

183

BIBLIOGRAPHY

[128] W Lin and C J Chen. Automatic grid generation of complex geometries in

Cartesian co–ordinates. International Journal for Numerical Methods in Fluids,

28:1303–1324, 1998.

[129] C A Lind, J P Boris, and E S Oran. The Effect of Charge Shape on Partially

Confined Detonations. Journal of Pressure Vessel Technology, 120:313–318, 1998.

[130] J Linhart. A quick point-in-polyhedron test. Computers and Graphics,

14(3/4):445–447, 1990.

[131] R Löhner, J D Baum, C Charman, and D Pelessone. Fluid–structure interaction

simulations using parallel computers, 2003. Lecture notes in Computer Science,

2565: 3–23.

[132] H Luo, J D Baum, and R Löhner. A hybrid Cartesian grid and gridless method

for compressible flows. Journal of Computational Physics, 214(2):618–632, 2006.

[133] C L Mader. Numerical modeling of explosives and propellants. CRC Press, Boca

Raton, 1998.

[134] A Masud, M Bhanabhagvanwala, and R A Khurram. An adaptive mesh rezoning

scheme for moving boundary flows and fluid-structure interaction. Computers and

Fluids, 36:77–91, 2007.

[135] T Minyard and Y Kallinderis. Octree partitioning of hybrid grids for parallel

adaptive viscous flow simulations. International journal for numerical methods in

fluids, 26:57–58, 1998.

[136] A Miura, A Matsuo, T Mizukaki, T Shiraishi, G Utsunomiya, K Takayama, and

I Nojiri. Reflection and Diffraction Phenomena of Blast Wave Propagation in

Nuclear Fuel Cycle Facility. JSME International Journal, Series B, 42(2):287–

292, 2004.

[137] J J Monaghan. Smoothed Particle Hydrodynamics. Reports on Progress in

Physics, 68:1703–1759, 2005.

[138] C Needham, K Potter, and S Hikida. Structure load calculations for a full-scale

office building. In 16th International Symposium on Military Aspects of Blast and

Shock, pages 129–136, Oxford, England, 2000.

[139] C E Needham. Blast Loads and Propagation around and over a Building. In 26th

International Symposium on Shock Waves, 2007.

184

BIBLIOGRAPHY

[140] M Nemec, M J Aftosmis, and T H Pulliam. CAD–Based Aerodynamic Design

of Complex Configurations Using a Cartesian Method. In 42nd AIAA Aerospace

Sciences Meeting and Exhibit, 2004. NAS Technical Report NAS–04–001.

[141] P Nithiarasu and O C Zienkiewicz. Adaptive mesh generation for fluid mechanics

problems. International Journal for Numerical Methods in Engineering, 47:629–

662, 2000.

[142] W L Oberkampf and T G Trucano. Verification and validation in computational

fluid dynamics. Progress in Aerospace Sciences, 38:209–272, 2002.

[143] M Omang, S Børve, and J Trulsen. Numerical simulations of shock wave reflection

phenomena in non-stationary flows using regularized smoothed particle hydrody-

namics (rsph). Shock Waves, 16:167–177, 2006.

[144] M Omang, S Børve, and J Trulsen. Modelling High Explosives using Smoothed

Particle Hydrodynamics. In 26th International Symposium on Shock Waves, 2007.

[145] P B Pember, J B Bell, P Colella, W Y Crutchfield, and M L Welcome. An

Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular

Regions. Journal of Computational Physics, 120:278–304, 1995.

[146] P Person and J Lee. Rock blasting and explosives engineering. CRC Press, Boca

Raton, Fla, 1994.

[147] W P Petersen and P Arbenz. Introduction to Parallel Computing: A Practical

Guide with Examples in C. Oxford University Press, USA, 2004.

[148] P R Petrie. Numerical Simulation of Diaphragm Rupture. PhD thesis, The Uni-

versity of Queensland, 1997.

[149] J R Pilkington and S B Baden. Dynamic partitioning of non-uniform structured

workloads with space filling curves. IEEE Transactions on Parallel and Distributed

Systems, 7(3):288–300, 1996.

[150] D I Pullin. Direct Simulation Methods for Compressible Inviscid Ideal-Gas Flow.

Journal of Computational Physics, 34(2):231–244, 1980.

[151] M J Quinn. Parallel programming in C with MPI and OpenMP. McGraw-Hill,

Dubuque, Iowa, 2004.

[152] J J Quirk. An Adaptive Grid Algorithm For Computational Shock Hydrodynamics.

PhD thesis, Cranfield Institute of Technology College of Aeronautics, 1991.

185

BIBLIOGRAPHY

[153] J J Quirk. An alternative to unstructured grids for computing gas dynamic flows

around arbitrarily complex two–dimensional bodies. Computers Fluids, 23(1):125–

142, 1994.

[154] J J Quirk. A Contribution to the Great Riemann Solver Debate. International

Journal for Numerical Methods in Fluids, 18(6):555–574, 1994.

[155] Löhner R, Yang C, Baum J D, Luo H, Pelessone D, and Charman C M. The Nu-

merical Simulation of Strongly Unsteady Flow with Hundreds of Moving Bodies.

International Journal for Numerical Methods in Fluids, 31:113–120, 1999.

[156] S Rahman, E Timofeev, H Kleine, and K Takayama. On pressure measurements

in blast wave flow fields generated by milligram charges. In 26th International

Symposium on Shock Waves, 2007.

[157] B Rajkumar. High Performance Cluster Computing: Architectures and Systems.

Prentice Hall, NJ, USA, 1999.

[158] J W Reed. Analysis of the Accidental Explosion at Pepcon, Henderson, Nevada,

1988. Sandia National Laboratories Report SAND88–2902 UC–70.

[159] A M Remennikov. A review of methods for predicting bomb blast effects on

buildings. Journal of Battlefield Technology, 6(3):5–10, 2003.

[160] A M Remennikov and T A Rose. Modelling blast loads on buildings in complex

city geometries. Computers and Structures, 83:2197–2205, 2005.

[161] A M Remennikov and T A Rose. Predicting the effectiveness of blast wall barriers

using neural networks. International Journal of Impact Engineering, 34(12):1907–

1923, 2007.

[162] S K Richards, X Zhang, X X Chen, and P A Nelson. The evaluation of non-

reflecting boundary conditions for duct acoustic computation. Journal of Sound

and Vibration, 270:539–557, 2004.

[163] L F Richardson. The Approximate Arithmetical Solution by Finite Differences

of Physical Problems Involving Differential Equations, with an Application to

the Stresses in a Masonry Dam. Transactions of the Royal Society of London,

210:307–357, 1908. Series A.

[164] L F Richardson. The Deferred Approach to the Limit. Transactions of the Royal

Society of London, 226:229–361, 1927. Series A.

186

BIBLIOGRAPHY

[165] R C Ripley, B Rosen, D V Ritzel, and D R Whitehouse. Small-scale modelling of

explosive blasts in urban scenarios. In 21st International Symposium on Ballistics,

pages 885–892, Adelaide, South Australia, 2004.

[166] D V Ritzel and K Matthews. An adjustable explosion–source model for CFD blast

calculations. In 21st International Symposium on Shock Waves, 1997. Paper 6590.

[167] P J Roache. Quantification of uncertainty in computational fluid dynamics. An-

nual Review of Fluid Mechanics, 29:123–160, 1997.

[168] P J Roache. Verification and Validation in Computational Science and Engineer-

ing. Hermosa Publishers, Albuquerque, New Mexico, 1998.

[169] P J Roache. Verification of Codes and Calculations. AIAA Journal, 36(5):696–701,

1998.

[170] P Roe. A Survey of Upwind Differencing Techniques, 1988. Lecture notes in

Physics, 323:69–78.

[171] T A Rose. An Approach to the Evaluation of Blast Loads on Finite and Semi-

Infinite Structures. PhD thesis, Cranfield University, Engineering Systems De-

partment, 2001.

[172] T A Rose and P D Smith. Influence of the principal geometrical parameters of

straight city streets on positive and negative phase blast wave impulses. Interna-

tional Journal of Impact Engineering, 27:359–376, 2002.

[173] T A Rose and P D Smith. The influence of street junctions on blast wave impulses

produced by vehicle bombs. In Proceedings of the 11th International Symposium

on Interaction of the Effects of Munitions with Structures, New Orleans, USA,

2003.

[174] T A Rose and P D Smith. Development of an adaptive mesh CFD code for high

explosive blast simulation. In Proceedings of the 12th International Symposium on

Interaction of the Effects of Munitions with Structures, New Orleans, USA, 2005.

[175] T A Rose, P D Smith, and M Brittle. Analysis of a generic cityscape using an

adaptive mesh CFD code. In Proceedings of the 12th International Symposium on

Interaction of the Effects of Munitions with Structures, New Orleans, USA, 2005.

[176] T A Rose, P D Smith, and S A Forth. A Computational Tool for the Evalulation

of Blast-Structure Interactions, Air3d version 9 users’ guide. Engineering Systems

Department, Cranfield University, UK, 2006.

187

BIBLIOGRAPHY

[177] T A Rose, P D Smith, and S A Forth. A Computational Tool for the Evalu-

lation of Blast-Structure Interactions, ftt 3d users’ guide. Engineering Systems

Department, Cranfield University, UK, 2006.

[178] T A Rose, P D Smith, and J H May. The interaction of oblique blast waves with

buildings. Shock Waves, 16:35–44, 2006.

[179] C J Roy. Grid Convergence Error Analysis for Mixed-Order Numerical Schemes.

AIAA Journal, 41(4):595–604, 2003.

[180] C J Roy, Nelson C C, T M Smith, and C C Ober. Verification of Euler/Navier-

Stokes codes using the method of manufactured solutions. International Journal

for Numerical Methods in Fluids, 44:599–620, 2004.

[181] H Samet. The design and analysis of spatial data structures. Addison–Wesley

Publishing Company Inc, Massachusetts, 1990.

[182] H Schardin. Stossrohre [Shock Tubes], pages 716–720. Springer Verlag, New York,

1966. Edited by Oertel H.

[183] R Schneiders. A Grid-based Algorithm for the Generation of Hexahedral Element

Meshes. Engineering with Computers, 12:168–177, 1996.

[184] A Sharma and L N Long. Numerical simulation of the blast impact problem using

the Direct Simulation Monte Carlo (DSMC) method. Journal of Computational

Physics, 200(1):211–237, 2004.

[185] A Sharma, L N Long, and T Krauthammer. Using the Direct Simulation Monte

Carlo approach for the blast–impact problem. In 17th International Symposium

on the Effects of Blast and Shock, 2002.

[186] Y Shi, H Hao, and Z X Li. Numerical simulation of blast wave interaction with

structure columns. Shock Waves, 17:113–133, 2007.

[187] H Simon. Partitioning of unstructured problems for parallel processing. Computing

Systems in Engineering, 2:135–148, 1991.

[188] J L Sims. Tables for Supersonic Flow Around Right Circular Cones at Zero Angle

of Attack, 1964. NASA SP-3004.

[189] S Sivier, E Loth, J Baum, and R Löhner. Vorticity produced by shock wave

diffraction. Shock Waves, 2:31–41, 1992.

188

BIBLIOGRAPHY

[190] S Sklavounos and F Rigas. Computer simulation of shock waves transmission in

obstructed terrains. Journal of Loss Prevention in the Process Industries, 17:407–

417, 2004.

[191] J E Slater, D V Ritzel, and P A Thibault. Development of computational methods

and conduct of experimental tests for blast loading analysis. In Proceedings of the

3rd International Conference on Structures under Shock and Impact, pages 383–

392, 1993.

[192] P D Smith and J G Hetherington. Blast and Ballistic Loading of Structures.

Butterworth and Heinemann Ltd., Oxford, 1994.

[193] P D Smith and T A Rose. Blast loading and building robustness. Progress in

Structural Engineering and Materials, 4:213–223, 2002.

[194] P D Smith and T A Rose. Blast wave propagation in city streets – an overview.

Progress in Structural Engineering and Materials, 8:16–28, 2005.

[195] P D Smith, G P Whalen, L J Feng, and T A Rose. Blast loading on buildings

from explosions in city streets. Structrues and Buildings, 146(1):47–55, 2001.

[196] G A Sod. A survey of several finite difference methods for systems of nonlinear

hyperbolic conservation laws. Journal of Computational Physics, 27(1):1–31, 1978.

[197] D Sridar and N Balakrishnan. An upwind finite difference scheme for meshless

solvers. Journal of Computational Physics, 189:1–29, 2003.

[198] M L Staten, S J Owen, and T D Blacker. Unconstrained plastering – a new all

hexahedral mesh generation algorithm. In International Conference on Adaptive

Modeling and Simulation, Barcelona, 2005.

[199] J L Steger and R Warming. Flux Vector Splitting of the Inviscid Gasdynamic

Equations with Application to Finite-Difference Methods. Journal of Computa-

tional Physics, 40(2):263–293, 1981.

[200] M Sun and K Takayama. A solution–adaptive technique using unstructured hex-

ahedral grids. In 15th AIAA Computational Fluid Dynamics Conference, 2001.

AIAA–2001–2656.

[201] M M Jr. Swisdak. Explosion Effects and Properties, Part 1: Explosion Effects in

Air, 1975. NSWC/WOL/TR 75-116, Naval Surface Weapons Center, White Oak,

USA, 1975.

189

BIBLIOGRAPHY

[202] J Tang. Another alternative method for blast wave simulation in complex geome-

tries using Virtual Cell Embedding. In 10th International Workshop on Shock-Tube

Technology, Brisbane, Australia, 2006.

[203] J Tang. CFD simulation of blast in an internal geometry using a Cartesian cell

code. In 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia,

2007.

[204] J Tang. A simple axisymmetric extension to virtual cell embedding. International

Journal for Numerical Methods in Fluids, 55(8):785–791, 2007.

[205] J Tang. User guide for shock and blast simulation with the OctVCE code (version

3.5+), 2007. University of Queensland Mechanical Engineering Report 2007/13.

[206] J Tang. Free-field blast parameter errors from cartesian cell representations of

bursting sphere-type charges. Shock Waves, 18:11–20, 2008.

[207] T Tautges, T Blacker, and S Mitchell. The Whisker Weaving Algorithm: A

connectivity-based method for constructing all-hexahedral finite element meshes.

International Journal for Numerical Methods in Engineering, 39:3327–3349, 1996.

[208] G I Taylor and J W Maccoll. The air pressure on a cone moving at high speed I.

Proceedings of the Royal Society of London Series A, 139:278–311, 1933.

[209] K W Thompson. Time-Dependent Boundary Conditions for Hyperbolic Systems.

Journal of Computational Physics, 68(1):1–24, 1987.

[210] K W Thompson. Time-Dependent Boundary Conditions for Hyperbolic Systems,

II. Journal of Computational Physics, 89(2):439–461, 1990.

[211] E Timofeev, P Voinovich, and K Takayama. Adaptive Unstructured Simulation

of Three–Dimensional Blast waves with Ground Surface Effect. In 36th Aerospace

Sciences Meeting and Exhibit, 1998. AIAA 98–0544.

[212] E V Timofeev, P A Voinovich, A O Galyukov, T Saito, and K Takayama. On the

adaptive unstructured simulations of blast wave propagation and attenuation in

complex geometries and various media: an illustrated view. Computational Fluid

Dynamics Journal, 12(22):171–177, 2003.

[213] TM5-1300. Design of Structures to Resist the Effects of Accidental Explosions,

1991. U.S. Department of the Army Technical Manual TM 5-1300.

[214] E F Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics, A Prac-

tical Introduction. Springer-Verlag, Berlin, 1997.

190

BIBLIOGRAPHY

[215] N Touheed, P Selwood, P K Jimack, and M Berzins. A comparison of some

dynamic load-balancing algorithms for a parallel adaptive flow solver. Parallel

Computing, 26:1535–1554, 2000.

[216] S Tsynkov. Numerical solution of problems on unbounded domains. Applied

Numerical Mathematics, 27:465–532, 1998.

[217] B Van Leer. Flux Vector Splitting for the Euler Equations. In Proceedings of the

8th International Conference on Numerical Methods in Fluid Dynamics, Berlin,

1982.

[218] V Venkatakrishnan. Convergence to Steady State Solutions of the Euler Equations

on Unstructured Grids with Limiters. Journal of Computational Physics, 118:120–

130, 1995.

[219] V Vidwans, Y Kallinderis, and V Venkatakrishnan. Parallel dynamic load-

balancing algorithm for three-dimensional adaptive unstructured grids. AIAA

Journal, 32(3):497–505, 1994.

[220] P A Voinovich, E V Timofeev, T Saito, K Takayama, Y Yodo, and A O Galyukov.

An adaptive shock-capturing method in real 3-D applications. In 22nd Interna-

tional Symposium on Shock Waves, Imperial College, London, UK, 1999.

[221] Y Wada and M S Liou. An Accurate and Robust Flux Splitting Scheme for Shock

and Contact Discontinuities. SIAM Journal of Scientific Computing, 18(3):633–

657, 1997.

[222] C Walshaw, M Cross, and M G Everett. Parallel dynamic graph partitioning for

adaptive unstructured meshes. Journal of Parallel and Distributed Computing,

47:102–108, 1997.

[223] H Wu, J Gong, D Li, and W Shi. An algebraic algorithm for point inclusion query.

Computers and Graphics, 24(4):517–522, 2000.

[224] G Yang, D M Causon, and D M Ingram. Calculation of compressible flows about

complex moving geometries using a three-dimensional Cartesian cut cell method.

International Journal for Numerical Methods in Fluids, 33:1121–1151, 2000.

[225] J Y Yang, Y Liu, and H Lomax. Computation of Shock Wave Reflection by

Circular Cylinders. AIAA Journal, 25:683–689, 1987.

191

BIBLIOGRAPHY

[226] T Ye, R Mittal, H Udaykumar, and W Shyy. An accurate Cartesian grid method

for viscous incompressible flows with complex immersed boundaries. Journal of

Computational Physics, 156:209–240, 1999.

[227] W C Young. Roark’s Formulas for Stress and Strain. McGraw-Hill Book Company,

USA, 6th edition, 1989.

[228] S J Zhang, J Liu, and Y S Chen. Adaptation for hybrid unstructured grid with

hanging node method. In 15th AIAA Computational Fluid Dynamics Conference,

2001. AIAA 2001–2657.

[229] Z C Zhang, S T Yu, and S C Chang. A Space-Time Conservation Element and

Solution Element Method for Solving the Two- and Three-Dimensional Unsteady

Euler Equations Using Quadrilateral and Hexahedral Meshes. Journal of Compu-

tational Physics, 175:168–199, 2002.

[230] J Zóltak and D Drikakis. Hybrid upwind methods for the simulation of unsteady

shock-wave diffraction over a cylinder. Computer Methods in Applied Mechanics

and Engineering, 162:165–185, 1998.

192

Appendix A

Mixing at the Explosion Core

As discussed in Section 1.2 the contact surface between the detonation products and air

can be very unstable. In multi-dimensional simulations, this instability is triggered

numerically due to the perturbed (radially asymmetric) charge representation on a

Cartesian mesh [122] when initiated using the balloon gas approach. Very early in

the explosion this uneven contact surface is swept outwards from lighter to heavier gas,

resulting in Rayleigh-Taylor type instabilities also observed in other simulations of blast

propagation [71, 139]. Implosion of the secondary shock results in further mixing of this

surface.

A typical spherical explosion simulation is performed by OctVCE and the schlieren of

the early stages of the process is shown in Figure A.1, which shows the instability at the

contact surface before and after implosion of the secondary shock. In this simulation,

the balloon gas is perfect gas helium with a pressure of 30,000 atmospheres. Note the

asymmetry of the mixing.

Figure A.1: Schlieren of 2D axisymmetric blast in its early stages

This instability has the unfortunate effect of triggering excessive refinement in that

region for density-based adaptation indicators (Section 3.5), but it does not significantly

193

A.1. ADAPTATION PARAMETERS FOR BLAST SIMULATION

affect the blast wave and positive phase (Section 1.2). It may be advantageous to use a

pressure-based indicator to avoid this needless refinement.

A.1 Adaptation Parameters for Blast Simulation

As discussed in Section 3.5, OctVCE implements two types of adaptation indicators –

(a) a density-based indicator and (b) velocity-based indicator. Default values for the

refinement threshold are 0.3 and 0.01 for indicators (a) and (b) respectively. Lowering

these thresholds allow better shock-capturing at larger distances from the blast, but at

the cost of excessive cell refinement nearer the explosion. Indicator (a), which can also

refine the positive phase behind the shock, require coarsening and noise filter thresholds

to be set, and a small test of different values for these thresholds is shown in Figure A.2,

which simulates the same blast problem above.

Five adaptive mesh levels are used. The numbers beside the letters R, C and F

stand for refinement, coarsening and noise filter thresholds respectively. The primary

shock is at a scaled distance of about 13.3 m/kg1/3 and it is difficult to refine about the

secondary shock without resulting excessive refinement elsewhere. The resolution of the

positive phase was not found to be so dependent on the refinement threshold, so only

the coarsening and noise filter values were varied.

Note the turbulent core region is always refined about, which can be wasteful. The

degree of refinement shows a dependence on the noise filter threshold and coarsening

threshold. Decreasing the coarsening threshold is more likely to confine refinement to

the positive phase behind the blast, whilst decreasing the noise filter also tended to

result in more refinement in the core region. For this problem, the simulation with a

coarsening and noise filter threshold of 0.03 and 0.005 respectively seems to produce

the best degree of refinement at the shock and positive phase, which persisted until

a scaled distance of around 25 m/kg1/3. Selection of optimal adaptation parameters

requires some trial and error, but this is characteristic of any adaptive method. In the

simulations of this thesis, the coarsening threshold ranges from 0.01 to 0.1 and the noise

filter threshold from 0.001 to 0.1.

194

A.1. ADAPTATION PARAMETERS FOR BLAST SIMULATION

Figure A.2: Experimentation with adaptation parameters for blast simulation

195

Appendix B

One-dimensional Spherical Code

This section briefly describes key features of the simple one-dimensional code written

for validating OctVCE for those test cases with radial symmetry (e.g. chapters 9 and 10).

This code allows an accurate fine-grid spherically symmetric one-dimensional solution

to be obtained with little cost. The spherical integral Euler equations can be expressed

as
∂

∂t

∫

V

Ur2dr +

∫

S

r2F · n̂ = Q (B.1)

where U = [ρ, ρu, ρE, ρp]
T and the vector of fluxes is

F =

ρu

ρu2 + P

ρEu + Pu

ρpu

r̂ (B.2)

where r̂ is the unit vector in the radial direction, in reality a one-dimensional vector like

the interface outward-normal n̂. The source term is Q = [0, 2PrL, 0, 0] where L is the

cell length. The cell-centered finite volume discretization is simply

dUc

dt
r2
cL = −

∑

if

r2
ifFif · n̂if + Q (B.3)

The solution marching procedure is essentially the same that used by OctVCE (Sec-

tion 4.2) reduced to one dimension. Hence a second-order Runge-Kutta time integration

procedure and the AUSMDV flux solver is used (Appendix F.1). In performing these

simulations care must be taken to have the correct charge radius (represented by the

balloon gas) and have an integral number of cells within the charge to obtain exact

correspondence in blast energy.

Rose recommends around 50 computational cells through the explosive charge for

grid-independent solutions [171]. The initial time might also be offset by the detonation

time (time for the detonation wave, starting from the charge centre, to engulf the whole

constant-volume charge). As the detonation speed is usually very high (of the order of

O (103) m/s), this offset is normally very small and noticeable only for trace points close

to the charge.

196

The CFL cutback procedure (Section 4.8.1) is also used to prevent instability, and

thus the solution order ‘switching-time’ scheme described in Section 4.8.1 is unnecessary.

The one dimensional code employs an upwind biased third-order interpolation scheme

with MINMOD-type limiter [110, 148] and also in the MB_CNS code [109]. This scheme

should be suitable for unsteady one-dimensional blast wave problems and is summarized

below.

Suppose reconstruction of a quantity Q is desired for interface value Qi+1/2. On this

reconstruction scheme cell-centered values from four cells are required, Qi−1, Qi, Qi+1

and Qi+2. Let ∆−
i = Qi − Qi−1 and ∆+

i = Qi+1 − Qi. To reconstruct Q to the left side

of the interface, the formula is used –

QL
i+1/2 = Qi +

1

4

[
(1 − κ) MINMOD

(
∆−

i , b∆+
i

)
+ (1 + κ)MINMOD

(
b∆−

i , ∆+
i

)]

(B.4)

where b is a biasing parameter and κ a blending parameter. To reconstruct Q to the

right side of the interface the formula is

QR
i+1/2 = Qi+1−

1

4

[
(1 − κ) MINMOD

(
∆−

i+1, b∆
+
i+1

)
+ (1 + κ) MINMOD

(
b∆+

i+1, ∆
−
i+1

)]

(B.5)

Default values of b = 2 and κ = 1/3 are used. The MINMOD function is given by

MINMOD (x, y) = sign (x) max (0, min [|x| , y · sign (x)]) (B.6)

Reflecting (solid wall) boundary conditions are used for the ghost cells at the left and

right ends of the domain. Two ghost cells are used, and the outermost ghost cell uses

reflected conditions from the cells adjacent to the border cells.

197

Appendix C

Finite Energy Release in Cylindrical

Charges

An extension to the code was considered in this thesis to incorporate a finite rate of

energy release from ignition points within the charge in a very simplified model of

detonation, much like the approach of Timofeev et al [211, 212]. In this ‘finite-rate-

release’ model, detonation proceeds radially at a preset speed from specified ignition

points until all the explosive is consumed. This can be readily implemented in the

code as it already represents the initial charge as a group of high pressure cells. Thus,

cells representing the charge are essentially treated as solid objects until activation to

appropriate gas conditions when the detonation wave passes their centroids.

With this approach an additional degree of realism in modelling the blast waveform

and overpressures may be obtainable for near-field modelling, although this extension

may prove inadequate as the complex chemistry of the explosive detonation and af-

terburning is not taken into account. It would probably be more suitable for cheaper

two-dimensional simulations as this increased realism may only be noticeable on highly-

resolved meshes.

To observe the differences in solution compared to the ‘instantaneous-release’ det-

onation model where all cells are initially active and filled with high pressure gas, an

axisymmetric simulation of cylindrical warhead detonation is performed. This draws

from the experimental and numerical study of Anderson et al [11], whose axisymmetric

simulations also assumed perfect gas, instantaneous energy release of the explosion, but

incorporated a simple afterburning model. Because of the radially asymmetrical charge

shape, free-field overpressure and energy distribution near the charge is dependent on

charge orientation and even location of initiation [108] and thus makes an interesting

test case for this study.

A diagram of the numerical domain and pressure sensor locations is shown in Fig-

ure C.1. The warhead is positioned at a height of 2015 mm. This domain and minimum

cell size (10 mm) is chosen to be the same as Anderson’s [11] but an adaptive mesh

simulation is used with coarsest allowable cell size of 160 mm. Actual sensor locations

are given in Table C.1.

198

Figure C.1: Cylindrical warhead numerical domain and sensor locations (from [11])

Table C.1: Sensor locations for cylindrical warhead explosion (from [11])

Sensor number X location (mm) Y location (mm)

1 1010 1000

2 1980 2010

3 2520 2000

4 2950 2040

5 3550 2000

6 2010 2610

7 2560 2600

8 2960 2590

The initial conditions for the charge are given in Table C.2 and have also been

taken from Anderson [11]. The simulation applies the JWL equation of state to the

explosion products (Composition B explosive, like in Anderson’s experiments) with JWL

parameters provided by Reference [127]. As the charge is discretized by finite-volume

cells its actual diameter and length are slightly different from the reported nominal

values, but the density and pressure of the cells is adjusted to give the correct energy.

The simulation is performed with an adaptive flux solver (EFM at shocks, AUSMDV

elsewhere) and density-based adaptation indicator (Equation 3.4) of 0.3, 0.1 and 0.013

for the refinement, coarsening and noise thresholds respectively.

Figure C.2 shows a progression of temperature and grids in the early stages of the

explosion when initiated from three points along the charge centreline (which can be

seen in the initial plot, Figure C.2(a)). These points at located at heights of 1939 mm,

2015 mm (charge centre) and 2091 mm. The consumption of the explosive is nearly

complete at about 14.4 ms (Figure C.2(d)).

199

(a) 0 ms (b) 9.48 ms

(c) 11.5 ms (d) 14.4 ms

(e) 17.8 ms (f) 35.5 ms

(g) 64.9 ms

Figure C.2: Temperature and grid for cylindrical warhead detonation

200

Table C.2: Initial conditions for cylindrical warhead (taken from [11])

Diameter 360 mm

Length 720 mm

Blast energy 4.00925 ×107 J

Ambient Pressure 101.325 kPa

Ambient Temperature 298 K

Pressure histories from the various sensor locations are shown in Figure C.3 and

compared with Anderson’s results. A simulation is also performed assuming the instan-

taneous detonation model for comparison. The results show that observable differences

exist between the finite-rate-release and instantaneous detonation solutions, which in

turn differ with Anderson’s pressure histories. This is to be expected as Anderson took

into account afterburning which was not implemented here.

There is also a lag in blast wave arrival time relative to the experimental results.

Modelling accurately the actual detonation process might yield better arrival time re-

sults, but this is not so important. Except for sensor 1, the finite-rate-release model

has an arrival time either earlier than or equal with the instantaneous model. The det-

onation speed through the charge is too rapid relative to the scale of the waveforms to

make much difference in arrival time here. At sensors 6 to 8, arrival times from both

solutions are nearly coincident.

At sensors 1, 3 and 8 the finite-rate-release model seems to give slightly better peak

overpressures relative to experimental results compared to the instantaneous detonation

model. However, the decay rate for the initial pulse is much sharper for the finite-rate-

release model than the instantaneous one. It is also interesting that the current results

seem on the whole to yield better peak overpressures (and comparably good positive

phase) as Anderson’s numerical results, compared to experiment. However, in some

cases the experimental pressure histories are not very good (particularly with sensor

6), presumably because of sensor vibration. Also, in many cases the numerical simula-

tions display secondary shocks which are not clearly distinguishable in the experimental

pressure histories.

The results show that whilst there is a notable difference between finite-rate-release

and instantaneous detonation models, the finite-rate-release approach does not produce

consistently better solutions (when compared to experimental results) in either peak

overpressure or positive phase waveform, at least for this problem. It may still be a

useful option to have in some cases, but here the instantaneous detonation model seems

to yield fairly good results even in the near-field (discounting the arrival time discrep-

201

-500

 0

 500

 1000

 1500

 2000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Anderson CFD (2002)
Anderson expt (2002)

Instantaneous
Finite release

(a) Sensor 1 pressure history

-500

 0

 500

 1000

 1500

 2000

 2500

 0 0.5 1 1.5 2 2.5 3 3.5

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Anderson CFD (2002)
Anderson expt (2002)

Instantaneous
Finite release

(b) Sensor 2 pressure history

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Anderson CFD (2002)
Anderson expt (2002)

Instantaneous
Finite release

(c) Sensor 3 pressure history

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Anderson CFD (2002)
Anderson expt (2002)

Instantaneous
Finite release

(d) Sensor 4 pressure history

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Anderson CFD (2002)
Anderson expt (2002)

Instantaneous
Finite release

(e) Sensor 5 pressure history

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5 4

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Anderson CFD (2002)
Anderson expt (2002)

Instantaneous
Finite release

(f) Sensor 6 pressure history

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Anderson CFD (2002)
Anderson expt (2002)

Instantaneous
Finite release

(g) Sensor 7 pressure history

-100

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7 8

O
ve

rp
re

ss
ur

e
(k

P
a)

Time (ms)

Anderson CFD (2002)
Anderson expt (2002)

Instantaneous
Finite release

(h) Sensor 8 pressure history

Figure C.3: Pressure histories for cylindrical warhead detonation

202

ancy). Better correspondence with experimental results is probably only achievable in

the near-field through detailed modelling of the chemistry of the detonation process.

This extension to the code requires further development and exploration.

203

Appendix D

Axisymmetric Virtual Cell Embedding

(VCE) method

The base VCE scheme (Section 2.4) is unsuitable for axisymmetric flow as the axisym-

metric Euler equations (Equation 4.8) require additional information – the radial co-

ordinates of the cell center rc and its fluid interfaces i.e. the unobstructed side lengths rl

and wall surface rw. How these quantities are calculated has been described in Reference

[204] (a derivative paper from the current thesis) and is repeated below.

D.1 Obtaining cell-centre and interface radial co-

ordinates

The VCE subcell division can be used to calculate rc (the cell’s average radial co-

ordinate) and rl (the average radial co-ordinate of its unobstructed interfaces) if the

radial co-ordinates of each subcell are stored and then averaged in the summation i.e.

rc/l =
∑

N rsc/l
/N , where rs is the radial co-ordinate of a subcell and N the total number

of fluid subcells i.e. unobstructed subcells.

D.2 Obtaining the wall radial co-ordinate

The wall radial co-ordinate rw can be found by noting that VCE always gives straight

surface representations. With the help of Figure 2.1(b) (page 14), first shift the origin to

the lower left cell corner, and assume the cell is square of length lc. In a similar manner

to finding rl now the average obstructed radial coordinates on the east and west faces

rxr and rxl respectively are found.

204

D.3. EULER EQUATIONS IN AXISYMMETRIC GEOMETRY

(a) Downward surface normal (b) Upward surface normal

Figure D.1: Two surface normal configurations

Now consider two cases – (1) when the surface normal is pointing downward or

sideways (i.e. its radial co-ordinate is negative or zero respectively) and (2) when it is

pointing upward.

1. Downward or sideways surface normal

With the help of Figure D.1(a), note that rxr and rxl represent the midpoint of

obstruction on a side, so that very simply rw = rxr + rxl.

2. Upward surface normal

With the help of Figure D.1(b), this case can also been seen as case (1) if the

origin is shifted to the top right cell corner and the transformation r′ = lc − r is

applied. However if either rxr or rxl are zero, then likewise r′xr or r′xl respectively

are zero (no obstruction is present). Then r′w = r′xr + r′xl, and finally transforming

back, rw = lc − r′w.

Thus

r′x(l/r) =

0 when rx(l/r) = 0

lc − rx(l/r) when rx(l/r) > 0

Then rw = lc − (r′xr + r′xl).

It should be noted from Figures D.1(a) and D.1(b) that it is equally possible to use

the average unobstructed radial coordinates r̃xr and r̃xl instead of rxr and rxl. This

extended VCE scheme can now handle complex axisymmetric geometry, and has an

accuracy consistent with and limited by the basic VCE paradigm [204].

D.3 Euler Equations in Axisymmetric Geometry

The axisymmetric Euler equations (Equation 4.3) and the axisymmetric VCE method

(Appendix D) assume that for the axisymmetric cell –

205

D.4. VOLUME PER RADIAN EXPRESSION

1. The volume per radian Ac = Arc, where A is the cell’s area and rc the cell’s average

radial co-ordinate

2. The area per radian of each interface can be given by rif lif , where rif is the average

radial co-ordinate of the interface, and lif is the interface length

These expressions will be derived more fully below, with the help of the axisymmetric

cell illustration in Figure D.2. Note this is a partial view of the axisymmetric cell as

it in reality extends a full circle around the axis of symmetry. The red surface is an

example surface e.g. of a cone cutting through the cell.

Figure D.2: Axisymmetric cell illustration

D.4 Volume per radian expression

Consider a volume element of the axisymmetric cell of Figure D.2. In reality it is an

annulus with a length dx, with an inner radius of ri,s and outer radius of ro,s. The

volume elements are chosen are such that dx = ro,s − ri,s. This annulus has a volume of

Ve = π
(
ro,s

2 − ri,s
2
)
dx = πdx (ro,s + ri,s) (ro,s − ri,s) = πdx2 (ro,s + ri,s) (D.1)

Note that the two-dimensional area of the volume element, Ae = dx2. With N elements,

the area of the cell can be expressed as A = NAe. The sum of these volume elements

gives the total volume of the axisymmetric cell –

V = πdx2

N∑

i=1

(ro,s + ri,s) (D.2)

The volume per radian of the axisymmetric cell is then

V

2π
= Ac = dx2

N∑

i=1

(ro,s + ri,s)

2
= Ae

N∑

i=1

ravg (D.3)

206

D.5. AREA PER RADIAN OF INTERFACES

where ravg is the average radial co-ordinate of the volume element. Assuming the volume

per radian of the cell is its area A = NAe multipled by some radial value r, then

Ar = NAe = Ae

N∑

i=1

ravg (D.4)

which means that r =
∑

ravg/N = rc i.e. the average radial co-ordinate of the cell from

the volume elements.

D.5 Area per radian of interfaces

D.5.1 Interfaces normal to radial axis

For any unobstructed interfaces normal to (i.e. pierced by) the radial axis, the interface

area is simply that of the cylindrical area of the annulus (the cell length). This is

A = 2πrl, where r is the annulus radius, and l is the (axial) length of the cell. Thus the

area per radian is A/ (2π) = rl. Thus for example the top face of the cell is rol.

D.5.2 Interfaces normal to axial axis

The interfaces normal to the axial axis are the cross-sectional area of the cell annulus.

Thus the area is

A = π
(
r2

2 − r1
2
)

= π (r2 + r1) (r2 − r1) = πlif (r2 + r1) (D.5)

where r2 and r1 is the outer and inner radius of the annulus. The interface length

lif = r2 − r1. In the case of an unobstructed interface like the axisymmetric cell of

Figure D.2 the front and back interfaces have area of π (ro
2 − ri

2). Thus the area per

radian is

A/ (2π) = lif (r2 + r1) /2 = lifravg (D.6)

where ravg is the average radial co-ordinate of the interface.

D.5.3 Wall interface

An example wall interface of a conical surface can be seen by the red surface in Fig-

ure D.2. An area element of this interface is dA = 2πrdl where r and dl are the radius

and length of area element respectively. In VCE the variation of the interface radius

207

D.5. AREA PER RADIAN OF INTERFACES

can be described by the linear relation r = r1 + mx (recall VCE only represents planar

surfaces). Thus if dl =
√

dr2 + dx2 = dx
√

m2 + 1. Thus

dA = 2π (r1 + mx)
√

m2 + 1dx (D.7)

The area elements are integrated from x1 to x2 (the axial length of the cell is x2 − x1)

to give the total area –

∫ x2

x1

dA = 2π
√

m2 + 1

∫ x2

x1

(r1 + mx) dx (D.8)

= 2π
√

m2 + 1

[
r1x +

mx2

2

]x2

x1

(D.9)

= 2π
√

m2 + 1 (x2 − x1)

[
r1 + m

x1 + x2

2

]
(D.10)

= 2π
√

m2 + 1 (x2 − x1) (r1 + mxavg) (D.11)

= 2π
√

m2 + 1 (x2 − x1) ravg (D.12)

where ravg is radial midpoint of the interface line length. Note that the slant length of

the interface l = (x2 − x1)
√

m2 + 1. Thus A = 2πlravg. The area per radian is thus

A/ (2π) = lravg. Thus for all interfaces the area per radian is rif lif .

208

Appendix E

Integrated Pressure Force Over a Cone

The force on a portion of the cone surface is calculated from the integral
∫

PsdA, where

Ps is the pressure on the surface and A the area. As dA = 2πrdl, where r is the radius

and dl the length increment along the cone surface(Figure E.1), the force per radian is

F =

∫
Psrdl (E.1)

Figure E.1: Diagram of cone

Now dl can be computed in terms of x and the gradient of the line m (m = tanθ) –

dl =
√

dr2 + dx2 =
√

m2dx2 + dx2 (E.2)

Thus from Equations E.1 and E.2 the force per radian F is

F =

∫
Psr

√
m2 + 1dx = Psm

√
m2 + 1

[
x2

2

]x1

x0

(E.3)

where x0 and x1 are starting and ending points of integration. By the same reasoning

the force per unit length along a wedge surface is

F =

∫
Ps

√
m2 + 1 [x]x1

x0
(E.4)

Note also that for CFD simulations, the approximate form of Equation E.1 can be used

to obtain the force for each cell i.e. if Ps, r and ∆l is known for each intersected cell,

then the surface force in that cell is F = Psr∆l.

209

E.1. DEGENERACIES WITH THE AXISYMMETRIC CODE

E.1 Degeneracies with the Axisymmetric Code

There are some problems associated with the axisymmetric VCE method. To illustrate,

consider an initially quiescent state in a square corner cell shown in Figure E.2. All

flux terms would be zero, except for pressure in the momentum fluxes in the x and r

directions. The VCE method (Section 2.4) constructs a single planar surface from the

two obstructed interfaces with an radial coordinate of rc.

However the cell is in fact unobstructed and thus the source term Q for the radial

direction in the axisymmetric equation (Equation 4.3), P/r also uses a value of r = rc.

In the cell update for axisymmetric flow (Equation 4.8) this means that Q does not

entirely cancel with the sum of flux terms (1/A)
∑

if rifFif · n̂if lif leading to production

of momentum in the radial direction proportional to P/ (2r). This production of mo-

mentum arises from this basic mathematical or geometrical inconsistency between the

radial values of the cell interfaces and cell volume.

Figure E.2: Axisymmetric corner cell

This problem is not present in the planar situation as there is no source term and

interfacial and cell radial coordinates are not used. This degeneracy is avoided if the

corner cell is represented correctly i.e. with two obstructed interfaces. This is basically

the staircased surface representation (Section 2.4.3) and is implemented in the code for

axisymmetric corner cells. Unfortunately, if a corner cell does have some of its volume

obstructed, it is difficult apart from visual inspection to identify it as such as only cell

area and volume fractions are stored. Thus this degeneracy is not always treated.

Also, inconsistencies between cell interfacial and volume radial coordinates will ex-

ist even for non-corner cells. Consider Figure E.3 where an axisymmetric cell with 64

subcells is obstructed by a conical surface. There will still be a slight geometrical in-

consistency between the cell radial coordinate rc (obtained by averaging, rc =
∑

N rs/N

where rs is the radial coordinate of a subcell) and the computed wall radial coordi-

nate ri computed from the interface obstruction (Section 4.2.1). rc is computed only

210

E.1. DEGENERACIES WITH THE AXISYMMETRIC CODE

Figure E.3: Axisymmetric cell cut by cone

from wholly unobstructed subcells, but for consistency the contributions of partially

obstructed subcells to this value are also needed. Momentum in the radial direction is

still produced.

To investigate the severity of this problem a simulation is first conducted of initially

quiescent air at standard conditions (with a fairly coarse grid) in an obstructed corner

cell situation as shown in Figure E.4. The domain is a simple square with walls on the

left and bottom border, and non-reflecting outflow boundary conditions on the right and

top border. It was found that due to the boundary conditions steady-state behaviour

was apparently produced, and Figure E.4 shows the solution at steady-state.

The solutions show that a very strong wind can be produced at this corner cell,

although effects seem localized there. As there is production of radial momentum some

wind is produced in the radial direction, which is mainly confined to the vertical wall.

A strong inflow into the corner cell along the horizontal wall is also induced to replace

mass lost in the radial direction. Clearly, the solution at this corner is very different

from the ambient condition.

The flow of initially quiescent air over a conical surface is also simulated. This simu-

lation uses the geometry and grid of the supersonic conical flow study in Section 6.3. It

was simulated to the same time that produced steady-state behaviour in the simulations

of Section 6.3, but steady-state behaviour was not observed here, even long after this

time. Figure E.5 shows the solution at this late time. Extrema in the solution seem to

increase in magnitude.

Clearly the radial momentum generated along the numerically roughened surface

(Section 2.4.4) leads to a very complicated and noisy solution. The density and pressure

solutions seem to behave best, as there is overall small deviation from ambient values.

Significant velocity is produced, although it very low compared to the supersonic ve-

211

E.1. DEGENERACIES WITH THE AXISYMMETRIC CODE

(a) Density (b) Pressure

(c) x velocity (d) y velocity

Figure E.4: Axisymmetric corner cell degeneracy

(a) Density (b) Pressure

(c) x velocity (d) y velocity

Figure E.5: Axisymmetric conical degeneracy

212

E.1. DEGENERACIES WITH THE AXISYMMETRIC CODE

locities studied in Section 6.3. A vortex-like feature also appears present at the cone

tip, and this is where the extrema in velocity occur; it may have initially risen with the

inducing of horizontal flow into an obsturcted cell at the cone tip to replace mass loss

in the radial direction.

The effects of this axisymmetric degeneracy on solutions with initial quiescent state

(in addition to numerical surface roughening) can be quite significant. Divergent or

convergent solutions seem to both be possible depending on the boundary condition

and geometry. It is difficult to predict the effect this degeneracy has on flows with more

interesting initial conditions. However, these effects may not always prove detrimental

to solutions in simulations of practical interest. For example, it is shown in Section 6.3

that convergent and accurate solutions of supersonic conical flow can nonetheless be

produced. In the axisymmetric blast wall simulations of Section 11, good overpressure

traces can be computed despite the presence of problematic corner cells. Perhaps relative

to much stronger or sudden features like a blast or shock wave, the effect on the flow

produced by such degeneracies (which do not increase so fast) is minimal.

213

Appendix F

Flux Calculation Schemes

This section summarizes the algorithms for the AUSMDV and EFM schemes to calculate

the interface flux Fif · n̂if in Equation 4.4. More detailed descriptions of the schemes

can be found in References [110, 148, 150, 221].

F.1 AUSMDV Scheme

This scheme combines flux differencing and vector splitting. At an interface the left state

has flow parameters density ρL, explosion products density ρp,L, velocity uL, pressure

PL and total enthalpy HL, and the right state ρR, uR, PR and HR. To begin, the normal

velocity components at the left and right of an interface are obtained (in an interface

frame of reference) –

uL = uL · n̂if (F.1)

uR = uR · n̂if (F.2)

Tangential velocity vectors relative to the interface are

vL = uL − uLnif (F.3)

vR = uR − uRnif (F.4)

Functions αL and αR are designed to avoid dissipation at contact discontinuities –

αL =
2PL/ρL

PL/ρL + PR/ρR
(F.5)

αL =
2PR/ρR

PL/ρL + PR/ρR

(F.6)

Define the interface sound speed at the interface am as

am = max (aL, aR) (F.7)

and individual splitting terms

u+
L =

αL

[
(uL+am)2

4am
− uL+|uL|

2

]
+ uL+|uL|

2
, if |uL|

am
≤ 1

uL+|uL|
2

otherwise
(F.8)

u−
R =

αR

[
−(uR−am)2

4am
− uR−|uR|

2

]
+ uR−|uR|

2
, if |uR|

am
≤ 1

uR−|uR|
2

otherwise
(F.9)

214

F.1. AUSMDV SCHEME

Second-order pressure splittings are given by

P±
L/R =

1
4
PL/R

(
uL/R

am
± 1
)2 (

2 ∓ uL/R

am

)
, if

uL/R

am
≤ 1

PL/R
uL/R±|uL/R|

2uL/R
otherwise

(F.10)

and the interface pressure term is

P1/2 = P+
L + P−

R (F.11)

The switching factor s is based on the pressure difference across the interface –

s =
1

2
min

[
1,

K |PR − PL|
min (PL, PR)

]
(F.12)

with sensitivity constant K set to 10. The mass flux is given by the vector splitting

G = u+
LρL + u−

RρR (F.13)

For explosion products the mass flux of the explosion products would similar be Gp =

u+
Lρp,L + u−

Rρp,R. The AUSMV momentum flux (vector splitting) is

LV = ρLuLu+
L + ρRuRu−

R (F.14)

and the AUSMD momentum flux (flux differencing) is

LD =
1

2
[G (uL + uR) − |G| (uR − uL)] (F.15)

and the normal momentum flux is a mixture of the AUSMV and AUSMD momentum

fluxes

Ln =

(
1

2
+ s

)
LV +

(
1

2
− s

)
LD + P1/2 (F.16)

The tangential component of the momentum flux is

Lt =
1

2
[G (vL + vR) − |G| (vR − vL)] (F.17)

and thus the interface momentum flux is

L = Lnn̂if + Lt (F.18)

The total enthalpy flux is

H =
1

2
[G (HL + HR) − |G| (HR − HL)] (F.19)

Thus the flux Fif · n̂if is

Fif · n̂if =

G

L

H

Gp

(F.20)

215

F.2. EFM SCHEME

The glitch at the sonic expansion point is fixed by modifying the flux for two cases (1)

when uL − cL < 0 and uR − cR > 0 and (2) when uL + cL < 0 and uR + cR > 0. For case

(1)

Fif · n̂if =

G − C∆ (u − a) ∆ρ

L − C∆ (u − a) ∆ (ρu)

H − C∆ (u − a) ∆ (H)

Gp − C∆ (u − a) ∆ (ρp)

(F.21)

where ∆ () = ()R − ()L and the constant parameter C has a value of 0.125. For case (2)

Fif · n̂if =

G − C∆ (u + a)∆ρ

L − C∆ (u + a) ∆ (ρu)

H − C∆ (u + a) ∆ (H)

Gp − C∆ (u + a) ∆ (ρp)

(F.22)

F.2 EFM Scheme

As with the AUSMDV scheme, at the interface left state the flow parameters are ρL,

explosion products density ρp,L with mass fraction fL, velocity uL, pressure PL, total

enthalpy HL, specific heat Cv,L and temperature TL. The right state similarly has

parameters ρR, ρp,R, fR, uR, PR, HR, Cv,R and TR. To begin, the gas ‘constants’ are

derived for each state –

RL =
PL

ρLTL
(F.23)

RR =
PR

ρRTR
(F.24)

The normal velocity components at the left and right of an interface uL and uR are

obtained from Equation F.1 and F.2. An averaging function is defined

α =

√
ρL√

ρL +
√

ρR
(F.25)

The averaged gas constants for the interface are

Cv = αCv,L + (1 − α)Cv,R (F.26)

R = αRL + (1 − α)RR (F.27)

Cp = Cv + R (F.28)

γ = Cp/Cv (F.29)

216

F.2. EFM SCHEME

Now define the values

C =
1

2

γ + 1

γ − 1
(F.30)

CL =
√

2RLTL (F.31)

CR =
√

2RRTR (F.32)

WL =
1

2
(1 + erf (uL/CL)) (F.33)

DL =
1

2
√

π
e−u2

L (F.34)

WR =
1

2
(1 − erf (uR/CR)) (F.35)

DR = − 1

2
√

π
e−u2

R (F.36)

The mass flux from the left state is

mL = WLρLuL + DLCLρL (F.37)

and the mass flux from the right state

mR = WRρRuR + DRCRρR (F.38)

The total interface mass flux is thus

G = mL + mR (F.39)

For the explosion products the mass flux Gp depends on which direction the wind is

blowing, and is fLm if m > 0, else fRm otherwise. The momentum flux is

L = mLuL + mRuR + n̂if (WLPL + WRPR) (F.40)

and the enthalpy flux is

H = WLρLuLHL+WRρRuRHR+DLCLρL

(
|uL|2

2
+ C

PL

ρL

)
+DRCRρR

(
|uR|2

2
+ C

PR

ρR

)

(F.41)

The flux Fif · n̂if is the same expression as given by Equation F.20.

217

Appendix G

Mixture Equation of State

A combined equation of state is required for cells close to the fireball with a mixture

of explosion products (when modelled by the JWL equation of state, Section 4.5.2)

and ambient gas (modelled by the ideal gas equation of state). However given the

insensitivity of the blast wave in mid- to far-field on initial condition (Section 4.6) it is

not always necessary to obtain a fully realistic thermodynamic model of this mixture.

A common, simple approach is to obtain an average ratio of specific heats from

the two gases, γavg, to be used in a ‘γ-law’ ideal equation of state P = ρe (γavg − 1)

[24, 86, 177]. A harmonic average is used to calculated γavg –

γavg = 1 +
1

f1

γ1−1
+ f2

γ2−1

(G.1)

where f1 and f2 are the mass fractions of the two gases, f2 = 1 − f1 and γ1 and γ2

their respective ratio of specific heats. A different harmonic average may be used for

the sound speed formula [24] a =
√

ΓaP/ρ where

Γa =
1

f1/γ1 + f2/γ2

(G.2)

The harmonic average for the gas γ is used in multifluid volume-of-fluid algorithms [86]

which are designed to track interfaces and treat different species as thermodynamically

distinct entities. Pressure and internal energy within a cell is assumed to be at equi-

librium amongst the species. For the JWL equation of state the gas γ of the explosion

products may be approximated as an effective value [177] based on comparison with the

ideal gas law

γp = γp (ρp, e) =
P (ρp, e)

ρpe
+ 1 (G.3)

where P (ρp, e) is the JWL equation of state (Equation 4.18) for pressure and e the

internal energy. Additive partial pressure is not assumed; the JWL equation of state

in Equation G.3 is used just to obtain an appropriate γ value. Brode [40] notes that a

constant γ assumption is also reasonable because of a fairly low range of γ behaviour

[60]. Another simple analytical expression for the adiabatic JWL γ is also derived by

Baker [17].

218

G.1. SOUND SPEED

Another, perhaps more thermodynamically consistent approach is to assume ther-

mal equilibrium and Dalton’s law of additive partial pressures of each species. This is

approximate for real gases due to intermolecular forces, but can be used with reasonable

accuracy when combined with a real gas equation of state [46]. This approach is simple

due to the linear dependence of pressure on temperature for both the JWL and ideal

gases. In a mixture the pressure consists of the sum of the partial pressures for the

ambient gas Pa and explosion products Pp –

P = Pa (ρa, T) + Pp (ρp, T) (G.4)

The combined internal energy is the mass-fraction weighted average of each species’

internal energies

e = faea (ρa, T) + fpep (ρp, T) (G.5)

Given the equation of state expressions in Section 4.5.1 and Equations 4.19 and 4.20

the mixture pressure is

P = Ae−R1ev + Be−R2ev +

(
ωCv,p

v0ṽ
+ ρaRa

)
T (G.6)

and the mixture internal energy is

e = fp

(
Av0

R1
e−R1ev +

Bv0

R2
e−R2ev

)
+ Cv,mixT (G.7)

where the relative volume of the explosion products ṽ = ρ0,p/ρp, fa and fp are the

mass fractions of the ambient gas and explosion products respectively, and the mixture

specific heat Cv,mix = faCv,a +fpCv,p. A derivation of sound speed based on this mixture

equation of state is given in Appendix G.1.

To minimize JWL equation of state evaluations, the strategy of Löhner et al [131,

155] is used to treat as ambient gas those mixtures with only a small amount of explosive

products. If ρp is small (or vp large) ω/ (Riṽ) ≈ 0 which appear in the JWL equation

(Equation 4.18). Then the term with the lowest value of R is chosen (given this vanishes

last) and ambient gas is assumed when Ce−Rlev < δ where δ is a small threshold value of

order O (10−3) and C the JWL constant corresponding to the exponential term in the

JWL equation with the lowest value of R, Rl. When this occurs, pressure has linear

dependence on density, as in an ideal gas.

G.1 Sound Speed

In this section, the sound speed a of a mixture of detonation products and ambient

gas will be derived given the equation of state for JWL and ideal gases in Appendix G

219

G.1. SOUND SPEED

assuming additive partial pressures. This expression would be particularly simple if an

averaged gas γavg were used (a = γavgP/ρ), and for mixtures of ideal, calorically perfect

gases this is obtained from the mass-fraction weighted average of the specific heats. For

the more complicated case, the derviation uses thermodynamic principles. The general

expression for a in either real or ideal gases [55] is

a2 =
∂P

∂ρ

∣∣∣
s,fi

(G.8)

where subscripts s and fi means entropy and mass fractions are held constant, thus

∂ρi/∂ρ = fi. It is common to eliminate entropy in the expression by using the energy

form of the equation of state, e = e (ρ, P), taking its differential, de = ∂e
∂ρ

|P dρ+ ∂e
∂P

|ρ dP

and for an isentropic process (as in an infinitely weak sound wave) de = −Pdv, thus

after further derivation

a2 =
v2
(
P − ρ2 ∂e

∂ρ
|P
)

ρ2 ∂e
∂P

|ρ
(G.9)

Thus it is necessary to derive the quantities ∂e
∂ρ

|P and ∂e
∂P

|ρ for the mixture.

Now the mixture internal energy is the mass-fraction weighted average of each

species’ internal energy, e =
∑

i fiei, thus

∂e

∂ρ

∣∣∣
P

=
∑

i

fi
∂ei

∂ρ

∣∣∣
P

(G.10)

Now assuming an energy form of the equation of state with temperature as a variable

for each species, ei = ei (ρi, T), the chain rule for partial differentiation gives

∂ei

∂ρ

∣∣∣
P

=
∂ei

∂ρi

∣∣∣
T

∂ρi

∂ρ

∣∣∣
P

+
∂ei

∂T

∣∣∣
ρi

∂T

∂ρ

∣∣∣
P

(G.11)

But the specific heat of each species Cv,i = ∂ei/∂T |ρi
by definition and ∂ei/∂ρi |T can

be derived from each species’ equation of state. It remains for the derivative ∂T/∂ρ |P
to be found.

Using a pressure form of the equation of state with temperature dependency and ad-

ditive pressures from each species, P =
∑

i Pi =
∑

i Pi (ρi, T) where temperature equilib-

rium is assumed. Fortunately for many real gas equations of state like the van der Waals,

virial and JWL equation of state the temperature dependency is often linear and hence

inversion of the pressure summation is usually possible, with T = T (P, ρ1, ρ2, ..., ρn).

Thus
∂T

∂ρ

∣∣∣
P

=
∑

i

fi
∂T

∂ρi

∣∣∣
P

(G.12)

220

G.1. SOUND SPEED

Hence the final expression for ∂e/∂ρ |P is

∂e

∂ρ

∣∣∣
P

=
∑

i

fi
2 ∂ei

∂ρi

∣∣∣
T

+ Cv

∑

i

fi
∂T

∂ρi

∣∣∣
P

(G.13)

where Cv is for the mixture, Cv =
∑

i fiCv,i. Given the energy and pressure forms of

the mixture and JWL equation of state in Section 4.5.2, the derivatives ∂ep/∂ρp |T and

∂T/∂ρp |P can be analytically derived and are

∂ep

∂ρp

∣∣∣
T

=
A

ρp
2
e−R1ev +

B

ρp
2
e−R2ev (G.14)

∂T

∂ρp

∣∣∣
P

= − (ρaRa + ωρpCv,p)
−1

(
AR1ρ0

ρp
2

e−R1ev +
BR2ρ0

ρp
2

e−R2ev + ωTCv,p

)
(G.15)

For the ambient, calorically perfect and ideal gas, ea = ea (T), ∂ea/∂ρa |T = 0, and

easily ∂T
∂ρa

|P = −TRa/ (ρaRa + ωρpCv,p).

As before the mixture internal energy e =
∑

i fiei, thus

∂e

∂P

∣∣∣
ρ

=
∑

i

fi
∂ei

∂P

∣∣∣
ρ

(G.16)

In this case as ρ is held constant then given the assumption in Equation G.8 that fi is

constant, all ρi are also constant. Thus ∂ρi/∂ρ |ρ = 0 and with ei = ei (ρi, T) the chain

rule for partial differentiation gives

∂ei

∂P

∣∣∣
ρ

=
∂ei

∂T

∣∣∣
ρi

∂T

∂P

∣∣∣
ρ

(G.17)

Note again that ∂ei/∂T |ρi
= Cv,i, and once more assuming the mixture temperature

T = T (P, ρi) then

∂e

∂P

∣∣∣
ρ

= Cv
∂T

∂P

∣∣∣
ρ

(G.18)

The derivative ∂T/∂P |ρ is readily obtained from the mixture equation of state (Ap-

pendix G) since all ρi are held constant, and for a mixture of JWL and ideal gases is
∂T
∂P

|ρ = (ωρpCv,p + ρaRa)
−1.

221

Appendix H

Non-reflecting Boundary Conditions

This section briefly describes the implementation of the non-reflecting boundary con-

ditions of Thompson [210] for subsonic flow. Along a given co-ordinate axis xi the

non-reflecting conditions are implemented slightly differently depending on whether the

boundary is the left face A or right face B, illustrated in Figure H.1.

Figure H.1: Diagram for non-reflecting BC illustration

H.1 Outflow

For outflow at the left face A, the following condition must be satisfied –

∂P

∂xi
+ ρa

∂ui

∂xi
= 0

where a is the cell sound speed. For outflow at right face B, the condition is

∂P

∂xi
− ρa

∂ui

∂xi
= 0

This condition can be implemented by giving the extrapolated pressure on the boundary

a value consistent with the non–reflecting boundary condition given above (other flow

quantities can just be extrapolated). For example, through the right face

Pb = Pc + Φρcac
∂ui

∂xi
∆xi (H.1)

where ∆xi is half a cell length (from the cell centre to the border face), Pb is the

extrapolated boundary pressure, and subscript c denotes the cell-centred values. Φ is

the limiter for the velocity component ui and its inclusion is necessary in Equation H.1

as the extrapolated pressure Pb can sometimes go negative (if Φ = 1 always) if there is

a strongly negative gradient e.g. when a shock crosses the boundary.

222

H.2. INFLOW

H.2 Inflow

Subsonic inflow is a rarely-used boundary condition for the type of simulations con-

sidered in this thesis as outflow boundary conditions are typically enforced at domain

boundaries for exiting blast waves. For inflow at the left face A, these conditions must

be satisfied –

a2 ∂ρ

∂xi

− ∂P

∂xi

= 0

∂u2

∂xi

= 0

∂u3

∂xi

= 0

∂P

∂xi
+ ρa

∂ui

∂xi
= 0

For inflow at the right B, the conditions become

a2 ∂ρ

∂xi

− ∂P

∂xi

= 0

∂u2

∂xi

= 0

∂u3

∂xi
= 0

∂P

∂xi
− ρa

∂ui

∂xi
= 0

These four equations mean that four extrapolated flow variables must be set to satisfy

the non-reflecting boundary condition.

223

Appendix I

Alternating Digital Tree (ADT) structures

This section describes the Alternating Digital Tree (ADT) structure, which is a spatial

binary tree data structure like the octree but designed especially to speed up geometric

searching and intersection problems [1, 36]. Geometric searching refers here to obtaining

from a set of n points those that lie within a given hyper–rectangular (i.e. rectangular

or hexahedral) region of space, whilst geometric intersection refers to obtaining from a

set of hyper–rectangular n objects those that intersect with a given hyper–rectangular

object. Sequential geometric searching is of O(n) complexity; ADT searching reduces

this to O (log(n)) tests, which is significant when there are many bodies.

As an example of geometric searching, consider a set of points A–E in 2D space,

as in Figure I.1. The first point A corresponds to the root of the binary tree and the

whole space. The next point B is placed as either the left or right child of A depending

on whether it is to the left or right of the bisector of the region on the x0 axis. The

corresponding region of B is thus the right half of A’s domain.

Figure I.1: Constructing an ADT

Point C then tests if it lies to the left or right of the bisector of the x0 axis. It lies to

the right, but since B has already been assigned to this region, point C tests if it should

be the left or right child of B by now testing if it lies to the left or right of the bisector

along the x1 axis of B’s region. This procedure is repeated for the other points D and

E.

224

The ADT is thus recursively built up by traversing through the list of all points and

cyclically partitioning the axes to test if a given point P lies to the left or right of the

bisector of the subregion on this axis which a previous point P ′ is associated with. P will

then be assignd the left or right child depending on this outcome, but if a child already

exists corresponding to another point P ′′, the same bisection test is now applied on the

subregion corresponding to P ′′, and so forth until P is finally assigned a partitioned

subregion of its own. The cyclical axis bisection is given by

j = mod(l, N) (I.1)

Thus the xjth axis is bisected where N is the space dimension and l is the level of the

node on the ADT (the root is level 0) corresponding to the subregion currently being

bisected. For example, point C above would be B’s child, and B is a level 1 point/node

and N = 2, so the x1 axis should be bisected for the subregion corresponding to B. These

subregions are hyper-rectangular because of the axial bisection. The general algorithm

for adding a point to a node on the ADT is given in Figure I.2.

Figure I.2: ADT building algorithm

As points are uniquely assigned subregions of their own it is not necessary to linearly

test each point to see if it lies within a hyper–rectangular region of space. A whole branch

of points lying within a subregion on the ADT can be discarded if the subregion does

not lie within the given space. To obtain a fully balanced ADT, the bisection of a given

region can be done through the median of points [1], but this requires sorting the points

along each axis. This has not been implemented in the code.

The intersection of hyper-rectangular regions (i.e. bounding boxes) is a simple test.

Referring to Figure I.3 if the bounding box of one region k is given by [xk,min,xk,max]

and the bounding box of another region o is given by [xo,min,xo,right], the regions will

intersect if and only if

xi
k,min ≤ xi

o,max

xi
k,max ≥ xi

o,max (I.2)

225

where xi are the vector components of the verticies and i = 0, . . . , N − 1

Figure I.3: Bounding box illustration

The general algorithm for using the ADT for geometric searching can be written

simply and recursively as shown in Figure I.4.

Figure I.4: General geometric searching algorithm for ADTs

Geometric intersection problems can also be handled using ADTs via a mapping of

Equation I.2 into 2N hyperspace. Note that Equation I.2 can be written as

x0
min ≤ x0

k,min ≤ x0
o,max ≤ x0

max

...

xN−1
min ≤ xN−1

k,min ≤ xN−1
o,max ≤ xN−1

max

x0
min ≤ x0

o,min ≤ x0
k,max ≤ x0

max

...

xN−1
min ≤ xN−1

o,min ≤ xN−1
k,max ≤ xN−1

max (I.3)

226

Note [xmin,xmax] denotes the bounding box of the whole domain. Let [xk,min,xk,max] be

an object whilst [xo,min,xo,max] be the target object. Then represent object k as a point

in 2N space by writing its co–ordinates in a single array –

xk =
[
x0

k,min, . . . xN−1
k,min, x0

k,max, . . . x
N−1
k,max

]T
(I.4)

Then intersection condition of Equation I.3 becomes

ai ≤ xi
k ≤ bi, i = 0, . . . , 2(N − 1) (I.5)

with

a =
[
x0

min, . . . , xN−1
min , x0

o,min, . . . , xN−1
o,min

]T

b =
[
x0

o,max, . . . , x
N−1
o,max, x

0
max, . . . , x

N−1
max

]T
(I.6)

Therefore, the geometric intersection problem of Equation I.2 can be equivalently thought

of as a geomeric searching problem in Equations I.5 and I.6, where now xk is tested for

lying within the 2N space region [a,b] described in Equation I.6. The bounding box of

the hypercube corresponding to the whole domain likewise becomes

l =
[
x0

min, . . . , xN−1
min , x0

min, . . . , xN−1
min

]T

u =
[
x0

max, . . . , x
N−1
max , x0

max, . . . , x
N−1
max

]T
(I.7)

For intersection problems where out of k objects those that intersected a region o need

to be returned, each individual object xk is thus placed on the ADT using the same

general algorithm as in Figure I.2, and this binary search tree is again traversed and the

objects flagged if they are inside the region given by Equation I.6.

For intersection problems involving more complex geometry, the bounding boxes of

the bodies (the lower and upper verticies which uniquely define the bounds on each axes

which the body occupies) are placed in the ADT. This still speeds up the searching

problem as it quickly obtains candidates for the more expensive intersection test. For

point-inclusion problems, the body facets can be further placed in a separate ADT to

more quickly identify candidates for the ray intersection test, which is important for

complex bodies with many surface panels.

227

Appendix J

Linhart’s Point-inclusion Queries

J.1 Polygon Query

Linart’s polygon inclusion test [130] is quite simple. With the help of Figure J.1, a

halfline from any given point is drawn (here the lines go downward to some very large

negative number). A line enters an edge if the dot product between the unit vector in

the line’s direction and the outward normal to the edge is negative, and conversely it

leaves when the dot product is positive.

Let there be a sum S, such that if the line enters the polygon count −1 else count

+1. If the line meets a vertex, count ±1/2 for each of the 2 edges sharing the vertex

depending on whether the line is leaving or entering. This way S = 0 if and only if the

point lies outside the polygon, else the point is inside or on the polygon. If the halfline

is collinear with an edge the edge is ignored, since the halfline will meet a vertex.

Figure J.1: Polygon halfline illustration

J.2 Polyhedron Query

To demonstrate Linhart’s polyhedron query [130], use is made of Figure J.2 where a

halfline is also drawn from the point in question. To each polyhedral face F met by the

halfline a number s is assigned. The sum of each of these numbers S will then 0 if and

only if the point lies outside the polyhedron, else the point is inside or on it.

228

J.2. POLYHEDRON QUERY

Figure J.2: Polyhedron halfline illusration

Let u be the unit vector in the direction of the halfline H, and F a face intersecting

H in a point X. Let v be the outward normal of F . To determine if H intersects

F , the polygon query of Appendix J.1 must be utilized. First project F onto a plane

perpendicular to H, as in Figure J.3. Then H will intersect F if and only if it intersects

the projection of F (ignoring the cases where F is in the plane of H).

Figure J.3: Polygon projection

Depending on whether H intersects the interior of F , an edge or a vertex, s is defined

as follows:

1. If X is in the interior of F :–

s = sign (u ·v)

2. If X lies on an edge of F :–

s = 1
2
sign (u ·v)

3. If X coincides with a vertex of F :–

Let α be the inner angle of the normal projection of F in the direction of the

halfline at this vertex (0 < α < 2π). Then

s = α
2π

sign (u ·v)

229

J.2. POLYHEDRON QUERY

To illustrate how the algorithm works, first consider point P1 in Figure J.2. It is

inside the polyhedron, and the halfline intersects only one face. Thus S = 1 and P1 is

indeed inside. Point P2 intersects two faces, but enters one and leaves another. Thus

the individual numbers s for each face respectively are −1 and +1, and S = 0 i.e. P2 is

outside.

P3 intersects the bottom face and an edge formed from two upper faces. Thus

s = −1/2 for the two upper faces and for the bottom face s = 1, so the sum S = 0 i.e.

P3 is outside. Finally P4 actually lies on face in the plane of its halfline, but this face

is ignored, since the halfline will eventually intersect an edge or vertex, in this case the

bottom face’s. Thus S = 1/2 and P4 is inside (technically on) the polyhedron.

In the case where the halfline intersects a vertex, consider Figure J.4. There are

three faces sharing this vertex. These faces are projected onto onto the plane normal

to the halfline; the right diagram shows the faces from the point’s ‘point of view’.

The inner angles on these projected faces are α1, α2 and α3, but given the algorithm,

the numbers s associated with each face are thus −α1/2π, −α2/2π and +α3/2π. But

α3 − α2 − α1 = −2π, thus the sum of these three numbers give −1. As the line also

leaves a face ‘behind’ the vertex the final sum S = −1 + 1 = 0 indicates the point is

outside.

Note the special case in Figure J.5 where the algorithm will give a final sum S = k,

where 0 < k < 1. Hence the general rule that if S = 0 the point is outside, but if S is

anything else it will be inside or on the polyhedron. As far as VCE is concerned though,

both ‘on’ or ‘inside’ the polyhedron can be regarded as ‘inside’.

Figure J.4: Halfline passing through polyhedron vertex

Figure J.5: Halfline passing through edge and vertex

230

Appendix K

OctVCE Data Structures

This section briefly discusses important data structures in the OctVCE code. Basic flow-

related data strucutres can be seen in Figure K.1. The state vector structure also stores

the explosion products density rho_products. Limiters for each flow variable are stored

in the limiters data structure. The mass flux of the explosion products also constitute

the flux_vector structure.

Figure K.1: Basic flow-related data structures

The list data structure (Figure K.2), mentioned in Section 3.1 is a generic list

structure that stores pointers to cells (the cart_cell structure) or verticies (the vertex

structure). It is a doubly-linked list that points to previous and next list nodes (which are

NULL if empty) in a recursive definition of the structure. There is also a thread_num

variable to identify which thread the this list node belongs to in parallel processing

(Section 5.5).

The vertex (Figure K.3) structure stores the position of the vertex and a vertex

number that is needed for parallel solution output (Section 5.5.1). It contains pointers

to the cells sharing the vertex (as many as 8), and also a pointer to its location on the

list of verticies (the vertex_list_loc pointer).

231

Figure K.2: List data structure

Figure K.3: Vertex data structure

The Cartesian cell data structure is shown in Figure K.4. This shows only a portion

of the entire cart_cell structure. It stores the flow-related variables (from Figure K.1),

but only pointers to the flux vectors, as not every interface needs a flux vector.

In a recursive definition that defines the octree data structure, a cart_cell points

to its parent, children and potentially 24 neighbours (6 faces, 4 quadrants per face), and

stores pointers to its 8 verticies. It also points to its location on the list of cells, and

the list of merged cells (if part of a merged cluster of cells). There are some necessary

extra variables storing geometric properties and adaptation flags.

Figure K.4: Cell data structure

In total, the cell data structure has a size of 988 bytes, and in actual practice (because

of memory allocation of list, flux, vertex etc. structures) the effective memory per cell

can range from 3 to 4 kilobytes. This is substantial and much larger than an equivalent

cell size in Rose’s ftt_air3d code [174, 177]. Large memory overheads do lead to

performance inefficiencies such as cache misses. Explicit storage of neighbouring cells

contributes to this overhead, and further work may be to make OctVCE more memory-

efficient e.g. with the fully threaded tree structure [118] like that used by ftt_air3d.

232

