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Abstract

This thesis concerns the computational modelling of higregptransient, flow processes
within facilities such as shock tubes and expansion tubdsol®\facility simulations are
possible in reasonable time frames, but require limiting éktent of the modelling to
one-dimensional flows and applying phenomenological nettekcapture macroscopic
flow effects. Alternatively, by limiting the analysis to aexjfic part of the facility, more
detailed, multi-dimensional simulations that capture ptax flow features directly, be-
come feasible. This thesis looks at the application of tiieseapproaches to finite time

diaphragm rupture and shock wave / vortex interactions.

The first part of this thesis concerns the modelling of finiteet diaphragm rupture
in a quasi-one-dimensional simulation code. One-dimeraditlow simulation can pro-
duce an approximate analysis of whole facility operatianwéver, they cannot directly
model multi-dimensional phenomena associated with dagrhrrupture. A quasi-one-
dimensional code, E1d, was formulated to test two algebmaidels that aim to capture
the drop in total pressure of the expanding driver gas, asduim be associated with
finite opening diaphragms. The first model assumes an iggatexpansion from the
diaphragm throat to the full area of the driven tube whereranabshock processes the
flow. The second model uses data from studies of backwandgatep experiments to ap-
proximate the pressure on the unruptured surface of théadigm. Once this pressure is
known a ‘mixed out average’ flow state can be calculated bgeing mass momentum
and energy. Simulated pressure traces were compared vadrigental measurements.
Ultimately, the underlying flow mechanisms are three-digi@mal and the attempt to

model them by a one-dimensional analysis was not very ssftdes

Rather than modelling whole facility operation, the secpad of this thesis concen-
trates on a detailed multi-dimensional analysis of a small flegion. For this work, a

two-dimensional Euler code, MACS2d, based on an adaptreéilyed mesh was designed



Vi

and validated on a series of test problems. Mesh adaptios taimllow an efficient dis-
tribution of computational resources by using a fine mesk athlere it is needed. Issues
relevant to grid adaption such as data structure, refinegréatia, and solution recon-

struction are discussed.

The final part of this work applied the MACS2d code to the peoblof shock wave
vortex interactions. The motivation for this work was theesimental work of Skews
[52], in which the multiple interaction of a shock wave witlt@arner vortex sometimes
resulted in a patch of small scale turbulent flow. Rather thang to model the ensemble
of such interactions characteristic of a turbulent flow,gmulations focus on the vortex
roll-up and the subsequent interaction of the vorticityhatite reflecting shocks. There
are two scales of motion. On a large scale, the reflected shae& attempts to compress
the large corner vortex, while on a smaller scale, discretgoes on the periphery of the
large vortex are produced as a result of the Kelvin-Helnzhatl up of the shear layer
shed from the corner. Whilst the large scale interactiomskEmodelled inviscidly, it
is found that the detailed distribution of vorticity is vasity dependent; grid resolution
playing an important role. The simulations reproduced vegil the flow features seen in

the experiments, but there is still some ambiguity regaythe final state of the vortex.
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Nomenclature

Symbols
a : sound speed m/s
A -aream
C, : specific heat at constant pressure, J/kg K
Cy : specific heat at constant volume, J/kg k
e . Intensive internal energy, J/kg
E . Intensive total energy, J/kg
f . species mass fraction
F : Flux vector
Fan > wall friction
Fl.ss : pipe fitting loss
h . intensive enthalpy, J/kg
7 . generic counter
l : refinement level
L : Length, m
n > unit normal vector
M : Mach number
P . pressure, Pa
q : heat flux J/(M.s)
q : Heat flux vector, W/rh
Q : generalised flow variable
Q : Vector of source terms
R : radius, m; Gas constant, J/kg K
Re : Reynolds number

V)

: van Albada limiter term



Xii

S : Surface area, M

t :time, s

T . temperature, K

T : Matrix of viscous stresses, Pa
te . characteristic time, s

u : velocity m/s

u : velocity vector, m/s

U : Vector of conserved variables
vV : volume, nt

x : cartesian coordinate, m

Y . cartesian coordinate, m

z : cartesian coordinate, m

o : grid compression parameter
I6; : compression parameter

v : Ratio of specific heats {IC,

) . increment

A : Difference

€ : refinement indicator; dissipation of Kinetic Energy
n . sensitivity parameter

K : Blending paramter

A : bulk viscosity Pa s

1 : Molecular viscosity, Pa s

v : Kinematic viscosity, tv/s

p . density, kg/m

T : viscous stress, Pa

w . strain

Om : mass flux

Omom - momentum flux

ben  : energy flux



CHAPTER 1

Introduction

The design of aerospace vehicles requires a detailed kdgelef the interactions be-
tween flight surfaces and the ambient atmosphere througthwhey pass. The resulting
aerodynamic pressure as well as heating loads are amongttbal parameters inherent
to a successful design. Insight into these conditions iginbt through a mix of analyti-
cal, computational and ground based experimental techridthe recent paradigm shift
embraced by the motto “faster, better, cheaper” calls fotinaal improvement in these

areas through a greater understanding of the physical ggesenvolved.

One such example is in the design of the aeroshell heat shésldssary for atmo-
spheric re-entry. Aeroshells typically have a conicaltskith a spherical nose and, for

given flow conditions, the heat transfer is governed by

g % (1.1)

where R is the radius of curvature of the spherical nose;rEigul below illustrates this.
Hence, heat shields with smaller nose radii incur largetihgdoads. A heat shield with
a larger nose radius and larger cone angle, whilst inculomgr heat transfer, is also less

stable aerodynamically. We thus have to make a compromisieeaequirement for a

Figure 1.1: Characteristic heat shield shapes.

small, stable aeroshell leads to the need for a thicker,bebgat shield. Table 1.1 shows



2 Introduction
| | Viking | Pathfinder| Pioneer |
Destination| Mars Mars \Venus
Base Area] 9.62nt | 5.52nt | 1.59nt
Mass| 980.8kg| 585.3kg | 316.4kg
Nose Radiug 0.878m| 0.664m | 0.363m
Base Radius 1.75m | 1.325m | 0.711m
Cone Half Angle| 70° 70° 45°

Table 1.1: Heat shield specifications for three entry vehicles.

relevant data for ‘specific’ examples of heat shields use8 mrentry vehicles.

The increase in heat load coupled with the need to decreaseass of the heat shield,
leads to the need for better experimentally-derived datia ¢hn be used by aeroshell
designers. Shock tubes, operating in either reflecting nfrefiecting modes, are one of
the few classes of ground-based devices capable of fulllatran. Although shock tubes
are nominally capable of providing high enthalpy test flothgre are some anomalous
behaviours that appear at the high enthalpy regime of facperation. These bahaviours
lead to decreased performance of the facility, both in tevfiise enthalpies and pressures
achieved and in a decreased quality of the test flow. Sinceithelation of atmospheric
entry from interplanetary trajectories involves testsemeery high enthalpy conditions,

a better fundamental understanding of shock tube behasaiasirable.

1.1 Modelling Shock Tunnel Phenomena

A large portion of shock wave research at the University oéé€nsland is conducted in
the T4 shock tunnel. This facility is a free piston drivenchtunnel comprising a 26 m
compression tube coupled to a 10 m long shock tube. A schewiatv of its operation

is shown in Figure 1.2.

The operating cycle of the shock tunnel involves a trandfenergy from a large com-
pressed air reservoir, through several intermediate stdgea small amount of test gas
initially contained in the shock tube. The process begirik thie release of high pressure
air from the reservoir onto the back of a piston, driving itaiothe compression tube.
This compresses the driver gas (typically air, nitrogenrgoa) causing an increase in
pressure, temperature and consequently speed of soundtugih the rupture pressure

of the primary diaphragm is exceeded, and the driver ganebgiato the shock tube driv-
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ing a strong shock wave into the test gas. The incident shasle wompresses and heats
the test gas before reflecting from the nearly-closed entlefube at the nozzle throat.
The shock wave travels back up the shock tube through thegsed gas causing it to be
further heated and compressed to the point where the ruptassure of the secondary
diaphragm is reached. The thin secondary diaphragm rigpéume the processed test gas
expands through the nozzle into the test section. The testltiegins when steady flow
is established through the nozzle and continues until eithstream expansion waves ar-
rive and change flow conditions or until driver gas contart@adhe test gas. The overall
process is shown on an x-t diagram for tailored conditiorfiagure 1.2; for this idealised
case, the reflected shock brings the driver gas to rest andditiaamal waves are created

as it passes through the contact surface. A detailed uraelisg of overall facility per-

Time

Nominal
test time

ook e Nozzle
e y & 7 starting
- e process

Distance

Test section

Compression tube Shock tube

A

Incident
Contact shock wave

surface Nozzle Dump tank

]

Figure 1.2: Schematic of the T4 free piston reflected shock tunnel inetud-¢ diagram for
tailored conditions.

Reservoir

formance is an important aid to the design of improved shockels and expansion tubes

[21], the determination of test flow parameters [25] and sdktablishment of boundary

conditions for more detailed analysis of specific operategjons [37].

Traditional models of shock tube phenomena took a quaséstpproach in which
the cascade of energy transferring processes are corssiseperately. The input for
any given section coming soley from the output of the previprocess. Improvements
to these models have been made by using simple analyses asthttons that aim to

model more complicated flow effects. Models for piston dym@nb6] as well as shock
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formation from compression waves [67] have been incorpdrdtowever, the model is

ultimately limited by the quasi-static assumption.

Whilst such techniques are useful for estimating flow coads, fully coupled numer-
ical simulations are required to gain greater insight. €h@mulations solve simplified
forms of the governing equations which retain sufficientigto capture the most impor-
tant aspects of the flow physics [25, 22, 37]. Computing pdveerincreased in the last
few decades to the point were such simulations of the ergaiéitiy can be performed in

a relatively short time frame.

As we attempt to model a more challenging regime howevel) stiedies are re-
stricted by the applicability of the underlying approximoat used to simplify the anayl-
sis. The inclusion of more terms from the governing equatiomvides greater insight
into the flow processes ocurring, however, this comes at xperese of computational
time. Ultimately we must model the full three dimensionaliida Stokes equations with
sufficient spatial and temporal resolution so as to resolea ¢éhe finest scales of motion.
Unfortunately, this is, and for the foreseeable future vaihain too computationally tax-

ing to be of practical interest for anything but the simpt#dtow geometries.

Depending on the problem at hand and physical time scale ichwie want results,
we are forced to limit the extent of the motions resolved #yamnd incorporate math-
ematical models tuned to describe more complex processeh 8odels that strive to
resemble the macroscopic effect of unresolvable flow featean be applicable over a
range of flow scales including adding boundary layer massembent effects in a quasi-
one dimensional simulation [8] right down to subgrid LES ralsdused in turbulence

modelling [39].

This thesis examines techniques for creating such mod&adh analytical analysis,
experimental data and high resolution computational satrris that model the next level
of physical complexity. Of particular interest are shodktex interactions both as an ex-
planation for decreased driver gas total pressure in shubastand as a more fundamental

mechanism for decaying turbulence kinetic energy.
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1.2 Thesis Outline

The aims of this thesis are threefold:

e To investigate ways of modelling finite time diaphragm ruptin a quasi-one-

dimensional simulation code.

e To develop a new CFD code that implements solution adapgreeshing for high

resolution simulations.

e To investigate numerically the multiple interactions beéw a shock wave and a

corner vortex.

The original scope of the (then PhD) project included a tliiegensional analysis of
shock vortex interactions. Due to the reduction in scopéeftroject to a Masters thesis,
this was not possible, however, two-dimensional simutatesults are presented.

The thesis is organised into six chapters as follows:

Chapter 2. In this chapter the governing flow equations are presentddtanapplica-
bility of some simplifications discussed. The general franord for the computational
solution of the flow equations is presented. Finite volunsemitisation and numerical

integration is described.

Chapter 3. One-dimensional simulation techniques are analysed sdhapter. Mod-

els that attempt to correct the macroscopic flow field foruesg unresolveable under
the quasi-one dimensional assumption are discussed. A-goaglimensional simula-
tion code is formulated, demonstrated and used to compate swdels for diaphragm

rupture with experimental traces.

Chapter 4. In this chapter an adaptive strategy is proposed as a meati®wing high
resolution simulations to be computed in a time frame thphissically realisable. Issues
such as interpolation, reconstruction, and adaption patens are discussed through the

formulation and validation of a structured grid adaptiode¢MACS2d).

Chapter 5. Compressible turbulence and in particular the role of shawkex interac-
tions in the energy cascade process are discussed in tiitech®ne scale of such mo-

tions is modelled by simulating the multiple interactiorisacshock wave with a corner
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vortex. Simulation results and previous experimental deg¢aused to explain the genera-

tion of fine scale vortical structures during the interacs$io

Chapter 6. Finally, a summary of the thesis is presented. Conclusioasleawn and

recommendations made concerning future work.



CHAPTER 2

The Governing Equations of Gas Dynamics

The flow of compressible fluids in the continuum regime areugin to be described by
the Navier Stokes equations. The integral form of theseteapsin conservation form

can be written as

%/Vudv+ /SFdS: /deV 2.1)

whereU is the vector of conserved properti€she flux vector and the vector of source
terms. S is the control surface bounding the control voluirie For three-dimensional

flow without heat addition, the source te@nis zero, whilst the vectord andF can be

written as
p pu-n
U= | pu F = puu-n + Pn — Th ;
pE pEu-n+Pu-n — u-(Tn) — q-n

wheren is the outward pointing normal to the control surfateThese equations express
conservation laws for mass, momentum and energy in terntsediuid velocity vector

u = [ug,uy,u,]” and the variables density, static pressure and total erferdy, andF
respectively). Viscous heat fluxes are containeq while viscous stresses are contained
in the the matriXI". Under Stokes’ hypothesis, these stresses are relateddstilains (a

function ofu) via the coefficient of viscosity.

A relevant equation of state can be used to relate the dearsitynternal energy to any

one of the other thermodynamic state variables pressunggeature and sound speéed (



8 The Governing Equations of Gas Dynamics

T anda respectively). For a calorically perfect gas we use
P = ply — 1e (2.2)
Finally the system of equations is closed by the definitiomaifl energy

1
E = e + §|U|2 (23)

2.1 Characteristics of the Flow equations

Solution techniques for the Navier-Stokes (N-S) equatioast address the fact that their
mathematical behaviour depends critically upon the flovimegoeing modelled. At su-
personic speeds the steady-state N-S equations are lgplayiaérbolic. Flow properties
at a point in space influence only downstream propertiesdediby lines termed charac-
teristics. This inability for downstream properties to udghce the upstream flow allows
efficient space marching techniques to be used. Under sichsmmditions, however, the
steady-state N-S equations are spatially elliptic. Charestics are imaginary and in-
formation can propagate in all directions. As the Mach numéelecreased, diffusive
transport phenomena becomes increasingly dominant overcitunvection. In the limit
of zero Mach number the flow is governed by the incompres$ibf equations. The
assumed infinite sound speed in such fluids means that ang goiet in the flow is

influenced by the entire flow domain.

These differences in behaviour must be addressed whensarglgractical flows
which contain both subsonic and supersonic regions. Ratlaertrying to employ dif-
ferent solution techniques in different flow regions [41{jraversal technique is devised
by considering the transient terms; Regardless of the flgiwe the equations exhibit
hyperbolic behaviour with respect to time allowing a timeraméng solution technique.
By limiting the extent of acoustic wave propagation duriagletime step, the equations

for the whole flow domain can be treated in the same manner.

The transport phenomena of viscosity and heat conductiog, rige to a spectrum
of time and length scales all of which much be resolved if a&tancurate description of

the flow field is sought. Direct Numerical Simulation (DNS)ti® name given to high
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resolution schemes that attempt to model all such scalesotbm This technique has
been applied successfully to a range of problems partigular incompressible flows
at low Reynold’s numbers. As the Reynold’s number is incdasiowever, so do the
spectrum of length and time scales of the resulting eddyiogans. The number of grid
points that must be used to resolve all scales is propontttonﬁe% [44] which quickly

becomes excessive.

Large Eddy simulation (LES) addresses this problem by niiodedirectly only the
large scales of motion which are influenced greatly by thexgoy of the problem. The
simplifying assumption comes with the hope that the smallesmotions neglected by the
computational simulation are more universal and less &ftHoy the boundary conditions.
Their effect is incorporated by mathematical subgrid medieht are dynamically tuned
as the simulation progresses. The computational costs 8fdtE large and as such much
effort in recent times has been devoted to the developmeuatlmilent models that aim to
capture the average effect of turbulent phenomena. ThedRéyaveraged N-S equations
are solved with complete disregard for the scales of turtiuteotions captured directly;
their effects being incorporated by the determination afraulent viscosity as specified
by the chosen model. Such simulations have enjoyed a higle@efsuccess particularly
as a means of providing insight into problems where shocakatary layer interaction

effects are important.

A fortunate consequence of the high Reynolds numbers dgldim high speed com-
pressible flows, however, is that viscous effects are comfioghin boundary layers. If
the frictional drag associated with these boundary layansbe neglected, it is suffice to
model pressure drag which is essentially inviscid in natlilee Euler equations describe
the motion of such inviscid fluids in the continuum regime and obtained by setting
the viscous stresses and heat fluxes to zero in equation 2eHne the equations solved
by the two dimensional computational fluid dynamics progMACS2d developed for
the simulation of shock-vortex interactions. A more de@itlescription of the code and
the applicability of the Euler equations to the phenomerf@hock-vortex interactions is

deferred until Chapter 4.

Further simplifications to the multidimensional Euler etipras are permitted if we
can assume flow properties to be uniform in any of the spai@idinate directions. Flow

simulations of entire shock tunnels are primarily concdnwvéh average values of condi-
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tions across the breadth of the tube and as such it is setsiledel the flow exclusively
in the streamwise direction. If we neglect flow variationsthe other two coordinate
directions but allow gradual variations in cross sectiarah the quasi-one dimensional
(q1d) Euler equations are obtained. They are the one-dioraisanalogue of the multi-
dimensional Euler equations described earlier with antemt@il source of momentum
arising from the differential pressure force due to the waygross sectional area. Com-
pensation is made for the lack of viscous terms by usingdndactors and heat transfer

correlations to model the effect of viscosity at the tubelsval

The qld Euler equations are the building blocks of the coatpartal fluid dynamics
code E1d to be discussed in detail in Chapter 3.

All of the simplified forms of the governing flow equations jysesented represent
coupled sets of nonlinear Partial Differential equaticBksed form analytical solutions
to these equations in general do not exist and we are forcamh®der numerical methods

as a means for obtaining approximate solutions.

2.2 Finite-Volume Formulation

Numerical techniques for solving the flow equations invaliseretising the flow domain,
and integrating the resulting approximate ordinary défdral equations at each of the
computational nodes. Finite element, finite volume anddidlifference schemes are
three techniques for obtaining a system of such equatiomdsvéll three should produce
results that converge to the same solution in the limit ofrdimitely fine computational
domain, there are advantages to be gained from each degesrdthe problem requiring
solution. For compressible flows, containing discontirufiaw domains, conservation
must be ensured. The finite volume technique involves digdhe domain into non-
overlapping finite-control-volumes on which the integ@ih of the governing equations
are applied. A weak solution of this form permits discontiies whilst ensuring global
conservation. Additionally, complicated boundary coiudis for complex flow domains
can be implemented in a relatively straight-forward mankegure 2.1 shows an example
of a g1d and 2d finite volume discretisation for an expandiag fflomain. Algebraic
equations are obtained for each control volume by appraxngéhe volume and surface

integrals using quadrature formulae. Volume integralsbmavaluated with second order
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Figure 2.1: Q1d (left) and 2d (right) Finite Volume discretisation of @panding domain

accuracy by the product of the mean value and the cell volumstsurface integrals
are calculated by summation over the sides of the cell. Ttegial on each face being
approximated by the midpoint rule. Under this scheme thei-sksarete form of the

governing equations 2.1 are written for each cell as

6-[Jcell
ot

1
= Qeet — V;sz Ais (2.4)

with A andV being the cell edge interface area and cell volume resmdgtihe dis-
cretised equations applied to each control volume can baraed in time from an initial

solution once a technique for determining the interfaceefius specified.

2.2.1 Determining the Interface State

Finite volume solution of the flow equations requires theedatnation of fluxes at the
interfaces between cells. Since flow properties are knoviy atrthe cell centres some
form of approximation must be made about the variation of fiaperties across the
domain in order to compute these entities. The simplestagtan about the flow domain
is that of piecewise constant flow states. The first orderraehaf Godunov [16] involves
the solution of the Riemann problem at the interface betwersuch flow states. Whilst
this scheme can produce stable results, its low order ofracguntroduces excessive

dissipation.

For smooth continuous flow fields interpolation schemes gfader can be devised
to approximate the variation of flow properties. Such sctewlgen applied to discontin-
uous flow domains instigate high frequency numerical ermwéver, which can lead to
code failure. This can be overcame by the introduction oflogar limiters which act

to restrict the action of the higher order interpolationestles around flow discontinuities
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whilst having no effect in regions of smooth flow [29]. The pess of interpolation and
limiting is termed reconstruction. Using this techniqugter order sequels to Godunov’s

method have been devised [63].

Reconstruction schemes can be devised that prohibit therggon of new extrema
(Total Variation Diminishing or TVD schemes), place a bowmdthe generation of ex-
trema (Total Variation Bounded or TVB schemes) or allow aguction in variation be-
tween timesteps to be regained at the next (Essentially®kmiHatory or ENO schemes).
The codes presented in this thesis use the van-Albada [GR¢H which is thought to be
TVB [64], with Johnston’s modification for non-equispaceai€ [29]. With reference
to Figure 2.2 this scheme can be described in MUSCL (monatpménd schemes for

conservation laws) like form by

P = Qi TI0 = sim) A7 + (14 sim) AL, (25)
and,
S _
Qﬁl/z = Qi+1 — Z[(l - Si’f)Az‘tLl + (1 + SiH)AiH] ; (2.6)
where,
Ai_ = Qi - Qi—l
A;r = Qi-i—l - Qz )
and,
2ATA + €

S =

AP+ (AT’
Herex is a blending parameter bounded by< x < 1 that governs the influence of
up and downstream components during interpolation. Aoladtily, the parameter is
introduced to avoid division by zero and is set slightly lagthan machine precision.
Fluxes of mass, momentum and energy are calculated fromettumstructed states
either side of the interface by an appropriate flux calculdtbere exists a myriad of such
flux solvers each one exhibiting its own successes and éailurhe flux calculator used
in the codes developed in this thesis is an updated versitimeadpproximate Riemann

solver developed by Jacobs [24]. Approximate Riemann selkiave the advantage of
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Figure 2.2: Cell configuration for reconstruction (Figure 3.1 in [29]).

being significantly less computationally intensive thaaittexact counterparts, whilst

still retaining sufficient accuracy.

2.2.2 Time Integration

Given the current flow state, the discretised equations eadtanced in time by selecting
an appropriate numerical integration technique. Schemeslassified as being either
explicit, implicit or a mixture of the two. Explicit integten uses knowledge of only the
current flow state and as such is not very computationalBnisite. The equations are
advanced in small time steps governed by strict stabilitygiga. For example, a wave

starting at a cell interface should not cross more than Halecell width during a time

step.

Schemes of any order can be devised by taking any number ploietory steps’
aimed at producing a more accurate estimate of the temperaiative. This comes at
the price of increased computational effort and precioumorg storage must be used
to keep track of the intermediate results. In contrast, ioitdchemes use knowledge of
the flow state at the end of the time step. This need for ‘pnmvidedge’ results in a set
of simultaneous equations which must be solved by an iter&tichnique. The resulting
schemes are more computationally intensive; however, ricatetability is maintained
for relatively large time steps.

For the flows considered in this thesis the time-scales &tsdowith the phenomena

of interest are short. Hence whilst implicit integrationwapermit large time-steps from

a numerical perspective, many of the physical interactartsirring would be lost. For
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this reason we employ the explicit two stage predictorexor scheme defined by.

(n)
dt

Ul = U™ 4+ AUD |
M

av® — A ;
dt
1

U+ U(1)+§(AU(2)—AU(1)) : (2.7)

where the subscripts (1) and (2) indicate intermediatdtsesu

Stability requirements for explicit integration schemeéstate that the time step is

limited to

5t < CFLx*t, (2.8)

where CFL is the Courant-Friedrichs-Lewy number, ani the smallest characteristic
timescale of physical processes occurring in the flow. Ferctse of the Euler equations,
only the phenomenon of fluid convection is considered,fafecomes the shortest time
taken for an acoustic wave to traverse any single contralnael in the domain. For a

given control volume in three-dimensional space

Ax Ay Az

tc - » 3 5
min (e’ o[+ @ Tl +a

). (2.9)

Whilst stability is predicted fob < CFl < 1 experience shows it to be very problem

dependent with CFL numbers less thain generally producing stable results.



CHAPTER 3

One-Dimensional Flow Modelling Techniques

In order to model accurately the flows in impulse facilities!s as free piston shock tun-
nels and expansion tubes it is necessary to consider thplegebetween gas dynamic
interactions, piston dynamics and viscous effects. Sittrmiaodes have been developed
that solve the quasi-one-dimensional Euler equations th#haddition of empirical cor-
relations to model phenomena such as friction and heatf&éafis, 25, 37, 40]. These
codes allow for multiple diaphragms, pistons and gas sliga,flexible manner which
makes them ideal for analysing the performance of an erdc#ity with a reasonable

amount of computational effort.

Improved accuracy can be obtained by tracking singularitiethe flow, such as
shocks and contact surfaces [12], and adapting the conqmeahtdomain accordingly
[34]. By incorporating elements of a characteristics sotutn this manner, discontinu-
ities are no longer smeared over several cells. Howevartisok are still limited by the
applicability of the models embodied in the simulation cad®©ther researchers have
tried to address the fundamental short comings of the omeaional analysis by adding
additional terms for phenomena such as mass-entrainmanttfie core flow into the
boundary layers [8] as well as sudden changes in tube gepfi2y. Despite the ad-
vances and associated success for a range of facilitiestopglt various conditions
[26, 22, 37], there still exist operating conditions whédre present simulation models are

not accurate [28] [50].

Of particular interest are operating conditions in whicé finite time required for the
opening of the main diaphragm significantly affects the fl@velopment in the shock
tube. In a previous study, Ikui & Matsuo [20] modified Whitga] model in which the

primary shock was formed from the coalescence of compnessaves that were pro-
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duced from the gradual opening of the diaphragm. This wasr@lypone-dimensional

flow mechanism and was aimed at explaining higher-than-idement shock speeds. In
contrast, the experimental study by Roberts & East [47] asteded-geometry restriction
at the main diaphragm location to intentionally decreasgetttal pressure of the driver
gas as it expanded into the the shock tube and thus providghaenithalpy flow with

rarefied conditions. The presence of the restriction intced a strong non-isentropic
process that was assumed to consist of a stationary oblipek pattern. More recent
multi-dimensional simulations [43] have confirmed thak duthe diaphragm’s finite rup-
turing time, the complex three-dimensional flow in the regiownstream of the opening
diaphragm includes oblique shocks, vorticity and a higtistorted contact surface. Al-
though transient, the oblique shock waves persist for same dfter the diaphragm has
opened and appear to play an important role which should eatelglected for operat-
ing conditions where the driver gas expands to moderatgly Mach numbers. In this
chapter we consider two models that attempt to include tleetsfof the shock structure

downstream of the opening diaphragm in a one-dimensiomallation code.

3.1 Example of Current Modelling Inaccuracy

Although the T4 facility was designed for high enthalpy @iem, many shots are done
at low enthalpies of about 3 MJ/kg. Jacaisl [28] investigated the conditions produced
using both helium and argon drivers in this regime. A quas-dimensional Lagrangian

code [25] was used for the study; the advantage gained thrtheyuse of a heavier

driver gas can be seen in Figure 3.1. Since the heavier dyaerhas a lower sound
speed a constant reservoir pressure is maintained for alqegiod of time. This results

in a relatively long period of constant pressure test gasgr@éter significance to the

present study however, is that whilst excellent agreensefdund between computation
and experiment for the helium driver, there exists a sigafialiscrepancy for the argon
driver simulation. Under this scenario the simulation cobeg over-tailored conditions.

The simulated driver gas has too much momentum (or too higitah pressure) to be

brought to rest by the reflected shock wave alone; a secorstiaigk wave propagates
into the test gas causing the rise in simulated supply pregsudent just after =222 ms.

This modelling inaccuracy provides the motivation for a endetailed description of the
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complex interactions occurring in the shock tube section.

T4 shot 3215 Simulation T4 shot 3215 Simulation
Nozzle Supply Pressure Nozzle Supply Pressure
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Figure 3.1: Comparison of the experimental nozzle supply pressuretatgtedicted by L1d for
shot 1098(Helium Driver) and 3215(Argon Driver) [28].

In order to construct a model representative of the highly-isentropic flow in this
regionitis necessary to modify existing approximatiormsditional models of diaphragm
rupture assume that the material is removed instantangedtrsim a computational view
point this means that two cells change instantaneously fsoondary cells to internal
cells separated by a common edge. In reality, large stephchgms rupture from the
centre out in a petalling manner [43] over a period of apprately 50Q:s [69]. As
we have hypothesised earlier, the errors associated wathgbumption of instantaneous
diaphragm removal may become unreasonably high as shoelopdration is pushed to

a regime where the time scale for shock processing becomegsh

A detailed study of the diaphragm rupture process was cdaduxy Petrie [43, 42].
His study used a two-dimensional axisymmetric inviscid elad which the boundary
conditions on the edges of cells along the diaphragm interéae modified in accordance
with diaphragm rupturing theories [48]. The results for adelaf the Langley expansion
tube are reproduced in Figure 3.2. The bottom half of eaamdreepresents pressure
contours while the top half represents density contours ittdicating the contact surface
as well as the shocks. Oblique shocks form in the radiallyaagng driver gas in order to
redirect the gas along the tube walls and they appear to nemgie shock tube long af-
ter the diaphragm has fully opened. These shocks form théaném for the previously
mentioned non-isentropic process that decreases the gaganomentum (or total pres-
sure). The strength of these oblique shock waves is Mach auddpendent which offers

an explanation for the breakdown of the quasi-one-dimesitow model when applied
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to shot 3215 (argon driver) as opposed to its success forl€lg& (helium) despite the
fact that both shots generated the same incident shock.sheedlier driver gases such as
argon have a lower sound speed and for a given test gas enthidlpxpand to a higher

Mach number.

180 ps

200 ps

220 ps

240 ps

2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20
X, (m)

Figure 3.2: Density contours (top half of frame) and pressure contdurdm half) for the flow
evolution downstream of the diaphragm in the Langley exioansibe [43].

The implementation of a model that correctly incorporatgseats of this highly non-
uniform phenomenon should produce improved results fotssimowhich the driver gas
expands to a higher Mach number. For this reason shot 321%et as a test case for
potential diaphragm-rupture models. The analysis is sfieglby considering only the
compression tube and the shock tube. Piston dynamics aectejand the compression
tube is modelled as being 70 cm long and filled with gas at espresslightly lower than
the diaphragm rupture pressure; the corresponding tetoperia calculated assuming an
isentropic compression from initial fill conditions. A fix@dhll is placed at the end of the

10 m compression tube corresponding to the nozzle throat.
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3.2 A Quasi-One-Dimensional Simulation Code: E1d

Eld is a quasi-one-dimensional Eulerian code that wasenrftir the purpose of experi-
menting with non-isentropic process models at the diaphrstgtion. Like its Lagrangian
counterpart L1d [26] from which it was derived, E1d allowstime modelling of multiple

regions of gas, separated by diaphragms. Coupling betwdjaceat regions is achieved
by setting appropriate boundary conditions depending ensthte of the adjoining di-

aphragm (intact, partly ruptured or fully ruptured).

The governing equations applied to each region are the -gum&sdimensional con-
servation equations for mass, momentum, energy and speac®n as discussed in

Chapter 2. In semi-discretised form they can be written

d<U >

o (Fr—Fp) (3.2)

where,

p

u=-| ™ (3.2)

pE

| pfzs

is the algebraic vector of conserved quantities,

o
u? + P
F=| " (3.3)
pEu+ Pu

pfisu
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is the inviscid flux vector and

0

F(SA - Fwall - Eoss
Q- " (3.4)
q
0

represents additional sources of mass, momentum, eneygpEties density. These

terms incorporate the component of momentum change due tpudsi-one-dimensional

formulation as well as empirical correlations for wall fran F,,.;, pipe-fitting losses

F,ss and heat transfer effectg26].

3.3 E1d Test Cases

The ideas presented in the previous chapter describe ntah&echniques that can be
applied to solve the quasi-one dimensional Euler equatiGombining these techniques
into a fully functioning CFD code provides the potential fopowerful computational

tool; however, we must first verify that it performs as expeéctin order to test that the
numerical simulation solves the discretised form of theggoing equations accurately, it
is customary to perform several simulations on problemsvluch there exists either an

analytical solution or proven data.

3.3.1 The Ideal Shock Tube problem

The first series of test cases to be considered concern taksideck tube problem (or
Riemann problem) in which two gas states initially separétga diaphragm are allowed
to interact. The ideal shock tube with pressure ratio of l@sthe diaphragm is a
commonly used benchmark problem for compressible CFD d&dé¢sThe diaphragm is
assumed to rupture instantaneously allowing the highspresgas to expand and drive a
shock wave into the low pressure gas. An expansion wave gedes upstream into the
high pressure driving gas. If viscous effects along the tullks are ignored the problem

can be modelled using the one-dimensional Euler equations.

For this simulation 100 computational cells were used toeh8dd’s [55] initial value
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problem described by

r<05m:p, = 1.Okg/m3,PL = 10°Pa,u;, = 0m/s

x>05m: pr= 0.125kg/m3,PR = 10*Pa,ug = 0m/s

The diaphragm is removed &t0, and the one-dimensional Euler equations are inte-

grated in time subject to the stability condition CEL0.8. Comparisons with the the-

oretical distributions for pressure, temperature, dgresitd velocity were made for the

flow state at=0.6 ms; it can be seen from Figure 3.3 that good agreemeotiiglf The

shock is resolved adequately over 3 computational cellsohtrast, the contact surface

appears quite diffuse. These phenomena are standard Ehetacs of attempts [55] to

model Sod’s problem, and as such, the results are deemsthstury.
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Figure 3.3: Comparison between numerical and analytical solution @af'Sshock tube problem

[55].
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3.3.2 Shock Wave Propagation through an Area Change

The final test case to be considered concerns the propagdteoshock wave through a
relatively sudden increase in duct area. This provides daresm to validate the numer-
ical implementation of the variable area term in the quas-dimensional momentum
equation. Considerable experimental data is availablehisrproblem [49] as well as

numerical results from other quasi-one-dimensional c¢2iéls The discretised flow do-

main comprises 200 cells representing a 4 metre long dutt asdmooth area change
from 0.5n¥ to 1.0 n¥ over a transitional length of 0.8 m. Initially, a Mach 2 shachve

is established in the tube through the implementation oht Specified by the Hugoniot

jump conditions:
x<-=05m:p,=0.41662 kg/m3, P, =71250.0 Pa, uy, = 585.62m/s

x>05m: pr = 0.125kg/m3,PR = 10*Pa,ugr = 0m/s .

Supersonic inflow boundary conditions are implemented enlefft of the domain by
specifying post shock flow conditions to the adjacent ghe#isc In a similar manner,
extrapolation is used to impose the outflow condition on tgbktrof the domain. The
guasi-one-dimensional Euler equations are integrateoniea tising a CFL limit of 0.8.
A space-time plot showing the important flow features is showFigure 3.4. The high
speed flow expands through the divergent section of the duaring its pressure. An
upstream-facing shock processes this gas so as to incteasedssure to equal that behind
the primary shock wave. A plot of Mach number for this scemasishown in Figure
3.5. From the good agreement found with the experimentakwbEalas [49], it can be

concluded that the numerical algorithm is correctly impéenting the varying area terms.
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Figure 3.4: Space-time plot for the Salas area change problem.
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Figure 3.5: Mach number as a function of distance at t=2.5ms for the Sasschange problem;
comparison with experimental data [49].

3.4 Modelling Diaphragm Rupture

The highly three-dimensional flow that develops downstredira real diaphragm rup-
turing in a non-ideal manner cannot be captured by equatlwatsallow variations in
only a single direction. Instead it is hoped that the ma@psceffect of this complex
phenomena can be approximated and incorporated into thdiorensional equations by
means of a ‘correction’ to the ideal flow state. This sectiooks at two models that
aim to modify the properties of the gas passing through thptdiagm station so as to be
representative of the real mixed out flow state far enoughndtneam where effects are

essentially one-dimensional again.

In order to develop a model for the effects of the two-dimenal mixing processes

taking place, a quasi-static mixing zone is considereduffei.6). Gas enters the region
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as choked flow at the diaphragm opening and is assumed to ehastgntaneously to
some ‘mixed out’ average flow at the exit plane (or entry togheck tube). Because the
details of the process are unspecified, extra informaticegsired to determine the mixed

out state. We now consider two possibilities for closingdbgerning set of equations.

Base-pressure region P,

flow Pe

—_—
—_—
—_—
— Mixed-out
—_—
—_—
—_—

TN
Choked /

inflow

Figure 3.6: Schematic of the mixing-zone region.

3.4.1 The Nozzle-Shock Model

Whilst the full details of the interactions occurring withthe mixing zone are unknown
they can be assumed to comprise, in part, of a mixture of esiparmnd shock compres-
sion processes. A model centred around these observadonisecconstructed by first
assuming supersonic isentropic flow from the diaphragmathio the full area of the

shock tube characterised by [14]

-
A L/ 9 v 1 =

Ae_ (2 (1 0= . 35
A \/Mf(fy+1(+ 2 1)) (35)

Given the fraction of diaphragm ruptured so far, the Mach beinat the completion of the

expansion process/;, can be determined numerically or approximately by intkxjog

polynomials. The complete flow state is then calculated ffandamental isentropic
relations [14]. Finally the gas is processed by a normal lshogive the conditions at
the exit state. This model is referred to as the ‘Nozzle-8howdel and is considered
the strongest model since a normal shock presents the maxientropy increase and

corresponding loss of total pressure.
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3.4.2 The Base Pressure Model

The second model considered assumes that the pressure dovthstream face of the
unruptured part of the diaphragm is known (Figure 3.6). élttph the bulk flow becomes
supersonic, there exist patches of subsonic flow in the negeihind the unruptured di-
aphragm. These regions provide a feedback path wherebyotnestteam mixed-out
condition will influence the pressure seen on the downstreanfiace of the opening di-
aphragm(p,). Because of the geometric similarity with flow about the bafseprojectile,
we will call this the ‘base pressure’ model. An expressiofing the ratio of base pressure
to the choked inflow pressure, for the analogous case ofnaltéiow through an abrupt
cross sectional area change, was derived by Korst [33]. Wa linear interpolant of this
theory (taken from Figure 7 in [33]) applicable to condisamhen the diaphragm is half
open. For the very small orifice areas encountered at thebeg of diaphragm rupture,
the value of the ratio is taken to hg/p. = 0.13. The governing mass, momentum and

energy equations can thus be written.

Ay

Pelle = P*U*A—e = Om (36)
A A
2 _ ) A _ 22> _
Pe + peue = D« Ae + pb(]- Ae) + P, Ae gbmom (37)
¥ 1 A,
- = — Px *h*_ = QPen - 3.8
(’}/ _ 1)uepe + 2peue Pxt Ae ¢ ( )

These can be solved to give a quadratic equation expresgngiked-out velocity.

v+1

(? m)U2 — (Y )te + (7 — 1)pen = 0.

Knowing this velocity, the downstream flow state can be aigdifrom the definitions for

the mass, momentum and energy fluXes ¢,.om, ¢en iN €quations (5)-(7).
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3.4.3 Model Implementation

Both of the above mentioned models require a function gongrie diaphragm’s open-
ing behaviour. This is required to specify the fraction cdghragm %I) that is open at
any particular time (starting with a fully closed diaphragtrt=0). The linearly varying
relationships used by Petrie [43] is employed; however, niduce the concept of a

diaphragm influence time.

Justification for modifying the period over which graduahplragm rupture influ-
ences the flow comes from the computations of Petrie [43] shiowFigure 3.2. The
oblique shock waves remain in the shock tube well after tapltiagm has fully opened
and hence continue to process the driver gas. This is madeyl€slowly) opening the
diaphragm over a significantly longer period than the noiB08.s rupture time; this

longer period is the "diaphragm influence time”.

In each of the two models presented, the downstream flowistassigned as bound-
ary conditions to the region downstream of the rupturingpdragm. In this manner, the
details of the mixing process are contained only in the datmn of appropriate boundary
fluxes. These fluxes are used as the outflow boundary conditiaghe upstream region

in order to ensure conservation of mass, momentum and eneeygll.

3.4.4 Results

The results for the ‘base-pressure’ model are shown in Ei@ur for a variety of di-
aphragm influence times. It can be seen that with no diaphragdel included, E1d also
computes the pressure jump just after t=222 ms indicatiwevef-tailored operation (cf.
Figure 3.1). It can be seen that application of the diaphragmure model makes no
appreciable difference. Grid independence was invesiijay performing simulations at
several different resolutions; no qualitative differemaethe results were found.

In contrast, results for the ‘nozzle-shock’ model are showiigure 3.8 for a variety
of diaphragm influence times. Application of the diaphragipturing model can be seen
to decrease the over-tailored pressure jump. With an ogamme of 1ms, the strength
of the re-reflected shock is reduced significantly; howeitestill appears that the full
nature of the phenomenon is not captured. The simulatedymegrace rises above the

experimental trace in the latter stages; however, this neagttributed partly to the fact
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Figure 3.7: Simulated Nozzle Supply Pressure for T4 shot 3215 using &ise pressure model
with varying diaphragm opening times.

that no effort was made to model piston dynamics and the egedcexpansion waves

that eventually process the test gas.

T4 shot 3215 Simulation T4 shot 3215 Simulation
Nozzle Supply Pressure Nozzle Supply Pressure
60 T T T T 60 T T T T
50 R 50 R
40 R 40 R
©
a
30 R S 30 R
instantaneous —— g
500ms opening - /
20 1000ms opening -+ 1 20 - 1000ms opening ——— |
experimental data --—-------
10 R 10 |+ R
0 A ! ! ! 0 A ! ! !
220 221 222 223 224 225 220 221 222 223 224 225
t, ms t, ms

Figure 3.8: Nozzle Supply Pressure for T4 shot 3215 using the nozzlekshnmzlel with vary-
ing diaphragm opening times (left). Comparison between Hiaghragm influence model and
experimental data (right).

Although Petrie’s inviscid simulation suggests that alligiee shock waves would
have ‘washed’ downstream and weakened considerably 1 erstlaé commencement of
diaphragm rupture, we would expect that the boundary lagersent on the real tube
walls to slow this process. This would allow the oblique ${®oto process the driver
gas for a relatively long time; however, we do not have expental data on the near-
diaphragm flow processes for T4. The current arrangemeist motegpermit investigation

of the existence and duration of oblique shock waves witihenshock tube.
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3.5 Shock Tunnel with Driver Restrictor

Whilst the previous simulations offer encouraging resuttss clear that the full nature
of the slowly opening diaphragm is not captured by eitherhef tnodels. By altering
the diaphragm influence time, the driver gas total pressamnebe changed; however, a
significant departure from experimental traces remainsordfer to study the situation
that would exist without the transient effects of the ruptgrdiaphragm, simulations
where performed on a shock tube arrangement in which anenplate placed at the
driver/driven interface restricts the flow of driver gasislpresumed that the flow struc-
ture downstream of the restrictor consists of oblique shatkilar to those present dur-
ing diaphragm rupture. This allows the ‘nozzle-shock’ abase-pressure’ models to be

compared for a constant area ratio at the diaphragm throat.

The experimental work of Rober&d. al. [47] provides the benchmark for comparri-
son. They showed that by using the restrictor, a slower shpekd could be produced for
the same diaphragm pressure ratio. This allowed them taupsoa high specific enthalpy
but low pressure, test gas reservoir. The experimentalgebmprised a uniform bore
shock tube 127 mm in diameter. The driven section was 9.6 ranigth and filled with
hydrogen at a pressure of 5 Torr. Shock speeds were detetfioing variety of diphragm
pressure ratios using helium as the driver gas. Resultsamithwithout the 27 mm di-
ameter driver restrictor (producing an area ratio of 25)enmpared. Because viscous
losses cause the shock speed to drop off along the length tflbe, a range within which

the shock speed lies is presented.

Computational simulations were performed using 800 celladdel the 9.6 m driven
section, and 200 cells to model 5 m of the driver section. Astamt cross sectional area
was used, the restriction being simulated with the ‘noatleek’ model described previ-
ously. Diaphragm pressure ratios of 3000 and 1000 were ohaseahese represented the

upper and lower limits of the experimental investigation.

A comparison between numerical and experimental shocldsgeegth with 1/A, = 1)
and without 4/A, — 25) the driver restriction is shown in Table 3.1. Computationa
shock speeds were calculated by comparing simulation ymes$saces at two locations
near the end of the driven section. Grid convergence wasnaatao about 2%. It can be

seen that without the restrictor the computational sinmgproduces shock speeds that
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are slightly higher than the maximum shock speed encouhtineng the experiments.
This maximum shock speed would be encountered at the begifithe driven section
though, viscous losses causing shock speed to drop off therdyct. Hence, at the end of
the duct, where the computational shock speeds were cedyle discrepency would
be larger. Also apparent is that whilst the implementatibthe ‘nozzle-shock’ model
produces a slower shock speed at both diaphragm pressiag the decrease falls well
short of that observed experimentally. Due to the limitasiof the ‘nozzle-shock’ model,
no attempt was made to implement the ‘base-pressure’ moliehwhas already been

shown to influence the flow to a lesser extent.

P,/P, = 1000 P,/P; = 3000
AJA, =1 AJA, = 25 AJA, =1 AJA, = 25
experimental 2050-2300 m/g 1200-1300 m/s 2500-2650 m/s 1600-1800 m/s
computational 2333 m/s 2041 m/s 2769 m/s 2482 m/s

Table 3.1: Comparision between computational and experimental skppekds for a uniform bore
shock tube, with and without a driver restrictor

These results are consistent with the earlier simulatiéi%ishot 3215. Whilst the
model appears to influence the downstream flow propertiesme £xtent, it does not cap-
ture the full nature of the phenomenon. It is uncertain wiegtds to be incorporated into
the model to produce a stronger effect than that producedeéoynbzzle-shock’ model. A
more detailed analysis of the wave pattern downstream ddtilier restrictor might give

greater insight.
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CHAPTER 4

Multi-Dimensional Flow Modelling

Whilst there are instances where the quasi-one dimendiomahssumption discussed in
the previous chapter is a valid approximation, many flowuess are inherently multi-
dimensional. Oblique shock waves and vortical structureswo such features that we
tried to compensate for by the introduction of models baseslbone macroscopic knowl-
edge of the flow. If a detailed study of these flow features lsatonade however, greater
complexity must be introduced to the set of governing eguatithrough the introduc-
tion of additional spatial coordinates. This chapter loaksomputational techniques
for efficiently solving the two-dimensional Euler equasorit must be stressed that this
in turn is still a simplistic model since vorticity and shoalaves are three dimensional

phenomenon.

4.1 Computational Modelling

The computational simulation of problems involving comiateractions requires a fine
numerical grid in order to adequately resolve the undeglyirocesses. As we refine the
resolution, both spatially and temporally, more procesisoe is needed to solve the re-
sulting discretised equations. One approach is simply ¢teftcthe long computational
time needed to obtain a solution. The time frames associitddsuch a ‘brute-force’

technique quickly become too large however. Additionalyyances in computer tech-
nology quickly makes old hardware obsolete; it is not unveable to expect a doubling

in memory, and speed every 1-2 years [31].

Another possibility is to run simulations using multipleopessors. Termed parallel
computing, this approach has reached a level of maturity g¢hd can significantly re-

duce physical solution time in hydrodynamic [30] and othemputationally intensive
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problems. Producing parallel code is not a straight forwtastk however and often re-
quires re-formulation to be applied on a different systenmc& code-parallelisation in-
volves significant effort tailoring the program to the systi is sensible to first ensure

the efficiency of the sequential algorithm.

Hyperbolic partial differential equations, such as thedegquations, describe flows
which inherently contain sub-regions of greater physiocahplexity. Shocks and contact
surfaces are two such features that result in significamglgdr gradients of flow proper-
ties than arise from the weak acoustic waves propagatinigemtean flow. A result of
this is that as the numerical grid is refined in order to resdighly detailed aspects of
the flow, the same refinement is applied in regions exhibiimglatively uniform state.
A large part of the total computational effort associatethwblving hydrodynamic prob-
lems is in the computation of fluxes between cells. Using gm@pmate Riemann solver
reduces the number of computations that must be perfornmegvrer, this function and
the associated reconstruction is still expensive and shioellused sparingly. This is the
motivation behind adaptive algorithms that aim to clusted goints around regions of
high flow gradients, thus providing high resolution only wdé is needed. Other regions
in the flow domain are more coarsely discretised and so danériess to the overall com-
putational cost of the simulation. The characteristic stngeof shocks and contact sur-
faces over several cells still occurs; however, the in@@a&ll concentration effectively
reduces the physical thickness. Such a dynamically adagtid can be constructed in

several ways.

4.1.1 Discretisation and Solution Adaptive Techniques

Early effort was directed at schemes that use a fixed numbgmidpoints. The mesh is
then stretched in some regions and compacted in others #swhizeld develops [15, 3,
6]. In addition to clustering cells around shock disconties this also has the advantage
of aligning cell boundaries with important flow features wh&odunov type schemes

perform extremely well.

A more conceptually simpler approach is to simply add motis @@ regions where
they are required. Patch methods achieve this in a relgtefétient manner by layering

meshes of increased refinement over existing coarse sdb-atistrategic locations [2,
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45]. This has the added advantage that a temporally adaptegration scheme can be
easily implemented since each block can be handled almdspendently of all others.
Meshes can even be layered at different angles of rotatiative to the coarse grid [1].
This allows more freedom over regions to be refined and alsmigeemeshes that align
with relevant flow features; however, increased complesesults. Unfortunately, the
extension of patch methods to truly three dimensional florglestively unexplored and in

my opinion would be too restrictive for anything but simplealfields.

A more flexible approach, albeit more memory intensive, Ive® the sub-division of
existing cells to form new cells in a hierarchical mannerstomctured meshes comprising
triangles [43] or polygons assembled from bisecting triasgovering the domain [65]
have been used successfully to model complex phenomenaiwdy. This is a very
versatile approach and is especially useful when complerngéries are involved. In the
latter, interfaces are always midway between cell centtewiag uniform mesh recon-
struction techniques to be applied. However, our main gotd produce a very detailed
analysis of interacting shock vortex phenomena on a verplsimeometry. Under such
circumstances it can become counter productive to use druahged mesh [45] particu-
larly since temporal adaptivity appears rarely to be imgetad and quite difficult under

such schemes.

In contrast rectangular cells can be organised into a traetate allowing geometric
links to be made in a relatively straightforward manner [30]. Such schemes have
been developed that incorporate a temporally adaptiveeglyd4] allowing explicit time
marching and the benefits of increased transient resolukonsimulation of flows that
involve several complicated yet isolated flow features Werloeads of tree-data storage
seem justified by its flexibility and relative simplicity. Fthis reason, we adopt the

hierarchical sub-division of square cells as the adaptiategyy for MACS2d.

4.1.2 Data Storage

Tree-algorithms provide an intuitive yet powerful meclsanifor organising data storage
for adaptive mesh algorithms. Traditional quad-tree daieage applied to two dimen-
sional adaptive grids involve linking every cell to the 4lsddelow it (children cells) and

the cell from which it originated (the parent cell) [7]. Atghop of the tree is the root
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cell which has no parent (Figure 4.1). In addition to thislthel of the cell in the tree is
stored, for a total of 5 words per cell. By storing all the res@gy pointers in this manner,
it is possible to locate any data, at any level of the tree &yersing the tree until a com-
mon branch is found. The downside to this method howevdnatswhilst all information
is equally available, the process of recovering relevatd dach as neighbour cell state
information may demand excessive tree traversals; in thstvaase scenario, the tree
must be retraced to its root. However, this general accesi$ points of the flow domain
is wastefull when applied to hydrodynamic problems in whidiormation propagates at
a finite speed. Regions of the flow domain remain unaffectedtbgr regions bounded
by lines termed characteristics. Explicit time integrataf the Euler equations exploits
this phenomenon through the implementation of a CFL cateto ensure that wave in-
teraction is felt at most one cell away. Since the numeresdinique requires information
from neighbouring cells only(and neighbours of neighbousslution reconstruction is
employed), it is wasteful to use a generalised tree alguorithiat doesn’t discriminate

between neighbouring cells, and cells on the other sideeofldiv domain.

Threaded tree algorithms address this matter. They stersdame pointers as for
the tree algorithm presented above but in addition poirtersighbour cells are kept,
making a total of 9 words per cell. Neighbours are constdhgteas to differ by one level
of refinement; however, the links between them are not recgras shown in Figure 4.1.
A cell's neighbour is either at the same level of refinemenit ¢vel lower. By storing
these extra links it is possible to travel across the trebowit retracing it to the root
cell. Unfortunately, these direct neighbour links musté¢argeted whenever the grid is
modified. This causes problems for parallelisation, paldidy if neighbouring cells are

to be removed simultaneously.

/N /o \

4 < | % N

/\ S

Figure 4.1: Pointer links for tree algorithms (left) and threaded trig@athms (right).

A more efficient tree-algorithm can be designed subjectédalowing three obser-
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vations regarding cell-neighbour relations [32].

e During the refinement procedure a cell is split into four dteh cells. Since they
are created simultaneously they can be stored contiguousigmory, allowing a

single pointer to reference all four children.
e the neighbour relations between these four children cedl&aown explicitly.

e Neighbours that aren’t known explicitly are children of gi@ouring parent cells.

Hence they can be determined without search by accessingidfebouring parent.

By organising cells into groups of four called quads, we exphe explicit relation
between children cells of a common parent. The quad contitesstorage for the four
children cells in a prescribed manner as shown in Figureas 2vell as storing a pointer
to the parent cell from which it was derived. Additionallyipters to the parent cells of
neighbouring quads are stored(in the order shown in Figute As with conventional
threaded algorithms this provides fast neighbour rethidv@vever, rather than links be-
ing between cells, the links are effectively made one leighiér in the tree. By referenc-
ing every link to cells higher up the hierarchy in this manrleey will not require later
modification. Finally, the refinement level of the quad igetbas are the coordinates of

the parent cell centroid.

nb 1
2 1
rx.y) nb2 |Quad| nb 0
3 0 nb 3

Figure 4.2: The four children are stored in a prescribed manner in a geftil (Each quad has a
link to the parent cells of four neighbouring quads (right)

Each cell requires only one pointer, linking it to the quadteiing its children cells
if any, or a null pointer. State information as well as priw@tvariables are also stored for

each cell.

The basic C-data-structures for cells and quads used temmsit this efficient, threaded
algorithm are shown below to emphasis the inter-dependegivyeen the two.



36 Multi-Dimensional Flow Modelling

struct Cell { . o )
struct Qct *Cct Ch; [* pointer COct containing children cells */
doubl e U] 4]; [* state vector */
struct flowstate state; /* the flow state P, rho, e, u, v, a */

struct Oct f o
struct Cell cells[4]; /[* the four conprising the Cct */
struct Cell *Cctpr; [* pointer to the parent cell */
int OctLyv; /[* the level of the Oct */
struct Cell *CctNo[4]; /* pointers to the parent cells of
nei ghbouring Ccts */
double r[2]; /* location of centroid x,y,(z) */

The resulting linked structure requires 10 words of memawyquad, or 2.5 words
per cell. This represents a doubling of storage efficien®r tnaditional methods whilst
incorporating improved threaded links to neighbour célls well as this, modification of

a cell is independent of any other cell as shall be discusseedtion 4.1.5.

4.1.3 Implementation of Data Storage

The quad-tree data storage scheme described previouslysafiquare domains to be
discretised in a straight forward manner; the root cell esdbmputational domain itself!
One obvious problem with this technique however, is thaiti@ty Cartesian flow grids
cannot be generated as all cells cannot be linked back to enoamoot. In addition to
this, the memory storage required to keep quad informatiail Eevels quickly becomes
excessive, particularly since computations are rareljopaed on anything but the finest
half-dozen or so grids. Both of these problems can be atiediy realising that all
neighbour information can be obtained without propagating higher than the quad
level in the tree (Figure 4.3).

Arbitrary Cartesian grids can be generated by creatingjardered array of square
guads that cover the domain. The necessary links are obthereating pseudo cells
that contain these quads; the cells perform no purpose dtherto link neighbouring
guads. This mesh represents the coarsest discretisesbealomain on which computa-

tions can be performed.

Whilst non-adaptive algorithms use fixed length arrays ¢oesaéll data, the dynamic
modifications to adaptive grids require memory to be cortlstae-allocated. By organ-

ising all cell information in a quad-tree as previously diseed, it is possible to manage
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Neighbour Link
Psuedp cells ’ 5 Psuedo cells

Computational
Cells

Figure 4.3: Since quads are linked to the parent cells containing neigtig quads arbitrary
Cartesian grids can be generated by creating pseudo céiéseTcells are the parents of cells in
the coarsest computational mesh and serve the purposéiofjithe structure together.

data storage in a structure similar to that employed in Qlgagented programming.
Whenever a new quad is required, memory is assigned dynéynmad a pointer to its
location created. All such pointers are stored in a fixedtlemgctor whose length is spec-
ified in the parameter file at the beginning of a simulation.otpemoval, the memory
allocated to a quad is made free, and its pointer destroyede @ll such modifications to
the pointer array have been made it is compressed to remdN®BL pointers. A single
reference to this array is all that is ever required to acads®ll data and the associated

links.

4.1.4 Accessing Neighbour Data

During the solution procedure the need to access neighlavarficequently arises. Whilst
the threaded algorithm contains links to neighbouring guéds important to develop a
universal function for locating neighbouring cells. Degigrg on the mesh configuration
the immediate neighbour will differ by up to one level of reiment. This means that

there are 3 possibilities that must be considered in thevatg order.

e The cell referenced in the neighbour link is a leaf. This ss¢hse when a fine cell

interfaces a coarse cell. Under this scenario the cell andvtl are returned.

e The cell referenced in the neighbour link has children. Three the child cell
interfacing with the cell under consideration is locatefithe child cell is a leaf
then the interface is between two cells at the same level. cEHeand level are

returned by the function.
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¢ If however, the child cell is itself a parent, the interfasdéetween a coarse cell and
two at a finer level. Rather than returning the two interfgaalls, it is sufficient to

return the parent, and an indication that it contains céiidr

Given the cells position within its quad (as shown in Figurad, and the neigh-
bour required (according to Figure 4.2b), the functimokUpNbreturns a pointer to the
neighbour cell and the refinement level of the neighbourgad &ccording to these crite-
ria. Look-up tables based on these parameters are useduiee exfSciency by avoiding
complex boolean statements. As shall be seen in the subsgespations this function al-

lows the retrieval of all necessary information from theetided-quad-tree data structure.

4.1.5 Refinement and Coarsening Procedure

An integral part of any adaptive algorithm is the ability foster points around regions
of large flow gradients whilst covering the mean flow with atekly coarse mesh. This
reduces the computational cost of a simulation since it &mpsoduce a uniform discreti-
sation error across the domain. During the simulation ofglemgas dynamic processes
it is envisaged that regions of the computational domaihasitillate between high and
low levels of refinement as flow features pass through it. lfiereason it is important that
the refinement and coarsening procedures be as simple aslpo3$ie quad-tree struc-
ture described previously allows for the implementatiobath these tasks in a relatively

straightforward manner.

Adaption Criteria

The first step in dynamically modifying a computational mesto determine a measure
of solution error across the domain. Cells are removed wihéseleemed that a coarser
discretisation can adequately describe the flow, and addezfjions where the solution
error is unacceptably large, in an attempt to produce thienapdistribution of compu-

tational resources. There are several ways that compuoghitells can be considered for

modification.

One technique is to formulate indicators that aim to distisl flow features that are
difficult to resolve. Shock waves, contact surfaces and resipa fans are three features

that can be distinguished from one another by monitoringsaree, density and velocity
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variations. Gradient indicators have been used to detesetfeatures and refine the mesh
accordingly [60]. They generally monitor the relative chann a prescribed variable in
each of the coordinate directions [32]. With reference guFe 4.5, a gradient indicator

can be defined at the interface between two cells as

|f(x)nb - f(x)cell|

et (F(@)nps (@)een)

(4.1)

Shock waves are identified in regions where pressure vamgtire large and velocity
gradients negative, whilst high density, but no pressuaelignt, indicates a contact sur-
face. Cells in which any one of these features are identifiedvaarked for refinement.

Conversely cells where the indicators are below a presaewaie marked for deletion.

Another method that can potentially produce optimal coméigans, is to monitor the
truncation error in the discretised equations directlyisTdan be done by calculating a
solution on both a fine and a coarse grid [2] and comparing ifferehce; however, this
is computationally expensive. Alternatively, an approaieexpression for the truncated
terms can be formulated by considering the computation sif dirder derivatives as re-
quired for the evaluation of fluxes. An expression for the\déive is obtained from a
one-dimensional Taylor series expansion which can beaweged to give

f@) = f(“AZ)x_ @) %f” +o 4.2)

the leading error term being associated with the seconda$pi@rivative. The relative
truncation error is thus

JAV

- X

€ = #() (4.3)
f(x)

The calculation of this error indicator for each cell regsia finite-difference approxima-
tion for the ratio of second to first order derivatives [57h e non-uniform grid shown

in Figure 4.4 the cell centred second derivative can be apaied by the difference
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Figure 4.4: Cell nomenclature for non-equispaced cells.

equation
oo 1 [di@)] ()
f(@)e = A—%[WR— WL]
L | f@)e = fl2)e f(@)e — f(z)
Az, { (Az, + Az.) 1 (Aze + MJ @4

whilst the first derivative is approximated by

/ _ 1 [df(z) df (x)
[ @) = 5{ dx R+ dx L]
_ L[ f@)e = f@)e  f(2)e — f(2):
2 [% (Az, + Az.) T (A, + A:m)} (#.5)

since the size of neighbouring cells at differing refinemewtls differ by a factor of two,
the dimensions; andz, can be expressed as a functionmpfby introducinga; anda,

such that

T = e, T, = 0T, . (4.6)

Hence the expressions for the first and second derivativeBeaubstituted into equation

(4.3) and manipulated to give the error indicator in the form

€ — |f(x)r(cr> + f(x)l<cl) B f(x)c(cr + Cl)| (4 7)
nf(x)ref + ‘f(x)r(cr) - f(x)l<cl) + f(x>c(cl - CT)| .
where,
1 1
@ = 1+()él’CT: 1+ a, (4.8)

The expressionf(z),.s has been added to the denominator to avoid division by zdre. T

parameter; can be used to control the sensitivity of the indicator (tcsepby altering
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the fraction of the reference valif¢z),.; used. The local cell value is a good choice for
the reference value, particularly for flows with large vaaas in flow properties, since it
allows a uniform comparison irrespective of the absolutaeidn some instances, a prior
knowledge of the flow domain allows a more ‘appropriate’ eala be selected as shall

be discussed in section 4.3.

High values of the indicator will be calculated in region$iditing a large curvature
(second derivative which is representative of the truocegiror) of flow properties where
the solution technique generally performs badly. The adaptriteria in MACS2d uses

the above curvature indicator applied in both coordinateations to the density field.

lciv1pit1; + cicipicry — (cipr + cim1)pijl
N Pref + |Cix1piv1; — Cicipimry + (Cic1 — Cip1)pigl

_ Cir1p1t1 + ¢o1pig—1 — (¢ + ¢im1)pijl
€ = . (4.9)
N Pref + |Ci1pij1 — ¢j—=1pij1 + (-1 — ¢jp1)pijl

The refinement indicator for the cell,,., is selected as the maximum of the indicators
calculated in each of the coordinate directions. Cells incivh,,,., is greater than a
predetermined refinement limit are marked as candidates for refinement whilst cells
with €., less than the coarsening limijtare candidates for deletion. In addition to this
a pressure gradient indicatey calculated from equation 4.1 is used to identify shock
waves. Cells in which, is greater than a pre-set value characteristic of a shock wav

across any of its interfaces are marked for immediate refememo the finest level.

The calculation of refinement indicators requires knoweedfineighbour cell infor-
mation. Considering only the interface between a cell beotsidered for adaption and
one of its neighbours, there are 3 possible configuratiost@sn in Figure 4.5.

For neighbour cells at a refinement level less than or equtdabof the cell being
considered, all relevant information can be obtained byddia access procedures dis-
cussed in section 4.1.4. When the neighbour is located atialével, however, it is more
difficult to determine the refinement indicator uniquely. Whthe optimum technique is
to calculate two indicators and use the largest, it was fadetjuate to calculate a single
indicator based simply on the properties of the neighbguegll’s parent; the parent is at

the same level as the cell being considered.

In order to eliminate the introduction of undesirable feasuinto the computational
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Figure 4.5: There are 3 possible neighbour configurations that must heidered during the
calculation of refinement indicators. Cell NB is the neiglibased to evaluate indicators for the
cell under consideration.

mesh (known as ‘mesh trashing’), grid modification requsegeral iterations to ensure
that certain rules are obeyed. To maintain a smooth transiietween coarse and fine
regions, neighbouring quads are constrained so as to tiffeo more than one level of
refinement. In addition to this, pre-refinement is requireeaa of moving shock waves.
This ensures that the shock-wave doesn’t propagate ints@o@gions causing spurious
noise to be generated [57]. Wave speeds calculated by thesdluer can be used to
predict how the shock will move [4] allowing cells to be refinim advance. Since the
computational mesh in MACS2d is modified at every time stepvever, it is sufficient

to simply include a one cell ‘buffer zone’ around shock waaseshown in Figure 4.6.

Moving Shock
g

,,,,,,,,,,,,

,,,,,,,,,,,,,

pre-refinement

Figure 4.6: A one-cell buffer zone is included ahead of shock waves tegmethe wave from
entering less refined regions (adapted from [57]).

If all four cells within a ‘quad’ are marked for deletion, tfepuad’ can be removed
provided the new configuration still satisfies the conditioat neighbour cells differ by

at most one level of refinement. Additionally, quads createdng the previous mesh
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adaption are not removed in an attempt to stop ‘border-tie#s from oscillating between
coarse and fine states. Only once a satisfactory configaratie been achieved are cells
actually modified. The modification procedure consists okaes of refinement and
coarsening procedures both of which can be carried out exdgntly of other cells at
the same level. This greatly reduces the amount and comypleithe code as well as
allowing for later parallelisation. At the end of the mesldafng step, one pass through

the quad pointer array is made to eliminate ‘holes’ due teteel quad pointers.

Refinement

The refinement procedure involves splitting a cell to formesvrguad. Memory is al-
located dynamically for the new data and a pointer to itstiooanserted into the quad
pointer array. Pointers to the parent cells of four neighimguquads are located using
the procedures defined in section 4.1.4. As can be seen frgure=4.7, two of these
cells are contained in the same quad as the new quad’s pai&nt The other two are
simply children cells belonging to the neighbours of thedjoantaining the new parent.
By enforcing the rule that neighbour cells differ by at mase ¢evel of refinement, it can
be seen that regardless of the refinement configurationgilgblmour pointed to is always
at the same level as the new parent cell (Figure 4.7). Thidhamgpes the importance of
linking quads to cells rather than standard cell-to-cdémencing [7]. Once a neighbour
link has been made it requires no later modifications regasdbf how the mesh may
develop. Direct removal of the neighbour cell pointed tohie link violates the criterion
that neighbour cells differ by at most one level of refinemémither words, the quad
would have to be removed before any adaption criterion cooifsider removing the cell
referenced by the link. This also means that the refinemesratipn applied to one cell
is completely independent of the refinement operations baratells at the same level
in the tree hierarchy. Finally the level of the new quad isaipd, and a link made to its

parent cell.

State information for the newly formed children cells mustdetermined. The sim-
plest method is to copy the value from the parent cell diyectleach child [10]. This is
the most simple splitting strategy and was found to genenatessive noise particularly
around shock waves. As more levels of refinement were allpgiednumerical oscil-

lations resulted in code failure. This problem was resolgdssuming a variation of



44 Multi-Dimensional Flow Modelling

properties within the new cell by interpolating values imgdouring cells. Conservation
of mass, momentum and total energy is of critical importashogng this procedure and
a significant amount of research has focused on achievisgltiting re-distribution of

properties between complex meshes [9]. Due to the relstsigiple geometric relations
between square cells, sufficient accuracy can be obtainédtwgjuaranteeing conser-
vation by calculating first order cell-centred incrememisach of the two co-ordinate

directions according to

Uiy — Uiy
8.0

Uijr1 — Uiy

5U:13 = )
8.0

,0U, =

(4.10)

where U represents the vector of conserved quantities {iequ2). Properties for each
of the newly formed cells are then found by adding or subitngdhe incremental values
from the cell centred parent value. When determining neaghlproperties in 4.10 the
same cell configuration possibilities as in Figure (4.5) nhesconsidered. Once again
it was found adequate to use cell averaged values in the ¢asere refined neighbour

cells (Figure 4.5c).
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Figure 4.7: Since links are made from a quad to the parent cell contathiegeighbouring quad,
it can be seen that regardless of the configuration neigklaeralways at the same level of refine-
ment. This allows the refinement procedure on any cell to degdandent of all other refinement
procedures.

Coarsening

The only change made during the coarsening procedure esalgstroying the link be-

tween parent cell and quad; the memory pointed to by the pasghis freed, and the
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pointer set to null. No other changes are required at celtpuads located at the same
level of the tree. State information already exists for theept cell as a volumetric aver-

age of the old children cells, as will be discussed later.

4.2 Solution Procedure

The governing equations are the 2 dimensional Euler equatidich in semi-discrete

form can be written as

6Ucell A
= - =) F 4.11
8t chll Vv ~ ( )

A and V being the cell edge interface area and cell volumeaasely. Their application
to adaptive domains requires modification of the solutichméques presented in Chapter

2, a discussion of which is now presented.

4.2.1 Time Integration

On structured uniform Cartesian grids the integration edore involves visiting every
cell in order and updating the conserved properties basdhlixes calculated at the in-
terfaces with 4 (6 in 3 dimensions) neighbour cells. Whengisidaptive grids however,
any given cell can interface with up to 8 (24 in 3 dimensiorsghbouring cells and as

such care must be taken to ensure all flux contributions areusted for.

Additionally, the presence of cells that differ in volumed®veral orders of magnitude
can result in excessively small time steps being taken inesmgions. This introduces
the possibility of temporal adaptivity as a means of furthygtimising the computational
procedure [4]. At the beginning of a global timestep, allcake considered in order to
find the fastest wave speed. The time taken for a wave of tleisdsfo traverse a cell at
the finest level is determined and a corresponding maximwasehtime-step calculated
from the CFL criterion. This is then propagated to every llévehe tree such that one

global timestep compris&s—'=~ timesteps at a given levein the tree hierarchy.

The improvements obtained from a temporally adaptive sehara a result of a de-
crease in computational time spent on cells at the coamesisl These large cells have

been selected during the spatial adaption step as corgaiegions of the flow domain
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in which fluctuations are small. Hence only a small amounteftbtal computational
effort is associated with computations on these cells agy®ar these reasons MACS2d
currently implements spatial adaptivity only; howevee thtegration procedure is imple-

mented in a way that allows for the later inclusion of a terafigradaptive scheme.

In the most simple case, the equations of motion can be addandime at each level

of the tree hierarchy using an explicit first order scheménefform described by

(n)
AU = At agt , (4.12)
Ut — U 4 AT | (4.13)

Incorporating the spatially split discretised form of tieenporal derlvatlve?a—t, for a

cell at levell, this scheme can be written

UitAt — Ut - a(z F;r) + AtQ (4.14)
if

wherea takes the form
A
At(l)— . 4.15
OF (4.15)

Physically, this multiplication factor determines the ©ba in the conserved intensive
property due to a flux through an interface with aréaver time At. Once all such
contributions to the right hand side of equation (4.14) hiagen calculated, the state

vector,U, for the cell can be updated.

Rather than calculating all such contributions for a giveh at once, computations
during the integration procedure are performed on an aterby interface means. For
each interface, fluxes are evaluated and the neighbourilsg state vectors are modified
to account for their incremental effect. The fluxes are thisnatded, and the procedure
repeated for another interface. Since data is stored onl &ycekll basis, every cell at
the integration level is visited during this process. Each cell will either ingexd with
another cell at the same refinement levet with a cell at a refinement level one greater
(! + 1) or one lessi(— 1) than its own. Fluxes through interfaces between two cells a

the integration level are used to modify the state vectors for both cells. Since thatse
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cells will be visited during the integration procedure a tbvell, care must be taken to
prevent the flux being calculated through the same intetfate. This is achieved by
only considering a cell’s interfaces in the positive coneade direction when the adjoining

neighbour is at the same level of refinement according to

Ucell - Ucell — oF

Unb = Unb -+ oF .

If a temporally adaptive strategy were employed, cells\all§ — 1) would be updated
only once for every two advancements at the integrationl Ievand as such two flux
contributions through the interface between such cellslavbave to be summed during
the integration step on the coarser level. In addition ts, tifie greater cell volume of the

coarser cell must be taken into account by modification ottedficienta

Ucell = Ucell + oF

U, = U, =+ %F.

In contrast, cells at level ¢+ 1) would be updated twice for every advancement at the
integration level. Hence two flux contributions through the interface with arevefined
neighbour would have already been calculated during theggration procedure at the
finer level. Hence no new fluxes need be calculated at inesfagth finer cells. The

integration procedure is summarised by the following psetatie.
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determine maximumtine step fromCFL limt

for levels =1 0 tOo | i {
if cell at level | is a leaf {
for i = 1 to nunber of dinensions {

positive direction {
nodi fy state vectors if neighbour cell is equally or

| ess refined

¥
negative direction{
nodi fy state vectors if neighbour cell is |ess refined
¥
}
¥
¥
for levels =1 0 tO | i {
calculate flow properties for |eaf cells at |evel |
cal cul ate state vector for parents at level | as a
conservative average of children
calculate flow properties for parents at |evel |
¥

4.2.2 Reconstruction on Adaptive Grids

As discussed in section 2.2.1, reconstruction, consistinigterpolation and limiting,

aims to obtain an improved estimate of the flow state eitlob of an interface. Such
schemes require information from the cells sharing thefate as well as their neigh-
bours as shown in Figure 2.2. The MUSCL schemes implement#s thesis are third
order accurate on uniform meshes; however, problems o¢dtarssitions between fine
and coarse regions. At the edges of these transitionalnegneir exists two cell config-
urations that must be considered, shown in Figure 4.8 ferpaiation of the right hand
interface state. Figure 4.8a considers the case of a ti@mBibm fine to coarse cells. This

represents a transition from a region with large flow flugtueg to one containing small
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/Interface
Cell NB
NB 2
a
/Interface
Cell NB NB 2
b

Figure 4.8: At the beginning of a transition between regions of diffgriefinement level, there
are two possible reconstruction configurations to consider

linear variations. In this case the van-Albada limiter acluced in Chapter 2 is used to
consider only variations in the interpolation direction.drder to account for the varying

cell size Johnson’s [29] modification is used to alter and A" such that

A = 22;(Qi — Qi (4.16)
T + Ti—1
22:(0:i1 — O
A;r _ xz(Qerl Qz . (417)

Using the definition ofv introduced earlier to express the length of a neighbourgelin

terms of the cells length, the modifications become

A7 = 2Qi — Qi) (4.18)
I+ a4
_ 2(Qip1 — Qi)

Figure 4.8b considers the case of a transition from coardeé¢ocells. For adaptive
grids allowing several levels of refinement, such cells s¢rmmediate levels have been

refined so as to provide a smooth transition between fine aadedevels. As such the
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flow variations within these cells are usually still smalbahe reconstruction scheme is
applied using the properties of the parent cell; an averédgeahildren cells’ properties

such that conservation of mass, momentum and energy isrpeese

Within the transitional region the case of fine-coarse fatars provides problems in
accessing data from the tree as well as maintaining accuhaggg the reconstruction
procedure. As shown in Figure 4.9 the coarse cell neighlemired for improved accu-

racy cannot be determined quickly using the threaded treetate. Since cells are refined

J/ Interface

Cell
NB ;

Figure 4.9: At an interface with a coarse cell (NB), it is difficult to det@ne the second neighbour
cell required for reconstruction (indicated by ?).

based on second order variations in properties, such egifesent a linearly varying flow
state of relatively small slope. Hence we can either reedhé low order scheme that as-
sumes a constant flow state or reconstruct the right handangeby linear interpolation.
It should be noted that all cells required to determine tliehend state are obtainable
from the tree structure, allowing standard reconstruditooe applied. The performance

of this reconstruction technique will be discussed latéhweference to specific test cases.

4.2.3 Boundary Conditions

The nature of partial differential equations is such thas e imposed boundary con-
ditions that determine the final solution. One techniquétieir implementation on non-
adaptive grids is by storing ghost-cells around the peemaftthe computational domain
[23]. Cell information from neighbours inside the compidgaal domain is copied at the
beginning of every time step, allowing fluxes into all congtignal cells to be determined
irrespective of their location. This would become quite bemsome on adaptive meshes
due to the split time stepping employed. Additionally, teG@nement level of ghost-cells

would change in accordance with that of their adjoining cataponal neighbour. To
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exploit the same advantages during the reconstruction#fhaluation steps, a consider-
able amount of 'book keeping’ would have to be done. As wellhés, the refinement
of ghost-cells would result in many more being present tiranaatually needed to de-
scribe the boundary. For this reason, all boundary conditere implemented through
the creation of a ghost-cell whenever a boundary interfacemsidered. Since flux eval-
uations are performed on an interface by interface basik,the computational cell and
the newly created ghost cell are sent to the flux evaluatiatirre as if they were both

interior cells. The ghost-cell is then destroyed and amatiterface examined.

Four types of boundary conditions are currently availabtesimulations; inflow, out-
flow, walls and periodic. All boundary quads are identifiedabgull neighbour pointer
in the direction of the boundary. Additionally, the boungaondition type is stored for
this cell. For inflow boundary conditions, the prescribefion state is copied directly
to the ghost-cell. Outflow boundary conditions involve tisswanption of zero variation
in stream-wise derivatives. Implementation is achievednaking the ghost-cell a direct
copy of the interior cell. For supersonic outflow, no erroisexsince characteristics can-
not propagate upstream; however, in the subsonic case shkamt error is the penalty
that must be paid for isolating the computational domaimfreverything downstream.
Wall boundary conditions involve copying the interfacel aela similar manner but re-
versing the direction of the normal velocity component.afli) the use of a linked data
structure allows periodic boundary conditions to be impmated in a straight forward
manner. At the beginning of a simulation when neighbourdiake imposed, periodic
boundary cells are linked as if they were spatially co-ieaid Hence the boundary is

treated implicitly without the creation of ghost cells.

4.3 Test Cases

The implementation of an adaptive code requires the turfisgweral additional problem
specific parameters governing the development of the caatipoal domain. For this rea-
son, the code was first validated with the adaption subresitimrned off to ensure correct
implementation of the fluid dynamics algorithms. Concurrenthis, the grid adaption
functions were validated by performing several hypotlatiefinement and coarsening

procedures alone. Once both aspects of the code had bedatgdli several test cases
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were re-visited to investigate the influence of several adapelated parameters.

4.3.1 Sod’'s One-dimensional Shock Tube Problem

The first such test case considered is Sod’s one-dimensstiogk tube problem [55]

discussed in chapter 2.

r < 05m : p = 1.Okg/m3, P, = 10°Pa, U, = 0m/s

r > 05m : p, = 0.125kg/m? Pz = 10*Pa, U, = Om/s.

The initial computational grid comprises 100 cells in theamwise direction as in the
guasi-one-dimensional simulation in Chapter 3. Due to thead data structure’ em-
ployed, the grid starts with two computational cells in tparswise direction. Four levels
of grid refinement are permitted subject to the adaptionrpaters:, = 0.08,¢. = 0.03
ande, = 0.3. The sensitivity parameter is set at 0.04 and the reference dengpity
to that at the high pressure end of the tube, 1.0Kg/ithe blending and compression
parameters andg are set at 1/3 and 2 respectively giving an upwind biasedseltkrat
is nominally 3rd order accurate. Initially, the reconstroie options are set to linearly
interpolate the interface state for the coarse cell sidenahterface between cells dif-
fering in refinement level. The diaphragm is removed at 0, and the Euler equations
are integrated in time using a first order Euler method sulfethe stability condition
CFL = 0.5. Refinement is considered at every time step since the CFlbaupermits

shocks to cross a cell every 2 timesteps.

It can be seen from Figure 4.10 that a good agreement is fouthdthve theoretical
results. The expansion is captured very well. The contatasel appears smeared over
several {-6) cells characteristic of the reconstruction scheme eygplo The shock has
been captured over 3 cells and the correct speed is caldul&thilst both shock and
contact surface appear smeared over several cells, theephgistance has been reduced
considerably due to refinement in these regions. There appba slight glitches on both

the leading and trailing edges of the shock and contactsrfa

The final computational domain is shown in Figure 4.10 andvdiee of the refine-
ment indicatore in Figure 4.11. The indicator correctly detects curvaturgnhiw the

expansion; however, only the values at the extremitieswdfieient to cause mesh refine-
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Figure 4.10: Comparison between numerical and analytical solution éaf'sSshock tube problem
as well as the computational megk@.6 ms).

Ideal Shock Tube Simulation: Adaption parameter

Figure 4.11: The refinement indicator a0.6 ms for Sod’s shock tube problem.
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ment. High levels of refinement are evident around the shdulree is large primarily
due to the shock indicator. Large curvature around the costaface is evident from the
high € values in that region; hence the mesh is refined accordifigig. glitches evident
at the trailing edge of the shock and contact discontinappérent also by moderately
large values of the curvature parameter) coincide with asttimn from coarse to fine
mesh. These are most probably caused by the linear intéigrolesed during the recon-
struction at interfaces between fine and coarse cells. Y\thistechnique worked well
within the expansion it would be expected to introduce sugioscillations if an attempt
were made to interpolate across discontinuities. For gason, this noise is probably
introduced early in the simulation when the flow has not yeet®ed into the clearly

defined regions evident at 0.6ms [19].

In order to investigate the source of the noise generatadchdrthe shock and contact
discontinuities, the simulation was repeated, howevées time first order reconstruction
was used to determining the coarse interface between fineaarde cells. The adaption
parameters were adjusted so that 0.6 ande. = 0.3. Once again the initial conditions
were integrated in time untiE0.6 ms. The results are shown in Figure 4.12. This time
the shock and contact surface are captured free of the géifglesent at the trailing edges.
The solution does appear overly diffuse at the trailing eafgbe discontinuity however,
and there is a small amount of overshoot at the leading edgee @gain, the expansion is
captured quite well, however, the high pressure end appatrsr diffuse. Additionally,
there are several small glitches within the expansion, Eh@so evident from the final

computational grid and plot efalong the tube (Figures 4.12 and 4.13) respectively.

Moderately high levels of curvature are detected within élkpansion causing the
computational mesh to be refined in this region. It appeatisagyh this is a consequence
of the first order reconstruction being used at fine-coansefates. The noise generated
by the inconsistency causes refinement which further areplifie noise. The noise gets
smoothed out locally, but propagated along the expansiomjlations stopped earlier

than 0.6ms showed the same local mesh refinement, closex thethhragm location.
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Figure 4.12: Comparison between numerical and analytical solution éaf'sSshock tube problem

as well as the computational mesh (t=0.6 ms).
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Figure 4.13: The refinement indicator a0.6 ms for Sod’s shock tube problem.
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4.3.2 Mach 3 Flow over a Step

The second test case models uniform Mach 3 flow in a wind tunitiela step. The tunnel
is 3 units long, 1 unit wide, and assumed to have infinite widtine third dimension. A

step 0.2 units high is located 0.6 units from the left hand sicthe domain (Figure 4.14).
The tunnel is filled with ideal air and impulsively started &yecifying everywhere the

artificial conditions
p = lLdkg/m®, P = 1.0Pa, u = 3m/s, v = Om/s. (4.20)

Gas at the same conditions flows in at the left of the domainexitd at the right hand

plane. Reflecting boundary conditions are applied to allsvarhis test case was first

3.0

1.0

vvvvvvy

0.2
< >

0.6

K

Figure 4.14: The geometry for the step (dimensions in m). The flow is itjtiassumed to be
uniform throughout.

introduced in the 1960’s [11] and has since been used by mifuey(see e.g. [63, 68])
as a benchmark problem for testing various schemes. As s$hele exists a wealth
of numerical data with which to compare results. The probtests several features
of the code including the two-dimensional formulation oé tequations, strong shock
interactions, and the ability to handle the singularityuteésg from the expansion fan
emanating from the corner of the step. The interactions éetwthese features result
in the formation of new, and in some instances unphysicaufea, further testing the

numerical technique and adaptive algorithm.

To highlight the important features of the problem and t@aleisth a benchmark for

performance, uniform grid simulations were performed g$iath the first order Godunov
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method (Figure 4.15) and the higher order MUSCL formulafféigure 4.16). The initial
flow field was integrated in time on a uniform meshwith = Ay = % tot=4 s subject

to the stability criterionC' F'L=0.3. Both solutions are now discussed with reference to
the computations of Woodwast al [68] which used a version of the piecewise parabolic
method [5].

( A

Figure 4.15: Flow field at t=4.0 s on a uniform mech using Godunov’'s method

Figure 4.16: Flow field at t=4.0 s on a uniform mesh using the higher order3@U formulation

The first order Godunov method results in the computationfidva field containing
shocks whose position and shape is incorrect. A Mach stemsfan the upper wall;
however, it is too short and slightly too far downstream. Thetact surface originating
from the lambda structure is captured well since it is nealipned with the computational
grid. Shock waves, too, are captured well when aligned withrhesh; however, the
lack of artificial smearing results in numerical instalé as evident by the glitches in
contours just downstream of such features. A second, smiNtach stem forms due to
the strong numerical boundary layer present on the lowek afdhe duct. Finally, an
unphysicakxpansion shock stems from the corner of the step. Whilspienomenon is
a solution to the Euler equations, it produces a decreaseriogy which is not physically
realisable. Other methods of flux calculation have been shtowalso produce similar

expansion shocks [29]. Some such methods employ an “entbdpy reduce the effect,
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however it has been noted that the application of a recortgtrustep eliminates the
problem altogether [29] as can be seen from the higher ord¢8@®L results in Figure

4.16.

The higher order MUSCL simulation produces thin shocks \ehmssition and shape
are much more accurate. The Mach stem on the upper wall i®indfrect location and
has the correct length. It appears very thin since it is aligwith the mesh, however
this once again results in some numerical noise. The eftédtse numerical boundary
layer on the lower wall appear worse than in the Godunov cEise.entropy layer is the
result of trying to capture the singularity at the cornervatsingle cell. Woodwooédt
al suggest a fix: by modifying cells in this region, they wereealol decrease its effect.
Under such conditions, the MUSCL scheme produced resytsrir to the first order
scheme in this region. The second contact surface is rekdievever it has incorrect
position due once again to the numerical boundary layeallyiras mentioned earlier, an

unphysical expansion shock no longer appears.

The inadequacies with the first order scheme noted earliechsare only rectified by
the introduction of a less dissipative technique providesans of evaluating the perfor-
mance of solution reconstruction on adaptive grids. Coatpris were performed using
the adaptive algorithm subject to the parameters0.06,¢. = 0.05 and, = 0.3. A sensi-
tivity parameten of 0.04 was used and several reference dengitigdrialed to compare
the development of the computational mesh. Four levelsfofement were permitted
such that the resulting finest computational cells had = Ay = % Settingp,.
to the initial density of 1 resulted in unnecessary refinengemvnstream of the leading
shock as shown in Figure 4.17¢at1.0 s. By setting the reference density to 6, indicative
of the maximum density in the flow, the amount of unnecessaliggment was reduced
considerably.

Once again, the flow equations were integrated in time=tb using the first order
temporal scheme with@F' L number of 0.3. The time progression of the computational
solution is shown in Figures 4.18 and 4.19. MUSCL reconsisads employed with
Kk = % ands = 2. The reconstruction reverts to a first order scheme for oeténg
the coarse side of an interface between fine and coarse ¢#lis.should not introduce
significant error as the unrefined cells should have low endicators.

Figure 4.18 shows contours of density and the correspordingputational mesh dur-
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Figure 4.17: Computational mesh at1.0 s using reference density of 1 kd/ftop) and 6 kg/m
(bottom).

ing the early stages of the simulation. The refinement indisgas implicitly displayed
in the refined mesh) appear to be distinguishing the shockamdiaction corner well.
At t=2.0s, the Mach stem forms on the upper wall as is evident ffagure 4.19. The
refinement indicators detect the contact surface emantingthe triple point and refine
accordingly. At=3.0 s the unphysical transition from regular to Mach reitgcoccurs on
the lower wall. The theoretical shock angle at which thisussdor the given conditions
is approximately 40 degrees, producing a deflection angk®afegrees. Since the Mach
number decreases in the entropy layer, a two-shock regeflaction is incapable of de-
flecting the flow to this degree and hence the transition @gcdtis interesting to note that
whilst the uniform MUSCL simulation resulted in a large Mastem on the lower wall,
computations on the adaptive domain suffered only sligintisn the numerical boundary
layer; this is probably a result of the cells along the lowallweing relatively coarse.
Unfortunately, the second contact surface was not resaivea the refinement indicators

were not sensitive enough to refine the mesh in this region.
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t=2.0s

Figure 4.18: Evolution of the flow domain for the first two seconds. Consoaf density (left)
and the computational mesh (right).
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t=4.0s

Figure 4.19: Evolution of the flow domain for the final two seconds. Congoaf density (left)
and the computational mesh (right).

4.3.3 Shock Wave Diffraction around a 90 degree Sharp Corner

The final test case considered concerns the diffraction bbakswave around a 90 degree
sharp corner. This test case was chosen as the benchmatkrpridy computational
simulations at the 18th International Symposium on Shocked/§58]. As such, a large
amount of computational data from state of the art codesgusimariety of numerical

techniques is available. The geometry of the duct is shovigare 4.20

The incident shock wave has a Mach number of 1.5, the ambiedium being air at
room temperature and atmospheric pressure. A large scdiealstructure is formed by
the shear layer emanating from the corner. The high resolsimulation of Figure 4.24
shows that this shear layer rolls up forming discrete vesidue to the Kelvin-Helmholtz
instability [70]. The expansion fan present on the corn&rsinated by two shock waves
which match the conditions of the expanded flow to that bettiedliffracted shock wave.
Within the large vortex there exists two distinct shocksn(ied the left and right vortex
shocks) whilst beneath it lies a contact surface which etearfaom some point on the

primary shock wave.

The ISSW problem involved computing density contours atitistant when the
diffracted shock wave was 1 length unit from the 90 degreeerorContours of density
were chosen for the visualisation, with the official ISSWhfiatt calling for each isopycnic

to correspond to an increase of 4% of the initial density.

The presence of these difficult-to-resolve flow featurestiqdarly associated with
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the internal structure of the vortex, provides a means @ssssg the spatial accuracy of
the code. Indeed, preliminary adaptive calculations usinly the first order Godunov
method showed that this scheme was too dissipative to resoé/vortex core as can be

seen from Figure 4.20.

y

. i . |

Figure 4.20: Contours of density in ISSW format using the first order Gaslumethod on a
uniform mesh

The preliminary mesh was set withx:Ay:ﬁ so as to provide adequate resolu-
tion for the plotting of contours behind the diffracted skacave. Computations were
performed using the adaptive algorithm subject to the patarge,=0.06,¢.=0.05 and
€,=0.3. A sensitivity parametey of 0.04 was used and the reference density was set as
the cell centred value; this allows accurate calculatiothefrefinement indicator within
the vortex core, where the value of density drops to a minim&mulations allowing
two, three, four and six levels of refinement were performdglext to theC'F' L limit of
0.1. Contours of density as well as the final computationamase presented in Figures
4.21-4.24. With two levels of refinement it can be seen thaktty elements of the flow
field are captured. The diffracted shock is resolved welpdesiot being aligned with the
computational mesh. The expansion fan at the corner islgjdilowever, the associated
shock waves are not resolved well. The internal structutieeo¥ortex is also not resolved.
In addition, there exists some noise in the flow behind then@ry shock wave as is ev-
ident from the computational mesh which has been refinedamly in some regions.

By allowing three levels of refinement, more detail of theemaction becomes apparent.
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Figure 4.21: Two levels of mesh refinement. Contours of density in ISSVehfair

The noise behind the primary shock wave has been diminigiradwhat and no spurious
refinements are present. The two shock waves terminatingxh@nsion fan are clearly
visible. The corner vortex appears to have some internattsire to it; in particular, the
right vortex shock can be distinguished. The primary shoakenappears more crisp be-
cause it is resolved over a smaller physical distance. Wbenlévels of refinement are
allowed, both vortex shocks are resolved. Additionallg tontact surface is becoming
apparent. Finally, 6 levels of refinement were permittedrdeoto provide a high resolu-
tion simulation of the interactions. The internal struetaf the vortex can clearly be seen,
and both shocks are resolved well. Discrete vortices asativith Kelvin-Helmholtz
roll-up of the shear layer are also apparent. The contatasibeneath the corner vor-
tex, whilst present, is difficult to distinguish. This is mpsobably due to deficiencies in
the solution reconstruction technique applied at fines&®aoundaries. Such boundaries
would be expected away from the centre of the vortex coreeamtsh adjusts slowly to

the more uniform flow behind the primary shock.
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Figure 4.22: Three levels of mesh refinement. Contours of density in ISSiviat

Figure 4.23: Four levels of mesh refinement. Contours of density in ISSké&
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Figure 4.24: Six levels of mesh refinement. Contours of density in 1SSVehtr
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CHAPTER 5

Shock-Vortex Interactions

Shock-vortex interactions are an important area of rebdasth from a fundamental phe-
nomenological perspective [35] and due to their vast rarigeterdisciplinary applica-

tions [66]. In the past much effort has been devoted to expartal work that carefully

establishes a single vortex and focuses on its interactiimaasingle shock wave. Such
experiments generally involve the diffraction of a shock/e/¢éo produce a patch of vor-
tical flow. The vortex is processed either by the reflectedhary shock wave on its
return[53, 38] or by a secondary, delayed wave [54, 13]. Ri#geSkews revisited his

earlier work [53] monitoring the experiments for a longeripé to investigate the effect
of multiple shock-vortex interactions [52]. Under certancident shock strengths and
diffraction angles it was found that the second passageeotiiock wave destroys the
vortex completely, leaving a patch of turbulent flow. Skegtsidy provides the motiva-

tion for the current work and will now be described in greatetail. The propagation of a

shock wave around a sharp bend causes a vortex to be shedh#amrher. A portion of
the shock wave reflects from the far wall and returns to ictesdth the vortex in a man-
ner which has been well studied [46]. The characteristic fieatures for this scenario
are shown in Figure 5.1. The vortex is stretched to some ddgydhe first interaction,
however it remains otherwise unaffected. The shock wavéewther hand is deformed
considerably as it is “swept around” by the vortex. The shbek undergoes a second re-
flection from the near wall and returns to interact with the@wonce more. This time the
passage of the shock wave through the vortex is more digaugitid in some instances the
vortex is destroyed completely leaving a patch of turbullemt. A detailed understanding
of the mechanisms behind the vortex breakup could give msigto the development of
compressible turbulence [52] and aid the development biitence models that capture

its macroscopic effect.
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e

PS

Figure 5.1: Flow development for the interaction between a Mach 2.0 lshave and a vortex
shed from the corner: vortex V, primary shock PS, reflectetlsiRS. Adapted from Figure 2 in
[52]

5.1 Compressible Turbulence

In order to understand the nature of compressible turbelérelps to consider further
the governing equations presented in Chapter 2. The enepggtion shows that the
kinetic energy of the flow can be degraded into internal omtta¢ energy through viscous
dissipation. As mentioned earlier an expression for trgsigation rate can be obtained
by considering the stress-strain relation for a Newtoniaia funder Stoke’s hypothesis
of zero bulk viscosity. Under this assumption the defororasitress is related to the

deformation strai, by
T = 2wqg (5.1)

The total strain on a fluid element is made up of bottspherical (non-deforming) and
wg non-spherical (deforming) components. By examining aedéffitial fluid element this
strain rate can be expressed in tensor form as

S (axj T axi) (-2)

Since the spherical strain in any coordinate direction es-tirird of the fluid divergence,

an expression for the deformation straincan be obtained and substituted into 5.1.
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Hence the rate of dissipation of kinetic-energy per unitgna®btained [35].

de ouy; Ou, 2 Ouy ou;
E N {V <6ZEJ + 8@) 3Va$kélj} al’j (53)

By considering the length, time and velocity scales

A o = 5.4
ul uoo7 xz L? L/uoo’ 14 ]/OO’ € u2 ( )

the dissipation rate can be non-dimensionalised as

de* 1 ou;* ou;* 2 Ou” ou;*
= — - =" ” 5.5
dat* Rey, {V <8xj* * (%Z—*) 3" (%ck*%} Ox;* (5-5)

whereRe;, is the Reynolds number defined as

ool
R@L = Y

(5.6)

Voo

Since viscosity is a small number it can seen that for flows rattcal interest, the
Reynolds numbers are large and the viscous dissipationlmateexcept in regions charac-
terised by velocity changes over very small length scalbs.pghenomenon of turbulence
can then be seen as a mechanism for the energy cascade adalgsetructures into small
scale motions where viscous dissipation can become eféecthe first term on the right
of equation 5.5 represents this energy cascade to the sinadldies (the so called Kol-
mogorov length scale) through vortex-vortex interactiohlse second term represents a
compressible mechanism for this phenomenon with the shagkswerforming a similar

role to Kolmogorov eddies [35].

In turbulent high speed compressible flow, shock waves akasealegions of small
scale vortical motions must be present. Hence shock-shamkex-vortex as well as
shock vortex interactions play an important role in the igason of kinetic energy. As
observed by Skews [52] this latter interaction can degradgelstructures into small scale
motions in very short time-scales under certain circuntan The underlying mecha-
nism behind this represents a significant contribution éoehergy cascade process and

as such is of fundamental importance to the understandingrapressible turbulence.

Numerical modelling of turbulent flows requires a full thrdienensional simulation
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with the spatial and temporal resolution to capture all ssadles. Specialised codes are
required to perform these calculations in reasonable tramads, and for flows containing
moderately strong shock waves, are only possible for vemplsi flow geometries [72].
Whilst LES can lead to significant decreases in computatieffiart it has been shown
that meaningful results are obtained only with high resotuin the vicinity of shock
waves [71]. Additionally, accurate turbulent simulatiaesjuire the use of numerical
schemes with a higher resolving accuracy and hence highgoatational cost than those
presented in this thesis. Hence, even an LES of the comgtidkdw structure that result
from the propagation of a shock wave around a 90 degree bembthe achieved in a
feasible time given present day computing power. The pteésendimensional simula-
tions aim to investigate only a single scale in the flow me@ramvolved in the break-up
of the large vortex shown in figure 5.1. It is hoped that theilebf this process are, to
a first approximation, independent of viscosity and the dgie fine scale interactions
characteristic of a turbulent flow. For this reason, we nom twur attention away from
the ensemble of interactions that characterise a turbélemtand focus on the detailed

modelling of the shock wave vortex interactions.

5.1.1 Previous Modelling Work

Much work in the early 1950's was focused at analysing shamrkex interactions as
a mechanism for noise production in supersonic aircrafte itlea was to represent the
noise generated as turbulence passed through the shoeknpEta jet, by the passage of a
shock wave through a single vortex. Analytical theorie$ thadelled the resulting acous-
tic wave were devised [46] and improved upon [66] to the edadrere a good prediction
of the overall ‘far-field sound emission’ could be made. loy@ments in computer power
and numerical algorithms over the last two decades, hadexhabmputational simula-

tions of shock-vortex interactions to be made.

At the 18th International Symposium on Shock Waves, a spposter session was
held to compare various CFD codes. The benchmark problethéaromparison was the
diffraction of a Mach 1.5 shock wave around a 90 degree bendarfety of numerical
schemes were used to model the problem, solving either tlee &uNavier-Stokes equa-
tions. Whilst the simulations involved only the early dey@hent of the vortex, ending

before the reflection of the primary shock-wave, many wete @bresolve its internal
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structure [58].

In a later study, Uchiyamat al [61] allowed the simulation to progress further. They
showed numerically that due to the growth of the Kelvin-Hebttz instability, the shear
layer emanating from the corner rolls up to form successomtices. The interactions
between these discrete vortices and the secondary shdekn@hto the vortex) were
shown to be responsible for the bifurcation of this shocloims instances. However, this
study concerned the internal structure of the vortex andteongt was made to model its

interaction with the primary shock wave.

Matsuuraet al [36] conducted a numerical and experimental study of a ainsitua-
tion in which the outlet (the lower boundary of the duct indtig 5.1) was replaced with a
wall. Their Navier-Stokes simulations agreed well with espental data although little
could be concluded about the second shock-vortex interasince, by the time of this
interaction, waves had reflected from the bottom wall andiarfted the flow near the

vortex.

In a bid to explain the experimental observations of Skewspleevet al [59] con-
ducted a two-dimensional Euler simulation of the shockrddfion problem, allowing
the shock to process the vortex twice. Whilst coarse gricukitrons appeared to re-
sult in vortex break up after two transits of the reflectedc&hdiner simulations showed
the problem to be grid-dependent; vortex break-up aftenglsipassage (only) was ob-
served in some instances. This early breakup is not consistth the experimental data.
Several ideas for the deficiency of these simulations haee peoposed, including the

applicability of the Euler analysis as well as neglect oéthdimensional effects.

This thesis aims to return to this problem and take anotlade & the 2 dimensional
interactions using a new simulation code. It is hoped thafpttesent study will serve as
a precursor to a fully three dimensional study utilising laene code structure and grid

adaption techniques.

5.2 Interaction with a Mach 1.5 Shock Wave

The interaction of a corner vortex with a shock wave was itigated numerically using

the experimental conditions of Skews. Simulations weréopered on a computational
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domain, non-dimensionalised by the duct width/o£50.8 mm and the shock speed of
519 m/s. The characteristic time scale being, = 50.8 x 1073/519s. The domain
extended 1 characteristic length (L) upstream and 2 cheniatit lengths downstream of
the corner. Initially a Mach 1.5 shock wave was establishigtimthe duct by specifying,
along the upstream entrance, post shock conditions detedfiom the shock Hugoniot.
An outflow condition imposes zero streamwise derivatives@lthe exit plane. Whilst
the shock induced flow is subsonic allowing information frtims boundary condition to
corrupt the upstream flow state, it is deemed sufficientlyrtan the corner to play a neg-
ligible role in the time frames under consideration; the nratgresting part of the shock-
vortex interaction is completed before any ‘spurious’ weafrem the outflow boundary

can influence it.

MACS2d is used to advance the two-dimensional inviscid flqgwations subject to a
CFL limit of 0.1. The refinement parametersande,. are set to 0.06 and 0.05 respectively
with the sensitivity parameterset to 0.03. The initial cell size was setgs Simulations
were performed using both 4 and 6 levels of refinement as shoWwigures 5.2 through
5.6 and Figure 5.8 respectively. The first ‘snap-shot’ of ¢kelving flow domain was
made at time¢ =38.746. Contours of density as well as a plot of the compratiflow
domain are shown in Figure 5.2(top). The primary shock waeears to be captured
quite well as is the characteristic corner vortex. For gfaonly a limited number of
contours are shown; however, the structure and compusdtarmain resembles that

shown in the previously computed test case.

The next flow-instant is captured at=48.197 and shown in Figure 5.2(bottom). A
portion of the primary wave has reflected from the far wall ackturning towards the
vortex. The corresponding computational mesh is adjusbrtpe post-reflected-shock
flow state which should be nearly stagnant against the fdr \Bahall regions appear to
remain refined and this may be due to inconsistencies in tkediconstruction step at
boundaries between cells that differ in volume. Simultarsgég the head of the corner

expansion wave is propagating slowly upstream since thieshogk flow is subsonic.

The third flow-instant is captured at time=64.262. Figure 5.3(top) shows that, by
this time, the reflected shock has returned to process thexvdrhe lower portion of the
reflected wave is swept around under the vortex due to theshighocity in the propaga-

tion direction associated with the clockwise rotation @& ttortex. In contrast to the case
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of the interaction of a shock wave with an isolated vorteg, ubper portion of the shock
wave is not affected to nearly the same degree. This is dugetslipstream emanating
from the corner; the high gas velocity above the slipstreaisdlated from the effects of
the vortex. Also, the transition from regular to Mach refiesthas occurred where the
diffracted shock meets the far wall. By=68.042, the reflected shock has processed the
vortex and a portion of it has reflected from the near wall. #eo portion of the wave
has been swung around by the vortex to the point where it istalbanteract with the
slipstream. Meanwhile the upper portion of the primary ¢heave is developing a slight

bend as the lower end interacts with the flow just downstreftimeocorner expansion.

Figure 5.4(top) shows the flow statetat79.382. By this time the portion of the shock
reflected from the near wall has passed through the vortethésecond time resulting
in a complicated flow field. The interaction between the sheeke segment swung
around by the vortex and the slipstream has lead to the favmaf several new shocks.
The upper portion of the primary shock wave has propagatedeuupstream however
it has still not reached the corner. Meanwhile part of thé&alited shock has exited the
flow domain. The flow domain after the interaction is showniguire 5.4(bottom). The
computational mesh exhibits high levels of refinement adoseveral key features that
have evolved during the course of the simulation. It can lbe §®m the evolution of this
mesh that all areas of the flow domain have undergone thatitan§om coarse to fine

cells at least once, making the computational savings chdagtive technique apparent.
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Near Wall

Far Wall

@

Figure 5.2: Contours of density (left) and the computational mesh Jiftr the diffraction of a
Mach 1.5 shock wave around a 90 degree bend. Simulationttix8.746 (top) and =48.197
(bottom).
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Figure 5.3: Contours of density (left) and the computational mesh {Jighr the interaction of
a Mach 1.5 shock wave with a corner vortex. Simulation time64.262 (top) and =68.042
(bottom).
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xxxxx

Figure 5.4: Contours of density (left) and the computational mesh {jigr the second inter-
action of a Mach 1.5 shock wave with a corner vortex. Simokatimet =79.382 (top) and
t =90.723 (bottom).
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To enable a more detailed analysis of the interaction of thetML.5 shock wave with
the corner vortex, density and vorticity contours are plbfor the region just downstream

of the corner. Vorticity is calculated as

v ou

YT oz oy

Visualisation using vorticity allows the various scaleswidtions to be more easily dis-
tinguished since only vortices and curved shocks are redalv the plots. Eight time
instants are shown for computations performed using thiaimesh with 4 levels of re-
finement in Figure 5.5 and 6 levels of refinement in Figure B.6rder to examine the
effect of grid resolution on the interaction. The initiahfne shows the reflected shock
wave approaching the vortex for the first tinte£58.592). Of particular interest is the
difference in vorticity within the shear layer between th@tgrid resolutions. Because
the Kelvin-Helmholtz instability responsible for the raip of the layer is viscosity depen-
dent, the numerical dissipation inherent to the computatiescheme plays an important
role. For a very fine mesh, the simulation code will producey ¥ine shear layer ema-
nating from the corner. Hence, the grid resolution deteesitme time and length scales

that characterise the break-up of the shear layer intoatiseortices.

As the shock wave passes through the vortex62.372 and =66.152), there is a
marked increase in the amount and intensity of the smaléseatical structures within
the large corner vortex. This appears to be a result of trerdntion between the re-
flected shock wave and the small vortices within the shearlayhe vorticity is more

concentrated and a bifurcated shock structure also results

Attimet =69.932 the reflected shockwave has reflected again, thigriommethe near
wall, and is about to process the vortex. The portion of tleekhvave swung around by
the vortex has impacted on the shear layer resulting in a Eafijow pattern containing
several shock waves. At this stage, the large vortex appehes/e been stretched slightly
by the interaction but is otherwise relatively unaffectedcontrast, the internal structure
of the vortex has been altered considerably, comprisingraémew shock structures, and

regions of highly concentrated vorticity.

The second interaction between the shock and the corneexv@rt=73.712 and

t =77.492) appears to be much more disruptive. Once again thfesracale motions
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within the vortex are amplified; however, this time the whabetex is elongated in the
downstream direction. The final instants£81.273 and =85.053) show that the vortex
continues to be stretched. This elongation is probably daatixture of stretching in the
downstream direction and compression in the cross-stre@aution associated with the
shock interaction. The stretching component in the dowastr direction appears only
to be present during the second interaction with the shoslewahis is possibly due to
the fact that the upper portion of the reflected shock wavestaated to interact with the
shear layer emanating from the corner. Hence the lower paneccorner vortex would

become weaker and more easily convected downstream.

Figure 5.7 shows that as observed by Skews [52], the vortpraap to retain its
integrity in this case. Whilst the large scale shock vorteriiaction did not result in the
vortex degrading into small scale motions, interactiong@maller scale resulted in the
generation of much vorticity. Several discrete fine scaleices embedded around the
stretched corner vortex can be seen from the vorticity amstoThese are a result of the
interaction between the discrete vortices associatedtivithiKelvin-Helmholtz roll up of
the shear layer, and the multiple shock structures prodbgetthe larger shock vortex

interaction.
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t =58.592

1 =62.372

1 =69.932 t =85.053

Figure 5.5: Flow development for a Mach 1.5 shock wave using 4 levelsfoiement. Contours
of density (left) and contours of vorticity (right). Flowgmresses from top to bottom, left to right.
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t =58.592

t =62.372 t =77.492
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1 =66.152

1 =69.932 t =85.053

Figure 5.6: Flow development for a Mach 1.5 shock wave using 6 levelsfoiement. Contours
of density (left) and contours of vorticity (right). Flowgmresses from top to bottom, left to right.
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Figure 5.7: Comparison between the experimental Schlieren of Skews(l&f2) and computa-
tional density contours (right) for a Mach 1.5 shock wave.
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5.3 Interaction with a Mach 2.0 Shock Wave

The interaction of a Mach 2.0 shock wave was investigatedemizally subject to the
same geometric and computational parameters discussée iprévious section. The
characteristic length remained the same, whilst for a MabhsBock wave the charac-
teristic shock speed is 692 m/s. By non-dimensionalisihgraks by the characteristic
time scale50.8 x 1072/692 flow instants can be compared with their Mach 1.5 counter-
parts. Again, the inflow conditions were specified by commifpost shock flow condi-
tions determined from the shock Hugoniot. Whilst this représ the exact jump con-
ditions across a Mach 2.0 shock wave, the dissipative natutlee computational tech-
nique causes shocks to be smeared over several cells. Teedde between the exact
and (smeared) computational jump conditions results irgtreration of a weak wave.
Whilst this wave was insignificant in the previous case, thapgutational mesh in Figure
5.8 shows that the associated error is now causing sliglatiars in the post shock flow.
Hillier [19] suggests a fix for these starting transients bgtfrunning a computational
simulation of a shock wave of the desired strength and theaifsfing shock conditions
for the full simulation based on the numerical jump condisoBecause the density con-
tours in Figure 5.8 seem relatively unaffected by this pgohlthe current technique is

deemed satisfactory for this study.

It can be seen from Figure 5.8 that the flow features seem nistinally defined than
for a Mach 1.5 shock wave. Even with four levels of refinemasthishocks internal to
the large vortex are distinctly visible, as is the contactasie beneath it. In addition to
this, the expansion fan emanating from the corner is stipage the computational mesh

has been refined accordingly in this region.

Once again density and vorticity contours in the region glestnstream of the step
have been plotted to enable visualisation of the interactiéigure 5.9). As with the
lower Mach number case, the first passage of the shock wawviesrésthe the generation
of considerable structure within the large vortex as a tesduhe interaction with the fine
scale discrete vortices associated with the Kelvin-Helilzholl up of the shear layer.
Several bifurcated shock structures result from this adigon. The large vortex appears
to be compressed slightly in the cross stream direction byfitet transit of the shock

wave. The portion of the shock wave swung around by the vdritsxthe slip stream at
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timet =69.932. About this time, the vortex begins to stretch in thmstream direction.
The second passage of the shock wave through the vortexs@sudn increased
amount of detail within the large vortex. As well as this,a®l intersecting shock struc-
tures are apparent. These are most probably associatetheithteraction between the
reflected shock wave and the small scale internal shock artdxvetructures. Whilst
stretched considerably in the downstream direction, amapcessed in the cross stream
direction, the vorticity contours show that the vortex aggegenerally to have retained
its integrity. Despite this however, it is evident that timeadl vortical structures concen-
trated within the vortex are becoming more dominant overainger structure. Figure
5.10 shows a comparison between the experimental Schiéi®kews [52] and compu-

tational density contours, after the second transit of kinek wave.

Unfortunately simulation results on a mesh using 6 levetetaiement were not avail-
able at the time of submitting this thesis due to the largepaational time associated
with the highly refined mesh. The earlier Mach 1.5 calculaisuggest that the num-
ber and intensity of the fine scale vortices increases withmsolution since the shear
layer rolls up into finer structures. It is not unreasonattien, to predict that higher res-
olution would result in additional fine scale structuresinal to the large vortex. The
complexity of the resulting flow field, particularly when wed using contours of den-
sity, would make it difficult to distinguish the large scatartex from the numerous small
scales within it. It would be beneficial to produce numerfgahlieren plotsof the final
flow state to compare with the experimental Schlieren of Skdtwvould be interesting
to see to what extent this visualisation technique, whiceissitive to density gradients

in one direction, permits distinction between the two ssaliemotion.

There are two different scales of motions associated wehiriteraction. The large
scale vortex and the reflected shock wave constitute therdamptions present which
alone have be shown to interact in a well defined manner [46]a@ner scale, the dis-
crete vortices associated with the shear layer, and thmadteortex shocks are specific
to the creation of a vortex by shock wave diffraction. If a fereough numerical grid is
used, the mutual interaction between these two has beemdioorgsult in a bifurcated

shock structure [61]. In any case, whilst the first transthefshock results in only minor

tunfortunately this is not possible at the post-processiagesand there was insufficient time to re-run
the simulations calculating the required density drivegiv
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compression of the large vortex, the interaction with thal§stales results in bifurcated
shocks and intensified vorticity, the effect being more prorced for stronger shocks.
The interaction between the portion of the shock wave swuogral by the vortex and

the shear layer, seems to produce a weakening in the larggex\adfowing it to be more

affected by the second transit of the shock wave; a combinmati compression in the
cross-stream direction and stretching in the downstreaectibn results in an elongated
vortex. At the same time, the fine scale internal structureprising shocks and vortices
is further intensified by the second transit of the primarywavaThese conflicting phe-
nomena, namely the weakening of the large vortex and thedgpendent initiation and
intensification of the fine scale internal motions, provides explanation for the conflict-
ing results obtained during the previous computationalysft9]. They found that whilst

relatively coarse grid simulations appeared to result ewbrtex breaking up after the
second transit of the shock wave, finer grids resulted in titeex appearing to break-up
earlier. On very-fine grids, the vortex even broke-up after first transit of the shock

wave.

A viscous model would be needed to determine the exact stéte ghear layer em-
anating from the corner of the step. Without such a simutatimwever, one hypothesis
for the observations of Skews is that for flow states wherditleescales become stronger,
it becomes increasingly more difficult to distinguish thegavortex, particularly by the

Schlieren technique.
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)

Figure 5.8: Contours of density (left) and the computational mesh {ifir the early stages of
the interaction of a Mach 2.0 shock wave with a corner vor&mulation time=51.032
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1 =69.932 t =85.053

Figure 5.9: Flow development for a Mach 2.0 shock wave using 4 levelsfoiement. Contours
of density (left) and contours of vorticity (right). Flowgmresses from top to bottom, left to right.
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Figure 5.10: Comparison between the experimental Schlieren of SkewqI® and computa-
tional density contours (right) for a Mach 2.0 shock wave.
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CHAPTER 6

Conclusion and Recommendations

This thesis was primarily concerned with the computatiomadielling of shock tube phe-
nomena. Whilst direct numerical simulation of such pheneai@corporating complex
chemical reactions could, in theory, provide an exact digison of the processes taking
place, computing power dictates that such a ‘brute foragineue is currently not feasi-
ble nor will it become so in the foreseeable future. A consege of this is that we are
forced to limit the extent of our modelling to either very silified flow models or de-

tailed simulations of simple flow interactions. There argessially three sections to this
thesis: quasi-one-dimensional modelling of a full shodsetéacility, the development of
a two-dimensional flow simulation code, and the applicatbthis code to shock wave

vortex interactions.

6.1 Quasi-One-Dimensional Modelling

The design and operation of impulse facilities requires ecueate knowledge of the
underlying flow processes. Since the flow is predominantlg-dimensional, a good
approximation can be obtained in a reasonable time frameniplaying a quasi-one-
dimensional (g1d) analysis that incorporates approximaidels for phenomenon such
as viscous losses and heat transfer. Finite time diaphragtare is another mechanism
that cannot be captured directly from the q1d assumptiothifnthesis, two models that
aim to capture the macroscopic effect of slowly opening ldiagms were designed. An

Eulerian gq1d simulation code was formulated and used tapurate the models.

Whilst both models appear to produce some appropriate esanghe downstream
flow properties, they do not capture the full nature of slowpening diaphragms. It

may be that a more detailed analysis of the wave pattern dovams of the driver re-
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strictor might help in formulating a model that has a strangféect than that produced
by either of the current models. Ultimately, however, thelenlying mechanisms are
three-dimensional in nature and an attempt to model the mipteractions in a one-

dimensional analysis will always be an approximation.

6.2 Two-Dimensional Flow Simulations

The second part of the thesis concerned the developmentwb-alimensional Euler
code that included solution adaptive grid refinement. Emjshaas placed on designing
a code that could efficiently simulate detailed flow featusesh as shocks and vortices
within simplified geometries; however, a fine computatiagrad is required to minimise
the discretisation error. The distribution of discrefisaterror across the domain is not
uniform, hence, computational effort is wasted in someaegji Compressible flows typ-
ically contain sharp transitions between uniform flow regi@and, as such, considerable
effort would be wasted if a uniform mesh was employed. Thautation code developed
here provides the grid resolution where it is needed whisiding the computational

expense of using a uniformly fine grid.

The design of an efficient algorithm depends to a large exdarnthe type of flow
problem to be solved. Due to the relatively straightforwgedmetry considered in this
thesis, it was decided that square cells would form the asihie computational mesh.
This offers considerable simplifications to be made to thewrhof data stored and to
the complexity of the data structure needed to access iukeaaany inter-cell relations
are known implicitly. The restriction of the problem to anl&uanalysis allows further
optimisation since only first order derivatives are reqiigieinterfaces; the Navier-Stokes
equations include viscous terms, and requires flow infaonabeyond immediate cell
neighbours. A modified threaded quad tree data structureselasted that implicitly
contains many of the cell-neighbour links needed for theatation of first derivatives.
Emphasis was placed on a technique that can refine and untiedimeesh in a flexible
manner so as to capture the many evolving flow features ocaks. It is believed that

the subdivision of existing cells achieves this.

A Taylor series expansion appoximation to the discretsedirror was chosen as the

primary technique to mark cells for adaption. This indicatas used in conjunction with
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a gradient indicator tuned to detect shock waves.

An explicit time marching technique was used to advance #melations. It was
decided that the stability and resulting speed benifits afrgslicit technique would be
wasted due to the need for small time-steps to adequatedvesthe very small time-
scales associated with shock-vortex interactions. A tiohpave strategy was not im-
plemented since the associated ‘speed up’ was consideraitl isncomparison to that
obtainable from spatial adaptation. Never the less, aegjyas discussed and its imple-

mentation is strongly recommended for future three-dinwarad work.

Flow reconstruction was performed using MUSCL like intdghon modified for
non-uniform cells, and a van Albada limiter as the base seh&donsiderable problems
were encountered when dealing with interfaces between fidecaarse cells. Whilst
the modified reconstruction scheme can handle a cell cosipresatio of 50%, data re-
trieval problems were encountered. Whilst the flow statdaffine side of the interface
can be calculated in a straightforward manner, the ‘quati daucture does not allow
the coarse cell's neighbour to be determined. A linear pdkation technique was ap-
plied to determine the coarse interface state and seem#dhjule since coarse cells only
exist in regions of low curvature of flow properties. Whilsistworked well for problems
that are inherently one-dimensional in nature, it intragtltarge amounts of numerical
noise for flows exibiting highly two dimensional behavio&or this reason a first order
scheme was used to for the determination of the coarse tetface state. This data ac-
cess problem could easily be overcome by storing an additmrinter from each ‘quad’
to the parent cell above it. Such a pointer appears in theecudata structures; how-
ever, it was only used for debugging purposes and is not eddhtring application of the
adaption routines. Future work concerning flow reconsioanctould use this pointer to
obtain flow states at any cell in the domain. Whilst this beesnmefficient for locating
cells ‘far away’, it would be justifiable for locating coarsell neighbours as required
for consistent high order interpolation. It is expected tha would reduce some of the
numerical noise generated in the current version of the.cadditionally, this extra link

would allow viscous terms to be incorporated into the code straightforward manner.

A series of tests were performed to ensure that the code Waagthe Euler equa-
tions correctly. Comparison with experimental, theowdti@and a wealth of previous

numerical data indicate that the expected performance \eae being obtained. The
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evolving computational mesh for each simulation was stlidied the adaption parame-
ters optimised to ensure computational efficiency. Sinmutagtof the early evolution of a

corner vortex verified that the internal vortex structuresWwaing adequately resolved.

The original scope of the (PhD) project included a threeetisional simulation code.
Due to the reduction in scope of the project from a PhD to a dtaghesis this was not
possible, however, the code was developed so as to allowsateto three dimensions in
a straightforward manner. It is hoped that future work wauollve extending the code
to three-dimensions where the full benefit of the subdivisidaption technique would be
seen. The extensions required to achieve this are discusteeltext where relevant; the
most tedious aspect would involve the formulation of thdgeensional ‘look-up’ tables
relating a cell to all possible neighbour configurations.e Hode was also constructed
around subroutines that anticipated later parallelisatiéuture three-dimensional work

should take advantage of this and exploit the benefits oflpacamputing.

6.3 Shock Wave Vortex Interactions

The two-dimensional simulation code was applied to the kitran of the interaction be-
tween shock waves of varying strength and a corner vortexbid & explain the experi-
mental observations of Skews [52]. The very small time scalevhich the large corner
vortex appeared to degrade into small scale motions hirited sviscid mechanism be-
ing an important component of the flow dynamics. For thisoaabe simulation code

MACS2d was formulated for the Euler equations and used talsit® the experiments.

Two main scales of motion were identified during the intacactOn a large scale, the
reflected shock wave attempts to compress the large cornexwturing its transit. On a
smaller scale, the Kelvin-Helmholtz role up of the sheaetasmanating from the corner
produces discrete vortices. The time and length scalesiasso with the formation of
these vortices is viscosity dependent. The governing epsare inviscid and hence the
numerical viscosity inherent to the scheme determineshioiriess of the shear layer
and thus the wavelength of rollup.. Internal to the vortéereé exists two small shock
structures. The mutual interactions between these stegtepresents one scale of the

ensemble of energy cascade processes inherent to a turfhoNen

During the first transit of the shock wave the small scalecstmes are intensified as
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they ‘receive’ energy from the larger motions. The largdes@artex remains relatively
unaffected by this first interaction; however, since it comes to ‘receive’ vorticity from
the shear layer emanating from the corner. A portion of tleekhvave is swung around

during this first interaction and impacts directly with theear layer.

The second transit of the shock wave through the vortex mesla further intensifica-
tion of the small scale motions. This time the large scaléexos weakened considerably
by the energy transfer since the shear layer supplying ibbas weakened. The resulting
flow field comprises concentrated small scale vortices afusdaited shock structures as
well as a weakened primary vortex. The scale which appearsndmt in the final flow
field depends on the shock wave strength and intensity ohihialismall scale vortices.
If density contours are used to visualise the flow it is ditito determine the large scale
structure after the second transit of the reflected Machtbflswave; however, vorticity

contours show that it is still present.

One would expect initial small scale motions to become moreentrated for higher
incident shock speeds as well as larger bend angles. Addilyjp a consequence of the
grid dependent nature of the shear layer roll up is that fireshmas will begin with more
concentrated small scale motions. This makes the idea ogeneansfer between the
scales consistent with the experimental observations aindtle grid convergence prob-

lems experienced by the previous computational study [59].

With this in mind there are several areas for further workeéadbne. The computa-
tion of numerical Schlieren would allow a greater undergitag of how the experimental
visualisation distinguishes between the two scales of anotiUnfortunately this is not
possible at the post processor stage due to deficiencieg icotihmercial software that
was available to the author. Calculation of density derreatwithin the simulation code
could be implemented in the same way that vorticity is catad. Whilst this is a straight-
forward task, the simulations would need to be rerun. Unfaately this is not possible

in the present time frames. The grid dependent nature ofikialifine scale vorticity

can only be resolved by incorporating a physical viscosiimly by implementing the
Navier-Stokes equations will the correct amount of votyibe predicted within the shear
layer; it may be that coarse grid Euler calculations are meadistic than fine grid ones

with respect to this phenomenon; however, this remainsisgean.



94 Conclusion and Recommendations

Finally, turbulence is a three dimensional phenomenon iithvkiortical structures
can be aligned in any direction. The two-dimensional anslgstricts the flow field to
vorticity aligned with thez axis. Perturbations in the third dimension would causecairt
structures of differing orientations to be present. Theésetires would be involved in
the energy cascade process and so draw energy from interawetith the larger scales.
Extension of the code to three-dimensions has already bieenssed and with current
high performance computers, it is feasible that resultddcba obtained in a reasonable
time frame. Future work in this area should make use of adapost processing tools

and three-dimensional visualisation techniques.
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