Numerical Investigation of Shock Stand-off in Chlorine

Robert Watt and Rowan Gollan

10-07-2025

The University of Queensland

Ballistic range experiments

Figure 1: Schematic of ballistic range from Schwartz and Eckerman¹

- Performed by Schwartz and Eckerman in 1956¹
- Aim of experiment:
 - ► Measure vibrational relaxation of Cl₂ by measuring shock stand-off distance
- Gun tunnel
 - ► 4 mm radius ball bearings, various materials
 - Schlieren/shadowgraphs to measure shock stand-off distance
- Hopefully good for CFD validation
 - ► Isolates vibrational relaxation (e.g. no dissociation, electronic excitation e.g.)

¹Schwartz and Eckerman, 1956: Shock Location in Front of a Sphere as a Measure of Real Gas Effects

Measurements

- Measurements of shock stand-off distance at various Mach numbers (2-4) and pressures ($\sim 130~{\rm Pa}$ through $\sim 25~{\rm kPa}$)
- The level of vibrational nonequilibrium changes γ , which changes shock stand-off
- Matching shock stand-off in CFD requires getting vibrational relaxation correct

Gas Dynamics Toolkit¹

GDTk is a collection of software for doing gas dynamics, from simple desktop calculations through to simulations on supercomputers

https://gdtk.uqcloud.net

Figure 2: Simulation of Apollo capsule with Eilmer

¹Gibbons et. al., 2023: Eilmer: An open-source multi-physics hypersonic flow solver

Inert Gases

- Validation of the experimental setup
- Validation of the Eilmer¹

¹Gollan and Jacobs, 2013: *About the formulation, verification and validation of the hypersonic flow solver Eilmer*

Nonaka Sphere - Separate validation of Eilmer

- Shock shape validation with the Nonaka Sphere¹ in air
- Full thermochemical nonequilibrium is required to get the correct shock shape

¹Nonaka et. al., 2012: Measurement of shock stand-off distance for sphere in ballistic range

Chlorine

Figure 5: Chlorine shock stand-off distance

- Results from over a decade ago
- Frozen and equilibrium assumptions do not bound experimental results

Numerical Methods

Numerics

- Second-order finite-volume
- body-fitted grid
- Jacobian-Free Newton-Krylov for steadystate acceleration

Gas Models

- Ideal Cl₂
- Thermally perfect Cl₂
- Equilibrium mixture of Cl_2 and Cl
 - Equilibrium computed with Nick Gibbons' eqc

Simulations

- Half sphere, 2D axisymmetric
- Initial inviscid shock-fit solution
- Four successive viscous solutions on finer grids
 - Finest grid: 210×210 with first cell $1 \mu m$
 - Grid is tailored to align with the shock of each simulation
- 20 Simulations from Mach 2-4, for each gas model

Numerical Methods

Figure 6: Representative flow field

Figure 7: Representative convergence

Grid Convergence

Chlorine results

- Numerical shock stand-off is still too small
- Require *effective* γ to increase
 - Rules out Cl₂ reacting and forming more complex molecules
 - Rules out contamination with oil or grease from the gun
- Or require speed to decrease

Figure 9: Comparison of simulated and observed shock stand-off

Chlorine-Argon mixture

Figure 10: Mixture of Ar and Cl_2

- Thermally perfect gas model
- 60% Cl₂, 40% Ar by mass
 - $\gamma_{\rm effective} \approx 1.42$
- Unrealistic for there to be so much contamination

Deceleration

• Calculate the free-stream speed to get the same numerical shock stand-off as the experiment

Deceleration

- Calculate the free-stream speed to get the same numerical shock stand-off as the experiment
- Analytic deceleration calculated based on steel and aluminium ball bearing, with a conservative estimate of $C_D=1.6$

Conclusions

 δ

- Unable to match the observed shock standoff
- Explored some possible explanations for the differences
 - Viscous shock layer interactions X
 - ► Flow contamination ×
 - Deceleration ?

- Not enough information in the paper to calculate deceleration (e.g. material of bearing, or pressure for each shot)
- Not enough information for validation of CFD codes