equilibrium-c: A Lightweight Modern Equilibrium Chemistry Calculator

Dr. Nick Gibbons The University of Queensland

Monday, 7th July

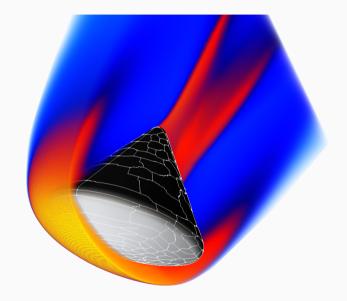
About Me!

I am Nick:

- PhD in supersonic combustion, 2019
- Started as postdoctoral fellow @ UQ in 2020
- Senior Engineer (Eilmer) and Hypersonic CFD Researcher

n.gibbons@uq.edu.au

nicholas-gibbons-67342555


About Me: The Gasdynamics Toolkit

GDTk is a collection of software tools for analysing hypersonic flow:

- Includes our flagship compressible flow code Eilmer
- Specialised tools for facility design and more
- Maintained at UQ and UniSQ
- Free and Open-Source

Project Website:

Apollo capsule at 18.6° angle of attack

Today's Talk: A Modernised Approach for Solving Chemical Equilibrium

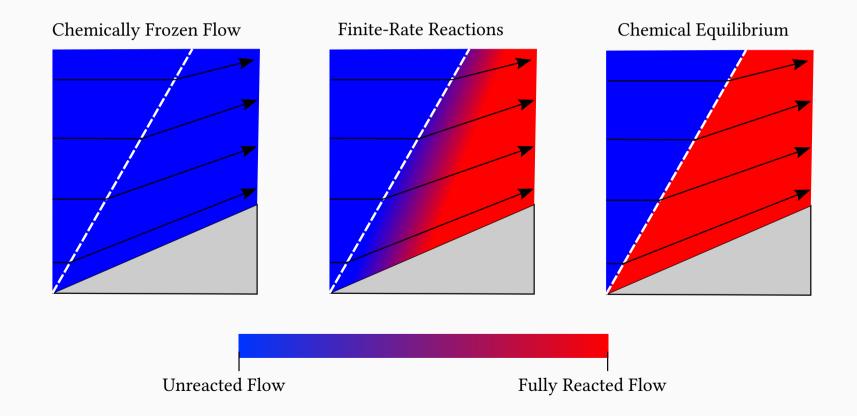
I've written an equilibrium chemistry solver called equilibrium-c:

- Hybrid C/Python solution of the thermochemimcal equations [1]
- Improved numerical method for tighter convergence and more stability
- Automated tests, better performance, easier scripting etc.

vequilibrium-c Public		分 Pin
양 master 👻 양 2 Branches 🛇 1 Tag	Q Go to file t Ad	d file 👻 <> Code 👻
$\widehat{\mathbb{Q}}$ uqngibbo We actually don't want that hot air test	because it relies on gdtk 🗸 8fb35fb · las	t month 🕚 163 Commits
igithub/workflows	Update python-app.yml with pytest instead of pytes	t-3 last year
examples	We actually don't want that hot air test because it re	lies last month
source	Fixed a rare bug where a successful simulation woul	d ret last month
tests	We actually don't want that hot air test because it re	lies last month
🗋 README.md	Fixed formatting in readme	last month
build_for_windows.md	Fixed list syntax in build for windows	last year
🗅 mit.txt	Added separate trace species locking routine that al	so lo 6 years ago

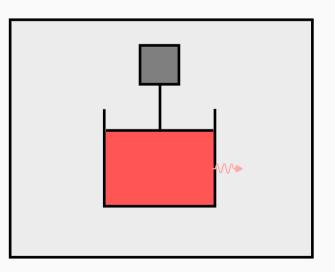
There's also a paper (preprint) which has much more detail:

arxiv > cs > arXiv:2412.07166	Search All fields V Search Help Advanced Search		
Computer Science > Computational Engineering, Finance, and Science	Access Paper:		
[Submitted on 10 Dec 2024] equilibrium-c: A Lightweight Modern Equilibrium Cher Calculator for Hypersonic Flow Applications Nicholas N. Gibbons	View PDF		
equilibrium-c (eqc) is a program for computing the composition of gas mixtures in chemical equi In typical usage, the program is given a known thermodynamic state, such as fixed temperature pressure, as well as an initial composition of gaseous species, and computes the final composit the limit of a large amount of time relative to the reaction speeds. eqc includes a database of thermodynamic properties taken from the literature, a set of core routines written the C program language to solve the equilibrium problems, and a Python wrapper layer to organise the solution	e and cs.CE tition in <pre>cprev next > new recent 2024-12 mming Change to browse by:</pre>		
process and interface with user code. Dependencies are extremely minimal, and the API is desi be easily embedded in multi-physics codes that solve problems in fluid dynamics, combustion, a chemical processing. In this paper, I first introduce the equations of chemical equilibrium, then s some time discussing their numerical solution, and finally present a series of example problems an emphasis on verification and validation of the solver.	and References & Citations spend NASA ADS Google Scholar		
	Export BibTeX Citation		
Subjects: Computational Engineering, Finance, and Science (cs.CE) Cite as: arXiv:2412.07166 [cs.CE] (or arXiv:2412.07166v1 [cs.CE] for this version) https://doi.org/10.48550/arXiv.2412.07166	Bookmark ℋ∲		



Why Equilibrium Chemistry?

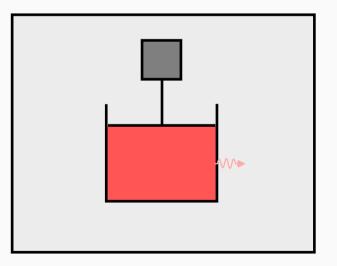
Chemical Reactions are a hallmark of hypersonic flow:


• When reactions are fast, much simplification is possible

How do we solve for Thermochemical Equilibrium?

For a gas in a fixed temperature and pressure scenario, minimise the Gibbs Energy, G:

G = U + pV - TS


How do we solve for Thermochemical Equilibrium?

For a gas in a fixed temperature and pressure scenario, minimise the Gibbs Energy, G:

G = U + pV - TS

Introduce the unusual composition quantity n_s :

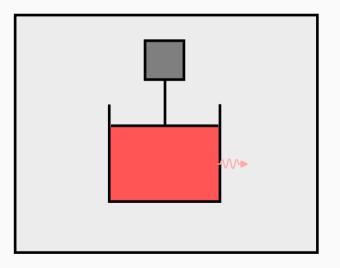
$$n_s = \frac{N_s}{\rho V}$$

How do we solve for Thermochemical Equilibrium?

For a gas in a fixed temperature and pressure scenario, minimise the Gibbs Energy, G:

G = U + pV - TS

Introduce the unusual composition quantity n_s :


$$n_s = \frac{N_s}{\rho V}$$

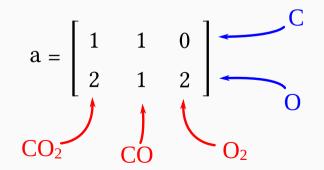
Solve for the minima of the specific Gibbs energy g:

$$g = \sum_{s} n_{s} G_{s}(p, T, n_{0}, n_{1}, n_{2}, \ldots)$$

$$\partial g$$
(0.1 N

$$\frac{\partial g}{\partial n_s} = 0 \qquad s = \left(0, 1, \dots N_{\rm species}\right)$$

A Constrained Minimisation Problem


We have some constraints, usually a fixed initial composition: n_s^0

• Atomic nucleai are conserved in chemical reactions, so the constraint can be written:

$$\sum_{j} a_{js} n_s - a_{js} n_s^0 = 0$$

• Matrix *a* keeps track of which elements are in which species. For example:

$$CO_2 \leftrightarrows CO + \frac{1}{2}O_2$$

A Constrained Minimisation Problem

Using the Method of Lagrange Multipliers

$$\mathcal{L} = \sum_s n_s G_s(p,T,n_s) + \sum_j \lambda_j \left(\sum_j a_{js} n_s - a_{js} n_s^0 \right)$$

Solve for $\frac{\partial \mathcal{L}}{\partial n_s} = 0$ and $\frac{\partial \mathcal{L}}{\partial \lambda_j} = 0$:

A Constrained Minimisation Problem

Using the Method of Lagrange Multipliers

$$\mathcal{L} = \sum_s n_s G_s(p,T,n_s) + \sum_j \lambda_j \left(\sum_j a_{js} n_s - a_{js} n_s^0 \right)$$

Solve for $\frac{\partial \mathcal{L}}{\partial n_s} = 0$ and $\frac{\partial \mathcal{L}}{\partial \lambda_j} = 0$: $\frac{H_s - TS_s^{\circ}}{R_u T} + \ln\left(\frac{n_s}{n}\right) + \ln\left(\frac{p}{p^{\circ}}\right) + \sum_j \lambda_j \frac{a_{js}}{R_u T} = 0 \qquad (s = 0, ..., N_{\text{species}})$ $\sum_s a_{js} n_s - a_{js} n_s^0 = 0 \qquad (j = 0, ..., N_{\text{elem}})$ $\sum_s n_s - n = 0$

Numerical Method: Custom Multidimensional Newton Solver

Start with a guess and iteratively solve a matrix expression for corrections:

$$J\Delta\tilde{x} = -F(\tilde{x})$$

Numerical Method: Custom Multidimensional Newton Solver

Start with a guess and iteratively solve a matrix expression for corrections:

$$J\Delta\tilde{x}=-F(\tilde{x})$$

A couple of complicating factors:

- + We actually want to solve for $\ln(n_s)$
- Most of the rows of J have only a single entry in them
- We can borrow an analytic substitution trick from [1]

Numerical Method: Custom Multidimensional Newton Solver

Each step solves a linear system for equations:

$$\begin{split} \sum_{i} \sum_{s} a_{js} a_{is} n_{s} \pi_{i} + \sum_{s} a_{js} n_{s} \Delta \ln(n) &= \sum_{s} a_{js} n_{s}^{0} - a_{js} n_{s} + \sum_{s} \frac{a_{js} n_{s} G_{s}}{R_{u} T} \\ (j = 0, ..., N_{\text{elem}}) \end{split}$$

$$\sum_{i} \sum_{s} a_{is} n_{s} \pi_{i} + \left(\sum_{s} n_{s} - n\right) \Delta \ln(n) = n - \sum_{s} n_{s} + \sum_{s} \frac{n_{s} G_{s}}{R_{u} T}$$

Then get the change in composition directly:

$$\Delta \ln(n_s) = \Delta \ln(n) + \sum_j a_{sj} \pi_i - \frac{G_s}{R_u T}$$

Of course, it doesn't always work:

• Under relaxation factor Λ based on $\sum_s n$

$$\Lambda = \min \biggl(1, \frac{1}{2} \frac{|\ln(n)|}{|\Delta \ln(n_s)|} \biggr)$$

$$\ln(n_s)^{\rm new} = \ln(n_s)^{\rm old} + \Lambda \Delta \ln(n_s)$$

Of course, it doesn't always work:

- Under relaxation factor Λ based on $\sum_s n$

$$\Lambda = \min \biggl(1, \frac{1}{2} \frac{|\ln(n)|}{|\Delta \ln(n_s)|} \biggr)$$

$$\ln(n_s)^{\rm new} = \ln(n_s)^{\rm old} + \Lambda \Delta \ln(n_s)$$

+ Solve for $\ln(n_s)$ and compute $n_s,$ NEVER the other way around

 $n_s \times \ln(n_s) \to 0$

Of course, it doesn't always work:

- Under relaxation factor Λ based on $\sum_s n$

$$\Lambda = \min \biggl(1, \frac{1}{2} \frac{|\ln(n)|}{|\Delta \ln(n_s)|} \biggr)$$

$$\ln(n_s)^{\rm new} = \ln(n_s)^{\rm old} + \Lambda \Delta \ln(n_s)$$

+ Solve for $\ln(n_s)$ and compute $n_s,$ NEVER the other way around

 $n_s \times \ln(n_s) \to 0$

• Check for convergence using a modified residual:

$$\varepsilon = \sqrt{\sum_{s} n_s F_s^2 + \sum_{j} F_j^2 + F_n^2}$$

Of course, it doesn't always work:

• Check for convergence using a modified residual:

$$\varepsilon = \sqrt{\sum_{s} n_s F_s^2 + \sum_{j} F_j^2 + F_n^2}$$

$$\begin{split} F_s &= \frac{H_s - TS_s^{\circ}}{R_u T} + \ln\left(\frac{n_s}{n}\right) + \ln\left(\frac{p}{p^{\circ}}\right) + \sum_j \lambda_j \frac{a_{js}}{R_u T} \qquad \left(s = 0, \dots, N_{\text{species}}\right) \\ F_j &= \sum_s a_{js} n_s - a_{js} n_s^0 = 0 \qquad (j = 0, \dots, N_{\text{elem}}) \\ F_n &= \sum_s n_s - n \end{split}$$

Lots of facility calculations use a mixture of N₂, O₂, NO, N, O:

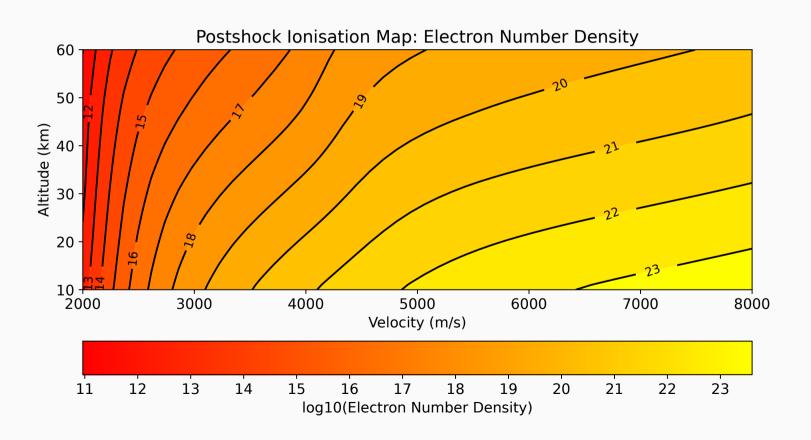
```
from numpy import array
import eqc
spnames = ['N2', '02', 'N', '0', 'N0']
T = 2500.0
p = 0.1*101.35e3
Xs0 = array([0.767, 0.233, 0.0, 0.0, 0.0])
eq = eqc.EqCalculator(spnames)
Xs1 = eq.pt(p, T, Xs0, 1)
print("Xs1: ", Xs1)
```

Example Calculation: 5 Species Air

Lots of facility calculations use a mixture of N₂, O₂, NO, N, O:

• Let's compare against CEA [1]:

	N_2	O_2	NO	Ν	О
eqc	0.747849	0.209004	7.93101e-07	0.0207964	0.0223493
CEA	0.74785	0.20900	7.93200e-07	0.020799	0.022349
error	0.0%	0.0%	0.01%	0.01%	0.0


Lots of facility calculations use a mixture of N₂, O₂, NO, N, O:

- Let's compare against CEA [1]:
- We can verify by finite differencing the Lagrangian $\mathcal L$

	N_2	O_2	NO	Ν	Ο
eqc	0.747849	0.209004	7.93101e-07	0.0207964	0.0223493
CEA	0.74785	0.20900	7.93200e-07	0.020799	0.022349
error	0.0%	0.0%	0.01%	0.01%	0.0
$\frac{\frac{d\mathcal{L}}{dn_s}}{\mathcal{L}}$	0.0	-2.29e-10	0.0	0.0	-2.14e-9

Thanks!

- The GDTk Team: Rowan, PJ, Kyle, Reece, and Rob
- Vince Wheatley
- Typst

Bibliography

Bibliography

[1] S. Gordon and B. J. McBride, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications," 1994.