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Abstract

Control of a hypersonic vehicle in flight requires knowledge of the vehicle state to suffi-

cient accuracy. Particularly important state data are the air data which describe the am-

bient atmosphere, and its interaction with the moving vehicle. Such information includes

vehicle angle of attack, angle of sideslip, and dynamic pressure. Flush air data systems are

commonly installed on blunt-nosed hypersonic vehicles to infer air data through consider-

ation of pressure measurements made at the vehicle surface. An accurate pressure model,

describing the relationship between air data parameters and surface pressure distribution,

is required for such inferences to be made.

In this work, a new computational fluid dynamics code is developed for the primary

purpose of calibrating surface pressure models for use with flush air data systems. In par-

ticular, the hypersonic flight experiment (HYFLEX) vehicle is used as a case study. When

tested with flight data, results from the calibrated HYFLEX flush air data system exhibit

approximately doubled accuracy in estimating vehicle angle of attack and dynamic pres-

sure, compared to an uncalibrated system. Also, the numerical calibration procedure has

accuracy and efficiency advantages, compared to traditional, experiment-based calibra-

tions.

The selection and development of algorithms for use in the computational fluid dy-

namics code are described in detail in the thesis. Particular attention is paid to assessing

the suitability of different numerical approaches and models for simulating the flow pres-

sure field around blunt bodies at high speed. A largely original shock fitting formulation

is used to improve the accuracy and robustness of the computational fluid dynamics pro-

gram. The advection upwind splitting method, combining difference and vector splitting,

is found to be a good technique for computing fluxes in blunt-body flow simulations. Also,

a new modification to the van Albada limiter and monotone upwind scheme for conser-

vation laws is used to provide accurate solution reconstruction. A range of validation and

verification test cases are presented, to ensure that simulation results are credible. Some

common failings of numerical simulation techniques are investigated, and suppressed or

avoided. Such failings include excessive numerical dissipation, shock instability, shock

smearing, spurious numerical noise and oscillation, and odd-even decoupling.
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ẇi Density production rate of speciesi, kg/m3 s

w Cell interface or control volume surface velocity, m/s

w Cell interface or control volume surface velocity vector, m/s

W Vector of species production rates, kg/m3s

xi Mole fraction of speciesi

x Cartesian coordinate, m

Xi Molal concentration of speciesi per unit volume, mol/m3

y Cartesian coordinate, m

z Cartesian coordinate, m

Zi;r Third body efficiency for speciesi, reactionr

� Angle of attack, deg; Grid compression parameter;

Shock speed blending parameter

�i;r Stoichiometric coefficient for reactanti, reactionr

� Angle of sideslip, deg; Grid compression parameter

�i;r Stoichiometric coefficient for producti, reactionr


 Ratio of specific heatscp=cv

Æ Fringe shift offset; Increment

∆ Difference; Increment; Standoff distance, m

� Parameter for the van Albada limiter

� Cone angle, deg; Local flow incidence angle, rad

� Blending parameter

� Bulk viscosity, Pa s; Mean free path, m; Pressure correction scale factor;

Wavelength, m

� Collision frequency, 1/s; Mach angle, deg; Molecular viscosity, Pa s

� Specific volume, m3/kg

� Density, kg/m3

� Standard deviation in pressure measurement, Pa

� Viscous stress, Pa

�i j Term in Wilke’s viscosity law

 Limiter function

! Shock speed upwinding function

Ω Collision cross section, m2
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Subscripts

Æ Standard condition

∞ Free stream value

a Amplitude

b Body

c Curvature

ctr Cell centre

D Flux difference splitting

e Exact solution

g Gauge

i Inner

if Cell interface

k Polynomial coefficient index

L Left

n Normal

o Outer

R Right

S Shock

t Tangential; Total (stagnation)

V Flux vector splitting

vtx Cell vertex

Superscripts

j Iteration number

L Left

R Right

� Best estimate

ˆ Unit vector
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Acronyms

AUSM Advection upwind splitting method

AUSMDV AUSM combining flux difference and vector splitting

CFD Computational fluid dynamics

EFM Equilibrium flux method

ENO Essentially non-oscillatory

FADS Flush air data system

HYFLEX Hypersonic flight experiment

IMU Inertial measurement unit

MUSCL Monotone upwind scheme for conservation laws

NAL National aerospace laboratory of Japan

NASA National aeronautics and space administration of the

United States of America

NASDA National space development agency of Japan

SF3D Shock fitting and capturing three-dimensional Navier-Stokes solver

SVD Singular value decomposition

TLNS Thin layer Navier-Stokes

TVB Total variation bounded

TVD Total variation diminishing





C H A P T E R 1

Introduction

Supersonic and hypersonic flight vehicles are commonly designed and manufactured with

blunt noses. Heat and pressure loadings are often most extreme at the vehicle bow, and

a large nose radius helps to withstand, distribute, and dissipate these loads. For the par-

ticular case of atmospheric entry and re-entry vehicles, high bluntness contributes to the

drag production that is necessary to decelerate from superorbital to subsonic speed. In

contrast, supersonic and hypersonic cruise vehicles need low drag to efficiently maintain

velocity, and this requirement is optimally satisfied with a small but finite nose blunt-

ness.1 Understanding, analysing and predicting high speed flow around blunt bodies thus

poses a practical and important engineering problem; faster and better design of new flight

vehicles depends on it.

Gas flow around the forebody of blunt-nosed vehicles is typically clean, and subject

to few upstream disturbances. By sampling the pressure distribution at the nose of a craft

during flight, it is thus possible to accurately infer vehicle air data parameters, such as

angle of attack, angle of sideslip, and dynamic pressure. The onboard instrumentation

used to perform such estimates in real time, is termed an air data system (ADS). A flush

air data system (FADS) is an air data system where all pressure measurements are made

at tappings flush with the vehicle surface. The new X-332, 3 and X-344 reusable launch

vehicles will both be fitted with flush air data systems.

A pressure model describing the relationship between air data and measured nose

pressures is needed before air data parameters can be estimated. The development of

such models is called air data system calibration, and is a task traditionally undertaken

using empirical or approximate theory, flight data, and ground-based experiments. Some

of these methods were used in the calibration of existing flush air data systems on the

space shuttle orbiter,5 and an F-18 supersonic aircraft.6
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The expense, time, and risks associated with building and flying a test vehicle, coupled

with the difficulty of measuring its flow-field, restrict the use of full flight experiments for

the investigation of hypersonic blunt body flows and FADS calibration. Also, the iterative

nature of investigative experimentation tends to further preclude the frequent use of flight

experiments. The chief advantage of flight experiments, however, is that flow data of high

quality is generally obtained.

A less expensive and, in some ways, more flexible arrangement for investigating blunt-

body flow is ground-based testing. Available ground-based test facilities include projec-

tile ranges and wind tunnels. Realistic simulation of high speed flight in a wind tunnel

requires the production of high speed test flow, which is difficult to sustain for extended

periods. Most hypersonic wind tunnels are impulse facilities, such as shock tunnels or

expansion tubes, which produce short, infrequent, bursts of test flow. Problems with ob-

taining sufficient test time, correct test conditions, and a uniform flow, are characteristic

of impulse facilities. It can also be difficult to make complete, nonintrusive measurements

in the time available for an experiment. Projectile ranges, where the body itself is shot

through the test gas, are effectively immune from flow nonuniformity problems. Projectile

ranges are limited, though, by test time, instrumentation, and flow condition restrictions.

Referring to the role of wind tunnels in fluid dynamical studies, in 1946 von Neumann

said7

“Indeed, to a great extent, experimentation in fluid dynamics is carried out

under conditions where the underlying physical principles are not in doubt,

where the quantities to be observed are completely determined by known

equations. The purpose of experiment is not to verify a theory but to replace

a computation from an unquestioned theory by direct measurements. Thus

wind tunnels, for example, are used at present, at least in part, as computing

devices to integrate the partial differential equations of fluid dynamics.”

Presently, there is no unquestioned theory that both completely and practically describes

all facets of hypersonic flow. However, the fundamental conservation laws, combined

with appropriate approximations about gas behaviour and flow physics, do comprise an

adequate mathematical model in many circumstances. Computational fluid dynamics

(CFD) is the process of solving these equations numerically, and in some circumstances

is more convenient and accurate than using the wind tunnel as an integrator.

It was predicted last century that the development of a computing engine would nec-

essarily guide the future course of science, with the operations of analysis being executed

by machinery.8 In the case of fluid dynamics, this is certainly true. CFD effectively opens

up a flow field, allowing a full set of flow variables to be determined throughout the entire



INTRODUCTION 3

Figure 1.1: Illustration of the HYFLEX beginning descent. (Source: Reference 9)

simulation domain. Additionally, the influences of experimental uncertainty and mea-

surement error are nonexistent. A specific benefit arising from CFD in hypersonic aero-

dynamics, is that the range of available test conditions is only restricted by limitations of

the physical models. Further, craft can be inexpensively tested at full scale, and design

changes can be implemented very quickly. The simulation process is also conducive to

the automatic optimization of vehicle design parameters. From a research perspective,

CFD is useful for assessing the relative strength of competing or complementary physical

processes. The effects of viscosity, turbulence, and chemical reaction on a blunt-body

flow field, for example, can be viewed in isolation or combination. While simulations are

usually precise and repeatable, their accuracy depends on the validity of the governing

mathematical model, and the numerical technique employed to solve it. It is important

that verification and validation of a CFD code is undertaken to ensure that credible results

are produced.

The thesis of this work is that CFD is by itself up to the task of accurately and con-

veniently calibrating flush air data systems for hypersonic blunt-nosed vehicles. Through

the use of CFD, the expense of flight testing and inaccuracy of approximate theory are

avoided. Further, calibration data can be obtained to a fidelity not achievable in ground-

based experimental facilities.

The thesis will be argued using the hypersonic flight experiment (HYFLEX) vehicle

as a case study.10 An illustration of the HYFLEX during re-entry is shown in Figure 1.1.

The vehicle, which flew in 1996, was equipped with the pressure sensor infrastructure
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required for a FADS. A complete FADS was not installed, however, and real time FADS-

based estimates of air data were not produced during the flight. The pressure data recorded

during flight, though, provide an ideal base to test FADS calibration techniques.

1.1 Blunt Body Flows

Since the HYFLEX FADS pressure sensors are located on its blunt nose, a brief introduc-

tion to the flow characteristics of a blunt body in a hypersonic stream is now presented.

A more detailed discussion of blunt body flows is available in Reference 11, and the

semantics of defining aerodynamic bluntness are dealt with in Reference 12.

An diagram of air flow around a cylinder at Mach 6, is shown in Figure 1.2. The

initially uniform free-stream flow is processed by a detached bow shock (S), and subse-

quently enters the shock layer. The hypersonic free stream is undisturbed by the down-

stream obstacle, since the speed of information propagation in that region is slower than

the flow speed. The shock wave is strongest at the point where it is normal to the free

stream inflow (N). Away from this location, the bow shock becomes oblique to the inflow

and weakens, due to relief afforded by the body curvature.

Inside the shock layer, the sonic surface (L) demarks the transonic interface between

subsonic and supersonic flow. For lower speed supersonic inflow, the interface would oc-

cur further downstream than pictured. Within the subsonic region bounded by the sonic

surface, shock, and body, flow information is everywhere propagated in all directions via

pressure waves. The stagnation point (T), is located within the subsonic region, and is

defined as the location where flow impinges on the body in the surface-normal direction.

In the case of an ideal, calorifically perfect gas, and an adiabatic body surface, flow pres-

sure and temperature are highest at the stagnation point. The viscous boundary layer (B)

is initiated at the stagnation point, and grows along the body surface in the downstream

direction. In the presence of adverse pressure gradients, particularly in the shadow region

behind the body, the boundary layer may at some stage separate from the surface.

As gas advects out of the subsonic region, it expands (E) and accelerates into the in-

creased volume between shock and body. The decreasing shock angle, combined with

the effects of flow expansion, usually results in a decrease of both pressure and tempera-

ture. At points downstream of the subsonic region, the increased flow speed means that

pressure waves can not travel back upstream. Hence, the state of the downstream flow

field does not affect the subsonic region, except possibly via electromagnetic field or the

boundary layer. Hence, the simulation of a complete hypersonic vehicle is not necessarily

required to accurately reproduce the flow around its nose. This idea is later exploited,

when simulating the HYFLEX forebody.
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Figure 1.2: A blunt body in a hypersonic stream.

At the high temperatures within the shock layer, the gas may no longer behave in an

ideal manner. In high temperature parts of the flow, gas component species may react

and dissociate or ionize. Reaction catalysis and recombination of species can occur at the

surface. Radiation from the hot shock layer or body may preheat the free stream flow, and

the shock layer itself may be in thermal nonequilibrium.

1.2 Thesis Outline

The aims of this thesis are sixfold:

(i) To develop a new, robust, and accurate computational fluid dynamics code tailored

for the hypersonic blunt-body problem, and air data system calibration.

(ii) To evaluate and verify the new code on various test cases.

(iii) To examine the influence of high temperature gas effects on blunt-body surface

pressure.

(iv) To investigate the use of experiment and approximate theory for the calibration of

flush air data systems.

(v) To develop a technique allowing computational fluid dynamics results to be used

for a flush air data system calibration.
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(vi) To show that a flush air data system on a hypersonic blunt-nosed vehicle may be

accurately and conveniently calibrated using computational fluid dynamics simula-

tions exclusively.

To achieve these aims, we first go thoroughly into the theoretical and mathematical

background of CFD, and draw together the necessary algorithmic components required

for the development of a good code. The new code, named SF3D, is then tested, and sub-

sequently applied to the practical engineering problems of hypersonic vehicle simulation

and FADS calibration. To assist the reader, a breakdown of the purpose and contents of

following chapters is provided below.

Chapter 2. In this chapter, a general framework for the solution of the Navier-Stokes

equations is presented. Finite-volume discretization of a flow field, numerical integra-

tion of the governing equations, and different thermodynamic gas models are described.

Specific attention is paid to the use of finite-volume cells with moving boundaries.

Chapter 3. Reconstruction schemes and flux solvers, which are perhaps the two most

important elements of a CFD code, are covered in the third chapter. Some desirable prop-

erties of these code elements are outlined. A range of different reconstructions and flux

algorithms are surveyed, with particular emphasis placed on their associated advantages

and failings when applied to blunt-body flows. The chapter concludes with a discussion

of an instability that occurs when some of the flux solvers are used to simulate a blunt

heat shield entering the atmosphere of Mars.

Chapter 4. In the fourth chapter, a shock-fitting technique is proposed to alleviate un-

physical instabilities produced by otherwise accurate flux solvers. Shock fitting is shown

to boost accuracy, efficiency, and robustness, and allow simulations to be performed with-

out the addition of excessive artificial dissipation.

Chapter 5. A range of verification and validation test cases are used to demonstrate the

credibility of results generated by the SF3D code. The geometric conservation property

of the code is proven, code speed is tested, order of grid convergence is evaluated, and

temporal convergence is demonstrated. Also, computed results are compared with those

obtained from shock tunnel, expansion tube, and other experiments. Based on the results

in this and preceding chapters, optimal numerical algorithms for blunt-body simulation

are selected.
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Chapter 6. Details of grid construction for simulations of the HYFLEX are presented

in this chapter, and the selection of physical models for the simulations is justified. Also

included are comparisons of CFD HYFLEX simulations with results obtained from shock

tunnel experiments, flight data, and approximate theory. The accuracy of each technique

is individually assessed to determine suitability for use in flush air data system calibration.

Chapter 7. In the seventh chapter, HYFLEX simulation results are used to calibrate its

flush air data system. Air data estimates from the calibrated FADS are compared with

values obtained from the onboard inertial measurement unit and an uncalibrated FADS.

Chapter 8. A summary of the thesis is presented in this final chapter. Conclusions are

made, and some proposals and recommendations are drawn from the work.
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A Navier-Stokes Solver

The primary application of the CFD code to be developed in this thesis is the simulation

of the HYFLEX flight vehicle. We thus require the capability to resolve supersonic and

hypersonic compressible flows with shocks, over a range of flight conditions encountered

on the HYFLEX entry trajectory. In particular, we are most interested in obtaining an ac-

curate description of the pressure field about the vehicle. Accurate pressure data is needed

for the air data system calibration in Chapter 7, and for reconciling flight data and wind

tunnel data with simulation results in Chapter 6. To perform the required simulations, an

accurate and valid mathematical flow model is first needed.

Choosing a model with unnecessarily high accuracy can be counterproductive in prac-

tice, since the most accurate mathematical models are often the most complex and difficult

to solve. Conversely, a formulation exhibiting poor accuracy may not suffice in some ap-

plications. The method of characteristics13 is available for steady, inviscid, continuum,

compressible flow, and is relatively computationally inexpensive. Potential flow theory14

is also relatively inexpensive, and is capable of modelling these flows time accurately. For

transonic flows and flows with strong shocks, however, solving the potential flow equa-

tions becomes more complicated. At a higher computational cost, the Euler equations15

can be used to overcome these limitations and provide greater accuracy. Extra terms must

be added to the Euler equations in order to model viscous effects and heat conduction; the

resulting formulation is the Navier-Stokes equations. For rarefied gas flows, where inter-

molecular spacing is within a few orders of magnitude of a characteristic size of the flow

field, the continuum assumption breaks down and the none of the preceding models are

valid. Direct simulation methods and the Burnett equations are applicable in the rarefied

gas and transition regimes.16, 17
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Since only a small duration of the HYFLEX flight is spent in the rarefied flow regime,

this thesis will be restricted to considering continuum flow only. Further, a time-accurate

continuum model is required to properly simulate the starting processes in some of the

ground-based blunt body experiments which shall be examined later. Also, the accurate

reproduction of a hypersonic blunt body pressure field requires the simulation of viscous

boundary layer effects (demonstrated in Chapter 6). Based on these considerations, the

Navier-Stokes equations are chosen to model most of the flows in this thesis.

This chapter continues with a discussion of the generalized Navier-Stokes equations.

A survey of techniques for discretizing and numerically solving the equations is subse-

quently presented, and the optimal methods for hypersonic blunt body flows are selected

for inclusion in the SF3D computational fluid dynamics code. Various models for trans-

port and thermodynamic gas properties are described, as are chemistry models for reacting

gases.

2.1 The Navier-Stokes Equations

The Navier-Stokes equations describe the motion of continuum, viscous fluids. In integral

form, the generalized Navier-Stokes equations for a control volume can be written as

∂
∂t

Z

V

UdV+

Z

S

FdS=

Z

V

QdV ; (2.1)

whereU is a vector representing conserved flow quantities at points within the control

volume,F is a vector of fluxes across the surface of the control volume, andQ is a vector

of source terms. The scalarsV andSrefer to the volume and surface of the control volume

respectively, andt is the time variable. For the special case of a control volume with a

porous surface moving with constant local velocityw, the vectorsU, F andQ may be

expressed as

U =

2
66664
�

�u

�E

�C

3
77775 ; F =

2
66664

�(u�w) � n̂
�u(u�w) � n̂+Pn̂�Tn̂

�E(u�w) � n̂+Pu � n̂�u � (Tn̂)�q � n̂
�C(u�w) � n̂

3
77775 ; and Q =

2
66664

0

0

0

W

3
77775 :

(2.2)

Here,u is the fluid velocity vector and̂n is a unit normal to the control volume surface,

pointing in the outward direction. The primitive variables�, P, andE represent density,

absolute static pressure, and intensive total energy respectively. Viscous flow stresses are

contained in matrixT, and heat transfer rates in vectorq. Species concentrations within
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the fluid are represented by the vectorC, while W is a vector of species production rates

due to chemical reaction. Explicitly,

C =

2
66666666664

C1

C2

...

Ci

...

CNS

3
77777777775
; and W =

2
66666666664

ẇ1

ẇ2

...

ẇi

...

ẇNS

3
77777777775
: (2.3)

The mass fraction of speciesi is denoted byCi, with i defined in the range[1: : :NS], where

NSis the total number of species present in the control volume. Similarly, ˙wi is the density

formation rate of speciesi.

With the definitions of Equations 2.2 and 2.3, the Navier-Stokes equations ensure

conservation of mass, momentum, energy, and species. For a fluid containing only one

speciesNS= 1, C = [1], andW = [0], and the conservation of mass and conservation

of species conditions become tautologous. None of the physical flows studied in this

thesis contain sources or sinks of mass, momentum or energy (other than those which

enter through control volume surfaces). Thus every element of the source term, with the

exception ofW, is set to zero.

For most of the flows in this thesis it will be convenient to work in a three-dimensional

right-hand Cartesian coordinate system. For such a system, we now define

u =

2
64

ux

uy

uz

3
75 ; w =

2
64

wx

wy

wz

3
75 ; n̂ =

2
64

nx

ny

nz

3
75 ; q =

2
64

qx

qy

qz

3
75 ; andT =

2
64
�xx �yx �zx

�xy �yy �zy

�xz �yz �zz

3
75 : (2.4)

The x, y, andz subscripts refer to coordinate axes pointing in theî, ĵ , and k̂ directions

respectively. Additionally, the first subscript on a viscous stress term� indicates the

normal direction to the plane over which the stress is acting, while the second subscript

refers to the direction of action.

In most practical fluid dynamics problems we are interested in the development of the

flow field (specified byU) through time, or until steady-state is reached. That is, given

U(t = 0) we wish to integrate Equation 2.1 in time fromt = 0: : :tmax, in order to solve

for U(t = tmax). Examining the definitions in Equations 2.2, it is seen that there are not

enough unique relations to close the system and solve forU(t=tmax). Additional relations

describing the properties and behaviour of the fluid are needed. Over a broad range of
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states, a continuum gas closely follows the functional relationships

P= P(�;e;C); (2.5)

T = T(�;e;C); (2.6)

T = T(�;u); (2.7)

q = q(�;T); (2.8)

�= �(T); and (2.9)

W = W(�;e;C); (2.10)

whereT is the gas temperature,e is the internal energy, and� is viscosity. Equations 2.5

and 2.6 are often referred to as equations of state. Equations 2.7–2.9 model the transport

properties of the gas, and Equation 2.10 models gas chemistry. There are some underlying

assumptions and limits to the functional forms expressed in the Equations 2.5–2.10, and

these will be detailed and justified later in the chapter.

To finally close the system of equations introduced in this section, we now express

total energy in terms of internal energy and kinetic energy as

E = e+ 1
2
juj2: (2.11)

In the above expression, gravitational potential energy is assumed negligible.

2.2 Solving the Navier-Stokes Equations

The most efficient and accurate method for solving the Navier-Stokes equations depends

on the nature of the fluid flow problem. For very simple flow problems it is possible

to develop analytical solutions to the Navier-Stokes equations. In general, however, the

equations must be solved numerically.

The practical importance and range of applicability of the Navier-Stokes equations,

coupled with the emergence and advancement of digital computer technology, have in-

spired the development of a wide range of numerical solution procedures over the last 40

years. Each solution technique has strengths and weaknesses, and it is important to select

a technique well-suited to solving a particular flow problem. Some important considera-

tions in selecting a numerical scheme are the boundary conditions, initial conditions and

geometry of the flow domain, as well as the fluid type, accuracy requirements, computer

speed, and problem dimension and scale. Most modern schemes rely on representing the

continuum flow field by a number of discrete samples, or in other words, a discretiza-

tion. We now group numerical solution methods into four broad classes, depending on

the discretization technique.
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Finite-volume schemes.18–20 For schemes in this class, the desired solution domain is

discretized into an array of small, finite, control volumes. The small control volumes are

referred to as cells. The discretization is performed so that no two cells overlap, and so

that no gaps exist between adjacent cell boundaries within the solution domain. Finite-

volume schemes work by solving the integral form of the Navier-Stokes equations for the

flow contained in each cell, so that eventually the entire flow field is advanced in time or

towards a steady-state. Solving the Navier-Stokes equations for each cell is a simple task;

the cells are made small enough so that the flow within them is close to homogeneous.

The required fluxes through each cell surface are determined by considering the properties

of neighbouring cells, or the boundary conditions of the solution domain.

The finite-volume philosophy, then, is to represent the flow as a conglomerate of dis-

crete, locally uniform, sub-flows. Thus it is important that the length scale of flow fea-

tures to be captured in the solution are significantly larger than the length scale of the

finite volume cells. Finite-volume schemes are particularly useful for flows which con-

tain discontinuities, such as contact surfaces and shock waves. The (theoretically) infinite

gradient of flow properties at discontinuities presents few numerical problems for the inte-

gral Navier-Stokes formulation. Additionally, finite-volume schemes have the advantage

of being inherently conservative over the whole solution domain; any flux of a conserved

quantity out of one cell must enter the volume of a neighbouring cell. Complex geome-

tries can be treated in a straight-forward manner by constructing an appropriate mesh of

cells in physical space. There is no requirement for cells to be positioned in an ordered

arrangement. Boundary conditions on edges of the solution domain are reasonably simple

to implement.

Finite-difference schemes.15, 21, 22This class of schemes relies upon representing the flow

field by a structured array of discrete points (or nodes). The differential form of the

Navier-Stokes equations is used to update the flow properties at each node until con-

vergence is reached. Taylor expansions are normally applied to estimate the gradients

of flow properties that are required for solution of the differential equations. In prac-

tice, the Taylor expansions are evaluated by calculating the difference in flow properties

between neighbouring nodes. Since finite-difference schemes require the calculation of

derivatives, difficulties may be encountered if flow discontinuities are present within the

solution domain. Also, these schemes are usually solved in a regular computational space,

rather than directly in physical space. Metrics, which provide a mapping relation between

the spaces, must then be calculated. Complex geometries require complex mappings, and

can be difficult to handle. For finite-difference schemes, particular care must be taken

to ensure that theoretically conserved flow quantities are actually conserved in physical
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space. Finite-difference schemes are well-known, the oldest in use for computational fluid

dynamics, and are usually easy to implement.

Finite-element schemes.23, 24These schemes can be used to solve the Navier-Stokes equa-

tions in integral form. Discretization is performed by subdividing the problem domain

into non-overlapping geometric elements of arbitrary shape and size. It is assumed that

the solution to the Navier-Stokes equations for each element takes a particular functional

form, and the equations are subsequently solved in a function space. Nodes, lying on

or inside each element, are used for the evaluation of the function values and derivatives

required for solution. While finite-element methods have been well developed for solv-

ing the incompressible Navier-Stokes equations at low Reynolds numbers, they are not in

common use for compressible flow problems.

Spectral methods.25, 26 In these methods, the governing fluid dynamics equations are

solved globally in wave space as a combination of polynomial basis functions. Com-

pared to finite-difference and finite-volume methods, spectral schemes exhibit low dissi-

pation and high accuracy and efficiency. Spectral methods, though, are currently limited

to solving problems with relatively simple geometry and limited boundary conditions.

Also, difficulties can be encountered in dealing with flow discontinuities. Considerable

research work has been directed at alleviating these restrictions.27

For all methods, we should expect to get the same solution in the limit of an infinitely

fine discretization and infinitely precise computer arithmetic. While each class of numer-

ical schemes takes a different approach to solving the Navier-Stokes equations, definite

similarities and relationships exist between the classes. Spectral methods, for example,

can be viewed as very high order finite-difference methods.25 Finite-element methods,

meanwhile, are the analog of spectral methods applied locally. Finite-element and finite-

volume methods also share properties; both are used to solve the integral form of the

Navier-Stokes equations over an array of geometric entities, and the finite-volume method

can be written as a finite-element weak formulation.23 Further, Selmin (1993) describes

a node-centred finite-volume technique that provides a spatial discretization equivalent to

both cell-centred finite-volume and finite-element methods.28

This simulations performed in this thesis are concerned with compressible flows con-

taining discontinuities, over a range of blunt-body geometric arrangements. Considering

these specifications, a finite-volume scheme is the most attractive numerical method be-

cause (i) spectral and finite-difference solvers do not offer the geometric flexibility of the

finite-volume method, (ii) it is usually more difficult to implement boundary conditions
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using the spectral and finite-element techniques, compared to the finite-volume technique,

(iii) the finite-volume technique guarantees physical conservation laws, (iv) flow discon-

tinuities are easily captured with finite-volume methods, and (v) for compressible flows,

current finite-volume methods are further evolved than finite-element methods.24 The re-

mainder of this chapter, then, is devoted to the development a new finite-volume CFD

code. Although some of the presented treatment and algorithms are specific to finite-

volume methods, much of it is applicable to the other classes of schemes also.

2.3 Volume Discretization

Before application of the finite-volume method, the entire flow domain must be dis-

cretized into a grid of non-overlapping control-volume cells. A finite-volume CFD code

can operate on either unstructured, structured, or hybrid grids.

Unstructured grids are composed of polygonal cells interconnected in an unordered

fashion. Triangular cells are normally used in two dimensional domains, with tetrahe-

drals commonly used in three dimensions. The cells, however, are allowed to be any

shape and have any number of neighbouring cells. These properties make unstructured

grids appealing for use with geometrically complicated flow domains. The flexibility of

unstructured grids is particularly useful for adaptive-grid codes, where cells need to be

added and deleted during the solution process. In terms of computer requirements, the

irregular positioning of cells means that connectivity information between cell interfaces

and nodes must be held in memory. Unstructured grid housekeeping requires dedicated

code, and can become cumbersome.

In contrast, structured grids are composed of cells connected in an ordered, regular

way. In two dimensions the cells must be quadrilateral, while in three dimensions the

cells must be hexahedral. An example of a three-dimensional structured grid is shown in

Figure 2.1. The regularity of the grid makes it possible to uniquely reference any cell with

three indices. Structured grids, though, do not have the geometric flexibility of unstruc-

tured grids, and are more difficult to apply to complicated geometries. Using multiple

blocks of structured grids can alleviate this problem to some degree. A strong advantage

of structured grids is the ease of computer implementation — the regular cell ordering

simplifies the storage and referencing of cells in memory. Since information about a cell

and its neighbours is normally stored in close proximity, the benefits of computer cache

memory is maximized. Additionally, structured grid codes are generally well-suited to

vector and parallel processing.

A beneficial property of structured grids is that it is easy to align cells near the edges

of the flow domain orthogonal to the boundary geometry. When the boundary represents a
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Figure 2.1: A structured discretization of the solution domain.

non-slip wall in a viscous simulation, this becomes an important property for the accurate

simulation of boundary layers; it is a simple matter to arrange structured grid cells in a way

that efficiently and accurately captures boundary layer gradients. It is more difficult to do

the same with an unstructured grid.29 Hybrid structured/unstructured grids combine the

geometric flexibility of unstructured grids, with the boundary layer capturing properties

of structured grids. Unfortunately hybrid grids also come with the expense of increased

code complexity.

The blunt-body shapes to be simulated in this thesis are not complex enough to warrant

the use of unstructured grids (and consequently incur the disadvantages associated with

them). Thus we choose to employ a structured grid, with the form and nomenclature

described by Figure 2.1.

Grid geometry can either be described directly in a physical coordinate system, or by

metrics linking a computational domain to the physical system. The use of metrics, to

some extent, allows the separation of geometry considerations from the core flow solver.

However, metrics do add complexity to the numerical formulations, and make it more dif-

ficult ensure that the flow solver remains conservative. In this thesis, a physical coordinate

system will be used throughout.

Grid quality can have a large bearing on solution accuracy. In fact, it is just as im-

portant to have a good grid as an accurate solver.28 A desirable grid property is high

resolution (more cells) in areas of the flow with strong gradients. Significantly distorted

cells, cells with large aspect ratios, singularities, and neighbouring cells of disparate sizes

should usually be avoided. Cell alignment relative to the flow direction is another impor-

tant grid property, and can have either beneficial or detrimental effects. These effects are

discussed in Chapters 3, 4, and 5.
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Figure 2.2: Nomenclature for the centre, vertices, and interfaces of cell(i; j;k).

2.3.1 Cell Nomenclature

Figure 2.2 defines the nomenclature used to reference the components of a generalized

hexahedral finite-volume cell. The geometric centre of cell(i; j;k) is denoted by ctr(i; j;k),

and is associated with the average flow properties contained within that cell. The cell ver-

tex shared between cell(i; j;k) and cell(i�1; j�1;k�1) is designated as vtx(i; j;k). The

geometry of a cell is completely defined by its eight vertices. Cell faces which are normal

to the i-index direction are referenced using ifi, with ifj and ifk being similarly defined.

The interface shared between cell(i; j;k) and cell(i�1; j;k) is denoted by ifi(i; j;k). The

geometric centre of an interface is associated with the average fluxes which pass through

that interface.

Each cell — providing it is not located on the edge of the grid — shares geometry

with 26 neighbouring cells. The entire grid, excluding boundaries, may thus be defined

using just one set of vertex coordinates per cell. Likewise, each cell is uniquely associated

with only three of its six interfaces. In practice, the elimination of duplicated geometry

data reduces the computer memory required to perform CFD simulations.

2.3.2 Cell Geometry

Formulations for computing geometric properties of a nonorthogonal hexahedral cell are

now presented. These properties include cell volumes, face areas, and centroids, and are

required for the solution of the discretized Navier-Stokes equations.

It should first be noted that each face of a hexahedron contains an extra vertex than

is required to define a plane. If the location of all cell vertices are arbitrarily chosen, it

is not guaranteed (nor likely) that the four vertices on each cell face will be coplanar.

Hence each face of a truly general hexahedron is actually a curved surface. While it

is desirable to allow the arbitrary selection of cell vertices, we would at the same time
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Figure 2.3: Triangulation of cell faces.

like to avoid the complexities associated with defining and managing curved cell faces.

To simplify the volume discretization, we now decompose each hexahedron face into

two (obviously planar) triangles. Thus the cells are no longer strictly hexahedra, but are

instead hexahedroid dodecahedra.

The manner in which the hexahedron faces are decomposed is shown in Figure 2.3.

Extra edges are defined by the linesDB, DG, DE, FA, FH, andFC. The regularity of

the surface triangulation ensures that grid integrity is maintained when cells are stacked

together.

The volume of the cell can be evaluated by considering the hexahedroid to be com-

posed of six tetrahedra, with three tetrahedra located on each side of the internal boundary

ADFG. With reference to Figure 2.3, the total signed cell volume is equal to the sum of

the tetrahedron volumes:

VABCD
EFGH

= 1
6

�
AF � (AB�AD)+AE � (AF�AD)+DE � (DF�DH)

+DH � (DF�DG)+DG � (DF�DC)+DF � (DB�DC)
�
: (2.12)

The cell centroid is calculated as the volume-weighted mean of the tetrahedron cen-

troids. The centroid of a tetrahedron is simply the average of its vertex position vectors.

It is easy to show that the area of each complete hexahedroid face is independent of

the choice of triangulation vertices. The outward-pointing vector area of faceABCD, for

example, is

AABCD = 1
2
AC�DB; (2.13)

while the surface normal is

n̂ABCD =
AABCD

jAABCDj
: (2.14)
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We deem the centroid of a hexahedroid face to be coincident with the area-weighted

mean of the centroids of its two component triangles. Note that this definition does not

mean that the face centroid will necessarily be coplanar with either of the triangles. The

centroid of a triangle is just the average of its vertex position vectors.

2.4 The Discretized Navier-Stokes Equations

The Navier-Stokes equations are now discretized for application to a finite-volume cell.

Since cell centre flow properties represent the averaged values for the cell volume, the

volume integrals in Equation 2.1 become trivial. Similarly, by assuming cell-interface

fluxes to be uniform over each cell face, the surface integral may easily be evaluated. For

a single cell, Equation 2.1 can thus be recast as

∂
∂t

(UctrV) = QctrV�∑
if

Fif Aif : (2.15)

The volume of a cell with moving surfaces is a function of time, and thusV remains inside

the time derivative. Integrating Equation 2.15 with respect to time, fromtn to tn+1, yields

Un+1
ctr Vn+1�Un

ctrV
n =

Z tn+1

tn

QctrV dt�
Z tn+1

tn

�
∑

if

Fif Aif

�
dt; (2.16)

and, after rearrangement,

Un+1
ctr =

1
Vn+1

�
Un

ctrV
n+

Z tn+1

tn

QctrV dt�∑
if

Z tn+1

tn

Fif Aif dt

�
: (2.17)

Given the initial state of the cell defined byUn
ctr, the flow propertiesUn+1

ctr of the cell

at a later time can be determined by evaluating the right-hand-side of Equation 2.17.

Specifically, methods for evaluating the inviscid terms of the flux vectorFif are discussed

in Chapter 3. Section 2.8 details a technique for evaluating the viscous flux terms. A

procedure for determining the source termQ is described in Section 2.10, and the time-

behaviour of the geometry-related terms,Aif andV, is addressed in Section 2.7. Numerical

techniques for performing the time integrals in Equation 2.17 are presented in Section 2.6.

2.5 Behaviour of the Navier-Stokes Equations

The most appropriate approach for solving the discretized Navier-Stokes equations is, in

part, dictated by the mathematical behaviour of the equations in different flow regimes.

We begin this section with a description of the properties of the Navier-Stokes equations

at steady state.



20 A NAVIER-STOKES SOLVER

Subsonic
Zone

Sonic Line

Supersonic Zone
Hyperbolic Behaviour

Supersonic
Stream

B
ow

S
ho

ck
W

av
e

Mach 6

Hyperbolic
Behaviour

Supersonic Zone
Hyperbolic Behaviour

Sonic Line

Elliptic
Behaviour

Figure 2.4: Steady inviscid flow around a cylinder in air at Mach 6.

The spatially hyperbolic nature of the steady (time-independent) supersonic Navier-

Stokes equations can be exploited to expedite a solution. For wholly supersonic flow,

the characteristic signals are everywhere real and always propagated in the downstream

direction. In other words, the flow properties at a single spatial point in the flow are

only dependent on upstream conditions, and, in turn, will influence only the downstream

flow. Thus, by solving an upstream portion of the flow field first, and then continuing to

march downstream, we automatically ignore any downstream influences and utilize the

dependency properties. This technique is known as space-marching, and is an efficient

way to solve steady supersonic flow problems.29

For steady subsonic flow the Navier-Stokes equations are spatially elliptic. Charac-

teristics are everywhere imaginary, and signals are propagated in every direction.30 The

properties at a single point in the flow will thus influence the state of the entire flow field,

and conversely. A range of iterative methods can be applied to solve elliptic problems,

including the Jacobi and Gauss-Seidel relaxation schemes, as well as the alternating di-

rection implicit scheme. These iterative methods are described in Reference 31 and will

not be detailed here.

In many aerospace applications, mixed flow fields containing subsonic, transonic, and

supersonic regions are common. Figure 2.4 shows typical flow around a blunt body in a

supersonic stream. A space marching technique could not be used to solve the Navier-

Stokes equations for this flow, since it would be physically incorrect in the subsonic zone

and exhibit instability. Similarly, spatially iterative methods would become unstable in
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the free stream and post-shock supersonic zones.32 It is not usually a viable option to

mix these solvers over the solution domain, since the exact location of sonic transition in

mixed flows can not always be deduced beforehand.

A solution to the mixed flow problem is to solve the unsteady Navier-Stokes equations

— even if only a steady-state solution is required. Since the state of the flow field at a

given instant has no physical influence on earlier states of the flow field, the equations

always exhibit hyperbolic properties with respect to time. Thus, by marching through

time (rather than space) it is possible to solve the Navier-Stokes equations in a stable

manner over a wide range of flow conditions. To boost solution efficiency for steady

flows, however, it may still be desirable to solve portions of the flow that are guaranteed

to be supersonic using a dedicated space-marching method. This technique is particularly

useful for long, slender blunt bodies.

2.6 Time Integration

The time integrals in Equation 2.17 define the temporal evolution of the solution domain.

In general it is not possible to evaluate these integrals analytically, and a form of numeri-

cal iteration must be used to march the flow field solution forward in time.33 The optimal

numerical integration method is dictated by a number of considerations, including the re-

quired temporal accuracy of solution, the characteristics of the flow field (which are in turn

reflected by the characteristics of the Navier-Stokes equations), whether a steady-state or

time-accurate solution is desired or needed, and the availability and type of computer re-

sources. With these issues in mind, we now describe two approaches to iterative time

integration and discuss their relative merits.

Explicit methods use an approximation to the exact time integral that requires knowl-

edge of just the current state of the flow field. The approximation, however, is usually only

valid and accurate for a small subsequent time period. Explicit methods thus rely on incre-

mentally progressing a flow field solution in small timesteps, until the desired simulation

time or steady-state convergence is reached. Implicit time integration methods formulate

the flow solution at a subsequent time in terms of the flow field state at subsequent, cur-

rent, and (sometimes) previous times. The new flow field is thus partially expressed in

terms of unknowns, and solution requires the inversion of matrices containing large sets

of simultaneous relations. For non-linear problems, implicit methods commonly employ

timestepping in a similar manner to the explicit methods.

Although implicit and explicit methods both use temporal discretization, their mathe-

matical behaviour differs significantly. In explicit schemes, the magnitude of the timestep

is restricted by numerical stability considerations and is highly dependent on the nature of
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the flow field and grid geometry. Most implicit schemes, however, retain stability at larger

timesteps, with some implicit schemes being unconditionally stable.32 Larger timesteps

are usually desirable, since fewer iterations are required to integrate over a given time

period.

The improved stability and larger timesteps of implicit schemes come at the cost of

increased code complexity, and higher per-step computational effort. Before selecting a

time integration method it is important to consider the balance between the number of

timesteps required to complete a simulation, and the number of operations required to

complete each step. For Euler flows of ideal gases, an implicit scheme will generally

converge to a steady-state solution sooner than an explicit scheme. The larger timesteps

of implicit schemes, however, may cause the time history of flow development to be

poorly resolved in the interim. For an implicit method, the timestep must be reduced

to get an accurate picture of unsteady flow development, thereby negating its efficiency

advantage to an extent. Also, in stiff systems containing a range of disparate timescales

(due to non-core flow processes such as viscous and chemical nonequilibrium effects) the

timestep must necessarily be reduced anyway, further reducing the advantage of implicit

methods.34 In practice, explicit schemes are relatively simple to code and implement, and

are easily cast in a form suitable for efficient parallelization.15, 34 They are less memory

intensive than implicit schemes, since only one flow field solution needs to be stored at a

time. Explicit schemes are compatible with any flux solver, and do not require linearized

flux operators.

The simulation work carried out in this thesis is mainly concerned with steady and

unsteady viscous flows in chemical nonequilibrium. Here, the efficiency gains afforded

by implicit methods for particular steady flows do not outweigh the versatility and sim-

plicity of explicit methods for all flows. Explicit time integration is thus implemented in

SF3D. The steady flows investigated in this thesis are still solved by SF3D in a time accu-

rate manner using the explicit integrator; this technique is referred to as pseudo-unsteady

calculation.33

2.6.1 Euler Integration

A simple, explicit approximation to the time integrals in Equation 2.17 is given by the

first order Taylor series expansion

Un+1
ctr =

1
Vn+1

�
Un

ctrV
n+

�
Qn

ctrV
n �∑

if

Fn
if A

n
if

�
Æt

�
; (2.18)
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which is often referred to as the Euler method. Here, the incremental timestepÆt is defined

as

Æt = tn+1� tn: (2.19)

Second and higher order terms have been neglected in Equation 2.18, and the approxima-

tion has local error of orderÆt2. After integration over many timesteps, the error terms

accumulate and a global error of orderÆt occurs.35

2.6.2 Runge-Kutta Integration

Numerical integration using the Euler method can be made arbitrarily accurate by re-

ducing the timestep size. To an extent, though, it is more efficient to achieve greater

accuracy by using a higher order scheme, rather than choosing a smaller timestep. High

order Runge-Kutta methods were first applied to finite-volume problems by Jameson,36

and have been widely used since.35, 37 Runge-Kutta methods for any order of accuracy are

available, with the first-order scheme being identical to the Euler method. Dick19 cites a

modified fourth order accurate Runge-Kutta scheme as giving the best compromise be-

tween allowable timestep (defined by stability considerations) and computational effort

per step. In numerical experiments, a six stage Runge-Kutta scheme was found to be

most efficient in solving a steady aerofoil flow.38

A disadvantage of high order methods is the increased computer memory require-

ments. A second order Runge-Kutta scheme, for example, requires double the storage

capacity of the Euler method. Similarly, third and fourth order schemes require at least

triple the storage capacity of the Euler method. For the large grids used to solve the

three-dimensional, viscous flows investigated in this thesis, memory usage is a signifi-

cant consideration. Excessive memory access can result in cache misses and cause code

performance degradation, while a lack of available memory limits grid resolution and

simulation size. A second order Runge-Kutta timestepping scheme was implemented in

the SF3D code, to keep memory requirements manageable. Additionally, since second

order spatial reconstruction is used within the code (see Chapter 3), a higher than second

order time integration scheme would be wasteful.

The conservative, second order Runge-Kutta method used in SF3D incorporates two

stages. First, the Euler method is invoked to determine a first order approximation to the

flow field at a half timestep,

Un+ 1
2

ctr =
1

Vn+ 1
2

�
Un

ctrV
n+

�
Qn

ctrV
n �∑

if

Fn
if A

n
if

�
Æt
2

�
; (2.20)
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and the fluxes at half-time are calculated and subsequently used to step the original solu-

tion forward by the full time increment,

Un+1
ctr =

1
Vn+1

�
Un

ctrV
n+

�
Qn+ 1

2
ctr Vn �∑

if

Fn+ 1
2

if An
if

�
Æt

�
: (2.21)

2.6.3 Stability Limits

To retain stability during explicit time integration, we restrict the maximum allowable

timestep by the condition

Æt �Ctc; (2.22)

whereC is the Courant-Friedrichs-Lewy (CFL) number39, 40 andtc is the smallest charac-

teristic timescale of physical processes occurring in the flow. For the flows investigated in

this thesis, the physical processes include both inviscid fluid advection and viscous shear.

We thus define

tc = min(tinviscid; tviscous): (2.23)

A convenient, approximate choice for the inviscid timescale is the minimum time taken

for a wave signal to cross a finite volume cell in the solution domain. Hence,

tinviscid = min
if

 
jhif j��uctr � ĥif

��+actr

!
: (2.24)

wherea is the local sound speed andhif is the vector spanning a cell between opposite

face centroids. The viscous timescale will be discussed later.

If it is desired to march all cells forward with a uniform timestep, the limiting timestep

will be defined by the cell with the smallest characteristic timescale. If time accuracy is

not required, however, it is possible to accelerate convergence to a steady state solution

by using the local timestep limit for each cell.

For both the Euler and second order Runge-Kutta schemes, experience reveals that sta-

bility is usually achieved when the CFL number is in the range 0�C� 0:5. Additionally,

Gottlieb and Shu have shown that these schemes exhibit the total variation diminishing

(TVD) property for hyperbolic systems, so long as the CFL number is kept at, or less

than unity.41 The TVD property guarantees that new extrema will not be exhibited within

the solution domain, thus helping avoid the development of unphysical oscillations. It is

interesting to note that no basic fourth order Runge-Kutta methods are TVD.41



THE GEOMETRIC CONSERVATION LAW 25

Figure 2.5: A moving cell interface.

2.7 The Geometric Conservation Law

In any computational fluid dynamics problem, and especially those in which a moving

grid is used, it is important that consistency between the properties of geometrical entities

is maintained. One important condition is that the sum of the cell volumes must always

equal the volume of the entire solution domain, for example. For a moving grid, this

implies that any extra volume accumulated by one cell must be accounted for by the loss

of the same volume from other cells or movement of the domain boundaries. Thus, any

volume change of a single cell must exactly correspond to the volume swept by its moving

surfaces. This, in essence, is the Geometric Conservation Law (GCL). Any violation of

the GCL translates to violation of physical conservation laws also.

Thomas and Lombard42 have developed GCL expressions for the grid metrics of

finite-difference flow computations performed in the computational domain. Gaitonde

et al.43 derive analogous expressions for two-dimensional finite-volume schemes in phys-

ical space. We now develop the GCL for finite-volume cells in three dimensions. With

reference to Equation 2.1, the general expression for geometric conservation on a control

volume is

∂
∂t

Z

V

dV+

Z

S

w � n̂dS= 0: (2.25)

Performing a spatial discretization for a finite volume cell, and integrating with respect to

time, yields

ÆV =�∑
if

n+1Z

n

Aif wif � n̂dt: (2.26)
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where, without loss of generality, the velocity of each interfacewif is nominally taken as

the average of its four vertex velocities. A first order approximation to the time integral

gives

ÆV 0 =�∑
if

An
if w

0

if � n̂Æt: (2.27)

where, in this case,w0

if =wif and is constant over[n;n+1). The higher order terms missing

from Equation 2.27 means thatÆV 0 will not necessarily equalÆV. For exact compliance

with the GCL, the volume quantities must be equal. We now define a condition for a new

interface velocity which guarantees geometric conservation:

w0

if � n̂ =
1

An
if Æt

n+1Z

n

Aif wif � n̂dt: (2.28)

The integral in Equation 2.28 is just the swept interface volume between timesteps. For

the cell interfaceABCD at timestepn (shown in Figure 2.5) the new interface vertex

positions at stepn+1 are exactly

An+1 = An+wAÆt; (2.29)

Bn+1 = Bn+wBÆt; (2.30)

Cn+1 = Cn+wCÆt; and (2.31)

Dn+1 = Dn+wDÆt: (2.32)

Thus Equation 2.28 simplifies to

w0

if � n̂ =
Vs

An
if Æt

; (2.33)

whereVs is the swept volume defined by the vertices[ABCD]n[ABCD]n+1. A similar

GCL argument can be made for the second order Runge-Kutta scheme presented in Sec-

tion 2.6.2, yielding the same result.

Equation 2.33 may be heuristically interpreted as compensation for neglecting the

effect of the change in interface area between timesteps. It is this effect which would

ordinarily be encompassed in the higher order terms absent from Equation 2.27. The

formulated expression forw0

if ensures consistency between the actual swept interface vol-

ume and the swept volume computed under the approximation of a constant-area interface

(denoted by the asterisked points in Figure 2.5).

In practice, the corrected interface velocityw0

if is usually very close towif . Because

the volume calculations required for Equation 2.33 add to computational expense, there

is an option in SF3D to turn GCL adherence off. It should also be noted that the GCL in-

terface velocityw0

if is only required for substitution into terms in Equations 2.18 and 2.21;

elsewherewif is used as the interface velocity.



TREATMENT OF DIFFUSIVE TERMS 27

2.8 Treatment of Diffusive Terms

According to Stokes, the viscous stresses in a Newtonian fluid can be expressed by

T =

2
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In the expressions,� is the molecular viscosity coefficient and� is the second (or bulk)

viscosity coefficient. The Stokes hypothesis

3�+2�= 0 (2.35)

is used to relate the two coefficients.

Assuming that the heat transfer rate within the fluid is proportional to temperature

gradient, Fourier’s law is used to write the heat conduction term as

q = k

�
∂T
∂x

∂T
∂y

∂T
∂z

�T

: (2.36)

The thermal conductivityk is evaluated by assuming a Prandtl number and applying the

definition

Pr=
cp�

k
; (2.37)

wherecp is the specific heat of the fluid at constant pressure. Physically, the Prandtl

number gives an indication of the relative magnitudes of the diffusion of momentum and

heat in the fluid. For a specific gas the Prandtl number is not strongly pressure dependent,

but does vary somewhat with temperature.44 For air, the Prandtl number remains within

�0:05 of 0.72 over the temperature range 100 – 2500 K. Since the variation is not large,

we will make the assumption of constant Prandtl number. A Prandtl number of 0.72 is

also reasonably accurate for the homogeneous gases H2, O2, N2, and CO2.

To solve the finite-volume discretized Navier-Stokes equations (2.17) we need to eval-

uate the viscous stress and heat transfer terms at cell interfaces:T if andqif . Examination

of Equations 2.34 and 2.36 shows that we first need to know the corresponding velocity

and temperature gradients at the interfaces. To solve for these quantities, an auxiliary

mesh is constructed. The auxiliary mesh is defined by constructing cells with vertices

coincident with the primary mesh cell centres. Figure 2.6 depicts the geometry of a single
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Figure 2.6: Auxiliary cell geometry.

auxiliary cell. For the special case of auxiliary cells near the primary mesh boundaries or

corners, the auxiliary cell vertices are defined by the centroids or vertices of the primary

mesh boundary interfaces respectively. The flow properties at the auxiliary cell vertices

are set equal to those at the corresponding primary mesh cell centres, and the properties

at the auxiliary cell interface centroids are taken as the average of the auxiliary interface

vertex values. Next, Gauss’ theorem is applied to determine the average flow gradients

within the auxiliary cells. The local gradient of the vector velocity field can be written as

∇ �uctr =
1
V ∑

if

uif �A if ; (2.38)

while the partial derivative of any scalar quantitys with respect tox, for example, is just

∂s
∂x

=
1
V ∑

if

sif(A if � î): (2.39)

Since the auxiliary cell volumetric centroids are in close proximity to the primary cell

vertices, it is assumed that the gradients at both points are equal. Thus, the gradients at

primary cell interface centroids may finally be evaluated by averaging the values at each

of their four vertices.

Accurate calculation of the viscous effects in boundary layer flows requires sufficient

mesh resolution. To achieve the correct resolution, it is common practice to perform grid

compression near such regions. The compression function implemented in SF3D, for

clustering in thei index direction, is

c=

 
ivtx

i vtx
max

!" 
ivtx

i vtx
max

!�

(1��)+�

#
; whereivtx = 0;1; : : : ; i vtx

max
: (2.40)

The compression functionc varies between zero and one and, for a givenj andk, indicates

the location of theith cell vertex for a grid of span unity. The function is easily scalable

for application on grids of varying dimension. The� parameter dictates the clustering

severity, with a large value producing tight clustering towards thei = 0 boundary, and a

value of zero producing an equispaced grid. The minimum cell size is limited to a fraction
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� of the cell size in an equivalent equispaced grid. The� parameter is especially useful

for generating grids with fine but nearly evenly spaced cells near the wall. By setting

� to an appropriate value, it is possible to avoid the generation of a single, overly thin

cell at the boundary, which could severely limit the timestep through Equation 2.24. The

clustering parameters should be selected in the range�� 0, and 0� � � 1.

We now specify a characteristic viscous timescale for use with Equation 2.23, to main-

tain solver stability. An expression adapted from Reference 45 is used:

tviscous=
�Pr

4�

�

1
hifi

2 +
1

hifj
2 +

1
hifk

2

� : (2.41)

In the above,
 is the ratio of specific heatscp=cv.

2.8.1 Approximate Viscous Stress Models

The full Navier-Stokes equations for laminar flow are used throughout the SF3D code.

For some specific flows, however, approximations to the viscous terms can be used to

speed computation and minimize memory usage. These approximations are now briefly

surveyed.

Solution Matching Strategy.46, 47 For some flows, such as that over a flat plate, viscous

effects are only of importance near wall boundaries, and viscous effects elsewhere can be

safely ignored with no significant accuracy degradation. Hence an Euler solver could be

used to solve the bulk of the flow, while a boundary layer solver, analytical technique, or

empirical approximation is applied to resolve the boundary layer. Matching solutions at

the viscous/inviscid interface can cause problems such as entropy layer swallowing,48 and

the strategy may only be used in the absence of flow separation and recirculation.

Thin Layer Navier Stokes. The thin layer Navier Stokes (TLNS) equations are ob-

tained by neglecting gradients in the wall direction from the viscous terms in the full

Navier-Stokes equations. The simplification is usually valid, since grid compression (used

to capture shear gradients normal to the wall) causes poor accuracy in the resolution of

gradients in the wall direction anyway. Although the TLNS equations are cited as capable

of resolving separated and reverse flow regions successfully,49 it is still better to use the

full Navier-Stokes equations when these regions dominate the flow.50

Parabolized Navier Stokes.49 The parabolized Navier-Stokes (PNS) equations are most

applicable to flows with one dominant flow direction. In the PNS equations, all stream-

wise derivatives are neglected from the viscous terms in the full Navier-Stokes equations.
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Space marching can be applied to solve the PNS equations efficiently, at the cost of ad-

mitting only steady-state solutions. The PNS equations can not be used for streamwise

separated flows, or blunt body flows with large sonic zones where the physical upstream

transmission of information would be prevented.

Viscous Shock Layer.48, 51 The viscous shock layer (VSL) equations are another approxi-

mation of the Navier-Stokes equations, parabolized in both the streamwise and crossflow

directions. Although more approximate than the PNS equations, the VSL equations can

be used to compute blunt body flows containing sonic zones. The VSL equations, how-

ever, exclude time-accurate solutions and are not applicable to flows that are separated in

either the streamwise or crossflow direction.

2.8.2 Viscosity Models

The viscosity of air at relatively low temperatures is well described by Sutherland’s law,

�= 1:456�10�6 T
p

T
T +110:4

Pa�s; T � 3000 K; (2.42)

where the air temperatureT is in Kelvin units. For higher temperature air or reacting

air, or any other heterogeneous gas, we use Wilke’s law to derive the viscosity of a gas

mixture in terms of the viscosity of its individual component species.52 Wilke’s law is

based on kinetic theory, and states that the mixture viscosity� is approximately

�=

NS

∑
i=1

xi�i

NS

∑
j=1

xj�i j

; (2.43)

where the viscosity and mole fraction of an individual gaseous speciesi are given by�i

andxi respectively. Appendix A gives curve fits for the viscosity of a range of species as

a function of temperature. The species mole fractions can be easily expressed in terms of

mass fractions by

xi =
Ci M
Mi

; whereM =

NS

∑
j=1

Mj

Cj

: (2.44)

The molecular weight of speciesi is given byMi, andM represents the molecular weight

of the mixture (that is, mass of mixture per mole of mixture). The�i j term in Equa-

tion 2.43 is defined as

�i j =
[1+(�i=� j)

1=2(Mj=Mi)
1=4]2

[8(1+Mi=Mj)]
1=2

; (2.45)
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with �ii clearly being equal to unity. The value of� ji can be efficiently computed from�i j

using the identity

� ji = �i j

� j Mi

�i Mj

: (2.46)

Computation can be further simplified by invoking the Herning and Zipperer approxima-

tion:53

�i j �
q

Mj=Mi: (2.47)

2.9 Thermodynamic Gas Models

Accurate thermodynamic descriptions of the fluid are required to close the Navier-Stokes

equations, via the functional Equations 2.5 and 2.6. These equations specify that relations

linking temperature and pressure to the fluid composition, density, and internal energy,

are needed. To provide such relations, we now present two thermodynamic models of

different complexity and accuracy. For the following treatment, the nomenclature lists

the default units that the SF3D code assigns to the various thermodynamic quantities. All

of the expressions are generalized, however, and should work with any consistent set of

units.

2.9.1 Thermally Perfect, Ideal Gas

The ideal gas equation of state relates the pressure, temperature, and density state vari-

ables by

P= �RT; (2.48)

whereR is the gas constant, and can be expressed in terms of the universal gas constant

R through

R= R =M; whereR = 8:31435 J/molK: (2.49)

Equation 2.48 generally exhibits good accuracy at the high temperatures encountered in

supersonic and hypersonic flow. The accuracy degrades, however, when intermolecular

attractive forces become significant, such as those encountered at gas states of combined

low temperature and high pressure. At 300 K, the ideal gas equation of state is valid for

pressures up to 10 MPa.54
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Before pressure can be computed through Equation 2.48, the gas temperature must be

known. To find the temperature, we first consider the intensive mixture enthalpy:

h=

NS

∑
i=1

Cihi: (2.50)

The intensive enthalpy of speciesi is denoted byhi. The specific heat and enthalpy of a

single species are related by the definition

cp;i =

�
∂hi

∂T

�
P

: (2.51)

Here we have made the assumption that each species is in thermal equilibrium; in other

words, the translational, rotational, vibrational, and electronic energy modes are taken to

be equilibrated. For high speed flows at low density, the thermal equilibrium approxima-

tion breaks down when sudden changes in the gas state are introduced and the gas does

not have sufficient time to relax (such as directly after shock processing). Typically, one

hundred intermolecular collisions are required to sufficiently relax a species to thermal

equilibrium.55

The enthalpy of a thermally perfect species is a function of temperature only, so that

hi = hi(T). We may thus simplify Equation 2.51 by replacing the partial derivatives with

ordinary derivatives, yielding

dhi = cp;i dT: (2.52)

Integrating, we have

hi(T) = hf(0K)
i +

TZ

0

cp;i dT: (2.53)

The constant of integration,hf(0K)
i , is the formation enthalpy of the species at 0 K and

100 kPa. To maintain consistency throughout the thesis, all thermodynamic quantities,

where appropriate, will be referenced to this state unless otherwise noted. In practice,

the species’ specific heats can be conveniently defined by polynomial curve fits. A fourth

order curve fit is sufficiently accurate for most species, and can be written as

cp;i = Ri

4

∑
j=0

Ai; jT
j ; (2.54)

where the polynomial coefficients for speciesi are denoted byAi; j, and the species spe-

cific gas constant isRi. Appendix A lists the curve fit coefficients for selected species
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in the temperature range from 300 K to 15,000 K. We now substitute Equation 2.54 into

Equation 2.53, and evaluate the integral to obtain

hi = hf(0K)
i +Ri

4

∑
j=0

Ai; jT j+1

j +1
(2.55)

for each species. The intensive internal energy and enthalpy of the mixture can be related

by the thermodynamic definition

h= e+P=�: (2.56)

Rearranging Equation 2.56, and combining with Equations 2.48, 2.49, and 2.55, we finally

have

T =

"
NS

∑
i=1

Ci M

 
hf(0K)

i

R
+

1
Mi

4

∑
j=0

Ai; jT j+1

j +1

!#
� eM

R
: (2.57)

Given the internal energy of the gas mixture and its composition, the secant method can

be used to iteratively determine temperature from Equation 2.57. If the temperature of a

cell from the previous timestep is used as a starting guess, only one or two iterations are

typically required for an accurate result. Once the temperature of the gas is determined, it

is a simple matter to find pressure using Equation 2.48.

The entropy of the gas is a quantity useful for flow visualization, and is also required

in chemical kinetics calculations. The mixture entropy is

s=
NS

∑
i=1

Cisi: (2.58)

where the entropy contribution from each species can be found by evaluating the integral

si(T) =

TZ

0

cp;i

T
dT: (2.59)

to yield

si(T) = sc
i +Ri

 
Ai;0 ln(T)+

4

∑
j=1

Ai; jT j

j

!
: (2.60)

By definition, the entropy of a species must be zero at a temperature of absolute zero.

Even though Equation 2.60 is indeterminate at absolute zero, a constant of integrationsc
i

is still introduced to ensure consistency with the zero entropy reference condition at other

temperatures.

The mixture sound speed,a, can be evaluated by

a=
p

RT: (2.61)
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Remembering that

R= cp�cv; (2.62)

the ratio of specific heats for a mixture can be written as


 = cp=cv = (1�R=cp)
�1: (2.63)

The sound speed is required for evaluation of the CFL stability criterion, as well as for

some flux solvers.

2.9.2 Calorifically Perfect, Ideal Gas

Calorifically perfect gases are defined as those which possess constant specific heat and

constant specific volume. The calorifically perfect assumption simplifies many of the

expressions in Section 2.9.1, and allows us to write the mixture enthalpy as

h= cpT +hf(0K): (2.64)

The gas temperature can now be directly evaluated by

T =
e�hf(0K)

cp�R
; (2.65)

and pressure by the ideal gas equation of state. Providing that the calorifically perfect

assumption is justified, these computationally inexpensive relations are used in preference

to those in the previous section. The assumption, however, is usually only valid for limited

temperature ranges, and the range of validity is strongly species dependent.

2.10 Reaction Models

Most notably at high temperatures, the composition of a gas in some flows will not al-

ways remain uniform throughout the solution domain. Reactions within the gas may

occur and cause the dissociation of molecular compounds into their component atoms or

other molecules, the dissociation of polyatomic species into atomic species, the combina-

tion or recombination of molecules and atoms into new molecules, and the ionization of

molecules and atoms into ions and electrons. Three classes of reaction models are now

described for modelling such processes, and their ranges of applicability are discussed.
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2.10.1 Frozen Reactions

All chemical reaction rates are zero in a gas with frozen reactions and, in the absence of

diffusion, species concentrations remain constant. Hence no specific reaction models are

necessary in this case. When coupled with fluid mechanics, it is valid to assume that a

gas has frozen chemistry if the characteristic timescales of reactions are much larger than

the characteristic flow timescales. Because reaction rates increase with temperature, and

production rates increase with density, the frozen gas assumption is most applicable to

high speed, low temperature, low density (high altitude) flows containing slowly reacting

species and few catalysts.

2.10.2 Equilibrium Reactions

The opposite extreme to frozen reactions is equilibrium gas chemistry. Physically, chem-

ical equilibrium is reached after a gas has been allowed to react for an infinite amount

of time. The final equilibrium composition of the system is a state variable and, with

one other state variable, completely defines the gas state. For a flow containing regions

of gas at different states, we take the equilibrium assumption to mean that the gas is ev-

erywhere in a state of local equilibrium. Thus, the equilibrium assumption is valid when

the timescales of reactions are much smaller than the characteristic flow timescales. This

means that for low speed, high temperature, high density (low altitude) flows containing

quickly reacting species and catalysts, the equilibrium assumption may be applicable.

The SF3D code includes three equilibrium gas models. The equilibrium carbon diox-

ide code and model are obtained from Reference 56, and supplies the gas pressure, tem-

perature, sound speed, and species concentrations in the form

P= P(�;e); T = T(�;e); a= a(�;e); and C = C(�;e): (2.66)

The model is valid for density in the range 1�10�7 � � � 1�102 kg/m3, and for ener-

gies from 4:7�104 J/kg to a floating limit representing a temperature of 15,000 K at the

required density. The model assumes a five species, three reaction system:

CO2 = CO+ 1
2O2 (2.67)

O2 = 2O (2.68)

CO= C+O: (2.69)

In common with most equilibrium solvers, species concentrations at equilibrium are found

by minimizing the Gibbs’ free energy of the carbon dioxide system.

Equilibrium nitrogen and equilibrium air codes are obtained from Reference 57, and

are based on the model data from References 58 and 59 respectively.
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2.10.3 Nonequilibrium Reactions

When neither equilibrium nor frozen reaction models provide an adequate thermochemi-

cal description, the finite rates of chemical reactions must be considered. The implemen-

tation of finite-rate (nonequilibrium) gas models is more complex than for the preceding

models, and they are substantially more computationally intensive due, in part, to their

stiffness.60 The nonequilibrium gas code implemented in SF3D is a re-written, tailored

version of that appearing in Reference 61.

Consider a system ofNRreactions. Reactionr can be written in the form

NS

∑
i=1

�i;r Xi

kf;r



kb;r

NS

∑
i=1

�i;r Xi for r = 1;2; : : : ;NR; (2.70)

where the per volume molal concentration of speciesi is denoted byXi, and defined as

Xi =
Ci�

Mi

: (2.71)

The stoichiometric coefficient for reactanti in reactionr is �i;r , and is similarly�i;r for

producti. The forward and backward reaction rates are denoted bykf;r andkb;r respectively.

With these definitions, the density production rate for a species is found using the general

rate equation:

ẇi = Mi

NR

∑
r=1

(�i;r ��i;r)

�
NS

∑
i=1

Zi;rXi

��
kf;r

NS

∏
i=1

X
�i;r
i �kb;r

NS

∏
i=1

X
�i;r
i

�
: (2.72)

The derivation of the general rate equation is found in Reference 62. Expressions for

forward reaction rates as a function of temperature are available in the literature. Most

such expressions are quite approximate at high temperature, since the rates are difficult to

calculate or measure, and reaction pathways are not well known. Also, reaction rates may

be affected by the catalytic properties of some surfaces. TheZi;r term in Equation 2.72

represents the efficiency of the catalytic effects of interactions between reactants and non-

reacting (third) bodies. The forward rate models used in SF3D are of the modified Arrhe-

nius from and are sourced from Guptaet al.63 The backward reaction rates are calculated

using the relation

kb;r =
kf;r

Keq;r

; (2.73)

whereKeq;r is the equilibrium constant for reactionr. The equilibrium constant is defined

in terms of the Gibbs’ free energy of reaction and a pressure correction as

Keq;r = exp

�
�∆Gr

R T

��
Patm

R T

�∑i (�i;r��i;r )

; (2.74)
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wherePatm is standard atmospheric pressure. The Gibbs’ free energy of reaction, in mole

units, is

∆Gr =

NS

∑
i=1

Mi(�i;r ��i;r)(hi�Tsi): (2.75)

Blottner’s reaction model,64 without ionization, is used for all of the nonequilibrium

air flows in this thesis. The model comprises five species and seventeen reactions,

O2+M1 
 2O+M1; (2.76)

N2+M2 
 2N+M2; (2.77)

NO+M3 
 N+O+M3; (2.78)

N2+N 
 2N+N; (2.79)

NO+O 
 O2+N; and (2.80)

N2+O 
 NO+N; (2.81)

where Equations 2.76–2.78 represent fourteen individual third body reactions. The cat-

alytic third bodies for each reaction are

M1 = O2;N2;O;N;NO;

M2 = O2;N2;O;NO; and

M3 = O2;N2;O;N;NO:





C H A P T E R 3

Reconstruction,
Flux Solvers, and Stability

The numerical scheme described so far has only first-order spatial accuracy. In this chap-

ter, we initially discuss methods to achieve higher orders of accuracy using solution re-

construction. Solution reconstruction involves two processes: interpolation and limiting.

Interpolation refers to the calculation of flow variables at particular locations within the

flow field, based on the knowledge of those variables at surrounding, discrete points.

Limiting is subsequently used to ensure that spurious values are not admitted during the

interpolation process. As a preprocessor, the purpose of reconstruction is to provide high-

order estimates of flow quantities at cell interface states, which can be used as input data

for a flux solver. The solver is then invoked to determine the fluxes of mass, momen-

tum, and energy between cells. In the alternative postprocessing form, reconstruction is

performed on the fluxes after they are computed. A taxonomy of flux solvers, and descrip-

tions of individual algorithms, is also included in this chapter. The chapter is concluded

with test cases that demonstrate and exacerbate some common failings of flux solvers ap-

plied to blunt-body flows. We investigate the failings, explain their causes, and evaluate

some possible cures.

3.1 Interpolation

Perhaps the simplest approach to solution interpolation is the first order scheme suggested

by Godunov.65 Godunov originally approximated the flow field as consisting of a series of

adjoining piecewise constant states. If we make this assumption, and each finite-volume
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Figure 3.1: Cell nomenclature for one-dimensional reconstruction and limiting.

cell in the solution domain contains constant conditions throughout, then the flow condi-

tions at the immediate left (L) and right (R) of cell interfaces are just

QL
i+1=2 = Qi; andQR

i+1=2 = Qi+1; (3.1)

whereQ is the interpolated quantity, and the nomenclature is defined in Figure 3.1. The

scheme is both simple and computationally cheap. A problem with Godunov’s approach,

however, is its low order of accuracy; the scheme tends to cause smearing of flow fea-

tures, especially at shocks and discontinuities. A range of higher order multi- and one-

dimensional schemes have since been developed to address the accuracy issue.

Multi-dimensional interpolation schemes66 are popularly used on unstructured grid

computational fluid dynamics applications, where cells are not consistently aligned with

the flow direction. Hence, to accurately interpolate the solution at a cell interface, the flow

states in nearby cells in all directions should be considered. Ideally, multi-dimensional

limiters and multi-dimensional flux solvers (Section 3.3) should be used to complement

multi-dimensional interpolation.

One-dimensional interpolation requires fewer mathematical operations than multi-

dimensional interpolation, and is thus preferred in those cases where the one-dimensional

approximation does not cause significant accuracy loss. Well-designed structured grids,

where possible, contain cells parallel or close to parallel to the flow gradients and flow

direction. In this case, the use of locally one-dimensional interpolation is reasonably accu-

rate and justified. A one-dimensional, fully one sided, second-order interpolation scheme

is

QL
i+1=2 = Qi +

1
2
∆�

i ; where∆�

i = Qi �Qi�1; and (3.2)

QR
i+1=2 = Qi+1� 1

2
∆+

i+1; where∆+

i = Qi+1�Qi; (3.3)

where∆+

i = ∆�

i+1, and an equispaced grid is assumed such thathi = hi+1.
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The one sided nature of Equations 3.2 and 3.3 means that downstream information

is ignored, even though it may add to interpolation accuracy. Blending upstream and

downstream contributions yields

QL
i+1=2 = Qi +

1
4
[(1��)∆�

i +(1+�)∆+

i ] (3.4)

QR
i+1=2 = Qi+1� 1

4
[(1��)∆+

i+1+(1+�)∆�

i+1]; (3.5)

which is in the MUSCL67 (monotone upwind schemes for conservation laws) form. The

blending parameter is bounded by�1� � � 1, and in the special case of� = �1, the

MUSCL scheme reverts to the fully one sided scheme. For� = 0 the interpolation uses

equal contributions from upstream and downstream differences. When�= 1, the scheme

is no longer upstream biased, and the interpolated quantity at the interface is equal to the

average of adjacent cell centre values.

As already stated, the purpose of interpolation is to define the fluxes at each side

of each cell interface. Thus we have the option of either interpolating fluxes directly,

or interpolating primary flow variables and calculating the fluxes later. While the latter

technique is more expensive,68 it leads to solutions with fewer spurious oscillations,69 and

is the mode in which SF3D operates.

3.2 Limiting and Reconstruction

The second-order interpolation techniques in Section 3.1 work well ifQ is a flow quan-

tity smoothly distributed in space. However, for flows containing strong gradients or

discontinuities, higher-order interpolation techniques can instigate high frequency noise

production and instability, and cause the CFD solver to generate incorrect solutions or fail

completely. In this section we introduce limiting functions, which are used to restrict the

action of the higher-order interpolation schemes depending on the nature of the flow field.

Ideally, in regions of severe flow discontinuities the limiter should cause the interpolation

scheme to revert to the first-order Godunov approximation. In smooth flow regions the

ideal limiter should have no effect, and allow the interpolation scheme to act unhindered.

As well as satisfying the above properties, the ideal limiter needs to be computation-

ally economical, and work over a range of CFL numbers.70 The search for the ideal limiter

has generated considerable interest in the literature, and inspired the formalization of de-

scriptions of limiter types and behaviours. The process of both limiting and interpolation

is termed solution reconstruction, and we now give specifications for three popular classes

of reconstruction schemes:
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Total Variation Diminishing. As discussed in Section 2.6.3, total variation diminish-

ing (TVD) schemes are defined as those which prohibit generation of new extrema, so

that in one dimension

TV(Qn+1)� TV(Qn); where TV(Q) = ∑
i

jQi+1�Qij: (3.6)

As a result of this condition it can be shown that all TVD schemes preserve monotonic-

ity,69 and it is a requirement that a TVD limiter be non-linear to achieve higher than first

order accuracy.71 In general, reconstruction schemes satisfying the TVD condition are

restricted to only second order accuracy.70 They are further restricted to first order accu-

racy at non-sonic critical points (where∂Q=∂x = 0 in one dimension).72 Although TVD

schemes do help suppress the appearance of spurious noise in solutions, an unwanted side

effect is the restricted development of high frequency components that may be present in

the flow. Thus TVD schemes may cause the loss of genuine extrema, and flattening of

spatial distributions.70

Total Variation Bounded. By relaxing the TVD condition to allow a finite bound on

variation, we have the total variation bounded (TVB) condition72

TV(Qn)� B; B> 0: (3.7)

Hence any TVD scheme is also TVB. An advantage of TVB schemes are that the cited

TVD order of accuracy restrictions do not apply, and they may be constructed with glob-

ally high order accuracy.72 Additionally, TVB schemes do not necessarily prohibit the

creation of genuine extrema.

Essentially Non-Oscillatory. By allowing any reduction in variation between timesteps

to be regained in the next step, essentially non-oscillatory (ENO) schemes, like TVB

schemes, allow local extrema to be accentuated. Unlike TVD schemes, ENO schemes

can be constructed to have uniform global accuracy of any order. ENO schemes usually

operate on adaptive stencils73 and thus require additional computational effort. Since some

TVD and TVB schemes can achieve a similar accuracy to simple ENO schemes with less

computational expense,70 only TVD and TVB schemes are implemented in SF3D.

The remainder of Section 3.2 is devoted to the definition and description of three

limiters used for the TVD and TVB reconstruction schemes available in SF3D.
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3.2.1 The min-mod Limiter

Consider the one sided interpolation for the left interface state given in Equation 3.2.

Premultiplying the difference term by a limiter function gives

QL
i+1=2 = Qi +

1
2
 (ri)∆�

i ; (3.8)

wherer is the ratio of differences, and defined asr = ∆+=∆�. When = 1, Equation 3.8

collapses to the original unlimited scheme. A commonly used limiter function is,

 (r) = m(1; r) (3.9)

and is based on the minimum-modulus (min-mod) functionm,

m(x;y) = m(y;x) = sign(x)maxf0;min[jxj;y�sign(x)]g; (3.10)

which returns zero for two arguments of different signs, or the value of the argument with

the smallest modulus otherwise. An equivalent expression to Equation 3.9 is

 =
m(∆�;∆+)

∆�
: (3.11)

The arguments to the min-mod function are now biased with a parameterb, and the

upstream and downstream biased components are blended with parameter� to generate a

MUSCL-type formulation:

 =
(1��)m(∆�;b∆+)+(1+�)m(b∆�;∆+)

2∆�
: (3.12)

Note that forb= 1 we return to the one-sided scheme for all� in the range�1� �� 1.

Substituting Equation 3.12 into Equation 3.8 yields

QL
i+1=2 = Qi +

1
4
[(1��)m(∆�

i ;b∆+

i )+(1+�)m(b∆�

i ;∆
+

i )]; (3.13)

and similarly, for the right side of the interface,

QR
i+1=2 = Qi+1� 1

4
[(1��)m(∆�

i+1;b∆+

i+1)+(1+�)m(b∆+

i+1;∆
�

i+1)]: (3.14)

The reconstruction Equations 3.13 and 3.14 are equivalent to those appearing in Refer-

ence 74.

The shaded area in Figure 3.2 highlights the domain in which a limiter must operate

to satisfy the TVD constraint for second order schemes,69 while simultaneously not dis-

playing undesirable overcompressive behaviour.75 It is observed that the min-mod limiter

lies within this domain. The main disadvantage of the min-mod limiter is that it is not

differentiable.
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Figure 3.2: Behaviour of the min-mod and van Albada limiters.

3.2.2 The van Albada Limiter

The convergence of a solution to steady-state can be hampered by non-differentiable lim-

iters. Such limiters can cause small temporal oscillations in solutions, prohibiting residu-

als to fall to machine precision levels. A differentiable limiter due to van Albada76 is now

presented.

We again begin with limited fully one sided interpolation:

QL
i+1=2 = Qi +

1
2
 (ri)∆�

i : (3.15)

The van Albada limiter is defined as

 (r) =
r2+ r
r2+1

; (3.16)

and its behaviour in –r space is shown in Figure 3.2. The reconstruction scheme so far

described is thus TVD, and is also second order accurate71 except at critical points. We

may equivalently express Equation 3.16 in the form

 =
s(∆++∆�)

2∆�
; (3.17)

where the functions is given by

s=
2∆+∆�+ �

(∆+)2+(∆�)2+ �
: (3.18)

The parameter� is introduced to avoid division by zero, and is set slightly higher than

machine precision (typically� = 1� 10�12). By choosing a larger�, a few orders of
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magnitude smaller than typical∆2 values, the scheme loses the TVD property. In this

case, the� term dominates the difference terms at critical points and causes the limiter

to switch off and revert to the underlying second order interpolation. Venkatakrishnan66

claims that numerical experiments indicate such a scheme is TVB, although it has not

been rigorously proven. We now weight the upstream and downstream components in

the numerator of Equation 3.17 and substitute the result into Equation 3.15 to achieve a

MUSCL formulation:

QL
i+1=2 = Qi +

si

4
[(1��)∆�

i +(1+�)∆+

i ]: (3.19)

Here, the original scheme is recovered when�= 0. Numerical experiments conducted in

the course of this work reveal that Equation 3.19 produces stable reconstruction for�= 0,

but is not always stable for�= 1 and�=�1. To achieve stability, we limit the action of

the blending parameter so that

QL
i+1=2 = Qi +

si

4
[(1�si�)∆�

i +(1+si�)∆+

i ]; and, (3.20)

QR
i+1=2 = Qi+1�

si+1

4
[(1�si+1�)∆+

i+1+(1+si+1�)∆�

i+1]; (3.21)

which is equivalent to the differentiable reconstruction scheme appearing in Reference 74.

3.2.3 A Modified van Albada Limiter

The assumption of equispaced cells is inherent to the reconstruction schemes presented

so far. The difference in neighbouring cell widths in most well-designed grids does not

often vary more than 10%, and the equispaced assumption is adequate for this level of

variation.

The modelling of the HYFLEX in this thesis requires three-dimensional, time accu-

rate, viscous CFD calculations with chemistry. This kind of problem is very computa-

tionally and memory intensive, and it is important to make optimum use of all cells in the

solution domain. For this reason, the HYFLEX grid (see Section 6.1.1) makes a sudden

transition in spacing between the cells in the boundary layer and cells in the core flow. The

difference in neighbouring cell widths is sometimes as high as 60%, and the equispaced

cell assumption is not valid.

We now present some new modifications to the van Albada limiter, to cope with un-

equally spaced grids. Accounting for the width of celli, denoted byhi, the one-sided

reconstruction equation with limiting becomes

QL
i+1=2 = Qi +

hi

2
 (r 0i)∆

	

i ; (3.22)
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where the ratio of differences is now the ratio of gradients,r 0 = ∆�=∆	. The downstream

and upstream gradients are defined as

∆	

i = 2∆�

i =(hi +hi�1); and (3.23)

∆�

i = 2∆+

i =(hi+1+hi); (3.24)

providing that no cells have zero width. The TVB limiter function given in Equation 3.18

is re-used with arguments∆	 and ∆� replacing∆� and ∆+ respectively, to obtain the

MUSCL reconstruction

QL
i+1=2 = Qi +

hisi

4
[(1�si�)∆	

i +(1+si�)∆�

i ]; and (3.25)

QR
i+1=2 = Qi+1�

hi+1si+1

4
[(1�si+1�)∆�

i+1+(1+si+1�)∆	

i+1]; (3.26)

which is correctly spatially sensitive. This scheme is tested on a severely unequally spaced

grid in Section 5.3, and excellent results are observed.

3.3 Flux Solvers

In this thesis, flux solvers are used to calculate the magnitude of mass, momentum, energy

and species fluxes that pass from a finite-volume cell to its neighbour, via their shared

interface surface. To operate, the solvers require knowledge of the flow state on each side

of the interface, which is obtained through the solution reconstruction techniques already

described. The simplest kind of flux solver is flux averaging, where the interface flux is

taken as the mean of the fluxes at the left and right interface states. Although easy to

implement, flux averaging is undesirable due to poor solution accuracy. A wide range

of more accurate flux calculation algorithms have been developed, each with specific

strengths and weaknesses. The perfect solver does not yet exist.

The value of a flux solver can be judged against several criteria. A good solver will

exhibit high accuracy, and achieve good resolution in all areas of a flowfield. A high

accuracy scheme should intrinsically possess low levels of artificial dissipation77 to avoid

smearing fine flow features. Unfortunately, low dissipation schemes are generally more

prone to the development of numerical noise, including spurious oscillations, disturbances

and discontinuities. Hence, the dissipation level governs a tradeoff between accuracy and

noise. The goal of combining high accuracy and low noise is an elusive one.78

Flux solvers can fail altogether when numerical noise levels become excessive. The

solver algorithm should ideally be robust, based on considerations of flow physics, and

never allow unphysical solutions to be admitted. To allow autonomous operation, the

absence of selectable tweaking or tuning parameters is preferred. Because the flux solver
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is frequently called during the operation of a CFD code, it is important that the algorithm

be computationally efficient.

Categorizing flux solvers is useful, since there is a degree of commonality in proper-

ties for solvers from the same class. We next describe a taxonomy of flux solvers, and

subsequently examine some specific schemes. The form of the input/output interface of a

flux solver is then discussed, and the mathematical transformations required for moving

grids are presented.

3.3.1 Taxonomy of Flux Solvers

One of the coarsest classifications of flux solvers is dimensionality. One-dimensional

schemes, which are by far the most common, rely on the assumption that the flux convec-

tion speed is independent of the fluid velocity tangential to an interface. One-dimensional

schemes may be applied to multi-dimensional problems by computing the fluxes through

each interface of each cell independently. A three dimensional oblique shock wave, for

example, is computed by one-dimensional flux solvers as the superposition of three nor-

mal shocks emanating from each face of a cell. Although this kind of approach can lead to

some smearing and has no physical basis, one-dimensional schemes work remarkably and

inexplicably well in practice.79 The development of genuine multi-dimensional schemes

is a current area of vigorous research aimed at reducing the smearing effect.80 Some multi-

dimensional schemes work by considering the infinite directions of propagation of per-

turbing waves,81, 82 while others operate by solving a complicated multi-dimensional Rie-

mann initial value problem.83 The main disadvantage of multi-dimensional flux solvers

is their complexity and thus greater computational requirements, and for this reason none

will be considered in this thesis.

All of the flux solvers implemented in SF3D can be categorized as upwind schemes.

Upwind schemes recognize that the local flow speed and direction should and does af-

fect the way information propagates between cells. This is unlike the central difference

scheme, which may unphysically draw flow information from outside the domain of de-

pendence of an interface during flux calculation.15 This detrimental property can cause

central differencing to generate noise or fail, and necessitates the introduction of artifi-

cial viscosity terms. Upwind schemes have up to double the stability bound of central

difference schemes,84 and do not generally require the addition of extra artificial viscos-

ity to maintain stability. For high Mach number flows, flows with shocks, and advection

dominated problems, upwind schemes also give superior resolution.32

Many upwind schemes can be classed as either flux difference splitting (FDS) or flux

vector splitting (FVS). The first FDS scheme was proposed Godunov,65 whereby inter-
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face fluxes are determined by the exact solution of the Riemann problem, using the left

and right interface states as initial values. Approximate and linearized Riemann solvers

are also FDS schemes. In FVS schemes the interface flux is calculated as the combina-

tion of split forward and backward component flux vectors, depending on the sign of the

associated eigenvalues. In general, FVS schemes are simpler and faster than their FDS

counterparts,85 and the FVS formulation is particularly well-suited for use with implicit

techniques.86 A disadvantage associated with most FVS schemes is excessive dissipation,

which can diffuse contact surfaces,85 thicken shock waves,87 and cause boundary layers

to be inaccurately resolved.87 For these flow features, FDS schemes are less dissipative

and substantially more accurate than FVS schemes.86, 87 In fact, no FVS scheme can pre-

serve a stationary contact discontinuity.85 A number of FDVS hybrid schemes have been

proposed to merge the speed and robustness of FVS, with the accuracy of FDS.88–90 Still

other schemes, which can be classed as neither FVS nor FDS, have been developed to

achieve this same goal.91

There are several conditions imposed by physics that a good flux solver should satisfy,

although they are not commonly adhered to. Positivity preserving schemes correctly dis-

allow the production of negative values of the scalar variables density, pressure, tempera-

ture, and species concentrations. This condition is particularly important to prevent code

failure in flows with colliding shocks, strong rarefactions, and multiple species.92 As well

as maintaining positivity, a flux solver should also not violate the entropy condition. This

is usually manifested in the admittance of unphysical solutions such as discontinuities

in expansion waves. Another desirable property of flux schemes is differentiable opera-

tion in the absence of flow discontinuities. In common with limiters, non-differentiable

splittings can cause undesirable glitches or oscillations.74

3.3.2 Some Specific Flux Solvers

The operation and properties of some specific one-dimensional flux solvers and formula-

tions, most of which are implemented in SF3D, are now described.

Exact Riemann Solvers. Also known as Godunov-type schemes, exact Riemann solvers

find the unique solution to a Riemann initial value problem defined by the left and right

interface states. The Riemann problem is solved by considering the speed, direction and

strength of discrete pressure waves, shock waves, and a contact surface emanating from

the interface. There are a number of approaches to solving the exact Riemann problem,93

however all of them are iterative and at least moderately computationally expensive. Fur-

ther, exact solutions become very expensive for non-polytropic gases and gases with gen-
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eral equations of state.79 In any case, for finite-volume schemes the detail of the exact

Riemann solution at cell interfaces is lost during the averaging process that takes place

during the update of cell centre properties.90 Although somewhat wasteful, exact Rie-

mann solvers do produce accurate and (usually) well-behaved shock waves because of

their close physical base.94 All types of Riemann solvers are inherently upwind and FDS.

Approximate Riemann Solvers. Because the accuracy of exact Riemann solvers is

wasted to a large extent, approximate solutions can be employed without significant

degradation of overall simulation results. Roe’s approach95 of solving a linearized Rie-

mann problem is both cheap and popular. Unfortunately Roe’s scheme admits entropy

violating expansion shocks, and requires the addition of artificial dissipation to cure it

(known as an entropy fix).79 The Roe scheme also suffers from the so-called “carbuncle

effect,” an unphysical protuberance or indenture sometimes visible near the stagnation re-

gion of strong bow shocks. An alternative approximate Riemann solver has been proposed

by Jacobs, which makes an estimate to the solution of the exact non-linear Riemann prob-

lem using only a few iterations.96 This scheme, and Jacobs’ original code, is implemented

in SF3D. Although more reliable than Roe’s scheme, this semi-iterative method still suf-

fers from expansion shocks and carbuncles under some conditions. Neither scheme sat-

isfies the positivity condition, and both schemes are susceptible to odd-even decoupling

(see Section 3.6). Quirk contends that there is no approximate Riemann solver without

at least one failing, and outlines a hybrid strategy of selecting the Riemann solver most

suited to the local flow conditions.94 However, this technique introduces further issues:

what are the optimum flow detection and switching functions, and which Riemann solvers

should be used?

The Equilibrium Flux Method. The equilibrium flux method97, 98 (EFM) is a flux vec-

tor splitting scheme based on kinetic theory,99 where interface fluxes are derived by as-

suming a Maxwellian velocity distribution at the left and right interface states. The EFM

preserves positivity and satisfies the entropy condition,100 is substantially faster than most

Riemann solvers, and is included in SF3D. Results later in this thesis confirm that the

EFM is extremely robust and stable, but at the cost of excessively high diffusion lev-

els. Recently, a hybrid EFM/FDS scheme has been proposed in an attempt to improve

accuracy,100 but introducing elements of a Riemann solver also introduces some of its

associated disadvantages.

The Advection Upwind Splitting Method. Strictly neither FVS nor FDS, the advec-

tion upwind splitting method91, 101 (AUSM) was developed by Liou and Steffen in an at-
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tempt to combine the low diffusion and accuracy of FDS with the stability and speed of

FVS in a single scheme. The AUSM concept is to use different splittings for the convec-

tive fluxes and pressure terms, with each splitting being some function of an intuitively

defined interface Mach number. The AUSM is almost as cheap as FVS schemes, and only

slightly more dissipative than FDS schemes. Because no assumptions are made about the

thermodynamics of the fluid, the AUSM is ideal for nonequilibrium gas flows and flows

containing species that are not calorifically perfect or polytropic. Contrary to claims in the

literature,101, 102results in this thesis show that the carbuncle phenomenon can be roused at

some flow conditions, although we do find that the AUSM suffers this fault more rarely

than FDS schemes. Perhaps the most significant failings of the AUSM are the appearance

of pressure oscillations behind strong shocks, and poor damping behaviour at low Mach

numbers.89

Advection Upwind Splitting Method Variants. The success of the AUSM has inspired

Liou, Steffen, and other investigators to extend and modify the technique to improve its

accuracy and alleviate its shortcomings. The AUSMD scheme was proposed to introduce

stronger FDS characteristics, and upwinds the momentum flux according to the sign of an

appropriately defined interface mass flux.102 Contact discontinuities and fine flow features

are cleanly resolved by the AUSMD, however it does suffer from postshock pressure os-

cillations similarly to the AUSM. The AUSMV scheme has more of an FVS flavour, and

splits the momentum flux depending on signal strengths from the left and right inter-

face states.103 Numerical experiments show that the AUSMV scheme accurately captures

shocks without oscillations, but introduces oscillatory behaviour near moving contact dis-

continuities.102 The AUSMDV102 uses a blending function to combine the AUSMD and

AUSMV momentum fluxes to obtain a positivity-preserving scheme that resolves one-

dimensional contact surfaces exactly and shock waves accurately, without excessive dis-

sipation or oscillation. Unfortunately the base AUSMDV scheme is prone to the car-

buncle problem, and does not satisfy the entropy condition. An AUSM variant free of

carbuncles is the AUSM+.104 This, however, comes at the cost of the reintroduction of

postshock overshoots and pressure oscillations near walls.105 The AUSM+ is claimed to

exactly resolve one-dimensional contact and shock discontinuities, and satisfy the posi-

tivity condition.106 An enhanced version of the AUSM+, AUSM+W, has been proposed

to obtain better performance in flows with strong shocks.107 A pressure-weighted scheme

by Kim et al.,105 AUSMPW, removes both carbuncles and pressure oscillations by blend-

ing AUSM+ and AUSMDV fluxes. The AUSMPW formulation, though, is reasonably

complex and introduces the gas
 as an extra term in the splitting. Other AUSM variants

include the AUSM/van Leer hybrid of Radespiel and Kroll,89 and the low diffusion flux
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splitting method of Edwards88, 108aimed at improving performance at low Mach numbers.

The original AUSM scheme, as well as AUSMD, AUSMV, AUSMDV and AUSM+ are

all implemented in SF3D; the AUSMPW was published too recently to be included in this

thesis.

Explicit fixes are available for all of the entropy-violating and carbuncle-afflicted

schemes (see Reference 102, for example). Fixes, however, degrade solution accuracy

and often introduce tuning parameters which must be adjusted for different flow prob-

lems.90, 94 Most fixes have little mathematical or physical basis104 and work by increasing

dissipation levels. When multiple fixes are used, the interaction between them is often

unknown or poorly understood. Clearly, robust schemes that do not require fixes are

preferable.

3.3.3 Fluxes in Primitive Variable Form

A complete set of primitive variables describing the flow conditions at an interface con-

stitutes an interface state. If a flux solver is capable of determining the interface state, the

interface flux vectorFif can be directly evaluated as:

Fif =

2
66664

�(u�w) � n̂
�u(u�w) � n̂+Pn̂�Tn̂

�E(u�w) � n̂+Pu � n̂�u � (Tn̂)�q � n̂
�C(u�w) � n̂

3
77775

if

: (3.27)

3.3.4 Fluxes in Conservative Variable Form

Not all flux solvers can be cast in a form that allows the direct calculation of interface

states. Many solvers are only capable of calculating the interface fluxes of conserved

variables. These are the per unit area flow rate of massG, linear momentumL and

enthalpyH. In terms of primitive variables, the inviscid fluxes of conserved quantities

are

G= �u � n̂; (3.28)

L = �uu � n̂+Pn̂; and (3.29)

H = �(e+ 1
2
juj2)u � n̂+Pu � n̂ (3.30)

if, and only if, the interface velocityw = 0. Note that it is always possible to calculate the

conserved variables from an interface state, while it is not always possible to decompose

the conserved variables into primitive variables. Since it desirable to develop a CFD code
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that is compatible with a wide range of flux solvers, we shall choose to write the interface

flux vector in terms of conserved variables.

Most flux solvers work under the assumption of a stationary interface. This limitation

can be overcome, however, by temporarily changing the stationary solution reference

frame to one which moves with the interface. Working in the moving reference frame,

a flux solver would not return the mass flux given by Equation 3.28, but would instead

return

G0 = �(u�w) � n̂: (3.31)

In the moving reference frame, the momentum flux would be evaluated by the flux solver

as

L 0 = �(u�w)(u�w) � n̂+Pn̂; (3.32)

which, after expansion, becomes

L 0 = �u(u�w) � n̂��w(u�w) � n̂+Pn̂: (3.33)

By substituting from Equation 3.31, and rearranging, we have

L 0+G0w = �u(u�w) � n̂+Pn̂: (3.34)

We can deduce from Equation 3.30 that, in the moving reference frame, the enthalpy flux

would be evaluated by the flux solver as

H 0 = �(e+ 1
2
ju�wj2)(u�w) � n̂+P(u�w) � n̂; (3.35)

which is the same as

H 0
= �(e+ 1

2
juj2)(u�w) � n̂+Pu � n̂� 1

2
jwj2�(u�w) � n̂

� [�u(u�w) � n̂��w(u�w) � n̂+Pn̂] �w: (3.36)

Substitution of Equations 3.31 and 3.33 yields

H 0+ 1
2
G0jwj2+L 0 �w = �E (u�w) � n̂+Pu � n̂: (3.37)

Comparison of Equations 3.31, 3.34, and 3.37 with Equation 3.27 shows that

Fif =

2
66664

G0

L 0+G0w�Tn̂

H 0+ 1
2
G0jwj2+L 0 �w�u � (Tn̂)�q � n̂

G0C

3
77775

if

: (3.38)
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Hence it is possible to calculate the flux vector for a moving interface using a general

conserved-variable stationary-interface flux solver . Moreover, the interface flux vector is

written in a form which requires no knowledge of the interface primitive variables, with

the exception of the diffusive terms. The treatment of the diffusive terms has already been

described in Section 2.8.

3.3.5 The AUSMDV

The advection upwind splitting method combining flux differencing and vector splitting

(AUSMDV) is fully defined in Reference 102. Since the scheme is used for many of the

simulations in this thesis, we now repeat it for multiple dimensions in a form consistent

with Section 3.3.4.

We first defineuL and uR as the normal velocity components at the left and right

interface states, in the interface frame of reference:

uL = (uL�w) � n̂; and (3.39)

uR = (uR�w) � n̂: (3.40)

The remaining tangential velocity vectors are then

vL = (uL �w)�uLn̂; and (3.41)

vR = (uR�w)�uRn̂: (3.42)

The interface mass flux is a scalar quantity given by the vector splitting

G0 = u+

L �L +u�R�R; (3.43)

with the individual splitting terms defined by

u+

L =

8>><
>>:
�L

�
(uL +am)

2

4am

� uL + juLj
2

�
+

uL + juLj
2

if
juLj
am

� 1;

uL + juLj
2

otherwise.

(3.44)

u�R =

8>><
>>:
�R

�
�(uR�am)

2

4am

� uR�juRj
2

�
+

uR�juRj
2

if
juRj
am

� 1;

uR�juRj
2

otherwise.

(3.45)

The common speed of sound at the interface,am, is selected as

am = max(aL;aR) (3.46)
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in this work. The� are functions designed to avoid dissipation at contact discontinuities,

and given by

�L =
2PL=�L

PL=�L +PR=�R

; and (3.47)

�R =
2PR=�R

PL=�L +PR=�R

: (3.48)

The enthalpy flux is simply upwinded by the sign of the mass flux as

H 0 = 1
2
[G0(hL +hR)�jG0j(hR�hL)]; (3.49)

where the left and right enthalpies, in a moving interface reference frame, are

hL = eL +PL=�L +
1
2
juL�wj2 (3.50)

hR = eR+PR=�R+
1
2
juR�wj2: (3.51)

We break the interface momentum flux into normal and tangential components,

L 0 = L0

nn̂+L t; (3.52)

and upwind the tangential components by the sign of the mass flux:

L 0

t =
1
2
[G0(vL +vR)�jG0j(vR�vL)]: (3.53)

The normal momentum flux is calculated as a mixture of the AUSMD and AUSMV mo-

mentum fluxes through the expression

L0

n = ( 1
2
+s)L0

V +( 1
2
�s)L0

D +P1=2: (3.54)

The AUSMV momentum flux is given by the splitting

L0

V = �LuLu+

L +�RuRu�R; (3.55)

while the AUSMD momentum flux is fully upwinded:

L0

D = 1
2
[G0(uL +uR)�jG0j(uR�uL)]: (3.56)

The switching factors is made sensitive to the pressure gradient through the expression

s= 1
2
min

�
1;

KjPR�PLj
min(PL;PR)

�
; (3.57)

where the sensitivity constantK is nominally set to 10. Finally, the interface pressure

term is

P1=2 = P+

L +P�

R ; (3.58)
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where the individual pressure splittings are given by the polynomial

P�

L=R =

8>>><
>>>:

1
4
PL=R

�
uL=R

am

�1

�2�
2� uL=R

am

�
if
juL=Rj

am

� 1;

PL=R

uL=R�juL=Rj
2uL=R

otherwise.

(3.59)

An alternative to these second-order pressure splittings are the original first-order AUSM

pressure splittings:101

P�

L=R =

8>>><
>>>:

1
2
PL=R

�
1� uL=R

am

�
if
juL=Rj

am

� 1;

PL=R

uL=R�juL=Rj
2uL=R

otherwise.

(3.60)

3.4 Boundary Conditions

The constraints applied to the boundaries of the solution domain comprise a major part

of the definition of a flow problem. To avoid having to explicitly set the fluxes at the

domain boundaries, we use external ghost cells containing appropriate flow conditions to

cause the reconstruction scheme and flux solver to calculate the correct boundary fluxes.

Because all the second- and third-order reconstruction schemes in SF3D use, at most, a

four-cell stencil, only two ghost cells are needed at each boundary. The SF3D code has

a switch to enable more or fewer ghost cells, however, should different reconstruction

schemes be required. A two-dimensional schematic of the ghost cell layout is shown in

Figure 3.3. The two ghost cells are denoted by G, and cells in the flow domain are denoted

by F.

For an inflow boundary condition, the ghost cells adjacent to the boundary are simply

set to the desired fluid inflow state and velocity. A zero-order extrapolation is used for

outflow boundary conditions, whereby the fluid state and velocity in the ghost cells adja-

cent to the outflow boundary are set equal to that of the internal cell nearest the boundary.

This kind of extrapolation is accurate only when the outflow cell face advection Mach

number normal to the boundary is greater than unity.

For a wall boundary condition, we need to select ghost cell conditions that generate the

correct wall pressure and ensure a zero mass flux through the boundary. Even though there

is no flow through the wall, the calculation of the correct wall pressure is important since it

affects the Navier-Stokes equations via the momentum flux term. Without reconstruction,

the solution to the Riemann problem at the boundary will yield the correct wall fluxes if

we specify that the boundary ghost cell contains gas at the same state of the flow next to
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Figure 3.3: Ghost cell configuration for a slip wall condition.

the wall, with a reversed normal velocity component. Thus, the velocity condition

(uF1�wW) � n̂ =�(uG1�wW) � n̂ (3.61)

is applied, which is applicable to both moving and stationary walls. For a frictionless (or

slip) wall, such as the one in Figure 3.3 velocity components tangential to the boundary

should be conserved:

uF1� (uF1 � n̂) n̂ = uG1� (uG1 � n̂) n̂: (3.62)

Note that this equation is correctly independent of the wall velocity. Combining Equa-

tions 3.61 and 3.62 and solving for the ghost cell velocity yields

uG1 = uF1�2[(uF1�wW) � n̂] n̂: (3.63)

For higher order schemes using a larger stencil, the analysis is extended to the outer ghost

cell:

uG2 = uF2�2[(uF2�wW) � n̂] n̂: (3.64)

For a non-slip wall, viscous stresses are properly calculated when the tangential ghost

cell velocity in the wall frame of reference is zero. This condition can be expressed as

uG1�wW� [(uG1�wW) � n̂] n̂ = 0: (3.65)

Combining Equations 3.61 and 3.65, we have the inner and outer ghost cell velocities

uG1 = wW� [(uF1�wW) � n̂] n̂; and (3.66)

uG2 = wW� [(uF2�wW) � n̂] n̂: (3.67)
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Additional to stationary non-slip walls, this ghost cell formulation is also suitable for

sliding walls with friction, such as a piston or moving plate.

With regards to heat transfer at walls, SF3D supports adiabatic and isothermal options.

An adiabatic wall is one which is fully insulated and accommodates no heat transfer.

Ghost cell temperatures are set equal to the wall flow temperature in this case. Isothermal

walls allow heat conduction; they have an infinite heat capacity and thus remain at con-

stant temperature. For an isothermal boundary condition, ghost cell temperatures are set

to the isothermal wall temperature. There is no support for wall catalysis or radiative heat

transfer at present.

3.5 The Apollo Heat Shield

One of the first cases to which SF3D was applied was the simulation of flow around

various blunt bodies in carbon dioxide. The simulations were performed in parallel with

experiments aimed at simulating drag measurements for heat shields to be used during the

atmospheric entry of Mars.109 The work was motivated by the then future NASA Mars

environment survey pathfinder missions.110–112 Details and comparison of the simulation

and experimental results are presented in Section 5.9.

The forebody of the Apollo capsule was one of the blunt body geometries tested.

A three-dimensional wireframe model of the body and its corresponding axisymmetric,

orthogonal, computational grid are shown in Figure 3.4. The full grid size is 60 cells in

the body normal direction and 200 cells in the tangential direction, and is scaled so that

the heat shield radius is 10 mm, matching the size of the model tested in the wind tunnel

experiments.

The simulation results shown in Figure 3.5 correspond to a supersonic flow speed of

2 km/s with a free-stream density and temperature of 0.032 kg/m3 and 3240 K respec-

tively. Viscous effects were not included, and the equilibrium carbon dioxide model was

used. The simulation was run at second-order spatial accuracy using MUSCL reconstruc-

tion, and second-order temporal accuracy using Runge-Kutta timestepping with a CFL

number of 0.5. Fluxes were calculated with the AUSMDV. Additional to the contour

plots of pressure and density, a computational interferogram is also used to visualize the

simulation results. Further details on both computational and experimental interferometry

techniques are included in Appendix B.

The computed flow field of Figure 3.5 is typical of supersonic blunt-body flows, as

discussed in Section 1.1. A relatively clean solution is observed, except for small amounts

of noise occurring in the post-shock region, and some oscillations in density near the

stagnation line and body. It is suspected that the noise in the stagnation region is due to

the grid singularity at the axis of symmetry.
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Figure 3.4: A three-dimensional rendering of the Apollo heat shield (left) and solution

grid (right). For clarity, only every third grid line is shown.

Figure 3.5: Carbon dioxide flow around the Apollo heat shield at supersonic speed. Iso-

pressure contours (left), isopycnic contours (centre), and a computational interferogram

(right) are shown.
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Figure 3.6: Computed unstable flow around the Apollo heat shield at hypersonic speed.

Isopressure contours (left), isopycnic contours (centre), and a computational interfero-

gram (right) are shown.

To test the heat shield at a more realistic entry speed, another simulation was per-

formed using a hypersonic free stream of 7.57 km/s. Figure 3.6 shows the computed

solution. Alarmingly, the results show a chronically unstable shock wave and a solution

that does not converge in time. The bow shock wave oscillates temporally and spatially at

different frequencies, and a number of vortices are present in the post-shock flow around

the body. It is not immediately clear whether the observed behaviour can be deemed a

numerical instability, or whether it is a physical phenomenon. Certainly, the shock wave

shape does not match that of the well-known carbuncles discussed in the literature,94, 104

primarily due to the downstream-propagating cellular structures. The unstable flow was

independently reproduced using a second CFD code, which indicates that it is unlikely

to be a consequence of programming error.113 Introducing viscous terms into the simula-

tion does not avert the instability; this is consistent with physical instabilities, according

to Bashkirov, who states that (with the exception of a neutral stability region) stability

bounds are unaffected by viscous stresses.114

An initial attempt to determine the nature of the instability was through consideration

of shock wave stability theory. Original work by D’yakov,115 later clarified by Swan and

Fowles,116 used a linearized analysis to determine criteria for the stability of an infinite

planar shock wave subjected to a sinusoidal perturbation. According to D’yakov’s theory

and experimental results, no perfect gas admits shock wave instability.117 The analysis

also states that instability is possible in a medium of arbitrary equation of state, and is

dictated by the slope of the shock Hugoniot, mass flux per unit area, and Mach number.
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For a stationary shock, the theoretical requirements for instability are

A<�1; or A> 1+2M; whereA= (�u)2

�
dv
dP

�
H

: (3.68)

Here,M is the downstream Mach number, and(dv=dP)H is the gradient of the Hugoniot.

The free-stream flow conditions used in the unstable Apollo heat shield simulation do

not satisfy the instability criteria in Equation 3.68. To further investigate the sensitivity

of the simulated shock wave stability to flow conditions, an array of simulations were

run at flow speeds of up to 8 km/s. Simulation results showed that shock stability was

independent of the local Hugoniot gradient, and instability was observed at all flow speeds

above 3.2 km/s.118

Similarly, shock tunnel tests by Griffithset al.119 show experimental evidence of plane

shock wave instability in carbon dioxide flows at conditions where Equation 3.68 does

not indicate unstable flow. The results in Reference 119 do indicate, though, that physical

instability is more likely to be observed whenA becomes large, and is at its closest to

the upper instability bound. It is a possibility that test flow noise within the experimental

facility (such as of the type described in Reference 120, for example) contributed to the

early occurrence of instability. Another plausible explanation is that the post shock recom-

bination of ionized or dissociated species causes a sudden release of energy or acoustic

emission, triggering an instability.121–124

The equilibrium carbon dioxide model used for the numerical simulations does not

model ionization nor the kinetics involved in post-shock recombination. Further, the

physical free-stream noise encountered in the experiments does not exist in the simu-

lations. Hence, since there is no early (physical) instability triggering mechanism, and

the simulated instability does not correlate with the gradient of the Hugoniot nor satisfy

the theoretical instability requirements, it would seem reasonable to postulate that the

instability observed in Figure 3.6 is actually a numerical artifact.

Although it is not likely that the instability is real, we take the occurrence of numerical

instability to indicate there may be some propensity towards instability in the physical

system. This could be manifested in an increased time for the bow shock to recover from a

perturbation, for example. It is also suggested that physical instability modes are naturally

emulated when numerical instability occurs. Thus, it can be a difficult task to differentiate

between numerical and physical instabilities, and in some cases an accurate experiment is

the only way to provide final verification. The holographic interferogram125 in Figure 3.7

was produced in the University of Queensland X1 expansion tube,126 for carbon dioxide

flow around the Apollo heat shield with free-stream conditions corresponding to those

listed earlier in this section. A laser of wavelength 532 nm was used to produce the

image. A stable shock is observed, confirming our postulate that the simulated instability

is spurious. The image is partly obscured by a damaged optical window.
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Figure 3.7: Experimental interferogram of flow around the Apollo heat shield.

Source: University of Queensland laser physics group.

3.6 Investigation of Numerical Instability

Before investigating the bow shock instability, we shall first study a related problem in

order to gain more insight into its possible cause. A perturbed grid test case proposed by

Quirk94 exposes an odd-even decoupling problem suffered by some flux solvers. A normal

shock wave, initially aligned with a two-dimensional rectangular grid, is examined as it

propagates through the mesh and processes a volume of stationary gas. Instead of being

perfectly orthogonal, the grid geometry is contrived to induce shock instability; every

second cell vertex on the grid centreline in perturbed by a small distance. Specifically,

we use a Mach 10 shock processing air at standard temperature and pressure (300 K,

100 kPa), with grid perturbations of magnitude 1�10�6 mm in the transverse direction.

The grid cells are nominally 2.5 mm square, and 40 cells span the 0.1 m shock tube width.

Figure 3.8 shows density contours of the flow solution after 250�s, which corre-

sponds to roughly 1000 steps at CFL 0.5. To avoid introducing the effects of limiters and

interpolation schemes, only first order spatial and temporal accuracy is used. The results

show that EFM, the most dissipative scheme considered in this thesis, resolves the normal

shock without noise or instability. The AUSM, which is less dissipative than EFM, also

resolves the normal shock well, with only very small density oscillations visible towards

the rear of the shock structure. In contrast, the AUSMDV generates a shock wave with

a centreline protuberance, as well as significant post shock noise. The approximate Rie-
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EFM AUSM AUSMDV Approximate Riemann

Figure 3.8: The odd-even decoupling test case. Density contours show a shock instability

generated by some flux solvers.

mann solver, which is the least dissipative scheme of the four, suffers an instability of

slightly greater magnitude than the AUSMDV, with plenty of downstream noise apparent.

To date, no single conclusive explanation for the problem has been put forward. How-

ever, an approximate analysis by Quirk94 and the hypothesis of Wada and Liou102 provide

interpretations that properly predict characteristics of the instability. It is Quirk’s con-

tention that the behaviour is a result of two competing processes. The first is an odd-even

decoupling of pressure and density that exists in some schemes, where pressure distur-

bances continually feed density disturbances if the system is repeatedly perturbed and the

disturbances are of opposite sign. Presumably, the disturbances are generated by small

errors in resolving the fluxes across the interfaces which are almost, but not aligned with

the flow. This odd-even decoupling can be observed in Figure 3.9, where the post-shock

density and pressure profiles show disturbances with opposite sign and out of phase. A

second contributing process is the variation in shock speed along the length of the shock,

which is attributable to the variations in post-shock conditions caused by the first process.

The different shock speeds amplify the pressure perturbations and reinforce the instability.

Liou and Wada107 theorize that the instability is due to the internal structure of the

shock. When a shock wave is resolved within the computational grid, the schemes dis-

cussed thus far will approximate (or capture) it as a blurred region of high gradient, rather

than a perfect discontinuity. The numerical shock will thus contain an internal structure,

and usually span several cells. For example, the first-order EFM simulation in Figure 3.8

resolves the bulk of the shock within four cells. Unphysical transfer of information be-

tween these cells in the transverse direction is promoted by the perturbed grid, and if

not sufficiently damped by the numerical scheme, may be blamed for the occurrence of

instability. The transverse flow of information is eventually manifested in large values

of transverse velocity, as shown in Figure 3.10. The plot shows highuy oscillations di-

rectly behind the perturbed part of the shock, which progressively dampen with increased
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Figure 3.9: A transverse section of the odd-even decoupling test case, showing density

and pressure decoupling. The section is taken 3 cells (7.5 mm) after the shock front.

proximity from the shock front.

For schemes suffering the odd-even decoupling problem, Quirk, Wada and Liou all

suggest the introduction of a more dissipative flux solver when a shock is detected. Wada

and Liou show that this technique also alleviates bow shock carbuncles. Increased dissi-

pation comes at the cost of thicker shocks and degraded accuracy, and the introduction of

adaptive flux solvers based on shock-detectors is not an attractive option. We have again

arrived at the tradeoff between accuracy, stability, and scheme simplicity.

Armed with insight into the odd-even decoupling problem, we now return to investi-

gating the unstable bow shock. Figure 3.11 shows a typical time history of the develop-

ment of bow shock carbuncles. The heat shield is initially immersed in gas at rest, and

flow is started by an incident shock propagating from left to right in Figure 3.11(a). The

plot contains an exponentially distributed set of transverse velocity contours, and shows

small amounts of post shock noise. Most of the noise is of magnitude 1�10�5, and noise

is also present in the state variables and inux. Note that there are additional post-shock

perturbations near the simulation centreline, where the grid is most closely aligned with

the flow. The centreline noise is also amplified by the grid singularity along the axis of

axisymmetry.

It is supposed that the post-shock noise is probably not caused by the same processes

that account for the odd-even decoupling. Examination of the noise shows that pressure

and density perturbations are in phase. More likely, the noise is due to changes in the
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Figure 3.10: Post-shock transverse velocity perturbations.

captured shock width as it passes through the grid.127 If the shock is positioned directly

between cells at a particular timestep, it will be captured at the cell interface relatively

cleanly, and be defined by the two neighbouring cells. If aligned with a cell centre, the

shock may be blurred over three or more cells. Thus, the shock may strengthen or weaken,

depending on where it falls at the end of a timestep. This approximately random behaviour

leaves a downstream trail of noise.

After the incident shock hits the body and reflects, the remnant noise is subsequently

processed by the newly formed bow shock. If we take this noise as the analog of the

grid misalignment perturbations in the odd-even decoupling problem, it is no surprise

that a protuberance is soon formed. It is also unsurprising that the protuberance forms

in the region of highest inflow noise and closest grid alignment (and thus least numerical

diffusion). The development of the first carbuncle is visible in Figure 3.11(b). Note

that the carbuncle is also observed to develop in impulsively started simulations, where

no incident shock (and associated downstream noise) is present. For impulsively started

simulations, the newly formed bow shock wave will initially travel slowly across the

mesh towards its steady-state position. The generation of spurious numerical oscillations

behind slowly moving shocks is a well-known and much researched phenomenon,90, 128, 129

and is a problem experienced by all standard shock capturing schemes to some degree.70

It is postulated that these oscillations, combined with the axisymmetry singularity, are

enough to trigger the carbuncle instability in the case of an impulsively started flow. More

artificial dissipation is the only presently available cure for noise behind slowly moving
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Figure 3.11: Time development of carbuncles. (a) Exponentially distributed contour plot

of absoluteuy during incident shock impingement on the Apollo heat shield. (b),(c) Iso-

pressure contours showing carbuncle development on the Apollo heat shield, with mag-

nified views of the corresponding velocity vectors shown below.
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captured shocks.70

The post-shock perturbations inuy observed near the protuberance in the odd-even

decoupling problem (Figure 3.10) are also apparent in the carbuncle instability. The

magnified view of the stagnation region of Figure 3.11(b) shows velocity vectors with

substantial components ofy velocity. A very small spurious vortex, the first to appear

in the simulation, is visible in the four cells closest to the stagnation point. This initial

vortex is thought to have caused the generation of the larger, counter-rotating vortex struc-

ture, closer to the shock. Since the magnitude of vorticity produced by a shock depends

largely on the magnitude of the tangential velocity component,130, 131we would expect vor-

tex severity to increase with increasing levels of upstreamuy noise, and with increasinguy

noise generated inside the structure of captured shock waves. Conversely, a larger down-

stream vortex will cause a greater shock protuberance, and thus moreuy perturbation.

Thus, via a feedback mechanism involving the shock-perturbing vortex and tangential

velocity, the instability is self-sustaining.

The shock-vortex structure in Figure 3.11(b), while not physical, still bears a distinct

resemblance to shock-vortex interactions described in the literature.132 Rusaket al.133

cite experiments which show shock-vortex systems generating downstream regions of

compressions, rarefactions and acoustic waves. In numerical and physical experiments

of mildly disturbed hypersonic blunt-body flows, Hornung134 has observed a shear layer

instability that causes the production of shock-perturbing and self-reinforcing vortices.

This activity is perhaps analogous to the downstream noise occurring in the numerical

system here.

After a large number of steps, the bow shock wave becomes fully unstable. Fig-

ure 3.11(c), and the corresponding magnified view of velocity vectors, show the presence

of many vortices and a shock wave which is unstable along its complete length. The

vortices, shock-vortex interactions, and recirculation continue unabated, and steady-state

convergence is not achieved.

Numerical experiments revealed factors that induced or contributed to the carbuncle

problem. Stronger shocks and higher grid resolution were found to increase the chance of

instability. Grids with distorted, high aspect ratio cells135 (elongated in the body-tangential

direction) were less prone to carbuncles, and although crude, this is a possible cure. Both

non-reacting and equilibrium flows were tested, with the equilibrium flows being far more

likely to generate carbuncles. The problem could be induced in non-reacting flows, how-

ever, at very high grid resolutions. Similarly to the odd-even decoupling results, less

dissipative solvers were more prone to the instability. While the AUSM, AUSMDV, and

approximate Riemann solver all produced carbuncles on at least one test case, only the

approximate Riemann solver suffered the problem at relatively low grid resolutions.
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To summarize, we have so far reported the following options to avoid computing car-

buncles on blunt body flows with the finite-volume method: (i) Use a coarse or distorted

grid, (ii) Use a highly dissipative flux solver, or (iii) Use an accurate flux solver for the

bulk of the flow field, but switch to highly dissipative fluxes at the shock. Clearly, none of

these options are desirable since they all involve loss of solution accuracy to some extent.

Options (ii) and (iii) involve the introduction of artificial viscosity purely to ease compu-

tation, an idea that was first proposed by von Neumann and Richtmyer136 in 1949 and is

even now the subject of vigorous research and complex treatment.77, 137, 138 A stable and

carbuncle-free technique that avoids artificial dissipation at the shock altogether would

certainly be preferred. Such a technique is presented in the next chapter.





C H A P T E R 4

Shock Fitting

Shock capturing techniques resolve shocks and other discontinuities across several cells.

A natural consequence of shock capturing, then, is the formation of an internal shock

structure. For the inviscid Navier-Stokes equations, internal shock structure has no physi-

cal basis and is a simply a side-effect encountered in the numerical production of a shock

wave. Highly dissipative flux solvers generally produce thicker, more diffuse shocks than

numerical schemes exhibiting low dissipation. Although resolving shocks more crisply,

low dissipation solvers generate shocks with increased numerical noise. Spurious, shock-

induced noise can range from an annoyance, to full instabilities which cause code fail-

ure. Relationships between numerical shock structure and instability were established in

Chapter 3, and we would like to avoid them both.

Physical shocks in continuum fluids are generally of the order of three to ten molecules

wide. In contrast, the width of numerically captured shocks is incorrectly grid dependent

and varies directly with grid spacing. For most practical fluid dynamics problems, such

behaviour yields computed shocks of macroscopic width. In contrast, the only mathe-

matically correct solution of the inviscid Navier-Stokes equations for a shock wave in

a continuum fluid is a perfect discontinuity, and for viscous fluids the correct solution

closely approaches this limit.

Hence, we would like to avoid the calculation of shocks of finite thickness for a num-

ber of reasons: numerical stability, mathematical correctness, and physical similitude.

Adaptive clustering techniques provide one way to significantly reduce shock thickness

and maintain stability. By clustering extra cells around a shock wave and applying a dis-

sipative flux solver, the shock will appear to be more crisp. The dissipative flux solver
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preserves stability, and its inaccuracy is compensated by increased grid resolution. Note

that the shock wave structure is still present and continues to scale with grid size, it is ef-

fectively just hidden from view. The clustering technique also taxes computer resources,

since an increased number of cells and cumbersome grid management scheme are re-

quired.139

The numerically clean and mathematically impeccable70 method of shock fitting elim-

inates shock thickness altogether, and usually requires less computational effort while

achieving higher accuracy than shock capturing. The method operates by aligning grid

cells to the shock wave, and solving the exact Rankine-Hugoniot relations140 describing

the variation in flow conditions across the jump. Grid alignment essentially transforms the

multi-dimensional shock wave into a one-dimensional problem with a transverse velocity

component. Thus we have the added advantage of avoiding the need for multidimensional

reconstruction and flux solvers at the shock: in three-dimensional simulations the shock

wave collapses to a surface, and in two-dimensional simulations the shock collapses to a

curve.

For the blunt-body problem, the outermost boundary of the solution grid can be

aligned with the bow shock wave. In this case, no cells are required in the free stream

where the inflow conditions are supersonic and constant. The extra cells that would or-

dinarily have been required to resolve the shock, and those upstream of the shock, can

be better exploited in the region between shock and body. Such savings in computational

cost are particularly important for the computationally intensive three-dimensional, time-

accurate, viscous simulations with chemistry considered later in this thesis. Figure 4.1

shows a comparison of shock fitted and captured solutions for the inviscid flow of calorif-

ically perfect, chemically frozen air around a cylinder. The free-stream temperature and

density are 300 K and 0.01 kg/m3 respectively, and the flow speed is 3 km/s. Second-order

spatial reconstruction is used on a relatively coarse grid, with a resolution of 15 cells in

the body-normal direction, and 25 cells in the tangential direction. Wasted free-stream

cells and a thick shock are clearly visible in the shock-captured result, as is the aliasing

of the shock when it becomes misaligned with the grid and jumps between cells. Noise

is apparent directly behind the shock, and in the stagnation region. Also, an indenture

has been generated where the captured shock hits the axis of symmetry. The shock-fitting

solution exhibits smooth contours in the shock layer, properly resolves the shock as a dis-

continuity, and encounters no such defects. Additionally, fitted shocks are not susceptible

to the odd-even decoupling discussed in Section 3.6 and, later in this chapter, it will be

shown that shock fitting can cure the carbuncle phenomenon. Hence, with shock fitting,

it is possible to efficiently and accurately simulate difficult blunt-body flows and their
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Initial Grid Shock Capturing Shock Fitting

Figure 4.1: Comparison of shock capturing and shock fitting solutions on a relatively

coarse grid. Isopressure contours are shown.

bow shocks in a robust manner, without instability or the need for excessively dissipative

schemes or fine grids.

With its clear advantages, it is difficult to see why the shock fitting method enjoys

limited popularity and few (though staunch) advocates.141 Perhaps one reason is that shock

fitting, although well-suited to external shocks on blunt bodies, is more difficult to apply to

internal, embedded, and weak shocks. The relocation of internal cell boundaries to suit the

shock geometry or the use of shock-cut cells can become complex, albeit these techniques

have been applied with success.139, 142 Two examples are floating shock fitting,143, 144 and

the shock aligned grid technique.145 Shock fitting is not restricted to structured grids, and

has recently been used to compute backward and forward facing wedge flows on adaptive

unstructured grids.146

Fitting bow shocks is not new; Moretti has been applying the method to blunt-body

flow computations in three-dimensions since 1966.147 The fact that reasonable inviscid

solutions were obtained using between two and seven points between shock and body

is testament to the efficiency of the technique. Although further developed by Moretti

and others, and coupled to the�-scheme,148–150the method of characteristics,151 and finite-

difference152 and finite-volume formulations,18 the basic philosophy of shock fitting re-

mains unchanged. In the remainder of this chapter, the shock fitting formulation used

in SF3D is described. Although the fundamentals of this implementation borrow from

existing principles, most of the presented work, including the shock speed upwinding and

robust shock interpolation methods, is believed to be original.
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4.1 Shock Fitting Formulation

For the blunt-body flows considered in this thesis, only external bow shocks are present

and need to be fit. The SF3D code resolves shocks in a hybrid manner so that, should

an embedded shock should be present behind the fitted bow shock, it can be resolved by

shock capturing. Also, shock fitting can be switched on or off during simulations at will,

so that a captured shock can be transformed into a fitted shock, and conversely.

In Section 4.1.1, we first describe how the shock speed is determined. Section 4.1.2

discusses the one-dimensional interpolation and limiting technique employed at the shock

to gain increased shock speed accuracy, while Section 4.1.3 covers issues related to shock

wave stability. Then, we detail the requirements of flux solvers for shock fitting compati-

bility, and examine the shock capturing to shock fitting transition process.

4.1.1 Treatment of the Shock Interface

There are several different approaches to determine the speed of the shock interface,

though all use the Rankine-Hugoniot shock wave equations in some way. The Rankine-

Hugoniot equations specify that mass, momentum and energy fluxes across a shock wave

must be conserved, by relating upstream and downstream flow variables in a shock-

stationary frame of reference. The equations may be expressed as

uL �uL � n̂S = uR�uR � n̂S (4.1)

�L(uL � n̂S�wS) = �R(uR � n̂S�wS) (4.2)

PL +�L(uL � n̂S�wS)
2
= PR+�R(uR � n̂S�wS)

2 (4.3)

eL +
PL

�L

+
juL �wSn̂Sj2

2
= eR+

PR

�R

+
juR�wSn̂Sj2

2
(4.4)

where we have additionally specified a tangential velocity constancy condition. In Equa-

tions 4.1–4.4, L and R represent the left and right sides of the shock respectively,wS is

the normal shock speed, andn̂S is a unit vector normal to the shock. These equations are

valid for shock waves in any dimension.

A method commonly employed to determine the shock Mach number, is to use a com-

plete set of upstream flow variables on the low pressure side of the shock and a compati-

bility equation along the downstream characteristic on the high pressure side. With such

information it is possible to solve Equations 4.1–4.4 for the downstream flow variables

and shock speed.139, 150 This method is well-suited to flow solvers based on the method

of characteristics and the�-scheme. Unfortunately, though, thermodynamic properties of

the gas are directly introduced into the fitting technique.
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For finite-volume schemes, a complete set of upstream and downstream flow variables

is already known, and thus Equations 4.1–4.4 are overconstrained. Solving Equation 4.2

for shock speed yields

wS1 =
�LuL � n̂S��RuR � n̂S

�L ��R

; �L 6= �R: (4.5)

Likewise, manipulation of Equation 4.3 gives18

wS2 = uL � n̂S�
sign(PR�PL)

�L

+
s���� PR�PL

1=�L�1=�R

����; �L 6= �R: (4.6)

The sign term has been introduced for compatibility with the entropy condition, and con-

sequently the positive square root should always be selected.

If the left and right conditions exactly constitute those required for a shock wave, the

computed speedswS1 andwS2 will be equal. If, during shock formation, the left and right

states do not exactly satisfy the complete Rankine-Hugoniot conditions, a blending of the

two speeds can be used to obtain

wS = �wS1+(1��)wS2; 0� �� 1: (4.7)

A blending parameter of�= 0:5 is normally used. The introduction of a third wave speed

into this equation, based on the conservation of energy condition, was found unnecessary

in practice. If the left and right states possess significantly different pressures but have

zero velocity, the second term in Equation 4.7 will initially perturb the shock and set it

moving, whereupon both terms will contribute to the calculation of the shock speed in the

next timestep. An example of this scenario is the starting process in the classic shock tube

problem of Sod.153 Similarly, the first term provides impetus when a velocity jump exists,

but there is yet no pressure difference across the newly forming shock.

An advantage of this scheme is that it is conservative. A new downstream flow state is

not calculated during shock fitting; only the shock speed is calculated, and the fluxes

across the shock and computation of cell properties are handled by the finite-volume

scheme in the usual manner. Additionally, the scheme is time-accurate when the left

and right states correspond to a shock discontinuity. Otherwise, small errors in temporal

accuracy may result for a short period. Numerical experiments in Section 5.2 show that

these errors are negligible.

4.1.2 Interpolation and Limiting at the Shock

For bow shocks residing on an edge of the solution domain, shock fitting can be imple-

mented as a special boundary condition. In this case, the low pressure side of the shock is
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Figure 4.2: Nomenclature for shock fitting at a boundary.

contained within upstream ghost cells, and the high-pressure side is located downstream

and lies inside the flow domain. Figure 4.2 shows the nomenclature used for shock fitting

at a boundary in this thesis.

Attention is now directed at the calculation of left and right states for use with Equa-

tions 4.5 and 4.6 in the case of a bow shock. After setting both ghost cells to the constant

inflow conditions, a simple approach is to designate

uL = uG1; PL= PG1; �L = �G1; and (4.8)

uR = uF1; PR= PF1; �R = �F1: (4.9)

While convenient, this approach induces spatially first-order errors in a solution which

may elsewhere be of higher order. Effectively, a half-cell width of flow gradient is ignored

on the downstream side.

A one-sided reconstruction technique that boosts accuracy of the downstream shock

state is now presented. First, the modified van Albada limiter and MUSCL reconstruction

of Section 3.2.3 is applied to find the necessary flow variables on the right side of the

interface. However, instead of interpolating across the shock, we use a purely one-sided

reconstruction with an extended stencil. Thus the extreme and numerically troublesome

gradients at the discontinuity are avoided. The reconstructed dimensional gradient at the

downstream side of the shock is

∆1 =
sF2

2
[(1�sF2�)∆�

F2+(1+sF2�)∆	

F2]; (4.10)

where the difference terms have their usual meaning. Explicitly, for pressure, they are

defined as

∆	

F2 = 2(PF2�PF1)=(hF1+hF2); and (4.11)

∆�

F2 = 2(PF3�PF2)=(hF2+hF3); (4.12)

and similarly for density and and shock-normal velocity. The limiting functions and up-

winding parameter� are as described in Section 3.2.3. In most cases, the gradient of
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Shock Speed Calculated
With Reconstruction

Shock Speed Calculated
Without Reconstruction

Figure 4.3: Comparison of shock fitting simulations performed using shock speeds calcu-

lated with and without reconstruction.

Equation 4.10 can be extrapolated to accurately determine the value of the corresponding

flow variable at state R. However, if the states G1 and F1 do not even approximately sat-

isfy the Rankine-Hugoniot equations (in other words, the supposed shock does not exist),

difficulties arise: the one-sided nature of the extrapolation and downstream-biased gradi-

ent will quickly cause an instability at the shock fitting boundary. Although a condition

imposed in Section 4.2 is designed to prevent this event from occurring, it would still be

beneficial to make the reconstruction independently robust.

The proposed remedy is to introduce a further modified reconstruction, using the cross

boundary gradient to detect the situation of a non-existent interface shock. The pressure

gradient at the boundary is given by

∆2 = ∆	

F1 = 2(PF1�PG1)=(hF1+hG1): (4.13)

When a shock exists at the boundary, we would expectj∆2j � j∆1j. In this case, it is safe

to extrapolate state R using∆1. Alternatively, if j∆2j � j∆1j there is probably no signifi-

cant discontinuity at the boundary and it would be wise to discard any downwind-biased

reconstruction. Instead, upwinding the right interface state would be a better option. To

summarize, we may express the robust interface reconstruction scheme with accuracy for

shocks as

PR = PF1�hF1[sign(j∆1j� j∆2j)(∆2�∆1)+∆1+∆2]; (4.14)

for the pressure variable. Reconstructions for density and shock-normal velocity are sim-

ilarly defined.

This formulation has the additional advantage of allowing abrupt cell clustering close

to the shock, since the reconstruction scheme senses cell spacing. Post-shock chemical

kinetics, for example, could be observed at high resolution with this technique.
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Figure 4.3 shows simulations of cylinder flow using shock speeds computed with and

without reconstruction. The flow conditions are the same as for Figure 4.1, but the grid is

at a slightly different resolution (10 by 30 cells). Results for the unreconstructed scheme

show that smaller pressures are predicted behind the shock, and an oscillation soon fol-

lows. No such oscillation is observed for the solution with shock reconstruction. Compar-

ison of the two solutions reveals that differences in flow variables do not generally exceed

4% behind the shock. By the time the flow reaches the body, these differences become

much smaller. The 4% accuracy gain is obtained at negligible computational cost, and

alone justifies the use of Equation 4.14. However, this is not seen as the main benefit

of the reconstruction scheme. The primary advantage of the reconstruction is to avoid

introducing post shock noise which has the potential to trigger instability.

4.1.3 Shock Interface Stability

So far, a method for determining shock speed at boundary interfaces has been proposed

and described. Because this speed corresponds to an averaged value over the interface,

we assign the value to the interface centre and specify that it is directed in the interface

normal direction. Shock speeds at interface centresA, B, C andD are diagrammatically

represented by the arrows in Figure 4.4.

If the interfaces were allowed to translate with the velocity specified at their centres,

the shock surface would quickly break into a series of disconnected or overlapping tiles.

The shock surface may be kept contiguous, though, by selecting an equal and appropriate

velocity for the coincident vertices from abutting interfaces. For interfacesA, B, C and

D, the corresponding shared vertex isV in Figure 4.4. The vertex velocities should in

conjunction cause the boundary interfaces to translate, rotate, and deform to maintain the

correct shock displacement and alignment.

An obvious choice for the shock velocity at vertexV is the average of the shock

velocities computed at the neighbouring interfaces:

wS;V = (wS;A +wS;B +wS;C +wS;D)=4: (4.15)

Applied to blunt-body bow shocks, Equation 4.15 yields marginally stable shocks with

corrugations visible on the shock surface. Figure 4.5 shows the effect of velocity aver-

aging on an oblique part of the bow shock formed on a cylinder in hypersonic flow. The

test simulation has conditions corresponding to those in Figure 4.1, and in this case the

complete grid size is 30 by 50 cells. The solution shown is that computed after about

6000 timesteps, or roughly 60 body lengths of flow. While this should be ample time to

reach convergence, the speeds of some of the boundary vertices remain at values far from
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Figure 4.4: Diagram showing shock speeds on a boundary fitted shock surface.

zero. Over time, oscillations in the distribution of shock speeds generate self sustaining

corrugations on the shock surface. The corrugations are more likely to occur and have

greater amplitude for oblique shocks approaching the Mach angle.

The averaging process of Equation 4.15 does not discriminate between wave speeds

obtained from interfaces upstream or downstream of the vertex. It is suggested that the

contribution of downstream speeds causes an unphysical upstream propagation of infor-

mation at each timestep. Thus, for the example simulation being considered, it is possible

that information travels from the shock at the outflow boundary to the stagnation stream

line within 50 steps. To correct the situation, weighting terms are introduced to penalize

wavespeeds gleaned from interfaces downstream of a vertex.

Let t̂AV be a unit vector tangent to the shock surface, directed from interface centreA

to vertexV. The post-shock Mach number of the flow atA, in the direction of the tangent

vector, is thus

MA =
uA � t̂AV

aA
; (4.16)

and is similarly defined for the other boundary interface centres. We specify weightings

for shock velocity contributions from each interface using a non-negative function based

on the associated post-shock Mach number, such that

!A = !(MA): (4.17)

Once the weightings have been determined, the shock velocity at the vertex is found using

the expression

wS;V =
!AwS;A +!BwS;B +!CwS;C +!DwS;D

!A +!B +!C +!D

; (4.18)
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Upwind Biased Shock Speed

Mach 1 Reference Vector

Averaged Shock Speed

Figure 4.5: The effect of upwinding shock speed at the boundary interface, for an oblique

shock. Isopressure contours and shock velocity (not flow velocity) vectors are shown.

providing that not all! are zero. In such a case, though rarely encountered, we revert to

Equation 4.15. This is equivalent to setting all! to unity.

Two different weighting functions are included in SF3D. The first is fully upwind, and

very robust:

!(M) =
M+ jMj

2
: (4.19)

Recognizing that wave speed contributions from subsonic downstream flow should also

be included for accuracy, it seems reasonable to introduce a smooth weighting function

like

!(M) =

8<
:[(M+1)2+(M+1)jM+1j]=8 if M � 1;

M otherwise:
(4.20)

Plots of the fully upwind and upwind-biased weighting functions are displayed in Fig-

ure 4.6. While somewhatad hoc, both functions work well in numerical experiments;

Figure 4.5 shows that upwind biasing produces a smooth bow shock wave for the cylinder

flow case considered earlier in this section.

If the vertex velocity is set equal to the vertex shock speed,

wV = wS;V; (4.21)

difficulties with grid management may occur. To explain, consider the general case where

cell interfaces at the shock are not orthogonal to the radiating grid lines between shock
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Figure 4.6: Weighting functions for the calculation of shock speed at vertices.

and body. An example where this is clearly the case is the cell markedE in Figure 4.4.

Since the shock velocities at the surrounding vertices are roughly aligned in the interface

normal direction, the shock surface would locally begin to float away. Unchecked, the

code may end up simulating the shock in a region of flow that was not initially desired for

inclusion in the solution domain. To avoid relocating the shock, we constrain boundary

interface elements to move along the radial grid lines, as if they were rails. Thus, rather

than Equation 4.21, the following is used to assign the vertex velocities at the shock:

wV = (wS;V � t̂RV) t̂RV: (4.22)

The unit vector̂tRV is defined by alignment with the radial grid line terminating atV.

After the calculation of velocities at all cell vertices contained on the shock surface, the

velocities of the internal mesh vertices are determined. A linear velocity distribution

between shock and body is used, based on distance from the body. In this manner, the

relative spacing between cells is preserved during shock movement.

Finally, the velocities of all cell interfaces are found by averaging the newly assigned

velocities of their vertices. Note that these particular calculations are based purely on

geometry considerations; they do not affect flow stability, and clearly should not be up-

wind biased. Also, the GCL interface velocities may now be calculated, as described in

Section 2.7.

The stability measures introduced in this section implicitly impart dissipation on the

shock movement, and therefore have the potential to affect time accuracy to a degree. It
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could be argued that we have used the guise of shock fitting to introduce numerical dis-

sipation, contradicting our goal of developing a stable low-dissipation scheme. This is

not the case, however, for two fundamental reasons: (i) All numerical dissipation associ-

ated with the shock fitting vanishes when convergence is reached, and (ii) The dissipation

inherently linked to the shock movement does not affect the accuracy of individual flux

calculations.

4.1.4 Shock Fitting and Flux Solvers

The boundary shock fitting technique can be used in conjunction with virtually any flux

solver, providing care is taken at the fitted shock surface. In the case of a blunt body with

supersonic inflow, the free-stream characteristics dictate that the correct inviscid fluxes

across the shock are those calculated from the inflow conditions alone. Thus, it is a

simple matter to set the boundary fluxes explicitly at the shock. Alternatively, any solver

which gives the correct fluxes for a shock captured between two cells could also be used to

calculate the boundary fluxes. Both approximate and exact Riemann solvers are suitable.

The AUSM and most of its derivatives, though, encounter a small amount of dissipation

in this situation and slightly undervalue the fluxes. During shock capturing the dissipation

is not ordinarily a problem, since the undervalued fluxes create an upstream perturbation

that is recovered as it convects back into the shock in the next timestep. Because there are

no cells upstream of the shock in boundary shock fitting, this information is immediately

lost. Hence if schemes such as AUSM are to be used in a shock fitting simulation, fluxes

at the shock boundary should be calculated directly from the inflow state. For the same

reason, viscous stresses and heat transfer across the shock are not included while shock

fitting, regardless of the inviscid flux solver used. These considerations ensure that the

CFD code remains conservative and maintains accuracy.

4.2 Hybrid Shock Capturing and Fitting

The transition between shock capturing and shock fitting is now described, using an algo-

rithm that requires little intervention by the code operator. This is the usual way in which

fitting is applied to blunt-body flows in this thesis.

Initially, the boundary that is to eventually to comprise the shock is set to track the

shock wave, by moving towards it at either the left or right flow wave speed. Alternatively,

the boundary can be set to remain stationary at an initial position, where it will wait until

a captured shock reaches and coalesces with it. In either case, once a shock is detected

at a boundary interface the shock fitting process is locally enabled. With reference to
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(a) (b) (c) (d)

Figure 4.7: Timelapse images showing the transition from shock capturing to shock fit-

ting on an impulsively started blunt-body problem. Isopressure contours and boundary

velocity vectors are shown.

Figure 4.2, a simple shock detector is

j�F1��G1j
max(�F1; �G1)

� K; (4.23)

where the value of the threshold parameterK dictates sensitivity to density discontinuities.

A value ofK = 0:2 works well in most circumstances. More elaborate shock detectors are

available in the literature,144 however Equation 4.23 suffices for blunt-body bow shocks.

Should the detector falsely trigger, the shock-fitting process is robust enough to remain

stable and allow the disturbance to pass. Once the disturbance no longer exists at the

boundary, the detector will locally turn off the fitting.

The capturing to fitting transition process is now illustrated, again using the example

of a cylinder in a supersonic stream. Figure 4.7(a) shows a captured shock emanating

from a cylinder towards the outer domain boundary. The flow was impulsively started,

and these results correspond to a time of approximately one body length of inflow after the

simulation began. Hollow arrowheads indicate the direction in which the captured shock

is moving. At a specified time, when the captured shock is well developed, shock tracking

is initiated and the outer boundary moves towards and searches for the shock wave. Shock

tracking is pictured in Figure 4.7(b), and shows the velocity vectors of boundary vertices.

The lower part of the boundary is the first to reach the shock, and shock fitting is locally

enabled. As shown in Figure 4.7(c), the fitted shock then continues to move away from

the body at the correct shock speed. The upper part of the boundary, though, remains in

shock-tracking mode. For the shock-fitted region of Figure 4.7(c), noise is visible from the

body to a line roughly midway between body and shock. This noise is contained within

flow that was originally processed by the captured shock. Eventually, this noisy flow is

discharged through the outflow boundary, being displaced by gas cleanly processed by the
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fitted shock. In the meantime, the interface between clean and noisy flow should not be

mistaken for a physical flow feature. After the entire shock is fitted, and full convergence

is reached, the result in Figure 4.7(d) is finally obtained.

4.3 The Apollo Heat Shield Revisited

Armed with a new shock-fitting technique, attention is returned to the carbuncle instability

observed on the Apollo heat shield in Sections 3.5 and 3.6.

Flow around the Apollo geometry was resimulated using shock fitting and the AUS-

MDV flux solver, with conditions, grid size, and spatial and temporal accuracy equivalent

to the shock capturing simulation. As previously described, shock fitting compresses the

grid, causing effectively unused free-stream cells to become relocated in the shock layer.

Therefore, although the captured and fitted Apollo simulations were performed on grids

with equal cell number, the shock-fitting results are of higher resolution. In Section 3.6, it

was noted that higher grid resolution increases the probability of the carbuncle instability

occurring.

Figure 4.8(a) shows a converged shock-fitting result. And, although at higher resolu-

tion than the shock-capturing simulation, no carbuncle is observed. Thus, the postulate

that the carbuncle is related to numerical shock structure is further evidenced. Another

shock-fitting simulation was performed at lower resolution, but with a solution domain

covering the expansion region around the shoulder of the forebody. Results produced

on this second grid are shown in Figures 4.8(b) and 4.8(c). The computed interferogram

compares reasonably well with the experimental interferogram of Figure 3.7; fringe shape

and fringe number are quite similar. The computed shock standoff distance, however, is

smaller than that measured in experiment. The reduced standoff is probably due to the

assumption of chemical equilibrium, since a frozen gas simulation produced a standoff

distance greater than that measured in experiment. The relationship between standoff

distance and gas chemistry is investigated more thoroughly in Chapter 5.

4.4 Implementation Issues

This chapter concludes discussion of the flow models and numerical algorithms imple-

mented in SF3D. The remainder of the thesis is chiefly concerned with the results and

application and analysis of results generated by the code. Details concerning the practi-

cal operation of SF3D, including information for new users and researchers wishing to

modify the program, are presented in Appendix C.
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Figure 4.8: Isopressure contours and computed interferogram for shock-fitting simula-

tions of the Apollo heat shield.
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Test Cases

Determining the credibility of computational fluid dynamics simulations and codes is,

inherently, subjective. Some authors go as far as stating that it is impossible to univer-

sally verify and validate numerical models of natural systems.154 While semantics may

prove this to be the case, we take the approach of Roache155 and use the concepts of ac-

curacy tolerancing, range of applicability, and physical intuition as evidence of credible

simulations.

The range of applicability of SF3D has already been bounded by the limitations of the

physical models and numerical techniques described in the preceding chapters. However,

we have not yet verified and validated the complete CFD code for operation inside these

bounds. Verification is the process of establishing the accuracy and reliability of the nu-

merical technique used to solve the mathematical model of the physical system.156 In line

with this definition, we verify SF3D in Sections 5.1–5.8 without the use of experimen-

tal data.155 In contrast, validation involves determining the accuracy of the mathematical

model as it applies to the physical system.157 SF3D is validated in Sections 5.9–5.11 and

Chapter 6. The type and thoroughness of verification and validation needs to be com-

mensurate with the purpose for which the code is to be used. When simulation results

are to be used as the basis for the design of hardware (as envisaged with air data systems

in Chapter 7) or in a safety critical application, it is especially important to be able to

quantify simulation error precisely and accurately.158

The credibility of complex simulations is generally difficult to assess and thus rarely

established.159 A common practice is to instead examine code performance on well-known

or simple test cases, with each case designed to test a specific model, technique, or likely

failing. It is important, though, that verification test cases remain relevant to the intended
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code purpose. For this reason blunt-body flows are primarily used to validate SF3D in

this chapter, and a verification grid convergence study is performed under HYFLEX sim-

ulation conditions in the next chapter. In this chapter, the test cases used for verification

are not always closely linked to blunt-body flows, but are instead designed to interrogate

the core Navier-Stokes solver, and allow evaluation of errors due to dissipation, noise, and

discretization.

Validating and verifying a code does not guarantee the absence of programming er-

rors. It is expected, however, that critical mistakes pertaining to blunt-body simulations

would become apparent in the test cases presented. In any case, the existence of program-

ming errors within CFD software does not necessarily justify immediate invalidation;

programming errors of some type probably reside within most CFD codes of size.141

5.1 Geometric Conservation Law Test

The formulation presented in Section 2.7 was introduced to ensure that the CFD code

observes the geometric conservation law, which is a necessary condition for numerically

maintaining the integrity of the physical conservation laws. We now verify that the im-

plementation of that formulation results in a GCL compliant scheme.

The initial setup of the test case is shown in Figure 5.1. The solution domain is a cube

with nondimensional side lengths of unity, and 10 cells in each index direction. The ratio

of specific heats of the ideal, polytropic test gas is constant and 1.4, and the initial internal

energy and density of the gas are set to nondimensional values of unity. To check that

mass fractions in heterogeneous mixtures are conserved, we use a gas composed of two

species. The mass fraction of the first species is set to 0.1, and each species is assumed

to possess the same thermodynamic properties. The test gas is initially at rest throughout

the solution domain.

At the start of the simulation, the speed and direction of all internal cell vertices are

randomly assigned, such thatjwj � a=50. Vertices on the domain boundaries are fixed

in space, and each of the six boundaries is an adiabatic, frictionless wall. Maintaining

the cell vertex velocities, the solution is marched forward in time through 100 iterations,

at CFL 0.5. Nominally second-order Runge-Kutta time integration, and second-order

MUSCL reconstruction with the modified van Albada limiter, are used. Fluxes are calcu-

lated with the AUSMDV.

The final, distorted, grid geometry is shown in the cutaway view at the right of Fig-

ure 5.1. Because the boundary conditions are unchanged, and the test gas was initially at

rest with constant conditions throughout, we should physically expect the final solution

to be identical to the initial conditions. A code not satisfying the GCL, however, would
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Figure 5.1: Cutaway views showing the initial grid and vertex velocity vectors used for

the GCL test (left), and the grid after 100 timesteps (right).

incorrectly introduce perturbations into the solution through the movement of internal

control volume interfaces. Such a code would also be expected to lose or gain total mass

(or any other physically conserved quantity) during interface movement.

The final solution showed mass leakage of less than 1�10�14, which is acceptable con-

sidering that machine precision is approximately 1�10�16 and 100 steps were taken. Per-

turbations in the individual velocity components at cell centres were less than 1�10�15.

No variation in density, internal energy, species mass fractions, pressure and temperature

was observed at all. After switching off the GCL routine and rerunning the simulation,

perturbations in density and energy of up to 5% were produced, and the gas had attained

speeds in the order of 1�10�4. Although the variation in state properties for the non-GCL

simulation is unacceptably large, note that this test case is contrived to exacerbate such

problems. When shock fitting and a moving grid is used in practical blunt-body simula-

tions, the adverse effects resulting from GCL violation are smaller and less noticeable,

especially when convergence is approached. However, for unsteady problems where time

accuracy is vital, the results of this test show that the GCL formulation is a necessity.

5.2 Sod’s Shock Tube Problem

The code’s ability to resolve shocks, contact discontinuities, and expansions is now as-

sessed using a one-dimensional shock tube problem. Additionally, both shock capturing

and shock fitting techniques will be tested, so that their comparative performance can be

examined.
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Figure 5.2: Simulation results for Sod’s shock tube problem, after approximately 6:0�
10�4 s. —– Exact solution,M shock capturing,Æ shock fitting.
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The conditions and mesh resolution originally suggested by Sod153 are used in this

test case. For the shock-capturing simulation, the shock tube is a one-dimensional grid

with 100 cells spaced evenly along its length fromx= 0 to x= 1 m. Initially we suppose

that an imaginary diaphragm exists atx = 0:5 m, where the conditions to the left of the

diaphragm are

u = 0; �= 0:125 kg/m3; e= 2:0�105 J/kg K; x� 0:5 m:

At the right of the diaphragm, the tube is initially filled with gas at higher pressure and

temperature,

u = 0; �= 1:0 kg/m3; e= 2:5�105 J/kg K; x> 0:5 m:

Calorifically perfect, ideal air is chosen as the test gas. At the commencement of the simu-

lation, the imaginary diaphragm is removed, and the ensuing interaction between the high

pressure and low pressure gas is observed. Shock-capturing results after approximately

6�10�4 s are shown in Figure 5.2. The AUSMDV flux solver, second-order temporal and

spatial accuracy, and a CFL number of 0.5 were used.

Conditions for the shock-fitting simulation are identical to the shock-capturing simu-

lation, however a different grid is employed. Although both grids contain 100 cells, the

shock-fitting grid is initially half as long, running fromx = 0:5 to x = 1 m. The low

pressure gas state is implemented as an upstream inflow boundary condition, rather than

as an initial condition. As the simulation progresses, the grid expands in synchronization

with the shock wave motion. Two computed shock-fitting results are shown at the right

of Figure 5.2.

As should be expected, the shock-fitting solution exhibits a perfect discontinuity at

the shock, while the captured shock wave is slightly diffuse and required about four cells

to adequately define the shock wave. The plateau of internal energy, contained between

shock and contact surface, is mostly flat in the shock-fitting solution and agrees reasonably

well with the exact solution. In contrast, the plateau has been diffused and excessively

rounded during shock capturing. In both the density and internal energy plots, both tech-

niques are observed require roughly six cells to capture the contact discontinuity. How-

ever, the fitting solution has a smaller cell spacing since it does not waste cells upstream

of the shock, and the discontinuity is thus condensed in space and appears slightly more

crisp. For the same reason, the expansion fan is more accurately resolved in the case of

shock-fitting.

At 6�10�4 s after the start of the simulation, the distance traversed by the fitted shock

wave is slightly in error, being too small by 1%. This error is attributable to a delay in the

starting processes occurring directly after diaphragm removal, while the shock, contact
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(a) (b) (c)

Figure 5.3: Results showing the operation of different reconstruction schemes on a

nonuniformly spaced grid.

surface, and expansion fan structures are forming. Section 4.1.1 discusses the source of

the problem in more detail. In terms of time accuracy, the 1% error is considered to be

slight, especially after noting that the width of the captured shock corresponds to a 15%

fraction of the traversed distance.

5.3 Time Convergence on a Nonuniform Grid

In Section 3.2.3, we discussed why severe cell clustering is sometimes required to make

optimum use of cells in three-dimensional blunt body simulations. In turn, this motivated

the development of a one-dimensional reconstruction scheme that accounts for nonuni-

form cell spacing. The spatially sensitive scheme is now tested against a spatially insen-

sitive reconstruction scheme, through the simulation of blunt-body flow on a nonuniform

grid.

Again, calorifically perfect, ideal air is the test gas, and a cylinder is used for the blunt

body. A temperature of 300 K and density of 0.01 kg/m3 define the free-stream gas state,

and the inflow speed is 3 km/s. The simulations are performed on a 30 by 50 cell grid with

periodic clustering, as shown in Figure 5.3(a). Second-order Runge-Kutta time marching,

the AUSMDV flux solver, and hybrid shock capturing and fitting are used.

The reconstruction scheme described in Section 3.2.1, combining MUSCL interpo-

lation and the min-mod limiter, were used to produce the results in Figure 5.3(b). The

pressure contours display significant noise and oscillation, presumably due to the spatial
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Figure 5.4: Convergence history for the nonuniform grid problem of Figure 5.3.

insensitivity of the reconstruction scheme. By using the spatially sensitive reconstruction

described in Section 3.2.3, combining MUSCL interpolation with a modified van Albada

limiter, the results in Figure 5.3(c) are achieved. The noise has vanished, and the detri-

mental effects of the poor quality discretization have been alleviated. For comparison,

an attempt was made to also perform a spatially first order simulation on the nonuniform

mesh. A first-order solution could not be made to converge on the grid of Figure 5.3(a),

however.

A convergence time history for the two spatially second-order simulations is shown in

Figure 5.4. The largest normalized density residual encountered within the solution do-

main is plotted against timestep. For both reconstruction schemes, a spike in the residual

is observed during the transition from shock capturing to shock fitting. After shock fit-

ting begins, both the density residuals start to decrease in a like manner, until about 2000

timesteps and a residual of 10�4 are reached. At this point, the reconstruction using the

min-mod limiter reaches and oscillates about a residual limit, and does not reach conver-

gence. We attribute this behaviour to the nondifferentiable nature of the min-mod limiter.

In contrast, the reconstruction scheme incorporating the differentiable van Albada limiter

continues to converge at a constant rate. For practical simulations, convergence criteria

vary and depend on the problem and required solution accuracy. In many cases, though,

an acceptable convergence indicator is when residuals of less than 10�6 are achieved.

Hence, the use of a differentiable limiter is certainly advantageous.
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5.4 Grid Convergence for a Supersonic Vortex

Nominally, the reconstruction schemes presented in Chapter 3 are of second-order spatial

accuracy in one-dimension. However, in the extension to multiple dimensions the order

of accuracy is not necessarily retained. A grid convergence test is now performed to

determine the convergence rate of the schemes in two-dimensional flow.

The inviscid supersonic vortex test proposed by Aftosmiset al.160 is a convenient case

on which to evaluate the order of spatial convergence. Because there exists an exact,

analytical solution to the flow problem, it is easy to determine the level of simulation

error. Additionally, the absence of shock waves allows us to observe convergence for a

smooth flow field, somewhat analogous to the relatively smooth flow that exists behind a

fitted bow shock. It is stressed, however, that order of convergence is dependent on the

specific grid geometry and flow case, and thus a separate grid convergence study is still

performed for flow around the HYFLEX blunt body in Chapter 6.

The supersonic vortex is established using a duct bounded by two, circular, ninety-

degree arcs, as shown in Figure 5.5(a). For the simulations presented here, we set the

outer arc radiusro equal to 1.384 times the inner radiusr i , similarly to Reference 160.

Conditions at the inner radius of the inflow plane, in nondimensional form, are

ui = 2:25î; Mi = 2:25; �i = 1; Pi = 1=
; 
 = 1:4:

The inflow density distribution is a function of radius, and for a calorifically perfect gas

given by the expression160

�(r) = �i

�
1+


�1
2

M2
i

�
1�
� r i

r

�2
�� 1


�1

: (5.1)

Flow speed is distributed inversely proportional to radius. For an isentropic vortex, we

additionally have the relationP= Pi �

.

Ideally, the distribution of conditions across the inflow plane should be preserved,

though rotated, at all downstream radial grid lines. Deviation of the simulation results

from the correct solution can be measured in a number of ways. We use theL1 norm to

indicate average error, and theL2 norm to give root mean square error. For density, the

norms may be written

L1 =
1
n∑

�������e

�e

���� ; and L2 =

s
1
n∑

�
���e

�e

�2

; (5.2)

wheren is the number of cells in the grid, and�e represents the exact solution to the

problem.
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Table 5.1: Grid convergence orderp evaluated with theL1 andL2 norms.

Flux Solver Norm
Unreconstructed MUSCL Interpolation

Unlimited min-mod Limiter van Albada Limiter

AUSM
L1 1:11 1:21 1:28

L2 1:10 1:19 1:25

AUSMDV
L1 1:10 1:43 1:41

L2 1:12 1:43 1:43

EFM
L1 1:10 1:63 1:75

L2 1:11 1:60 1:72

Riemann
L1 1:05 1:47 1:50

L2 1:05 1:51 1:49

Figure 5.5: A sample grid used for the supersonic vortex problem, and isopressure con-

tours of a solution generated using AUSMDV with the modified van Albada limiter and

MUSCL interpolation.

Simulations performed on extremely high resolution grids should give close to exact

results. By monitoring the error norms on simulations of different resolutions, we can

evaluate how quickly the numerical scheme is converging to the exact solution. Using the

L1 norm, the order of grid convergencep can be defined as161

p=
ln[(L1;b�L1;a)=L1;a+1]

ln(hb=ha)
; (5.3)

wherea andb denote simulations performed at different grid resolutions, andh is a char-

acteristic cell width.

Table 5.1 presents the results obtained from a series of grid convergence tests using

the supersonic vortex. Grid resolutions of 5 by 30, 10 by 60, and 20 by 120 cells were

used, and each reported value ofp represents an average for all grids. Convergence orders
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calculated using theL1 and theL2 norms agree well in each case.

As would be expected, the simulations run without reconstruction displayed close to

first order convergence for all flux solvers. Reconstructions using the van Albada limiter

exhibited convergence better, or at least roughly equal, to that achieved with the min-mod

limiter. Note that there is effectively no difference between the van Albada and modified

van Albada limiters in this problem, due to the equispaced grids. Overall, orders of con-

vergence were significantly less than two. Particularly slow to converge was the AUSM

scheme, especially when using the min-mod limiter. The fastest converging scheme was

the combination of EFM with the modified van Albada limiter. Note, however, that a

faster convergence rate does not necessarily imply better accuracy, as will be seen in

some of the examples later in this chapter.

5.5 A Rearward Facing Step

The flow past a rearward facing step is now simulated, to examine the behaviour of flux

solvers in resolving an expansion fan caused by the diffraction of a shock wave. This test

case is relevant to blunt-body flows, since rapid expansions can occur at points where the

body curvature suddenly changes, or at a shoulder.

A Mach 10 shock, propagating through calorifically perfect, inviscid air at atmo-

spheric conditions, is diffracted around a ninety degree corner. A 1 m square, two-

dimensional solution domain is used, with 100 cells in each direction. Isopressure con-

tours in Figure 5.6 show solutions generated using different flux solvers, at a time 250�s

after the initially planar shock passes the corner. No reconstruction has been used, so that

the operation of the flux solvers can be assessed in isolation.

The AUSM solution, shown in Figure 5.6(a), exhibits a strong shock wave developing

curvature and weakening as it diffracts. The captured shock is quite broad, on account of

the first order spatial accuracy. Also visible is a reasonably well defined contact surface,

separating gas that was processed by the normal and oblique parts of the shock wave.162

Extending horizontally from the corner of the step is a sudden discontinuity in pressure,

appearing partway through the newly formed expansion fan. The stationary discontinuity

processes upstream air, decreasing its pressure, and is thus termed an expansion shock.94

Although expansion shocks satisfy conservation laws for mass, momentum, and energy,

they are are entropy decreasing (violating the second law of thermodynamics) and do not

physically occur in gases. Thus the flux solver has chosen a mathematically possible, but

physically incorrect solution to the governing equations.

The results in Figure 5.6(b) were produced using the AUSMDV flux solver, with the

entropy-fix suggested in Reference 102. When an expansion shock at a sonic point is de-
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Figure 5.6: Flow over a rearward facing step computed using different flux solvers, show-

ing spurious expansion shocks in some cases. (a) AUSM, (b) AUSMDV, (c) EFM, (d) Ap-

proximate Riemann solver.

tected, the entropy-fix works by adding dissipation terms to the fluxes. Although absolute

flow speed in the expansion shock region is significantly greater than sonic, the compo-

nent of velocity normal to the expansion shock is exactly sonic. Since the grid cells are

aligned to the expansion shock, the entropy-fix will only add dissipation to fluxes in the

normal direction. Even with the fix, however, an expansion shock is found embedded in

the AUSMDV solution. We observe that the severity of the shock is not as bad as that

produced by the AUSM, though.

Simulation results using the EFM are shown in Figure 5.6(c). The EFM is dissipa-

tive enough so as to not encounter the spurious expansion shock. Unfortunately, this

dissipation acts throughout the entire flowfield and blurs the contact surface somewhat.

Figure 5.6(d) was produced using the approximate Riemann solver, and shows an expan-

sion shock which is clearly the strongest of all the schemes. The Riemann solver, though,

does resolve the shock and contact surfaces acceptably, especially considering that no

reconstruction is used.

When reconstruction is switched on, expansion shocks are not produced by any of

the flux solvers. As expansion shocks are monotone and weak, the limiters are not fully

activated and allow some high order interpolation across the wave. Because the shock is
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completely bounded by two cell centres, and a four cell interpolation stencil is used, it is

suggested that gradients drawn from outside the zone of sudden expansion contribute to

the removal of the shock. In practical CFD calculations, reconstruction is almost always

used. Thus, regardless of the mechanism by which reconstruction averts the spurious

shock, explicit entropy fixes are seemingly not required in SF3D. It remains a concern,

however, that most of the underlying flux algorithms are so readily capable of violating

the second law.

5.6 Influence of Chemical Reaction on Flow Noise

In Section 3.6, it was stated that the introduction of chemical reactions into a system can

cause increased noise and aggravate flow instability. To check the susceptibility of the

different flux solvers to such noise, they are now tested in a flow of a reacting gas around

a blunt-body. Carbon dioxide in chemical equilibrium will be used, since we have already

seen that this gas promotes instability, and in addition the equilibrium model is not too

computationally expensive.

For the test, the inflow gas is set to a temperature of 300 K and density of 0.01 kg/m3,

and has a free-stream speed of 1.5 km/s. A cylinder is used for the blunt body, and

is meshed with a 30 by 50 cell grid. The cylinder has a 1 m radius, and solutions are

marched forward in time to 20 ms.

The solution in Figure 5.7(a) was generated using the AUSM, second-order time inte-

gration, and MUSCL reconstruction with the van Albada limiter. A generally clean flow

field is observed, however pressure oscillations are visible near the wall, particularly ap-

parent towards the downstream boundary. Such oscillations are a frequently cited defect

of the AUSM scheme.105 It is unfortunate that the noise is located at the wall, since wall

measurements usually form the basis for comparison with experiment, and are probably

the most sought-after simulation results. The maximum magnitude of the oscillations is

about 3% in pressure, measured peak to trough, with amplitude decreasing away from the

wall. It will be shown in Chapters 6 and 7 that this level of error is unacceptably large

for the HYFLEX simulations, since it is of the order of pressure variations that need to be

resolved.

Figure 5.7(b) shows results from an AUSMDV simulation. Smooth pressure contours

are observed throughout the solution domain, with no visible noise or spurious flow fea-

tures. The absence of noise is an advantage since instabilities and their associated error

are unlikely to triggered, however the smooth contours in no way validate the solution to

be accurate. Validation tests are performed later in this chapter, since, unfortunately, there

is no independent experimental data available to check these particular computed results.
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(a) (b) (c) (d)

Figure 5.7: Simulation of carbon dioxide flow around a cylinder, in chemical equilibrium.

Isopressure contours are shown for (a) AUSM, (b) AUSMDV, (c) EFM, and (d) approxi-

mate Riemann solver.

The solution produced using the EFM is presented in Figure 5.7(c). The EFM pro-

duces significant noise in the stagnation region, as well as flow disturbances in cells just

downstream of the shock. The noisy flow has caused a reduced shock standoff distance

and increased shock curvature to be computed.

Finally, results from the approximate Riemann solver are shown in Figure 5.7(d).

Although the shock curvature roughly matches with the AUSM and AUSMDV solutions,

the standoff distance has reduced to that calculated by EFM. A large amount of noise is

present throughout the entire domain, from stagnation point to outflow boundary. The

worst noise, however, is observed running along the sonic line from shock to body. With

a 3 km/s inflow speed, the Riemann solver breaks the positivity condition and fails to

produce a solution at all.

Unlike the EFM and approximate Riemann solver, the splittings used in AUSM and

AUSMDV do not require any detailed assumptions about the thermodynamic behaviour

of the test gas. This is the key to good flux solver performance for reacting gases with ar-

bitrary equations of state. The approximate Riemann solver, for example, requires knowl-

edge of the ratio of specific heats at the interface, which is calculated as a density averaged

value from the left and right interface states.96 It is suggested that this approximation con-

tributes to the noise production, and likewise for a similar approximation contained in

the EFM scheme.98 Colella and Glaz163 suggest alternative approximate techniques for

solving the Riemann problem for any gas with a convex equation of state, and Grossman

and Cinella164 give algorithms which incorporate nonequilibrium chemistry coupling into

a range of FDS and FVS schemes. These improvements, though, do attract increased

computational effort.
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Table 5.2: Code speed with different flux solvers and reconstructions.

Flux Solver Reconstruction (%) Flux Calculation (%) Total Time (s)

AUSMa 24:6 10:7 635

AUSMDVa 24:2 16:1 632

AUSMDVb 11:1 19:3 548

EFMa 21:3 24:5 736

Riemanna 17:6 39:6 915
a Spatially sensitive MUSCL reconstruction and the van Albada limiter.
b MUSCL reconstruction and the min-mod limiter.

5.7 Code Speed

While not strictly part of verification, we now investigate the practical issue of code speed.

Albeit not particularly relevant to the simple tests presented in this chapter, computational

expense does rank as a significant consideration for the HYFLEX simulations, which can

take several days to complete. Again, flow around a cylinder on a 30 by 50 grid is used

as the test problem, with calorifically perfect air at a temperature of 300 K and density of

0.01 kg/m3 approaching the body at 3 km/s. Simulations are marched forward in time to

10 ms, and bow shocks resolved using shock capturing.

A Silicon Graphics Origin 2000 supercomputer, installed with 64 MIPS R10000 pro-

cessors running at 195 MHz, was used to perform the speed tests (see Figure C.1). Al-

though the machine is capable of executing code in parallel, each test was conducted on a

single processor. A summary of results is presented in Table 5.2. The relative proportion

of the total computer time used by the flux solver and reconstruction technique is shown

for each test. Note that total time refers to the time used by the computer to run the job

in isolation, including system and input-output overheads, but excluding the effects of

other processes which may also be running. Most of the time unaccounted for by recon-

struction and flux calculation, though, is due to the equation of state, time integration,

boundary conditions, memory allocation, flux transformations, and other housekeeping

tasks.

The coded implementation of the AUSM and AUSMDV algorithms were the fastest

flux solvers, with the entire code running at 104 and 103�s per finite volume cell per

complete second-order Runge-Kutta timestep, respectively. Using the min-mod limiter

and equispaced MUSCL reconstruction significantly reduced the total simulation time,

being over two and a half times faster than the spatially sensitive reconstruction with mod-

ified van Albada limiter. The EFM was slower than the AUSM and its derivative, causing
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Figure 5.8: Boundary layer profiles for a flat plate, calculated using different flux solvers.

the entire code to clock 119�s per cell per step. Slower again was the approximate Rie-

mann solver, which consumes computational effort far outweighing that expended during

reconstruction. Using the Riemann solver, the complete code runs at 151�s per cell per

step for this test case.

5.8 Viscous Flow along a Flat Plate

Verification of the correct implementation of diffusive terms in the Navier-Stokes equa-

tions is now conducted, by examining boundary layer development in a viscous, laminar

stream over a flat plate. The simulation is performed with flow conditions corresponding

to those previously used by other investigators for this test case.57, 165

A two-dimensional plate, aligned with thex and perpendicular to they coordinate

directions, is meshed with 50 cells fromx = 0 to x = 1 m. Normal to the plate, 80 cells

are clustered towards the surface to capture the development of the boundary layer and

the shock formed off the leading edge. An isothermal, nonslip wall condition is imposed

at the plate surface, keeping it at a constant and uniform temperature of 222 K. The flow

conditions upstream of the plate are

u = 597:3 î m/s; �= 0:00404 kg/m3; T = 222 K:

The test gas is calorifically perfect air, and Sutherland’s law is used to describe its viscos-

ity as a function of temperature. Simulations are stopped after 8 ms of flow time.

Results in Figure 5.8 show boundary layer profiles computed using SF3D with the

AUSMDV and EFM, at a positionx = 0:91 m from the leading edge of the plate. Also
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shown are results produced by the authors of an accurate spectral collocation method.166

The AUSMDV and spectral profiles are in very good agreement, both predicting similar

boundary layer thicknesses and gradients. Towards the outer edge of the boundary layer

a slight divergence is noticed, presumably because the spectral method does not incor-

porate the leading edge shock, and is thus modelling the core flow at a slightly different

state. In contrast to the AUSMDV, the EFM computes a smeared boundary layer of ex-

aggerated thickness and does not match the spectral solution. The dissipation that was so

advantageous in the odd-even decoupling test case (Figure 3.8) is now working against

the accuracy of the EFM.

When performed using the approximate Riemann solver or the AUSM, simulation

results were of a similar accuracy to that enjoyed by the AUSMDV. Additionally, the flat

plate problem was run at different orientations in order to verify that viscous stresses are

correctly calculated in each coordinate direction.

5.9 Comparison with Drag Experiments

The accurate prediction of aerodynamic drag on blunt bodies is an important part of plan-

ning the trajectory for entry and re-entry vehicles. In this, the first validation test case,

we compare numerically simulated drag of three bodies, with that measured in a hyper-

velocity expansion tube experiment by Smithet al.109 Figure 5.9 shows the bodies to be

tested, which are namely a 30 degree cone, the Apollo heat shield that has been examined

in earlier chapters, and a blunted cone of similar geometry to the heat shields used in the

Viking and Pathfinder missions. Carbon dioxide is used as the test gas, to emulate the

chemistry encountered during Martian atmospheric entry.

For all experiments and simulations, the free-stream flow conditions were

u = 7:5 î km/s; T = 2990 K; P= 15:6 kPa; �= 0:0194 kg/m3:

The uncertainty in obtaining the correct pressure and temperature in the experiments is

estimated at�2%, and the uncertainty in density estimated at�10%.109 As a result,

the experimentally measured drag also has error bounds of�10%. The operation of the

expansion tube causes a somewhat dissociated free-stream flow, with the composition

CCO2
= 0:310; CO2

= 0:189; CCO = 0:439; CC = 0:000; CO = 0:062;

in terms of mass fraction.

In the short test time available, experimental drag was measured by using an impulse

response function to deconvolve signals obtained from a stress wave force balance.167 For
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Figure 5.9: Models used in the drag experiments and simulations.

the 30 degree cone at zero angle of attack, a nondimensional drag coefficient was 0.57

was recorded. The coefficient is defined as

CD =
2FD

�juj2A; (5.4)

with the density and velocity corresponding to that in the free stream, andFD being the

measured drag force. The form area of the body is denoted byA.

The approximate Riemann solver, MUSCL reconstruction, min-mod limiter, and equi-

librium carbon dioxide model were used to simulate the viscous cone flow. The solution

was marched in time until the incident flow had passed the body by a length of at least

25 times the cone base diameter. The total force exerted on the body by the flow may be

expressed as the sum of pressure and friction components:

F = FP+FT; where FP =

Z
PdA; and FT =

Z
T dA: (5.5)

Because the cone was aligned with the flow, the magnitude of the calculated total force

jFj is equivalent to the drag force. The computed coefficient of cone drag is 0.57, in ex-

cellent agreement with the experimentally measured value. Of the total drag coefficient,

0.54 is attributable to form drag and the remaining 0.03 is due to skin friction. Taylor and

Maccoll168 give an analytical treatment for pressure over a cone, which in this case yields

a form drag prediction of 0.54 and verifies the simulation results.109 For the cone flow,

computed drag results were found to be relatively independent of the reaction model; a

simulation run with frozen reactions also resulted in a total drag coefficient of 0.57. This

is not unexpected since pressure, which is responsible for the bulk of the drag force, is

foremost a mechanical quantity and is primarily determined by the free-stream momen-

tum.

For the blunt bodies, simulations were performed using the AUSM with shock-fitting

to avoid the occurrence of carbuncles. Both models were tested at zero angle of attack.

In case of the Apollo heat shield, the computed total drag coefficient was 1.41 for carbon
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dioxide in chemical equilibrium, and 1.42 when the frozen reaction model was used. The

coefficient of drag measured in the expansion tube was 1.54. Computed and measured

results agree to within the 10% tolerance imposed by experimental uncertainty. Likewise,

the numerical and experimental drag over the Viking heat shield agreed to within exper-

imental uncertainty. The measured drag coefficient was 1.78, and the computed values

were 1.68 and 1.71 with the equilibrium and frozen reaction models respectively. In Ref-

erence 169, Gnoffoet al. present results from nonequilibrium carbon dioxide simulations

of the same heat shield geometry, over a range of free-stream conditions. Although none

of these conditions fully correspond to those used in the present work, an approximate

comparison can be made by interpolating the reported data for an equivalent velocity of

7.5 km/s. A drag coefficient of 1.67 is subsequently obtained, which is in close agreement

with the value calculated by SF3D assuming chemical equilibrium.

It is reiterated that the primary purpose of SF3D is to accurately simulate the pressure

distribution around blunt bodies. Although the effect of chemistry on the drag of the heat

shields may seem small, at 1% and 2%, it will be shown in Chapter 7 why this kind of

variation in pressure is significant for the calibration of air data systems. Further, the good

agreement observed in measured and computed drag is a necessary, but not sufficient,

condition for validation. Because drag is an integrated quantity, local inaccuracies in the

flowfield may not immediately be apparent in such results. More validation test cases

are now needed, which incorporate greater sensitivity to the distribution of flow state

throughout the entire flowfield.

5.10 Shock Shape and Standoff

Shock shape and standoff distance are flow features that are reasonably easy to measure

in experiment, using optical techniques such as luminosity photography, Schlieren imag-

ing, interferometry, and shadowgraphs.170 The position and shape of the shock is strongly

dependent on flow physics, and will not be correctly predicted by a CFD solver with an

improper implementation of the Navier-Stokes or Euler equations. Hence, comparison

of these features constitutes a useful element in the complete validation of a CFD code.

In this section, we consider shock curvature and standoff distance for the flow of frozen,

calorifically perfect air. The effects of nonequilibrium reactions and real gas thermody-

namics on shock standoff will be examined in the next section.

For low temperature air, Ambrosio and Wortman used experimental results to develop

correlations for shock standoff distances as a function of Mach number.171 Specifically,
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Figure 5.10: Standoff distances obtained by simulation compared with predictions from

the correlation of Ambrosio and Worman (left), and comparison of shock curvature at

Mach 6 with Billig’s correlation (right).

the correlations are

∆=rb = 0:143 exp(3:24=M2); and (5.6)

∆=rb = 0:386 exp(4:67=M2); (5.7)

for spheres and cylinders respectively. Standoff is denoted by∆, andrb is the body radius.

Simulated standoff distances for Mach numbers ranging from two to eight are presented

in Figure 5.10, together with the curves of Equations 5.6 and 5.7. The simulations were

performed using AUSMDV, shock fitting, and MUSCL reconstruction with the van Al-

bada limiter. For the purposes of comparison,rb is set to 1 m, and standard atmospheric

conditions are used as the free-stream gas state. Simulations were performed on a 30 by

50 cell grid. Good agreement is observed for both the sphere and cylinder geometries at

high Mach numbers, with results diverging slightly at lower speeds.

Some empirical correlations for shock shape based on experimental results are listed

by Billig in Reference 172. Shock shape is constrained to a hyperbolic curve fit which

asymptotes to the freestream Mach angle,173 defined by� = arcsin(1=M). The equation

for the shock in Cartesian coordinates is

x= rb+∆� rc cot2�

2
4
s

1+

�
y tan�

rc

�2

�1

3
5 ; (5.8)
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whererc is the radius of curvature. The radii of curvature for spheres and cylinders are

respectively defined by the empirical formulas

rc=rb = 1:143 exp[0:54=(M�1)6=5]; and (5.9)

rc=rb = 1:386 exp[1:8=(M�1)3=4]: (5.10)

A comparison of Billig’s correlations with simulation, for air at Mach 6, is shown in

Figure 5.10. Good agreement is obtained in both sphere and cylinder test cases. Since

the correlations are based on a number of experimental results containing scatter, perfect

agreement is not expected.

5.11 Dissociating Flow over a Cylinder

The final validation test case in this chapter is the flow of nitrogen over cylinders, at

speeds high enough to induce nonequilibrium dissociation, but low enough to preclude

ionization. Under such conditions, just one reaction occurs in the nitrogen system

N2
 N+N; (5.11)

thus making it a useful, simple problem on which to test both the flow and nonequilibrium

kinetics models in SF3D.

In References 174 and 175, Hornung presents experimental interferograms and shock

standoff distances that were recorded in the T3 shock tunnel176 for nitrogen flows over

cylinders of various diameters. The stated free-stream test conditions are

u = 5:5 î km/s; �= 0:0055 kg/m3; T = 1400 K; CN = 0:07; andCN2
= 0:93:

The free-stream gas pressure is 2446 Pa, assuming that the nitrogen mixture is thermally

perfect and obeys an equation of state based on the thermodynamic data in Appendix A.

To examine the effect of gas chemistry on results, simulations were performed using

frozen, nonequilibrium, and equilibrium kinetic models. The frozen and nonequilibrium

simulations are identical in practice, except for setting the reaction rate of Equation 5.11 to

zero in the former case. When a system is in chemical equilibrium, however, species con-

centrations become a state variable, and it becomes impossible to satisfy the free-stream

test conditions and mixture composition at once, due to overconstraint. With the already

stated temperature and density, a nitrogen mixture at chemical equilibrium contains essen-

tially no monatomic species. Also, the mixture pressure reduces to 2286 Pa at chemical

equilibrium, because the system has relaxed and the molar density has decreased. These

factors, while unavoidable, will slightly influence the results.
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Figure 5.11: Standoff distances for dissociating nitrogen flow over a cylinder (left), and

gas composition and temperature along the stagnation line for the 50.8 mm diameter cylin-

der (right). —– Mass fraction of monatomic nitrogen, - - - temperature.

Again, MUSCL reconstruction with the van Albada limiter, shock-fitting, and the

AUSMDV are used to generate the simulations. Standoff distance results for cylinders

with 25.4, 50.8 and 101.6 mm diameters (equivalently, 1, 2 and 4 in) are presented in Fig-

ure 5.11. Simulations performed assuming a frozen reaction yield standoff distances sig-

nificantly larger than those observed in experiment, and for simulations assuming chemi-

cal equilibrium the standoff distances are observed to be too small. Simulations incorpo-

rating nonequilibrium reaction rates give results that match reasonably well with experi-

ment. In particular, results for the largest cylinder (101.6 mm diameter) are in excellent

agreement. The standoff distances calculated for the smaller cylinders are marginally shy

of the experimental values, perhaps because the reaction model is too conservative, or

possibly the stated experimental test conditions were not exactly achieved in the shock

tunnel.

The large variation in standoff between frozen and equilibrium simulations highlights

the sensitivity of the flow field to chemistry. The mechanism by which chemical reaction

affects standoff distance is evidenced by the graph in Figure 5.11, showing gas compo-

sition and temperature along the stagnation line of the 50.8 mm cylinder. In the case of

the nonequilibrium model, we observe that dissociation of the diatomic nitrogen soaks

energy from the flow and causes temperature to decrease towards the stagnation point.

In contrast, a slight temperature increase is observed for the frozen reaction model, since

post-shock kinetic energy is being converted to internal energy, and there is no reaction

pathway to relax the system. As would be expected, equilibrium calculations give a stag-
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nation temperature lower than that of the nonequilibrium simulation (6415 K, not shown).

Because post-shock pressure in the stagnation region is primarily due to the impact of mo-

mentum carried in the free-stream gas, it is only weakly dependent on the gas model used;

there is a 3% difference in stagnation pressure between frozen and equilibrium simula-

tions. Hence, in this case, the equation of state for a thermally perfect gas dictates that

any large temperature variation must cause a roughly proportional variation in specific

volume, assuming that the gas constantR indeed remains constant. For a reacting gas,

then, the decreased post-shock temperature causes decreased specific volume, and allows

the shock to encroach upon the body.

It is noted that there is a reasonably large discrepancy between the stagnation temper-

ature calculated in the nonequilibrium simulation, and stagnation temperature produced

using an equilibrium gas model. This is thought to be a result of quenching,177 where the

temperature loss caused by dissociation slows the reaction rate and retards any further

dissociation so that, in the available flow time, chemical equilibrium is never reached.

An experimental interferogram,174 and an interferogram computed using the nonequi-

librium model, are shown in Figure 5.12 for the 50.8 mm cylinder. Light with 533 nm

wavelength and a cylinder of length 152.4 mm (6 in) were used to produce the exper-

imental infinite fringe interferogram. Computed shock shape is superimposed onto the

experimental result to allow easier comparison. As indicated by Figure 5.11, the com-

puted shock standoff distance is slightly smaller than the standoff in experiment, but af-

ter accounting for this difference the shock shapes match quite well. The shapes of the

computed interferogram fringes are similar to those observed in experiment, however the

two results differ by approximately one fringe by the time flow reaches the downstream

boundary. The difference is most likely due to a combination of factors: inaccuracies

in the nitrogen thermodynamic and reaction models, three-dimensional effects caused by

flow leakage around the sides of the cylinder in experiment,174 and uncertainty in the stated

free-stream shock tunnel conditions. Interferograms produced using frozen and equilib-

rium chemistry models exhibited much worse agreement with experiment, in terms of

both fringes and shock shape.

The pressure distribution around the cylinder depends on the manner in which the

bow shock processes upstream gas. In particular, the local shock angle has a significant

bearing on the post-shock pressure produced. Since gas chemistry affects shock shape,

this is one mechanism by which the chemistry model influences the distribution of body

pressure. Thus, to obtain a highly accurate simulation of blunt-body surface pressures,

the correct shock shape and a reasonably accurate chemistry model are requirements.

For reference and comparison with the interferogram, computed isopycnics are pre-

sented in Figure 5.12. Additionally, the figure shows concentrations of monatomic nitro-
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Figure 5.12: Computed (top left) and measured174 (bottom left) interferograms for dis-

sociating nitrogen flow over a cylinder. For comparison, filled circles are used to mark

the computed shock shape on the experimental interferogram. Computed isopycnic con-

tours ranging from 0.0106 to 0.0596 kg/m3 (top right), and contours of mass fraction for

monatomic nitrogen ranging from 0.0786 to 0.282 (bottom right).
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gen throughout the flow field, indicating regions of rapid dissociation. Little change in

mixture composition is observed close to the body, probably due to the downstream flow

of species that have been quenched in the stagnation region.

5.12 Selection of Code Elements

The following chapter deals with simulation of flow around the blunt-nosed HYFLEX

vehicle. Based on the test cases in this chapter, as well as evidence from the literature,

numerical experiments, and arguments in Chapters 2, 3, and 4, the optimal code elements

for blunt-body simulation are now selected.

The AUSMDV flux solver is chosen to perform the simulations because, of the tested

flux algorithms, it was the only one displaying robustness, accuracy, and efficiency at

once. The AUSMDV is selected over the AUSM, since it did not suffer post-shock and

wall pressure oscillations in the reacting gas blunt-body tests. Also, the AUSMDV ex-

hibits better grid convergence than the AUSM. The approximate Riemann solver, while

being accurate for simple equations of state and displaying a marginally better grid con-

vergence than the AUSMDV, also fails for reacting gases with complicated equations of

state. In addition, while both the approximate Riemann solver and AUSMDV suffer the

carbuncle effect, the Riemann solver is plagued by the problem at lower grid resolutions

with less instigation. Another disadvantage of the approximate Riemann solver is its com-

putational expense, slowing the code down by as much as 45%. While robust, the EFM

was shown to be excessively dissipative in boundary layer calculations, and thus can not

alone be used to simulate the HYFLEX flow. While displaying a good spatial conver-

gence rate in the supersonic vortex test, the thermodynamic assumptions inherent to the

EFM solver caused it to produce excessive noise on a reacting gas blunt-body test case.

The modified van Albada limiter and MUSCL interpolation constitute the selected

reconstruction technique. As described in Section 3.2.3, the spatial awareness of the

reconstruction copes with the relatively abrupt grid clustering that will be used on the

HYFLEX grid. Additionally, the differentiable property of the reconstruction facilitates

convergence to steady-state for simulations of the HYFLEX in flight. Although it was

shown in Section 5.7 that this reconstruction is more than twice as slow as a min-mod

MUSCL implementation, overall code speed is only degraded by 15%. This is more than

accounted for by the increased accuracy for unequally spaced cells, and the ability to use

a coarser grid.

Because the AUSMDV flux solver is prone to the carbuncle effect, shock fitting —

rather than shock capturing — will be used on all the HYFLEX simulations. In addition

to maintaining stability for low dissipation solvers, shock fitting also increases efficiency

and produces shock waves that are both accurate and sharp, as shown in Chapter 4.
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Simulation of the HYFLEX

The hypersonic flight experiment (HYFLEX) undertaken by the Japanese National Aero-

space Laboratory (NAL) and National Space Development Agency (NASDA), was an ini-

tiative aimed at obtaining fundamental data on entry vehicle aerodynamics and aerother-

modynamics.178 The program culminated in February 1996 when the HYFLEX vehicle

successfully performed an aerobraking manoeuvre to decelerate and descend to sea level,

from an initial height of 110 km and Mach number of 13. During the flight, an array of

pressure sensors was used to measure the distribution of surface pressure around the nose

of the vehicle.

This pressure data provides an ideal base to evaluate the accuracy of the SF3D code,

and the relative usefulness and accuracy of some other techniques that are available to

simulate hypervelocity flow. These other techniques include modified Newtonian theory,

and scale-model shock tunnel experiments. An accuracy assessment for each simulation

method is presented in this chapter so that, in the following chapter, their suitability for

use in air data system calibration can be determined.

As well as examining the usefulness of each simulation technique alone, in this chap-

ter they are also used in conjunction to help explain and alleviate the particular short-

comings of each method. Shock tunnel experiments are capable of simulating the high

temperature gas phenomena occurring in flight, but are subject to the effects of scale. Par-

ticularly affected by scale is the chemical composition of the flow. Adverse scale effects

can be reduced by applying binary scaling,179 and CFD simulation is employed to exam-

ine how successful this approach is. In addition, the effects of nonuniformity in the shock

tunnel test flow are examined using numerical methods. For the experiments examined

here, the nose of the model was placed near the edge of the core flow produced by the
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Figure 6.1: The HYFLEX time-altitude map.

shock tunnel nozzle. At the high angle of attack used, this placed the lower part of the

vehicle surface in the core flow, and some of the upper surface in a region of nonuniform

flow.

CFD simulations of the full-scale vehicle allow the investigation of the relative im-

portance of real gas phenomena encountered in flight. Such phenomena include chemical

nonequilibrium, and boundary layer growth. The flight data and shock tunnel results are

used to check that the numerical gas models are working correctly, and producing reason-

able results. Quick and simple comparison between flight and scale-model data is made

via modified Newtonian theory.

A time-altitude map of the HYFLEX flight is presented in Figure 6.1. Indicated on

the map are the flight times where numerical and experimental simulations of the vehicle

have been performed. In this chapter, effort is concentrated around the 120 s flight time,

where the flow regime may be considered continuum, vehicle speed is close to maximum,

and nonequilibrium chemistry effects are strong. By about 170 s after separation, the high

temperature effects are weak and the vehicle has decelerated to 2.28 km/s (Mach 7.1). At

300 s the vehicle speed is 0.90 km/s (Mach 2.93).

A diagram of the HYFLEX geometry is shown in Figure 6.2. The flight vehicle body

is 4 m long, and has a nose radius of 0.4 m. Also shown is the cruciform array of nine

pressure sensors around the vehicle nose (labelled ps1 – ps9). More detail of the HYFLEX

vehicle and nose layout is presented in Appendix D. The numerical simulations discussed

in this chapter consider flow over the nose region, and along the undersurface for a dis-
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Figure 6.2: The HYFLEX vehicle and nose pressure tapping layout.

tance of 1.4 m. This region is sufficient to include all of the pressure tappings and the

subsonic flow region extending from the stagnation point. The shock tunnel model was

a one-tenth scale model of the first 1.4 m of the flight vehicle, and includes pressure

tappings at points corresponding to the flight vehicle pressure transducers. Thus, the pri-

mary data that will be discussed are the pressure measurements recorded during flight

and experiment, and the computed pressures at corresponding locations in the numerical

simulations.

6.1 Computational Flow Modelling

In Chapter 2, it was stated that the Navier-Stokes equations are only truly applicable

in the continuum flow regime. Hence, to ensure that the SF3D code is valid for the

flight conditions simulated in this chapter, the Knudsen number for the highest altitude

simulation is now evaluated. The Knudsen number is conventionally defined as the ratio

of mean free molecular path to a characteristic body dimension,180

Kn =
�

L
(6.1)

and gives an indication of the importance of rarefied gas effects. By this definition, then,

the continuum flow approximation is more accurate at smaller Knudsen numbers. The

mean free path for a single species gas is given by180

�=
1p

2n�Ω
; (6.2)

wheren is the gas number density in molecules per unit volume, andΩ is the collision

cross section, which is roughly equal to the square of molecular diameter. Table D.1
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in Appendix D lists the atmospheric conditions at 69.8 km altitude, corresponding to the

most rarefied simulated condition. For simplicity, and without significant loss of accuracy,

the Knudsen number at this altitude is calculated assuming that the free-stream gas is

composed solely of diatomic nitrogen. After obtaining the collision cross section relevant

to the atmospheric temperature at this altitude from Reference 63, and choosing the nose

radius as characteristic body dimension, the Knudsen number evaluates to 7:2� 10�4.

Transition to rarefied flow begins at a Knudsen number of about 0.03, and thus the 69.8 km

condition is an order of magnitude within the continuum regime.13

Air is assumed to be thermally, but not calorifically perfect for the simulations. Ac-

cording to Hansen and Heims,181 a 0.3 m radius sphere entering the atmosphere along

the HYFLEX velocity-altitude trajectory will experience both chemical equilibrium and

nonequilibrium regimes. This result is applicable to the forebody of the HYFLEX vehicle,

since its nosecap is a approximately a 0.4 m radius sphere. However, the five species, sev-

enteen reaction nonequilibrium model of Section 2.10.3 is always used to ensure continu-

ity in accuracy amongst simulations, regardless of whether frozen or equilibrium kinetic

limits are being approached.

Since the post-shock gas temperature of the HYFLEX rarely exceeds 5500 K, and

ionization in air typically occurs at temperatures above 8000 K,59 it is assumed that no

ionized species or electrons are present in the flow. Additionally, results in Reference 181

indicate that the HYFLEX flow field is always in thermal equilibrium, and justify use of

the single-temperature thermodynamic model in SF3D. For completeness, however, this

is now verified. The collision frequency of molecules in a single species gas is

� = nΩ
r

8�kT
m

; (6.3)

wherek is Boltzmann’s constant, andm is molecular mass. Making the assumption that

air is completely composed of diatomic nitrogen for simplicity, and using the post-shock

flight conditions at 120 s after experiment commencement (see Table D.1), a collision

frequency of 2:6� 108 s�1 is obtained. One hundred intermolecular collisions are typi-

cally required for thermal equilibrium, and are thus completed within 3:7� 10�7 s. At

the convective flow speed in the shock layer, the gas travels roughly 0.8% of the shock

standoff distance in this time. Therefore, even accounting for the simplifications made in

this analysis, the assumption of thermal equilibrium is clearly valid.

No turbulence model is used for the HYFLEX simulations, since boundary layer tran-

sition is expected to occur well aft of the pressure port locations. The maximum Reynolds

number encountered in the HYFLEX computational domain at flight conditions corre-

sponds to one-quarter of the smallest Reynolds number at which transition is observed on

the space shuttle orbiter.182
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All flight simulations are performed with the assumption of an isothermal, noncat-

alytic vehicle surface, set to a typical temperature experienced by entry bodies (1200 K).

The surface temperature was found to have only a small effect on the gas pressure around

the vehicle. For example, increasing the surface temperature to an unreasonably high

2200 K changed pressure sensor results (on average) by 0.24%. Radiation, which pri-

marily affects the vehicle surface temperature, is thus ignored. The simulations of shock

tunnel experiments assume the model to remain at the ambient laboratory temperature

(300 K). In both flight and shock tunnel simulations, a nonslip wall boundary condition is

used.

Simulations of the HYFLEX in flight are marched until steady-state flow is reached,

independent of the time required. Time accuracy, however, is used for the shock tunnel

simulations to model flow starting processes. In this capacity, the code was applied to

ensure that the test time achieved in the shock tunnel was large enough to produce steady

state flow around the model. For some of the experiments discussed in this chapter, simu-

lation of the shock tunnel flow is further improved by using an approximation of the actual

nonuniform test flow, rather than assuming that uniform flow impinges on the model.

6.1.1 Finite Volume Grids

It was desired to create a computational grid that would allow both efficient and accu-

rate CFD simulations of the HYFLEX. Such a grid needs to have high resolution around

the nine nose pressure sensors, and at the same time not require unreasonable computer

resources. To this end, two grids were produced.

The first grid design allowed modelling of flow around the entire HYFLEX forebody,

and is of similar style to that used in Reference 183. The mesh was created in a manual

fashion, by appropriately sectioning the HYFLEX geometry and extending rays orthog-

onal to the surface to the outer domain boundary. Cutaway views of the complete mesh

are shown in Figure 6.3. Unfortunately, this style of grid introduces a group of distorted

cells concentrated in rings near the nose. At the nose tip, one face of each hexahedroidal

cell collapses, forming the series of wedges visible on the vehicle surface in Figure 6.3(a).

Separate rings of the wedge-shaped cells are contained in every layer from the body to

the outer mesh boundary, as shown in Figure 6.3(b).

Theoretically these cells are no problem, since Equation 2.17 dictates that cell faces

with zero area can only admit zero fluxes. Although this is the case, results from early

simulations indicated that the mesh singularity along the vehicle axis was introducing

small perturbations into the solution. Pressure, in particular, was adversely affected. Be-

cause the singularity does necessarily coincide with the stagnation line, transverse flow
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(b)(a)

Figure 6.3: Sectional views of the original HYFLEX computational mesh.

can exist through the wedge-shaped cells. It is supposed that the one-dimensional recon-

struction, and continual application of flux solvers over such a short flow length, both

contribute to noise in this region.

In an attempt to alleviate the noise, each ring of wedge-shaped cells was merged into

a multi-sided conglomerate cell. Properties within each conglomerate cell were equalized

in a conservative manner at each timestep, with fluxes calculated at each external bound-

ary. A similar idea was developed independently by Maet al.184 Although this technique

reduced noise at the nose tip to an extent, unacceptably large perturbations were still ob-

served to propagate downstream, originating from the singularity.

A second grid, shown in Figure 6.4, is used to overcome this difficulty. The mesh

contains no singularity, and covers only the region of the forebody geometry necessary

to properly reproduce flow around the pressure sensors. It is ensured that the mesh con-

tains all subsonic parts of the forebody flow, and that the advection Mach numbers on all

outflow planes are large enough to prevent the outflow boundary characteristics affecting

the flow around the pressure sensors. Also, nine of the grid cells around the bow surface

are arranged to lie with centroids positioned at each of the pressure port locations. Cell

clustering in the body-normal direction is used to help resolve boundary layer effects in

viscous simulations, and in the longitudinal direction to concentrate computational ef-

fort around the pressure sensor area. Abrupt changes in cell spacing are accounted for

by the reconstruction scheme, as already described. A typical mesh contains 46 cells in

the longitudinal direction, 45 cells in the transverse direction, and 15 to 25 cells in the

body-normal direction. Because shock fitting is used, accurate solutions can be generated

using a small number of cells in the body-normal direction in the shock layer core flow.
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Figure 6.4: The improved computational mesh (for clarity, shown without cell clustering).

Thus, enough cells are usually available to simulate the boundary layer to the accuracy

required for surface pressure estimation. The minimum cell width in the boundary layer

is of the order of 0.1% of the nose radius. Additionally, the use of shock fitting conve-

niently allows simulations to be produced at different vehicle orientations and free-stream

conditions without having to readjust the outer grid boundary; new shock wave positions

are automatically handled by the fitting process. Simulations on the grid in Figure 6.4

require two to three days of processing time to reach steady state flow, on a single MIPS

R10000 processor running at 195 MHz.

A grid convergence test was performed to establish the accuracy to which the gov-

erning fluid equations are solved by SF3D. Flow through a coarse three-dimensional grid

partially wrapped around a sphere, of diameter equal to that of the HYFLEX nose, was

used to generate a base solution of vehicle surface pressures. Pressure results were also

obtained on grids of double and triple resolution. The cell sizes of the double resolution

grid correspond to those on the actual HYFLEX grid. Quadratic Richardson extrapolation

was used to find approximations to the exact pressure values over the vehicle surface.161, 185

Inherent to this kind of extrapolation is the assumption that the CFD code has spatial ac-

curacy of, or less than, the second order. For the double resolution grid, results showed

that the average error in computed pressure for the internal finite-volume cells was 0.08%

of the post-shock stagnation pressure. The average error for cells located at the flow

domain boundary was higher, at 0.65% of the post-shock stagnation pressure. Since all

the pressure sensor positions are well inside the edges of the grid, the 0.08% accuracy is

representative of the computational results presented in this and the next chapter.
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6.2 Modified Newtonian Model

Newtonian theory provides a simple, approximate method to predict pressures on the

HYFLEX vehicle surface. The theory assumes that the free-stream flow consists of ele-

ments of non-interacting fluid, which initially travel directly towards the vehicle. Upon

impact with the vehicle surface, it is supposed that the fluid transfers all momentum in the

surface-normal direction to the body, while the tangential momentum is retained. With

this remaining momentum, the fluid proceeds to flow rectilinearly away from impact site

at the tangent angle. The normal momentum flux is thus representative of the surface

pressure, according to the theory. The Newtonian argument does not incorporate interac-

tions within the fluid, nor effects such as boundary layer development, shock waves, or

chemical nonequilibrium. Also, the theory generally has poorer accuracy at lower flow

speeds.13 For hypervelocity flows the best results can be expected when the shock shape

closely follows the body shape, and the standoff distance is small; otherwise excessive

flow interactions within the shock layer may invalidate the Newtonian assumptions. Al-

though limited in accuracy, the Newtonian method is often used as a simple design tool,

and its predictions form a convenient reference base to compare flight, shock tunnel, and

CFD surface pressure results.

By scaling the pressure distribution so that it has the correct post-shock stagnation

pressure, the accuracy of the method can be somewhat improved. This is referred to as

modified Newtonian theory,13 and is given by

P= (Pt �P∞)cos2�+P∞ (6.4)

whereP is the surface pressure,Pt andP∞ are the post-shock stagnation and free-stream

static pressures, and� is the angle between the body normal and incident flow. For the

results in this chapter, the value ofPt is set to that obtained by processing the incident

flow through a normal shock, and then isentropically slowing it until stationary. During

this time the fluid is assumed to behave as a perfect gas, with the ratio of specific heats

(
) remaining at a constant value of 1.4. This process is, in practice, described by the

Rayleigh-Pitot formula, which will be discussed in more detail in Chapter 7.

6.3 Shock Tunnel Modelling

A model of the HYFLEX forebody was built and tested in the T4 free piston driven shock

tunnel by Tuttle and Shimoda.186 All of the experimental results included in this chapter

were produced by Tuttle, and will henceforth not be explicitly referenced.
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Figure 6.5: The HYFLEX scale model mounted in the T4 shock tunnel. The model Pitot

probe is visible in the lower part of the photograph.

The forebody model was designed according to the scaling arguments proposed by

Hornung179 for wind tunnel simulation of flight at hypersonic speeds. To properly model

high temperature effects in the experimental facility, it is necessary to reproduce the high

shock-layer temperatures encountered during flight; in practice, these temperatures are

achieved by matching flight velocity. This ensures that chemical reaction rate coefficients

are consistent between both systems.

To correctly simulate the flight chemistry it is also necessary to obtain the same species

production rates over the small scale model, so that the chemical composition of the flow

during flight is duplicated. Hornung states that for the simple case of a single element

gas, the species dissociation rate is proportional to density, while the recombination rate

is proportional to the square of density. If recombination can be ignored, then by match-

ing the product of density and length-scale, the composition of the flow can be duplicated

(as can the Reynolds number). This is referred to as binary scaling. Binary scaling is only

valid when the free-stream gas compositions are matched. The test flow in the shock tun-

nel experiments, however, was partially dissociated air — the nonequilibrium expansion

of flow from the high-enthalpy reservoir caused dissociation of approximately 4% of the

N2 and 28% of the O2. The consequences of this are examined later.

Two points on the hypersonic portion of the trajectory of the HYFLEX re-entry glide

were selected for the shock tunnel experiments, corresponding to periods of fast flight

speed where high-temperature effects most likely occurred. The shock tunnel model was
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built at one-tenth the size of the flight vehicle and, at this scale, the model fits approx-

imately within the core flow produced by the nozzles in the shock tunnel experiments.

Also, the size allows the binary scaling parameter to be matched between flight and ex-

periment, taking into consideration the test gas density achievable in the T4 shock tunnel

facility. A Mach 6 nozzle, with exit diameter of 270 mm, was used to produce most of the

experimental data presented in this chapter. A result obtained using a Mach 10 nozzle is

also presented, however, to examine the effect of Mach number on pressure distribution.

The length of the shock tunnel model is 0.14 m, which corresponds to the first 1.4 m

of the flight vehicle. Accordingly, the model ends at a section about half-way along the

canopy located on the upper surface of the vehicle. Figure 6.5 is a luminosity photograph

of the shock tunnel model on its support in the test section of the T4 shock tunnel. Calcu-

lations using SF3D showed that this length ensures that the most downstream sonic point

on the model is well upstream from the base and point of attachment to the support. Thus,

all characteristics required to correctly reproduce the forebody flow are included in the

shock tunnel experiments.

Piezoelectric pressure transducers with 1�s rise time measured the surface pressures

at locations corresponding to the pressure tapping positions on the flight vehicle. Due to

their large size (10 mm diameter, mounted) most of the transducers were located inside

the body of the model, and connected to tappings on the model surface by a series of

holes. The diameter of each tapping is 2 mm, with location accuracy better than 0.8 mm.

Dynamic calibration of the transducers in-situ showed that the average uncertainty in mea-

sured pressure was 1%.186 Mee187 has examined the uncertainties in test flows produced

by the T4 shock tunnel, and found that free-stream static pressure can be determined to

an accuracy of about�7%, density to�13%, and average flow speed to�5%.

6.4 CFD Simulation of Flight

Numerical simulation of the HYFLEX flight was performed over a range of conditions

corresponding to between 90 s and 300 s after flight commencement. The flight condition

at 120 s shall be considered in detail. At this time, the vehicle was traveling with a

49 deg angle of attack, 1 deg sideslip, and a speed of 3.7 km/s at an altitude of 48 km.

Satellite sounding data indicates that, at this altitude, the free-stream static pressure was

97.7 Pa, and the free-stream density was 1:29�10�3 kg/m3. More details of the vehicle

and atmospheric state at this flight time are presented in Table D.1. At these conditions,

chemistry effects are vigorous in the shock layer and the vehicle can be considered to be

well inside the continuum-flow flight regime.
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Monatomic Oxygen Contours
Minimum: 0.000 mass fraction
Maximum: 0.012 mass fraction

Surface Stream Traces

Isopressure Contours
Minimum: 435 Pa
Maximum: 13100 Pa

Isopycnic Contours
Minimum: 6.0x10-4 kg/m3

Maximum: 1.2x10-2 kg/m3

Mach Number Contours
Minimum: 0
Maximum: 9

Figure 6.6: Simulation results for the HYFLEX at 120 s flight time.
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B

A

Figure 6.7: Isopressure contours around the HYFLEX surface and in the shock layer.

Contour levels are A, 17 kPa; and B, 1 kPa.

The composition of atmospheric air at 48 km altitude was obtained using the MSIS-

E-90 model.188 Species containing elements other than nitrogen and oxygen are present

in very small concentrations, typically less than 1% by mass, and are thus ignored. This

assumption, however, leads to a slight change of mixture gas constant for the equation

of state. The new equation of state constrains the free-stream state variables in a slightly

different manner to the equation of state for atmospheric air. To minimize the effect

of the approximation on simulated pressure, free-stream static pressure and density are

matched between flight and simulation, and free-stream temperature is allowed to depart

from the atmospheric value. As indicated in Table D.1 the subsequent error in free-stream

temperature is less than 1 K, and negligible.

Results from a viscous, nonequilibrium chemistry simulation of the vehicle at the

120 s flight time are presented in Figures 6.6 and 6.7. Figure 6.6 shows contour plots of

results generated using the grid of Figure 6.3, without cell clustering at the body surface.

Cell clustering was not used in this case, so that the grid resolution in the shock layer core

flow could be maximized, albeit at the expense of boundary layer resolution. The isopres-

sure contours indicate high pressure levels on the windward surface, and a large region of

expanded air in the shadow region of the leeward surface, as would be expected. Isopy-

cnic contours also highlight the expansion region, including a low density pocket just

downwind of the canopy. Jagged contours are observed where the shock becomes closely

aligned with the flow direction, due to the lack of resolution in this area caused by a large

expansion of the grid. The coupling of flow physics and chemical reaction is visible in the

contours of constant monatomic oxygen concentration. Monatomic oxygen is generated
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Figure 6.8: Comparison of pressure distributions over the vehicle at 120 s flight time. The

longitudinal (L) pressure sensors are drawn in the order (from left to right) ps3, ps2, ps1,

ps4, ps5. The transverse (T) pressure sensors are drawn in the order ps9, ps8, ps1, ps6,

ps7.

Figure 6.9: Definition of cone angle for pressure sensor 3.

in the high temperature region at the windward surface, and is quenched and transported

towards the leeward surface primarily in the circumferential flow defined by the surface

streamlines. The Mach number contour plot exhibits a flow disturbance at the centre of

the leeward surface, extending from body to shock. The small sideslip angle causes air

passing around each side of the vehicle to be processed differently, and the disturbance is

thought to result from the recombination of the separated streams. Additionally, agitation

caused by the canopy may be partly responsible.

The results in Figure 6.7 were produced using the grid of Figure 6.4, with cell clus-

tering in the boundary layer region. Isopressure contours are shown along the vehicle

surface, and across a section of the shock layer. The simulated pressure distribution along

the longitudinal pressure sensor array is displayed in Figure 6.8 together with measured

flight pressure data, and the results of a modified Newtonian analysis. Additionally, the
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Figure 6.10: Comparison of flight and CFD pressure distributions, relative to modified

Newtonian theory, for the longitudinal pressure sensor array.

plot includes the corresponding information for the transverse pressure sensor array. The

cone angle referred to on the plot is defined by the angular separation from the ray join-

ing the nose centre with sensor 1. An example of the cone angle definition is shown in

Figure 6.9 for pressure sensor 3. At the 120 s flight time, the stagnation point is at a 16

deg cone angle, and lies close to the longitudinal axis of the vehicle. Both the CFD and

modified Newtonian techniques are observed to predict pressures that lie reasonably close

to, though always exceeding, the flight data.

The CFD and modified Newtonian absolute pressure distributions shown in Figure 6.8

appear to be quite similar. However, the differences between them are more easily seen

on a plot showing relative pressure distributions. Shown in Figure 6.10 is the percent-

age difference between the surface pressures measured in flight, and modified Newtonian

theory prediction, for the longitudinal pressure sensor array. Also shown is the percent-

age difference between CFD surface pressure prediction and modified Newtonian theory

prediction. Similarly, Figure 6.11 shows the same information for the transverse pres-

sure sensor array. Both graphs indicate that the CFD results match the trends in flight

data more closely than modified Newtonian theory. However, the CFD results appear to

be consistently offset from the flight data by about 7%. Possible reasons for this off-

set include the difficulty in accurately obtaining the free-stream conditions under which

the flight occurred (such as density and temperature), as well as the error in measuring

the vehicle velocity.9 For the considered point in flight, these factors alone introduce an

average uncertainty in pressure of 2.6%, with a maximum uncertainty of 6.7% at ps3. Al-
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Figure 6.11: Comparison of flight and CFD pressure distributions, relative to modified

Newtonian theory, for the transverse pressure sensor array.

though the transducers used to measure the HYFLEX nose pressures were quite accurate

(approximately�22 Pa), it is possible that flight pressure measurements were adversely

affected by pneumatic lag and acoustic noise within the tubes connecting pressure ports to

transducers (for example, see Reference 6). Another source of error is the change in cone

angle of the pressure ports during flight, caused by thermal deformation of the nosecap.

Flight pressure measurements were also likely to have been affected by atmospheric

wind. A 40 m/s wind at a vehicle speed of 3.7 km/s, for example, could perturb pressure

measurements by over 2%. For reference, average wind speed for the area of the hyper-

sonic flight experiment is shown in terms of altitude in Figure 6.12. The plot is based

on the HWM93 empirical correlation from Reference 189, and does not necessarily re-

flect the actual wind speed on the day of the flight. However, the correlation does give

an idea of typical wind strength encountered at altitude. The combination of wind speed

error with the uncertainty sources indicated previously, could easily account for the 7%

difference between CFD and flight data.

The relative accuracy of CFD and modified Newtonian predictions over a range of

varied flight conditions is best examined by using a quantity that reflects both the trends

and magnitudes of the surface pressures. The difference in pressure between ps5 and ps3

(see Figure 6.2) is an indicator that is sensitive to angle of attack, free-stream conditions,

and high temperature effects. The error in reproducing this indicator, for a large portion of

the flight, is shown in Figure 6.13. The plot spans enough of the trajectory to include both

rarefied flow and continuum flow, hypersonic speeds and supersonic speeds, regions of
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Figure 6.12: Empirical model of wind speed versus altitude.
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Figure 6.14: Effect of various CFD models on the transverse pressure distribution, for the

120 s flight conditions.

strong high temperature real gas effects, as well as regions of near perfect-gas behaviour

(compare with Figure 6.1).

From Figure 6.13, it can be seen that the CFD prediction of the indicator ps5–ps3

is substantially more accurate than the modified Newtonian prediction. The differences

observed between the modified Newtonian and CFD pressure values can be attributed

to two main causes. First, the CFD method incorporates viscosity and nonequilibrium

models. The effects of these models on the transverse pressure distribution can be seen

in Figure 6.14. As would be expected, chemistry effects are most prominent near the

stagnation region, while viscous effects have most impact on the outer pressure values.

The effect of both models combined gives an approximately constant pressure rise over

much of the section. While the pressure rise is relatively small, at about 1%, it still

comprises a significant portion of the difference from flight data. A second reason for the

difference between CFD and modified Newtonian theory is that the CFD method models

the flow interactions within the entire shock layer, unlike Newtonian theory. This would

appear to be the primary factor causing differences between the two methods.

6.5 Shock Tunnel Results and Simulation

The flight condition simulated in the shock tunnel corresponds to 120 s after flight com-

mencement. It was possible for the experimentalist to simultaneously obtain the free-

stream velocity and density to within 5% of the values required by binary scaling (the
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Figure 6.15: Comparison of pressure coefficients derived from the Mach 6 experiment,

with those measured in flight. Conditions correspond to the 120 s flight time. Bars denote

one standard deviation in the time variation of measured pressures for the T4 data.

velocity was generally matched to within 3% of the flight value).186 However, for this

condition, the flight Mach number of 11.5 was not duplicated in the shock tunnel, since a

Mach 6 nozzle was used for the experiment.

A comparison of shock tunnel pressure measurements with flight data is shown in

Fig 6.15. The vertical bars on the plot indicate the variation of measured pressure during

the experiment test time. The pressure measurements are presented in the form of pressure

coefficients, helping to account for not achieving exact free-stream test conditions in the

shock tunnel. The pressure coefficient is defined as the difference between measured sur-

face pressure and free-stream static pressure, nondimensionalized by dynamic pressure.

Free-stream dynamic pressure is defined as one-half of the product of free-stream density

and the square of absolute velocity. Agreement between the two sets of data is reasonable

for the pressure sensors located near the stagnation point. Measurements made by the

outer pressure sensors compare less favourably with flight data. All pressure measure-

ments on the shock tunnel model are seen to be lower than the corresponding values from

the HYFLEX flight vehicle. This same trend and agreement was observed over seven

individual shock tunnel experiments at the same nominal condition, simulating the 120 s

flight time.186

A laser shadowgraph of the subscale model in shock tunnel flow is shown in Fig-

ure 6.16. Superimposed onto the figure is the shock position predicted by a CFD simula-

tion of the experiment. Comparison between the shock shapes and standoff distances is
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Figure 6.16: Shadowgraph of the bow shock around the HYFLEX scale-model in the

shock tunnel at Mach 6. Black circles indicate the calculated CFD shock position.
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Figure 6.17: Comparison of pressure distributions over the shock tunnel model at Mach

6. Numerical results assume a uniform test flow. Bars denote one standard deviation in

the time variation of measured pressures.

excellent. In Section 5.11 it was shown that, for a nitrogen system, standoff distance is

reasonably sensitive to the accuracies of the chemistry model and flow condition. In the

case of the HYFLEX, though, numerical and shock tunnel experiments revealed shock

shape and standoff to be less sensitive to these factors. Thus albeit agreement in shock

shape is necessary to validate the numerical and experimental simulations, it is not in

itself sufficient for validation of the HYFLEX simulations.

Figure 6.17, in a manner similar to Figure 6.8, compares shock tunnel measurements

with the CFD and modified Newtonian predicted pressures along the longitudinal and

transverse pressure sensor arrays on the simulated scale model. Again, the variation in

measured pressures during the test time is indicated by vertical bars. The numerical results

shown in Figure 6.17 assume a uniform distribution of Pitot pressure through the test core.

The lack of agreement at the stagnation point may be attributed to the spatial variation

in free-stream Pitot pressure, from which the flow conditions are inferred. Differences

between the shock tunnel measurements, CFD, and the modified Newtonian estimate, are

generally smaller than 10%.

The Newtonian approximation of the flow over the HYFLEX model uses a nominal,

constant value of the specific heat ratio to estimate the post-shock stagnation pressure

from free-stream flow conditions. Since the temperature behind the shock in the stagna-

tion region is of the order of 5000 K, chemical reactions (such as the oxygen dissociation

observed in CFD results) will occur and affect the pressures. The value of
 behind the
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Figure 6.18: Distribution of Pitot pressure across the shock tunnel test section for the

Mach 6 nozzle. For reference, the scale-model was mounted in the tunnel such that ps1

was located 80 mm from the tunnel centre line.

shock is thus lower than that in the free stream. When used to calculate the post-shock

stagnation pressure for the modified Newtonian model, a reduction in
 from 1.4 to 1.3

(for example) causes the stagnation pressure to rise by about 2% at Mach 6. As a con-

sequence, the use of
 = 1:4 is likely to cause the Newtonian model to estimate slightly

lower surface pressures in the stagnation region than CFD. This is generally the case in

Figure 6.17. Away from the stagnation region the small discrepancy is reversed, pre-

sumably due to the inaccuracy of the Newtonian assumption of a cosine-squared pressure

distribution. Better values of
 are available from experiment or computation; however

these values have intentionally not been used with the Newtonian theory for this study,

so that the relative shortcomings and merits of experiment, computation, and Newtonian

theory can be individually investigated.

The free-stream conditions used as input to the CFD and modified Newtonian theory

are calculated using the Pitot pressure measured during experiment. For the numerical

results shown in Figure 6.17 it was assumed that the Pitot pressure across the entire test

flow was constant. Pitot pressure surveys across the nozzle exit plane, however, show

a variation of approximately 8% through the test core of the Mach 6 nozzle flow (Fig-

ure 6.18). This nonuniformity may in part be caused by the use of a contoured nozzle at

a condition different to that for which it was designed.

Because most of the nose pressure sensors are located within a subsonic flow region,

the spatial variation of flow conditions significantly influences the pressure distribution

over the nose of the model and thus the measurement accuracy. The agreement between



130 SIMULATION OF THE HYFLEX

-50 0 50
Cone Angle (degrees)

0

20

40

60

80

100

120

140

P
re

ss
ur

e
(k

P
a)

L

T

L

T

T4 (transverse)
T4 (longitudinal)
CFD
Mod. Newtonian

Figure 6.19: Comparison of pressure distributions over the shock tunnel model at Mach

6. Numerical results account for the nonuniform shock tunnel test flow. Bars denote one

standard deviation in the time variation of measured pressures.

simulations and experimental measurements was improved by using the nonuniform test

flow distribution as the simulation inflow condition. The data presented in Figure 6.19

incorporate this improvement. The test flow distribution was inferred from the Pitot sur-

vey results and nozzle stagnation conditions, and assumed to be axisymmetric about the

tunnel centre line.

An examination of the chemistry occurring within the shock layer reveals similar qual-

itative trends in dissociation levels between shock tunnel and flight. Figure 6.20 shows,

at flight conditions, the CFD estimated mass fractions of species through the shock layer

(from the centre of the first finite-volume cell, to the centre of the last), in a direction

normal to the body, near pressure sensor 1. Similarly, Figure 6.21 shows the behaviour

of the chemical system under shock tunnel conditions. The most apparent difference be-

tween the two sets of data is the concentration of oxygen and nitric oxide just behind

the shock. At flight conditions dissociation begins just behind the shock, whereas in the

shock tunnel experiment, there are dissociated species in the free-stream resulting from

a rapid non-equilibrium expansion through the shock tunnel nozzle. It is also observed

that the shock standoff distance has not scaled with model size, with the relative standoff

distance on the shock tunnel model being slightly larger. The different standoff distances

are consistent with the empirical correlation for shock detachment from a sphere (Equa-

tion 5.6), which predicts a larger shock standoff at Mach 6 (the shock tunnel test) than at

Mach 11.5 (the flight condition).
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Figure 6.20: Computed species mass fractions in the shock layer, at 120 s flight condi-

tions.
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Figure 6.21: Computed species mass fractions in the shock layer, at Mach 6 shock tunnel

test conditions.
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Figure 6.22: Comparison of pressure distributions over the shock tunnel model at Mach

10, simulating the 110 s flight condition. Numerical results account for the nonuniform

shock tunnel test flow. Bars denote one standard deviation in the time variation of mea-

sured pressures.

The shock tunnel tests simulating the 120 s flight condition were not performed at the

flight Mach number, because it was not possible to achieve this Mach number and the

correct free-stream conditions at once. Using a Mach 10 nozzle, the required density and

velocity could not be obtained without exceeding the maximum rated operating condi-

tions for the shock tunnel.186 The reduced Mach number that was used in the shock tunnel

tests, though, was not expected to produce significant adverse effects on surface pressure

simulation. This is suggested by Newtonian theory, which approximates pressure as be-

ing Mach number independent. Also, modified Newtonian theory is only weakly Mach

number dependent. To verify this near-independence experimentally, the flight conditions

at the 110 s flight time were simulated in the shock tunnel. At these conditions, both

the flight Mach number and scaled free-stream conditions could be matched in the ex-

perimental facility within its rated bounds of operation. The contoured Mach 10 nozzle

used for this test produced a pressure distribution less uniform than that generated by the

Mach 6 nozzle. Accordingly, the SF3D simulation and modified Newtonian estimates

of the Mach 10 experiment account for the nonuniformity. Figure 6.22 shows the com-

parison between shock tunnel results and numerical techniques. It can be seen that the

level of agreement between the shock tunnel measurements and the numerical estimates

is comparable to that obtained at Mach 6.
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6.6 Summary of Simulation Results

In this chapter, the relative merits of numerical simulation, modified Newtonian theory,

and shock tunnel experiments were investigated by testing them with flight data obtained

from the HYFLEX entry vehicle. As well as examining the usefulness of each simulation

method alone, it was found beneficial to use computational fluid dynamics to help explain

and alleviate the particular shortcomings of the shock tunnel experiments and modified

Newtonian theory. Also, the shock tunnel results were used to help validate the compu-

tational fluid dynamics simulations, through the use of a shadowgraph and nose pressure

measurements. The key findings were:

(i) Computational fluid dynamics results showed that the effects of nonequilibrium

chemistry and viscosity in the flow had a small (about 1%) but significant influence

on the pressure distribution at the vehicle surface. The uncertainty in the measure-

ment of model nose surface pressures in the shock tunnel (with a standard deviation

of 4%) was too high for real gas effects to be reliably detected.

(ii) Both CFD and modified Newtonian theory predicted the flight-measured pressure

data reasonably well, with an average accuracy of 7%. The modified Newtonian

theory, however, did not predict trends in the distribution of nose pressures as well

as CFD.

(iii) The scale-model shock tunnel results compared acceptably with a CFD shock tun-

nel simulation. The correct numerical modelling of nonuniformities in the exper-

imental test flow was required to reach this agreement. On average, shock tunnel

results were accurate to within 12% of the flight data.

(iv) A laser shadowgraph of the model in the shock tunnel flow showed excellent agree-

ment with the CFD predicted shock shape and standoff distance.

(v) Numerical results showed that binary scaling allowed the shock tunnel tests to rea-

sonably reproduce the shock layer chemistry occurring at flight conditions. It was

observed, though, that proper simulation of flight chemistry was limited by the ex-

istence of pre-dissociated species in the shock tunnel flow.

(vi) Pressure measurement results suggested that matching the flight Mach number in

shock tunnel experiments is not crucial for reproducing flight pressure data, when

viscous effects are small.
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Flush Air Data System
Calibration

The successful control of a hypersonic vehicle in flight requires knowledge of the vehicle

state to sufficient accuracy. Particularly important are the state data that describe the am-

bient atmosphere, and its interaction with the moving vehicle. These are often called air

data, and can be used to evaluate quantities such as the pressure loading and heat loading

on the vehicle. Air data may also be used to determine the pressure altitude and attitude

of the vehicle, assisting the control system to keep the vehicle trajectory within the de-

sired flight envelope. Examples of air data parameters include angle of attack, angle of

sideslip, free-stream dynamic pressure, and free-stream static pressure. For flight experi-

ments, accurate knowledge of these kinds of air data parameters is crucial in the post-flight

reconciliation of flight measurements with ground based experiments and computational

fluid dynamics (CFD) predictions, as conducted in the previous chapter.

There are several types of instrumentation available for measuring air data, many of

them reviewed in Reference 190. Laser velocimeter systems are reported to have good

accuracy, but do not work well at high altitude and are unable to produce a full set of air

data information.

Alternatively, information from onboard inertial measurement units (IMU) can be

used to infer air data. IMU gyroscopes and accelerometers are used to compute esti-

mates of vehicle velocity, altitude, and attitude, with respect to a fixed coordinate system.

In conjunction with an aerodynamic model of the vehicle, the IMU data can also be pro-

cessed to estimate atmospheric conditions. The IMU computed air data are prone to a

number of error sources: apart from the effects of IMU instrument drift and inaccuracies
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in the vehicle aerodynamic model, the computed air data does not usually account for

local wind speed. Supplementing the IMU computed air data with positional and meteo-

rological information derived from satellites can improve its accuracy.

A third method for the determination of air data is a technique based on flow field

pressure measurement. For subsonic and supersonic craft, this may be performed with a

flow-intrusive boom instrumented with a Pitot tube and mechanical vanes.191 However,

the high energy nature of hypersonic flow makes an intrusive boom impractical, since it

would quickly become damaged. Additionally, an intrusive boom disrupts the flow pattern

around the vehicle and can lead to flight instabilities for some craft.192 A remedy to this is

the flush air data system concept (FADS), which consists of a number of pressure tappings

located flush with the vehicle surface, usually near the nose. The measured distribution

of the pressure field around the nose is then used to infer the air data. A minimum of four

pressure ports are needed to obtain a complete set of air data parameters, although more

ports will increase accuracy. Improvements in accuracy start to diminish when more than

nine ports are used.193

For hypersonic flows, modified Newtonian theory is able to reasonably predict vehicle

surface pressures as a function of air data. Thus by solving an inverse problem, the theory

can be used to determine the air data in terms of the known surface pressure measure-

ments. The simplicity and robustness of modified Newtonian theory make it ideal for use

in a hypersonic FADS. However, the accuracy of modified Newtonian theory may not be

sufficient for all FADS applications.194

There are two main approaches in achieving increased accuracy in air data prediction.

The first is to apply correction factors to the air data parameters predicted by the FADS,

but still retain the underlying modified Newtonian pressure model. This method has been

used extensively in the past.195 The second approach is more fundamental — a better

pressure model is created by applying correction factors directly to the Newtonian theory.

It is this second technique that will be used to calibrate an entry vehicle FADS in this

chapter. The calibration involves finding sets of correction factors applicable to different

flight conditions experienced by the vehicle. The correction factors compensate for high

temperature gas effects, boundary layer growth, the bow shock wave, and other real flow

phenomena not modelled by modified Newtonian theory.

For both approaches the correction factors can be determined from flight experiments,

ground based experiments, CFD, or analytical flow theory. Undoubtedly flight-generated

correction factors are the most desirable, but they are unavailable for maiden flights, and

single-use vehicles such as the HYFLEX. Correction factors may be obtained from ground

based experiments, such as wind-tunnel tests,196 but these may not cover the entire flight

envelope nor always provide sufficient accuracy, and are subject to the effects of scale, as
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evidenced in Chapter 6. Additionally, a large number of ground based experiments are

needed, and performing them can be time-consuming and costly. Using a validated CFD

solver to generate a suite of correction factors is an attractive option, due to its wide range

of applicability, low cost, and very high precision. The accuracy of a CFD solver, though,

must be ascertained before it is relied upon.

In this chapter, we will examine a FADS calibration technique that involves the de-

termination of correction factors using only CFD. The proposed method involves cor-

recting the underlying pressure model exclusively, rather than correcting the predicted

air data. This procedure will subsequently be applied to generate air data parameters

from FADS pressure data collected by the HYFLEX entry vehicle. The air data parame-

ters predicted by the CFD-calibrated FADS will be compared to IMU results. It will be

shown that this solely numerical calibration procedure provides air data that are generally

accurate enough for hypersonic vehicle control requirements. Comparison will also be

made against air data parameters predicted by an uncalibrated FADS based on modified

Newtonian theory.

7.1 The HYFLEX FADS

Although the HYFLEX was instrumented with nine nose pressure sensors capable of

performing the function of a flush air data system, they were not employed during the

flight to determine air data parameters. Instead, the nose pressure measurements were

transmitted to ground receivers for post-flight analysis. During flight, an IMU was used

to compute air data parameters for control purposes.197

The nose pressure tappings, however, are ideally located for air data system use. Pres-

sures measured at the outlying tappings across the beam (ps9 and ps7 in Figure 6.2) are

sensitive to vehicle sideslip. Similarly, the tappings ps2–ps5 provide good resolution for

determining the vehicle angle of attack. The three pressure tappings near the centre of the

nose, ps1, ps6, and ps8, are positioned in the stagnation region for much of the HYFLEX

flight, and give a reliable indication of post-shock stagnation pressure, without the influ-

ence of upstream disturbance. A genetic algorithm for optimization of FADS pressure

sensor locations was developed by Deshpandeet al., and applied to the aeroassist flight

experiment FADS in Reference 198. It turns out that the optimal pressure tapping layout

is similar to the the configuration on the HYFLEX nosecap.

For the scope of this thesis, the HYFLEX FADS will be calibrated for operation over

the range of flight conditions encountered during the period 120 s to 300 s after separation.

In the low density flow experienced before 120 s, pressure sensor error constitutes a sig-

nificant proportion of the measured pressures. Pressure measurements made during this
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time are thus less useful as test data for the comparison of FADS calibration techniques.

For the low supersonic and transonic flight regimes experienced after 300 s, subsonic flow

at the nose expands to encompass much of the vehicle. Because low speed air data sys-

tems can be calibrated through conventional means, and the HYFLEX computational grid

of Figure 6.4 is no longer accurate after 300 s of flight time, we ignore the HYFLEX data

recorded in the brief period 300–340 s after separation.

7.2 The Air Data Inverse Problem

The surface pressure distribution over the HYFLEX is a function of a large set of vari-

ables, including the entire vehicle geometry. However, we may approximate the surface

pressures at the nose pressure ports by the following functional relationship:

Pi u Fi(Pgt; P∞; �; �; n̂i): (7.1)

Herei represents the pressure port, andFi is a function estimating the surface pressurePi

at this pressure port location. The vectorn̂i is the unit normal to the surface at locationi,

measured in a vehicle frame of reference. This vector is easily measured before flight, and

can be considered a known quantity.Pgt is the gauge pressure at the stagnation point on the

vehicle surface, equal to the stagnation pressurePt minus the free-stream static pressure

P∞. The vehicle angle of attack is�, and the sideslip angle is�. Most other air data

of interest, including free-stream dynamic pressure and Mach number, can be calculated

from these four parameters. Note that vehicle roll angle�, as presented in Table D.1, is

not an air data parameter. Roll angle relates the orientation of the vehicle relative to the

earth’s surface, and does not directly affect surface pressure or aerodynamics.

A procedure for solving for the four unknown air data parameters (Pgt;P∞;�;�) is now

presented. Given that nine pressure observations are available on the HYFLEX, we may

construct the following system of nine equations.

Pi = Fi(P
�

gt;P
�

∞;�
�;��; n̂i)+E�

i ; i = 1;2; : : : ;9: (7.2)

The quantityPi is the surface pressure measured by sensori, andP�

gt; P�

∞; �
� and�� rep-

resent the unknown air data parameters which best fit the available set of pressure obser-

vations. For nine pressure sensors, there are more equations than unknowns and solution

requires the inversion of an overconstrained system. In general, it is not possible to solve

the system exactly and residual errors (E�

i ) will remain. Thus, some kind of error mini-

mization technique must be employed to invert the system. The method of least squares

is commonly used for minimizing error in overdetermined systems,199 and this technique

has also been used before in FADS applications.193, 194
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Least squares can be performed quickly and easily on linear systems. However, for

the non-linear Equation Set 7.2, the equations must first be linearized, and an iterative

technique applied. Let thej th guess for the best state vector of air data parameters be

denoted asq j = [Pj
gt Pj

∞ �
j � j]T. The guess is then improved iteratively by applying

q j+1 = q j + Æq; (7.3)

until q j = q�. In practice this is attained when estimatej is close to estimatej +1.

At each iteration step, the incremental termÆq in Equation 7.3 must be evaluated.

Consider a Taylor series expansion of theFi about statej and neglect terms higher than

first order. We may then write

b = A Æq; (7.4)

with

A =

2
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(7.5)

where, as indicated, the partial derivatives are evaluated at stateq j. Also,

b =

�
Ej

1

�1

� � � Ej
i

�i

� � � Ej
9

�9

�T

: (7.6)

In Equations 7.5 and 7.6,A andb are referred to as the design matrix and residual vector

respectively. The weighting terms�i represent the standard deviation in pressure mea-

surement uncertainty for sensori. For this study, it is assumed that all pressure sensors

have equal uncertainty. To findÆq, we multiply both sides of Equation 7.4 byA�1:

Æq = A�1 b: (7.7)

SinceA is a non-square matrix, its inverse is undefined. The matrixA�1 is thus referred

to as the pseudoinverse ofA. To solve the least squares problem forÆq, we now need the

pseudoinverse of the design matrix that minimizes the 2-norm of the residual vector.

There are several techniques available to accomplish this task. Singular value decom-

position (SVD) is one of the most robust, and can be applied to decomposeA into the

product of a series of component matrices which are easily inverted. The technique is
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described in many numerical analysis texts199 and will not be repeated here; in practice,

the SVD code of Reference 200 was used to perform decomposition. Although SVD is

not the fastest way to solve the least squares problem, it provides useful information about

the conditioning of the design matrix and the relative importance of solution components.

The partial derivatives in Equation 7.5 are easily found ifFi is a simple analytical

function. For more complex functions, the derivatives are evaluated numerically. The nu-

merical approximation to the partial derivative ofFi with respect to any air data parameter

x is

∂Fi

∂x

����
j

u
Fi(xj +∆)�Fi(xj)

∆
; (7.8)

where∆ is a small number, such that∆=xj is a few orders of magnitude greater than

machine precision (forxj 6= 0).

If the measured pressure data contain spikes or irregularities, or a very poor initial

guessq1 is made, then the iterations may not converge. Non-convergence is usually man-

ifested in the guesses forq oscillating about (but not approaching)q�. If convergence is

not reached within a reasonable number of iterations, a semi-implicit technique is em-

ployed to attempt to regain stability. This technique involves calculating all the partial

derivatives inA with Equation 7.8, while setting∆ to the corresponding value of the air

data parameter in the most recently computedÆq. Equation 7.7 is then used to find a

betterÆq. New derivatives forA are recalculated using the newÆq as values of∆ in

Equation 7.8, and the procedure repeated several times. Once the optimum value ofÆq is

finally found, it is substituted into Equation 7.3 to update the state vector estimate. The

semi-implicit technique then remains in use until convergence is obtained.

Once the best air data state vectorq� is determined, the known air data parameters

are used to compute other air data of interest. The free-stream dynamic pressure,q∞, is

determined by solving the Rayleigh-Pitot equation. This equation describes the process of

a thermally perfect gas passing through a normal shock, and then isentropically slowing

until stationary. It relates the free-stream dynamic and static pressures, to the post-shock

gauge stagnation pressure by

1+
Pgt

P∞
=

�
(
+1)q∞=P∞




�( 



�1)� 
+1
4(q∞=P∞)� (
�1)

�( 1

�1)

(7.9)

where
 is the ratio of specific heats. Real air, when processed through a strong shock

and stagnated, does not keep constant
 and is not accurately described by the Rayleigh-

Pitot equation. Allowances for this are described in a later section, when CFD-determined

correction factors are used to remove this error source.
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Mach number, if required, is easily calculated from the estimates of free-stream static

and dynamic pressure:

M∞ =

s
2q∞


P∞
: (7.10)

Recently, some alternative techniques for estimating air data have been proposed. The

method of triples, where several sets of three pressure measurements are individually and

analytically inverted to obtain air data estimates, has some inherent stability advantages

over the iterative method presented here.2 The technique, however, still requires a function

relating nose pressure to air data parameters. After roughly estimating air data parameters

using pressure triples, least squares iteration can be applied to obtain final, accurate FADS

predictions. Another option is to train an artificial neural network with large sets of infor-

mation that relate air data parameters to nose pressures.201–204 The information pool can

be obtained from flight tests, computational results, or ground based experimental data.

Unfortunately, the reliability and accuracy of neural networks is difficult to quantify, and

massive amounts of data are generally required for the network to accurately learn the re-

lationships between air data parameters and surface pressures. Also, such neural networks

have no direct fluid dynamical basis, and generally do not extrapolate accurately.

Ultimately, though, the technique used to perform the ADS inversion is not of ma-

jor importance to this thesis. The methods of least squares, pressure triples, and neural

networks all require knowledge of the relationship between air data and surface pressure.

The primary aim of this chapter is to test the use of numerical simulation in calibrating a

FADS, independent of the inversion technique itself.

7.3 Surface Pressure Models

In the described air data system algorithm, the most critical factor affecting accuracy is

the surface pressure model. If the assumed relationship between air data parameters and

surface pressure is not correct, then the air data estimates will be poor.

As observed in Chapter 6, modified Newtonian theory is a simple and reasonably

accurate surface pressure model. The theory may be rewritten in the form

Fi = Pgt cos2�+P∞; where (7.11)

cos� =

2
64
�cos�cos�

sin�

�sin�cos�

3
75 � n̂i: (7.12)
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As before, the variable� denotes the angle between the local (outward facing) surface

normal, and the free-stream flow.

Numerical simulations and shock tunnel results showed that the actual pressure distri-

bution around the HYFLEX nose does not follow the Newtonian cosine-squared law. We

introduce a correction factor functionf into Equation 7.11 to further improve its accuracy.

Fi = Pgt [cos2�+ f (�;R;�; i)]+P∞; where (7.13)

R=
P∞

Pgt+P∞
: (7.14)

The correction function is introduced as an additive (rather than multiplicative) term, so

that the accuracy of the formulation is not degraded when cos� approaches zero. The

functional dependence off on� reflects the fact that the correction factor varies with flow

incidence angle. Likewise, nonuniformity in some of the HYFLEX nose geometry neces-

sitates the dependence off on the pressure port identification numberi and angle of attack

�. The variableR is used to give the correction function an indication of the severity of

high temperature gas effects, and nature of the flow field. The variable is conveniently

expressed in terms of already available air data parameters, through Equation 7.14. In

the hypersonic limit, it can be deduced thatR roughly scales withM∞
�2. Since stagna-

tion enthalpy is approximately proportional toM∞
2, it can be concluded thatR is roughly

inversely proportional to the total temperature in the shock layer.

The value of the pressure correction functionf for a particular set of arguments

(�;R;�; i), can be found by evaluating the difference between the modified Newtonian

pressure prediction and the pressure determined from another, more accurate, source. By

repeating this procedure over a large argument domain, the complete correction function

will eventually be described. In this work, the correction function will be developed by

comparing the modified Newtonian theory with a number of CFD simulations. It is em-

phasized that no ground based experiment data or flight pressure data are used to augment

the pressure correction model. Accordingly, for the remainder of the thesis Equation 7.13

will be referred to as a CFD pressure model.

To determine the form off over a large enough domain, SF3D was used to compute

the HYFLEX nose pressures for a range of different flight conditions that occurred on

the actual trajectory. Figure 6.1 shows the seven points on the flight trajectory that were

simulated. Thus, we know that seven flight conditions are guaranteed to be in the do-

main of f . The question then arises: Is it valid for pressure data, recorded during the

flight, to be used as input to test a FADS algorithm which is based on a CFD pressure

model that was calibrated for that same flight’s trajectory? It is an important question,

since fair evaluation of the CFD pressure model in the results section depends on it. The

validity of the on-trajectory calibration can be justified with two arguments. First, the
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Underside

Nose

Change in Nose Radius

Figure 7.1: Contour plots of CFD results for pressure (left) and pressure correction factor

(right) over the HYFLEX nose and underside. Filled circles mark the locations of pressure

ports.

actual flight trajectory was so close to the planned trajectory178 that no reala posteriori

accuracy advantage is gained by calibrating on flight trajectory conditions. Second, it will

later be demonstrated that the CFD pressure correction function produces accurate results

for sample flight conditions that are significantly off-trajectory. The calibration was per-

formed on the flight trajectory simply to allow convenient comparison of CFD and flight

measured pressure results without the need for further simulations.

7.4 Calibration Simulations

The SF3D code was again used to numerically simulate flow over the HYFLEX vehicle

forebody. Although the code is time accurate, it is assumed (for simplicity) that the flow

around the HYFLEX is instantaneously steady at all points in flight. The assumption is

reasonable, since only small changes in flow conditions occur over the time required for

full development of the flow field. For example, at 120 s after flight commencement, the

free-stream velocity changes by only 0.1 m/s (0.003%) in the equivalent of four body

lengths of flow time. Importantly, the assumption allows the generation of CFD flow

solutions at any point on the trajectory, independent of previous flight conditions.

An example calibration simulation is presented in Figure 7.1. Contours of pressure

and pressure correction factorf are drawn on the vehicle surface. Pressure port locations

are indicated by dots. For these results, the vehicle was simulated as travelling at 3.7 km/s

at an altitude of 48 km, with a 32 deg angle of attack and no sideslip. Examination of the

figure reveals that the correction factor contours are axisymmetric (about the stagnation
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point) over much of the nose. The axisymmetry is to be expected, since the nosecap is

mostly spherical. The upper pressure port (ps3), though, is located on a region of the nose

where the radius of curvature decreases. This decrease in nose radius causes an increased

rate of flow expansion, and the CFD result is observed to quickly depart from the modified

Newtonian approximation. Pressure port ps2 is also affected by the change in nose radius,

but to a lesser extent.

The axisymmetry of the correction factor contours about the stagnation point may be

exploited in several ways. First, the axisymmetry indicates thatf should be dependent

on only one spatial variable, describing position on the nose relative to the centre of sym-

metry. On the spherical parts of the nose, the flow incidence angle is also a measure of

angular separation from the stagnation point, and is an ideal choice for this variable. Sec-

ond, the axisymmetry allowsf to be built using fewer and simpler simulations than would

be required for an asymmetric body. This is because the flow around a sphere (of radius

equal to that of the HYFLEX nose) is analogous to the flow around the HYFLEX nose

itself. In terms of computational requirements, the simulation of a sphere is considerably

faster and easier than the simulation of the HYFLEX forebody. Results from CFD tests

showed that the correction factor distribution on the sphere matched the distribution on

the spherical parts of the HYFLEX nosecap. Thus, with the exception of ps2 and ps3,

just one sphere flow field is required to determine the complete form off for a given

flight condition. In total, the flow over a sphere was simulated at seven differentRvalues,

corresponding to seven flight conditions in half-minute increments from 120 s to 300 s.

These simulations were used to define the core of functionf .

A different strategy was used to modifyf , to make allowance for the two pressure

ports affected by the nonuniformity in nosecap curvature. Simulations of the HYFLEX

were performed at various angles of attack and flight conditions, and the correction factors

at pressure port locations ps2 and ps3 were recorded. The correction function was then

amended by evaluating the difference between these values, and the correction factors at

equivalent incidence angles on a sphere. Overall, only about 20 simulations were used to

constructf . By comparison, recent calibrations of neural network air data systems with

ground based experimental results have required well over an order of magnitude more

data.202 Still other calibrations used as many as five thousand frames of experimental

results.204 The 20 CFD simulations took the equivalent of 60 days of computation on

a single MIPS R10000 processor running at 195 MHz. In practice, multiple processors

were used to reduce the actual time required to perform all the simulations.

The SF3D computed correction factors are fairly small, with magnitudes typically not

exceeding 0.04. As a consequence, the correction factors are especially prone to error

introduced by the discretization of the flow domain. Thus for the correction factors to be
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reliable, the CFD solver must be significantly more accurate than 4%. The grid conver-

gence analysis in Chapter 6 showed that the average error in computed pressure (over the

parts of the flow domain containing the pressure ports) was equal to 0.08% of the post-

shock stagnation pressure. This accuracy is good enough to render the correction factors

valid. Also, the small magnitude of the correction factors renders the possibility of shock

tunnel calibration of air data systems an unfeasible option. In Section 6.4, it was observed

that boundary layer development and nonequilibrium chemical reactions typically have a

1% influence on nose pressure. These physical processes are thus an important part of the

CFD model, since they account for roughly one-quarter of the correction factor.

7.5 The CFD-Calibrated Surface Pressure Model

It is convenient to express the pressure correction function in terms of several component

functions:

f = fa(R) p(�(R);�)+ ft(R)�g(R;�; i): (7.15)

The core of Equation 7.15 is the polynomialp. It is given by

p=

4

∑
k=1

ck(�(R) �)
2k; j�j6 1:2 rad; (7.16)

with the constantsc1 =�4:7, c2 = 6:82,c3 =�3:02, andc4 = 0:45 derived from CFD re-

sults. The polynomial describes the variation of the correction factor with flow incidence

angle. Since the flow around the spherical part of the HYFLEX nose is axisymmetric,p

is thus necessarily symmetric about the stagnation point (� = 0). Hencep contains only

even powers of�.

A striking feature of Equation 7.16 is that the curve fit coefficientsck are constants.

That is to say, the underlying shape of the correction function does not depend on flight

conditions. Flight conditions are only needed to dictate the scaling and ordinate-position

of the basic polynomialp. The sensitivity to flight conditions is introduced with a single

variable,R (defined in Equation 7.14), which is a measure of proximity to the hypersonic

limit and the strength of high temperature effects. This variable is used as an argument

to the function�(R), which is used to scalep with respect to�. In a similar manner,

fa(R) is used to set the amplitude of the polynomialp, according to the flight conditions.

Thus fa(R) can be thought of as a measure of the variation inf over the body. Table 7.1

and Figure 7.2 show the values of these functions at variousR, as derived from CFD

simulations.

The functionft(R) is used provide an ordinate offset, so that the correct value off is

obtained at the stagnation point (� = 0). A first examination of the CFD pressure model
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Figure 7.2: Plot of various functions, againstR.

(Equation 7.13) indicates thatft should be set to zero for all values ofR. However, due

to the inaccuracy of the Rayleigh-Pitot equation (Equation 7.9), this is not the case. The

function ft(R) is used to cause the air data inversion algorithm to compute an adjusted

value ofPgt, which, when substituted into the Rayleigh-Pitot equation, will produce the

correct value of the air data parameterq∞. In a physical sense,ft(R) may be thought of as

the relative error in calculating gauge stagnation pressure with the Rayleigh-Pitot equa-

tion, as compared with a CFD calculation. Table 7.1 and Figure 7.2 show the computed

values offt(R) for variousR.

The last term in Equation 7.15 is used to account for the nonuniformity in the HYFLEX

nose radius. It takes the form:

g=

8>>><
>>>:

g(R;�Æ; i)
g(RÆ;�Æ; i)

g(RÆ;�; i) for i = 2;3; � � 0

0 otherwise.

(7.17)

For the pressure ports unaffected by the change in nose radius, the term vanishes. For

pressure ports 2 and 3 though, the value ofg(R;�; i) is determined using a system of two

look up tables. Table 7.1 shows howg varies withR, at a constant value of� (�Æ =

32:7 deg). In a like manner, Table 7.2 shows howg varies with angle of attack�, at a

constant value ofR (RÆ = 0:0108). Using spline fits, the two tables are interpolated and

the results combined according to Equation 7.17, to findg(R;�; i). This procedure relies

on the assumption that the behaviour ofg, with respect to�, scales withR. By making the
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Table 7.1: Values of various functions, with respect toR.

R ft fa �
g(R;�Æ;2)
g(RÆ;�Æ;2)

g(R;�Æ;3)
g(RÆ;�Æ;3)

0.0059 0.0270 0.0578 0.9278 0.7993 0.8295

0.0108 0.0157 0.0495 0.9815 1.0000 1.0000

0.0172 0.0123 0.0450 1.0010 1.2172 1.4454

0.0262 0.0094 0.0407 1.0205 1.4695 2.0202

0.0386 0.0067 0.0366 1.0337 1.7992 2.5477

0.0570 0.0038 0.0324 1.0415 2.3999 3.2533

0.0857 0.0018 0.0282 1.0292 3.2730 4.0409

Table 7.2: Values ofg, with respect to angle of attack.

� 20Æ 30Æ 32:7Æ 40Æ 50Æ

g(RÆ;�;2)�103 11.95 6.82 4.73 1.33 1.06

g(RÆ;�;3)�103 16.21 8.75 4.17 -2.70 -5.04

assumption, it is possible to calibrateg without needing CFD results at all angles of attack

at all values ofR. Computational effort is thus significantly reduced. Equation 7.17 also

requires that the vehicle angle of sideslip is small, since Table 7.2 was calculated with

� = 0. This requirement is satisfied for the hypersonic part of the HYFLEX trajectory,

since� never exceeds 1 deg.

Examples of the pressure correction function at two different flight conditions are

now presented. In both examples,g is ignored. The first set of conditions corresponds

to 120 s after flight commencement, where the vehicle velocity is 3.7 km/s, and the free-

stream static pressure is 97.7 Pa. For these conditions, Figure 7.3 shows the pressure

correction factors calculated by CFD at discrete values of�. Since these CFD results

were already used in the calibration off , we consequently see very good agreement with

Equation 7.15. A second set of conditions are now chosen, with a vehicle velocity of

2.5 km/s and free-stream static pressure of 97.7 Pa. These conditions are significantly off

the HYFLEX flight trajectory, and the pressure correction function has not been calibrated

at this condition. Figure 7.4 shows that very good agreement between CFD results and

the pressure correction function is still achieved at off-trajectory conditions.

A brief verification of the complete FADS algorithm, including the new surface pres-

sure model, is now conducted. Providing the surface pressure model is properly con-

structed, the inversion algorithm should select air data parameters that match the flight

data with CFD pressure predictions as close as is possible. Air data predictions for angle

of attack, angle of sideslip, and dynamic pressure made by the CFD-calibrated FADS at
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Figure 7.3: Plot of pressure correction factors forR= 0:0059.
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Figure 7.4: Plot of pressure correction factors forR= 0:0130.
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Figure 7.5: Reproduction of simulated pressures based on FADS air data predictions. The

longitudinal (L) pressure sensors are drawn in the order (from left to right) ps3, ps2, ps1,

ps4, ps5. The transverse (T) pressure sensors are drawn in the order ps9, ps8, ps1, ps6,

ps7.

120 s flight time were used as input for a SF3D HYFLEX simulation. Free-stream static

pressure and density, however, were constrained to meteorologically determined values

for reasons that will become clear in the next section. Results from the CFD simulation

are compared with flight measured pressure data in Figure 7.5. It is observed that the

least squares inversion algorithm has correctly predicted air data parameters that align

the simulated nose pressure distribution with flight measurements. Because a perfect fit

could not be obtained, the least squares method has formed a compromise, where some

sensor measurements slightly exceed the simulated pressures, while others fall a little be-

low. The overall good agreement in Figure 7.5 implies that the surface pressure model of

Equation 7.15 must be accurately describing the characteristics of CFD simulations.

7.6 Results and Discussion

We now test and compare the performance of the CFD-calibrated FADS algorithm, with a

FADS algorithm based on the modified Newtonian theory pressure model. The compari-

son is conducted over the hypersonic part of the HYFLEX trajectory, using the HYFLEX

pressure measurements recorded in flight as input.

Figure 7.6 shows the FADS predictions and IMU measurement of vehicle angle of at-

tack. The CFD-FADS prediction is observed to agree closely with the IMU result, while
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Figure 7.6: Comparison of angle of attack predictions made by the Inertial Measurement

Unit (IMU), and the FADS using the CFD pressure model (C), and the modified Newto-

nian pressure model (N). Results are shown at a 10 Hz frequency.
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Figure 7.8: Comparison of angle of sideslip predictions made by the IMU and the FADS.

the Newtonian-FADS result deviates considerably from the IMU signal. A plot showing

the difference between the FADS predictions and IMU result is presented in Figure 7.7.

The HYFLEX handbook9 reports that the accuracy of the IMU measurement is�0:65 deg

at the point of maximum dynamic pressure (140 s after flight commencement), decreasing

to�0:45 deg at Mach 3 (about 300 s after flight commencement). These quoted accura-

cies represent a variation of�3 standard deviations. Thus, with the exception of a single

data spike, the CFD-FADS result is completely contained within the quoted error band,

while the Newtonian-FADS result lies mostly outside the band. The CFD-FADS esti-

mates of� vary from the IMU with an average bias of+0:05 deg and standard deviation

of 0.13 deg. The Newtonian-FADS shows an average bias of+0:51 deg and standard

deviation of 0.39 deg. For a generic, broad-envelope, hypersonic vehicle, accuracies of

0.5 deg in angle of attack are typically required.190 The results show that this kind of

accuracy can be achieved with a CFD-calibrated FADS.

The accurate CFD-FADS prediction of� is strongly dependent on theg(R;�; i) term

in the pressure correction function (Equation 7.15). As previously described,g is used

to account for the nonuniformity in nose radius near pressure ports 2 and 3. Without

the inclusion of this term, it was found that the CFD-FADS estimates of� were of an

accuracy similar to the Newtonian-FADS results. It thus appears that the inability of

modified Newtonian theory to properly model ps2 and ps3, is responsible for its degraded

performance in the prediction of�.

Figure 7.8 compares the angle of sideslip estimates made by the FADS and the IMU.
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Figure 7.9: The dynamic pressure predicted by the IMU, compared with the predictions

made by the FADS.

The estimates made by the CFD-FADS and Newtonian-FADS algorithms are close to

identical. Relative to the IMU results, the CFD-FADS has an average bias in� of

�0:34 deg and a 0.17 deg standard deviation. The Newtonian-FADS has an average bias

of �0:30 deg and a standard deviation of 0.16 deg. The IMU has a�3� uncertainty in�

of�0:41 deg at 140 s, and�0:60 deg at 300 s.9 For the control of a hypersonic vehicle,�

is typically required to an accuracy of 0.5 deg.190 For both of the FADS results, accuracy

is better than 0.5 deg for the most part.

Figure 7.9 displays the FADS and IMU predictions of free-stream dynamic pressure.

Differences between the sets of data are more clearly seen in Figure 7.10, which shows

the FADS predictions relative to the IMU. The�3� uncertainty in the IMU estimatedq∞

is at least�360 Pa at 140 s, and�120 Pa at 300 s.9 The CFD-FADSq∞ estimates straddle

the edge of the IMU error band, and have an average bias of+130 Pa with a 200 Pa

standard deviation. The Newtonian-FADS estimates are well outside the quoted band,

and have an average bias of+500 Pa and standard deviation of 410 Pa, with respect to

the IMU data. Typically, a hypersonic vehicle requires dynamic pressure to within�1%

accuracy.190 This requirement is not met by the Newtonian-FADS. Since the resolution of

the IMU roughly corresponds to�2:5% ofq∞, it is not possible to say whether or not this

goal was reached by the CFD-FADS.

The wind-tunnel calibration of the Shuttle Entry Air Data System (SEADS) is de-

scribed in Reference 196. The paper includes an accuracy analysis of the SEADS for a
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Figure 7.10: The difference between the dynamic pressure predictions made by the FADS,

and the IMU.

shuttle entry, over the range Mach 0.5 to Mach 26. The air data accuracies are presented

as average values over 100 s time intervals. Over the range Mach 2.8 to Mach 11.9,

which corresponds to the HYFLEX flight speeds considered in this work, the maximum

averaged error in SEADS� and� estimates are reported to be 0.69 deg and 0.33 deg

respectively. The maximum averaged error in SEADS stagnation pressure is 540 Pa (the

absolute stagnation pressure corresponding to this error is not stated in Reference 196).

The results from the wind-tunnel calibrated SEADS are thus of comparable accuracy to

the CFD-calibrated HYFLEX FADS.

The final air data parameter to be investigated is the free-stream static pressureP∞.

Figure 7.11 shows the FADS predictions ofP∞, along with a value based on the HYFLEX

trajectory and meteorological data. The CFD-FADS estimate is observed to be poor, while

the Newtonian-FADS estimate is much worse. After examination of Equation 7.13 (or

Equation 7.11), the cause of the badP∞ estimates becomes apparent. At hypersonic flight

conditions, theP∞ term is dwarfed byPgt. Because of the disparity in relative magnitudes,

it is very difficult to accurately resolve both quantities simultaneously. Small amounts of

error or noise in the surface pressure measurements further compounds the problem. As

discussed in Chapter 6, examples of this kind of error include pneumatic lag in the tubing

connecting pressure ports to sensors, pressure port angular misalignment resulting from

the deformation of the nosecap at high temperature, and sensor error itself.

The error in predictingP∞ consequently causes error inR (Equation 7.14). SinceR
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Figure 7.11: The free-stream static pressure estimated by the FADS, compared with the

atmospheric pressure determined from meteorological data (M).

is used to determine many of the parameters in the CFD pressure correction model, the

CFD-FADS prediction of other air data parameters (besidesP∞) might thus be expected to

suffer. Contrarily, Figs. 7.6–7.10 show that the CFD-FADS results are quite good. Good

results are still obtained because the core curve-fit coefficients in the CFD pressure model

(ck in Equation 7.16) are independent ofR.

By using satellite positioning and meteorological data, it is possible to make a reason-

ably accurate estimate ofP∞. If this data is available onboard the vehicle, it can be used as

a supplement to help improve the accuracy of the FADS air data estimates. To investigate

this technique, the FADS algorithm was tested withP∞ constrained to meteorological es-

timates. All the results shown in Figs. 7.6–7.8 did not change appreciably. However, the

Newtonian-FADS prediction ofq∞ did show significant improvement. By constrainingP∞,

the quality of the pressure model fit becomes less important in determining the magnitude

of Pgt, and thusq∞.

The size of the pressure residuals (E�

i in Equation 7.2) are a useful indicator of how

well the pressure models fit the measured data. A residual of zero implies a perfect fit.

Shown in Figure 7.12 are the root mean square pressure residuals for the nine nose pres-

sure sensors, expressed as a percentage of free-stream dynamic pressure. For both pres-

sure models, erratic results are observed early in the flight, where the air density is low,

the vehicle has greatest speed, and high temperature gas effects are strong. It may thus be

concluded that either the pressure measurements, the pressure models, or both, lose ac-
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Figure 7.12: The RMS pressure residual for the FADS algorithm, expressed as a percent-

age of free-stream dynamic pressure.

curacy at the more extreme flight conditions. Later in the flight, the CFD pressure model

displays a residual consistently smaller than the modified Newtonian pressure model.

7.7 Algorithm Convergence and Stability

Figure 7.13 shows the number of iterations required for convergence of the air data in-

version algorithm. All air data parameters from state estimatej +1 must differ by less

than 0.001% (or 1�10�4 deg) from estimatej before convergence is obtained (see Equa-

tion 7.3). The Newtonian-FADS takes about three iterations to reach convergence, while

the CFD-FADS requires at least an extra two iterations. To understand why, consider

the first order Taylor series expansion in Equation 7.5. By using this expansion, we are

assuming that the pressure model behaves linearly about a particular air data state. The

CFD pressure model, being more complex (and further from linear) than the modified

Newtonian model, is adversely affected by the linearization to a greater extent. Thus the

absence of high order terms in Equation 7.5 means that the inversion algorithm requires

extra iterations to achieve convergence when the CFD pressure model is used. The over-

all speed of the CFD-FADS running on a MIPS R10000 195 MHz processor was 370 Hz.

The corresponding speed for the Newtonian-FADS algorithm was 1270 Hz. Both speeds

are in excess of 50 Hz, which is the typical in-flight requirement for a hypersonic vehicle

air data system.190
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Figure 7.13: Number of iterations required for convergence of the FADS algorithm using

different pressure models.

The singular values of the design matrixA provide a convenient way to check the

stability of the air data solution technique. Singular values of zero indicate that column

degeneracies exist inA, and that there are linear combinations of air data parameters that

are ill-determined by Equation 7.4. To obtain meaningful and stable solutions from the air

data system algorithm, it is important that all singular values remain significantly larger

than machine precision. The condition number ofA is also a useful indicator of solution

stability, and is defined as the ratio of its largest and smallest singular value. A low

condition number is desirable, and a condition number of infinity implies that the matrix

is singular. Using the modified Newtonian pressure model, the worst (largest) design

matrix condition number encountered was 1:24�105, while the worst (smallest) singular

value was 0.49. For the CFD-calibrated pressure model, the worst condition number and

singular value were 7:23�104 and 0.53 respectively. Thus the CFD-calibrated pressure

model poses a better conditioned air data inversion problem. Additionally, the condition

numbers and singular values ofA lie well within machine precision for both pressure

models.

In testing, the FADS algorithm proved to be robust, and converged for all the sets of

pressure data, for both pressure models. This is despite a number of data spikes being

present in the input data. The effect of these input spikes on air data prediction is clearly

seen in the displayed results. Previous investigators192 have encountered instability prob-

lems when the edge of the bow sonic zone nears or crosses pressure port locations. For
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the HYFLEX flight, the sonic line crosses the outer transverse pressure ports (ps7 and

ps9) at about 270 s after flight commencement. No perturbations in results or algorithm

stability problems are observed at this time.

7.8 Summary of Calibration Results

A technique for calibrating the HYFLEX vehicle flush air data system (FADS) was de-

scribed. The calibration involved using CFD simulation to provide the FADS algorithm

with an accurate pressure model. No experimental or flight pressure data were used to

augment the CFD pressure model. Using the pressure data recorded during the HYFLEX

flight, air data predictions from the calibrated FADS were compared to those obtained

from a FADS based on the modified Newtonian pressure model. The main findings were:

(i) The CFD-calibrated FADS predicted the vehicle angle of attack and angle of sideslip

to approximately the accuracy required for control of a broad-envelope hypersonic

vehicle. Dynamic pressure was predicted to an accuracy better or equal to that of

the onboard inertial measurement unit.

(ii) The modified Newtonian FADS estimates of angle of attack and dynamic pressure

did not meet the accuracy required for vehicle control. The modified Newtonian

FADS angle of sideslip estimates were close to those made by the CFD-calibrated

FADS.

(iii) Both the uncalibrated and calibrated FADS gave poor estimates of the free-stream

static pressure.

(iv) The experimental calibration of air data system pressure models is not mandatory.

Numerical results alone were sufficient to generate a good pressure model for the

HYFLEX FADS in hypersonic flight.

(v) The numerical calibration procedure produced results of comparable accuracy to

that obtained by procedures which use wind-tunnel data, such as in the Shuttle

Entry Air Data System calibration.

(vi) The nonuniformity in radius of the HYFLEX nose made the CFD FADS calibration

more difficult. Also, the nonuniformity was the predominate cause of error in the

angle of attack predictions made by the uncalibrated FADS. In the future, it would

be beneficial to position all pressure ports on a symmetric region of the nose.
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Conclusion

This thesis was about the development of a Navier-Stokes solver optimized for blunt-

body simulations, and its application to the calibration of a flush air data system. In

the course of the work, some original computational fluid dynamics algorithms and air

data system calibration techniques were presented, and new numerical simulation results

were generated and analysed. Also, the occurrence of spurious bow-shock instability in

simulations was investigated, and cured without loss of numerical accuracy.

The principal conclusion of this thesis, is that it is indeed possible to accurately cal-

ibrate a flush air data system for hypersonic flight using computational fluid dynamics

techniques alone. Other conclusions, as well as a summary of ideas and experiences

drawn from the work, are now listed in detail. Some recommendations for further re-

search in the area are also proposed.

8.1 Computational Fluid Dynamics Code Development

The calibration of air data systems for blunt-nosed vehicles requires the establishment

of an accurate relationship between surface pressure and free-stream variables. Thus,

to achieve the thesis aims, it was necessary to develop a computational fluid dynamics

(CFD) solver exhibiting the requisite pressure accuracy. Since an array of simulations

is required for air data system calibration, it was also desired to choose CFD techniques

that were not overly complicated or computationally expensive. To this end, a number of

algorithms were investigated, in order to determine which were optimum for blunt-body

flows. When no suitable algorithm already existed, some new techniques were developed.
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Among the flux solvers tested, the advection upwind splitting method combining flux

vector and difference splitting (AUSMDV), was found to be close to ideal for blunt-

body simulations. The AUSMDV exhibits very little noise in the pressure distributions

at shock and body, and also remains robust, stable, and accurate in the shock layer for

gases with non-ideal equations of state. Boundary layers are accurately resolved by the

AUSMDV, and the technique is computationally inexpensive. In common with the other

low-dissipation flux solvers tested, however, the AUSMDV was found to suffer from an

instability in captured bow shocks. The instability was aggravated at higher grid resolu-

tion, increased body bluntness, and with chemically reacting gases.

The bow-shock instability was found to be closely related to the carbuncle effect and

odd-even flow variable decoupling, which have been reported in the literature previously.

Results in this thesis confirmed postulates that the instability was caused by noise gener-

ated at flow states within the unphysically thick, captured shock wave. Noise in the flow

velocity component tangential to the shock was shown to generate shock-layer vorticity,

ultimately producing sustained vortices which perturbed the shock itself. Previous to this

thesis, adding more dissipation during flux calculation was the commonly suggested cure.

Rather than add dissipation and decrease simulation accuracy, the low-dissipation

AUSMDV was retained, and bow-shock stability was maintained using a shock fitting

technique. Besides providing stability, shock fitting also enhances solution accuracy and

boosts efficiency; shocks were resolved crisply, and post-shock noise was eliminated.

Original approaches for interpolation and limiting at the shock, and shock speed upwind-

ing, were presented. Such algorithms were found necessary to prevent the appearance of

shock wave corrugations and post-shock oscillations. In practice, shock fitting allowed

simulations of the HYFLEX (hypersonic flight experiment) to be easily produced for any

angle of attack or sideslip, without having to manually adjust the computational grid to

account for variation in shock position. A hybrid shock fitting and capturing strategy

allowed transition between the two techniques at simulation runtime.

A second-order explicit time marching technique was used to advance HYFLEX sim-

ulations to convergence. It was decided that an implicit technique was not justified, due

to the associated complexity and memory requirements. Further, the small timescales re-

quired to resolve nonequilibrium chemistry effects tend to negate the speed advantages

of implicit techniques. The time accuracy of an explicit method was required to simulate

flow establishment processes in shock tunnel experiments of the HYFLEX.

Flow reconstruction was performed using MUSCL interpolation and a van Albada

limiter as the base scheme. By modifying the reconstruction to account for unequal cell

spacing, it was demonstrated that good accuracy could be obtained on highly and abruptly

clustered grids. The new reconstruction scheme causes a 15% increase in code execution
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time compared to the often used MUSCL interpolation with minimum-modulus limiter,

but the expense is justified by accuracy improvement in the case of the HYFLEX grid.

A range of general verification test cases showed that the code was solving the Navier-

Stokes equations correctly, that conservation laws were observed, and that sufficient con-

vergence rates were being obtained. Specific blunt-body validation tests showed that the

physical system was being correctly modelled. Good agreement in drag, shock shape, and

standoff distance, was achieved between simulation and experimental results.

8.2 Flush Air Data System Calibration

Modified Newtonian theory is quite simple, yet predicts surface pressure on hypersonic

blunt bodies to a reasonable accuracy. A pressure model with higher accuracy, however,

is needed for the calibration of hypersonic flush air data systems (FADS). In this thesis,

the HYFLEX flush air data system (FADS) was calibrated by developing and applying

a correction function to account for flow phenomena that are not modelled by modified

Newtonian theory. These phenomena include physical flow interaction in the shock layer,

boundary layer development, and nonequilibrium chemistry effects. Three possible cali-

bration techniques for generating the correction function were discussed: flight data cal-

ibration, wind tunnel calibration, and computational fluid dynamics calibration. Flight

data calibration was ruled out due to expense, and because it is a technique that is not

available for a first flight.

Due to the high speeds at which the HYFLEX FADS was to be calibrated, the possi-

bility of ground-based experimental calibration could only be investigated using an im-

pulse facility, such as a shock tunnel. The uncertainty in measuring surface pressure on

a HYFLEX scale model in the T4 shock tunnel was 4%. Since CFD simulations showed

that modified Newtonian theory is already in error by approximately 4%, it is unrealistic

to try to calibrate a hypersonic FADS using shock tunnel results. Difficulties in obtaining

a spatially and temporally uniform free stream flow, problems of scale, cost, and un-

certainty in free stream conditions, further prohibit the use of a shock tunnel for FADS

calibration.

It was thus decided to calibrate the HYFLEX FADS using only computational fluid

dynamics results. It is believed that FADS calibration for a hypersonic flight vehicle,

based exclusively on CFD results, has never before been performed. A grid convergence

test for CFD simulations of the HYFLEX showed that the governing equations were being

solved to 0.08% accuracy, which is much less than the total modified Newtonian error,

and deemed sufficient. However, the convergence test does not determine the accuracy

at which the CFD code models the physical system. The lack of accurate experimental
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data for blunt-body flows, though, makes strict validation difficult at hypersonic speeds.

While available for comparison, the nose pressures measured during the HYFLEX flight

experiment were not used as validation evidence or for code tuning, since this would have

defeated the aim of conducting a CFD-only FADS calibration.

Results from simulations of the HYFLEX showed that, at hypersonic speeds, unmod-

elled flow interaction within the shock layer is the largest single factor contributing to

error in modified Newtonian theory. The remaining error, roughly one-quarter of the to-

tal, is due to the aforementioned viscous and nonequilibrium effects. It is thus concluded

that, although boundary layer development and chemical nonequilibrium do not strongly

affect surface pressure, their impact is significant enough to warrant inclusion in a hyper-

sonic FADS calibration. It was found that vehicle surface temperature had a negligible

effect on simulated surface pressures.

When tested with flight data, the CFD-calibrated FADS reduced error in the predic-

tion of vehicle angle of attack and dynamic pressure by approximately a factor of two,

compared to the uncalibrated FADS. Angle of sideslip prediction was not improved. Ac-

curacy of the CFD-calibrated FADS mostly satisfied the level required for the control of

a broad-envelope flight vehicle, and was generally at least as good as the onboard iner-

tial measurement unit (IMU). Also, accuracy of the CFD-calibrated HYFLEX FADS was

similar to that obtained from the experimentally calibrated shuttle entry air data system.

Hence, it is concluded that experimental data is not required to obtain an accurate FADS

calibration. Additionally, the CFD calibration has the advantages of low cost and repeata-

bility. Once a suitable code has been developed and validated, the calibration procedure

is also relatively quick.

Some of the pressure sensors on the HYFLEX bow were located in a region of nonuni-

form nose radius. CFD results showed that a decrease in the HYFLEX nose radius gen-

erated a sudden expansion, and this was accounted for in the FADS calibration. The

expansion process was not correctly modelled by modified Newtonian theory and, as a

consequence, contributed to the degraded performance of the uncalibrated FADS. It is

hence a recommendation that, where possible, pressure sensors be located on symmetric

regions of the nose in future FADS designs.

The calibration pressure correction function was developed by examining simulation

results, and fitting curves to the observed trends. Hence, the FADS inversion algorithm

relies upon the correction function to describe simulation behaviour in terms of air data

parameters, rather than directly using CFD itself. Although a novel idea at present, it

would be more convenient to actually incorporate a CFD solver within the inversion rou-

tine. However, operating at 20 Hz, with roughly four iterations required for each air

data state prediction, eighty simulations would need to be performed every second! With
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currently available processors, it requires about two days to perform a single HYFLEX

simulation. Computer speed, though, is roughly doubling every eighteen months. If this

exponential rate is maintained, it is imaginable that onboard real-time CFD could be fea-

sible within forty years. Until then, however, the calibration procedure described in this

thesis provides a good substitute.

The reliability and accuracy of air data reporting for a hypersonic vehicle in flight is

critical for successful control. Although the presented calibration procedure works well,

there are a number of matters that need further development or investigation before the

system can be relied upon in flight: (i) CFD-calibrated FADS results need to be compared

against air data of higher accuracy than can be obtained from an IMU. Unfortunately,

since FADS and IMU air data are the most accurate available, it is not immediately clear

how this can be accomplished without leading to circular arguments. (ii) While the least

squares inversion technique exhibited robustness and accuracy in this thesis, the author is

dubious about relying on the convergence of Newton iterations for such a flight critical

system, especially in the case of low quality pressure data. It would be interesting to

compare the error tolerance and efficiency of the least squares technique, with a CFD-

calibrated neural network, or the method of pressure triples. Provided the calibrations

are correctly performed, it is maintained that accuracy should be nearly independent of

the inversion technique. (iii) It is possible to accurately measure wind tunnel and flight

pressure data at supersonic, transonic, and subsonic speeds. Previous investigators have

traditionally used such data sources to calibrate lower speed flush air data systems. It

would be worthwhile to investigate the use of CFD to calibrate a FADS for these regimes

as well, with a view to eventually developing numerical calibrations that span all speeds,

from subsonic to hypersonic.
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Gas Data

Viscosity curve fit parameters for various species are shown in Table A.1, and are valid

over the temperature range 1;000 K� T � 30;000 K. The parameters for N2, O2, N,

O, and NO were sourced from Reference 63, CO2 from Reference 205, and CO from

Reference 206. The viscosity of speciesi is calculated using

�i = 0:1 eC�;i TB�;i+A�;i lnT Pa s: (A.1)

Table A.2 lists thermodynamic data for various gases at standard atmospheric condi-

tions. Under the calorifically perfect assumption, these data are taken to be constant and

independent of the gas state.

Molecular weights and enthalpies of formation (referenced to absolute zero tempera-

ture) for the component species of air are shown in Table A.3.

Table A.4 shows the polynomial curve fit coefficients for the thermodynamic proper-

ties of air component species, in the format described in Section 2.9.1. For each species,

the first set of coefficients are valid over the temperature range 300 K� T �1,000 K, the

second set for 1,000 K� T �6,000 K, and the third set for 6,000 K� T �15,000 K. The

Ai; j coefficients are based on those presented in Reference 63, but have been modified in

order to maintain continuity between temperature intervals.
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Table A.1: Viscosity curve fit parameters.

Species A�;i B�;i C�;i

CO2 2:0400E�02 4:3120E�01 �1:1826E+01

N2 2:0300E�02 4:3290E�01 �1:1815E+01

O2 4:8400E�02 �1:4550E�01 �8:9231E+00

CO 2:0500E�02 4:2890E�01 �1:1818E+01

NO 4:5200E�02 �6:0900E�02 �9:4596E+00

N 1:2000E�02 5:9300E�01 �1:2381E+01

O 2:0500E�02 4:2570E�01 �1:1580E+01

Table A.2: Thermodynamic data for gases at 300 K and 100 kPa.

Gas cp (J/kgK) cv (J/kgK) R (J/kgK) 


Air 1004:5 717:5 287:0 1:40

CO2 864:0 675:0 189:0 1:28

He 5191:0 3114:0 2077:0 1:67

Table A.3: Molecular weights and formation enthalpies.

Species Mi (kg/mol) hf(0K)
i (J/kg)

N2 2:8013E�02 0:0000E+00

O2 3:1999E�02 0:0000E+00

N 1:4007E�02 4:7082E+05

O 1:5999E�02 2:4679E+05

NO 3:0006E�02 8:9775E+04
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Table A.4: Polynomial curve fit coefficients for species thermodynamics.

Ai;0 Ai;1(K�1) Ai;2(K�2) Ai;3(K�3) Ai;4(K�4) sc(J/kgK)

N2

3:6748E+00 �1:2081E�03 2:3240E�06 �6:3218E�10 �2:2577E�13 6:9985E+02

3:1846E+00 1:0137E�03 �3:0467E�07 4:1091E�11 �2:0170E�15 1:3522E+03

3:1603E+00 8:9745E�04 �2:0216E�07 1:8266E�11 �5:0334E�16 1:4167E+03

O2

3:6146E+00 �1:8598E�03 7:0814E�06 �6:8070E�09 2:1628E�12 1:1336E+03

3:6009E+00 7:5213E�04 �1:8732E�07 2:7913E�11 �1:5774E�15 9:7255E+02

3:8679E+00 3:2510E�04 �9:2131E�09 �7:8684E�13 2:9426E�17 6:0328E+02

N
2:5031E+00 �2:1800E�05 5:4205E�08 �5:6476E�11 2:0999E�14 2:4739E+03

2:4766E+00 6:9258E�05 �6:3065E�08 1:8387E�11 �1:1747E�15 2:5517E+03

2:7355E+00 �3:9090E�04 1:3380E�07 �1:1910E�11 3:3690E�16 1:7542E+03

O
2:8236E+00 �8:9478E�04 8:3060E�07 �1:6837E�10 �7:3205E�14 1:8202E+03

2:5444E+00 �2:7551E�05 �3:1028E�09 4:5511E�12 �4:3681E�16 2:5491E+03

2:5519E+00 �5:9520E�05 2:7010E�08 �2:7980E�12 9:3800E�17 2:5189E+03

NO
3:5887E+00 �1:2479E�03 3:9786E�06 �2:8651E�09 6:3015E�13 1:4269E+03

3:2092E+00 1:2705E�03 �4:6603E�07 7:5007E�11 �4:2314E�15 1:8436E+03

3:8401E+00 2:3409E�04 �2:1354E�08 1:6689E�12 �4:9070E�17 9:1580E+02
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Interferometry

Interferometry is a non-intrusive flow visualization technique, and gives information about

the distribution of density and species concentration throughout the flowfield. Conven-

tional Mach-Zehnder interferometry uses a coherent laser beam of fixed wavelength,

which is initially split in two. One beam is passed through the disturbed test flow, while

the other, termed the reference beam, is passed around the flow using periscopes. The

final phase of each beam is affected by the density and composition of the gas it travels

through, as well as its path length. After the beams are recombined, phase differences

between them cause the light to interfere either constructively or destructively, forming

observable fringes. Because the reference beam is passed through a gas of known prop-

erties, it is possible to infer information about the test flow from the resulting image (the

interferogram). This technique is called infinite-fringe Mach-Zehnder interferometry.

If the test flow conditions do not vary markedly from the reference conditions, few

fringes will be visible and quantitative data gleaned from the interferogram will likely

be inaccurate. To remedy this effect, carrier fringes can be introduced into the image

by varying the path length of the reference beam across its cross section. After beam

recombination, this procedure forms a set of background fringes upon which small flow

disturbances may easily be observed. The use of background fringes is called finite-fringe

interferometry.

A problem with Mach-Zehnder interferometry is that high quality optical equipment is

required. To avoid phase shift errors, the reference beam must be passed through optical

windows of the exact same thickness and properties as the test beam. Because the test

section windows on hypervelocity wind tunnels are easily damaged, this is a difficult

requirement to satisfy. Holographic interferometry avoids the problem, by passing both
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reference and test beams along the same path. Before flow begins, a hologram of the

test section is recorded on a holographic plate. During the test flow, a second hologram

is recorded on the same plate, and interference between the two holograms results. By

firing a laser through the holographic plate after the experiment, the holographic image

can be reconstructed and photographed. Since the reference and test beams are recorded

at different times, it is important to ensure that the optics do not move between exposures.

More information on holographic interferometry can be obtained from References 125

and 207.

There are two approaches to comparing computational results with experimental in-

terferograms. The first is to process the experimental interferogram image, by hand or on

computer, to determine the distribution of density throughout the field of view. This tech-

nique is time-consuming, difficult, and error-prone. The second approach is to process

the simulation results using computational flow imaging, to generate a simulated inter-

ferogram which can be compared directly to the experimental interferogram. We use the

second approach in this thesis.

Generation of the computational interferogram is quite straight-forward for both two-

and three-dimensional flows. Extending the Gladstone-Dale equation208 yields the fringe

shift as

F =

Z z2

z1

�
���ref

�

NS

∑
i=1

KiCi

�
dz; (B.1)

if the test beam passes through the flow in thez direction. The limits of integration,z1

andz2, define the path length of the beam. The reference density is denoted by�ref, and

does not vary withz in most practical interferograms. The test flow density� and species

mass fractionsCi vary with the Cartesian coordinatesx, y, andz in three-dimensional and

axisymmetric flows, but only vary withx andy in two-dimensional flows. The wavelength

of the laser light is�, and the Gladstone-Dale constant for speciesi is Ki. TermingKi a

constant is somewhat of a misnomer, since it does vary slightly with wavelength. We

will, however, ignore this effect. Table B.1 gives a listing of the Gladstone-Dale constants

used to produce the simulated interferograms in this thesis, sourced from References 125

and 208.

The final step in forming a computational interferogram is to calculate the light inten-

sity across the image. Intensity,I , is given by

I = cos2(�F + Æ); (B.2)

whereÆ is an offset to compensate for any background phase shift between test and refer-

ence beams in the experimental interferogram.
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We make special mention of the procedure used for the calculation of axisymmetric

interferograms. In this case, a full three-dimensional simulation is not required to produce

the interferogram. The simple mapping

(x; y; z)! (x;
p

y2+z2; 0) (B.3)

is used to extend results from axisymmetric simulations performed on two dimensional

grids to an equivalent representation in three-dimensional space, before application of

Equation B.1.

Table B.1: Gladstone-Dale constants.

Species K (m3/kg)

CO2 2:30�10�4

N2 2:46�10�4

O2 1:90�10�4

CO 2:70�10�4

N 3:22�10�4

O 1:82�10�4
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SF3D Version 4.1

The SF3D computer program was written expressly for this thesis, and thus has the pri-

mary purpose of performing computational fluid dynamics simulations of blunt body

flows. Version 1.0 was finished in October 1995, and as at January 1999 the latest ver-

sion is 4.1. Code development was conducted on a Silicon Graphics Origin 2000 system

(shown in Figure C.1) running IRIX Release 6.4. Most of the simulations presented in

this thesis were also performed on the Origin. The program is available on CD-ROM

from the Department of Mechanical Engineering at the University of Queensland. This

appendix describes the code components, and presents a brief user guide.

Figure C.1: The Silicon Graphics Origin 2000.
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C.1 Compiling SF3D

The SF3D program is coded entirely in the C programming language,209 and should port

to any computer loaded with a relatively recent ANSI C compiler. SF3D has been suc-

cessfully compiled and executed under the MS-DOS, Linux, DEC UNIX, SunOS, AIX

and IRIX operating systems.

A makefile is included with the SF3D distribution to allow easy compilation. The

makefile should be invoked using

make [ target ] [opt= level ]

With no arguments, SF3D will be made for a general system at the compiler default

optimization level. If desired, a different optimizationlevel can be used. A good

compromise between speed and floating point accuracy isopt=3 on most systems. On

Silicon Graphics IRIX systems, the makefile will take advantage of parallel compilers

if the target is specified assg . For DEC UNIX machines, usedec as the target. The

argumentsdebug andprofile can be used to include symbolic debugging labels or

implement performance profiling, respectively. If amake clean is performed, all

executables and object files will be cleared from the current working directory. After a

successful compilation, the binary executablesf3d.x should be available for immediate

use. Table C.1 lists the main files which comprise the source code for SF3D, and gives a

description of the purpose of the functions contained within.

C.2 Using SF3D

Before running SF3D, several simulation definition files must be present in, or linked to,

the directory containing the executable.

The profile.3d file contains most options and switches pertaining to the flow

solver, and administrative details about the simulation. Rarely adjusted tuning parameters

and options are hard coded insf3d.h . Included inprofile.3d are details about the

grid size, simulation run time, gas chemistry model, and simulation project name. The

specific format of the file is defined by a sample template in the SF3D distribution.

The flowspec.3d file contains the initial and boundary conditions for the flow.

The first five lines specify the initial density, internal energy, and velocity components

in SI units, in that order. Subsequently, each of the six boundary conditions are defined

according to the codes in Table C.2. Note that SF3D will report an error if a boundary

condition is incompatible with the selectedprofile.3d simulation options. A non-

slip wall should not be used in an inviscid simulation, for example. Code9 ensures
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Table C.1: Descriptions of some of the SF3D source code files.

Source file Description

aireq.c Equilibrium air equation of state routines.a

chem.c Calculates nonequilibrium reaction kinetics.b

co2eq.c Equilibrium carbon dioxide equation of state routines.56

engine.c Performs time integration of the Navier-Stokes equations.

flux.c Contains flow reconstruction algorithms and flux solvers.

gas.c Determines thermodynamic and transport properties.

geom.c Calculates geometric properties of the grid and performs vector opera-

tions.

grid.c Reads, writes, transforms and creates grids.

icbc.c Sets initial and boundary conditions.

io.c Loads and saves solution files, reads simulation definition files, and dis-

plays status reports.

main.c Contains the parent calling function.

mem.c Allocates, clears and frees heap memory as necessary.

moving.c Performs shock fitting, grid movement, and GCL calculations.

n2eq.c Equilibrium nitrogen equation of state routines.a

rivp.c Approximate Riemann solver.a;96

sf3d.h Header file, including definitions of adjustable parameters.

visc.c Calculates viscous stresses and heat conduction.
aWritten by Peter Jacobs.
bRewritten and modified versions of original routines by Chris Craddock.
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Table C.2: Boundary condition codes forflowspec.3d .

Code Description

1 Inflow.

2 Outflow.

3 Adiabatic frictionless wall.

4 Isothermal frictionless wall.

5 Adiabatic non-slip wall.

6 Isothermal non-slip wall.

9 Boundary adjoins another boundary.

compatibility between mating boundaries, and is a special option that can only be used on

boundaries 5 and 6 (see Figure 2.1). The format of theflowspec.3d file is defined by

a sample template included in the SF3D distribution.

If shock fitting has been selected inprofile.3d , boundary 4 will be used as the

shock boundary by default. An inflow condition on this boundary, containing the up-

stream flow state, should be specified inflowspec.3d in this case.

If a nonequilibrium chemistry model has been selected, the reaction pathways, re-

actions rates, and species thermodynamics should be defined inchemistry.3d . The

format of this file is defined by a template included in the distribution.

For new simulations, the user has the option of loading a grid from disk, or using

a grid generation routine hard coded ingrid.c . Grids on disk should have the file-

nameproject . mode.g , whereproject is the name of the simulation defined in

profile.3d , andmode is eithercap or fit , depending on whether shock captur-

ing or shock fitting is being performed. The first line of a grid file should contain the

grid dimensions (number of cells) in the orderi, j, k. The remainder of the grid file

must contain Cartesian triplesx, y, z on separate lines, defining the cell vertices. Ver-

tices should be listed so that thei counter increments most frequently, followed byj,

and then byk. If SF3D complains that negative volumes have been calculated, check

that the vertices define grid cells which conform to the right-hand geometry convention.

Newly generated grids, or those resulting from shock fitting, are saved under the filename

project . mode.g.new , so as not to overwrite existing gridfiles.

It is a good idea to specify that SF3D should write solution files regularly during sim-

ulations, to allow the code to be restarted should a system shutdown occur, and to mon-

itor solution progress. Solution files have the unique filenameproject n. mode.pl ,

wheren is the timestep number . The solutions are in text format and can be visually in-

spected, and all flow and grid information required for a simulation restart are contained



USING SF3D 177

within. To avoid postprocessing delays, solution files are written in a format directly

readable by the TECPLOT data visualization program.210, 211 Solution files converted to

TECPLOT binary format, however, may no longer be used to restart a simulation.

An example of screen output from SF3D is shown in Figure C.2. At startup, the code

reads the simulation input files and echoes some of the more important selected options

to the screen, for confirmation. The abbreviation to the left of each message indicates

the function which generated it. When SF3D knows the grid resolution and simulation

options, it will attempt to allocate the required memory. The names of all large arrays and

their memory requirements are listed during allocation, to allow diagnosis if insufficient

memory is available.

The user is provided with a progress update approximately once per minute, via the

display function. With reference to Figure C.2, the first line of the update contains the

current simulation time in seconds, the run time of the code in seconds, and the current

timestep number. The timestep (in seconds; see Equation 2.22) is shown on the second

line. Also shown is the current computer speed, expressed in microseconds required per

cell per step. Because other users may be also be running jobs on the system, the maxi-

mum speed obtainable may be better than the achieved speed. To the right of the current

speed is the maximum speed, and the corresponding percentage of CPU time used by

SF3D. The third line of the progress update indicates which cell is limiting the timestep.

The cell indices include a ghost cell offset, and the number of ghost cells used (usually

three) should be subtracted from the displayed values to obtain a raw grid reference. The

index direction causing the limitation is also displayed, and the limiting wave speed and

cell length are shown on the line below in SI units. The fifth line contains the maximum

normalized density residual and its location, to help indicate when convergence to steady-

state is achieved. If shock fitting is used, the final display line will contain the number of

boundary cell interfaces currently being fitted or tracked.

When the program finishes executing, SF3D will report if any errors or exceptions

were encountered. If so, it is advisable to review the screen output to locate possible

problems. For this reason, capturing the screen output to a log file is a good idea for long

simulations.
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main: SF3D - Shock Fitting and Capturing 3D

main: -------------------------------------

main: Rev 4.1, 1995-1998. Ian Johnston

loadprof: PROJECT ID = hyflex

loadprof: loading profile

loadprof: grid is 15i x 46j x 45k

loadprof: solution will be resumed from hyflex.fit.pl

loadprof: ...done

chemgnum: Using a 5 species, 6 reaction model

memget: requesting 32023200 bytes of memory (gc)

memget: ...allocated O.K.
...

cheminit: initialising finite rate chemistry

cheminit: ...done

loadfs: loading flow specification file

loadfs: ...done

loadsoln: loading solution hyflex_29324.fit.pl

loadsoln: solution will be resumed from

loadsoln: time = 4.500534e-03, step = 29324, dt = 1.485805e-07

loadsoln: solution succesfully loaded

geomgrid: updating cell geometry

geomgrid: ...done

main: starting main loop

main: solution will proceed in FIT mode
...

display: simtime = 5.248925e-03, wallclock = 87594, step = 34347

display: dt = 1.489704e-07, speed = 543us/542us/100%, eta = 8.28hrs

display: timestep limited by 15i 29j 26k jk_face

display: lspeed = 1.230301e+03, llen = 3.665569e-04

display: maximum normalized residual 9.250066e-07 at 16i 6j 4k

display: shock elements fitted = 2070, tracked = 0
...

tplot: writing a tecplot solution

tplot: simtime = 5.5003e-04, step = 36057

tplot: ...done

memfree: releasing allocated memory

memfree: ... done

main: SF3D program normal exit

Figure C.2: Sample SF3D screen output.
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HYFLEX Data

This appendix contains drawings of the HYFLEX vehicle, including details of pressure

tapping locations on the nosecap. Also included in the appendix are various data recorded

in flight, and NOAA atmospheric sounding data relevant to the time and location of the

flight experiment. The experiment commenced with a launch at 8:00 am on 12 February

1996, with the vehicle following an entry trajectory contained approximately within the

bounds 29Æ–30.5Æ North (latitude) and 135.7Æ–143.5Æ East (longitude).
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Figure D.1: From top to bottom, drawings of the plan, side, and front views of the

HYFLEX (Source: Reference 9). A side view of the locations of the nose pressure tap-

pings is pictured lower right. All dimensions are in mm.



HYFLEX DATA 181

Table D.1: Vehicle state and atmospheric conditions during the HYFLEX descent.

Quantity t = 90 s t = 120 s t = 150 s t = 180 s

�a;b (kg/m3) 7.606�10�5 1.295�10�3 4.553�10�3 5.464�10�3

Pa;b (Pa) 4.9 97.7 327.9 389.0

Ta (K) 223.4 262.8 250.9 248.0

Tb (K) 222.6 261.8 250.0 247.1

Cb
N2

0.766 0.765 0.765 0.765

Cb
O2

0.234 0.235 0.235 0.235

Vb;c (m/s) 3965.8 3736.7 2684.5 2112.7

�b;c (deg) 50.00 48.79 32.90 29.41

�b;c (deg) -0.94 -0.87 -0.50 -0.54

h (km) 69.8 48.0 38.7 37.4

Quantity t = 210 s t = 240 s t = 270 s t = 300 s

�a;b (kg/m3) 5.921�10�3 7.062�10�3 8.902�10�3 1.180�10�2

Pa;b (Pa) 419.1 492.1 608.3 783.5

Ta (K) 246.6 242.8 238.1 231.4

Tb (K) 245.7 241.9 237.2 230.5

Cb
N2

0.765 0.765 0.765 0.765

Cb
O2

0.235 0.235 0.235 0.235

Vb;c (m/s) 1703.1 1388.3 1126.6 899.1

�b;c (deg) 29.54 29.69 29.99 30.25

�b;c (deg) -0.55 -0.47 -0.47 -0.96

h (km) 36.7 35.7 34.2 32.4
a Atmospheric value.
b Simulated condition.
c According to the inertial measurement unit.
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Figure D.2: Diagram of the HYFLEX flight, adapted from Reference 10.
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Figure D.3: SpeedV and Mach numberM of the HYFLEX versus time after separation.
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0 100 200 300

Time (s)

30

40

50

60

70

80

90

100

A
lti

tu
de

(k
m

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

S
ta

tic
P

re
ss

ur
e

(k
P

a)

P

h

Figure D.5: Altitude of the HYFLEXh and atmospheric pressureP versus time after

separation.



184 HYFLEX DATA

0 100 200 300

Time (s)

0

2

4

6

8

10

12

14

16

18
D

yn
am

ic
P

re
ss

ur
e

(k
P

a)

0

2

4

6

8

10

12

14

16

18

D
en

si
ty

(1
03

kg
/m

3 )

ρ

q

Figure D.6: Vehicle dynamic pressureq and atmospheric density� versus time after sep-

aration.

0 100 200 300

Time (s)

-10

0

10

20

30

40

50

60

70

A
ng

le
(d

eg
re

es
)

β

α

φ

Figure D.7: Angle of attack�, angle of sideslip�, and roll angle� of the HYFLEX versus

time after separation.
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Figure D.8: Pressure sensor readings from the HYFLEX nosecap (ps1–ps5) versus time.

Figure D.9: Pressure sensor readings from the HYFLEX nosecap (ps1, ps6–ps9) versus

time.
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