The Gas Dynamic Tool Kit — March of the Puffin

Peter Jacobs

The University of Queensland

10 Mar 2022

Motivation for writing yet-another program
Puffin space-marching code

Sample applications

Progress of the GDTK code collection. Are we there yet?

Source code and documentation development

300000 |
e3code O
ed4code m
, 280000 | S50l o o O 1
38 e4doc e 0O |
> 200000 | o "'
[0}
'8 n
S 150000 O L] 1
o
2 100000 |- " |
5 0 -
50000 [o © ol °® |
L (1]
0
o o < © [eed o o
— — — — — Y o
o o o o o o o
q] g] N] X
S S) S) S S
S S) S) S S
Date

According to Bill Gates:

» “Measuring programming progress by lines of code is like measuring
aircraft building progress by weight.”

» “There are no significant bugs in our released software that any
significant number of users want fixed.”

So, let's write a new code

What could possibly
jo wrong?

The only sensible thing to do over the summer holiday.

Motive 1: The code is getting heavy.

Margaret Hamilton
(1969) with Apollo
Guidance Computer
source code, assembly,
~11,000 pages.

At 60 lines per page, the Eilmer4 code

Lines of code, doc

300000

250000 -
200000 -
150000 -
100000 [

50000 -

0

Source code and documentation development

e3code [
e4code
e3doc

n
o m]
eddoc @
O

o
o
o
o
L

01/01/2010 |
01/01/2012

01/01/2014 |
01/01/2016 |
01/01/2018 |
01/01/2020

Date

weighs in as a 4200 page document.

01/01/2022 |

How much better can we do?

Compare lines of code in similar functions.

Eilmer4 simcore.d Puffin marching_calc.d
» init_simulation() » init_calculation()
681 lines 66 lines
> integrate_in_time() > relax_slice_to_steady_flow()
409 lines 35 lines

This is looking promising. | would prefer to read and try to
understand 1 page of code than 11 pages.

Motive 2: Replace the SEAGULL code

VOL. 14,NO. 5, MAY 1976 AIAA JOURNAL '.)

Check for
updates

Shock Fitting Method for Complicated
Two-Dimensional Supersonic Flows

Manuel D. Salas*
NASA Langley Research Center, Hampton, Va.

» 2D, inviscid, supersonic flow of an ideal gas.

» Floating-shock-fitting that tracks the shocks explicitly.

» More than 4000 lines of FORTRAN code.

> |t's getting difficult to build into Rowan's inlet-design tools.

The Puffin space-marching code

» Space-marching, for speed, so that
we can use it inside a design loop.

» Shock-capturing, for convenience.

» Inviscid, supersonic 2D flow, to
limit the scope of the code.

» Complex thermochemistry comes
for free with GDTK.

» Design goal: simple enough code
to write in a week.

» Note that Eilmer remains our main
simulation code. Puffin is our
training code.

https://www.audubon.org/field-guide/bird /atlantic-puffin#photo7

Stream tube — top-level object

y
/ o
—
‘ YO(x)
|
x=0 X

> Assume a dominant supersonic flow in the positive x-direction.
> Start with a specified flow at x = 0.

> Work from left to right, solving the steady-flow solution, one
thin (dx) slice at a time.

Overview of the calculation process

Given a supersonic inflow at x = 0 and a bounding streamtube:

1.

Discretize a thin slice of the domain, width dx, into an array
of cells.

2. Copy the supersonic flow from the left into the cells.

w

No o s

Relax to steady flow within the slice of cells while applying the
boundary conditions at the stream-tube walls.

Maybe print the flow data for the slice.
Move on to position x + dx
If x < xmax, go back to step 1.

We are done.

Slice of finite-volume cells — component objects

Each slice is discretized into an array of
finite-volume cells.

Cell-average flow data is associated with
the cell centre.

Supersonic flow so, as an initial guess,
copy the flow data from upstream (left to
right).

It takes time for information to propagate
across the slice from the boundaries.

Cells, faces, vertices and indexing

vertex: geometric location
face:

» Defined by vertices at ends.

jf: j+1
facelj+1] cwgey " We calculate fluxes of mass,
west_vtx[j+1] e ‘ ¢ cast_vixl)
- momentum and energy across each
c%[j] _ face.
west_iface[j]_ east_ifaceljl cell:
west vixi]1 { east_vixij] » Defined by bounding faces.
Ifacefj] » Flow state associated with cell

X dx centre.
» Each finite-volume cell is the basic
unit over which the gas-dynamic
equations are applied.

Boundary conditions, multiple streams

o] The picture at left shows the cells for two stream
_> o tubes. They are at equal x-positions even though
\
.= they are shown offset.

o » Each stream tube has two “ghost” cells

™ associated with each end of the slice.

S » Boundary conditions are implemented by

— copying appropriate data into the ghost cells.
<« O . .

o Red arrows indicate data transfer.
_> O . .

— > An adjacent stream interacts through a
— O

simple copy of the flow data.
» There is a fixed ordering of the streams.

Interaction with a solid wall involves
reflection of the flow data in the frame of the
boundary face.

%

N

\

[o]d]ofofofofo]o o]

Gas-dynamic equations

Conservation statements for mass, momentum and energy
determine what happens next:

8/UdV:—j{Fc-ﬁdA+/QdV,
ot Jv s v

For a single chemical species, the array (U)of conserved quantities
and associated flux vectors (F) are

P PVx PVy
| pwx = pvf +p ~ PVxVy 2
- ' c — / + 2 ’
PVy PVyVx pvy +p
pE pEvy + pvy pEv, + pv,

Conserved quantities in the U vector are per unit volume.
Total specific energy is E = u + %vz.
The source term for axisymmetric flow is Q = [0, 0, pA,,/V/,0].

Flux calculators

To compute the flux of mass, momentum and energy at each face,
we work in the local coordinate frame of the face, /i is the unit
normal, f is the corresponding unit tangent.

We usually think of the flux calculator as incorporating some
approximate solution to the Riemann problem for the interaction of
a left (L) flow state and a right (R) flow state, with the flux values
being estimated at the initial location of the interface.

The flux for a uniform supersonic flow is
m
mvptpo g
m v
m(E+p/p)

ul
9}
I

where m = p v, is the mass flux.

Time integration

» Code extract from function relax_slice_to_steady_flow().

> Work on a single slice of cells in each stream tube.

foreach (k; 0 .. Config.max step relax) {
// 1. Predictor (Euler) step..
apply boundary conditions(xmid);
foreach (st; streams) { st.mark shock cells(); }
foreach (st; streams) { st.predictor step(dt); }
if (Config.t order > 1) {
apply boundary conditions(xmid);
foreach (st; streams) {
st.corrector_step(dt);
st.transfer conserved quantities(2, 0);

}
} else {
// Clean-up after Euler step.
foreach (st; streams) {
st.transfer conserved quantities(1, 0);
}

// 3. [TODO] measure residuals overall
// break early, if residuals are small enough

Space marching

while (progress.x < Config.max x || progress.step < Config.max step) {
// 1. Set size of space step.
if (progress.dx < Config.dx) { progress.dx *= 1.2; }
progress.dx = min(Config.dx, progress.dx);
// 2. Take a step.
int attempt number = 0;
bool step failed;
do {
++attempt_number;
step_failed = false;
try {
foreach (st; streams) { st.set up slice(progress.x + progress.dx); }
relax_slice to steady flow(progress.x + 0.5*progress.dx);
} catch (Exception e) {
writefln("Step failed e.msg=%s", e.msg);
step failed = true;
progress.dx *= 0.2;

}
} while (step failed && (attempt number <= 3));
if (step failed) {

throw new Exception("Step failed after 3 attempts.");
}

//

// 3. Prepare for next spatial step.

foreach (st; streams) { st.shuffle data west(); }
progress.x += progress.dx;

progress.step++;

Salas’ 2D nozzle expansion

Fig. 8 Parametric
study of a nozzle,
showing shock
waves and isobars,

- -
S o N WO = RN WO = R WS = M W

—~

-

=4 SHOCK
M-3
SHOCK
| M2
H SHOCK

Best guess for nozzle profile

Salas nozzle contour from Figure 8.

2.6

@ original data
—— tanh curve
—— interpolated spline

2.4

HOONNOOUURARWWWNNRFEFOOO®X

.3944
.8121
.2645
.6821
.1114
.566
.0046
.4571
.9095
.3619
.7912
.2436
.7541
.2877
.7401
.3086
.9466
.6079
.2459
0 2.56

ONNNNNNNNNNER R R R E e

.0072
.0267
.0691
.151
.2563
.3892
.5376
.7136
.8930
.0772
.2536
.3821
.4873
.5455
.564
.567
.568
.568
.568

Puffin input script — preamble

Salas' axisymmetric nozzle example.
PJ 2022-02-03

init gas model("ideal-air-gas-model.lua")
gasl = GasState(config.gmodel)

gasl.p = 100.0e3

gasl.T = 300.0
gasl.update thermo from pT()
gasl.update sound speed()

M1 =2.0

V1l =M1 * gasl.a

print("vi=", V1)

config.max_step relax = 40
» Input script is written in Python.

» You have full access to all of the GDTK gas models.

» Puffin is not yet complete (relaxation calculation does not yet
identify steady flow)

Puffin input script — stream tube definition

import csv
xs = [1; ys = []
with open('salas-nozzle-path.tsv', 'r') as tsvf:

tsv_data = csv.reader(tsvf, delimiter='\t")
for row in tsv_data:
if row[0] == 'x': continue
xs.append(float(row[0]))
ys.append(float(row[1]))

from eilmer.spline import CubicSpline
upper_y = CubicSpline(xs, ys)

def lower y(x): return 0.0

def lower bc(x): return 0

def upper bc(x): return 0

config.max x = xs[-1]
config.dx = config.max x/1000

stl = StreamTube(gas=gasl, velx=V1l, vely=0.0,
yO=lower y, yl=upper_y, bcO=lower bc, bcl=upper bc,
ncells=80)

Puffin solution

p
40000 60000 80000 1.0e+05
|

2.0e+00 . 3.6e+00
| |

Salas’ scramjet flowpath

Fig. 11 Flowfield for a simulated scramjet, showing shock waves,
vortex sheets and isobars.

Defining the edges of the stream tubes

from math import sin, cos, radians
Vlx = V1 * cos(radians(8.0))
V1ly = V1 * sin(radians(8.0))

config.max_step relax = 40

from eilmer.geom.xpath import XPath

path_0 = XPath().moveto(0,0).lineto(1,0).lineto(2,0)
path_0.lineto(3,0).lineto(4,0.02).lineto(5,0.1)
path_0.lineto(6,0.244).lineto(7,0.425).lineto(8,0.625).lineto(9,0.825)
path la = XPath().moveto(0,1).lineto(3,0.75).lineto(5,1).lineto(9,1.4)

path 1b = XPath().moveto(0,1).lineto(3,1.25).lineto(5,1).lineto(9,1.4)
path 2a = XPath().moveto(0,2).lineto(0.5,2).lineto(2.5,1.8).lineto(4,2).lineto(9,2)
path 2b = XPath().moveto(0,2).lineto(0.5,2).lineto(2.5,2.2).lineto(4,2).1lineto(9,2)
path 3a = XPath().moveto(0,3).lineto(3,2.75).lineto(5,3).lineto(9,2.6)

path _3b = XPath().moveto(0,3).lineto(3,3.25).lineto(5,3).lineto(9,2.6)
path_4 = XPath().moveto(0,4).lineto(1,4).lineto(2,4)
path_4.lineto(3,4).lineto(4,4-0.02).lineto(5,4-0.1)
path_4.lineto(6,4-0.244) .lineto(7,4-0.425).lineto(8,4-0.625).lineto(9,4-0.825)
» XPath can be built incrementally.
» Other segments: bezier2to, bezier3to

» XBezier also available

Defining the boundary conditions and stream tubes

def bc 0(x): return 0

def bc 1(x):
if x < 5.0: return 0
return 1

def bc 2(x):
if x < 0.5: return 1
if x < 4.0: return 0
return 1

def bc 3(x):
if x < 5.0: return 0
return 1

def bc 4(x): return 0

config.max_x = path_0.xs[-1]
config.dx = config.max x/1000

sto

StreamTube(gas=gasl, velx=V1x, vely=Vly,

yO=path 0, yl=path la, bc®=bc 0, bcl=bc 1, ncells=60)
stl = StreamTube(gas=gasl, velx=V1x, vely=Vly,
y0=path 1b, yl=path 2a, bc@=bc 1, bcl=bc 2, ncells=60)

I

st2 = StreamTube(gas=gasl, velx=V1x, vely=Vly,
yO=path 2b, yl=path 3a, bcO=bc 2, bcl=bc_3, ncells=60)
st3 = StreamTube(gas=gasl, velx=V1x, vely=Vly,

yO=path 3b, yl=path 4, bcO=bc 3, bcl=bc 4, ncells=60)

Puffin solution — Mach number

Puffin solution — shock detector

shock
0.0e+00 0.2 04 0.6 0.8 1.0e+00
‘ C ‘

Optimisation study of a bell nozzle

» Eilmer4 case study at
https://gdtk.uqcloud.net/docs/eilmer/technical-notes/

» Puffin run time 0.7 second per solution (with debug code)
overall run time approximately 35 seconds.

» Eilmer4 run times are 85 seconds and 6035 seconds.

Optimisation progress — searching for maximum thrust

Angle, degree

40

30

20

10

initial +
apha x
beta *
-
e *‘N’ cone -]
g et te by
mx”‘ - +F R R e e
2
o X x
x X X ox x
XX x X%
Xt SR
ALl Jaaltt et
it
o oo
o
0w
M
e o
L P x
j—c ulﬁm EF' L]
oy o -
“ PRIt T ST
M
0 10 20 30 40 50 60 70

Objective evaluations

80

Thrust N

Objective evaluations

» Thrust is estimated from the pressure in the line of cells

nearest the wall.

Lo o
o o0
@
[}
&Q’& o ©
]
0 10 20 30 40 50 60 70

Flow field for maximum thrust

1.0e+00
I

4.9e+00
|

P
000 500010C J00

000 1.0e+05
)| |

Are we there yet?

» So far, 90% of the work is done.

Core space-marching solver with a selection of flux calculators.
Flexible boundaries.

Complete preparation code built in Python.

Simple post-processing in Python, also.

Simple optimization code in Python, with parallel processing
mode.

» There is about 90% yet to be done.
» Convergence check for detecting steady flow in a slice.
» Optimization and parallel loops over stream tubes.
» Examples with chemically-reacting flow.
» Documentation.

\ A A A {

» Source code is available in the Gas Dynamics Toolkit,
https://github.com/gdtk-uq/gdtk /tree/master/src/puffin

» The equivalent transient-flow code (Lorikeet) should be done
in a month.

	Motivation for writing yet-another program
	Puffin space-marching code
	Sample applications

