
Ingo Jahn, Rowan J. Gollan, and Peter A. Jacobs

Guide to foamMesh

using Eilmer geometry elements to build OpenFOAM meshes.

April 13, 2025

Technical Report 2018/9
School of Mechanical & Mining Engineering

The University of Queensland

i

Abstract

foamMesh is an extension of the geometry package developed for the Eilmer4
compressible-flow simulation program. It allows gas flow and solid domains,
generated using the Eilmer4 geometry package, to be converted into grids suit-
able for OpenFOAM simulations.

The generation of OpenFOAM grids is achieved by adding an extra step to
the Lua scripts, used to convert the 2D and 3D grids of finite volume cells into
corresponding foam meshes. At the same stage labels are assigned to the outward
facing edges in the (x,y)-plane for 2D grids, or outward facing patches for 3D
grids, which allow definition of the OpenFoam boundary conditions.

Eilmer4 is available as source code from https://github.com/gdtk-uq/
gdtk and is related to the larger collection of compressible flow simulation codes
found at https://gdtk.uqcloud.net/.

Acknowledgment
This document borrows heavily from the Eilmer4 Geometry User Guide [1].

https://github.com/gdtk-uq/gdtk
https://github.com/gdtk-uq/gdtk
https://gdtk.uqcloud.net/

Contents

1 Introduction 1
1.1 Some advice . 1

2 Compiling 3

3 Converting Structured Grids to FoamBlocks 5
3.1 Create appropriate OpenFOAM case . 5
3.2 Global Settings . 5
3.3 FoamBlock constructor . 6
3.4 OpenFOAM boundary conditions . 6
3.5 Building the grid . 8
3.6 Some debugging help . 8

4 Examples 9
4.1 2D (planar) examples . 9
4.2 3D examples . 16

References 25

A Useful Linux Commands for OpenFOAM 27

B Make your own debugging cube 29

iii

1

Introduction

foamMesh is a standalone program, based on the geometry engine of the Eilmer ge-
ometry package [2]. Structured grids are generated using the same Lua descriptors
used in the Eilmer geometry package and are converted into unstructured grids to
suit OpenFOAM. At the same time labels are assigned to external edges (in 2D) or
faces (in 3D) to allow boundary conditions to be assigned using the OpenFOAM ap-
proach. This report is a companion to the geometry user-guide [2], which gives details
on the generations of the actual structured meshes.

The tool supports the conversion of multi-block structured 2D meshes (planar and
axi-symmetric) and structured 3D meshes. Some support is provided to assist with
setting up the initial OpenFOAM boundary conditions, however final adjustment is
left to the user.

1.1 Some advice

Before describing the details of using foamMesh (and using it to convert geometric
elements that you will use to build a description of your flow domain), we would like
to offer some advice on the process of building that description. The process is one of
programming the geometry-building program to construct an encoded description of
your flow domain. With this in mind, we advise the following procedure:

1. Start with a rough sketch of your flow domain on paper, labeling key features.

2. Start small, building a script to describe a very simple element from your full
domain.

3. Process this script with foamMesh and view the resulting grid using paraFoam
(disable / de-select field data prior to import to acoid crashes associated with
data not being available).

4. View this artifact to check that it is what you wanted, debugging as required.

5. Proceed in small steps to complete your domain description.

We believe that this procedure will result in a far more satisfactory experience than
coding your entire description in one pass. You might be lucky, but chances are that
your mistakes will overpower your luck.

1

2

Compiling

When building the Eilmer4 code collection from source, foamMesh is not built by
default. To test if foamMesh is available, try foamMesh --help. If you get the
foamMesh help instructions, foamMesh is ready to run.

Assuming you are able to successfully build the core solver, compiling foamMesh
is a straightforward task. foamMesh is compiled from the /gdtk/src/geom/ direc-
tory using the make install command.

3

3

Converting Structured Grids to
FoamBlocks

3.1 Create appropriate OpenFOAM case

For foamMesh to work correctly it must be executed from within an OpenFOAM
case directory. An apropriate case directory can either be generated manually, or
more conveniently by copying an existing OpenFOAM tutorial and removing unnec-
essary files. The resulting case directory should, at a minimum, contain the follwing
sub-directories and files (based on OpenFOAM 5.x):

• case/ ← Case directory, can have any name

– 0/ ← Directory for initial conditions. Can be empty!

– constant/

* Polymesh/ ← Delete initially to remove remnants of previous grid.

* blockMeshDict ← Delete if it exists

* thermoPhysicalProperties ← Keep, but not essential

* turbulenceProperties ← Keep, but not essential

– system/

* controlDict ← Keep!

* fVSolutions ← Keep!

* fVSchemes ← Keep!

Once the above directory structure exists, the job.lua file should be placed in
the case/ directory and foamMesh should be executed from this directory.

3.2 Global Settings

The following optional global settings can be used to adjust the type of mesh and
outputs generated by foamMesh. It is suggested to set these global settings close to
the start of the job.lua file for added clarity.

5

6 Chapter 3. Converting Structured Grids to FoamBlocks

Variable Default Options and Definition
turbulence_model none none/S-A/k-epsilon - creates initial condi-

tions in 0 temp for corresponding turbu-
lence model

axisymmetric false true/false - flag to determine if planar or
axi-symmetric 2D grid is generated.

dtheta 0.01 rad Set angle between front and rear face for
axi-symmetric simulations.

dz 0.2m Sets thickness (in z-direction) of domain for
planar 2-D simulations.

The last three entries are only used when passing a 2D grid object to foamBlock.
Based on these settings, foamMesh will automatically create the appropriate 3D mesh,
one cell thick in the z-direction (or θ-direction for axi-symmetric) to suit 2D simula-
tions in OpenFOAM.

3.3 FoamBlock constructor

When using foamMesh to generate grids for OpenFOAM, the grid generation starts
by following the same approach as outlined in the Eilmer 4 Geometry Package docu-
mentation [1].

1. Geometry components are defined, such as points and paths.

2. Paths are joined to make parametric surfaces (or volumes for 3D).

3. Structured grid objects are created from the surfaces (or volumes in 3D).
At this stage clustering of grids is performed.

To create a grid suitable for OpenFOAM the next step involves assigning labels to the
faces of these blocks that will be outwards facing in the final combined grid. Effec-
tively these are the faces where boundary conditions need to be prescribed. This is
done using the FoamBlock constructor. The code to combine the two grid objects
grid_left and grid_right, as shown in Fig. 3.1, would be:

1 blk_left = FoamBlock:new{grid=grid_left,
2 bndry_labels={south=’’w-00’’, north=’’w-01’’, west=’’i-00’’}}
3 blk_right = FoamBlock:new{grid=grid_left,
4 bndry_labels={south=’’w-00’’, north=’’w-01’’, east=’’o-00’’}}

Here, the FoamBlock constructor takes the respective grids and then uses the
bndry_labels table to assign labels to the outwards facing edges, with names north,
south, west, and east respectively. For 2D grids foamMesh automatically assigns
labels to the top and bottom faces. However, for 3D simulations labels also have to
be specified for these faces.

3.4 OpenFOAM boundary conditions

At the most fundamental level OpenFOAM differentiates between the following types
of boundary conditions: wall corresponding to solid surfaces, empty and wedge

3.4. OpenFOAM boundary conditions 7

Figure 3.1: Combining grid elements to form a combined mesh. Note, boundary
conditions are only defined for boundaries that will be outwards facing after mesh
has been combined.

used as the front and rear faces in 2-D planar and 2-D axi-symmetric simulations,
symmetry for symmetry, and patch for everything else. Getting these types right is
essential in order to get a correct simulation. Incorrect setting of wall or patch may
result in turbulence models incorrectly calculating wall distance, which may result in
low or excessive dissipation of turbulence properties.

foamMesh uses a number of standard labels to assign boundary conditions to
the different faces. By re-using the same label, edges (or faces in 3D) from different
blocks can be assigned to the same boundary condition. The boundary labels are
constructed from a prefix (e.g. w-), which is appended by a two digit number. The
available boundary labels and the corresponding boundary type that are assigned
automatically, are:

Label Type Description and default settings for boundary condi-
tions.

w-00 ... w-NN wall Walls, will be initialised with no-slip wall and appro-
priate wall functions

i-00 ... i-NN patch Inlets, will be initialised as inlet with prescribed veloc-
ity and zeroGradient for pressure

o-00 ... o-NN patch Outlets, will be initialised as outlets with zeroGradi-
ent for velocity and prescribed pressure

s-00 ... s-NN symmetry Symmetry planes, will be initialised as symmetry
boundary conditions

p-00 ... p-NN patch Generic patch, will be left blank
n/a empty Empty, automatically assigned to front and rear faces

for planar 2D geometries
n/a wedge Wedge, automatically assigned to front and rear faced

for axi-symmetric 2D geometries
If required, the boundary types and labels can be modified after mesh generation, by

8 Chapter 3. Converting Structured Grids to FoamBlocks

editing /case/constant/polyMesh/boundaries.
When executing foamMesh, a new directory 0_temp/ is created. This contains

the template boundary conditions. It is up to the user to copy these across to the 0/
directory and to adjust the boundary conditions to have the correct settings.

3.5 Building the grid

The actual OpenFOAM grid is built by executing the command

foamMesh --job=job from within the case/ directory.

Once the command has been executed the on-screen display will report the progress
of the mesh joining process before reporting on the different tasks required to com-
bine the individual blocks into a single OpenFOAM mesh. At the final stage checkMesh
is executed to assess the quality of the resulting mesh. The checkMesh report will
also provide a list containing the number of faces and cooresponding patch names
that have been assigned for the mesh. This list should be in agreement with the labels
you have assigned to the faces of your foamBlocks. If there are faces with the label
unassigned, this is an indicator that some outwards facing labels were not supplied
in the respective bndry_labels table. Boundary conditions defined in /0 need to
include all these ouwards facing patches.

Before viewing the mesh, e.g. in paraFoam, it is essential that the initial fields and
boundary conditions corresponding to actual boundary labels are set in 0/. If this is
not done, paraFoam will crash when loading the mesh for visualisation.

3.6 Some debugging help

As the code gets exercised, we have been able to identify reoccurring errors or omis-
sions that cause the grid construction to crash. As much as possible we have tried to
add self-explanatory error messages to assist you in correcting the code. Below is a
summary of these error messages and some suggestions on how to resolve them.

Error Message Cause and Suggested action
Mesh fails to build Check that OpenFOAM has been loaded.
Number of blocks defined:
0

No foam blocks have been defined in your lua script.
Check that you have defined at least one block.

Oops, seem to already
have a cell on left

You are trying to join two identical grids, or you are
trying to join two grids to one edge of an exiting grid.

bad argument # 1 to ‘pairs’
(table expected got nil)

One of your foamBlocks is missing the
bndry_labels={} entry.

WARNING after
checkMesh about unas-
signed boundaries

This means you have an outwards facing boundary
that has not been given a label. The table shows block
and corresponding direction. The resulting mesh can
still be viewed in paraFoam.

4

Examples

The following is a brief list of examples of how foamMesh can be employed to use
the syntax from the Eilmer4 geometry package to generate corresponding meshes
and simulations in OpenFOAM[3]. In the examples we will largely skip the grid
generation part, but more information is available in the Geometry User-Guide [1].
The examples have been tested with OpenFOAM 4.x and 5.x, older/different versions
some adjustments, in particular when setting boundary conditions is needed.

4.1 2D (planar) examples

9

10 Chapter 4. Examples

4.1.1 Lid-driven cavity flow

An example of a clipped cavity, as found in Sections 2.1.9 and 2.1.10 of the Open-
FOAM manual [4]. You will see that the geometry generation follows the same ap-
proach as would be used for an Eilmer simulation, albeit the section configuring the
simulation is skipped.

After defining the points and lines, these are used to construct parametric surfaces
in the form of CoonsPatch. Next, structured grids are added to allow the surfaces
to be discretised. In the final step the FoamBlock constructur is used to assign the
appropriate boundary conditions to the final grid. Done!

To build the mesh one would then run:
foamMesh --job=cavity-clipped --verbosity=2

adding the --verbosity=2 option adds some additional outputs, which can be

useful for debugging.

1 -- An example of a clipped cavity, as found in
2 -- Sections 2.1.9 and 2.1.10 of the OpenFOAM manual.
3 --
4 -- BC=w-01
5 -- f-----g-----h
6 -- | b3 | b4 |
7 -- BC=w-00 | | | BC=w-00
8 -- c-----d-----e
9 -- | b0 |

10 -- | |
11 -- a-----b
12 -- BC=w-00
13 --
14 -- Authors: IJ and RJG
15 -- Date: 2017-06-29
16
17 -- Global settings go first
18 axisymmetric = false
19 turbulence_model = "S-A" -- other option is: "k-epsilon"
20
21 -- Corners of blocks
22 a = Vector3:new{x=0.0, y=0.0}
23 b = Vector3:new{x=0.6, y=0.0}
24 c = Vector3:new{x=0.0, y=0.4}
25 d = Vector3:new{x=0.6, y=0.4}
26 e = Vector3:new{x=1.0, y=0.4}
27 f = Vector3:new{x=0.0, y=1.0}
28 g = Vector3:new{x=0.6, y=1.0}
29 h = Vector3:new{x=1.0, y=1.0}
30
31 -- Lines connecting blocks.
32 ab = Line:new{p0=a, p1=b} -- horizontal line (lowest level)
33 cd = Line:new{p0=c, p1=d}; de = Line:new{p0=d, p1=e} -- horizontal lines (mid level)
34 fg = Line:new{p0=f, p1=g}; gh = Line:new{p0=g, p1=h} -- horizontal lines (top level)
35 ac = Line:new{p0=a, p1=c}; cf = Line:new{p0=c, p1=f} -- vertical lines (left)
36 bd = Line:new{p0=b, p1=d}; dg = Line:new{p0=d, p1=g} -- vertical lines (mid)
37 eh = Line:new{p0=e, p1=h} -- vertical line (right)
38
39 -- Define patches (which are parametric surfaces, no discretisation at this point.)

4.1. 2D (planar) examples 11

40 quad0 = CoonsPatch:new{north=cd, east=bd, south=ab, west=ac}
41 quad1 = CoonsPatch:new{north=fg, east=dg, south=cd, west=cf}
42 quad2 = CoonsPatch:new{north=gh, east=eh, south=de, west=dg}
43
44 -- Define grids. Here’s where discretisation is added to a Patch
45 nx0cells = 12; nx1cells = 8;
46 ny0cells = 8; ny1cells = 12
47 grid0 = StructuredGrid:new{psurface=quad0, niv=nx0cells+1, njv=ny0cells+1}
48 grid1 = StructuredGrid:new{psurface=quad1, niv=nx0cells+1, njv=ny1cells+1}
49 grid2 = StructuredGrid:new{psurface=quad2, niv=nx1cells+1, njv=ny1cells+1}
50
51 -- Lastly, define the blocks.
52 blk0 = FoamBlock:new{grid=grid0,
53 bndry_labels={west="w-01", south="w-01", east="w-01"}}
54 blk1 = FoamBlock:new{grid=grid1,
55 bndry_labels={west="w-01", north="w-00"}}
56 blk2 = FoamBlock:new{grid=grid2,
57 bndry_labels={south="w-01", east="w-01", north="w-00"}}

Figure 4.1: Mesh generated for clipped cavity.

12 Chapter 4. Examples

4.1.2 Axi-symmetric Convergent-Divergent Nozzle

An example of an axi-symmetric convergent-divergent nozzle.
Note, due to current limitations of foamMesh, it is not possible to generate a multi-

block mesh with points along the x-axis. A current work-around is to define the
points along the centreline to have a very small off-set in the y-direction. For example,
1 × 10−6 m (or appropriately lower for smaller geometries) and to define the inward
facing edge of the fluid domain as a slip wall.

For some axi-symmetric geometries, checkMesh will identify that the front and
rear wedge faces are not planar. This is caused by the precision employed by Open-
FOAM. To eliminate this error, edit /system/controlDict and increase writePrecision.

1 -- Mesh for optimisation of convergent-divergent nozzle
2 -- Author: Ingo Jahn
3 -- last modified: 08/04/2017
4
5 axisymmetric = true
6 --###
7 --# Create Geometry ###
8 --###
9 -- +-----------+--\ rt /--+--------+ R

10 -- | | \-+---/ | |
11 -- | A0 | A1 | A2 | A3 |
12 -- | | | | |
13 -- +-----------+-----+-------+--------+ r=0
14 --
15 --
16 -- a0---------a1--\ /--a3------a4
17 -- | | \-a2---/ | |
18 -- | A0 | A1 | A2 | A3 | nr
19 -- | | | | |
20 -- b0---------b1----b2--------b3------b4
21 -- x0 x1 x2 x3 x4
22 -- n0 n1 n3 n3
23 --
24 -- Bezier Curve Control Points (define as fractions of corner points)
25 --
26 -- a1---c0 (fixed at R)
27 --
28 -- c1 c1_rf (free to move in r and x)
29 --
30 -- c2---a2 (fixed at rt)
31 -- c0_xf c1_xf c2_xf
32
33 -- ###################
34 -- Input variables to parmetrically define nozzle
35 -- ###################
36 -- Geometric parameters
37 x0 = -0.2
38 x1 = -0.10
39 x3 = 0.1
40 x4 = 0.2
41 R = 0.1
42 Rc = 1e-6
43 x2 = 0.0 -- = (1-OP[0])*x1 + OP[0]*x3

4.1. 2D (planar) examples 13

44 Rt = 0.05 -- = (1-OP[1])*Rc + OP[1]*R
45 -- Bezier Curve Control points for a1a2 and a2a3
46 c0_xf = 0.2 --= OP[2]
47 c1_xf = 0.5 --= OP[3]
48 c1_rf = 0.5 --= OP[4]
49 c2_xf = 0.8 --= OP[5]
50 -- Bezier Curve Control points for a2a3
51 d0_xf = 0.2 --= OP[6]
52 d1_xf = 0.5 --= OP[7]
53 d1_rf = 0.5 --= OP[8]
54 d2_xf = 0.8 --= OP[9]
55
56 -- Define fixed points
57 a0 = Vector3:new{x=x0, y=R}
58 a1 = Vector3:new{x=x1, y=R}
59 a2 = Vector3:new{x=x2, y=Rt}
60 a3 = Vector3:new{x=x3, y=R}
61 a4 = Vector3:new{x=x4, y=R}
62
63 b0 = Vector3:new{x=x0, y=Rc}
64 b1 = Vector3:new{x=x1, y=Rc}
65 b2 = Vector3:new{x=x2, y=Rc}
66 b3 = Vector3:new{x=x3, y=Rc}
67 b4 = Vector3:new{x=x4, y=Rc}
68
69 -- define Bezier control points
70 c0 = Vector3:new{x=((1-c0_xf)*x1+c0_xf*x2), y=R}
71 c1 = Vector3:new{x=((1-c1_xf)*x1+c1_xf*x2), y=((1-c1_rf)*Rt+c1_rf*R)}
72 c2 = Vector3:new{x=((1-c2_xf)*x1+c2_xf*x2), y=Rt}
73 d0 = Vector3:new{x=((1-d0_xf)*x2+d0_xf*x3), y=Rt}
74 d1 = Vector3:new{x=((1-d1_xf)*x2+d1_xf*x3), y=((1-d1_rf)*Rt+c1_rf*R)}
75 d2 = Vector3:new{x=((1-d2_xf)*x2+d2_xf*x3), y=R}
76
77 -- create Bezier Curves
78 a1a2 = Bezier:new{points={a1,c0,c1,c2,a2}}
79 a2a3 = Bezier:new{points={a2,d0,d1,d2,a3}}
80
81 -- Define patch (which are parametric surfaces, no discretisation at this point.)
82 surf = {}
83 surf[0] = CoonsPatch:new{p00=b0, p10=b1, p11=a1, p01=a0}
84 surf[1] = CoonsPatch:new{north=a1a2, south=Line:new{p0=b1, p1=b2},
85 west=Line:new{p0=b1, p1=a1}, east=Line:new{p0=b2, p1=a2} }
86 surf[2] = CoonsPatch:new{north=a2a3, south=Line:new{p0=b2, p1=b3},
87 west=Line:new{p0=b2, p1=a2}, east=Line:new{p0=b3, p1=a3} }
88 surf[3] = CoonsPatch:new{p00=b3, p10=b4, p11=a4, p01=a3}
89
90 -- a0---------a1--\ /--a3------a4
91 -- | | \-a2---/ | |
92 -- | A0 | A1 | A2 | A3 | nr
93 -- | | | | |
94 -- b0---------b1----b2--------b3------b4
95 -- x0 x1 x2 x3 x4
96 -- n0 n1 n3 n3
97
98 -- Define 2D grid on patch, clustering can be added if desired
99 n0=20; n1=30; n2=30; n3=20

100 nr=20

14 Chapter 4. Examples

101
102 cfr = RobertsFunction:new{end0=false, end1=true, beta=1.05}
103 cf0 = RobertsFunction:new{end0=false, end1=true, beta=1.12}
104 cf1 = RobertsFunction:new{end0=true, end1=false, beta=1.12}
105
106 --cfr = None --RobertsFunction:new{end0=true, end1=true, beta=1.05}
107 grid = {}
108 grid[0] = StructuredGrid:new{psurface=surf[0], niv=n0, njv=nr,
109 cfList={east=cfr,west=cfr,north=cf0,south=cf0} }
110 grid[1] = StructuredGrid:new{psurface=surf[1], niv=n1, njv=nr,
111 cfList={east=cfr,west=cfr} }
112 grid[2] = StructuredGrid:new{psurface=surf[2], niv=n2, njv=nr,
113 cfList={east=cfr,west=cfr} }
114 grid[3] = StructuredGrid:new{psurface=surf[3], niv=n3, njv=nr,
115 cfList={east=cfr,west=cfr,north=cf1,south=cf1} }
116
117 -- Define OpenFoam block (a "grid" with labels)
118 block = {}
119 block[0] = FoamBlock:new{grid=grid[0],
120 bndry_labels={west="i-00", north="w-00", south="s-00"}}
121 block[1] = FoamBlock:new{grid=grid[1],
122 bndry_labels={north="w-00", south="s-00"}}
123 block[2] = FoamBlock:new{grid=grid[2],
124 bndry_labels={north="w-00", south="s-00"}}
125 block[3] = FoamBlock:new{grid=grid[3],
126 bndry_labels={north="w-00", south="s-00", east="o-00"}}

After ruuning foamMesh --job=con-div-nozzle you should get the mesh
shown in Fig. 4.2. In the current form this shape is not very exciting, but with ap-
propriate optimisation tools that parametrically adjust the nozzle shape, this can be
turned into an optimal Mach 2.4 nozzle as shown in Fig. 4.3 (Courtesy of Jianhui Qi).

Figure 4.2: Mesh generated for axi-symmetric nozzle. Note the wedge shaped do-
main, the angle ∆θ has been amplified for clarity.

4.1. 2D (planar) examples 15

a2

x

d1
a0

b0 b1b1 b3

a0

BLK0 BLK1 BLK2

c0
c1c2

(b2)

a1

O

a3
d0

y

d2
d3 d4 d5

(a) Parameterised nozzle geometry with additional Bezier curve
control points.

Wall

Inlet

Symmetry

Outlet

(b) Mesh and geometry of nozzle after parametric refinement.

(c) Streamlines and contours of Mach number showing
unifom and parallel flow.

Figure 4.3: Optimised nozzle shape obtained by linking geometry definition to op-
timiser, that automatically adjusts Bezier curve control points to achieve optimum
performance. (Courtesy of Jianhui Qi)

16 Chapter 4. Examples

4.2 3D examples

The time required to create a 3D grid grows exponentially compared to a 2D grid.
This is largely due to increased complexity, e.g. a block is suddenly defined by twelve
edges, rather than just four as in the 2D case. Before attempting to build a 3D grid,
make sure you have one or more debugging cubes (available in appendix B). They are
an essential tool when trying to work out how blocks connect in 3D. Also, sketch your
domain and consider different strategies on how to assemble your grid. For example
you might be able to build a 2D grid first and then extrude this to three dimensions...
Be warned, even experienced meshers can sink hours into a simple 3D grid!

4.2. 3D examples 17

4.2.1 NACA00xx aerofoil 3D

For this example we will make use of the LuaFnPath capability to create a script that
will automatically create a high quality mesh for a NACA00xx series aerofoil. Here
xx can be any two digit number that defines the wing thickness. To create the grid we
first make the simplification that the aerofoil has a sharp trailing edge. This allows
simpler grid generation using a C-mesh as we don’t have to include treatment of the
trailing edge. To generate the 3-D grid for the half wing we start by developing a 2-D
grid that sits around an aerofoil cross-section. Using the C-meshing approach, we can
mesh the aerofoil by wrapping multiple blocks around the aerofoil, so that the south
edge always sits on the aerofoil surface.

To create a nice grid generation file, we start by adding a simple sketch that shows
how we arrange our blocks and by defining the parametric settings that define the
thickness of the NACA aerofoil, the chord length, the span, the distance to the far-
field boundary, and a fraction parameter that sets the position of nodes a1 and a3.

1 -- Script for the generation a NACA00xx aerofoil mesh in 3-D.
2 -- This example uses a mix of advanced mesh generation tools,
3 -- so don’t be too alarmed if it initially looks intimidating.
4 --
5 -- Make sure you attempt the other meshing tutorials first.
6 --
7 -- Author: Ingo Jahn
8 -- last modified: 18/05/2018
9

10 --###
11 --# Create Geometry ###
12 --###
13 --
14 -- ------f3--------N-------t0---N--t1
15 -- / | | |
16 -- N | blk1 | blk0 |
17 -- / blk2 -a3----\ / E
18 -- / /XXXXXXXX--------- / S |
19 -- f2-------a2XXX NACA FOIL XXXXa0--------a4
20 -- \ \XXXXXXXX--------- \ N |
21 -- \ blk3 -a1----/ \ E
22 -- N | blk4 | blk5 |
23 -- \ | | |
24 -- ------f1--------N-------b0---S--b1
25
26
27 -- ###################
28 -- Input variables to parmetrically define the mesh
29 -- ###################
30 -- Geometric parameters
31 turbulenceModel = ’S-A’
32 thickness = 0.24 -- thickness (in percent) of NACA00XX aerofoil
33 c = 0.2 -- (m) chord length of the wing
34 S = 1.0 -- (m) span of the wing
35 L = 3*c -- (m) distance to far-field boundary
36 frac = 0.4 -- fraction to define position of point a1 and a3 along foil

18 Chapter 4. Examples

Next we have to define a line that describes the aerfoil surface and the far-field
boundary around the front of the wing. As NACA profiles are described by a poly-
nominal, this is done most easily using the luaFnPath object. This is achieved by
first defining a function foil(t), which can be evaluated to return the x and y loca-
tions along the wing outline. To ensure the line direction suits our blocking structure
we start on the lower side of the aerofoil and go in the clockwise direction.

To get the far-field boundary we create another function, called farField(t).
This approach allows us to construct the grid in such a way that all grid lines de-
part from the wing surface in a perpendicular direction. To achieve this we first find
a point along the wing surface by evaluating the foil(t) function. Next we nu-
merically differentiate the function (dy

dx
= y(t+∆t)−y(t−∆t)

x(t+∆t)−x(t−∆t)
) to obtain the local gradient.

Once we know the gradient, we can use this to calculate the local surface normal vec-
tor, which is the direction we want grid-lines to point. Finally, we use this normal
vector to create the corresponding point along the far-field boundary. As trans-finite-
interpolation creates straight grid lines between two opposing lines (as long as the
other two lines are straight) this will create a very nice grid.

Once both functions are defined, we can create the luaFnPaths and also nor-
malise the lines, so that an equal grid-spacing with respect to arc length along the
line is generated.

1 -- ###################
2 -- Define Lines that create block boundaries
3 -- ###################
4
5 -- we use a function to decribe the outline of the aerofoil
6 function foil(t)
7 -- function that return x/y positon along profiles as a function
8 -- of paramter t, which start at t=0 at bottom rear, t=0.5 at leading
9 -- edge and and finishes as t=1 at top rear.

10 -- calculate y from NACA polynominal with last value adjusted to close trailing edge.
11 LE=0.005
12 if t < 0.5-LE then -- do lower edge
13 x = 1.-2*t
14 y = -5*thickness * (0.2969*xˆ0.5 - 0.1260*x - 0.3516*xˆ2 + 0.2843*xˆ3 - 0.1036*xˆ4)
15 elseif t > 0.5+LE then -- do upper edge
16 x = (t-0.5)*2
17 y = 5*thickness * (0.2969*xˆ0.5 - 0.1260*x - 0.3516*xˆ2 + 0.2843*xˆ3 - 0.1036*xˆ4)
18 else
19 -- to get good clustering at the leading edge we can approximate the tip by a circle
20 r = 1.1019 *thicknessˆ2
21 xL = 1.-2*(0.5-LE)
22 yL = -5*thickness * (0.2969*xLˆ0.5 - 0.1260*xL - 0.3516*xLˆ2 + 0.2843*xLˆ3 - 0.1036*xLˆ4)
23 theta_start = math.atan(yL/(r-xL))
24 t = (t-(0.5-LE))/LE -- re-dscretise t to suit circle
25 y = r * math.sin(theta_start + t* math.abs(theta_start))
26 x = r *(1 - math.cos(theta_start + t*math.abs(theta_start)))
27 end
28 return {x=x, y=y}
29 end
30 --and finally we can create a paths and normalise them with respect to path length
31 foil_path = LuaFnPath:new{luaFnName="foil"}
32 foil_path_norm = ArcLengthParameterizedPath:new{underlying_path=foil_path}
33

4.2. 3D examples 19

34 -- to get the far-field bounding boundary, we are going to do some construction
35 function farField(t)
36 -- find a position along the wing surface
37 --F = foil(t) -- we can do this by simply evaluating the foil() function
38 F = foil_path_norm(t) -- here F is a table with entries F.x and F.y
39 --print("F,",F.x,F.y)
40 -- find the local gradient by numerical differentiation
41 delta_t = 0.001
42 if t < delta_t then
43 tm = t; tp = t+delta_t
44 elseif t > 1-delta_t then
45 tm = t-delta_t; tp = t
46 else
47 tm = t-delta_t; tp = t+delta_t
48 end
49 Fp = foil_path_norm(tp)
50 Fm = foil_path_norm(tm)
51 delta_x = Fp.x-Fm.x
52 delta_y = Fp.y-Fm.y
53 -- for best mesh quality we want grid lines to be perpendicular to the
54 -- wall. This can be achieved by placing points on the farField line
55 -- along a line perpendicular to the surface. Lets find the unit vector
56 -- for this perpendicular line.
57 X = -delta_y; Y = delta_x
58 X = X / (delta_xˆ2 + delta_yˆ2)ˆ0.5; Y = Y / (delta_xˆ2 + delta_yˆ2)ˆ0.5;
59 -- Now find the corresponding far field point by vector addition.
60 xval = F.x + X*L
61 yval = F.y + Y*L
62 return {x=xval, y=yval}
63 end
64 -- and to cretae the corresponding path
65 farField_path_norm = LuaFnPath:new{luaFnName="farField"}

To allow generation of the different surfaces we required for a 2-D grid we first
directly evaluate the lines to create points that sit on the lines (e.g. b0, a0, f1, ...) and
sub-divide the two lines using the SubRangedPath function. The remaining points
for the downstream blocks are created by relative construction. Using the lines and
points we can create the CoonsPatches required for the 2-D grid.

1 -- Having these two paths defined, we can subivide these to create lines used
2 -- for mesh construction and also to find the points along the lines.
3 b0 = farField_path_norm(0.) -- we can simply evaluate the path to get coordinates
4 f1 = farField_path_norm(frac)
5 f2 = farField_path_norm(0.5)
6 f3 = farField_path_norm(1.-frac)
7 t0 = farField_path_norm(1.)
8
9 a0 = foil_path_norm(0.)

10 a1 = foil_path_norm(frac)
11 a2 = foil_path_norm(0.5)
12 a3 = foil_path_norm(1.-frac)
13
14 b0f1 = SubRangedPath:new{underlying_path=farField_path_norm, t0=0., t1=frac}
15 f1f2 = SubRangedPath:new{underlying_path=farField_path_norm, t0=frac, t1=0.5}
16 f2f3 = SubRangedPath:new{underlying_path=farField_path_norm, t0=0.5, t1=1.-frac}

20 Chapter 4. Examples

17 f3t0 = SubRangedPath:new{underlying_path=farField_path_norm, t0=1.-frac, t1=1.}
18 a0a1 = SubRangedPath:new{underlying_path=foil_path_norm, t0=0., t1=frac}
19 a1a2 = SubRangedPath:new{underlying_path=foil_path_norm, t0=frac, t1=0.5}
20 a2a3 = SubRangedPath:new{underlying_path=foil_path_norm, t0=0.5, t1=1.-frac}
21 a3a0 = SubRangedPath:new{underlying_path=foil_path_norm, t0=1.-frac, t1=1.}
22
23 -- the remaining points we can define relative to the others
24 t1 = Vector3:new{x=t0.x+L, y=t0.y}
25 b1 = Vector3:new{x=b0.x+L, y=b0.y}
26 a4 = Vector3:new{x=a0.x+L, y=a0.y}
27
28 -- Define patch (which are parametric surfaces, no discretisation at this point.)
29 surf = {}
30 surf[0] = CoonsPatch:new{p00=a0, p10=a4, p11=t1, p01=t0}
31 surf[1] = CoonsPatch:new{north=f3t0, south=a3a0,
32 west=Line:new{p0=a3, p1=f3}, east=Line:new{p0=a0, p1=t0} }
33 surf[2] = CoonsPatch:new{north=f2f3, south=a2a3,
34 west=Line:new{p0=a2, p1=f2}, east=Line:new{p0=a3, p1=f3} }
35 surf[3] = CoonsPatch:new{north=f1f2, south=a1a2,
36 west=Line:new{p0=a1, p1=f1}, east=Line:new{p0=a2, p1=f2} }
37 surf[4] = CoonsPatch:new{north=b0f1, south=a0a1,
38 west=Line:new{p0=a0, p1=b0}, east=Line:new{p0=a1, p1=f1} }
39 surf[5] = CoonsPatch:new{p00=b0, p10=b1, p11=a4, p01=a0}
40
41 -- We could stop here if we were to build a 2-D mesh. But for a 3-D mesh
42 -- an extra surface is needed to go on the end of the wing.
43 -- Note all mesh sections beyond the wing tips have numbers starting with 1x
44 surf[16] = AOPatch:new{north=a2a3, south=ReversedPath:new{underlying_path=a0a1},
45 west=a1a2, east=ReversedPath:new{underlying_path=a3a0} }

If we wanted to run a 2-D simulation we could proceed from here to define grid
objects and then FoamBlocks. However, for a 3-D grid we need to define a further
surface, surf[16], which corresponds to the wing tip. Creation of the 3-D grid is
conducted in two steps using the SweptSurfaceVolume function. First we extrude
surfaces 0 to 5 using a vector with length S in the z-direction. This vector must co-
incide with the respective p00 corner for each surface. Next for the volumes that sit
beyond the wing tip (10 to 16, we repeat the same process, but we use two vectors
going to S and S + L respectively.

1 -- To create the 3-D mesh we will extrude the surfaces along a vector.
2 -- This vector will go from the respective p00 points and extrude in the
3 -- +z direction.
4 -- Volumes that sit around the wing
5 volume = {}
6 volume[0] = SweptSurfaceVolume:new{face0123=surf[0], edge04=Line:new{p0=a0,
7 p1=Vector3:new{x=a0.x, y=a0.y, z=a0.z+S}} }
8 volume[1] = SweptSurfaceVolume:new{face0123=surf[1], edge04=Line:new{p0=a3,
9 p1=Vector3:new{x=a3.x, y=a3.y, z=a3.z+S}} }

10 volume[2] = SweptSurfaceVolume:new{face0123=surf[2], edge04=Line:new{p0=a2,
11 p1=Vector3:new{x=a2.x, y=a2.y, z=a2.z+S}} }
12 volume[3] = SweptSurfaceVolume:new{face0123=surf[3], edge04=Line:new{p0=a1,
13 p1=Vector3:new{x=a1.x, y=a1.y, z=a1.z+S}} }
14 volume[4] = SweptSurfaceVolume:new{face0123=surf[4], edge04=Line:new{p0=a0,
15 p1=Vector3:new{x=a0.x, y=a0.y, z=a0.z+S}} }
16 volume[5] = SweptSurfaceVolume:new{face0123=surf[5], edge04=Line:new{p0=b0,

4.2. 3D examples 21

17 p1=Vector3:new{x=b0.x, y=b0.y, z=b0.z+S}} }
18
19 -- Volumes that sit beyond wing tip. Here we set the edge04 to start at y = L
20 volume[10] = SweptSurfaceVolume:new{face0123=surf[0],
21 edge04=Line:new{p0=Vector3:new{x=a0.x, y=a0.y, z=a0.z+S},
22 p1=Vector3:new{x=a0.x, y=a0.y, z=a0.z+S+L}} }
23 volume[11] = SweptSurfaceVolume:new{face0123=surf[1],
24 edge04=Line:new{p0=Vector3:new{x=a3.x, y=a3.y, z=a3.z+S},
25 p1=Vector3:new{x=a3.x, y=a3.y, z=a3.z+S+L}} }
26 volume[12] = SweptSurfaceVolume:new{face0123=surf[2],
27 edge04=Line:new{p0=Vector3:new{x=a2.x, y=a2.y, z=a2.z+S},
28 p1=Vector3:new{x=a2.x, y=a2.y, z=a2.z+S+L}} }
29 volume[13] = SweptSurfaceVolume:new{face0123=surf[3],
30 edge04=Line:new{p0=Vector3:new{x=a1.x, y=a1.y, z=a1.z+S},
31 p1=Vector3:new{x=a1.x, y=a1.y, z=a1.z+S+L}} }
32 volume[14] = SweptSurfaceVolume:new{face0123=surf[4],
33 edge04=Line:new{p0=Vector3:new{x=a0.x, y=a0.y, z=a0.z+S},
34 p1=Vector3:new{x=a0.x, y=a0.y, z=a0.z+S+L}} }
35 volume[15] = SweptSurfaceVolume:new{face0123=surf[5],
36 edge04=Line:new{p0=Vector3:new{x=b0.x, y=b0.y, z=b0.z+S},
37 p1=Vector3:new{x=b0.x, y=b0.y, z=b0.z+S+L}} }
38 volume[16] = SweptSurfaceVolume:new{face0123=surf[16],
39 edge04=Line:new{p0=Vector3:new{x=a1.x, y=a1.y, z=a1.z+S},
40 p1=Vector3:new{x=a1.x, y=a1.y, z=a1.z+S+L}} }

At this stage we have defined the volume of the entire fluid domain. To finalise
the grid we need to define the number of cells for each volume, and also apply some
clustering. This is identical to the 2-D case, albeit the parametric volume is passed
to pvolume, there is a nkv that needs to be defined, and there are now twelve edges
that can be clustered.

1
2 -- ------f3--------N-------t0---N--t1
3 -- / | | |
4 -- N | blk1 | blk0 | ny0
5 -- / blk2 -a3----\ / E
6 -- / /XXXXXXXX--------- / S |
7 -- f2-------a2XXX NACA FOIL XXXXa0--------a4
8 -- \ \XXXXXXXX--------- \ N |
9 -- \ blk3 -a1----/ \ E

10 -- N | blk4 | blk5 | ny0
11 -- nx0 \ | | |
12 -- ------f1--------N-------b0---S--b1
13 -- nx0 nx1
14 --
15 -- Define number of cells in each block
16 nx0=61; nx1=30
17 ny0=40
18 nz0=50; nz1=20
19
20 -- set up refining function
21 N_refine = 1
22 nx0 = math.ceil(N_refine*nx0); nx1 = math.ceil(N_refine*nx1)
23 ny0 = math.ceil(N_refine*ny0)
24 nz0 = math.ceil(N_refine*nz0); nz1 = math.ceil(N_refine*nz1)

22 Chapter 4. Examples

25
26 -- Define Custer Functions.
27 cfr0 = RobertsFunction:new{end0=true, end1=false, beta=1.02}
28 cfr1 = RobertsFunction:new{end0=false, end1=true, beta=1.02}
29 cfz0 = RobertsFunction:new{end0=false, end1=true, beta=1.08} -- z-direction on wing
30 cfz1 = RobertsFunction:new{end0=true, end1=false, beta=1.05} -- z-direction in far-field
31 cfx0 = RobertsFunction:new{end0=true, end1=false, beta=1.03}
32
33 -- Now we can define the grid!!! (Hope you have debugging cube)
34 -- To get an optimum grid you should add some clustering in the wing tangential direction too!
35 grid = {}
36 grid[0] = StructuredGrid:new{pvolume=volume[0], niv=nx1, njv=ny0, nkv = nz0,
37 cfList={edge04=cfz0, edge15=cfz0, edge26=cfz0, edge37=cfz0,
38 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0,
39 edge01=cfx0, edge32=cfx0, edge76=cfx0, edge45=cfx0} }
40 grid[1] = StructuredGrid:new{pvolume=volume[1], niv=nx0, njv=ny0, nkv = nz0,
41 cfList={edge04=cfz0, edge15=cfz0, edge26=cfz0, edge37=cfz0,
42 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0} }
43 grid[2] = StructuredGrid:new{pvolume=volume[2], niv=nx0, njv=ny0, nkv = nz0,
44 cfList={edge04=cfz0, edge15=cfz0, edge26=cfz0, edge37=cfz0,
45 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0} }
46 grid[3] = StructuredGrid:new{pvolume=volume[3], niv=nx0, njv=ny0, nkv = nz0,
47 cfList={edge04=cfz0, edge15=cfz0, edge26=cfz0, edge37=cfz0,
48 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0} }
49 grid[4] = StructuredGrid:new{pvolume=volume[4], niv=nx0, njv=ny0, nkv = nz0,
50 cfList={edge04=cfz0, edge15=cfz0, edge26=cfz0, edge37=cfz0,
51 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0} }
52 grid[5] = StructuredGrid:new{pvolume=volume[5], niv=nx1, njv=ny0, nkv = nz0,
53 cfList={edge04=cfz0, edge15=cfz0, edge26=cfz0, edge37=cfz0,
54 edge56=cfr1, edge12=cfr1, edge03=cfr1, edge47=cfr1,
55 edge01=cfx0, edge32=cfx0, edge76=cfx0, edge45=cfx0} }
56 grid[10] = StructuredGrid:new{pvolume=volume[10], niv=nx1, njv=ny0, nkv = nz1,
57 cfList={edge04=cfz1, edge15=cfz1, edge26=cfz1, edge37=cfz1,
58 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0,
59 edge01=cfx0, edge32=cfx0, edge76=cfx0, edge45=cfx0} }
60 grid[11] = StructuredGrid:new{pvolume=volume[11], niv=nx0, njv=ny0, nkv = nz1,
61 cfList={edge04=cfz1, edge15=cfz1, edge26=cfz1, edge37=cfz1,
62 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0} }
63 grid[12] = StructuredGrid:new{pvolume=volume[12], niv=nx0, njv=ny0, nkv = nz1,
64 cfList={edge04=cfz1, edge15=cfz1, edge26=cfz1, edge37=cfz1,
65 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0} }
66 grid[13] = StructuredGrid:new{pvolume=volume[13], niv=nx0, njv=ny0, nkv = nz1,
67 cfList={edge04=cfz1, edge15=cfz1, edge26=cfz1, edge37=cfz1,
68 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0} }
69 grid[14] = StructuredGrid:new{pvolume=volume[14], niv=nx0, njv=ny0, nkv = nz1,
70 cfList={edge04=cfz1, edge15=cfz1, edge26=cfz1, edge37=cfz1,
71 edge56=cfr0, edge12=cfr0, edge03=cfr0, edge47=cfr0} }
72 grid[15] = StructuredGrid:new{pvolume=volume[15], niv=nx1, njv=ny0, nkv = nz1,
73 cfList={edge04=cfz1, edge15=cfz1, edge26=cfz1, edge37=cfz1,
74 edge56=cfr1, edge12=cfr1, edge03=cfr1, edge47=cfr1,
75 edge01=cfx0, edge32=cfx0, edge76=cfx0, edge45=cfx0} }
76 grid[16] = StructuredGrid:new{pvolume=volume[16], niv=nx0, njv=nx0, nkv = nz1,
77 cfList={edge04=cfz1, edge15=cfz1, edge26=cfz1, edge37=cfz1} }

At the final stage we apply FoamBlock again, which is used to set the boundary
labels used by OpenFOAM. Here the additional keywords bottom and top need to

4.2. 3D examples 23

considered as we have a 3-D simulation. For the bottom, which can be assumed to
be the centre of the wing, we are using a symmetry plane. For top the outside face
we simply add i-00, which can be set as a bi-directional inlet.

1 -- Define OpenFoam block (a "grid" with labels)
2 block = {}
3 block[0] = FoamBlock:new{grid=grid[0],
4 bndry_labels={north="i-00", east="o-00", bottom="s-00"}}
5 block[1] = FoamBlock:new{grid=grid[1],
6 bndry_labels={north="i-00", south="w-00", bottom="s-00"}}
7 block[2] = FoamBlock:new{grid=grid[2],
8 bndry_labels={north="i-00", south="w-00", bottom="s-00"}}
9 block[3] = FoamBlock:new{grid=grid[3],

10 bndry_labels={north="i-00", south="w-00", bottom="s-00"}}
11 block[4] = FoamBlock:new{grid=grid[4],
12 bndry_labels={north="i-00", south="w-00", bottom="s-00"}}
13 block[5] = FoamBlock:new{grid=grid[5],
14 bndry_labels={south="i-00", east="o-00", bottom="s-00"}}
15 block[10] = FoamBlock:new{grid=grid[10],
16 bndry_labels={north="i-00", east="o-00", top="i-00"}}
17 block[11] = FoamBlock:new{grid=grid[11],
18 bndry_labels={north="i-00", top="i-00"}}
19 block[12] = FoamBlock:new{grid=grid[12],
20 bndry_labels={north="i-00", top="i-00"}}
21 block[13] = FoamBlock:new{grid=grid[13],
22 bndry_labels={north="i-00", top="i-00"}}
23 block[14] = FoamBlock:new{grid=grid[14],
24 bndry_labels={north="i-00", top="i-00"}}
25 block[15] = FoamBlock:new{grid=grid[15],
26 bndry_labels={south="i-00", east="o-00", top="i-00"}}
27 block[16] = FoamBlock:new{grid=grid[16],
28 bndry_labels={top="i-00", bottom="w-01"}}

If all of the above has been done correctly the resulting mesh is shown in Fig. 4.4.
With the standard settings this mesh has 858 696 hexahedral cells, and as you can see
there is still a lot of scope for improvement to enhance mesh quality...

Enjoy simulating this and reviewing the effects of the wing tip vortices. (Note:
Computing the grid will take up to 30 min and simulation can be most of a day.)

24 Chapter 4. Examples

Figure 4.4: Mesh generated for a NACA00xx aerofoil.

References

[1] Peter A. Jacobs, Rowan J. Gollan, and Ingo Jahn. The Eilmer 4.0 flow simulation
program: Guide to the geometry package, for construction of flow paths. School
of Mechanical and Mining Engineering Technical Report 2017/25, The University
of Queensland, Brisbane, Australia, February 2018.

[2] Peter A. Jacobs and Rowan J. Gollan. The user’s guide to the Dlang geometry
package for use with the Eilmer4 flow simulation program. School of Mechanical
and Mining Engineering Technical Report 2016/19, The University of Queens-
land, Brisbane, Australia, October 2016.

[3] H. Weller, C. Greenshields, and C. de Rouvray. OpenFOAM. The OpenFOAM
Foundation Ltd., London, United Kingdom, 5.0 edition, 2018.

[4] The OpenFOAM Foundation. OpenFOAM v5 User Guide.

25

A

Useful Linux Commands for OpenFOAM

A short compilation of useful commands to help you manage your OpenFOAM sim-
ulations:

Command Description
<command> -help Display the usage instructions for a given com-

mand.
cp -r $FOAM_TUTORIAL
/pathtoFolder .

Will copy contents of tutorial selected by
$FOAM_TUTORIAL/pathtoFolder into the
current directory. (Dont forget the .)

checkMesh Run the build im mesh checking tool to get in-
formation about your mesh.

foamListTime -rm Removes all time directories apart from the 0 di-
rectory.

decomposePar Will use information in decomposeDict to split
your mesh for parallel processing.

mpirun -np
<nProcs> <foamExec>
-parallel > log &

To run an application in parallel. nPocs
must equal number of domains created using
decomposePar and foamExec is the solver
command you plan to use (e.g. simpleFoam).

reconstructPar Will reassemble mesh and fields so that you can
open a parallel simulation.

mapFields Tool to copy solutions from one mesh to another.
machNo Calculates Mach number from velocity field

(only works with compressible solvers).
? Something else useful...

There are many more useful commands available online. As a first port of call,
look at the OpenFOAM online documentation https://cfd.direct/openfoam/
user-guide/.

27

https://cfd.direct/openfoam/user-guide/
https://cfd.direct/openfoam/user-guide/

B

Make your own debugging cube

Cut out the development on the reverse of this page, fold along all of the edges and
stick the your own cube together. A pair of cubes is very handy for sorting out the
specification of connections between structured-grid blocks.

29

30 Appendix B. Make your own debugging cube

w
e
st

fa
ce

so
u

th
fa

ce
e
a
st

fa
ce

n
o
rt

h
fa

ce

b
o
tt

o
m

fa
ceto

p
fa

ce

7 3
04

4 0
15

15

26

26

37
47

6 5

0 3
21

k
i

k
j

k
i

k
j

i
jj

i
glue to edge 3-7

glue to edge 7-4

glue to edge 5-6 glue to edge 1-2

glue to edge 3-0

g
lu

e
 t

o
 e

d
g
e
 2

-3

g
lu

e
 t

o
 e

d
g
e
 7

-6

so
u

th
so

u
th

so
u

th
so

u
th

so
u

th

so
u

th

n
o
rt

h

n
o
rt

h

n
o
rt

h

n
o
rt

h
n
o
rt

h
n

o
rt

h

west

easteast

west

west

east

east

east

east

west

west

west

	Introduction
	Some advice

	Compiling
	Converting Structured Grids to FoamBlocks
	Create appropriate OpenFOAM case
	Global Settings
	FoamBlock constructor
	OpenFOAM boundary conditions
	Building the grid
	Some debugging help

	Examples
	2D (planar) examples
	3D examples

	References
	Useful Linux Commands for OpenFOAM
	Make your own debugging cube

