Implementation of a compressible-flow simulation
code in the D programming language

Peter Jacobs, Rowan Gollan and Anand V.
Co-chief Gardeners of the CFCFD Code Collection
School of Mechanical Engineering, UQ

26 May 2016

History

Gas dynamic formulation

Implementation

Examples
Sharp-nosed projectile — notation for user input
Forward-facing step — parallel performance
Blunted-cone probe — just for David Gildfind

Eilmer in a nutshell

v

IM > Eulerian/Lagrangian description of the flow
(finite-volume, 2D axisymmetric or 3D).

» Transient, time-accurate, optionally implicit
updates for steady flow.

» Shock capturing plus shock fitting boundary.

Multiple block, structured and unstructured grids.

Parallel computation on a cluster computer, using MPI in
Eilmer2,3 and shared memory in dgd/Eilmer.

High-temperature nonequilibrium thermochemistry (GPU).

Dense-gas thermodynamic models and rotating frames of
reference for turbomachine modelling.

Turbulence models: Baldwin-Lomax and k-w.
Coupling to radiation and ablation codes for aeroshell flows.

...plus conjugate heat transfer and MHD

Origins

in the late 1980s, the state of the art for scramjet simulations
involving reactive flow was JP Drummond SPARK code

Flow solver component based on Bob McCormack’s (1969)
finite-difference shock-capturing technique.

All configuration hard-coded into the Fortran source code and
compiled to run on a Cray supercomputer.

In the 1980s, a new CFD technology (upwind flux) was being
developed by the applied mathematics people and parallel
computing environments were being developed by the
computer science people (cluster computers).

Dec 1990: following a CFD lesson on the chalk-board from

Bob Walters and Bernard Grossman, cns4u was started with
the intention to be like SPARK but with new technology

Development of Eilmer

> 1993 built sm3d, a space-marching code for 3D scramjet flows

> 1995 through 1999: the postgrad years expanded scope of
experimentation and application

» 1996: code reformulation around fluxes (frequent discussions
with Mike Macrossan); all code still in C with a preprocessor
having a little command interpreter built in.

» 1997: discovered scripting languages Tcl and Python

» May 2003: scriptit.tcl provided fully programmable
environment for simulation-preparation.

» Aug 2004: Elmer began as a hybrid code using Python and C.

» Jun 2005: rewrite of Elmer(2) in C alone so that Andrew
Denman could get on with his thesis

» Jul 2006: rewrite EImer2 in C++ and, in 2008, call it
Eilmer3. The class-based implementation was easier to extend
and maintain.

Eilmer — Let's do it right, again.

Fred Brooks, in the “Mythical Man-Month: Essays on software
engineering”
Sooner or later the first system is finished, and the
architect, with firm confidence and a demonstrated
mastery of the class of systems, is ready to build a
second system. ...
This second is the most dangerous system a man ever
designs. ...
The general tendency is to over-design the second
system, using all the ideas and frills that were cautiously
sidetracked on the first one.

We're OK, this is not our second system.
cns4u, mbens, mbens2, Elmer, Elmer2, Eilmer3 ... Eilmer4.

Eilmer4 — think big!

» Heather Muir has been working on the unstructured-grid
generator. based on the paving algorithm.

Mathematical gas dynamics (in differential form)

Conservation of mass:
—p+V-pu=0 1
5" pu (1)

Conservation of species mass:

%Pi+V'piU:*(V‘Ji)+wi (2)

Conservation of momentum:

%pu—l—v-puu: -Vp-V- {—,u(Vu—l—(Vu)T)—i-%u(V-u)é} (3)

Conservation of total energy:

Ny

pE+V - (e+ g)u:v[kvr+2kv,svn,s]+v-

ih,-’l}
- (V~ [{—,u(Vu +(Vu)) + 2V u)é} D Qad (4)

Conservation of vibrational energy:

9
ot

ev,i+V-pie,iu = V-[k, iV Tv,i]_v'ev,iJi‘FQTfV,-+QV7V,-+QChem_VI__Qradl_
(5)

9
at’

More maths...

Thermodynamic model of the gas...
Finite-rate chemical kinetics...
Radiation energy exchange...
Boundary conditions...

Features:

>

>

>

3D from the beginning, 2D as a special case

structured- and unstructured-meshes for complex geometries
refined thermochemistry

moving meshes (Jason Qin and Kyle Damm)

simplified and generalized boundary conditions

coupled heat transfer

shared-memory parallelism for multicore workstation use

block-marching for speed (nenzfr and nozzle design)

Code structure

» D language data storage and solver, with embedded Lua
interpreters for preprocessing, user-controlled run-time
configuration in boundary conditions and source terms and
thermochemical configuration.

for s=1 to n do:
clear flux data

Compute update for apply pre-reconstruction action
convective + molecular .
transport. detect shock points

reconstruct flow data at cell interfaces
compute convective fluxes

next Compute influence of) -)
time finite-rate chemical apply pre-spatial-derivative action
step reactions. compute spatial derivatves

apply post-differential flux action
I add source terms if any
Compute non-equilibrium
energy redistribution. compute time derivatives of conserved quantities

update cell-average conserved quantities for stage s

| decode conserved quantities to all flow quantities

Collecting the low-hanging fruit of parallelism

1 // First-stage of gas-dynamic update.

2 shared int ftl = 0; // time-level within the overall convective-update
3 shared int gtl = 0; // grid time-level remains at zero for the non-moving grid
4 if (GlobalConfig.apply bcs in parallel) {

5 foreach (blk; parallel(gasBlocks,1)) {

6 if (blk.active) { blk.applyPreReconAction(sim_time, gtl, ftl); }
7 }

8 } else {

9 foreach (blk; gasBlocks) {

10 if (blk.active) { blk.applyPreReconAction(sim_time, gtl, ftl); }
11 }

12 }

13

Notes:

» Need to keep most data thread local.

» D Compiler expands “parallel” into code that hands out tasks
to the default ThreadPool.

How far have we gone, in lines of source code.

At 60 lines per page,
the collection is equivalent to a 7500 page document.

Lines of code, doc

300000

250000

200000

150000

100000

50000 |

0

Source code and documentation development

T T
e3code O
| e4code W O |
e3doc O
O
L O]
|]
u
(] o O o
|]
8 o — N [sp] < v [le]
S o o o o o o o
[N N N N N N N
N N o \ N o N N
o o (=] o o o o o
= = = = = = = =
o o o o o o o o
Date

01/01/2017

Verification and Validation Examples

Verification:

» Are we solving the equations correctly?
» Compare with numerical solutions from other codes.

» Manufactured solution that we must match (using special
source terms and BCs).

Validation:

> Are we solving the correct gas-dynamic equations?

» Compare with experimental measurements.

Example 1: sharp-nosed projectile

v

Original Zucrow & Hoffman; also Anderson’s Hypersonics text

v

Shape of surface defined by polynomial equation

» Can compare numerical solutions

7 T T

oL

sk 6 y=140 M, =30
B
g4 s
g <
=3k S 4
35 £ _— Behind the shock wave
5]
] e

2k E

1 L

N 2 : On the
2 _ 0008333 + 0.509425(%) - 0‘092593(;5) 1 the surfce of the body
| | | Ve L\ |

0 1 2 3 4 5 6 7 8 9 10
Axial location, x/y,

L | 1 | | >
FIGURE 55 0 2 4 6 8 10

A typical characteristics mesh. (From Zucrow and Hoffman, Ref. 53.) Axial location, x/y,

Input script — gas model and flow

1 -- sharp.lua
2| config.title = 3 f e
3| print(config.title)
4
5 nsp, nmodes = setGasModel(eal- - -mo)
6 | print("GasMo e al a 1sp= ", nsp, ydes= ", nmodes)
7 initial = FlowState:new{p=5955.0, T=304.0, velx=0.0, vely=0.0}
8 inflow = FlowState:new{p=95.84e3, T=1103.0, velx=2000.0, vely=0.0}
9
Notes:

> user's input script is Lua source code
» arguments to function calls delimited by ()
» tables delimited by {}

» object model by convention as described in lerusalimschy'’s
book “Programming in Lua”

Input script — user-defined functions

Notes:

-- Geometry of flow domain.
function y(x)
-- (x,y)-space path for x>=0
if x <= 3.291 then
return -0.008333 + 0.609425*x - 0.092593*x*x
else
return 1.0
end
end

function xypath(t)
-- Parametric path with O<=t<=1.
local x = 10.0 * t
local yval = y(x)
if yval < 0.0 then
yval = 0.0
end
return {x=x, y=yval}
end

> global variables unless stated otherwise

> can return tables

Input script — geometry definition

30 a = Vector3:new{x=-1.0, y=0.0}; b = Vector3:new{ x=0.0, y=0.0}
31 c = Vector3:new{x=10.0, y=1.0}; d = Vector3:new{x=10.0, y=7.0}
32 e = Vector3:new{ x=0.0, y=7.0}; f = Vector3:new{x=-1.0, y=7.0}
33 -- lower boundary including body surface

34 | ab = Line:new{p0=a, pl=b}; bc = LuaFnPath:new{luaFnName=

35 -- upper boundary

36 | fe = Line:new{pO=f, pl=e}; ed = Line:new{pO=e, pl=d}

37 -- vertical lines

38 | af = Line:new{pO=a, pl=f}; be = Line:new{pO=b, pl=e}

39 cd = Line:new{p0=c, pl=d}

40 -- Mesh the patches, with particular discretisation.

41 ny = 60

42 | clustery = RobertsFunction:new{endO=true, endl=false, beta=1.3}

43 clusterx RobertsFunction:new{end0=true, endl=false, beta=1.2}

44 gridd = StructuredGrid:new{psurface=makePatch{north=fe, east=be, south=ab, west=af},

45 cfList={east=clustery, west=clustery},
46 niv=17, njv=ny+1}
47 gridl = StructuredGrid:new{psurface=makePatch{north=ed, east=cd, south=bc, west=be},
48 cfList={north=clusterx, south=clusterx,west=clustery},
49 niv=81, njv=ny+1}
Notes:

» Table entries are mostly named. (new behaviour) This is an
advantage for large numbers of parameters.

» Also, could import grids. Good for complex geometries
because you may have your favourite gridding tool.

Input script — flow domain with boundary conditions

50 -- Define the flow-solution blocks.

51 blk0® = SBlock:new{grid=grid@, fillCondition=inflow}

52 blkl = SBlock:new{grid=gridl, fillCondition=initial}

53 -- Set boundary conditions.

54 | identifyBlockConnections()

55 | blk0.bcList[west] = InFlowBC Supersonic:new{flowCondition=inflow}
56 blkl.bcList[east] = OutFlowBC_ Simple:new{}

58 | config.max_time
59 | config.max_step
60 | config.dt init = 1.0e-6

15.0e-3 -- seconds

Notes:
» We have separated block definition from grid generation.

» fillCondition could be given as a (user-defined) function of
position (x,y,z).

» Also, could provide lists of boundary conditions to the block
constructors.

Result — pressure field

Radial location, y/y,

N 2
Y = 0008333 + mmzs(j — 0092593
.|) . L\
4

3 4 5 6
Axial location, x/y,

FIGURE 55
A typical characteristics mesh. (From Zucrow and Hoffman, Ref. 53)

Example 2: supersonic flow over a forward-facing step

T(0)
400
L

276

» To make good use of all of those processing cores, divide the
flow domain into 21 blocks.

» There is an animation if we have time.

Scaling of run times when using multiple CPUs

1| /* parallel fraction calculation, pj, 2016-05-24 */
2| eq0: p + s = tl;
3| eql: p/na + s = ta;

n=4 4| eq2: p/nb + s = tb;
5| solve([eq®, eql, eq2], [tl, p, s]);

tn
- [

1| # fparallel.py
2 | # Compute fraction of work done in parallel.
3 na = 3; ta = 3214.0-518.0
4| nb=7; tb = 1904.0-453.0
5| p = -(na*nb*ta - na*nb*tb)/(na - nb)
6| s = (na*ta - nb*tb)/(na - nb)
7 tl=p+s
8| fp = p/tl
9| print('p=", p, "s=", s, "tl=", t1, "fp=", fp)

» Amdahl's model for serial and parallel work components with
N processors.

> fp=0.922 for dx=2.5mm
» fp=0.927 for dx=1.25mm

Amdahl’s scaling for parallel calculations

70 Speed-up given parallel fraction of work.

— fp=1ideal
eoll — fp=0.99
— fp=0.927
— fp=0.90
50 fp=0.85
s
3 40f
g
e
9 30t
Q
n

N
o

10}

0 10 20 30 40 50 60 70
number of processors, n

» Anand estimated fp=0.99 for Eilmer3, MPI, chemistry.
» fp=0.927 best so far for Eilmer4 with a 2D, inviscid flow.

Example 3: blunt cone-probe for

2mm dia holes
(8 places, evenly
spaced around
circumferencel

expansion-tube flows

» Nice idea based on reducing the pressure to something less

than a Pitot probe

» but Pierpaolo shows the measured pressure values to be
something like half of the expected values.

Blunt-cone-probe in use in X2

» Photograph from Steven Lewis, yesterday.

Blunt-cone-probe inviscid flow field — Mach number

M_local

8

Time: 10.0 us

> After about 800 seconds, we have a computed flowfield...

Blunt-cone-probe inviscid flow field — pressure

p

25000 Be+ 75000 le+b 12045
FEELLLLLLELL I

Time: 10.0 us le+03 1.27e+05

» Note that the shock is far from conical

> so, the surface pressure may not be the Taylor-Maccoll value.

Blunt-cone-probe — surface pressure

Static pressure along cone surface

18
16 Value from R
NACA 1135
14 b Chart 6 g
12 R
S 10} R
X
g 8r R
6 []
4 + 4
2 r]
0 inviscid, t=100us

0 2 4 6 8 10 12 14 16 18
X, mm

» We should repeat this analysis with viscous effects included.

» Now, hurry up and show the animation.

	History
	Gas dynamic formulation
	Implementation
	Examples
	Sharp-nosed projectile – notation for user input
	Forward-facing step – parallel performance
	Blunted-cone probe – just for David Gildfind

