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Why build Computational Fluid Dynamic tools

Hocoon 1 > If we don’t have suitable
-~ experience, we substitute
(computational) analysis.

> As we develop new theories
for hypersonic flows, we
encode the models as
computational tools.

» We want to be confident in
our analytical tools...




Eilmer features — 1/2

» 2D /3D compressible flow
simulation.

Time: 20.0 us

» Gas models include ideal, thermally
perfect, equilibrium.

» Finite-rate chemistry.

» Inviscid, laminar, turbulent (k-w)
flow.

» Solid domains with conjugate heat transfer in 2D.

» User-controlled moving grid capability, with shock-fitting
method for 2D geometries.

» Dense-gas thermodynamic models and rotating frames of
reference for turbomachine modelling.



Eilmer features — 2/2

» Transient, time-accurate, using explicit
Euler, PC, RK updates.

> Alternate steady-state solver with implicit
updates using Newton-Krylov method.

» Parallel computation on a cluster
computer, using MPI in Eilmer2,3 and
shared memory in dgd/Eilmer4.

» Multiple block, structured and
unstructured grids.

» Native grid generation and import
capability.

» Unstructured-mesh partitioning via Metis.

>

en.wikipedia.org/wiki/Eilmer_of_Malmesbury

v

Gas model calculator and compressible flow relations.


en.wikipedia.org/wiki/Eilmer_of_Malmesbury

Origins

in the late 1980s, the state of the art for scramjet simulations
involving reactive flow was JP Drummond SPARK code

Flow solver component based on Bob McCormack’s (1969)
finite-difference shock-capturing technique.

All configuration hard-coded into the Fortran source code and
compiled to run on a Cray supercomputer.

In the 1980s, a new CFD technology (upwind flux) was being
developed by the applied mathematics people and parallel
computing environments were being developed by the
computer science people (cluster computers).

Dec 1990: following a CFD lesson on the chalk-board from

Bob Walters and Bernard Grossman, cns4u was started with
the intention to be like SPARK but with new technology



Origins — people

RW MacCormack  JP (Phil)

Drummond Bernard Grossman



Origins — people at ICASE in 1991
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Development of Eilmer

» 1993 built sm3d, a space-marching code for 3D scramjet flows

> 1995 through 1999: the postgrad years expanded scope of
experimentation and application

» 1996: code reformulation around fluxes (frequent discussions
with Mike Macrossan); all code still in C with a preprocessor
having a little command interpreter built in.

» 1997: discovered scripting languages Tcl and Python

» May 2003: scriptit.tcl provided fully programmable
environment for simulation-preparation.

> Aug 2004: Elmer began as a hybrid code using Python and C.
» Jun 2005: rewrite of Elmer(2) in C alone.

» Jul 2006: rewrite EImer2 in C++ and, in 2008, call it
Eilmer3. Class-based implementation was easier to extend.



Eilmer4 — think big, but control the complexity.

> Jun 2015+: rebuild in the D and Lua programming languages.

» Heather Muir worked on the unstructured-grid generator.
based on the paving algorithm.



Mathematical gas dynamics (in differential form)

Conservation of mass:
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More maths...

Thermodynamic model of the gas...
Finite-rate chemical kinetics...
Radiation energy exchange...
Boundary conditions...

Features:

>

>

>

3D from the beginning, 2D as a special case

structured- and unstructured-meshes for complex geometries
refined thermochemistry

moving meshes (Jason Qin and Kyle Damm)

simplified and generalized boundary conditions

coupled heat transfer

shared-memory parallelism for multicore workstation use

block-marching for speed (nenzfr and nozzle design)



Code structure

» D language data storage and solver, with embedded Lua
interpreters for preprocessing, user-controlled run-time
configuration in boundary conditions and source terms and
thermochemical configuration.

B

Compute n-stage update
for convective and
molecular transport.

Compute influence of

next e N

time finite-rate chemical

step reactions and internal
A energy redistribution

(thermal non-equilibrium).

Compute energy exchange
via radiative effects.

for s=1 to n do:

clear flux data

apply pre-reconstruction action

detect shock points

reconstruct flow data at cell interfaces
compute convective fluxes

apply post-convective-flux action
apply pre-spatial-derivative action
compute spatial derivatves

apply post-diffusion flux action

add source terms, if any

compute time derivatives of conserved quantities

update cell-average conserved quantities for stage s

decode conserved quantities to all flow quantities



New and Improved Thermochemistry

Compared to Eilmer3, the code is organised differently, into a
couple of related classes.

» GasModel class
» Describes the thermodynamic and molecular transport

behaviour of the gas.
» Connects pressure, temperature, internal energy and sound

speed.
» Estimates molecular-transport (diffusion) coefficients.
» ThermochemicalReactor class
» Describes the finite-rate process to update (over a time step)
the internal state of the gas.



GasModel class

Core functions in the gas model need to be provided by each
specific gas model.

// Methods to

//

abstract
abstract
abstract
abstract
abstract
abstract
abstract
abstract

abstract
abstract
abstract
abstract
abstract
abstract

void
void
void
void
void
void
void
void

be overridden.

update_thermo_from pT(GasState Q);
update_thermo_from_rhoe(GasState Q);

update thermo from rhoT(GasState Q);

update thermo_from rhop(GasState Q);
update_thermo_from ps(GasState Q, double s);
update_thermo_from_hs(GasState Q, double h, double s);
update sound speed(GasState Q);

update trans_coeffs(GasState Q);

double dudT const v(in GasState Q);
double dhdT const p(in GasState Q);
double dpdrho _const T(in GasState Q);
double gas constant(in GasState Q);
double internal energy(in GasState Q);
double enthalpy(in GasState Q);

We have ideal gas, thermally-perfect mixture, ...



GasState class

A place to keep the data about the little bit of gas in a cell, or at
other locations.

class GasState {

public:
/// Thermodynamic properties.
double rho; /// density, kg/m**3

double p; /// presure, Pa
double p e; /// electron pressure
double a; /// sound speed, m/s

// For a gas in thermal equilibrium, all of the internal energies

// are bundled together into u and are represented by a single

// temperature Ttr.

double Ttr; /// thermal temperature, K

double u; /// specific thermal energy, J/kg

// For a gas in thermal nonequilibrium, the internal energies are

// stored unbundled, with u being the trans-rotational thermal energy.

// The array length will be determined by the specific model and,

// to get the total internal energy,

// the gas-dynamics part of the code will need to sum the array elements.

double[] e modes; /// specific internal energies for thermal nonequilibrium model, J/kg
double[] T_modes; /// temperatures for internal energies for thermal nonequilibrium, K
/// Transport properties

double mu; /// viscosity, Pa.s

double k; /// thermal conductivity for a single temperature gas, W/(m.K)

double[] k_modes; /// thermal conductivities for the nonequilibrium model, W/(m.K)
double sigma; /// electrical conductivity, S/m

/// Composition

double[] massf; /// species mass fractions

double qualitv: /// vapour aualitv



ThermochemicalReactor class

Like any good manager delegate the actual work to other code...

class ThermochemicalReactor {
public:

this (GasModel gmodel)

{

// We need a reference to the original gas model object
// to update the GasState data at a later time.
_gmodel = gmodel;

}

// ALl the work happens when calling the concrete object
// which updates the GasState over the (small) time, tInterval.
abstract void opCall(GasState Q, double tInterval, ref double dtSuggest);

public:
// We will need to access this referenced model from the Lua functions
// so it needs to be public.
GasModel gmodel;

} // end class ThermochemicalReactor

Our work-horse code is a finite-rate reaction update using
Arrhenius rate expressions, assuming a thermally-perfect gas
mixture, however, we could use any other scheme.



How far have we gone, in lines of source code.

At 60 lines per page,
the Eilmer4 code is equivalent to a 1200 page document.

Source code and documentation development
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Verification and Validation Examples

Verification:
» Are we solving the equations correctly?
» Compare with numerical solutions from other codes.

» Some known exact (analytic) solution, possibly with limited
physics.

» Manufactured solution that we must match (using special
source terms and boundary conditions).

Validation:

» Are we solving the correct gas-dynamic equations?

» Compare with experimental measurements.



A detonation wave with simplified thermochemistry

The flow problem is an oblique detonation wave which is supported
by a curved wedge surface. The analytical solution for this problem
was first presented by Powers and Stewart (AIAA J. 1992).

S

femperature-K mass-fraction-0
3000 3659 4319 4978 5637 000 0250 0500  0.750 1.00

In order to make the problem analytically tractable, the reaction
mechanism for the detonation is simplified. The reaction is a
one-step reaction that proceeds once an ignition temperature is
reached.



The Powers and Aslam gas model

» Powers and Aslam (AIAA J 2006) used as a verification
exercise.

» Two species A, B, with reaction of A to B proceeding at rate

dps
9PB _ o pa H(T = T
e ( )

with rate constant o = 0.001s!

> Reaction progress variable is mass fraction of B: A = Yg = %B
> YA = 1- YB
» Equation of state for internal energy:

_ 1

u=——-— —Xg = C, T — Ygg
v—1p

with heat of reaction g = 300000 J/kg and ratio of specific
heats v = 6/5.

» Pressure: p = pRT, with gas constant R = 287 J/kg.K



Powers and Aslam gas model functions

Code for the thermodynamic functions that compute the gas state.
These functions override the functions (with corresponding names)
in the GasModel base class.

override void update thermo_from pT(GasState Q) const

{
Q.rho = Q.p/(Q.Ttr* Rgas);
Q.u = Cv*Q.Ttr - Q.massf[1]* q;
}
override void update thermo from rhoe(GasState Q) const
{
Q.Ttr = (Q.u + Q.massf[1]* q)/ Cv;
Q.p = Q.rho* Rgas*Q.Ttr;
}
override void update thermo from rhoT(GasState Q) const
{
Q.p = Q.rho*_Rgas*Q.Ttr;
Q.u = _Cv*Q.Ttr - Q.massf[1]* q;
}
override void update thermo_from_rhop(GasState Q) const
{

Q.Ttr = Q.p/(Q.rho* Rgas);
Q.u = Cv*Q.Ttr - Q.massf[1l]* q;



Powers and Aslam thermochemical reactor update

override void opCall(GasState Q, double tInterval, ref double dtSuggest)
{
if (Q.Ttr > Ti) {
// We are above the ignition point, proceed with reaction.
double massfA = Q.massf[0];
double massfB = Q.massf[1]
// This gas has a very simple reaction scheme that can be integrated
explicitly.
massfA = massfA*exp(-_alpha*tInterval);
massfB = 1.0 - massfA;
Q.massf[0] = massfA; Q.massf[l] = massfB;
} else {
// do nothing, since we are below the ignition temperature
}
// Since the internal energy and density in the (isolated) reactor is fixed,
// we need to evaluate the new temperature, pressure, etc.
_gmodel.update thermo_from rhoe(Q);
_gmodel.update sound_speed(Q);

4



Thermochemical input file

model = "PowersAslamGas"

PowersAslamGas = {
R = 287,
gamma = 6/5,
q = 300000,
alpha = 1000,
Ti = 362.58

OCoONOOUIEA WN




Input script — gas model and flow

7 | config.title = e detonat e wit we L g el
8 | print(config. tltle)
9| config.dimensions = 2
10
11 nsp, nmodes, gm = setGasModel( ) ¢ )
12 print("Gas sp= ", nsp, mmodes= ", nmodes)
13 massfl = {A—l 0 B 0 0}
14 initial = FlowState:new{p=28.7e3, T=300.0, massf=massfl}
15 inflow = FlowState:new{p=86.1e3, T=300.0, velx=964.302, massf=massfl}
Notes:
> user's input script is Lua source code
» arguments to function calls delimited by ()
» tables delimited by {}
» object model by convention as described in lerusalimschy'’s

book “Programming in Lua"



Input script — geometry definition: parameters and points

17 -- Geometry
18 | xmin = -0.25
19 xmax = 1.75
20 | ymin = 0.0
21| ymax = 2.0
22

23 dofile("analytic.lua")
24 | myWallFn = create wall function(0.0, xmax)

25

26 -- Set up two patches in the (x,y)-plane by first defining
27 -- the corner nodes, then the lines between those corners.
28 a = Vector3:new{x=xmin, y=0.0}

29 | b = Vector3:new{x=0.0, y=0.0}

30 c = Vector3:new{x=myWallFn(1.0).x, y=myWallFn(1.0).y}

31| d = Vector3:new{x=xmin, y=ymax}

32 e = Vector3:new{x=0.0, y=ymax}

33 f = Vector3:new{x=xmax, y=ymax}

Notes:

> Make your life simple; use good symbolic names.

» The full Lua interpreter is available to build complex functions.



Oblique detonation wave — geometry

e
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Input script — geometry definition: lines, patches, grids

34 | south® = Line:new{pO=a, pl=b} -- upstream of wedge

35 southl = LuaFnPath:new{luaFnName="myWallFn"} -- wedge surface

36 north® = Line:new{p0=d, pl=e}; northl = Line:new{pO=e, pl=f}

37 | west® = Line:new{p0=a, pl=d} -- inflow boundary

38 eastOwestl = Line:new{pO=b, pl=e} -- vertical line, between patches

39 | eastl = Line:new{p0=c, pl=f} -- outflow boundary

40 patch® = makePatch{north=north@, east=eastOwestl, south=south0®, west=west0}
41 patchl = makePatch{north=northl, east=eastl, south=southl, west=eastOwestl}
42 -- Mesh the patches, with particular discretisation.

43 factor = 2 -- for adjusting the grid resolution

44 nxcells = math.floor(40*factor)

45 nycells = math.floor(40*factor)

46 | fraction® = (0-xmin)/(xmax-xmin) -- fraction of domain upstream of wedge

47 nx0® = math.floor(fraction@*nxcells); nx1l = nxcells-nx0; ny = nycells

48 grid0@ = StructuredGrid:new{psurface=patch0, niv=nx0+1, njv=ny+1}

49 | gridl = StructuredGrid:new{psurface=patchl, niv=nx1+1, njv=ny+1}

Notes:

> Fully-parametric grid generator is available.
» Table entries are mostly named. This is an advantage for large

numbers of parameters and helps to make your input script
self-documenting.



Input script — flow-domain with boundary conditions

50 | -- Define the flow-solution blocks and set boundary conditions.

51 -- We split the patches into roughly equal blocks so that

52 -- we make good use of our multicore machines.

53 | blk0® = SBlockArray{grid=grid@, fillCondition=inflow, nib=1, njb=2,

54 bcList={west=InFlowBC_Supersonic:new{flowCondition=inflow},
55 north=0utFlowBC_Simple:new{}}}

56 blkl = SBlockArray{grid=gridl, fillCondition=initial, nib=7, njb=2,

57 bcList={east=0utFlowBC_Simple:new{},

58 north=0utFlowBC Simple:new{}}}

59 | identifyBlockConnections()

Notes:
» May define many blocks on a single grid.

» We attach boundary conditions to the domain and specify the
initial flow condition.

» Boundary conditions default to class WallBC_WithSlip.

» Some boundary conditions need extra information.



Oblique detonation wave — steady flow field

Pressure [86.1kPa — 487kPa] Mass fraction B [0 — 0.9165]

[ :
Time: 20.005 ms

Temperature [300K — 564.4K]

l
Time: 20.005 ms

Shock wave angle g =~ 45.2°
Run time is 2 minutes

|

Time: 20.005 ms



Source code and documentation

Online source repositories are public:

» The CFCFD project
http://cfcfd.mechmining.uq.edu.au/

» Eilmer4 code and documentation
https://bitbucket.org/cfcfd/dgd

» To get started, clone the bitbucket repository.

Documentation in the form of user’s guides:
» Unsteady flow solver.
» Geometry and grid builder.

» Simple thermochemical models.

Examples in Eilmer4 and Eilmer3 repositories are a good source of
modelling ideas.


http://cfcfd.mechmining.uq.edu.au/
https://bitbucket.org/cfcfd/dgd
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..who have helped us...

collect the Low-hanging Fruits of Hypersonics.




Eilmer4 Help System

Find a
ommand or keyword
which looks related fo wha
you want to
o

I've tried
them all,

Run
simulation

Google the name of
the command plus a
few words related 1ol
work? what you think you
want fo do. Follow
any instructions,

you been
trying this for
gver half a
our ?

YES

Ask someone
for help
or give up

With apologies fo
hitps:/ /www.xked.com/s21

You're
done!
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