Implementation of a compressible-flow simulation
code in the D programming language

Peter Jacobs and Rowan Gollan
School of Mechanical and Mining Engineering
The University of Queensland

30 Nov 2015

History
Eilmer4, formulation

Examples

Eilmer in a nutshell

» Eulerian/Lagrangian description of
the flow (finite-volume,
axisymmetric or 3D)

» Transient, time-accurate

» Shock capturing

» Multiple-block, structured and
unstructured grids

» Parallel computation on a cluster
computer, using MPI in Eilmer2,3

» High-temperature thermochemistry
and dense-gas module

Origins

in the late 1980s, the state of the art for scramjet simulations
involving reactive flow was JP Drummond SPARK code

Flow solver component based on Bob McCormack’s (1969)
finite-difference shock-capturing technique.

All configuration hard-coded into the Fortran source code and
compiled to run on a Cray supercomputer.

In the 1980s, a new CFD technology (upwind flux) was being
developed by the applied mathematics people and parallel
computing environments were being developed by the
computer science people (cluster computers).

Dec 1990: following a CFD lesson on the chalk-board from

Bob Walters and Bernard Grossman, cns4u was started with
the intention to be like SPARK but with new technology

Development of Eilmer

> 1993 built sm3d, a space-marching code for 3D scramjet flows

> 1995 through 1999: the postgrad years expanded scope of
experimentation and application

» 1996: code reformulation around fluxes (frequent discussions
with Mike Macrossan); all code still in C with a preprocessor
having a little command interpreter built in.

» 1997: discovered scripting languages Tcl and Python

» May 2003: scriptit.tcl provided fully programmable
environment for simulation-preparation.

» Aug 2004: Elmer began as a hybrid code using Python and C.

» Jun 2005: rewrite of Elmer(2) in C alone so that Andrew
Denman could get on with his thesis

» Jul 2006: rewrite EImer2 in C++ and, in 2008, call it
Eilmer3. The class-based implementation was easier to extend
and maintain.

Eilmerd — Let’s do it right, again.

Fred Brooks, in the “Mythical Man-Month: Essays on software
engineering”
Sooner or later the first system is finished, and the
architect, with firm confidence and a demonstrated
mastery of the class of systems, is ready to build a
second system. ...
This second is the most dangerous system a man ever
designs. ...
The general tendency is to over-design the second
system, using all the ideas and frills that were cautiously
sidetracked on the first one.

We're OK, this is not our second system.
cns4u, mbens, mbens2, Elmer, Elmer2, Eilmer3 ... Eilmer4.

Mathematical gas dynamics (in differential form)

Conservation of mass:
—p+V-pu=0 1
5" pu (1)

Conservation of species mass:

%Pi+V'piU:*(V‘Ji)+wi (2)

Conservation of momentum:

%pu—l—v-puu: -Vp-V- {—,u(Vu—l—(Vu)T)—i-%u(V-u)é} (3)

Conservation of total energy:

Ny

pE+V - (e+ g)u:v[kvr+2kv,svn,s]+v-

ih,-’l}
- (V~ [{—,u(Vu +(Vu)) + 2V u)é} D Qad (4)

Conservation of vibrational energy:

9
ot

ev,i+V-pie,iu = V-[k, iV Tv,i]_v'ev,iJi‘FQTfV,-+QV7V,-+QChem_VI__Qradl_
(5)

9
at’

More maths...

Thermodynamic model of the gas...
Finite-rate chemical kinetics...
Radiation energy exchange...
Boundary conditions...

Features:

>

>

>

3D from the beginning, 2D as a special case

structured- and unstructured-meshes for complex geometries
refined thermochemistry

moving meshes (Jason Qin and Kyle Damm)

simplified and generalized boundary conditions

coupled heat transfer

shared-memory parallelism for multicore workstation use

block-marching for speed (nenzfr and nozzle design)

Software implementation

» D language data storage and solver, with embedded Lua
interpreters for preprocessing, user-controlled run-time
configuration in boundary conditions and source terms and
thermochemical configuration.

for s=1 to n do:
clear flux data

Compute update for apply pre-reconstruction action
convective + molecular .
transport. detect shock points

reconstruct flow data at cell interfaces
compute convective fluxes

next Compute influence of) -)
time finite-rate chemical apply pre-spatial-derivative action
step reactions. compute spatial derivatves

apply post-differential flux action
I add source terms if any
Compute non-equilibrium
energy redistribution. compute time derivatives of conserved quantities

update cell-average conserved quantities for stage s

| decode conserved quantities to all flow quantities

Collecting the low-hanging fruit of parallelism

1 // Determine the allowable time step -- serial version.
2 | double dt allow = 1.0e9;
3 foreach (myblk; gasBlocks) {
4 if (!myblk.active) continue;
5 double local_dt_allow = myblk.determine_time_step_size(dt_global);
6 dt allow = min(dt_allow, local dt allow);
7| 1}
8
9
10
11 // Determine the allowable time step -- parallel version.
12 | shared double dt allow = 1.0e9;
13 foreach (myblk; parallel(gasBlocks,1)) {
14 if (!myblk.active) continue;
15 double local_dt_allow = myblk.determine_time_step_size(dt_global);
16 dt_allow = min(dt_allow, local dt allow);
17 | }
Notes:

» Need to keep most data thread local.

» D Compiler expands “parallel” into code that hands out tasks
to the default ThreadPool.

Verification and Validation Examples

Verification:

» Are we solving the equations correctly?
» Compare with numerical solutions from other codes.

» Manufactured solution that we must match (using special
source terms and BCs).

Validation:

> Are we solving the correct gas-dynamic equations?

» Compare with experimental measurements.

Example 1: sharp-nosed projectile

v

Original Zucrow & Hoffman; also Anderson’s Hypersonics text

v

Shape of surface defined by polynomial equation

» Can compare numerical solutions

7 T T

oL

sk 6 y=140 M, =30
B
g4 s
g <
=3k S 4
35 £ _— Behind the shock wave
5]
] e

2k E

1 L

N 2 : On the
2 _ 0008333 + 0.509425(%) - 0‘092593(;5) 1 the surfce of the body
| | | Ve L\ |

0 1 2 3 4 5 6 7 8 9 10
Axial location, x/y,

L | 1 | | >
FIGURE 55 0 2 4 6 8 10

A typical characteristics mesh. (From Zucrow and Hoffman, Ref. 53.) Axial location, x/y,

Input script — gas model and flow

1 -- sharp.lua
2| config.title = 3 f e
3| print(config.title)
4
5 nsp, nmodes = setGasModel(eal- - -mo)
6 | print("GasMo e al a 1sp= ", nsp, ydes= ", nmodes)
7 initial = FlowState:new{p=5955.0, T=304.0, velx=0.0, vely=0.0}
8 inflow = FlowState:new{p=95.84e3, T=1103.0, velx=2000.0, vely=0.0}
9
Notes:

> user's input script is Lua source code
» arguments to function calls delimited by ()
» tables delimited by {}

» object model by convention as described in lerusalimschy'’s
book “Programming in Lua”

Input script — user-defined functions

Notes:

-- Geometry of flow domain.
function y(x)
-- (x,y)-space path for x>=0
if x <= 3.291 then
return -0.008333 + 0.609425*x - 0.092593*x*x
else
return 1.0
end
end

function xypath(t)
-- Parametric path with O<=t<=1.
local x = 10.0 * t
local yval = y(x)
if yval < 0.0 then
yval = 0.0
end
return {x, yval, 0.0}
end

> global variables unless stated otherwise

> can return tables

Input script — geometry definition

30 a = Vector3:new{-1.0, 0.0}

31 b = Vector3:new{ 0.0, 0.0}

32 c = Vector3:new{10.0, 1.0}

33 d = Vector3:new{10.0, 7.0}

34| e = Vector3:new{ 0.0, 7.0}

35| f = Vector3:new{-1.0, 7.0}

36 | ab = Line:new{a, b}; bc = LuaFnPath:new{"xypath"} -- lower boundary in
surface

37| fe = Line:new{f, e}; ed = Line:new{e, d} -- upper boundary

38 af = Line:new{a, f}; be = Line:new{b, e}; cd = Line:new{c, d} -- verti

39 -- Mesh the patches, with particular discretisation.

40 | ny = 60

41 clustery = RobertsFunction:new{endO=true, endl=false, beta=1.3}
42 clusterx = RobertsFunction:new{endO=true, endl=false, beta=1.2}
43 gridd = StructuredGrid:new{psurface=makePatch{fe, be, ab, af},

cfList={nil, clustery,nil, clustery},
niv=17, njv=ny+1}

46 | gridl = StructuredGrid:new{psurface=makePatch{ed, cd, bc, be},

Note:

cfList={clusterx,nil, clusterx,clustery},
niv=81, njv=ny+1}

> alternatively, could import grids

Input script — flow domain with boundary conditions

49 -- Define the flow-solution blocks.

50 blk0® = SBlock:new{grid=grid@, fillCondition=inflow}

51 blkl = SBlock:new{grid=gridl, fillCondition=initial}

52 -- Set boundary conditions.

53 | identifyBlockConnections()

54 | blk0.bcList[west] = InFlowBC Supersonic:new{flowCondition=inflow}
55 blkl.bcList[east] = OutFlowBC_ Simple:new{}

57 | config.max_time
58 | config.max_step
59 | config.dt init = 1.0e-6

15.0e-3 -- seconds

Notes:
» We have separated grid generation from block definition.
» fillCondition could be given as a (user-defined) function of
position (x,y,z).

» Also, could provide lists of boundary conditions to the block
constructors.

Result — pressure field

Radial location, y/y,

N 2
Y = 0008333 + mmzs(j — 0092593
.|) . L\
4

3 4 5 6
Axial location, x/y,

FIGURE 55
A typical characteristics mesh. (From Zucrow and Hoffman, Ref. 53)

Example 2: supersonic flow over a forward-facing step

T(0)
400
DL

276

800
\‘IIH\I

938

Note:

» Hurry up and show the animation.

	History
	Eilmer4, formulation
	Examples

