Eilmerd: What's happening?

Peter Jacobs
School of Mechanical and Mining Engineering
The University of Queensland

21 May 2015

The Eilmer3 flow simulation code
History
Eilmer4, a new beginning

Examples

Eilmer4: the quest for good code

HOW T WRITE GOOD CODE:

That is, code that doesn't make
your eyes bleed.

Authors (so far): PJ and Rowan
Gollan

Where to get it: The Compressible
Flow CFD Project
http://cfcfd.mechmining.uqg.edu.au/

On the left: http://xkcd.com /844 /

Eilmer3 in a nutshell

» Eulerian description of the gas
(finite-volume, axisymmetric or 3D)

» Transient, time-accurate
» Shock capturing
» Multiple-block, structured grids

» Parallel computation on a cluster
computer, using MPI

» Really good thermochemistry
module by Rowan Gollan and Dan
Potter

Mathematical gas dynamics (in differential form, by RJG)

Conservation of mass:
—p+V-pu=0 1
5" pu (1)

Conservation of species mass:

%Pi+V'piU:*(V‘Ji)+wi (2)

Conservation of momentum:

%pu—l—v-puu: -Vp-V- {—,u(Vu—l—(Vu)T)—i-%u(V-u)é} (3)

Conservation of total energy:

Ny

pE+V - (e+ %)u:v[kvr+2kv,svn,s]+v-

ih,-’l}
- (V~ [{—,u(Vu +(Vu)) + 2V u)é} D Qad (4)

Conservation of vibrational energy:

9
ot

ev,i+V-pie,iu = V-[k, iV Tv,i]_v'ev,iJH’QTfV,-+QV7V,-+QChem_VI__Qradl_
(5)

9
at’

More maths...

Thermodynamic model of the gas...
Finite-rate chemical kinetics...
Radiation energy exchange...
Boundary conditions...

Numerical Methods

» nonlinear function solvers — secant, Newton, fixed-point
methods

> linear equation solvers — full, direct methods, iterative Jacobi,
Gauss-Seidel

> single- and multidimensional-interpolation and reconstruction
of data — polynomials, Bezier curves, splines, NURBS

» finite-differences (to turn our PDEs into algebraic equations or
ODEs)

» quadrature / integration — Newton-Cotes, Gaussian

» ordinary-differential-equation integrators — Euler,
predictor-corrector, Runge-Kutta schemes

Software implementation

Operator-split
time stepping

» C-+-+ for the core solver and

update computations for the Compute inviscid fluxes
physical processes l

» Parallel computation on a cluster Compute viscous fluxes
computer, using MPI l

Compute influence of

g Python scripting for pre- and finite-rate chemistry
post-processing Next step l

» Lua for user-controlled run-time

Compute influence of

configuration in boundary thermal nonequilibrium
conditions and source terms l
» Lua for thermochemical Compute influence of

radiation energy exchange

configuration. |

Prehistory (of Eilmer, at least)

> in the late 1980s, the state of the art for scramjet simulations
involving reactive flow was JP Drummond SPARK code

» Flow solver component based on Bob McCormack’s (1969)
finite-difference shock-capturing technique.

» All configuration hard-coded into the Fortran source code and
compiled to run on a Cray supercomputer.

» To capture shocks in the T4 scramjet experiments, needed
excessively large artificial-pressure coefficients to suppress
oscillations.

> In the 1980s, a new CFD technology (upwind flux) was being
developed by the applied mathematics people and parallel
computing environments were being developed by the
computer science people (cluster computers).

The early years (of Eilmer) — finite-volume formulations

>

Dec 1990: following a CFD lesson on the chalk-board from
Bob Walters and Bernard Grossman, cns4u was started with
the intention to be like SPARK but with new technology

Dec 1992: back in Brisbane started L1d (at WBM-Stalker) to
reverse-engineer other groups shock tunnels

» 1993 built sm3d, a space-marching code for 3D scramjet flows

1995 through 1999: the postgrad years expanded scope of
experimentation and application

sm3d+ Chris Craddock, chemistry, optimization, scramjets
pamela Andrew McGhee, MPL parallelization

u2de Paul Petrie, unstructured, adaptive grid, shock tubes
sf2d, sf3d lan Johnston, structured moving grid with chemistry
and shock capturing, aerothermodynamics of entry vehicles

vV vy vy

1996: code reformulation around fluxes (frequent discussions
with Mike Macrossan); all code still in C with a preprocessor
having a little command interpreter built in.

The middle years — parallel calculation and scripting

» 1997: discovered scripting languages Tcl and Python

> 1999-2000: Vince Wheatley, rarefied flows, L1d, another go at
finite-rate chemistry

> 1999-2000: James Faddy, experiment with solution-adaptive
2D solver

» 1999-2002: Richard Goozee, SPH experiment, get to grips
with MPI

» 2001-2002: Michael Elford: validation exercise with Fastran
(commercial code)

» May 2003: scriptit.tcl provided fully programmable
environment for simulation-preparation.

> Aug 2004: Elmer began as a hybrid code using Python and C.

Growing up — C++ and Python

> Feb 2005: Realized that Python was much nicer for occasional
users. (scriptit.py)

» Jun 2005: rewrite of Elmer(2) in C alone so that Andrew
Denman could get on with his thesis

» 2005: more experimentation in CFD methods; Joseph Tang
wrote a hierarchical-grid solver based on virtual-cell
embedding.

» Mar 2006: mbcns2 was a rewrite of mbcns but with C++ to
manage code complexity.

» Jul 2006: rewrite Elmer2 in C++

» Sep 2007: this is crazy; we should merge the 2D and 3D codes
» Jan 2008: make mbcns2 look more like Elmer2

» Nov 2008: and call it Eilmer3.

Letting other people get some work done.

» User Guide (458pp) and Theory Book (plus guides for
turbulent flows, block-marching, etc).

> class-based implementation of boundary conditions; easier to
extend and maintain.

» generalization of the solution files; expandable content

» generalization of the postprocessing code as a library;
specialized postprocessors are easy and can be mixed with
preparation of new simulations.

» rework of house-keeping so that we can scale.

> generalization of thermochemistry, easily extendable multiple
temperature model (Rowan Gollan and Dan Potter)

» coupled radiation (Dan Potter)
» turbomachinery (Carlos Ventura, Jason Czapla, Jason Qin)

» meso-scale combustion and heat transfer (Anand, Xin, Rowan)

Source-code line count

At 60 lines per page, it's equivalent to a 5000 page document.

Source code and documentation development

300000
e3code O
e4code W
L (] 4
. 250000 | “g3doe O -
o |
©
< 200000 | 0 g
3
S 150000 o g
k]
& 100000 g
£ o
)
50000 | ° o o o)
|]
0 ‘ ‘ ‘ ‘ ‘ ‘
3 = = N e X o e
o o o o o o o o
g g q q q q g g
& &3 & & & & & &
=y =y S S =) S =y =y

Date

Eilmerd — Let’s do it right, again.

Fred Brooks, in the “Mythical Man-Month: Essays on software
engineering”
Sooner or later the first system is finished, and the
architect, with firm confidence and a demonstrated
mastery of the class of systems, is ready to build a
second system. ...
This second is the most dangerous system a man ever
designs. ...
The general tendency is to over-design the second
system, using all the ideas and frills that were cautiously
sidetracked on the first one.

We're OK, this is not our second system.
cns4u, mbens, mbens2, Elmer, Elmer2, Eilmer3 ... Eilmer4.

Eilmer — patron saint of Computational Fluid Dynamics.

y Stained-glass window in Malmesbury Abbey.
Ihttps:/ /en.wikipedia.org/wiki/Eilmer_of_Malmesbury

Eilmerd — features.

» 3D from the beginning, 2D as a special case

» structured- and unstructured-meshes for complex geometries
(presently vapourware, but the new design is accommodating)

» refined thermochemistry (Rowan)
» moving meshes (Jason Qin)

» simplified and generalized boundary conditions (Daryl Bond's
suggestion)

» coupled heat transfer

» shared-memory parallelism for multicore workstation use
» block-marching for speed (nenzfr and nozzle design)

» programmed in D with Lua scripting

» small kitchen sink

More Software Engineering

» Languages

| 4

>

>

Fortran is OK, but why bother.

C/C++ is for experts, and all roads lead to C.

D is the way to write for statically-typed, compiled code and
retain some sanity.

» Python convenient for the top-level code that the user sees but
» Lua is easily embeddable (core C/C++/D code calls functions

written in Lua)

» Other tools

vV vy vy

Editors (emacs) with syntax-highlighting.

Source code revision control — mercurial.

OS environment — Linux on cluster computers.

Compilers (to machine code)

Code checkers — static checks by compiler, memory access by
Valgrind, gdb to show where the program goes off into the
weeds

Collecting the low-hanging fruit of parallelism

1 // Determine the allowable time step -- serial version.
2 | double dt allow = 1.0e9;
3 foreach (myblk; gasBlocks) {
4 if (!myblk.active) continue;
5 double local_dt_allow = myblk.determine_time_step_size(dt_global);
6 dt allow = min(dt_allow, local dt allow);
7| 1}
8
9
10
11 // Determine the allowable time step -- parallel version.
12 | shared double dt allow = 1.0e9;
13 foreach (myblk; parallel(gasBlocks,1)) {
14 if (!myblk.active) continue;
15 double local_dt_allow = myblk.determine_time_step_size(dt_global);
16 dt_allow = min(dt_allow, local dt allow);
17 | }
Notes:

» Need to keep most data thread local.

» D Compiler expands “parallel” into code that hands out tasks
to the default ThreadPool.

Verification and Validation Examples

Verification:
» Are we solving the equations correctly?

» Compare with numerical solutions from other codes.

v

Exact solution: oblique detonation wave (idealized chemistry).

v

Manufactured solution that we must match (using special
source terms and BCs).

Validation:

> Are we solving the correct gas-dynamic equations?

Example 1: sharp-nosed projectile

v

Original Zucrow & Hoffman; also Anderson’s Hypersonics text

v

Shape of surface defined by polynomial equation

» Can compare numerical solutions

7 T T

oL

sk 6 y=140 M, =30
B
g4 s
g <
=3k S 4
35 £ _— Behind the shock wave
5]
] e

2k E

1 L

N 2 : On the
2 _ 0008333 + 0.509425(%) - 0‘092593(;5) 1 the surfce of the body
| | | Ve L\ |

0 1 2 3 4 5 6 7 8 9 10
Axial location, x/y,

L | 1 | | >
FIGURE 55 0 2 4 6 8 10

A typical characteristics mesh. (From Zucrow and Hoffman, Ref. 53.) Axial location, x/y,

Input script — gas model and flow

1 -- sharp.lua
2| config.title = 3 f e
3| print(config.title)
4
5 nsp, nmodes = setGasModel(eal- - -mo)
6 | print("GasMo e al a 1sp= ", nsp, ydes= ", nmodes)
7 initial = FlowState:new{p=5955.0, T=304.0, velx=0.0, vely=0.0}
8 inflow = FlowState:new{p=95.84e3, T=1103.0, velx=2000.0, vely=0.0}
9
Notes:

> user's input script is Lua source code
» arguments to function calls delimited by ()
» tables delimited by {}

» object model by convention as described in lerusalimschy'’s
book “Programming in Lua”

Input script — user-defined functions

Notes:

-- Geometry of flow domain.
function y(x)
-- (x,y)-space path for x>=0
if x <= 3.291 then
return -0.008333 + 0.609425*x - 0.092593*x*x
else
return 1.0
end
end

function xypath(t)
-- Parametric path with O<=t<=1.
local x = 10.0 * t
local yval = y(x)
if yval < 0.0 then
yval = 0.0
end
return {x, yval, 0.0}
end

> global variables unless stated otherwise

> can return tables

Input script — geometry definition

30 a = Vector3:new{-1.0, 0.0}

31 b = Vector3:new{ 0.0, 0.0}

32 c = Vector3:new{10.0, 1.0}

33 d = Vector3:new{10.0, 7.0}

34| e = Vector3:new{ 0.0, 7.0}

35| f = Vector3:new{-1.0, 7.0}

36 | ab = Line:new{a, b}; bc = LuaFnPath:new{"xypath"} -- lower boundary in
surface

37| fe = Line:new{f, e}; ed = Line:new{e, d} -- upper boundary

38 af = Line:new{a, f}; be = Line:new{b, e}; cd = Line:new{c, d} -- verti

39 -- Mesh the patches, with particular discretisation.

40 | ny = 60

41 clustery = RobertsFunction:new{endO=true, endl=false, beta=1.3}
42 clusterx = RobertsFunction:new{endO=true, endl=false, beta=1.2}
43 gridd = StructuredGrid:new{psurface=makePatch{fe, be, ab, af},

cfList={nil, clustery,nil, clustery},
niv=17, njv=ny+1}

46 | gridl = StructuredGrid:new{psurface=makePatch{ed, cd, bc, be},

Note:

cfList={clusterx,nil, clusterx,clustery},
niv=81, njv=ny+1}

> alternatively, could import grids

Input script — flow domain with boundary conditions

49 -- Define the flow-solution blocks.

50 blk0® = SBlock:new{grid=grid@, fillCondition=inflow}
51 blkl = SBlock:new{grid=gridl, fillCondition=initial}
52 -- Set boundary conditions.

53 | identifyBlockConnections()

54 | blkO.bcList[west] = SupInBC:new{flowCondition=inflow}
55 blkl.bcList[east] = ExtrapolateOutBC:new{}

57 | config.max_time
58 | config.max_step
59 | config.dt init = 1.0e-6

15.0e-3 -- seconds

Notes:
» We have separated grid generation from block definition.
» fillCondition could be given as a (user-defined) function of
position (x,y,z).

» Also, could provide lists of boundary conditions to the block
constructors.

Result — pressure field

Radial location, y/y,

N 2
Y = 0008333 + mmzs(j — 0092593
.|) . L\
4

3 4 5 6
Axial location, x/y,

FIGURE 55
A typical characteristics mesh. (From Zucrow and Hoffman, Ref. 53)

Example 2: supersonic flow over a forward-facing step

T(0)
400
DL

276

800
\‘IIH\I

938

Note:

» Hurry up and show the animation.

Parallel performance — Amdahl’s law

Mocled U]D a celolohan done w pancllel | n CPUs

— = I
. l f " WC =)_1:44 We, =P
5 W= P+S
WClock,
SP%J vp = WC, . £ =T
— =
e, S
I (u) - (SMPJ)(L§
" Speedup prttd\ T TP Specdep n-1

» How quickly can we do a fixed-size computation if we employ
n processors?

Parallel performance — forward-facing-step, 21 blocks

2 o

T
i
W
HEH
Lt
1

T
&

I

|
|

‘
1

5
11
| i =

1
I 5
I
T
T

|
T
|
1
]
1

|
UF | ‘
[
€T

Example 3: Richtmyer-Meshkov Instability

4
[| ‘

1.2 4.6440002

Time: 0.0 ms

Time: 35.0 ms

Animations:

» density, pressure, temperature, velocity gradient

	The Eilmer3 flow simulation code
	History
	Eilmer4, a new beginning
	Examples

