
Eilmer3: a CFD code and its validation
(A quarter of a century spent “doing sums”.)

Peter Jacobs and Many Others
School of Mechanical and Mining Engineering

The University of Queensland

19 June 2014

Motivation

The Eilmer3 flow simulation code

Verification/Validation Examples

Present activity...

Potted history of CFD technology for high-speed flow

I in the late 1980s, the state of the art for scramjet simulations
involving reactive flow was JP Drummond SPARK code

I Flow solver component based on Bob McCormack’s (1969)
finite-difference shock-capturing technique.

I All configuration hard-coded into the Fortran source code and
compiled to run on a Cray supercomputer.

I To capture shocks in the T4 scramjet experiments, needed
excessively large artificial-pressure coefficients to suppress
oscillations.

I In the 1980s, a new CFD technology (upwind flux) was being
developed by the applied mathematics people and parallel
computing environments were being developed by the
computer science people (cluster computers).

The early years (of Eilmer) – last century.

I Dec 1990: following a CFD lesson on the chalk-board from
Bob Walters and Bernard Grossman, cns4u was started with
the intention to be like SPARK but with new technology

I Dec 1992: back in Brisbane started L1d (at WBM-Stalker) to
reverse-engineer other groups shock tunnels

I 1993 built sm3d, a space-marching code for 3D scramjet flows
I 1995 through 1999: the postgrad years expanded scope of

experimentation and application
I sm3d+ Chris Craddock, chemistry, optimization, scramjets
I pamela Andrew McGhee, MPL parallelization
I u2de Paul Petrie, unstructured, adaptive grid, shock tubes
I sf2d, sf3d Ian Johnston, structured moving grid with chemistry

and shock capturing, aerothermodynamics of entry vehicles

I 1996: code reformulation around fluxes (frequent discussions
with Mike Macrossan); all code still in C with a preprocessor
having a little command interpreter built in.

...the dark ages...

I 1997: discovered scripting languages Tcl and Python

I 1999-2000: Vince Wheatley, rarefied flows, L1d, another go at
finite-rate chemistry

I 1999-2000: James Faddy, experiment with solution-adaptive
2D solver

I 1999-2002: Richard Goozee, SPH experiment, get to grips
with MPI

I 2001-2002: Michael Elford: validation exercise with Fastran
(commercial code)

I May 2003: scriptit.tcl provided fully programmable
environment for simulation-preparation.

I Aug 2004: Elmer began as a hybrid code using Python and C.

...the Renaissance.

I Feb 2005: Realized that Python was much nicer for occasional
users. (scriptit.py)

I Jun 2005: rewrite of Elmer(2) in C alone so that Andrew
Denman could get on with his thesis

I 2005: more experimentation in CFD methods; Joseph Tang
wrote a hierarchical-grid solver based on virtual-cell
embedding.

I Mar 2006: mbcns2 was a rewrite of mbcns but with C++ to
manage code complexity.

I Jul 2006: rewrite Elmer2 in C++

I Sep 2007: this is crazy; we should merge the 2D and 3D codes

I Jan 2008: make mbcns2 look more like Elmer2

I Nov 2008: and call it Eilmer3.

Since 2008: changes to documentation and capability.

I User Guide (447pp) and Theory Book.

I class-based implementation of boundary conditions; easier to
extend and maintain.

I generalization of the solution files; expandable content (easy
to add variables without breaking postprocessing)

I generalization of the postprocessing code as a library;
specialized postprocessors are easy and can be mixed with
preparation of new simulations.

I rework of housekeeping (subdirectories for files storage;
gzipped grid and flow files) so that we can scale.

I generalization of thermochemistry, easily extendable multiple
temperature model (Rowan Gollan and Dan Potter)

I coupled radiation (Dan Potter)

I turbomachinery (Carlos Ventura, Jason Czapla, Jason Qin)

I meso-scale combustion (Anand, Xin)

Eilmer3 in a nutshell

I Eulerian description of the gas
(finite-volume, axisymmetric or 3D)

I Transient, time-accurate

I Shock capturing

I Multiple-block, structured grids

I Parallel computation on a cluster
computer, using MPI

I Really good thermochemistry
module by Rowan Gollan and Dan
Potter

Mathematical gas dynamics (in differential form, by RJG)
Conservation of mass:

∂

∂t
ρ+∇ · ρu = 0 (1)

Conservation of species mass:

∂

∂t
ρi +∇ · ρiu = − (∇ · Ji) + ω̇i (2)

Conservation of momentum:

∂

∂t
ρu+∇ · ρuu = −∇p −∇ ·

{
−µ(∇u+ (∇u)†) + 2

3
µ(∇ · u)δ

}
(3)

Conservation of total energy:

∂

∂t
ρE +∇ · (e +

p

ρ
)u = ∇ · [k∇T +

Nv∑
s=1

kv,s∇Tv,s] +∇ ·

[
Ns∑
i=1

hiJi

]
−
(
∇ ·
[{
−µ(∇u+ (∇u)†) + 2

3
µ(∇ · u)δ

}
· u
])
− Qrad (4)

Conservation of vibrational energy:

∂

∂t
ρiev,i+∇·ρiev,iu = ∇·[kv,i∇Tv,i]−∇·ev,iJi+QT−Vi+QV−Vi+QChem−Vi

−Qradi

(5)

More maths...

Thermodynamic model of the gas...
Finite-rate chemical kinetics...
Radiation energy exchange...
Boundary conditions...

Numerical Methods

I nonlinear function solvers – secant, Newton, fixed-point
methods

I linear equation solvers – full, direct methods, iterative Jacobi,
Gauss-Seidel

I (single an multidimensional) interpolation and reconstruction
of data – polynomials, Bezier curves, splines, NURBS

I finite-differences (to turn our PDEs into algebraic equations or
ODEs)

I quadrature / integration – Newton-Cotes, Gaussian

I ordinary-differential-equation integrators – Euler,
predictor-corrector, Runge-Kutta schemes

Software implementation

I C++ for the core solver and
update computations for the
physical processes

I Parallel computation on a cluster
computer, using MPI

I Python scripting for pre- and
post-processing

I Lua for user-controlled run-time
configuration in boundary
conditions and source terms

I Lua for thermochemical
configuration.

Compute inviscid fluxes

Compute viscous fluxes

Compute influence of

finite-rate chemistry

Compute influence of

thermal nonequilibrium

Compute influence of

radiation energy exchange

Next step

Operator-split

time stepping

Software Engineering

I Languages
I Fortran is OK, but why bother.
I C/C++ is for experts, and all roads lead to C.
I Python convenient for the top-level code that the user sees.
I Lua is easily embeddable (core C/C++ code calls user-defined

functions written in Lua)
I D is the future for statically-typed, compiled code.

I Other tools
I Editors (emacs) with syntax-highlighting.
I Source code revision control – mercurial.
I OS environment – Linux on cluster computers.
I Compilers (to machine code)
I Code checkers – static, memory access (Valgrind)

Kernighan’s Law: ”Debugging is twice as hard as writing the code in the

first place. Therefore, if you write the code as cleverly as possible, you

are, by definition, not smart enough to debug it.”

Source-code line count

Just Eilmer3, since the 2008 reboot. It’s a 5000 page document.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

0
1
/0

1
/2

0
0
9

0
1
/0

7
/2

0
0
9

0
1
/0

1
/2

0
1
0

0
1
/0

7
/2

0
1
0

0
1
/0

1
/2

0
1
1

0
1
/0

7
/2

0
1
1

0
1
/0

1
/2

0
1
2

0
1
/0

7
/2

0
1
2

0
1
/0

1
/2

0
1
3

0
1
/0

7
/2

0
1
3

0
1
/0

1
/2

0
1
4

0
1
/0

7
/2

0
1
4

0
1
/0

1
/2

0
1
5

L
in

e
s
 o

f
c
o
d
e

Date

Eilmer3 source code development

Source-code line counts

Lines of code, including white-space and comments (April 2014):
Code module cxx+hh Python Lua LATEX Total

gas-dynamics core 45 149 15 579 0 136 60 864
thermochemistry 32 779 6 015 58 825 2280 99 899
radiation 20 296 22 573 107 3047 46 023
geometry2 15 048 2 403 228 17 679
cfpylib 0 9 245 0 0 9 245
examples 0 26 699 32 442 16 274 75 415
Total 113 272 82 514 91 602 21 737 309 125

Of the Lua code 92% is for a database in human-readable format.

36% for collision integrals; 36% for reactions schemes; 20% for thermo

and transport properties. (Nov 2012)

Count lines in files *.cxx *.hh *.py *.lua

$ find . -name "*.cxx" -exec wc ’{}’ \; | awk ’BEGIN {sum=0} {sum+=$1} END {print sum}’

Verification and Validation Examples

Verification Examples:

I Are we solving the equations correctly?

I Compare with numerical solutions from other codes.

I Exact solution: oblique detonation wave (idealized chemistry).

I Manufactured solution that we must match (using special
source terms and BCs).

Validation Examples:

I Are we solving the correct gas-dynamic equations?

I Sphere in reacting flow.

I Shock + boundary-layer interaction.

I Turbomachine compressor.

I Need high quality experimental data.

Sharp nosed projectile

I Original Zucrow & Hoffman; also Anderson’s Hypersonics text

I Shape of surface defined by polynomial equation

I Can compare numerical solutions

Validation exercise for gas dynamics

Schwartz & Eckerman tested their
measurement technique of shock
detachment distance by firing ball
bearings into noble gases.

Argon flows

M∞ 2 – 6
T∞ 300 K
p∞ 10, 100, 200 mmHg

Krypton flows

M∞ 6 – 12
T∞ 300 K
p∞ 10, 100, 200 mmHg

Argon flow, M = 2.0, p = 10.0 mm Hg)

Shock detachment in noble gases

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12

δ
/D

Mach number

argon
krypton

numerical
Schwartz & Eckerman (1956)

Mohammadian’s convex ramp
Experiment done in the Imperial College gun tunnel with the Mach
12 nozzle. Experiment provides surface pressure and heat transfer
measurements.

Mohammadian’s convex ramp – surface pressure

Mohammadian’s convex ramp – surface heat transfer

Mohammadian’s convex ramp – Eilmer3 simulation

We reverse-engineered the free-stream conditions and the ramp
shape from incomplete descriptions in the JFM paper.

Mohammadian’s convex ramp – Eilmer3 simulation

Thermodynamic nonequilibrium is included.

I T[0] is the static temperature;

I T[1] is the vibrational temperature.

Mohammadian’s convex ramp – compare pressure

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

p
,

P
a

x, mm

Cubic ramp, pressure along surface

Eilmer3
Mohammadian (1972)

Mohammadian’s convex ramp – compare heat transfer

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

q
,

k
W

/m
**

2

x, mm

Cubic ramp, heat-flux along surface

Eilmer3
Eilmer3*1.2

Mohammadian (1972) expt
original Cheng theory

modified Cheng theory

Cylinder with flare – CUBRC experiment

I Holden and crew have gone to great lengths to generate
high-quality experimental data for CFD validation.

Cylinder with flare – compare simulations

I MacLean’s CFD data from AIAA Paper 2004-0529.

I Also, describes the experiment’s free-stream conditions.

I Strong viscous interaction at leading edge.

I Separation zone sensitive to on-coming boundary layer
conditions and shock interaction.

Cylinder with flare – separation zone

I Remember that Eilmer3 is a simulation code.

I The flow features develop according to the rules of
gas-dynamics (see slide 8).

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x
z
e
ro

,
m

m

t, ms

Cylinder with extended flare, separation location

Eilmer3
59.85+46.56*exp(-t/0.563)

Cylinder with flare – compare surface pressure

I MacLean’s CFD data from AIAA Paper 2004-0529.

I Experimental data supplied in a spreadsheet file (in
dimensional form).

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250

p
,

P
a

x, mm

Cylinder with extended flare, pressure along surface

Eilmer3
CUBRC Run 14

Cylinder with flare – compare heat transfer

I MacLean’s CFD data from AIAA Paper 2004-0529.

I Experimental data supplied in a spreadsheet file (in
dimensional form).

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

q
,

k
W

/m
**

2

x, mm

Cylinder with extended flare, heat-flux along surface

Eilmer3 k*dT/dy
CUBRC Run 14

Turbomachinery extensions

I new flow solver components
I rotating frame of reference for some blocks
I body forces: centrifugal and Coriolis
I energy eqation uses rothalpy

I new boundary conditions
I subsonic inflow and outflow, with swirl (SubsonicInBC)
I periodic boundaries (MappedCellBC)
I mixing-plane between rotating and non-rotating blocks

(ExchangeWithMixingPlaneBC)

Standard condition 10 compressor blade
I one of many test cases in the turbomachinery literature
I pressure field for an exit Mach number of 0.7

Where to, now?

I http://xkcd.com/844/

I The Compressible Flow CFD
Project
http://cfcfd.mechmining.uq.edu.au/

I Let’s take the best parts and do it
again in D.

	Motivation
	The Eilmer3 flow simulation code
	Verification/Validation Examples
	Present activity...

