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Abstract

Eilmer is a program for the simulation of transient, compressible flow in two
and three spatial dimensions. It has a preparation mode that can be used to set up
a database of simulation parameters, a multiblock grid defining the flow domain
and an initial flow field. These items are then used as a starting point for the
main simulation which computes a series of snapshots of the evolving flow. A
postprocessing mode can extract and reformat flow data of interest.

Eilmer is available as source code from https://github.com/gdtk-uq/
gdtk and is related to the larger collection of compressible flow simulation codes
found at https://gdtk.uqcloud.net/.

This user’s guide contains a collection of example simulations: scripts, results
and commentary. It may be convenient for new users of the code to identify an
example close to the situation that they wish to model and then adapt the scripts
for that example.

https://github.com/gdtk-uq/gdtk
https://github.com/gdtk-uq/gdtk
https://gdtk.uqcloud.net/
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1

Introduction

1.1 Compressible flow simulation and the Eilmer code

Eilmer code is a program for the numerical simulation of transient, compressible gas
flows in two and three dimensions. This program answers the ”What if ... ?” type
of question where you will set up a flow situation by defining the spatial domain in
which the gas moves, set an initial gas state throughout this domain, specify bound-
ary condition constraints to the edges of the domain and then let the gas flow evolve
according to the rules of gas dynamics.

The definition of the flow domain includes a mesh of finite-volume cells, together
with boundary conditions such as solid no-slip walls, inflow surfaces and outflow
surfaces. To help with the setup of this domain, the code collection includes a prepa-
ration mode that can be used to set up a database of simulation parameters, a blocked,
body-fitted mesh defining the flow domain and an initial flow-field specification.
This preparation mode includes a mesh generator that can accept a description of the
flow domain in terms of boundary surfaces and then generate the blocked mesh of
finite-volume cells. Within each block, the underlying grid of cells may be structured
or unstructured. The mesh and initial flow state can then be used as a starting point
for the main simulation mode which computes a series of snapshots of the evolving
flow. Finally, a rudimentary but versatile postprocessing mode makes the flow data
available for further analysis.

We have arranged the code as a programmable program, with a user-supplied in-
put script (written in Lua) providing the configuration for any particular simulation
exercise. Our target audience is the advanced student of gas dynamics, possibly an
undergraduate student of engineering but, more likely, a postgraduate student or
academic colleague wanting to simulate gas flows as part of their study. A laundry
list of features in the code includes:

• Eulerian/Lagrangian description of the flow (finite-volume, 2D axisymmetric
or 3D).

• Transient, time-accurate updates, and optionally implicit updates for steady
flow.

• Shock capturing plus shock fitting boundary.

1



2 Chapter 1. Introduction

• Multiple-block, structured and unstructured grids.

• Parallel computation in a shared-memory context.

• High-temperature nonequilibrium thermochemistry.

• GPU acceleration of the finite-rate chemistry.

• Dense-gas thermodynamic models and rotating frames of reference for turbo-
machine modelling.

• Turbulence models.

• Conjugate heat transfer to solid surfaces and heat flow within solid objects.

• MHD simulation for a single-fluid plasma.

• Import of GridPro and SU2 grids for complex flow geometries.

If you wish to integrate CFD analysis in your design process, it is probably easiest
to have in mind a family of domain shapes or inflow conditions, with variations de-
fined by a small set of parameters. The Eilmer code can then be used to run a number
of simulations, answering the questions ”What would the flow field do if we use these
particular parameters?” This is essentially the process that we have followed when
using the codes for the design of hypersonic nozzles [1] where the nozzle wall shape
is adjusted to produce a uniform flow field toward the nozzle exit plane.

1.2 History of the code

In developing Eilmer, our focus has been on producing an open source code that
is designed to be a simple access point for teaching students about computational
fluid dynamics. The aspects of CFD that interest us include both the application of a
simulation code and the development of the code itself.

Eilmer 4.0 is a complete reimplementation of the best bits of the Eilmer3 pro-
gram. In turn, Eilmer3 was a derivative of the code mbcns2 which was an experi-
ment in writing the mb cns code in C++. Once it was determined that (despite the
programming pain) there were clear benefits in using C++, our three-dimensional
flow code Elmer1 was then reworked in C++ as Elmer2. At the same time, we exper-
imented with using the Python language for the user’s input script and embedding
the Lua language in order to make some of the boundary conditions programmable.
Of course, these codes being experiments in C++, we soon decided that it could all be
done much more cleanly and be made much more versatile if we just reworked some
of the basic modules. Thus, the thermochemistry was reworked and the separate two
and three dimensional codes merged into Eilmer3. This was a large code base, in a
difficult language for us (since we are mechanical engineers by trade) so, when a vi-
able alternative language became available, we jumped ship and rebuilt the best parts
of Eilmer3 in the D programming language (http://dlang.org) coupled with the
Lua scripting language (http://www.lua.org).

1Yes, the spelling changed in recent years, to avoid a name clash with the finite-element code from
Finland.

http://dlang.org
http://www.lua.org
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The code is named after Eilmer of Malmesbury2, with the spelling chosen to avoid
a naming clash with the Elmer finite-element code from Finland.3

1.3 More information

The following sections provide example input scripts and shell scripts for a number
of simulations. These are intended to be starting points for your own simulations and
should be studied together with the other manuals that can be found in the documen-
tation section of the Compressible Flow CFD Group web site:
http://cfcfd.mechmining.uq.edu.au/eilmer
Study the example scripts carefully; some of the interesting bits of the documentation
are embedded within them.

For a description of the methods coded into Eilmer, see the companion report
[2] and the paper [3] which cover the gas-dynamic formulation. More detailed intro-
ductions to the various components of the overall simulation package can be found
in the following documents:

• a brief introduction to the D-language implementation of the Eilmer code [4]

• a guide to the gas model and basic thermochemistry package [5]

• a guide to the reacting-gas model with finite-rate kinetics [6]

• a guide to the look-up table gas model [7]

• a guide to the geometric modelling package [8]

• a guide to the shock-fitting boundary condition [9]

1.4 License

For the source code, we use the GNU General Public License 3. Please see the file
gpl.txt in the source tree. For the documentation, such as this user guide, we use
the Creative Commons Attribution-ShareAlike 4.0 International License.

We hope that by using Eilmer you are able to produce some high quality simu-
lations that aid your work. When it comes time to report the results of your Eilmer
simulations to others, we ask that you acknowledge our work by citing our papers
on the Eilmer code:

Jacobs, P.A. and Gollan, R.J. (2016). Implementation of a Compressible-
Flow Simulation Code in the D Programming Language. Advances of Com-
putational Mechanics in Australia Volume 846, pages 54–60, in the series Ap-
plied Mechanics and Materials (DOI: 10.4028/www.scientific.net/AMM.846.54)

Gollan, R.J. and Jacobs, P.A. (2013). About the formulation, verification
and validation of the hypersonic flow solver Eilmer. International Journal
for Numerical Methods in Fluids 73(1):19-57 (DOI: 10.1002/fld.3790)

2https://en.wikipedia.org/wiki/Eilmer_of_Malmesbury
3http://www.csc.fi/elmer

http://cfcfd.mechmining.uq.edu.au/eilmer
https://en.wikipedia.org/wiki/Eilmer_of_Malmesbury
http://www.csc.fi/elmer
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Getting started

The core solver and its modules are mainly written in the D programming language
for speed and the benefits of compile-time checking. The pre- and post-processing
modes make use of the Lua scripting language so that we get flexibility and conve-
nient customization. There is also a little Tcl/Tk used in the automated testing scripts.

2.1 Prerequisite environment and assumed knowledge

Our main development environment is Linux but the programs can be deployed on
Linux, flavours of Unix such as MacOS-X, and MS-Windows. The main requirement
is that the D language compiler and the Tcl interpreter be available. The source code
of the Lua interpreter is included in the Eilmer source code repository. If you are
not accustomed to working with Unix/Linux, have a look at Appendix A for a brief
introduction to working on the command line.

Beyond our expectations of your computing environment, we also assume that
your mathematics, science or engineering background adequately prepares you for
CFD analysis. In particular, we assume that you have a working knowledge of geom-
etry, calculus, mechanics, and thermo-fluid-dynamics, at least to a second- or third-
year university level. With the Eilmer code, we try to make the analysis of compress-
ible, reacting flow accessible and reliable; we cannot make it trivial.

2.2 Getting the source code

The full source code for Eilmer and a set of examples can be found in a public reposi-
tory on GitHub. To get your own copy, use the Git revision control client to clone the
repository with something like the following command:
$ git clone https://github.com/gdtk-uq/gdtk.git gdtk
and within a couple of minutes, depending on the speed of your network connection,
you should have your own copy of the full source tree and the complete repository
history.

5



6 Chapter 2. Getting started

2.3 Building and installing the programs

Once you have cloned this repository, all that is required is a Linux environment with
a fairly recent D compiler and a C compiler (for building the Lua interpreter). We
recommend the LDC compilers.

Going into the gdtk/src/eilmer directory you will find a single makefile
that allows the build to proceed with the command make install. The executable
program and supporting files will be installed into the directory $HOME/gdtkinst/
by default.

2.4 Running the program

For running the program, environment variables may be set for the bash shell. On a
recent Ubuntu system, put the following commands put into your .bash_aliases
file:

export DGD_REPO=${HOME}/gdtk
export DGD=${HOME}/gdtkinst
export PATH=${PATH}:${DGD}/bin
export DGD_LUA_PATH=${DGD}/lib/?.lua
export DGD_LUA_CPATH=${DGD}/lib/?.so

Setting the variable DGD_REPO may be handy if you have cloned your copy of the
repository to somewhere other than $HOME/gdtk/.

The actual running of a simulation is done in stages.

1. Prepare the grids and initial flow configuration by interpreting your Lua input
script.

2. Run the main simulation program, starting from the prepared initial flow state
and allowing the flow field to develop in time, writing the resulting flow field
states at particular times.

3. Postprocess the simulation data to extract particular data of interest.

Of course, this description is too superficial to actually expect that you will be able to
run a simulation with no further instruction. If you are keen, it’s now time to try the
tutorial example in the following chapter.
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A first simulation with Eilmer

Let’s start with a simple-to-imagine flow of ideal air over a sharp-nose of a super-
sonic projectile. Figure 3.1 is a reproduction of Fig. 3 from Maccoll’s 1937 paper [10]
and shows a shadowgraph image of a two-pounder projectile, in flight at Mach 1.576.
We’ll restrict our simulation to just the gas flow coming onto and moving up the coni-
cal surface of the projectile and work in a frame of reference attached to the projectile.
Further, we will assume that all of the interesting features of the three-dimensional
flow can be characterized in a two-dimensional plane. The red lines mark out the
region of our gas flow simulation, assuming axial symmetry about the centreline of
the projectile.

on May 30, 2014rspa.royalsocietypublishing.orgDownloaded from

Figure 3.1: A two-pound projectile in flight. A conical shock is attached to the sharp
nose of the projectile. This photograph was published by Maccoll in 1937. The red
lines have been added to demark the region of gas flow for which we will set up our
simulation.

The resulting flow, in the steady-state limit, should have a single shock that is

7



8 Chapter 3. A first simulation with Eilmer

straight in this 2D meridional plane (but conical in the original 3D space). The angle
of this shock can be checked against Taylor and Maccoll’s gas-dynamic theory and,
since the simulation demands few computational resources (in both memory and run
time), it is useful for checking that the simulation and plotting programs have been
built and installed correctly.

3.1 The simulation

To build our simulation, we abstract the boxed region from Figure 3.1 and consider
the axisymmetric flow of an ideal, inviscid gas over a sharp-nosed cone with 20 de-
gree half-angle. The constraint of axisymmetry implies zero angle of incidence for the
original 3D flow.

Figure 3.2: Schematic diagram of the geometry for a cone with 20 degree half-angle.
The thick dark line represents the cone surface and the green coloured region repre-
sents the gas domain. Boundary conditions will be added such that gas flows into the
domain on the left (west) boundary and out on the right (east) boundary. The north
and south boundaries will be set as walls with slip. This SVG figure was generated
as a sketch at preparation time.

Despite Figure 3.1 being a good motivator for this simulation, the free-stream con-
ditions of p∞ = 95.84kPa, T∞ = 1103K and V∞ = 1000m/s are actually related to the
shock-over-ramp test problem in the original ICASE Report [11] and are set to give
a Mach number of 1.5. It is left as an exercise for the reader to run a simulation at
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Maccoll’s value of Mach number and check that the simulation closely matches the
shadowgraph image.

3.1.1 Running the simulation

Assuming that you have the program executable files built and accessible on your
system’s search PATH, as described in Chapter 2, use the following commands:

$ mkdir ∼/temporary-work
$ cd ∼/temporary-work
$ rsync -av ∼/gdtk/examples/eilmer/2D/sharp-cone-20-degrees/sg/ .

to set up a work space that is separate to your copy of the source code tree. The $
character represents the command prompt for your system. That way you can do
what you like within the work space and then just remove it when you are finished.
The rsync command should have made a copy of the essential files for this example
in your newly constructed workspace, so you don’t really need to type in the content
of files discussed below.

The first task in starting our simulation is to prepare an input file for the building
of a simple gas model for air. We might call this file ideal-air.inp and it should
have the two lines:

1 model = "IdealGas"
2 species = {’air’}

We now use this input file to prepare the actual gas-model definition file with the
command:

$ prep-gas ideal-air.inp ideal-air-gas-model.lua

The result will be the generation of the Lua file ideal-air-gas-model.lua that
contains the detailed specification of an ideal-air gas model.

To generate the gas-model file, the prep-gas program uses a database to collect
the detailed thermodynamic properties of the requested gas species. The content of
the gas-model file is very much more detailed than the input file but it is just a Lua
script and can be inspected with a text editor. As you build more simulations, you
may value having the gas-model for a particular simulation being fully documented
in this manner. The thermochemical module within Eilmer is very flexible and there
are many possible gas models that you might use.

The next thing that you should do in preparing a new simulation is to construct a
description of your flow conditions and flow domain as a Lua input script that will
be fed to the preparation stage of the flow solver. As is done in all of the televised
cooking shows, we will make use of one that was prepared a little earlier and saved
as the file cone20.lua. The details of the script content will be examined in the next
section but, for now we will proceed to make use of our precooked script.

The first phase of the simulation calculation is to generate a set of grid and initial
flow-state files. This is done with the command:
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$ e4shared --prep --job=cone20

which should result in a pair of grid files in the subdirectory grid/t0000/ and a
pair of initial flow-state files in subdirectory flow/t0000/. Note that each of the
long-format command-line options starts with two dashes.

We can now start the computation of the evolution of the flow field with the com-
mand:1

$ e4shared --run --job=cone20 --verbosity=1 --max-cpus=2

and, within a minute or so, you should end up with the flow solution files accumu-
lated in subdirectories of flow/. The time-evolution of the flow field is computed for
5 ms (with 833 time steps being required) and while the time-stepping is happening,
some status messages should be appearing on the console. Every 20 time steps, a
message is printed to indicate the current time step, the current simulation time, the
size of the time step (dt), the wall-clock time elapsed since the program started (WC),
the estimated wall-clock time to the final simulation time (WCtFT) and the estimated
wall-clock time to the maximum allowed number of steps (WCtMS). The unit of time
for all of these values is seconds. For example, let us take a look at what is printed2

for step number 540.

Step= 540 t= 3.123e-03 dt= 6.003e-06 WC=3 WCtFT=1.7 WCtMS=13.7

We can interpret this as follows. At step 540, Eilmer has simulated 3.123 ms of phys-
ical time for gas to flow over the cone, and at that step it was using a timestep of
6.003µs. At step 540, the program has been running for 3 seconds. We have two es-
timates of when the program will finish and whichever it reaches first, wins — the
program will stop. Those two estimates are that: (1) the program will finish in 1.7
seconds when it reaches the requested simulated time of 5 ms; (2) the program will
finish in 13.7 seconds when it reaches the requested step number of 3000 steps. In this
case, it reaches the maximum simulation time first.

After the simulation calculation is finished, you will probably want to view the
flow field data with a visualization program. The command:

$ e4shared --post --job=cone20 --vtk-xml \
--add-vars="mach,pitot,total-p,total-h"

will pick up the final frame of the flow solution and write a set of VTK files in XML
format. Note that the backslash character at the end of the first line above indicates
that the line is not yet complete and there is more to come. Both lines are thus ef-
fectively a single logical line. The --add-vars option adds some derived variables
that are not part of the default solution data. Here, these extra variables are Mach
number, Pitot pressure, total pressure and total enthalpy. The postprocessing pro-
gram defaults to selecting the last time snapshot, however, you may select a different
instance to plot with the --tindx-plot option.

1The option --max-cpus=2 indicates that the program is allowed to make use of two cores of the
computer. It’s rare these days to have less than a couple of CPU cores available on your workstation,
so you should be pleased to make good use of them.

2Note that the numerical details will change, depending on the version of code that you run and
the performance of the computer that you are using.
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The VTK plot files (all in the plot subdirectory) may be viewed with Paraview
and nicely-coloured images can be made. Even if your boss doesn’t believe your
analysis, bright colours are always convincing.

The commands discussed above to prepare, run and postprocess the simulation
have been gathered together into the run.sh shell script, which can be invoked to
run all phases of the simulation in one pass. This is an example of a minimal shell
script that tries to execute all of the commands unconditionally. Ideally, you should
either run the commands interactively and check the result of each or you should
program your shell script to check the return status of each command and then con-
ditionally proceed with each subsequent command. That is a little more sophisticated
than we wish to discuss at the moment but learning to do this will be valuable when
you write shell scripts that are to be used in a batch system.

This particular example is small enough that running each stage interactively is
convenient and, having done so, let’s return to examining the content of the input
script.

3.1.2 Input script (.lua)

The Lua input script contains the details that specify our simulation. We need a gas
model, some flow conditions, a region to be defined and meshed and some boundary
conditions specified. There are also decisions to be made about configuration options
such as the size of the time step.

1 -- cone20.lua
2 -- Simple job-specification file for e4prep -- for use with Eilmer4
3 -- PJ & RG
4 -- 2015-02-24 -- adapted from the Python version of cone20
5
6 -- We can set individual attributes of the global data object.
7 config.title = "Mach 1.5 flow over a 20 degree cone."
8 print(config.title)
9 config.dimensions = 2

10 config.axisymmetric = true
11
12 -- The gas model is defined via a gas-model file.
13 nsp, nmodes, gm = setGasModel(’ideal-air-gas-model.lua’)
14 print("GasModel set to ideal air. nsp= ", nsp, " nmodes= ", nmodes)
15 initial = FlowState:new{p=5955.0, T=304.0, velx=0.0}
16 inflow = FlowState:new{p=95.84e3, T=1103.0, velx=1000.0}
17
18 -- Demo: Verify Mach number of inflow and compute dynamic pressure.
19 print("inflow=", inflow)
20 print("T=", inflow.T, "density=", inflow.rho, "sound speed= ", inflow.a)
21 print("inflow Mach number=", 1000.0/inflow.a)
22 print("dynamic pressure q=", 1/2*inflow.rho*1.0e6)
23
24 -- Set up two quadrilaterals in the (x,y)-plane by first defining
25 -- the corner nodes, then the lines between those corners.
26 a = Vector3:new{x=0.0, y=0.0}
27 b = Vector3:new{x=0.2, y=0.0}
28 c = Vector3:new{x=1.0, y=0.29118}



12 Chapter 3. A first simulation with Eilmer

29 d = Vector3:new{x=1.0, y=1.0}
30 e = Vector3:new{x=0.2, y=1.0}
31 f = Vector3:new{x=0.0, y=1.0}
32 ab = Line:new{p0=a, p1=b} -- lower boundary, axis
33 bc = Line:new{p0=b, p1=c} -- lower boundary, cone surface
34 fe = Line:new{p0=f, p1=e}; ed = Line:new{p0=e, p1=d} -- upper boundary
35 af = Line:new{p0=a, p1=f} -- vertical line, inflow
36 be = Line:new{p0=b, p1=e} -- vertical line, between quads
37 cd = Line:new{p0=c, p1=d} -- vertical line, outflow
38 quad0 = makePatch{north=fe, east=be, south=ab, west=af}
39 quad1 = makePatch{north=ed, east=cd, south=bc, west=be, gridType="ao"}
40 -- Mesh the patches, with particular discretisation.
41 nx0 = 10; nx1 = 30; ny = 40
42 grid0 = StructuredGrid:new{psurface=quad0, niv=nx0+1, njv=ny+1}
43 grid1 = StructuredGrid:new{psurface=quad1, niv=nx1+1, njv=ny+1}
44 -- Define the flow-solution blocks.
45 blk0 = FluidBlock:new{grid=grid0, initialState=inflow}
46 blk1 = FluidBlock:new{grid=grid1, initialState=initial}
47 -- Set boundary conditions.
48 identifyBlockConnections()
49 blk0.bcList[west] = InFlowBC_Supersonic:new{flowState=inflow}
50 blk1.bcList[east] = OutFlowBC_Simple:new{}
51
52 -- add history point 1/3 along length of cone surface
53 setHistoryPoint{x=2*b.x/3+c.x/3, y=2*b.y/3+c.y/3}
54 -- add history point 2/3 along length of cone surface
55 setHistoryPoint{ib=1, i=math.floor(2*nx1/3), j=0}
56
57 -- Do a little more setting of global data.
58 config.max_time = 5.0e-3 -- seconds
59 config.max_step = 3000
60 config.dt_init = 1.0e-6
61 config.cfl_value = 0.5
62 config.dt_plot = 1.5e-3
63 config.dt_history = 10.0e-5
64
65 dofile("sketch-domain.lua")

The first thing to be aware of with your input script is that it is part of a larger Lua
program and that the interpreter for this Lua program is embedded within the main
e4shared simulation program. On seeing the --prep flag, the e4shared program
loads a number of Lua interfaces to the D-language part of the program and then calls
the Lua interpreter to do the first part of the Lua program. This sets up a number of
services that are made available to your input script that is then processed by the
embedded Lua interpreter.

Single-line comments in Lua start with a double-dash and continue to the end
of the line. We have started the input script with a few such comments to remind
us of the intended simulation and who is to blame for writing the file. The first real
command is on line 7, where we set the simulation title as a string. The overall config-
uration of the simulation is contained in a global configuration class that appears in
the Lua script as the table config. Behind this table is the D-language global config-
uration class that stores the data in the D-language domain. Accessing entries in the
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config, calls up functions that access the corresponding attributes in the D-language
domain.

Note that you have access to the full capabilities of the Lua interpreter. On line 8,
we use the Lua function print to print the value of config.title. On lines 9 and
10, we continue to set a couple more configuration options. Boolean values may be
specified as true or false.

The gas model is central to the calculations in the simulation. On line 13, we tell
the program where to find the specification for the gas model. This specification is
another Lua script that sets relevant tables of parameters for the thermodynamic and
transport properties of the gas. Recall that we built the file ideal-air-gas-model.lua
with the prep-gas program, as discussed on p.9. The companion report [5] on the
gas model and its programming interface provides more details. On configuring the
gas model, the setGasModel function returns 3 values: the number of species, the
number of nonequilibrium thermal energy modes and a reference to the gas model
object. These items may be handy for making calculations within your input script.

Once a gas model has been set, you may then create FlowState objects. On
lines 15 and 16, we construct two such objects, using the convention described in the
Programming in Lua book [12]. Note the use of the colon rather than a dot before
the word new, and note the use of braces to construct a table of parameters that are
given to the new function. When constructing objects within the input script, we have
mainly chosen a notation that has all of the elements as named attributes in a single
table. For these particular FlowState constructors, we have omitted some of the
parameters, such as vely and velz, which take on default values. These particular
parameters have default values of zero. If a mandatory item is missing, the function
called by new should complain, telling you specifically what was required.

For the gas-dynamic part of the Eilmer code, we try to consistently use SI-MKS
units. Point coordinates are specified in metres, time in seconds, velocities in m/s,
pressures in Pa and temperatures on the thermodynamic scale K.

To demonstrate the use of arbitrary calculations within the input script, lines 19–22
show how to dip into the FlowState table for the inflow, print some of the parameter
values describing the flow condition, and use them to compute the derived quan-
tities of Mach number and dynamic pressure. Eilmer is a multi-species and multi-
temperature flow code at heart, but the presently specified gas model for ideal air has
only one species and no nonequilibrium thermal modes. When setting flow condi-
tions earlier, the FlowState constructor is aware of the single-species specification
of this particular gas model and will internally generate an appropriate table from
the supplied and default parameters. To access the static temperature value in order
to print it on line 20, we can ask for the T element as inflow.T (as shown) or as
inflow["T"]. Lines 21 and 22 compute the inflow Mach number as V∞

a
and dy-

namic pressure 1
2
ρV 2

∞ using the gas state data and the known inflow velocity. The
printed results appear on the standard output as the preparation stage is run.

Having a gas model and a set of flow conditions, let’s turn our attention to the
construction of the flow domain. The geometric complexity of the domain outlined
in Figures 3.1 and 3.2 is small, so we will use the geometry and meshing functions
built into Eilmer.
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Lines 26 to 31 start the geometric description by defining a few points of inter-
est using the Vector3 constructor. Note that the coordinate values are supplied as
named items in the table passed to the new method of the Vector3 class and that the
unspecified z component defaults to zero. As shown in Figure 3.2, these points will
become the corner points for a pair of quadrilateral patches over which the meshes
and the blocks will be defined, so it is convenient to assign them to simple names.
Point b is the tip of the cone, located at x = 0.2m. Point c, at x = 1.0m indentifies
the base of the cone in the x, y-plane. We manually compute the y-coordinate of point
c as 0.8 × tan 20◦. The points d, e and f will be used to define the upper (north)
boundary of the flow domain and we set their y-coordinates at 1.0m.

Once we have the corner points, we proceed to construct some line segments on
script lines 32 through 37. The first point on the line segment is identified as item
p0 and the final point as p1. These correspond to parameter values t = 0.0 and
t = 1.0 respectively. The Line class is a derived class of the base class Path. Later,
you will be defining more sophisticated Path objects such as Arcs, Bezier curves and
splines, and each of these Path objects will be defined over the same parameter range
0.0 ≤ t ≤ 1.0. The variable names for the constructed lines have been chosen simply
to reflect the end points of each segment. Almost any names will suffice3, however,
careful naming will lessen confusion as your script grows.

Lines 38 and 39 use the makePatch function to assemble the line segments as the
edges of two-dimensional patches. The patch assigned to quad0 will have default
transfinite interpolation while the patch assigned to quad1 will interpolate points
in physical space with the aid of a background mesh defined using Knupp’s robust
elliptic grid generator [13].

The flow simulation requires that the flow domain be specified as meshes of finite-
volume cells. So far, we have a description of the domain as patches of space. On
line 41, we define three variables that represent the number of cells that we want
along the mesh directions and, on lines 42 and 43, we construct a mesh of cells for
each quadrilateral patch. Note that the numbers of vertices in each mesh direction
is supplied to the mesh constructor. The number of vertices in each direction is one
more than the number of cells that we wish to have.

The flow solution is defined over blocks of cells. On lines 45 and 46, we construct
the blocks by associating them with a mesh and an initial flow state. Here, we use
a uniform flow state over each block but it is also possible to specify a varying flow
state. Later examples will show you how to do that by using a Lua function that you
define in your input script. For now, we set the initial flow state upstream of the cone
nose to be the same as the inflow condition because we expect nothing interesting to
happen in that block. In the block adjacent to the cone surface, we set the initial flow
condition to be a fairly low pressure, quiescent gas. The upstream flow will drive a
shock through this block and establish a flow over the cone.

To complete the flow domain definition, we need to specify the boundary condi-
tions that drive the flow solution. Two-dimensional structured-grid blocks, as used
here, have boundaries labelled north, east, south and west. If we don’t specify a

3The list of global symbol names in the Lua environment is given in Appendix B.7. You should
avoid these as names for your objects.
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particular boundary condition for each particular block boundary, a WallBC WithSlip
condition will be assumed. One option that we have is to specify the boundary con-
ditions when the FluidBlock constructor is called, supplying the boundary condi-
tions as a table. A different approach is used in this example. First, on line 48, we ask
the program to automatically identify connected blocks. This is done as a brute-force
search for matching corner points. If the grids are positioned in space such that the
corner points coincide for a pair of boundaries, as would be the case here for the east
boundary of block 0 and the west boundary of block 1, an ExchangeBC FullFace
is applied to the corresponding boundaries with the other boundary specified as the
exchange partner. This effectively stitches the flow domain together along this com-
mon boundary edge. Lines 49 and 50 assign individual boundary condition objects
for inflow and outflow, respectively.

Sometimes we are interested in the history of the flow at particular points and
would like more detail of that history than would be recorded in the set of snapshots
of the entire flow field. We can identify particular cells for this history recording as
shown in lines 53 and 55. Line 53 specifies the particular cell via a spatial position.
The nearest containing cell to this position is identified. Line 55 directly specifies the
block and the i and j indices (within that block) of another cell.

The final preparations are to set a few more configuration parameters in lines 58
to 63. The simulation calculation will be terminated when either the simulation time
exceeds max time or step reaches max step, whichever happens first. Usually, you
would like your simulation to run to a particular time, however, there are many occa-
sions when it is good to limit the number of steps. Limiting the maximum number of
steps to a fairly small value may save you lots of waiting when trying to set up new
simulations.

On line 60, we specify the initial time step that we would like the simulation to
start with. The code then takes over and adjusts the time step to some allowable
value, guided by the cfl value specified on line 61. Every few steps, the code will
scan all cells, looking for the shortest time for a signal to cross any cell. For the con-
vective terms, this is the time of a pressure wave to traverse a cell. The shortest time
found is then multiplied by the cfl value and the result is used as the time step for
the whole simulation.

The simulation program will write snapshots of the entire flow field every dt plot
period. This period is specified as seconds in simulation time, as opposed to wall-clock
time that you are watching go by as the calculation proceeds. The history data for
the few selected points (discussed three paragraphs above) is usually with a shorter
period, dt history.

The final thing that we do in this input script is to call yet another Lua script to
make the SVG sketch that is rendered in Figure 3.2. We will show the content of this
sketch script later.

3.2 Results and postprocessing

Figure 3.3 shows the flow field 5 milliseconds after flow start. This has been long
enough for the flow to reach a steady state, with the shock being essentially straight.
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Figure 3.3: Pressure and temperature fields for a low-resolution simulation of flow
over a cone with 20 degree half-angle. The temperature field plot also included the
mesh.

The plots have been produced with Paraview, by opening up the plot/cone20.pvd
file. The time stamp in the upper left corner has been added as an Annotate Time
Filter, selected from the main Filters menu. Also, the pressure field has been
plotted as a coloured surface, while the temperature field has been plotted as a
surface with edges to clearly show the computational grid. The distortion of the
grid in the right-hand block is a result of the area-orthogonality (AO) grid genera-
tor making the compromises required to achieve a reasonably-orthogonal mesh at
the edges of the block. The default transfinite grid generator would have produced
a mesh that appears less distorted overall but would have individual cells that are
more sheared for this particular block. For the rectangular block on the left, both
generators would produce the same mesh.

The shock displayed in the pressure field shows features that are characteristic
of a flow solution produced by a “shock-capturing” code such as Eilmer. With the
coarse grid, the shock has a stair-case appearance. This is accentuated by the plotting
program which was set to display the cell-average value as a uniform colour within
each cell.4 Also, when following a line that crosses the shock, a small number of
cells are passed before the full pressure jump has been reached. In an ideal, inviscid
simulation, the shock should be a zero-thickness transition. This can be approached
by increasing the mesh resolution, as seen in Figure 3.4. The high-resolution solution
is looking clean but the computational cost, in terms of calculation time, has gone up
from a few seconds to more than an hour.

Since Eilmer is a simulation program, it starts with some initial (but possibly vari-
able) flow states across the whole simulation domain and then, subject to the applied
boundary conditions, integrates the conservation equations forward in a time-accurate
manner. In this case of a constant free stream flow coming onto a sharp cone, the flow
field evolves toward a steady state. Figure 3.5 shows the pressure field at a number
of times through the simulation. The time increment, in seconds, between the frames
was specified in the input script as config.dt_plot = 1.5e-3.

4If you want a smoother appearance, you can use the Paraview filter Cell Data to Point
Data.
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Figure 3.4: Pressure and temperature fields for a mesh with 8 times more resolution
in each direction.

Figure 3.5: Evolution of the pressure field, times as indicated.
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Although not obvious in Figure 3.5, a lot of detailed flow structure has passed
through the flow domain even before the 1.5 milliseconds frame. From then until the
final time of 5.0 milliseconds, not a lot seems to be happening. It would be tempting to
terminate the simulation at 3.0 milliseconds, however, depending on how accurately
you need to report flow quantities, you may need to run much longer to achieve a
sufficiently steady flow.

A key flow parameter of interest might be the pressure on the cone surface and, by
setting history points, we have arranged Eilmer to occasionally write out the flow
properties in a couple of cells on the cone surface. We then use an Awk program
(cp.awk) to filter the history file, extracting the time (column 1) and static pressure
(column 10), writing a simple data file with the time in milliseconds in column 1 and
the coefficient of pressure in column 2. New users might like to learn about the Awk
language. It is very convenient for writing filter programs and a brief introduction is
given in Appendix C.

# cp.awk
# Scan a history file, picking out pressure and scaling it
# to compute coefficient of pressure.
#
# PJ, 2016-09-22
#
BEGIN {

Rgas = 287.1; # J/kg.K
p_inf = 95.84e3; # Pa
T_inf = 1103; # K
rho_inf = p_inf / (Rgas * T_inf)
V_inf = 1000.0; # m/s
q_inf = 0.5 * rho_inf * V_inf * V_inf
print "# rho_inf=", rho_inf, " q_inf=", q_inf
print "# t,ms cp"

}

$1 != "#" {
t = $1; p = $10
print t*1000.0, (p - p_inf)/q_inf

}

END {}

From Chart 5 in NACA Report 1135 [14], the expected steady-state shock wave
angle is 49o and, from Chart 6, the pressure coefficient is

pcone−surface − p∞
q∞

≈ 0.387

and the dynamic pressure for the specified free stream is q∞ = 1
2
ρ∞u

2
∞ ≈ 151.38 kPa.

Figure 3.6 shows the pressure coefficient for the history point located two thirds along
from the nose to the base of the cone. Note the sudden rise as the shock structure
driven by the free-stream flow arrives at this history location on the cone surface.
There is a more gradual rise after this initial jump as the conical flow region fills out
and becomes steady. You can now see the motivation for choosing 5.0 milliseconds as
the end time for the simulation.
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Figure 3.6: Evolution of the coefficient of pressure at the cone surface for flow over a
cone with 20 degree half-angle for two mesh resolutions.

The commands to produce the plot in Figure 3.6 are:

#!/bin/bash
# plot.sh
# Compute coefficient of pressure for the history point
# and plot it against the previously computed high-res data.
#
# PJ, 2016-09-22
#
awk -f cp.awk hist/cone20-blk-1-cell-20.dat > cone20_cp.dat
gnuplot plot_cp.gnuplot

and the GnuPlot commands are:

set term postscript eps enhanced 20
set output "cone20_cp.eps"
set style line 1 linetype 1 linewidth 3.0
set title "History of pressure coefficient at 2/3 position on cone surface"
set xlabel "time, ms"
set ylabel "C_p"
set xtic 1.0
set ytic 0.1
set yrange [0:0.5]
set key bottom right
set arrow from 5.2,0.387 to 5.8,0.387 nohead linestyle 1
set label "Value from\nNACA 1135\nChart 6" at 5.0,0.3 right
set arrow from 5.0,0.3 to 5.5,0.387 head
plot "cone20_cp.dat" using 1:2 title "10x40+30x40", \

"cone20_cp_hi-res.dat" using 1:2 title "80x320+240x320" with lines
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3.3 Accessing the field data for specialized postprocessing

Beyond the usual slice-and-dice type of postprocessing that is provided by the post-
processing mode of e4shared, it may be useful to do specialized calculations on the
flow data by providing a custom postprocessing script (in Lua) that can do arbitrary
calculations. This script has full access to the flow solution data that can be picked
up by e4shared and, being a Lua script, has full access to the capabilities of the Lua
interpreter.

In this flow, the shock is expected to be straight and we can compute that it should
have an angle of β = 48.96o, with respect to the free-stream direction, using one of the
gas-dynamic functions built into the main program.

1 -- ideal_shock_angle.lua
2 -- Invoke with the command line:
3 -- $ e4shared --custom-post --script-file=ideal_shock_angle.lua
4 V1=1000.0; p1=95.84e3; T1=1103.0; theta=math.rad(20.0)
5 beta = idealgasflow.beta_cone(V1, p1, T1, theta)
6 print("beta=", math.deg(beta), "degrees")

Although we could have specified the input values as literals to the beta_cone
function call, the assignment to variables and the use of those names in the function
call makes the script somewhat self-documenting. The full set of functions available
in the idealgasflow table is listed in Appendix D.1.

The estimate_shock_angle.lua script (below) uses the data reading and stor-
age capability provided by the FlowSolution class (line 8 in the script) that is avail-
able in the custom post-processing mode of e4shared. Access to the flow data for
a particular cell is provided by the method get_cell_data (line 37), which returns
the data in the form of a table. Note that a colon is used to access the method for the
FlowState object bound to fsol.

1 -- estimate_shock_angle.lua
2 -- Invoke with the command line:
3 -- $ e4shared --custom-post --script-file=estimate_shock_angle.lua
4 -- PJ, 2015-10-20
5 --
6 print("Begin estimate_shock_angle")
7 nb = 2
8 fsol = FlowSolution:new{jobName="cone20", dir=".", tindx=4, nBlocks=nb}
9 print("fsol=", fsol)

10
11 function locate_shock_along_strip()
12 local p_max = ps[1]
13 for i = 2, #ps do
14 p_max = math.max(ps[i], p_max)
15 end
16 local p_trigger = ps[1] + 0.3 * (p_max - ps[1])
17 local x_old = xs[1]; local y_old = ys[1]; local p_old = ps[1]
18 local x_new = x_old; local y_new = y_old; local p_new = p_old
19 for i = 2, #ps do
20 x_new = xs[i]; y_new = ys[i]; p_new = ps[i]
21 if p_new > p_trigger then break end
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22 x_old = x_new; y_old = y_new; p_old = p_new
23 end
24 local frac = (p_trigger - p_old) / (p_new - p_old)
25 x_loc = x_old * (1.0 - frac) + x_new * frac
26 y_loc = y_old * (1.0 - frac) + y_new * frac
27 return
28 end
29
30 xshock = {}; yshock = {}
31 local nj = fsol:get_njc(0)
32 for j = 0, nj-1 do
33 xs = {}; ys = {}; ps = {}
34 for ib = 0, nb-1 do
35 local ni = fsol:get_nic(ib)
36 for i = 0, ni-1 do
37 cellData = fsol:get_cell_data{ib=ib, i=i, j=j}
38 xs[#xs+1] = cellData["pos.x"]
39 ys[#ys+1] = cellData["pos.y"]
40 ps[#ps+1] = cellData["p"]
41 end
42 end
43 locate_shock_along_strip()
44 if x_loc < 0.9 then
45 -- Keep only the good part of the shock.
46 xshock[#xshock+1] = x_loc
47 yshock[#yshock+1] = y_loc
48 end
49 end
50
51 -- Least-squares fit of a straight line for the shock
52 -- Model is y = alpha0 + alpha1 * x
53 sum_x = 0.0; sum_y = 0.0; sum_x2 = 0.0; sum_xy = 0.0
54 for j = 1, #xshock do
55 sum_x = sum_x + xshock[j]
56 sum_x2 = sum_x2 + xshock[j]*xshock[j]
57 sum_y = sum_y + yshock[j]
58 sum_xy = sum_xy + xshock[j]*yshock[j]
59 end
60 N = #xshock
61 alpha1 = (sum_xy/N - sum_x/N * sum_y/N) / (sum_x2/N - sum_x/N * sum_x/N)
62 alpha0 = sum_y/N - alpha1 * sum_x/N
63 shock_angle = math.atan(alpha1)
64 sum_y_error = 0.0
65 for j = 1, N do
66 sum_y_error = sum_y_error+math.abs((alpha0+alpha1*xshock[j])-yshock[j])
67 end
68 print("shock_angle_deg=", shock_angle*180.0/math.pi)
69 print("average_deviation_metres=", sum_y_error/N)

The function locate_shock_along_strip (lines 11–28) searches for a significant
pressure jump in a strip of cells along the i-index direction of the structured blocks.
Lines 33–42 set up a strip of data at a particular j-index. Once the coordinates of the
jump locations are stored in tables xshock and yshock, a least-squares fit of a linear
model is performed in lines 53–62. The command for invoking the script is shown
in the comment on line 3. It is generally a good idea to document your commands
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to performing a simulation and the associated postprocessing activities in comments
like this or in shell scripts. You will need to be reminded of the details so you might
as well make these notes machine readable or executable.
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Figure 3.7: Convergence of the shock angle and its error with mesh refinement. βref =
48.96o.

3.4 Grid convergence

Determining a single value for some parameter is only part of the complete job. Usu-
ally, you must provide some guide as to the reliability of that value and this is often
done with a grid convergence study. For our estimate of shock wave angle, we could
follow the initial simulation run with a number of runs on successively finer meshes
and check that the estimated values converge in the limit of cell size going to zero.

Since this example is not very demanding for a low-resolution grid, it is easy to
double the grid resolution a couple of times over and get data over a good range
of cell sizes. Figure 3.7 shows the raw shock angle estimates converging nicely to a
value of 49o. In general, this is usually the end point for our analysis. Since we have
a reference value computed via the Taylor-Maccoll theory, we can also look at the
convergence to the true value and, given sufficient computational resource, it looks
as though we can get as close as we wish.

3.5 Other notes on this first example

• Run time for this simple simulation is approximately 8 seconds for 853 steps on
a Surface Pro 3 with a pair of Intel Core i5-4300U processors. With the blocks
not being well balanced, we do not make best use of both cores. To make best
use of your multi-core workstation, try to arrange blocks with reasonably equal
numbers of cells.

• This cone20.lua input script really has full access to the Lua interpreter built
into the simulation program. Be careful!

• Lua is a dynamic language. It is easy to bind names to new objects within your
script. Be careful that you do not rebind essential names that will be later used
by the program when processing your configuration. Where this might happen
in a non-obvious way is in the importing of foreign modules or packages (to do
something interesting in your script). Also, without explicitly declaring a name
as local, you will be referring to a global variable in your first assignments. See
Appendix B.7 for the list of global symbols defined when your input script starts
to be processed.
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3.6 Parametric modelling using Lua

Let’s rework the simulation to explore the gas-dynamics a little more and also make
use of the parametric capabilities of the Lua input script. We’ll first parameterize
the descriptions of the flow and the geometric description of the flow domain by
replacing some of the literal numeric values of the original script with variables and
simple algebraic expressions.

Specifically, let’s introduce a variable, M , for the Mach number of the inflow
stream and then compute the velocity from that value and the estimated sound-speed
of that in-coming stream. This gives us a convenient way of specifying a sample Mach
number so we can explore the response of the simulated flow field to a range of inflow
Mach numbers. We’ll also describe the cone by its half-angle and axial length. From
these items, we can compute the base radius. For the remaining key items defining
the flow domain, we need to know where the apex of the cone is placed with respect
to the inflow boundary and we need to say how far away the top-edge of the flow
domain is from the axis. Finally, to make the grid generation a little more convenient
as we change the boundaries of the flow domain, we’ll define a cell size as length dx,
and determine numbers of cells within each block as an overall length-scale of each
dimension of the block divided by this cell size.

3.6.1 Input script (.lua)

1 -- conep.lua
2 -- Parametric setup for sharp-cone simulation.
3 -- PJ & RG
4 -- 2016-09-23 -- adapted from cone20.lua
5
6 -- We can set individual attributes of the global data object.
7 config.dimensions = 2
8 config.axisymmetric = true
9

10 -- The gas model is defined via a gas-model file.
11 nsp, nmodes, gm = setGasModel(’ideal-air-gas-model.lua’)
12 print("GasModel set to ideal air. nsp= ", nsp, " nmodes= ", nmodes)
13 initial = FlowState:new{p=5955.0, T=304.0, velx=0.0}
14 -- Compute inflow from Mach number.
15 inflow_gas = FlowState:new{p=95.84e3, T=1103.0}
16 M = 1.5
17 Vx = M * inflow_gas.a
18 print("inflow velocity Vx=", Vx)
19 print("dynamic pressure q=", 1/2*inflow_gas.rho*Vx*Vx)
20 inflow = FlowState:new{p=95.84e3, T=1103.0, velx=Vx}
21 print("T=", inflow.T, "density=", inflow.rho, "sound speed= ", inflow.a)
22
23 -- Parameters defining cone and flow domain.
24 theta = 20 -- cone half-angle, degrees
25 L = 0.8 -- axial length of cone, metres
26 rbase = L * math.tan(math.pi*theta/180.0)
27 x0 = 0.2 -- upstream distance to cone tip
28 H = 1.0 -- height of flow domain, metres
29 config.title = string.format("Mach %.1f flow over a %.1f-degree cone.",
30 M, theta)
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31 print(config.title)
32
33 -- Set up two quadrilaterals in the (x,y)-plane by first defining
34 -- the corner nodes, then the lines between those corners.
35 a = Vector3:new{x=0.0, y=0.0}
36 b = Vector3:new{x=x0, y=0.0}
37 c = Vector3:new{x=x0+L, y=rbase}
38 d = Vector3:new{x=x0+L, y=H}
39 e = Vector3:new{x=x0, y=H}
40 f = Vector3:new{x=0.0, y=H}
41 ab = Line:new{p0=a, p1=b} -- lower boundary, axis
42 bc = Line:new{p0=b, p1=c} -- lower boundary, cone surface
43 fe = Line:new{p0=f, p1=e}; ed = Line:new{p0=e, p1=d} -- upper boundary
44 af = Line:new{p0=a, p1=f} -- vertical line, inflow
45 be = Line:new{p0=b, p1=e} -- vertical line, between quads
46 cd = Line:new{p0=c, p1=d} -- vertical line, outflow
47 quad0 = makePatch{north=fe, east=be, south=ab, west=af}
48 quad1 = makePatch{north=ed, east=cd, south=bc, west=be, gridType="ao"}
49 -- Mesh the patches, with particular discretisation.
50 dx = 1.0/40
51 nx0 = math.floor(x0/dx); nx1 = math.floor(L/dx); ny = math.floor(H/dx)
52 grid0 = StructuredGrid:new{psurface=quad0, niv=nx0+1, njv=ny+1}
53 grid1 = StructuredGrid:new{psurface=quad1, niv=nx1+1, njv=ny+1}
54 -- Define the flow-solution blocks.
55 blk0 = FluidBlock:new{grid=grid0, initialState=inflow}
56 blk1 = FluidBlock:new{grid=grid1, initialState=initial}
57 -- Set boundary conditions.
58 identifyBlockConnections()
59 blk0.bcList[west] = InFlowBC_Supersonic:new{flowState=inflow}
60 blk1.bcList[east] = OutFlowBC_Simple:new{}
61
62 -- add history point 1/3 along length of cone surface
63 setHistoryPoint{x=2*b.x/3+c.x/3, y=2*b.y/3+c.y/3}
64 -- add history point 2/3 along length of cone surface
65 setHistoryPoint{ib=1, i=math.floor(2*nx1/3), j=0}
66
67 -- Do a little more setting of global data.
68 config.max_time = 5.0e-3 -- seconds
69 config.max_step = 3000
70 config.dt_init = 1.0e-6
71 config.cfl_value = 0.5
72 config.dt_plot = 1.5e-3
73 config.dt_history = 10.0e-5
74
75 dofile("sketch-domain.lua")

3.7 Exploring the gas dynamics

First, we’ll repeat our earlier simulation of a 20-degree half-angle cone, but this time
built from a parameterized script. Second, we’ll explore what happens with the flow
over a 32-degree half-angle cone. The focus on this section is on that second case.

Repeating our simulation of a 20-degree half-angle cone, Figure 3.8 shows essen-
tially the same flow field 5 milliseconds after flow start as Figure 3.3. It has the same
straight, attached shock and same range of pressures displayed.
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Figure 3.8: Pressure field for the low-resolution simulation of Mach 1.5 flow over a
cone with 20 degree half-angle. This is the parametric setup but produces the same
simulation as the original setup.

Looking up the conical shock charts in NACA-1135 [14], we can see that a 32 de-
gree cone falls outside the shock-polar for a free-stream Mach number of 1.5 and so
should have a detached shock. Let’s try that by changing the value of theta from
20 to 32. That’s all that needs to be done before re-running the preparation program
and main simulation program, with the calculations to get the appropriate velocity
already encoded within the user input script. Figure 3.9 shows the resulting pressure
field at 5 ms.

The result is not quite as expected because the flow has choked between the con-
ical surface and the upper edge of the domain, with its default WallBC_WithSlip
boundary condition, that acts as a smooth inside wall of a slippery pipe. The obvious
fix to attempt is to increase the height of the flow domain by setting H to a larger
value. Figure 3.10 shows the resulting pressure field at 5 ms for an inflow Mach num-
ber of 1.5, which should have a detached shock, and for a free-stream Mach number
of 1.6, which should have an attached shock, according to the inviscid flow theory.

Figure 3.9: Pressure field for the low-resolution simulation at 5 ms of Mach 1.5 flow
over a cone with 32 degree half-angle.
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(a) Mach 1.5 inflow

(b) Mach 1.6 inflow

Figure 3.10: Pressure field for the low-resolution simulation at 5 ms of flow over a
cone with 32 degree half-angle in a larger flow domain, H = 1.6.
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Now, the results are looking better, with the shocks looking quite orderly in each
simulation. The Mach 1.6 flow has a straighter shock and a cleaner start at the tip
of the cone, such that it looks attached in this fairly low-resolution simulation. At
this point, we could be tempted to declare victory and head to the most convenient
pub conducive to the study of high quality multi-block grids. However, we want to
be good students of CFD and shall confirm that the flows really have reached steady
state by running the simulations for a longer time. Besides, the simulations are being
done in less than a minute each so how much extra effort can it be?

Approximately 5 minutes later, you see the results shown in Figure 3.11 and you
wish that you had left for the pub some time earlier. The Mach 1.6 shock looks good
and a little straighter, as it should, but the Mach 1.5 case is not showing the desired
result. Why, with such a small difference in inflow specification should there be such
a big difference? And, why does that difference seem to come from downstream?

If you ask a tutor at this point, you are likely to be asked: “What does the Mach
number look like, especially at the outflow boundary?” In preparation of the plot
files (as shown in line 7 of the run.sh script on page 10), be sure to include mach in
the list of variables that you want added to the flow solution and then produce the
plots shown in Figure 3.12.

The Mach number approaching the exit plane for the Mach 1.6 inflow is transonic
but the Mach numbers for the Mach 1.5 inflow are very low for the near-normal shock
processed flow but, even for the little bit of flow processed by the oblique shock, they
are looking to be well below sonic conditions. The OutFlowBC_Simple boundary
condition applied to the outflow boundary works by copying flow data from just in-
side the boundary to the ghost cells just outside the boundary. This simple procedure
does not handle subsonic flow across the boundary very well at all, and results in the
whole simulation not being a good representation of the physical situation. A good
fix is to alter the flow domain, so that the outflow is mostly supersonic.
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(a) Mach 1.5 inflow

(b) Mach 1.6 inflow

Figure 3.11: Pressure field for the low-resolution simulation at 15 ms of flow over a
cone with 32 degree half-angle in a larger flow domain, H = 1.6.
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(a) Mach 1.5 inflow, The full range of M local is shown.

(b) Mach 1.6 inflow. Note that a partial range of M local is
displayed so as to show the transonic region more clearly.

Figure 3.12: Mach number field for the low-resolution simulation at 15 ms of flow
over a cone with 32 degree half-angle in a larger flow domain, H = 1.6.
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3.8 Building a more robust simulation

The fix is very much as you should do in a physical experiment. If a boundary effect is
messing with your flow, move that boundary away. Fortunately, this is (usually) easy
to do in a numerical simulation. Here, we will add another block to the downstream
edge of the original domain and effectively move the outflow further downstream.
This extra block as shown in Figure 3.13 (and known as quad2, grid2 and blk2
in the following input script) allows the flow to regain supersonic flow conditions
before crossing the outflow boundary.

Figure 3.13: Schematic diagram of the extended geometry for a cone with 20 degree
half-angle.

3.8.1 Input script (.lua)

1 -- conepe.lua
2 -- Parametric, extended setup for sharp-cone simulation.
3 -- PJ & RG
4 -- 2016-09-23 -- adapted from conep.lua
5
6 -- We can set individual attributes of the global data object.
7 config.dimensions = 2
8 config.axisymmetric = true
9
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10 -- The gas model is defined via a gas-model file.
11 nsp, nmodes, gm = setGasModel(’ideal-air-gas-model.lua’)
12 print("GasModel set to ideal air. nsp= ", nsp, " nmodes= ", nmodes)
13 initial = FlowState:new{p=5955.0, T=304.0, velx=0.0}
14 -- Compute inflow from Mach number.
15 inflow_gas = FlowState:new{p=95.84e3, T=1103.0}
16 M = 1.5
17 Vx = M * inflow_gas.a
18 print("inflow velocity Vx=", Vx)
19 print("dynamic pressure q=", 1/2*inflow_gas.rho*Vx*Vx)
20 inflow = FlowState:new{p=95.84e3, T=1103.0, velx=Vx}
21 print("T=", inflow.T, "density=", inflow.rho, "sound speed= ", inflow.a)
22
23 -- Parameters defining cone and flow domain.
24 theta = 32 -- cone half-angle, degrees
25 L = 0.8 -- axial length of cone, metres
26 rbase = L * math.tan(math.pi*theta/180.0)
27 x0 = 0.2 -- upstream distance to cone tip
28 H = 2.0 -- height of flow domain, metres
29 config.title = string.format("Mach %.1f flow over a %.1f-degree cone.",
30 M, theta)
31 print(config.title)
32
33 -- Set up two quadrilaterals in the (x,y)-plane by first defining
34 -- the corner nodes, then the lines between those corners.
35 a = Vector3:new{x=0.0, y=0.0}
36 b = Vector3:new{x=x0, y=0.0}
37 c = Vector3:new{x=x0+L, y=rbase}
38 d = Vector3:new{x=x0+L, y=H}
39 e = Vector3:new{x=x0, y=H}
40 f = Vector3:new{x=0.0, y=H}
41 ab = Line:new{p0=a, p1=b} -- lower boundary, axis
42 bc = Line:new{p0=b, p1=c} -- lower boundary, cone surface
43 fe = Line:new{p0=f, p1=e}; ed = Line:new{p0=e, p1=d} -- upper boundary
44 af = Line:new{p0=a, p1=f} -- vertical line, inflow
45 be = Line:new{p0=b, p1=e} -- vertical line, between quads
46 cd = Line:new{p0=c, p1=d} -- vertical line, outflow
47 quad0 = makePatch{north=fe, east=be, south=ab, west=af}
48 quad1 = makePatch{north=ed, east=cd, south=bc, west=be, gridType="ao"}
49 -- extend the flow domain
50 xend = x0 + 2*L
51 quad2 = CoonsPatch:new{p00=c, p10=Vector3:new{x=xend, y=rbase/2},
52 p11=Vector3:new{x=xend, y=H}, p01=d}
53 -- Mesh the patches, with particular discretisation.
54 dx = 1.0/40
55 nx0 = math.floor(x0/dx); nx1 = math.floor(L/dx); ny = math.floor(H/dx)
56 grid0 = StructuredGrid:new{psurface=quad0, niv=nx0+1, njv=ny+1}
57 grid1 = StructuredGrid:new{psurface=quad1, niv=nx1+1, njv=ny+1}
58 grid2 = StructuredGrid:new{psurface=quad2, niv=nx1+1, njv=ny+1}
59 -- Define the flow-solution blocks.
60 blk0 = FluidBlock:new{grid=grid0, initialState=inflow}
61 blk1 = FluidBlock:new{grid=grid1, initialState=initial}
62 blk2 = FluidBlock:new{grid=grid2, initialState=initial}
63 -- Set boundary conditions.
64 identifyBlockConnections()
65 blk0.bcList[west] = InFlowBC_Supersonic:new{flowState=inflow}
66 blk2.bcList[east] = OutFlowBC_Simple:new{}
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67
68 -- add history point 1/3 along length of cone surface
69 setHistoryPoint{x=2*b.x/3+c.x/3, y=2*b.y/3+c.y/3}
70 -- add history point 2/3 along length of cone surface
71 setHistoryPoint{ib=1, i=math.floor(2*nx1/3), j=0}
72
73 -- Do a little more setting of global data.
74 config.max_time = 30.0e-3 -- seconds
75 config.max_step = 15000
76 config.dt_init = 1.0e-6
77 config.cfl_value = 0.5
78 config.dt_plot = 1.5e-3
79 config.dt_history = 10.0e-5
80
81 dofile("sketch-domain-extended.lua")

3.8.2 Final results

For a domain height H = 2, Figure 3.14 shows the Mach number field at the sim-
ulation time of 30 milliseconds. This is double the time shown in the short-domain
simulations, where the flow was clearly choked. The slightly detached shock from the
cone tip is much cleaner but the upper boundary is still showing a strong effect with
a near-normal shock processing the upper part of the inflow. The slightly-subsonic
values of Mach number immediately behind the detached shock are clearly shown in
light blue.

Figure 3.14: Mach number field for the low-resolution simulation at 30 ms of Mach
1.5 flow over a cone with 32 degree half-angle. Flow domain height H = 2.
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Since we’ve made all this effort at getting the downstream boundary condition be-
having well, we should take advantage of the parametric modelling once more and
finish the job by raising the flow domain height simply by setting H = 3 and running
the simulation again. This time, the flow field in Figure 3.15 appears to be clean and
mostly free from obvious boundary induced problems. The OutFlowBC_Simple
boundary has mostly a clear supersonic flow crossing it and can probably be trusted
to behave well. This would be the correct time to declare victory, however, the tutor
now points out that the expansion radiating from the corner at the end of the coni-
cal surface is probably affecting the whole of the subsonic region behind the curved
shock.

Figure 3.15: Mach number field for the low-resolution simulation at 30 ms of Mach
1.5 flow over a cone with 32 degree half-angle. Flow domain height H = 3.

Here endeth the lesson.5

5https://www.churchofengland.org/prayer-worship/worship/
book-of-common-prayer/the-order-for-morning-prayer.aspx

https://www.churchofengland.org/prayer-worship/worship/book-of-common-prayer/the-order-for-morning-prayer.aspx
https://www.churchofengland.org/prayer-worship/worship/book-of-common-prayer/the-order-for-morning-prayer.aspx


4

Guide to using Eilmer

4.1 Running simulations

Setting up a simulation job is mostly an exercise in writing a text-based description
of a gas model, your flow domain and its boundary conditions. This input script
is presented to the preparation phase as a Lua source file, with the extension “.lua”.
Once you have prepared your job specification as an input script using your favourite
text editor, the simulation data is generated by the Eilmer program in a number of
stages:

1 Create the geometry definition, a grid and the initial flow state. For simple to
moderately-complex geometries, the built-in geometry tools (described in the
companion report [8]) are adequate, and often convenient because you will not
need any other grid preparation tools. For complex geometries, you may find it
better to import either block-structured or unstructured grids from a specialized
gridding tool such as Gridpro or Pointwise.

2 Run the main phase of the simulation code to produce flow data at subsequent
times.

3 Reformat the flow solution data to produce files suitable for a data viewing
program such as Paraview or GNU-Plot.

4.1.1 Job preparation phase

The preparation phase of running a simulation is implemented as a special mode of
the main simulation program. On seeing the --prep command option the program
loads all of the Lua wrapped classes that might be useful for defining geometric ob-
jects, grids, thermochemical models and flow conditions. It then loads a Lua script
that sets up a number of classes and functions that will be used to help build bound-
ary conditions and fluid blocks. Finally it loads your user input script that is iden-
tified via the --job command option, constructs the objects defined by your script
and writes a set of grids, initial flow files and a JSON description of the configuration
and control parameters.

Create the geometry definition and a grid with the command
$ e4shared --prep --job=job

35
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e4shared
--prep

job.lua

job.grid.b0000.t0000.gz

Input: Program: Output:

job.grid.b0001.t0000.gz
...

job.flow.b0000.t0000.gz
job.flow.b0001.t0000.gz
...

sketch.svg

./grid/t0000/

./flow/t0000/

./

./

./config/

job.config
job.control

job.times

job.list

The italics word job in the command should be replaced by whatever job name that
you have chosen. That name is then used as a base to derive specific names for each
of the files associated with the simulation. At a minimum, you have an input script
called job.lua with the .lua extension, indicating that the script is written in Lua.
The files from the preparation stage are:

• job.config: A database of configuration parameters in JSON format. Although
you would probably never assemble one of these parameter files from scratch
manually, it is sometimes convenient to alter a value or two and rerun a sim-
ulation without completely regenerating this file. Be careful when manually
editing any JSON file; the parsers are not forgiving.

• job.control: A small database of parameters to control the time-stepping, the
final time, and the intervals between writing of solutions and history data. The
content of this file is also in JSON format and it is parsed at the start of every
nth step, where n is given by the count value in the control_count parameter
(default: 10). This way, a user can alter the simulation behaviour (by editing this
file) without having to restart the simulation. To stop a simulation cleanly, set
the halt_now entry to 1. This parameter is found toward the end of the file.
Other control parameters are marked with ‡ in Section 4.10.

• job.times: A mapping of time stamps to actual times at which the simulation
data was written. After the preparation stage, there should be only the zero-
time entry.

• job.list: A list of block numbers, the type of grid and the label (which may be
a default value) given to the block. Block numbering starts from zero.

• sketch.svg: Sometimes it is convenient to see a graphical representation of
the flow domain and boundary conditions. There is a small set of rendering
functions available for rendering geometric objects such as paths, surfaces and
volumes to a scalable-vector-graphics file. The SVG file can be edited in a pro-
gram such as Inkscape (http://www.inkscape.org) and the result used
as part of your documentation for a particular simulation.

http://www.inkscape.org
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• one grid-data file for each block: job.grid.b0000.t0000.gz,
job.grid.b0001.t0000.gz, ... containing the grid of finite-volume cells. The
grids are written as compressed text files in a relatively simple format. The spa-
tial coordinates for points within each file are associated with cell vertices of the
structured grid. Note that the grid and flow files are written to subdirectories
within the job directory.

• one flow-data file for each block: job.flow.b0000.t0000.gz,
job.flow.b0001.t0000.gz, ... containing the initial flow state within each of
the finite-volume cells.

Note that machine-generated configuration files are written to the ./config/ subdi-
rectory while the grid and flow data files are written to subdirectories ./grid/ and
./flow/, respectively. For a fixed-grid simulation, the grid is written once (at time
zero, subdirectory grid/t0000/) and the flow files are written to a new subdirec-
tory (flow/tnnnn/) at each output time. This is to keep the main job directory clean
and to allow easy copying or moving of individual solution times. For a moving-grid
simulation, there will be a grid directory with the grid locations at each output time.

The data is written as plain text compressed using the “gzip” format, hence the
“.gz” extension. The details of the data layout are documented in the source code.
Look for the functions read grid, write grid, read solution and write solution in the
source code files. A command such as
$ grep -n read solution *.d
may be a good way to get started with finding your way around the source code. You
can also uncompress any of the output files and then read them with a standard text
editor. Look at the first few of lines of a flow file to see what data elements are written
for each cell. The format is somewhat self-describing with variable names appearing
on the fifth line. Remember that the units for the data are SI-MKS.

4.1.2 Checking your grid

Before running the simulation code, it is worth checking that your grid has turned
out as planned. Many a simulation has failed to start because its grid was flawed.
Common problems include grids that are twisted or have adjoining blocks with edges
that do not match where they are supposed to be joined. To get a set of plot files that
can be loaded into Paraview for examination, use the postprocessing program:
$ e4shared --post --job=job --tindx-plot=0 --vtk-xml
and then pick up the resulting files for inspection with Paraview. The generated files
will appear in the plot/ subdirectory. Look ahead to Sec. 4.1.5 for a more complete
discussion of the postprocessing stage.
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4.1.3 Running the simulation

Run the simulation code to produce flow data at subsequent times.1

$ e4shared --job=job --run

e4shared

job.config

job.flow.b0000.t0001.gz

job.grid.b0000.t0000.gz

Input: Program: Output:

job.grid.b0001.t0000.gz
...

job.flow.b0001.t0001.gz
...

--run

job.flow.b0000.t0002.gz
job.flow.b0001.t0002.gz

job.flow.b0000.t0003.gz
job.flow.b0001.t0003.gz

...

...

job-blk-0-cell-9.dat.0
job-blk-1-cell-20.dat.0
...

job.times

job.flow.b0000.t0000.gz
job.flow.b0001.t0000.gz
...

job.control

job.times

./config/

./grid/t0000/

./flow/t0000/
...

./flow/t0001/

./flow/t0002/

./flow/t0003/

./hist/

./config/

job.list

The output files are:

• job.flow.bnnnn.tmmmm.gz: The flow data for all cells at the times requested.
As the simulation proceeds, whole-field solutions are written to new files with
nnnn representing the block number and mmmm representing a time stamp.
Look up the job.times file to see what time values belong to each time stamp
(or tindx). Just as for the grid files, each flow solution file is written as a plain
text file with a simple layout, not too different from the Tecplot point-format for
a structured-block grid. In these files, the spatial coordinates of points within
the file are associated with the cell centres.

• job-blk-n-cell-m.dat.0: Data at particular “history points” and at times
requested. This data is typically used to simulate the signals recorded by pres-
sure and heat-transfer sensors mounted on model surfaces. The first time a
simulation job is run, the history files will have a trailing index of .0. When
restarting or re-running a simulation, Eilmer will open new history files with
the trailing index incremented to be one more than the most recent, existing
files. To produce a single data file from a collection of history files for a par-
ticular cell, just use the Linux cat command to concatenate their content. If
you are running a simulation from the start multiple times and you do not want
the files generated from previous runs, you will need to manually remove the
history files before each run.

1If the simulation finishes too quickly (possibly without taking any steps at all), it may be that
the initial time step size is too large and the calculation is unstable. One symptom of this is that the
final value for the time step is reported as being excessively large. Choose a suitably small value for
dt init and try again.
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• job.times: A mapping of time stamps to actual times at which the simulation
data was written. The main simulation appends lines to this file. This file is
useful for automating some of the postprocessing operations.

For reference, here are the hints that are written out when the --help option is
given on the command line:

$ e4shared --help
Eilmer 4.0 compressible-flow simulation code.
Revision: d50a10ec
Compiler-name: dmd
Build-flavour: debug
Capabilities: multi-species-gas multi-temperature-gas MHD turbulence.
Parallelism: Shared-memory
Usage: e4shared/e4mpi/... [OPTION]...
Argument: Comment:
--------------------------------------------------------------------------------

--job=<string> file names built from this string
--verbosity=<int> defaults to 0

--prep prepare config, grid and flow files
--no-config-files do not prepare files in config directory
--no-block-files do not prepare flow and grid files for blocks
--only-blocks="blk-list" only prepare blocks in given list

--run run the simulation over time
--tindx-start=<int>|last|9999 defaults to 0
--next-loads-indx=<int> defaults to (final index + 1) of lines

found in the loads.times file
--max-cpus=<int> (e4shared) defaults to 8 on this machine
--threads-per-mpi-task=<int> (e4mpi) defaults to 1
--max-wall-clock=<int> in seconds, default 5days*24h/day*3600s/h
--report-residuals write residuals to file config/job-residuals.txt

--post post-process simulation data
--list-info report some details of this simulation
--tindx-plot=<int>|all|last|9999|"1,5,13,25" defaults to last
--add-vars="mach,pitot" add variables to the flow solution data

(just for postprocessing)
Other variables include:
total-h, total-p, enthalpy, entropy, molef, conc,
Tvib (for some gas models)

--ref-soln=<filename> Lua file for reference solution
--vtk-xml produce XML VTK-format plot files
--binary-format use binary within the VTK-XML
--tecplot write a binary szplt file for Tecplot
--tecplot-ascii write an ASCII (text) file for Tecplot
--tecplot-ascii-legacy write an ASCII (legacy, text) file for Tecplot
--plot-dir=<string> defaults to plot
--output-file=<string> defaults to stdout
--slice-list="blk-range,i-range,j-range,k-range;..."

output one or more slices across
a structured-grid solution

--surface-list="blk,surface-id;..."
output one or more surfaces as subgrids

--extract-streamline="x,y,z;..." streamline locus points
--track-wave="x,y,z(,nx,ny,nz);..."

track wave from given point
in given plane, default is n=(0,0,1)

--extract-line="x0,y0,z0,x1,y1,z1,n;..."
sample along a line in fluid domain

--extract-solid-line="x0,y0,z0,x1,y1,z1,n;..."
sample along a line in solid domain

--compute-loads-on-group="" group tag
--probe="x,y,z;..." locations to sample flow data
--output-format=<string> gnuplot|pretty
--norms="varName,varName,..." report L1,L2,Linf norms
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--region="x0,y0,z0,x1,y1,z1" limit norms calculation to a box

--custom-script | --custom-post run custom script
--script-file=<string> defaults to "post.lua"

--help writes this long help message
--------------------------------------------------------------------------------

Most of these command-line options are for the postprocessing stage and only a few
are used when running the main simulation. You can see them grouped just below
the --run option. By default, the starting value for tindx-start will be zero and
the program tries to use as many CPU cores as are available, up to the number of
blocks. The default limitation on wall-clock time is the very large value of 5 days.
Mostly, you only need to pay attention to this option when using a shared batch
system which may place an upper limit on your run time. Set max-wall-clock
to something less than the batch system limit to ensure that the program will stop
time-stepping and write solution files before the batch system terminates your job
abruptly.2

4.1.4 Restarting a simulation

By default, the simulation program picks up the flow solution for tindx equal to 0
but it can be told to pick up any other tindx snapshot. To pick up a solution and
continue, it is probably best to do a little house-keeping, checking the state of the
simulation at the end of run, then editing the job.control file and changing the
parameters dt init, max time and max steps to suitable values. Do not run the
preparation stage again, else it will write over the job.times file that you need to retain
and your newly edited job.control file. At this point, you should be ready to run
the main simulation program again. Remember to supply the relevant tindx-start
value on the command line for your restart. For example:
$ e4shared --job=name --tindx-start=5 --run

Also, with restarts, be careful that you have consistent modelling requirements
and settings. Restarting a laminar simulation as a turbulent simulation with the k−ω
model would lead to inconsistent data. It may be better to start a new job and use
FlowSolution objects (see Section 4.5) to pick up the old data. Note that your old
and new solutions need to have consistent data, such as number of chemical species,
etc. FlowSolutionworks with the data available in the old solution and is not smart
enough to fill in missing values.

4.1.5 Postprocessing

Postprocessing of the simulation data is the most unstructured of the simulation ac-
tivities and it is difficult to provide a comprehensive description of the things that you
will do. Some hint as to the scope of post-processing activities is given by the fact that
most of the command-line options listed by the --help option have something to do
with extracting data from a previously completed simulation.

2On simulations that run for multiple days, we suggest that you request a max-wall-clock that
is 10 minutes (600 seconds) less than the time you request from the batch system. This final 10 minutes
is usually ample time for the simulation to write out the final data and finish cleanly, even on a busy
cluster.
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We provide a postprocessing mode, --post that has the basic capabilities of pick-
ing up the simulation data and writing flow field files in formats suitable for Par-
aview, Visit, Tecplot, the venerable Plot3D or gnuplot3.

e4shared --post

job.b0000.t0000.vtu

Input: Program: Output:

job.b0001.t0000.vtu

...

--vtk-xml

......

job.t0000.pvtu

job.grid.b0000.t0000.gz
job.grid.b0001.t0000.gz

job.flow.b0000.t0001.gz
job.flow.b0001.t0001,gz
...

job.flow.b0000.t0002.gz
job.flow.b0001.t0002.gz

job.flow.b0000.t0003.gz
job.flow.b0001.t0003.gz
...

...

job.b0000.t0001.vtu
job.b0001.t0001.vtu
job.t0001.pvtu

job.b0000.t0002.vtu
job.b0001.t0002.vtu
job.t0002.pvtu

./grid/t0000/

./flow/t0001/

./flow/t0002/

./flow/t0003/

./plot/

job.pvd

...

./config/

job.config
job.control
job.list

To reformat the flow solution data into one unstructured grid containing all of the
flow data for the domain and write this data in a format suitable for Paraview or
Visit, use the command:
$ e4shared --post --job=job --vtk-xml --tindx-plot=all

To do more sophisticated postprocessing, the command-line options can be com-
bined in fairly complex ways; some experimentation on the part of the user may be
required to get the desired effect. The options, however, can be divided into a number
of subsets.
Data loading options:

• --job=<string> specifies the root name of the solution files. The config, con-
trol and list files are scanned to pick up information about the solution. This
includes information about the gas model which is initialized and available for
use.

• --tindx-plot=<int>|all|last|9999 You may pick up one solution time
via its numeric index or you may specify all solution times via the keyword
all. The last solution frame written (and identified in the job.times file) can be
specified by giving the index as last or as 9999.

Data addition options:

3See the web sites http://www.paraview.org, https://wci.llnl.gov/codes/visit/,
http://www.tecplot.com, http://people.nas.nasa.gov/˜rogers/plot3d/intro.
html and http://www.gnuplot.info

http://www.paraview.org
https://wci.llnl.gov/codes/visit/
http://www.tecplot.com
http://people.nas.nasa.gov/~rogers/plot3d/intro.html
http://people.nas.nasa.gov/~rogers/plot3d/intro.html
http://www.gnuplot.info
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• --add-vars, add the named variables to the plotting data set, either for the
full field (VTK, Tecplot and Plot3D format) or for sliced data. These flow vari-
ables are not in the Eilmer native flow solution file and must be reconstructed
by the postprocessing phase. The available flow variables are Mach number
("mach"), Pitot pressure ("pitot"), total enthalpy ("total-h"), total pres-
sure ("total-p"), specific entropy ("entropy"), mole fractions of chemical
species ("molef"), and molar concentrations of chemical species ("conc"). If
a number of these variables are desired, these can be joined together in a list
with commas separating the names.

Whole-field output options:

• --vtk-xml The XML format for the Visualization Tool Kit (VTK) is readable
by both Paraview and Visit. By default, the XML file will be simple text and
probably quite large.

• --binary-format Write most of the data into the VTK file as appended bi-
nary records. This makes the files nonconforming XML files but it surely re-
duces the size of large data files and improves the speed of loading them into
Paraview. For large 3D datasets, this is a good option.

Data slicing and dicing options:

• --output-file=<profile-data-file> specifies the name of a file in which
to dump the requested data. This naming option is relevant to the various slice
options and also to the surface-list option where it is used as the root name of
the generated VTK files. This will allow you to make a number of sliced data
sets for plotting.

• --slice-list="blk-range,i-range,j-range,k-range;..." extracts
subsets of the data. A slicing notation is used in the specification string which
should be enclosed in quotes, as shown. Several slices (separated by semi-
colons) may be specified in the one string. Each slice specification consists of
4 indices or index ranges separated by commas. An index is a single integer
value or $ to indicate the end of the available range. An index range may be a
colon-separated pair of integers, a colon and one limit or just a colon by itself (to
indicate the full range). Note that the range limits are inclusive. So, for example,
to extract the eastern strip of cells from block 0 in a 2D structured-grid simula-
tion, you would use the string "0,$,:,0" because we want the 0th block, the i
= max ($) position, all cells in the j-direction (:), and 0 for the k-direction in a 2D
grid.

• --surface-list="blk,surface-id;..." extracts data on a set of sur-
faces from the full flow field and writes them as VTK files. The output-file
option is used to specify a base file name for constructing the names of the set of
VTK files. The surface-id may be an integer or one of north, east, south,
west, top or bottom for a structured grid.

• --extract-line="x0,y0,z0,x1,y1,z1,N" generates a list of up to N sam-
pled points between the specified end points. The sampled data is written for
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the enclosing-cell centre for each sample point, with repeated cells being omit-
ted.

• --probe="x,y,z;..." reports the sampled data for the specified points. The
selected data is written in gnuplot format.

Data manipulation and summary options:

• --ref-solution=<Lua-script> compares the flow solution with that sup-
plied in a Lua script. The difference is output. This means that the values
recorded in the output files are the differences between the reference solution
and the simulated solution. The differences are only computed for those field
variables that are given in the reference solution. For example, if the reference
solution provides a value for density then the rho output field will have the
difference value.

• --report-norms returns a dictionary of norms for all of the flow variables.
The available norms are L1, L2, and Linf (maximum magnitude). This must
be used in conjunction with a supplied ref-solution.

• --region="x0,y0,z0,x1,y1,z1" limits the computation of the norms to a
particular box.

Note that you must use double-quotes on some specification strings to prevent the
command shell from pulling the string apart (or otherwise changing it) before giving
it to the program. It is also worth noting that, by default, e4shared does not write
much to the console while it is running successfully. If you want more commentary
while it is doing its work, supply a nonzero integer to the option --verbosity. A
value of 1 should give you a brief summary of the main activities whereas a value of
2 will prompt many more messages.

Ad hoc postprocessing is possible by specifying the --custom-script mode
and a Lua script file with --script-file. The program starts, loads all of the Lua-
bound packages and then executes the specified script. There are classes for picking
up whole flow solutions (i.e. FlowSolution) and accessing any part of the grid
or flow data. A couple of specific applications that show the writing of a custom
postprocessing script are:

• estimating the angle of the shock in the axisymmetric flow over a cone (Sec-
tion 3.2).

• finding the location of the bow shock for the finite cylinder simulation (Sec-
tion 5.2).

Although we introduce this mode in the postprocessing section, it can be more gen-
erally useful. For example, you may be interested in doing some simple gas-dynamic
calculations using the functions in Appendix D. These functions are loaded into the
Lua interpreter started within e4shared and are available for use by the Lua code in
your script file.
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4.2 Input script overview

Because your specification script, job.lua, becomes a part of that program when it
runs, it is worth the effort to learn just enough Lua to be dangerous. The web site
https://www.lua.org is a good starting point for learning about the Lua pro-
gramming language and the older edition of the text “Programming in Lua”[12],
which is available online, is a good read and has everything that you need to suc-
cessfully write good Lua scripts.

After doing some initialization, the program executes your script file and assem-
bles the geometry and flow specification data into a form that can be given to the
main simulation code. The advantage of this approach is that you have the full capa-
bility of the Lua interpreter available to you from within your script. You can perform
calculations so that you can parameterize your geometry, for example, or you can use
Lua control structures to make repetitive definitions much more concise. Addition-
ally, you may use Lua comments and print statements to add documentation to the
script file. An input script usually does the following:

1. Sets a gas model.

2. Optionally, creates geometric elements to assist in defining the boundary repre-
sentation of the gas domain. This is in the form of patches (in 2D) or volumes
(in 3D).

3. Discretizes these patches or volumes as grids of finite-volume cells.

4. Creates fluid blocks based on these grids by assigning boundary conditions and
initial flow state.

5. Sets some simulation control parameters.

Most examples in this manual do just these things, however, it is possible to do much
more.

4.3 Specifying a thermochemical model

The thermochemical models are provided by the gasmodule [5]. This is a D-language
module with a Lua interface so that its objects and methods can be accessed from the
user’s input script. For the moment, we’ll just tell you how to set the gas model for
perfect air. Start by placing the following text:

model = "IdealGas"
species = {"air"}

into a file called ideal-air.inp and run the following command:

$ prep-gas ideal-air.inp ideal-air-gas-model.lua

to produce the file ideal-air-gas-model.lua which contains the fully-specified
gas model. Note that you don’t type the $ command prompt that we show above.

To make use of this gas model within your job input script, use the line:

https://www.lua.org
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nsp, nmodes, gm = setGasModel(’ideal-air-gas-model.lua’)

This will initialize the gas model within the program and return the number of species,
the number of energy modes and a reference to the gas model object. You don’t need
to assign these returned values as shown here, but you may find it convenient to have
access to them for calculations or just for information in the preparation phase. For
the ideal gas model, as shown here, the number of species is 1 and the number of
nonequilibrium energy modes is zero.

For even more sophisticated gas models, the line shown above is all that is needed
within your job script to initialize the gas model. Of course, you will have done all of
the detailed work to set up your sophisticated model and have the details in a corre-
sponding Lua script. All of the gory details are in the gas package documentation [5]
but there are a couple of the examples to study later in the present manual, however,
we will be restricting our discussion to gas models that have either frozen internal
modes or equilibrium internal modes, such that a single temperature is sufficient to
compute the gas thermal energy.

4.3.1 Finite-rate chemical kinetics

Simulations involving nonequilibrium chemistry require an extra input file describ-
ing the participating gas species and their reactions. Preparation of this file is de-
scribed in the companion report [5].

4.4 Defining flow conditions

Because Eilmer is a flow simulation code, initial gas flow conditions need to be spec-
ified throughout the domain. Also, depending on your flow domain, free-stream
inflow boundary conditions may need to be specified on appropriate boundary sur-
faces.

To define such a flow condition in your input script for one or both of these pur-
poses, construct a FlowState object4 as:

fs = FlowState:new{p=p, T=T , massf=mf , T modes=T modes, quality=q,
velx=vx, vely=vy, velz=vz,
tke=tke, omega=ω, mu t=µt, k t=kt,
Bx=βx, By=βy, Bz=βz, psi=ψ}

For a single-temperature gas model, only two of the field values are required. These
are:

• p: pressure in Pa.

• T : temperature in degrees K.

The other fields may be optionally specified.

4The FlowState class is defined in source file prep.lua.
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• T modes: For gas models with multimodal energies, these are the correspond-
ing temperatures, provided in an array. If they are not provided, equilibrium
will be assumed and each assigned the value T . For a gas model with only one
temperature, ignore this field.

• mf : mass fractions of the component species. If there is only one species in a gas
model, a default value of 1.0 will be assumed. If you do provide a field value, it
is to be provided in a table of species names with mass fraction values. For the
ideal air example above, you could provide massf={air=1.0,}. If a species
name is not present in a multispecies model, the corresponding mass fraction
is assumed to be 0.0. Note that the mass fractions supplied must sum to 1.0,
within a tolerance of 1.0× 10−6.

• vx, vy, vz: velocity components in m/s. These default to 0.0.

• q: quality of a two-phase mixture. Default value is 1.0 (i.e. all gas phase).

• tke: turbulent kinetic energy per unit mass in m2/s2 or J/kg, default value 0.0.

• ω: turbulence vorticity in 1/s, default value 1.0.

• µt: turbulence viscosity in Pa.s, default value 0.0.

• kt: turbulence thermal conductivity, default value 0.0. This might be conve-
niently computed as Cpµt/Prt.

• βx, βy, βz: components of the magnetic field in Tesla. These default to 0.0.

• ψ: divergence cleaning parameter for MHD calculations.

In the Lua environment, FlowState objects are tables that give access to the full
internal state, including derived quantities such as density and sound speed. The full
collection of fields is:

• gm: GasModel object associated with this FlowState,

• nSpecies: number of chemical species in the gas model,

• speciesNames: array of strings giving the names,

• nModes: number of other internal energy modes, 5,

• p: pressure in Pa,

• T: temperature in degrees K,

• T modes: array of other internal temperatures,

• quality: fraction of gas phase,

• massf: table of named mass-fraction values,
5For a single-temperature gas model this number will be zero. For multitemperature gas models,

the number will indicate how many internal energy modes, beyond transrotational.
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• a: sound speed in m/s,

• rho: density in kg/m3,

• mu: dynamic viscosity in Pa.s,

• k: thermal conductivity in W/(m.K),

• tke: turbulent kinetic energy in J/kg,

• omega: turbulence vorticity in 1/s,

• mu t: turbulence viscosity in Pa.s,

• k t: turbulence conductivity in W/(m.K),

• velx, vely, velz: velocity components in m/s,

• Bx, By, Bz, psi, divB: magnetic field parameters.

The table also contains a GasState object, Q. Note that the FlowState objects are de-
fined in the context of a gas model, so you need to have called setGasModel (as
shown in Section 4.3) before constructing any FlowState objects.

4.5 Using flow conditions from other simulations

For custom postprocessing, you will need to be able to pick up the grid and flow
data for the simulation and be able to inspect any particular cell, however, there are
occasions in preparing a new simulation where you might like to use flow data from
an old simulation. This data might be used as initial conditions for some or all of your
blocks in your new simulation. A typical example is to restart a simulation with a
finer, or otherwise changed, mesh. In any case, you may construct a FlowSolution
object as:

fsol = FlowSolution:new{jobName="job", dir="myDir",
tindx=tindx, nBlocks=nb }

where the named fields and their possible values are:

• jobName: the root file name that will be used to access the individual flow and
grid files that hold the solution data.

• dir: the directory where we’ll find our existing solution files. Commonly, it
will be the current directory, so you may specify ”.”

• nBlock: number of blocks in the solution data set.

• tindx: the time index to select 0..9999. Do not specify with leading zeros be-
cause there is the potential to confuse decimal and octal numbers.

Having constructed the FlowSolution object, there are a number of methods to pro-
vide access to the data.
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• fsol:find enclosing cell{x=x, y=y, z=z} returns a table with fields ib
and i, for the block index and the cell index, respectively. Note that the single
index for the cell works in the unstructured-grid context and the structured-grid
context. If any of the x, y or z fields are not supplied, a value of 0.0 is assumed.
If the method fails to find an enclosing cell, nil is the return value for both ib
and i.

• fsol:find enclosing cells along line{p0=p⃗0, p1=p⃗1, n=n} returns an ar-
ray of tables, one for each located cell centre. Each table has fields ib and i giv-
ing the block index and the cell index, respectively. The p⃗0 and p⃗1 points may be
specified as tables of labelled coordinates. If any of the x, y or z coordinates are
not supplied, a value of 0.0 is assumed. Alternatively, the points may be sup-
plied as Vector3 objects. The number of sample points is specified as n, which
may be set to be quite large so as to be sure to pick up all cells along the line.
The process of compiling the array of cells will eliminate duplicate entries.

• fsol:find nearest cell centre{x=x, y=y, z=z} returns a table with fields
ib and i, for the block index and the cell index, respectively. If cells are long
and slender, this method might return the indices of a neighbouring cell, rather
than those of the enclosing cell (if it exists).

• fsol:get nic(ib) returns the number of cells in the i-direction for block ib.

• fsol:get njc(ib) returns the number of cells in the j-direction for block ib.

• fsol:get nkc(ib) returns the number of cells in the k-direction for block ib.

• fsol:get var names() returns a table with the variable names for the cell data
as strings.

• fsol:get cell data{fmt=dataFormat, ib=ib, i=i, j=j, k=k } returns the cell
data for a particular cell.
The dataFormat value may be "Plotting" or "FlowState", the difference
being in the names of the fields within the returned table. When dipping into
an unstructured-grid block, omit the j and k entries because only the i index
may be specified. You can access a structured-grid block with a single i in-
dex, or with all three indices, if you wish. The single-index access works well
with the result from find enclosing cell or find nearest cell centre
methods.

• fsol:get vtx{ib=ib, i=i, j=j, k=k } or (fsol:vtx{ib=ib, i=i, j=j, k=k })
returns a Vector3 value representing the position of the vertex. Values of un-
specified fields for this method default to zero.

• fsol:get sgrid{ib=ib} returns the StructuredGrid object for the specified
block.
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4.6 Representation of the flow domain

Now that we have a gas model and a way to specify flow conditions, we need to
define the spatial domain of the flow, together with a set of boundary conditions. The
domain is specified as a grid of finite-volume cells, either structured or unstructured,
shaped to fit the boundaries. If you are going to set up the boundary-representation
of your flow domain using the library of geometric primitives provided with Eilmer,
the companion report [8] describes the details. Alternatively, you may already have a
favourite grid generator. Either way, we now assume that we have the flow domain
defined as one or more grids of cells and we are ready to make the connection to the
initial flow state and the boundary conditions.

4.6.1 Fluid blocks built on structured grids

For a structured-grid in 2D, each fluid block is a region bounded by 4 edges, labelled
north, east, south and west. We are looking at a plan-view of a 2D flow domain in
Figure 4.1. The i and j indices are related to the r and s parametric coordinates used
within the geometric functions and the corner points are identified by their (r, s) co-
ordinates. These corner points are used in the search to determine block connectivity
if the fluid domain is defined as consisting of more than one block. Subdividing a
complex flow domain into simpler subdomains is often done because the mapping
from parametric space to physical space is limited to relatively simple interpolations.
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Figure 4.1: A two-dimensional flow domain containing the structured mesh for a
single FluidBlock object (left) and a collection of sub-blocks defined via a FluidBlock
Array (right). The orientations of the bounding paths are important: west and east
paths progress with parametric coordinate, s, from south to north; south and north
edges progress with parametric coordinate, r, from west to east.



50 Chapter 4. Guide to using Eilmer

In 3D, life is just that bit more complicated with each block defined by 6 bound-
aries (north, east, south, west, top and bottom) fitted to the actual surfaces of the do-
main. Figure 4.2 shows the “index-space” view with cell indices i,j and k correspond-
ing to the r, s and t parametric coordinates used within the geometric functions. The
corner vertices of the block are numbered 1 through 7, as shown.
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Figure 4.2: Two views of the hexahedral block containing a 3D structured mesh.
These figures are ambiguous but each is supposed to show a hollow box with the
far surfaces in each view being labelled. The near surfaces are transparent and unla-
belled. To get your hands on an unambiguous representation, build the debugging
cube drawn in the Appendix of Report [8].

To define a structured-grid fluid block in your input script, construct an FluidBlock
object as:

my block = FluidBlock:new{grid=grid, initialState=fs, omegaz=ωz,
bcList=bcList, label=tagString, active=aF lag }

where the assignment to the variable my block allows easy referencing of the block at
later times, say, for adding boundary conditions. The values bound to the field names
in the constructor table represent6:

• grid: a StructuredGrid object that has been previously constructed (or im-
ported) as described in Chapter 3 of Report [8].

• fs: a FlowState (see Section 4.4) or Lua function object that, given coordinates
x,y and z, returns the FlowState as a table. This function may be derived from a
FlowSolution object, as described toward the end of Section 4.5.

• ωz: angular speed (in rad/s about the z-axis) for the rotating frame of reference.
Useful for the calculation of flow in turbomachines. Default value is zero.

6The definitive source is, of course, the FluidBlock class definition in prep.lua.
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• bcList: a table of named entries, bound to boundary condition objects. The
field names are the boundary surface names (north, east, south, west, top, bot-
tom). Look forward to Section 4.7 for a discussion of the available boundary
conditions. If a particular boundary has no assigned condition, the default is
WallBC WithSlip. You don’t have to supply any or all of the boundary con-
ditions to the FluidBlock constructor. You may attach boundary conditions to
the block boundaries at a later point in your script.

• tagString: a label for use in postprocessing. Internally, the simulation program
only cares for the block’s index in the array of blocks that it holds, however,
this string will be written to the job.list file and may be a convenient way to
identify particular blocks.

• aF lag: Defaults to true, such that the block is actively updated during the sim-
ulation. Although it would be unusual for you to be setting this field manually,
the block-marching mode of the simulation program uses this flag to selectively
update blocks as part of its overall solution strategy. See the config.block marching
flag in Section 4.10.

When defining large domains and running simulations on a multiprocessor com-
puter, it may be convenient to define many FluidBlock objects with one call. The
function call for this situation is:

my fba = FBArray:new{grid=grid, initialState=fs, omegaz=ωz,
bcList=bcList, nib=ni, njb=nj , nkb=nk}

which contains blockArray, a multidimensional array of FluidBlock objects that
may be subscripted [i][j][k] in 3D and [i][j] in 2D to access the individual FluidBlock
objects. Note that each index starts with the Lua default of 1. The single grid passed
in is subdivided into ni × nj × nk sub-grids. Be careful with numbers of cells in
any direction which do not divide into equal sections. You may not get the block
alignment that you assume. Internally, the sub-blocks should be returned with the
newly-formed interior boundaries connected together with ExchangeBC FullFace
boundary conditions. The peripheral boundaries will inherit from the bcList passed
in, or default to WallBC WithSlip boundary conditions. If you don’t specify the
number of blocks to make in each direction, the default value is 1.

When assembling large numbers of blocks for complex geometries, there is a func-
tion identifyBlockConnections(blockList, excludeList, tolerance) that performs
a brute-force search for all adjacent blocks and attaches ExchangeBC FullFace
boundary conditions for pairs of faces that have coinciding corners (to within a given
tolerance). If you don’t want the search to be over all blocks generated so far, sup-
ply an array of references to the blocks that you do want to search as blockList. You
may also supply an array of references for blocks that should be excluded. If you
don’t supply this argument, an empty array is assumed for excludeList. The default
tolerance for the colocation of vertices is 1.0e-6.

Be aware that the identifyBlockConnections() function is oblivious to the
form of the actual paths or surfaces connecting the corner points. It may be that the
corners coincide but the paths and surfaces do not conform.
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If you want more control over the process of joining blocks, you can manually
connect blocks using the connectBlocks() function which makes the logical con-
nection without looking at the geometric locations of the corners. This situation might
arise, for example, when you want to apply periodic boundary conditions in the
cross-stream direction of a flow domain. Then, the boundaries that you want to con-
nect have corners and faces that really don’t coincide. To manually connect a pair of
blocks, use the function: connectBlocks(A, faceA, B, faceB, orientation) where A
and B are references to the individual FluidBlock objects and faceA and faceB are
their adjoining faces (north, east, south, west, top or bottom) and orientation is
an integer value as described in the Lua file blk conn.lua. It is important to sup-
ply the orientation only for 3D. For example, the list of vertex pairings {{3,2}, {7,6},
{6,7}, {2,3}} specifies a north-to-north connection with orientation 0. In 2D, there is
only one orientation that is valid for each possible connection so you don’t need to
specify it.

4.6.2 Fluid blocks built on unstructured grids

It is also possible to define fluid blocks over unstructured-grids and even have them
part of a simulation that is mainly built upon structured-grid blocks. Each unstruc-
tured grid can be viewed as a bag of cells without any globally-structured indexing
scheme; the cells being simply numbered 0 through ncells − 1. The region defined
by the cells will be bounded by one or more boundary-sets of cell faces and bound-
ary conditions are assigned to these boundary sets. Cell faces that are in a particular
boundary-set will have the corresponding boundary condition applied during the
simulation.

To define an unstructured-grid fluid block in your input script, call the FluidBlock
constructor as:

my ublk = FluidBlock:new{grid=grid, initialState=fs, omegaz=ωz,
bcList=bcList, bcDict=bcDict,
label=tagString, active=aF lag }

where the assignment to the variable my ublk allows easy referencing of the block at
later times. The values bound to the field names in the constructor table represent7:

• grid: an UnstructuredGrid object that has been previously constructed (or
imported) as described in Chapter 3 of Report [8].

• fs: a FlowState (see Section 4.4) or Lua function object that, given coordinates
x,y and z, returns the FlowState as a table.

• ωz: angular speed (in rad/s about the z-axis) for the rotating frame of reference.
Useful for the calculation of flow in turbomachines. Default value is zero.

• bcList: an array of boundary condition objects that will be bound to the boundary-
sets, in order of appearance. Since it is probably difficult to make this mapping
manually, you will more likely use the following field.

7The definitive source is, again, the FluidBlock class definition in prep.lua.
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• bcDict: a table with named boundary-condition objects. The names in this ta-
ble are matched against the tag strings for the boundary-sets in the underlying
unstructured-grid object. Look forward to Section 4.7 for a discussion of the
available boundary conditions. If a particular boundary has no assigned con-
dition, the default is WallBC WithSlip. You don’t have to supply any or all
of the boundary conditions to the FluidBlock constructor. Also, you may attach
boundary conditions to the block boundaries at a later point in your script.

• tagString: a label for use in postprocessing. Internally, the simulation program
only cares for the block’s index in the array of blocks that it holds, however,
this string will be written to the job.list file and may be a convenient way to
identify particular blocks.

• aF lag: Defaults to true, such that the block is actively updated during the
simulation.

When making connections between unstructured-grid blocks and other (possi-
bly structured-grid) blocks, your only option is to apply ExchangeBC_MappedCell
boundary-conditions to the corresponding boundary-sets of the blocks.

4.7 Boundary conditions

Boundary conditions in the Eilmer code are composite objects that apply effects to
the ghost-cell and interface data at various points during the update for each time
step. Each boundary condition object holds four lists of effects which you may spec-
ify manually or you may just pick a pre-assembled boundary condition that sets up
the lists. Constructors for pre-assembled boundary condition classes include the fol-
lowing.

4.7.1 Walls

We cannot think of any flows of engineering interest that do not have at least one
wall that bounds the gas-flow region and interacts with the gas flow. If you specify
no boundary conditions at all when constructing a FluidBlock, the preparation
program will actually apply WallBC_WithSlip conditions at all boundaries.

• WallBC_WithSlip:new{label=tagString, group=tag}where we want a solid
wall with no viscous effects. This is the default boundary condition where no
other condition is specified.

• WallBC_NoSlip_FixedT:new{Twall=Twall, label=tagString, group=tag}
where we want viscous effects to impose a no-slip velocity condition and a fixed
wall temperature. We need to set config.viscous = true (see Section 4.10,
Viscous effects) to make this boundary condition effective.

• WallBC_NoSlip_UserDefinedT:new{Twall=fileName, label=tagString,
group=tag} where we want a wall with an arbitrary temperature profile, speci-
fied via a user defined function defined in the file fileName. Internally, this file
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is passed to a UserDefinedInterface boundary effect which expects a function
called interface, as described in Appendix E.

• WallBC_NoSlip_Adiabatic:new{label=tagString, group=tag}where we
want viscous effects to impose no-slip at the wall but where there is no heat
transfer. Note that we need to set config.viscous = true to make this
boundary condition effective.

• WallBC_TranslatingSurface_FixedT:new{Twall=Twall, v_trans=v⃗trans,
label=tagString, group=tag}where we want viscous effects to impose a spec-
ified translating velocity condition and a fixed wall temperature. By translating
we mean that the (flat) wall is moving tangential to the block boundary. The
value for v_trans may be specified as a table of three named (x,y,z) compo-
nents. We need to set config.viscous = true to make this boundary con-
dition fully effective. An example of use is Couette flow between moving plates.

• WallBC_TranslatingSurface_Adiabatic:new{v_trans=vtrans,
label=tagString, group=tag}where we want viscous effects to impose a spec-
ified translating velocity at the wall but where there is no heat transfer. Other-
wise, similar considerations to WallBC_TranslatingSurface_FixedT, de-
scribed above.

• WallBC_RotatingSurface_FixedT:new{Twall=Twall, r_omega=ω⃗,
centre=p⃗, label=tagString, group=tag} where we want viscous effects to
impose a specified translating velocity condition and a fixed wall temperature.
By rotating we mean that the cylindrical wall is moving tangential to the block
boundary. Values for r_omega and centre may be specified as tables of three
named (x,y,z) components giving the angular-velocity and a point on the axis
of rotation. The actual velocity of a point on the wall is then given by the vector
expression ω⃗× (r⃗− c⃗), where r⃗ is the point on the wall, c⃗ is the point on the axis
of rotation and ω⃗ is the angular velocity. An example of use is the surface of a
shaft in a journal bearing. We need to set config.viscous = true to make
this boundary condition fully effective.

• WallBC_RotatingSurface_Adiabatic:new{r_omega=ω⃗, centre=p⃗,
label=tagString, group=tag}where we want viscous effects to impose a spec-
ified translating velocity at the wall but where there is no heat transfer. Other-
wise, similar considerations to WallBC_RotatingSurface_FixedT, described
above.

4.7.2 In-flow

Often, the flow domain in your analysis is part of a bigger flow domain. To abstract
your smaller region of interest, you will apply in-flow and out-flow conditions at the
edges of the abstracted flow domain that are not walls. In-flow boundary conditions,
as the name suggests, will drive gas into the flow domain.

• InFlowBC_Supersonic:new{flowState=fs, x0=x, y0=y, z0=z, r=r,
label=tagString, group=tag} where we want to specify the inflow condition,
fs, that gets copied into the ghost cells each time step. fs is a FlowState object,
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as described in Section 4.4. By default, r = 0 and a uniform inflow condition
is assumed, as would be appropriate for simulations of free flight. To enable
modelling of flows that have been produced by a wind tunnel or shock tunnel
with a conical nozzle, you may specify the origin (x, y, z) of the virtual source
flow and a non-zero radial distance r (from that origin) at which the nominal
flow condition is specified. When used in this mode, only the x-component of
the specified nominal flow velocity is used. On being called to provide data
for each specific ghost cell, the location of the ghost cell is used to determine a
specific flow condition as a perturbation of the nominal condition. The velocity
will be computed to have appropriate axial and radial components. Default
values for x, y and z are zero.

• InFlowBC_StaticProfile:new{fileName=fileName, match=matchString,
label=tagString, group=tag} where we want to specify an inflow condition
that might vary in a complicated manner across the boundary. Data for the flow
condition, on a per-cell basis, is contained in the specified file. It may be that the
file is obtained from an earlier simulation, with a post-processing option like
--extract-line used to write the file entries. Matching of the ghost cells to
particular entries in the data file is controlled by matchString, where the de-
fault is to match to the nearest location on all three coordinates of the ghost-cell
position match="xyz-to-xyz". Other possible values are:

– "xyA-to-xyA" For 2D or 3D simulations, don’t care about z-component
of position.

– "AyA-to-AyA" For 2D or 3D simulations, care about the y-component of
position only.

– "xy-to-xR" Starting with a profile from a 2D simulation, map it to a ra-
dial profile in a 3D simulation, considering the x-component of the position
of the ghost cells.

– "Ay-to-AR" Starting with a profile from a 2D simulation, map it to a ra-
dial profile in a 3D simulation, ignoring the x-component of the position of
the ghost cells.

• InFlowBC_Transient:new{fileName=string, label=tagString, group=tag}
where we want to specify the time-varying inflow condition at the boundary.
Data for the inflow condition, at particular time instants and assumed uniform
across the full boundary, is contained in the specified file. The user needs to
write this file according to the expected format encoded in the FlowHistory
class, found toward the end of flowstate.d. Each data line will have the fol-
lowing space-delimited items:
time, velx, vely, velz, p, T, mass-fractions, Tmodes if any.

• InFlowBC_ConstFlux:new{flowState=fs, x0=x, y0=y, z0=z, r=r,
label=tagString, group=tag} where we want to specify directly the fluxes of
mass, momentum and energy across the boundary faces. The fluxes are com-
puted from the supplied flow condition. See InFlowBC_Supersonic for notes
on the virtual source flow option.
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• InFlowBC_ShockFitting:new{flowState=fs, x0=x, y0=y, z0=z, r=r,
label=tagString, group=tag} where we want to have the inflow boundary
be the location of a bow shock. The fluxes across the boundary are computed
from the supplied flow condition and the boundary velocities are set to follow
the shock. See InFlowBC_Supersonic for notes on the virtual source flow
option. Note that we need to set config.moving_grid = true, select an
appropriate gas-dynamic update scheme for the moving grid, and have all of
the blocks with the shock-fitting boundary as part of a single FBArray.

• InFlowBC_FromStagnation:new{stagnationState=fs,
fileName=string,
direction_type="normal",
direction_x=1.0, direction_y=0.0, direction_z=0.0,
alpha=0.0, beta=0.0,
mass_flux=0.0, relax_factor=0.10,
label=tagString, group=tag}
where we want a subsonic inflow with a particular stagnation pressure and tem-
perature and a velocity direction at the boundary. (Note that many of the fields
are shown with their default values, so you don’t need to specify them.) When
applied at each time step, the average local pressure across the block boundary
is used with the stagnation conditions to compute a stream-flow condition. De-
pending on the value for direction_type, the computed velocity’s direction
can be set

– "normal" to the local boundary,

– "uniform" in direction and aligned with direction vector whose compo-
nents are direction_x, direction_y and direction_z

– "radial" radially-in through a cylindrical surface using flow angles alpha
and beta, or

– "axial" axially-in through a circular surface using the same flow angles.

For the case with a nonzero value specified for mass_flux, the current mass
flux (per unit area) across the block face is computed and the nominal stagnation
pressure is incremented such that the mass flux across the boundary relaxes to-
ward the specified value. Note that when we select a nonzero mass flux, we no
longer control the stagnation pressure. This will be adjusted to give the desired
mass flux. The value for relax_factor adjusts the rate of convergence for
this feedback mechanism. Note, that for multi-temperature simulations, all of
the temperatures are set to be the same as the transrotational temperature. This
should usually be a reasonable physical approximation because this boundary
condition is typically used to simulate inflow from a reservoir, and stagnated
flow in a reservoir has ample time to equilibriate at a common temperature.
The implementation of this boundary condition may not be time accurate, par-
ticularly when large waves cross the boundary, however, it tends to work well
in the steady-state limit.

When mass_flux is zero and fileName is left as the default empty string, the
specified FlowState, fs, is used as a constant stagnation condition. This may



4.7. Boundary conditions 57

be modified by a user-defined function if fileName is a non-empty string that
give the name of a Lua script containing a function with the name stagnationPT
On every boundary condition application, this function receives a table of data
(including the current simulation time) and returns values for stagnation pres-
sure and temperature. Here is a minimal example:

function stagnationPT(args)
-- print("t=", args.t)
p0 = 500.0e3 -- Pascals
T0 = 300.0 -- Kelvin
return p0, T0

end

The intention is that the user may program the stagnation pressure as more
interesting functions of time.

4.7.3 Out-flow

If you have an in-flow boundary condition, you will likely require one or more out-
flow boundary conditions to avoid your flow domain being just an accumulator.
When truncating a larger flow domain to make your simulation flow domain, select
a location for your out-flow boundary conditions to be as far as you can reasonably
afford from the parts of the flow domain where you are taking measurements.

• OutFlowBC_Simple:new{label=tagString, group=tag} is an alias
for OutFlowBC_SimpleFlux:new{}.

• OutFlowBC_SimpleFlux:new{label=tagString, group=tag}where we want
a (mostly) supersonic outflow condition. It should work with subsonic outflow
as well, however, remember that you are deliberately ignoring information that
may propagate into the domain from the real (physical) region that you have
truncated. The outflow flux is determined from the flow state in the cell just in-
side the boundary. If the velocity in that cell tries to produce an influx of mass,
the flux calculation switches to that of an impermeable wall.

• OutFlowBC_SimpleExtrapolate:new{xOrder=0, label=tagString,
group=tag} where we want a (mostly) supersonic outflow condition. Flow
data is effectively copied (xOrder=0) or linearly-extrapolated (xOrder=1) from
just inside the boundary to the ghost cells just outside the boundary, every time
step. In subsonic flow, this can lead to physically invalid behaviour. If you en-
counter strange flow behaviour that seems to start at this boundary and prop-
agate upstream into your flow domain, try extending your simulated flow do-
main such that you eventually have an outflow boundary across which nothing
exciting happens.

• OutFlowBC_FixedP:new{p_outside=1.0e5, label=tagString,
group=tag} where we want something like OutFlowBC_Simple but with a
specified back pressure. This can be analogous to a vacuum pump that removes
gas at the boundary to maintain a fixed pressure in the ghost cells.
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• OutFlowBC_FixedPT:new{p_outside=1.0e5, T_outside=300.0,
label=tagString, group=tag} is like OutFlowBC_FixedP, above, but also
sets the temperature in the ghost cells.

4.7.4 Inter-block exchange

In a simulation with more than one block of cells, the flow solver mostly deals with
the blocks independently. At each stage of an update, the flow solution is stitched
together at the inter-block boundaries by exchanging flow data across those bound-
aries.

• ExchangeBC_FullFace:new{otherBlock=nil, otherFace=nil,
orientation=-1, reorient_vector_quantities=false,
Rmatrix={1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0},
label=tagString, group=tag} Usually, this boundary condition is applied im-
plicitly, by calling the function
identifyBlockConnections, for cases where one structured-grid block in-
terfaces with another and the block boundaries are cleanly aligned, however,
it can be applied manually for cases where you want the flow to be plumbed
from one block face into another and the blocks are not geometrically aligned.
A non-unity transformation matrix, Rmatrix, can be provided for cases where
the flow vector quantities need to be reoriented when they are copied from
the other boundary to this one. Note that this boundary condition is only for
structured-grid blocks. If one or both of the blocks to be joined is based on an
unstructured-grid, you will need to use the following MappedCell flavour of
the exchange boundary condition.

• ExchangeBC_MappedCell:new{transform_position=false,
c0=Vector3:new{x=0.0,y=0.0,z=0.0},
n=Vector3:new{x=0.0,y=0.0,z=1.0},
alpha=0.0, delta=Vector3:new{x=0.0,y=0.0,z=0.0},
list_mapped_cells=false, reorient_vector_quantities=false,
Rmatrix={1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0},
label=tagString, group=tag} is something like the ExchangeBC_FullFace
boundary condition but with a mapping of destination(ghost)-cell location to
source-cell location. It allows us to stitch boundaries together, even if the cells
do not align, one-for-one. The position of the source cell is computed by taking
the position of the ghost cell, computing the solid-body rotation of alpha radi-
ans about the axis n through the point c0, then adding a displacement delta.
This will accommodate general rigid-body transformations.

4.7.5 User-defined

These are our ”get out of jail” boundary conditions. They allow you to do just about
anything you wish and, because of the lack of constraint, are somewhat involved to
describe. See Appendix E for the more complete story.

• UserDefinedGhostCellBC:new{fileName=string,
label=tagString, group=tag} allows the user to define the ghost-cell flow
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properties and/or interface fluxes at run time. This is done via a set of func-
tions defined by the user, written in the Lua programming language, and pro-
vided in the specified file. See Section E.1.1 in Appendix E for a more complete
description.

• UserDefinedFluxBC:new{fileName=string, funcName=string,
label=tagString, group=tag} allows the user to define the interface convective-
fluxes at run time. This is done via a function defined by the user, written in the
Lua programming language, and provided in the specified file. If the user does
not specify the function name, convectiveFlux is used as the default name.
See Section E.1.2 in Appendix E for a more complete description.

• ExchangeBC_FullFacePlusUDF:new{otherBlock=nil, otherFace=nil,
orientation=-1, reorient_vector_quantities=false,
Rmatrix={1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0},
fileName=string, label=tagString, group=tag}
There are cases where you might conditionally want to exchange block-boundary
data or do something else altogether. This boundary condition allows that by
first doing a FullFace exchange of data and then calling upon your user-defined
functions (as for UserDefinedGhostCellBC) to conditionally overwrite the
data. This turns out to be a convenient way to implement diaphragm models for
shock-tunnel simulations. Note that this boundary condition can work across
MPI tasks but is only for structured-grid blocks.

Note that all boundary conditions have optional label and group fields that have
empty default values. These may be used to group boundary surfaces symbolically.

4.7.6 Binding boundary conditions to block faces

In Section 4.6.1 (page 50), it was shown that the boundary conditions could be speci-
fied as a table of BoundaryCondition objects passed to the constructor of FluidBlock
objects. This is preferred. Alternatively, BoundaryCondition objects can be as-
signed individually to elements of the bcList attribute after block construction. For
example:
blk 0:bcList[west] = InFlowBC Supersonic:new{flowState=fs}
blk 1:bcList[east] = OutFlowBC Simple:new{}
When using the FBArray:new constructor it is far more convenient to use the bcList
style of boundary condition specification as this will take care of all the boundary
conditions on the subdivided blocks automatically.

The same can be done for FluidBlock objects based on unstructured grids but
you will have to use the numerical index of the boundary set. It is probably easiest
to supply the boundary-condition objects as a table with named entries at the time of
constructing the block. See the example in Section 5.3 (page 92) for a guide to setting
up such a table.
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4.8 Special zones

Zones of special conditions may be defined within the flow domain as rectangu-
lar (2D) or regular hexahedral (3D) patches which are specified by two diagonally-
opposite corners (p0 and p1). There are three special classes in the present code:
reaction, ignition and turbulence.

For example, we could specify ReactionZone:new{p0=a⃗, p1=⃗b} where the cor-
ners of the zone are given by the Vector3 values a⃗ and b⃗. In a flow with an active
reaction scheme, this type of zone makes it possible to selectively allow reactions to
proceed, or not. If the centre of a cell lies within the reaction zone, the finite-rate
chemistry is allowed to proceed, else the species fractions are maintained constant.
Maintaining the species fractions constant effectively “freezes” the reactions. In a
two-dimensional simulation, p0 corresponds to p00 in Figure 4.1 (on page 49) while
p1 corresponds to p11, at the opposite corner of the patch. In three-dimensional sim-
ulation, p0 corresponds to p0 in Figure 4.2 (on page 50) while p1 corresponds to p6 at
the diagonally-opposite vertex of the hexahedral block. If no reaction zones are spec-
ified and a reaction scheme is active, then reactions are permitted for the entire flow
field. An example application of this type of zone is the simulation of the student
ramjet8 where the inflow for the whole simulation domain included the fuel mixture
but we wanted reactions to proceed only in the ramjet combustor.

An effective method to trigger chemical reactions is to use
IgnitionZone:new{p0=a⃗, p1=⃗b, T=Tig} where temperature, Tig, controls the reac-
tion rate used for chemical reactions, without effecting the gas temperature in the flow
field. The rate-controlling temperature is used to evaluate the chemical reaction rates
only within the physical extents of the ignition zone. The effect of this zone can be
limited in time by specifying a nonzero values for config.ignition_time_start
and config.ignition_time_stop. While the zone is active, the reaction rates
within the zone are altered. The rate-controlling temperature is typically set to an ar-
tificially inflated value to promote ignition. For example, a value of 2000 K is effective
in igniting certain compositions of a methane/air mixture.

Also, when running turbulent flow simulations, the turbulence effects can be lo-
calized using TurbulentZone:new{p0=a⃗, p1=⃗b} The turbulence model (say, the
k − ω model) is active throughout the flow but its effect on the flow field is masked
outside of any defined turbulent zones. This is achieved by the code setting the tur-
bulence viscosity and conductivity to zero for finite-volume cells that fall outside of
all regions defined as a TurbulentZone. If there are no such defined regions, the
whole flow field is allowed to have nonzero turbulence viscosity.

4.9 History points

A history point is a location in the flow field at which data is written to a file at a
frequency different to (and possibly much higher than) the frequency that full flow
field is written. The files for history points are found in the hist/ subdirectory and
are identified by their associated block and cell indices. A history point can be located

8See examples/eilmer/2D/ramjet-student-design in the source code repository.
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by its Cartesian coordinates using the function call:
setHistoryPoint{x=x, y=y, z=0.0}
where the z-coordinate is shown taking its default value of zero. Alternatively, the
point can be located via its block and cell indices as:
setHistoryPoint{ib=b, i=i, j=j, k=0}
The frequency of writing the history data is controlled by config.dt_history, as
described in the following section on configuration parameters.

4.10 Simulation configuration and control parameters

A number of other parameters can be set in order to configure and control the be-
haviour of the simulation. These parameters are mainly collected into the config
table9 which is accessible to the user’s input script. Grouped by theme, the possible
attributes and their default values include10:

4.10.1 Geometry

• dimensions=2: The number of geometric dimensions (2 or 3).

• axisymmetric=false: If set true, the two-dimensional, axisymmetric ge-
ometry will have the x-axis as the axis of symmetry. Two-dimensional, planar
geometry is the default. Geometries should be constructed above (and possibly
including) the x-axis, so, with positive y ordinates.

4.10.2 Time stepping

The code tries to automatically adjust the size of the time-step, such that the numeri-
cal integration process remains stable for all cells. Sometimes this is difficult and you
will have to alter one or more of the following parameters.

• cfl_value=0.5‡: The CFL number is the ratio of the time-step divided by the
time for the fastest signal to cross a cell. The time-step adjustment process tries
to set the time-step for the overall simulation to a value such that the maximum
CFL number for any cell is at this cfl_value. If you are having trouble with
a simulation that has lots of sudden flow field changes, decreasing the size of
cfl_value may help.

• gasdynamic_update_scheme=predictor-corrector:
The options are: ’euler’, ’pc’, ’predictor-corrector’, ’midpoint’,
’classic-rk3’, ’tvd-rk3’, ’denman-rk3’, ’moving-grid-1-stage’,
’moving-grid-2-stage’.
Note that ’pc’ is equivalent to ’predictor-corrector’. If you want time-
accurate solutions, use a two- or three-stage stepping scheme, otherwise, Euler

9The config table is a view into the GlobalConfig class defined in the D-language part of the
simulation code. Although many of the attributes are discussed here, see the source code for that class
for a full list of attributes. You will find it in the file src/eilmer/globalconfig.d.

10Attributes that are stored in the control file are denoted by a ‡ symbol. The rest go into the config
file.
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stepping has less computational expense but you may get less accuracy and the
code will not be as robust for the same CFL value. For example the shock front
in the Sod shock tube example is quite noisy for Euler stepping at CFL=0.85
but is quite neat with any of the two- or three-stage stepping schemes at the
same value of CFL. The midpoint and predictor-corrector schemes produce a
tidy shock up to CFL = 1.0 and the rk3 schemes still look tidy up to CFL = 1.2.
Note that you may use dashes or underscores when spelling the scheme names.

• fixed_time_step=false‡: Normally, we allow the time step size to be de-
termined from cell conditions and CFL number.
Setting fixed_time_step=true forces the time step size to be unchanged
from dt_init.

• dt_init=1.0e-3‡: Although the computation of the time step size is auto-
matic, there might be cases where this process does not select a small enough
value to get the simulation started stably. For the initial step, the user may
override the computed value of time step by assigning a suitably small value
to dt_init. This will then be the initial time step (in seconds) that will be
used for the first few steps of the simulation process. Be careful to set a value
small enough for the time-stepping to be stable. Since the time stepping is
synchronous across all parts of the flow domain, this time step size should be
smaller than half of the smallest time for a signal (pressure wave) to cross any
cell in the flow domain. If you are sure that your geometric and boundary de-
scriptions are correct but your simulation fails for no clear reason, try setting
the initial time step to a very small value. For some simulations of viscous hy-
personic flow on fine grids, it is not unusual to require time steps to be as small
as a nanosecond.

• dt_max=1.0e-3‡: Maximum allowable time step (in seconds). Sometimes, es-
pecially when strong source terms are at play, the CFL-based time-step determi-
nation does not suitably limit the size of the allowable time step. This parameter
allows the user to limit the maximum time step directly.

• viscous_signal_factor=1.0‡: By default, the full viscous effect for the sig-
nal calculation will be used within the time-step calculation. It has been sug-
gested that the full viscous effect may not be needed to ensure stable calcula-
tions for highly-resolved viscous calculations. A value of 0.0 will completely
suppress the viscous contribution to the signal speed calculation but you may
end up with unstable stepping. It’s a matter of “try a value and see” if you get
a larger time-step while retaining a stable simulation.

• stringent_cfl=false‡: The default action for structured grids is to use dif-
ferent cell widths in each index direction. Setting stringent_cfl=true will
use the smallest cross-cell distance in the time-step size check.

• cfl_count=10‡: The number of time steps between checks of the size of the
time step. This check is expensive so we don’t want to do it too frequently but,
then, we have to be careful that the flow does not develop suddenly and the
time step become unstable.
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• max_time=1.0e-3‡: The simulation will be terminated on reaching this value
of time.

• max_step=100‡: The simulation will be terminated on reaching this number
of time steps. You will almost certainly want to use a larger value, however, a
small value is a good way to test the starting process of a simulation, to see that
all seems to be in order.

• dt_plot=1.0e-3‡: The whole flow solution will be written to disk when this
amount of simulation time has elapsed, and then again, each occasion the same
increment of simulation time has elapsed.

• dt_history=1.0e-3‡: The history-point data will be written to disk repeat-
edly, each time this increment of simulation time has elapsed. To obtain history
data, you will also need to specify one or more history points.

4.10.3 Block marching

• block_marching=false: Normal time iteration proceeds on all blocks simul-
taneously, however, such a time-marching calculation may be very expensive
computationally. Setting block_marching=true enables a sequencing of the
time integration such that at any one instant, only two slices of blocks are being
integrated. The i-direction is the marching direction and the assumed dominant
(supersonic) flow direction. The blocks are assumed to be in a regular array with
a fixed number of blocks in the j- and k-directions to the entire flow domain.

• nib=1, njb=1, nkb=1: are the number of blocks in each index direction. To
make the best use of block marching, you should have nib set to a fairly large
number. Since the array of blocks is assumed regular, you cannot have very
complicated geometries. Simple ducts, nozzles and plates are the intended ap-
plications. As seen in the examples, it may be convenient to define the full
domain with one or more calls to the constructor FBArray:new. There is a re-
striction that the overall flow domain be assembled as a single structured array
of FlowBlock objects.

• propagate_inflow_data=false: By default, the integration begins in each
set of blocks from the initial gas state set up in the preparation phase of the
simulation. Some advantage may be gained following integration of the first
block slices by initializing subsequent block slices with the downstream (east
boundary) flow states. Setting propagate_inflow_data=true propagates
these data across each new block slice, before the integration process for the
slice begins.

• save_intermediate_results=false: Usually, a single set of solution files
(after marching over all block slices) is all that is required. Sometimes, when
debugging a troublesome calculation, it may be useful to have a solution written
after the time-integration process for each pair of block slices. Set this parameter
true to get these intermediate solutions written.
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4.10.4 Spatial reconstruction/interpolation

• interpolation_order=2: Before applying the flux calculator, high-order re-
construction is applied. Setting interpolation_order=1 results in no re-
construction of intra-cell flow properties.

• apply_limiter=true: By default, we apply a limiter to the flow-field recon-
struction.

• extrema_clipping=true: By default, we do extrema clipping at end of each
scalar-field reconstruction. Setting extrema_clipping=false suppresses clip-
ping.

• thermo_interpolator="rhou": String to choose the set of interpolation
variables to use in the interpolation, options are "rhou", "rhop", "rhoT" and
"pT".

4.10.5 Flux calculator

• flux_calculator="adaptive_hanel_ausmdv": Selects the flavour of the
flux calculator. Options are:

– "efm": A cheap and very diffusive scheme by Pullin and Macrossan [15,
16]. For most hypersonic flows, it is too diffusive to be used for the whole
flow field but it does work very nicely in conjunction with AUSMDV, es-
pecially for example, in the shock layer of a blunt-body flow.

– "ausmdv" A good all-round scheme with low-diffusion for supersonic
flows.[17].

– "adaptive_efm_ausmdv" A blend [18] of the low-dissipation AUSMDV
scheme for the regions away from shocks with the much more diffusive
EFM used for cell interfaces near shocks. It seems to work quite reliably for
hypersonic flows that are a mix of very strong shocks with mixed regions
of subsonic and supersonic flow. The blend is controlled by the parameters
compression_tolerance and shear_tolerance that are described
below.

– "ausm_plus_up": Implemented from the description in Ref. [19]. It should
be accurate and robust for all speed regimes. It is the flux calculator of
choice for very low Mach number flows, where the fluid behaviour ap-
proaches the incompressible limit. For best results, you should set the
value of M_inf.

– "hlle" The Harten-Lax-vanLeer-Einfeldt (HLLE) scheme. It is somewhat
dissipative and is the only scheme usable with MHD terms.

– "adaptive_hlle_ausmdv"As for "adaptive_efm_ausmdv" but with
the dissipative scheme being the HLLE flux calculator.

– "hanel" The Hanel-Schwane-Seider scheme, from their 1987 paper. It is
also dissipative and is somewhat better behaved than our EFM implemen-
tation.
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– "adaptive_hanel_ausmdv"As for "adaptive_efm_ausmdv" but with
the dissipative scheme being the Hanel-Schwane-Seider flux calculator.

– "roe" The Phil Roe’s classic linearized flux calculator.

– "adaptive_hlle_roe" A blend of Roe’s low-dissipation scheme and
the more dissipative HLLE flux calculator.

The default adaptive scheme is a good all-round scheme that uses AUSMDV
away from shocks and Hanel-Schwane-Seider flux calculator near shocks.

• compression_tolerance=-0.30: The value of relative velocity change (nor-
malised by local sound-speed) across a cell-interface that triggers the shock-
point detector. A negative value indicates a compression. When an adaptive
flux calculator is used and the shock detector is triggered, the more-dissipative
flux calculation will be used in place of the default low-dissipation calculation.
A value of -0.05 seems OK for the Sod shock tube and sharp-cone inviscid flow
simulations, however, a higher value is needed for cases with viscous boundary
layers, where it is important to not have too much numerical dissipation in the
boundary layer region.

• shear_tolerance=0.20: The value of the relative tangential-velocity change
(normalised by local sound speed) across a cell-interface that suppresses the use
of the high-dissipation flux calculator even if the shock detector indicates that a
high dissipation scheme should be used within the adaptive flux calculator. The
default value is experimentally set at 0.20 to get smooth shocks in the stagnation
region of bluff bodies. A smaller value (say, 0.05) may be needed to get strongly
expanding flows to behave when regions of shear are also present.

• M_inf=0.01: representative Mach number for the free stream. Used by the
ausm_plus_up flux calculator.

4.10.6 Viscous effects

• viscous=false: If set true, viscous effects will be included in the simulation.

• separate_update_for_viscous_terms=false: If set true, the update
for the viscous transport terms are done separately to the convective terms. By
default the updates are done together in the gas-dynamic update procedure.

• viscous_delay=0.0: The time (in seconds) to wait before applying the vis-
cous terms. This might come in handy when trying to start blunt-body simula-
tions.

• viscous_factor_increment=0.01: The per-time-step increment of the vis-
cous effects, once t>viscous_delay.

• mass_diffusion_model="none": Controls the molecular diffusion of indi-
vidual species in a multi-species, viscous, laminar calculation. The only avail-
able model is "ficks_first_law", which specifies the form of the diffusion
fluxes, but leaves open different possibilities for the diffusion coefficient. Note
that in a turbulent simulation, this parameter is ignored, and species diffuse
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based on the turbulence_schmidt_number. This is because turbulent dif-
fusion is typically much larger than laminar diffusion, and so some calculation
time can be saved by ignoring the latter.

• diffusion_coefficient_type="none": Controls the formulas used to com-
pute the diffusion coefficient in a mass_diffusion_model="ficks_first_law"
simulation. The simplest option is constant_lewis_number, which will work
with any multi-species gas. The value of the Lewis number can be set using
lewis_number. A somewhat more flexible option is species_specific_lewis_numbers,
which requires the Lewis number for each species to be specified in the gas
model. The Thermally Perfect Gas model is an example of a gas model that has
this information. The highest fidelity diffusion coefficient model is binary_diffusion,
which asks the gas model to compute a diffusion coefficient for each species
against each other species and average them together, typically using collision
integrals. Again, the Thermally Perfect Gas model is an example of a gas model
with this capability, though the Two Temperature Air model is also equipped
for this calculation.

• lewis_number=1.0: Sets the ratio between heat transport and diffusive mass
transport in a simulation using constant_lewis_number.

• turbulence_model="none": String specifying which model to use. Options
are: "none", "k_omega", "spalart_allmaras", "spalart_allmaras_edwards".

• turbulence_prandtl_number=0.89

• turbulence_schmidt_number=0.75

• max_mu_t_factor=300: The turbulent viscosity is limited to laminar viscos-
ity multiplied by this factor.

• transient_mu_t_factor=1.0

4.10.7 Thermo-chemistry

• reacting=false: Set to true to activate the finite-rate chemical reactions.

• reactions_file="chemistry.lua": File name for reaction scheme config-
uration.

• reaction_time_delay=0.0: Time after which finite-rate reactions are al-
lowed to start.

• T_frozen=300.0: Temperature (in degrees K) below which reactions are frozen.
The default value is 300.0 since most reaction schemes seem to be valid for tem-
peratures above this, however, you may have good reasons to set it higher or
lower.
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4.10.8 Miscellaneous parameters

• title="Eilmer simulation": The title string that may appear in a number
of places. For example, in plots made during the postprocessing stage.

• adjust_invalid_cell_data=false: Usually, you will want the flow solver
to provide its best estimate for your flow, however, there are flow situations for
which the flow solver will not compute physically valid flow data. If you en-
counter a difficult flow situation and are prepared to fudge over a few cells, then
set this parameter to true and max_invalid_cells to a non-zero value.

• max_invalid_cells=0: The maximum number of bad cells that will be tol-
erated on decoding conserved quantities. If this number is exceeded, the simu-
lation will stop.

• report_invalid_cells=true: If you are stuck with having to fudge over
cells, you probably will want to know about them until, of course, that you
don’t. Set this parameter to false to silence the reports of bad cells being
fudged over.

• apply_bcs_in_parallel=true: This will be the fastest calculation, how-
ever, some boundary conditions, such as the shock-fitting need to cooperate
across blocks and so will have race conditions if applied in parallel. If your sim-
ulation has such a boundary condition, set this parameter to false to favour
safety above speed.

• udf_source_terms=false: Set to true to apply user-defined source terms,
as supplied in a Lua file.

• udf_source_terms_file="dummy-source-terms.txt": Name of the Lua
file for the user-defined source terms.

• print_count=20‡: Number of time steps between printing status information
to the console.

• control_count=10: Number of time steps between re-parsing the job.control
file. If the job.control has been edited, then the new values are used after re-
parsing.

• MHD=false: Set to true to make MHD physics active.

4.11 Notes on the layout of your input script

The goal of your input script is to define one or more FluidBlock objects that have
suitable boundary conditions and initial gas state. The order in which you construct
the objects and set configuration variables is somewhat defined by the input needed
by the constructor for each class of object. To define a FluidBlock, you need a Grid,
either imported or constructed from geometric elements, and a GasState. To define
a GasState, you need to have set the master GasModel. Thus a typical input script
will set the GasModel and then proceed to define one or more GasState objects.
Geometry construction and the creation or importing of Grid objects can be done
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independently of the FlowState construction, so it does not matter if this phase is
done before or after the FlowState specification. The FluidBlock construction
comes after.

Most of the config variable settings are just for use at run time of the simu-
lation. If you want a value other than the default value, you can set them at any
point in the input script. There are, however, a few config variables that set context
that is important within your input script. These include dimensions, viscous,
grid_motion and turbulence_model. If you want a value different from the de-
fault value, be sure to set it early in your script.

There are many configuration variables and their definitive reference is the flow
solver’s source code. Do not be afraid to open up the file globalconfig.d and
browse the definitions of those variables within the GlobalConfig class. There are
documentation comments embedded in the source code that do not appear in this
guide. As a general rule, only set a value in your input script if you want something
other than the default value or if you want to explicitly document the setting via your
script. Assigning many config variables to their default values in your input script
will just add clutter.

4.12 MPI simulations

Once you are successful with your first couple of simulations, your computational
ambition is likely to grow and the use of the MPI flavour of the code, e4mpi, is of
interest. The only extra configuration that the MPI code requires is the distribution of
the FluidBlocks to MPI tasks. If you do not care for the detail, the default arrangement
will be to assign each FluidBlock to its own MPI task. If you want something differ-
ent for your time dependent simulation, maybe to fit more comfortably within your
workstation’s capabilities, you may explicitly arrange the distribution by calling:

mpiDistributeBlocks{ntasks=3, dist="load-balance",
preassign={[0]=1}}

Here, we have specified that we want the FluidBlocks to be distributed across 3 MPI
tasks, with FlowBlock[0] being assigned to MPI task 1. The options for the distribu-
tion algorithm of the remaining FlowBlocks are "round-robin" and "load-balance",
with the default being "load-balance". This call to mpiDistributeBlocks
should be made after all FluidBlocks have been defined in your input script.

For block-marching calculations, the distribution of blocks should be such that
blocks in a ribbon along the marching direction (the i-index direction) should be as-
signed to the same MPI task. If you have constructed your blocks with FBArray:new,
there is a call:

mpiDistributeFBArray{fba=my_fba, ntasks=njb*nkb}

that will assign the blocks of my_fba correctly. If you do not call the function directly,
the preparation program will arrange the assignments for you, with the default num-
ber of tasks shown above. Of course, you will need to be aware of that default so
that you can specify the correct number of tasks when you subsequently start up the
simulation with mpirun. You may specify fewer MPI tasks but the number should be
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such that a j,k-slice of blocks should distribute neatly across that number of tasks. In
the example simulation of a two-dimensional channel with a bump, the flow domain
is constructed of 192 blocks in a 48× 4× 1 array. For that case ntasks=2 or 4 would
be suitable.





5

More example simulations

With some confidence that the code is working correctly and a knowledge of the
manual postprocessing arrangements shown in the tutorial example (Chapter 3), you
are ready to try to simulate flows that are a bit more “realistic”. The following sections
look at two examples, that are more demanding.

The first is a flat-plate, in a supersonic flow, with a laminar boundary layer. The in-
teresting behaviour occurs where an oblique shock interacts with the boundary layer.
This is a two-dimensional flow simulation with a simple ideal-gas thermochemical
model and simple flow domain.

The second example is the bluff-body flow of a high-enthalpy gas over a cylin-
der. The thermochemical model of reacting nitrogen is more sophisticated and the
description of the 3D domain requires more Lua code to set up.

71
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5.1 Oblique shock boundary layer interaction.

This is an example that introduces viscous effects but retains a very simple geometric
arrangement for the flow boundaries. It is simple to model but immediately shows
the computational demands that result from requesting an increase in “flow fidelity”.
Consider the Mach 2 flow of ideal air over a flat plate, as shown below in Figure 5.1.
This flow image was taken as part of an experimental campaign [20] in a continu-
ous flow wind tunnel at MIT. The flow is from left to right in the image. The plate
with the boundary layer of interest is the lower boundary and there is a viscous-
interaction shock propagating from the sharp edge of the plate (bottom left of the
image) and across the flow. There is another plate at a small angle of attack forming
the upper surface of the test region. The leading-edge of this shock-generator plate is
out of view but the generated shock is seen entering the field of view at the top-left
of the image and reflection from the bottom plate at approximately 49 mm from the
leading edge. The shock reflection results in an overall pressure ratio of 1.4 across
the interaction region. The boundary layer on the plate can be seen thickening to the
point of intersection with the reflected shock and then thinning again past the inter-
action point. The case for a pressure ratio of 1.4 was chosen for simulation because, as
noted in the original report [20], shear-stress data indicated that the boundary layer
remained laminar after the interaction.

Figure 5.1: Schlieren image of the Mach 2 flow over a flat plate taken from Fig.6b in
Reference [20]. Flow is from left to right, with the leading edge of the flat plate close
to the bottom left corner of the picture. The leading edge of the shock generator is out
of view, near the top left corner of the picture. The interesting region for the shock-
wave boundary-layer interaction is roughly midway along the plate at the bottom of
the picture.

Although the behaviour of laminar compressible-flow boundary layers on flat
plates is well predicted via simple theories, the addition of an impinging shock makes
the analysis significantly more difficult. The flow complexity increases while the
defining flow geometry remains very simple. Metaphorically speaking, this is a good
nut to crack with our CFD hammer.
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5.1.1 Organising the simulation

To get the simulation started, prepare an input file for building a simple gas model for
air. As we had done in the tutorial example, we might call this file ideal-air.inp
and it should have the two lines:

1 model = "IdealGas"
2 species = {’air’}

We now use the input file to prepare the actual gas-model definition file with the
command:

$ prep-gas ideal-air.inp ideal-air-gas-model.lua

where the $ character represents the command prompt for your system. The result,
if successful, will be the generation of the Lua file ideal-air-gas-model.lua.
Of course, in your own work, you should choose file names that are descriptive of
the problem at hand. Reusing these names is fine, if they are appropriate and not
misleading. With your gas model organised, you now have the larger task of defining
your flow and flow domain.

Figure 5.2 shows the region, as modelled for simulation. The instrumented flat
plate (located along the lower boundary and labelled ADIABATIC) starts at x = 0
and is truncated at the length seen in the experimental flow image even though the
actual plate extended for 8 inches in the experiment. Also, the shock generator plate
(along the upper, inclined boundary) is modelled as an idealized, inviscid wall, even
though the real shock generator would have had a boundary layer and associated
viscous interaction at its leading edge. It has been convenient to apply a slip-wall
boundary condition at the shock generator surface. This allows us to estimate the
deflection angle for the specified pressure rise across the reflected shock using just
the oblique-shock relations for an ideal gas.
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Figure 5.2: Schematic view of the simulated flow region for the shock-wave interac-
tion with a laminar boundary layer.

Looking at the photograph (Figure 5.1), and extrapolating the surface of the shock-
generator plate back to where it would intersect the shock, gives us a location for
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the leading edge of the shock generator plate that is upstream of the leading edge
of the instrumented flat plate. Since it is convenient to work with a box-like flow
domain, we include the region from the tip of the shock-generator plate to the tip
of the instrumented flat plate in the simulated flow domain. We use a SLIP WALL
boundary condition along the lower boundary of that part of the flow domain, that
is, for x < 0.

Using the ideal-gas flow functions built into the simulation program, the follow-
ing script computes the combined pressure rise across the incident and reflected
oblique shocks as 1.4. With a minute or two of trial and error fiddling, the shock
generator deflection angle was estimated as being 3.09o.

1 -- double-oblique-shock.lua
2 -- Estimate pressure rise across a reflected oblique shock.
3 -- PJ, 01-May-2013, 2016-11-01 for Lua version
4 -- $ e4shared --custom-post --script-file=double-oblique-shock.lua
5 --
6 print("Begin...")
7 M1 = 2.0
8 p1 = 1.0
9 g = 1.4

10 print("First shock:")
11 delta1 = 3.09 * math.pi/180.0
12 beta1 = idealgasflow.beta_obl(M1,delta1,g)
13 p2 = idealgasflow.p2_p1_obl(M1,beta1,g)
14 M2 = idealgasflow.M2_obl(M1,beta1,delta1,g)
15 print(" beta1=", beta1, "p2=", p2, "M2=", M2)
16 --
17 print("Reflected shock:")
18 delta2 = delta1
19 beta2 = idealgasflow.beta_obl(M2,delta2,g)
20 p3 = p2 * idealgasflow.p2_p1_obl(M2,beta2,g)
21 M3 = idealgasflow.M2_obl(M2,beta2,delta2,g)
22 print(" beta2=", beta2, "p3=", p3, "M3=", M3)
23 print("Done.")

Note the command for running the script actually starts the simulation program in
the custom post-processing mode and specifies what Lua script to run.

$ e4shared --custom-post --script-file=double-oblique-shock.lua

The results, as written to the console, are:

1 First shock:
2 beta1= 0.56869987213562 p2= 1.1867698723259 M2= 1.8891863108079
3 Reflected shock:
4 beta2= 0.60486005952261 p3= 1.4001003974295 M3= 1.7811889520851
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5.1.2 Input script (.lua)

In the input script, geometric dimensions of the flow region and plate are simply
scaled from the flow image and the shock location identified in the associated pres-
sure and skin-friction plot. The flow region is modelled as a box with straight-line
boundary segments and, although the geometry is particularly simple, we use three
FBArray:new calls to split the region into 20 individual blocks as shown in Fig-
ure 5.2. This is done so that these blocks may be assigned to several processors of a
multicore machine and we don’t have to wait quite so long for our simulation to run.

Using data in the original report [20], the free-stream conditions for Fig.6b with
Rex−shock = 2.96 × 105, can be estimated to be p∞ = 6.205 kPa, T∞ = 164.4K and
u∞ = 514m/s for ideal air with Rgas=287 J/kg·K and γ=1.4.

1 -- swbli.lua
2 -- Anand V, 10-October-2015 and Peter J, 2016-11-02
3 -- Model of Hakkinen et al’s 1959 experiment.
4
5 config.title = "Shock Wave Boundary Layer Interaction"
6 print(config.title)
7 config.dimensions = 2
8
9 -- Flow conditions to match those of Figure 6: pf/p0=1.4, Re_shock=2.96e5

10 p_inf = 6205.0 -- Pa
11 u_inf = 514.0 -- m/s
12 T_inf = 164.4 -- degree K
13
14 nsp, nmodes = setGasModel(’ideal-air-gas-model.lua’)
15 print("GasModel set to ideal air. nsp= ", nsp, " nmodes= ", nmodes)
16 inflow = FlowState:new{p=p_inf, velx=u_inf, T=T_inf}
17
18 -- Flow domain.
19 --
20 -- y
21 -- ˆ a1---b1---c1---d1 Shock generator
22 -- | | | | |
23 -- | | 0 | 1 | 2 | patches
24 -- | | | | |
25 -- 0 a0---b0---c0---d0 Flat plate with boundary layer
26 --
27 -- 0---> x
28 mm = 1.0e-3 -- metres per mm
29 -- Leading edge of shock generator and inlet to the flow domain.
30 L1 = 10.0*mm; H1 = 37.36*mm
31 a0 = Vector3:new{x=-L1, y=0.0}
32 a1 = a0+Vector3:new{x=0.0,y=H1}
33 -- Angle of inviscid shock generator.
34 alpha = 3.09*math.pi/180.0
35 tan_alpha = math.tan(alpha)
36 -- Start of flat plate with boundary layer.
37 b0 = Vector3:new{x=0.0, y=0.0}
38 b1 = b0+Vector3:new{x=0.0,y=H1-L1*tan_alpha}
39 -- End of shock generator is only part way long the plate.
40 L3 = 67*mm
41 c0 = Vector3:new{x=L3, y=0.0}
42 c1 = c0+Vector3:new{x=0.0,y=H1-(L1+L3)*tan_alpha}
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43 -- End of plate, and of the whole flow domain.
44 L2 = 90.0*mm
45 d0 = Vector3:new{x=L2, y=0.0}
46 d1 = d0+Vector3:new{x=0.0,y=H1}
47 -- Now, define the three patches.
48 patch0 = CoonsPatch:new{p00=a0, p10=b0, p11=b1, p01=a1}
49 patch1 = CoonsPatch:new{p00=b0, p10=c0, p11=c1, p01=b1}
50 patch2 = CoonsPatch:new{p00=c0, p10=d0, p11=d1, p01=c1}
51 --
52 -- Discretization of the flow domain.
53 --
54 -- We want to cluster the cells toward the surface of the flat plate.
55 -- where the boundary layer will be developing.
56 rcf = RobertsFunction:new{end0=true,end1=true,beta=1.1}
57 factor = 4 -- We’ll scale discretization off this value
58 ni0 = math.floor(20*factor); nj0 = math.floor(80*factor)
59 grid0 = StructuredGrid:new{psurface=patch0, niv=ni0+1, njv=nj0+1,
60 cfList={east=rcf,west=rcf}}
61 grid1 = StructuredGrid:new{psurface=patch1, niv=7*ni0+1, njv=nj0+1,
62 cfList={east=rcf,west=rcf}}
63 grid2 = StructuredGrid:new{psurface=patch2, niv=2*ni0+1, njv=nj0+1,
64 cfList={east=rcf,west=rcf}}
65 --
66 -- Build the flow blocks and attach boundary conditions.
67 --
68 blk0 = FBArray:new{grid=grid0, initialState=inflow, nib=1, njb=2,
69 bcList={west=InFlowBC_Supersonic:new{flowState=inflow},
70 north=WallBC_WithSlip:new{},
71 south=WallBC_WithSlip:new{}}}
72 blk1 = FBArray:new{grid=grid1, initialState=inflow, nib=7, njb=2,
73 bcList={south=WallBC_NoSlip_Adiabatic:new{},
74 north=WallBC_WithSlip:new{}}}
75 blk2 = FBArray:new{grid=grid2, initialState=inflow, nib=2, njb=2,
76 bcList={south=WallBC_NoSlip_Adiabatic:new{},
77 north=WallBC_WithSlip:new{},
78 east=OutFlowBC_FixedPT:new{p_outside=p_inf,
79 T_outside=T_inf}}}
80 identifyBlockConnections()
81
82 config.gasdynamic_update_scheme = "classic-rk3"
83 config.flux_calculator = ’adaptive’
84 config.viscous = true
85 config.spatial_deriv_calc = ’divergence’
86 config.cfl_value = 1.0
87 config.max_time = 5.0*L2/u_inf -- time in flow lengths
88 config.max_step = 200000
89 config.dt_init = 1.0e-8
90 config.dt_plot = config.max_time/10

5.1.3 Running the simulation

To get the simulation started, prepare the grids and initial flow state using the com-
mand:

$ e4shared --prep --job=swbli
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This may take a little while because there are many more cells in this simulation than
we had used for the tutorial example. We are trying to capture the development of
a boundary layer and, to do that accurately, we have to pay the computational cost
of using high-resolution grids. After a minute or so, depending on the speed of your
computer, you should have the grid files in the subdirectory grid/t0000 and the
initial flow files in subdirectory flow/t0000.

We can now start the computation of the evolution of the flow field with the com-
mand:

$ e4shared --run --job=swbli --verbosity=1 --max-cpus=4

You should soon see the usual console output of a simulation proceeding to take time
steps and reporting its progress toward reaching a final time. Be patient because this
simulation is much more demanding than the initial tutorial exercise. Even if you
are working on a big multi-core machine, go and have dinner and return in about 5-7
hours to check the state of the simulation.

But, just before you go, start up the htop monitor program1 on your computer. It
gives a good overview of the processes that are running and what processor utiliza-
tion you are getting. On a little HP laptop computer with 4 AMD cores, htop shows
greater then 99% utilization of all 4 processors, once the initialization phase is finished
and the time-stepping phase has begun. This simulation is nicely load balanced and
makes good use of a multi-core computer. As well as the processor resources used,
htop also shows that this simulation occupies a little under 3GBytes of memory as
it runs. You probably want to have at least 8GB of RAM in your computer to run
interesting simulations.

Coming back to your computer, you see that the time-evolution of the flow field
has been computed for about 876µs (with 11176 time steps being required). You can
then generate the flow solution data for display in Paraview with the command:

$ e4shared --post --job=swbli --tindx-plot=all --vtk-xml \
--add-vars="mach,pitot,total-p,total-h"

This could all be typed onto one line, omitting the backslash continuation character.

At the end of this pass of the simulation, it turns out that the separation region
is still slightly evolving as indicated by small movements of the waves propagat-
ing from that region. We restart the calculation and run it to twice the original
value of max_time. This is achieved by manually editing the swbli.control file
as described in Section 4.1.4 and setting max_time = 1.751e-03 and dt_init =
8.0e-08 then running the command:

$ e4shared --run --job=swbli --tindx-start=last --max-cpus=4

Given the hours that have passed since preparing the gas-model file for this example,
it’s probably time for a sleep. Running calculations overnight, or even over several
days, is a fairly common activity for someone doing CFD analyses.

1You may need to install htop manually, using your operating system’s package manager.
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5.1.4 Simulation results

Figure 5.3 shows some of the flow field data at t=1.751 ms after flow start. The mag-
nitude of the gradients of density (Fig. 5.1.4) are also shown as an approximation to
the Schlieren image of Figure 5.1. The image of the pressure clearly shows the waves
propagating from the leading-edge viscous interaction and their reflection from the
shock generator. As expected, the boundary layer is not directly evident in the pres-
sure field but shows up clearly in the temperature field. The more gradual com-
pression, as the boundary layer approaches the incident shock, is evident as a much
broader band in the pressure field. This is followed by an expansion and then a re-
compression. All of these waves are most clearly shown in the gradient of density
field. The shock, expansion and recompression shock from the leading-edge viscous
interaction are displayed more distinctly and the convergence of the gradual com-
pressions becomes clear. The structure of expansion fans also appears more clearly in
this gradient field than in the pressure or temperature fields.

The real proof of success is in comparison with the experimental data. Figure 5.4
shows the pressure and shear-stress along the plate. The simulation has done a rea-
sonable job of estimating the pressure distribution right through the separation zone.
Features that look a little wrong include the viscous interaction region at x=0, which
is a bit extended because of lack of resolution at the start of the boundary layer, how-
ever, doubling the grid resolution (factor=8) tightens up solution in this region. Also,
there is an artificial drop in pressure at the right end of the simulation domain where
the boundary layer exits the flow domain but this is of no concern because the flat
plate used in the experiment was more than twice the length of this simulated ver-
sion. This behaviour is grid independent.

The simulation has done a reasonable job on the shear stress, which has been com-
puted from the field data using the script in Section 5.1.5. This quantity is difficult
to compute and difficult to measure so it is reassuring that both sets of data line up
nicely with the Blasius value in the boundary layer leading into the interaction region.
After the interaction region, the computed values recover to the Blasius level just be-
fore rising toward the end of the flow domain. This is, again, the interaction with the
outflow boundary condition and would be removed from view if the full length of
the plate was simulated. The only discernible difference with increasing grid resolu-
tion (from factor=4 to factor=8) is that the early development of the boundary layer
moves a little closer to the Blasius behaviour.

Note that the influence of the flat plate boundary layer on the pressure in the re-
gion near the plate is small but measureable. With a free-stream pressure of 6.205 kPa
specified at the inflow plane, we see 6.28 kPa in the pressure data leading into the
shock-interaction region. For the free-stream conditions used, the displacement thick-
ness of a simple flat-plate boundary layer would be expected to be approximately
0.112 mm at 25 mm from the leading edge of the plate. If this displacement effect
could be modelled as a straight wedge deflecting the inviscid free-stream, the corre-
sponding oblique shock would have a static pressure ratio of 1.0146. This gives an
expected pressure of 6.295 kPa in the boundary-layer external flow leading into the
shock interaction, quite close to the simulation value.
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(a) Pressure field.

(b) Temperature field.

(c) Gradient of density field.

Figure 5.3: Computed flow field at t=1.751 ms.
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(a) Pressure (factor=4).
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(b) Shear stress (factor=4).
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(c) Pressure (factor=8).
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(d) Shear stress (factor=8).

Figure 5.4: Distribution of pressure and shear along the plate at t=1.751 ms.



5.1. Oblique shock boundary layer interaction. 81

5.1.5 Postprocessing for shear stress

To get estimates of the pressure and shear stress along the plate, we can extract the
flow data for the cells against the south boundaries for all blocks along the plate. This
can be done with the following command:2

$ e4shared --post --job=swbli --tindx-plot=last --add-vars="mach" --output-file=bl.data \
--slice-list="2,:,0,0;4,:,0,0;6,:,0,0;8,:,0,0;10,:,0,0;12,:,0,0;14,:,0,0;16,:,0,0;18,:,0,0"

where the string given to the slice-list option picks out the row of j=0 and k=0
(i.e. south boundary) cells for every block that sits against the plate (i.e. blocks 2, 4, 6,
8, 10, 12, 14, 16, and 18).

The x-position and static pressure for each cell will be found in columns 1 and 9 of
the output file bl.data. Thus, the pressure along the surface can be directly plotted.
The shear stress, however, needs to be computed from the cell data that are available
in the file bl.data. The AWK script below does that job.

# compute-shear.awk
# Invoke with the command line:
# $ awk -f compute-shear.awk bl.data > shear.data
#
# PJ, 2016-11-01
#
BEGIN {

rho_inf = 0.1315 # kg/m**3
velx_inf = 514.0 # m/s
T_inf = 164.4 # K
# Sutherland expression for viscosity
mu_ref = 1.716e-5; T_ref = 273.0; S_mu = 111.0
mu_inf = (T_inf/T_ref)*sqrt(T_inf/T_ref)*(T_ref+S_mu)/(T_inf+S_mu)*mu_ref
print("# x(m) tau_w(Pa) Cf y_plus")

}

$1 != "#" {
x = $1; y = $2; rho = $5; velx = $6; mu = $11; k = $12
dvelxdy = (velx - 0.0) / y # Assuming that the wall is straight down at y=0
tau_w = mu * dvelxdy # wall shear stress
Cf = tau_w / (0.5*rho_inf*velx_inf*velx_inf)
if (tau_w > 0.0) abs_tau_w = tau_w; else abs_tau_w = -tau_w;
vel_tau = sqrt(abs_tau_w / rho) # friction velocity
y_plus = vel_tau * y * rho / mu
Rex = rho_inf * velx_inf * x / mu_inf
Cf_blasius = 0.664 / sqrt(Rex)
print(x, tau_w, Cf, Cf_blasius, y_plus)

}

This particular script was used to filter the bl.data file, picking up data from every
line that did not start with a sharp “#” character, computing an estimate of the shear
stress, the friction coefficient, the theoretical laminar (Blasius) shear stress and y+,
and printing these results to standard output. The variable names of the form $1,

2Even using a small font, the string specifying the slice-list runs over the end of the line in this
report. You should not have any problem putting it all onto one line in the usual command windows
on Linux.
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for example, pick out the data from a particular column on each line captured by
the filter. The following command was used to apply our AWK filter program to the
bl.data file and redirect the output to the file shear.data for subsequent plotting.

$ awk -f compute-shear.awk < bl.data > shear.data
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5.2 Flow of nitrogen over a cylinder of finite length

This example is relevant to Troy Eichmann’s X2 experiments [21] on flows of weakly-
ionizing nitrogen over cylinders of various length-over-diameter ratios. It exercises
the three-dimensional flow solver with a strong bluff-body shock and a very sudden
expansion over the end of the cylinder. The thermochemical module is also exercised
with both near-equilibrium and frozen thermochemistry regions in the flow field and
temperatures that rise above 20 000 K.

The flow domain shown is made up of 4 block-structured grids as shown in Fig-
ure 5.5 and number of the surface grids are indicated in Figure 5.6 for a 15 mm diam-
eter cylinder with L

D
= 2. Note that only half of the length and only the upper-front

quarter of the cylinder is in the simulation. Slip-wall boundary conditions are used
(implicitly) along the planes of symmetry.

Figure 5.5: Left: full cylinder with the expected shock location scribed on the sym-
metry plane. Right: layout of finite-cylinder simulation with one-quarter of forward-
facing half of the cylinder surface shown as wire-frame. Some of the edges of the
flow domain are shown dashed and the labelled nodes correspond to those in the
input script.

The free-stream conditions (p∞ = 2 kPa, T∞ = 3000K and u∞ = 10 km/s) corre-
spond approximately to the experiments. These are representative of those produced
by the X2 expansion tube and, for an ideal nitrogen test gas, the free stream Mach
number is 8.96. Here we describe a finite-cylinder simulation with single-temperature
chemical nonequilibrium. This means chemical reactions are permitted to occur at a
finite rate (chemical nonequilibrium), but all internal energy modes of the gas are
assumed to be governed by a single temperature (thermal equilibrium).
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The script sets up the simulation to run for 30 flow-lengths (30 ∗ Rc/u∞) and the
final time reached is 22.5µs The relieving effect on the shock is clear in both pressure
and temperature fields (Figure 5.7). The temperature field also shows the influence
of the finite-rate reactions with peak temperatures immediately behind the shock,
followed by a relaxation as dissociation of the nitrogen molecules soaks up energy
from within the shock layer.

Figure 5.6: A selection of surface grids from the finite-cylinder simulation with chem-
ical nonequilibrium, shown as wire-frame on the cylinder surface and coloured by
pressure in the flow field. This PNG figure was generated with Paraview using block
surfaces extracted from final solution file.

This case is quite difficult for both the flow solver and defects can be seen in
the solution around the flat end of the cylinder, where there is a very strong expan-
sion combined with a strong shear. These defects are visible in the temperature field
with a checkered pattern of low temperatures. Sometimes you will find that, with-
out replacing bad cell data in a region like this, your simulation will not run. Our
get-out-of-jail options include adjust_invalid_cell_data in combination with
max_invalid_cells on lines 148 and 149 of the input script.3

Despite the flow calculation problems over the edge of the cylinder, the forebody
flow looks to be reliably computed and the shock stand-off distance is 1.2 mm near
the midplane of the cylinder.

This simulation can make good use of multiple processors. The elapsed time for
the run with 4 CPUs is a little over an hour on a HP Pavillion laptop with 4 AMD
cores. To double the grid resolution (as one might want to do for a convergence
study), would require a factor of 8 increase in memory and 16 in CPU cycles. If you
are planning to do calculations of any reasonable complexity, it is worth your while
to invest in a computer with a good number of CPU cores.

3As of 2021, these options are not required for this particular example. However, we find that the
expansion-tube laboratory people continue to push flow speeds and flow conditions that break the
Eilmer code and will occasionally need these options.
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Figure 5.7: Static temperature and mass fraction of nitrogen atoms in the flow field
from the chemical nonequilibrium simulation.
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Input script (.lua)

1 -- cyl.lua
2 -- Troy and Tim’s finite-length cylinder in dissociating nitrogen flow.
3 --
4 -- PJ & RJG 2016-10-16 built from the eilmer3/3D/finite-cylinder
5 -- and eilmer4/2D/cylinder-dlr-n90
6
7 config.dimensions = 3
8 D = 15.0e-3 -- diameter of cylinder, metres
9 L = 2.0 * D -- (axial) length of full cylinder, will be halved later

10
11 -- Free-stream properties
12 T_inf = 3000.0 -- degrees K
13 p_inf = 2000.0 -- Pa
14 V_inf = 10.0e3 -- m/s
15 config.title = string.format("Cylinder L/D=%g in N2 at u=%g m/s.", L/D, V_inf)
16 print(config.title)
17
18 nsp, nmodes, gm = setGasModel(’nitrogen-2sp.lua’)
19 print("GasModel set nsp= ", nsp, " nmodes= ", nmodes)
20
21 -- Compute inflow Mach number.
22 Q = GasState:new{gm}
23 Q.p = p_inf; Q.T = T_inf; Q.massf = {N2=1.0}
24 gm:updateThermoFromPT(Q); gm:updateSoundSpeed(Q)
25 print("T=", Q.T, "density=", Q.rho, "sound speed= ", Q.a)
26 M_inf = V_inf / Q.a
27 print("M_inf=", M_inf)
28
29 inflow = FlowState:new{p=p_inf, T=T_inf, velx=V_inf, massf={N2=1.0}}
30 initial = FlowState:new{p=p_inf/3, T=300.0, massf={N2=1.0}}
31
32 config.reacting = true
33 config.reactions_file = ’e4-chem.lua’
34
35 -- Build geometry from body and flow parameters
36 Rc = D/2.0 -- radius of cylinder
37
38 a = Vector3:new{x=-Rc}; b = Vector3:new{y=Rc}; c = Vector3:new{x=0.0, y=0.0}
39
40 -- In order to have a grid that fits reasonably close the the shock,
41 -- use Billig’s shock shape correlation to generate
42 -- a few sample points along the expected shock position.
43 dofile("billig.lua")
44 M_inf = 8.9566
45 print("Points on Billig’s correlation.")
46 xys = {}
47 for i,y in ipairs({0.0, 0.5, 1.0, 1.5, 2.0, 2.5}) do
48 x = x_from_y(y*Rc, M_inf, 0.0, false, Rc)
49 xys[#xys+1] = {x=x, y=y*Rc} -- a new coordinate pair
50 print("x=", x, "y=", y*Rc)
51 end
52
53 -- Scale the Billig distances, depending on the expected behaviour
54 -- relative to the gamma=1.4 ideal gas.
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55 local b_scale = 1.1 -- for ideal (frozen-chemistry) gas
56 if config.reacting then
57 b_scale = 0.87 -- for finite-rate chemistry
58 end
59 d = {} -- will use a list to keep the nodes for the shock boundary
60 for i, xy in ipairs(xys) do
61 -- the outer boundary should be a little further than the shock itself
62 d[#d+1] = Vector3:new{x=-b_scale*xy.x, y=b_scale*xy.y, z=0.0}
63 end
64 print("front of grid: d[1]=", d[1])
65
66 -- Extent of the cylinder in the z-direction to end face.
67 zshift = Vector3:new{z=L/2.0}
68 c2 = c + zshift
69 e = d[1] + zshift
70 f = a + zshift
71 g = Vector3:new{x=-Rc/2.0, y=0.0, z=L/2.0}
72 h = Vector3:new{x=0.0, y=Rc/2.0, z=L/2.0}
73 i = Vector3:new{x=0.0, y=Rc, z=L/2.0}
74 -- the domain is extended beyond the end of the cylinder
75 zshift2 = Vector3:new{z=Rc}
76 j = e + zshift2
77 k = f + zshift2
78
79 -- ...then lines, arcs, etc, that will make up the domain-end face.
80 xaxis = Line:new{p0=d[1], p1=a} -- first-point of shock to nose of cylinder
81 cylinder = Arc:new{p0=a, p1=b, centre=c}
82 shock = ArcLengthParameterizedPath:new{underlying_path=Spline:new{points=d}}
83 outlet = Line:new{p0=d[#d], p1=b} -- top-point of shock to top of cylinder
84 domain_end_face = CoonsPatch:new{south=xaxis, north=outlet,
85 west=shock, east=cylinder}
86
87 -- ...lines along which we shall extrude the domain-end face
88 yaxis0 = Line:new{p0=d[1], p1=e}
89 yaxis1 = Line:new{p0=e, p1=j}
90
91 -- End-face of cylinder
92 xaxis = Line:new{p0=f, p1=g}
93 cylinder = Arc:new{p0=f, p1=i, centre=c2}
94 inner = Arc:new{p0=g, p1=h, centre=c2}
95 outlet = Line:new{p0=i, p1=h}
96 cyl_end_face = CoonsPatch:new{south=xaxis, north=outlet,
97 west=cylinder, east=inner}
98 yaxis2 = Line:new{p0=f, p1=k}
99

100 over_cylinder = SweptSurfaceVolume:new{face0123=domain_end_face,
101 edge04=yaxis0}
102 outside_cylinder = SweptSurfaceVolume:new{face0123=domain_end_face,
103 edge04=yaxis1}
104 beside_cylinder = SweptSurfaceVolume:new{face0123=cyl_end_face,
105 edge04=yaxis2}
106
107 -- Build discrete grids.
108 -- We choose a basic discretization and scale others from it.
109 nr = 20 -- number of cells radially
110 nc = math.floor(1.5 * nr) -- number of cells circumferentially
111 na = math.floor(L/D * nc) -- number of cells along the cylinder
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112 na1 = nc -- cells off the end of the cylinder
113 nr2 = math.floor(nr/2) -- cells toward the cylinder axis
114 -- Adjust the cluster functions by trying various values.
115 cf0 = RobertsFunction:new{end0=true, end1=false, beta=1.5}
116 grid0 = StructuredGrid:new{pvolume=over_cylinder,
117 cfList={edge03=cf0, edge47=cf0},
118 niv=nr+1, njv=nc+1, nkv=na+1}
119 grid1 = StructuredGrid:new{pvolume=outside_cylinder,
120 cfList={edge03=cf0, edge47=cf0},
121 niv=nr+1, njv=nc+1, nkv=na1+1}
122 cf1 = RobertsFunction:new{end0=true, end1=false, beta=1.05}
123 cf2 = RobertsFunction:new{end0=true, end1=false, beta=1.6}
124 grid2 = StructuredGrid:new{pvolume=beside_cylinder,
125 cfList={edge01=cf1, edge32=cf2,
126 edge45=cf1, edge76=cf2},
127 niv=nr2+1, njv=nc+1, nkv=na1+1}
128
129 -- Use the grids to define some flow blocks.
130 -- Note that we divide up the biggest grid to make better use
131 -- of our multiple cpu machine.
132 blk0 = FBArray:new{grid=grid0, initialState=initial,
133 bcList={west=InFlowBC_Supersonic:new{flowState=inflow},
134 north=OutFlowBC_Simple:new{}},
135 nkb=math.floor(L/D)}
136 blk1 = FluidBlock:new{grid=grid1, initialState=initial,
137 bcList={west=InFlowBC_Supersonic:new{flowState=inflow},
138 north=OutFlowBC_Simple:new{}}}
139 blk2 = FluidBlock:new{grid=grid2, initialState=initial,
140 bcList={east=OutFlowBC_Simple:new{},
141 north=OutFlowBC_Simple:new{}}}
142 identifyBlockConnections()
143
144 -- Set a few more config options
145 config.flux_calculator = "adaptive"
146 config.thermo_interpolator = "pT"
147 config.adjust_invalid_cell_data = true
148 config.report_invalid_cells = false
149 config.max_invalid_cells = 10
150 -- config.cfl_count = 3
151 config.gasdynamic_update_scheme="euler"
152 my_max_time = Rc/V_inf * 30
153 print("max_time=", my_max_time)
154 config.max_time = my_max_time
155 config.max_step = 40000
156 config.dt_init = 1.0e-10
157 config.cfl_value = 0.5
158 config.dt_plot = my_max_time/10

Reaction scheme file (.lua)

1 -- nitrogen-2sp-2r.lua
2 --
3 -- This chemical kinetic system provides
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4 -- a simple nitrogen dissociation mechanism.
5 --
6 -- Author: Rowan J. Gollan
7 -- Date: 13-Mar-2009 (Friday the 13th)
8 -- Place: NIA, Hampton, Virginia, USA
9 --

10 -- History:
11 -- 24-Mar-2009 - reduced file to minimum input
12 -- 11-Aug-2015 - updated for dlang module
13
14 --[[
15 Config{
16 tightTempCoupling = true
17 }
18 --]]
19
20 Reaction{
21 ’N2 + N2 <=> N + N + N2’,
22 fr={’Arrhenius’, A=7.0e21, n=-1.6, C=113200.0},
23 br={’Arrhenius’, A=1.09e16, n=-0.5, C=0.0}
24 }
25
26 Reaction{
27 ’N2 + N <=> N + N + N’,
28 fr={’Arrhenius’, A=3.0e22, n=-1.6, C=113200.0},
29 br={’Arrhenius’, A=2.32e21, n=-1.5, C=0.0}
30 }

Shell script

1 #!/bin/bash
2 # prep.sh
3 prep-gas nitrogen-2sp.inp nitrogen-2sp.lua
4 prep-chem nitrogen-2sp.lua nitrogen-2sp-2r.lua e4-chem.lua
5 e4shared --prep --job=cyl

1 #!/bin/bash
2 # run.sh
3 e4shared --run --job=cyl --verbosity=1 --max-cpus=4
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Postprocessing program

1 #!/bin/bash
2 # post.sh
3
4 # Create a VTK plot file of the steady full flow field.
5 e4shared --post --job=cyl --tindx-plot=last --vtk-xml
6
7 # Pull out the cylinder surfaces.
8 e4shared --post --job=cyl --tindx-plot=last --output-file=cylinder \
9 --add-vars="mach" --surface-list="0,east;1,east;3,bottom"

10
11 # Now pull out some block surfaces that show cross-sections of the flow field.
12 e4shared --post --job=cyl --tindx-plot=last --output-file=interior \
13 --add-vars="mach" \
14 --surface-list="0,bottom;1,bottom;0,north;1,north;2,north;3,north;0,south;1,south;2,south;3,south;3,east"
15
16 # Stagnation-line flow data
17 e4shared --post --job=cyl --tindx-plot=last --output-file=stagnation-line.data \
18 --add-vars="mach" --slice-list="0,:,0,0" \

1 -- locate-bow-shock.lua
2 -- Invoke with the command line:
3 -- $ e4shared --custom-post --script-file=locate-bow-shock.lua
4 --
5 -- PJ, 2016-10-24, updated for Eilmer4
6 --
7 print("Locate a bow shock by its pressure jump.")
8 print("Start by reading full flow solution.")
9 fsol = FlowSolution:new{jobName="cyl", dir=".", tindx=10, nBlocks=4}

10 print("fsol=", fsol)
11
12 function locate_shock_along_strip()
13 local p_max = ps[1]
14 for i = 2, #ps do
15 p_max = math.max(ps[i], p_max)
16 end
17 local p_trigger = ps[1] + 0.3 * (p_max - ps[1])
18 local x_old = xs[1]; local p_old = ps[1]
19 local x_new = x_old; local p_new = p_old
20 for i = 2, #ps do
21 x_new = xs[i]; p_new = ps[i]
22 if p_new > p_trigger then break end
23 x_old = x_new; p_old = p_new
24 end
25 local frac = (p_trigger - p_old) / (p_new - p_old)
26 x_loc = x_old * (1.0 - frac) + x_new * frac
27 return
28 end
29
30 -- Since this is a 3D simulation, the shock is not expected
31 -- to be flat in the k-direction (along the cylinder axis).
32 -- Sample the shock layer in a few places near the stagnation line.
33 -- Block 0 contains the stagnation point and the bottom surface is
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34 -- the plane of symmetry that cuts the cylinder half-way along its axis.
35 -- The south boundary is the plane of symmetry that cuts the cylinder
36 -- along its axis. Supersonic flow comes in from the west boundary
37 -- and exits from the north boundary. The east boundary is the
38 -- cylinder surface.
39 local xshock = {}; local yshock = {}
40 local ib = 0
41 local nk = fsol:get_nkc(0)
42 for k = 0, nk-1 do
43 xs = {}; ys = {}; ps = {}
44 local j = 0
45 local ni = fsol:get_nic(ib)
46 for i = 0, ni-1 do
47 cellData = fsol:get_cell_data{ib=ib, i=i, j=j, k=k}
48 xs[#xs+1] = cellData["pos.x"]
49 ps[#ps+1] = cellData["p"]
50 end
51 locate_shock_along_strip()
52 xshock[#xshock+1] = x_loc
53 yshock[#yshock+1] = y_loc
54 if #xshock >= 6 then break end
55 end
56
57 x_sum = 0.0
58 for _,x in ipairs(xshock) do x_sum = x_sum + x end
59 x_average = x_sum / #xshock
60 print("Average x-location=", x_average)
61 D = 15.0e-3 -- cylinder diameter
62 delta = -x_average - D/2
63 print("shock displacement=", delta*1000.0, "mm")
64 print("delta/R=", delta/(D/2))
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5.3 Revisiting the flow over a sharp cone.

As a final example, let us return to the sharp-cone flow explored in the first tutorial
example of Section 3, but introduce simulation on unstructured grids as an important
new feature of Eilmer. This capability allows the convenient simulation of flows in
geometrically-complex flow domains. Although the two-dimensional geometry of
the flow domain over the cone is not complex, it is familiar and it serves to show the
basic arrangement for computing a flow field on a collection of unstructured grids.

5.3.1 Input script (.lua)

Since all of the geometry modelling and grid construction was done by Kyle Damm
in Pointwise mesh generation package, there is not much required in the input script.

1 -- cone20.lua
2 -- Unstructured Grid Example -- for use with Eilmer4
3 -- 2015-11-08 PeterJ, RowanG, KyleD
4
5 config.title = "Mach 1.5 flow over a 20 degree cone -- Unstructured Grid."
6 print(config.title)
7 config.dimensions = 2
8 config.axisymmetric = true
9

10 nsp, nmodes, gm = setGasModel(’ideal-air-gas-model.lua’)
11 print("GasModel set to ideal air. nsp= ", nsp, " nmodes= ", nmodes)
12 initial = FlowState:new{p=5955.0, T=304.0}
13 inflow = FlowState:new{p=95.84e3, T=1103.0, velx=1000.0}
14
15 -- Define the flow domain using an imported grid.
16 grids = {}
17 for i=0,3 do
18 fileName = string.format("cone20_grid%d.su2", i)
19 grids[i] = UnstructuredGrid:new{filename=fileName, fmt="su2text"}
20 end
21 my_bcDict = {INFLOW=InFlowBC_Supersonic:new{flowState=inflow},
22 OUTFLOW=OutFlowBC_Simple:new{},
23 SLIP_WALL=WallBC_WithSlip:new{},
24 INTERIOR=ExchangeBC_MappedCell:new{list_mapped_cells=true},
25 CONE_SURFACE=WallBC_WithSlip:new{}
26 }
27 blks = {}
28 for i=0,3 do
29 blks[i] = FluidBlock:new{grid=grids[i], initialState=inflow,
30 bcDict=my_bcDict}
31 end
32
33 -- Do a little more setting of global data.
34 config.max_time = 5.0e-3 -- seconds
35 config.max_step = 3000
36 config.dt_init = 1.0e-6
37 config.cfl_value = 0.5
38 config.dt_plot = 1.5e-3
39 config.dt_history = 10.0e-5
40
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41 setHistoryPoint{x=1.0, y=0.2} -- nose of cone
42 setHistoryPoint{x=0.201, y=0.001} -- base of cone

The main tasks are to:

• select a gas model (line 10),

• define the initial and inflow conditions (lines 12 and 13),

• import the grids from external files (line 16 to 20) and

• build the flow blocks from the imported grids (lines 27 to 30), attaching bound-
ary conditions to them.

Note that the keys used for the boundary condition table (lines 21 to 26) need to match
the tags within the SU2 grid files. These tags could be agreed upon at grid-generation
time or you could extract them from the grid files with the following command:

$ grep MARKER_TAG *.su2

To apply the boundary conditions, supply the dictionary of boundary conditions to
the FluidBlock constructor as the bcDict item (line 29).

5.3.2 Results and postprocessing

The simulation runs to 5 milliseconds in 1641 steps and requires about 80 seconds
wall clock, while using the 4 cores of a HP Pavillion laptop. Figure 5.8 shows the flow
field, with the shock appearing a bit noisier than for the structured-grid simulation
but otherwise essentially straight. The post-processing script loads up the data for
this time and samples the flow field across a number of straight lines, looks for the
pressure jump along each sample line and accumulates the arrays of shock coordi-
nates. Finally, on lines 58 and later, a linear model is fitted to this collection of shock
points (using a least-squares error critereon). The angle of the line fitted to these
points is 49.22o and the average deviation is 2.8 mm.

1 -- estimate_shock_angle.lua
2 -- Invoke with the command line:
3 -- $ e4shared --custom-post --script-file=estimate_shock_angle.lua
4 -- PJ, 2016-11-13
5 --
6 print("Begin estimate_shock_angle for the unstructured-grid case.")
7 nb = 4
8 fsol = FlowSolution:new{jobName="cone20", dir=".", tindx=4, nBlocks=nb}
9 print("fsol=", fsol)

10
11 function locate_shock_along_strip()
12 local p_max = ps[1]
13 for i = 2, #ps do
14 p_max = math.max(ps[i], p_max)
15 end
16 local p_trigger = ps[1] + 0.3 * (p_max - ps[1])
17 local x_old = xs[1]; local y_old = ys[1]; local p_old = ps[1]
18 local x_new = x_old; local y_new = y_old; local p_new = p_old
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Figure 5.8: Pressure field for a low-resolution unstructured-grid simulation of flow
over a cone with 20 degree half-angle.

19 for i = 2, #ps do
20 x_new = xs[i]; y_new = ys[i]; p_new = ps[i]
21 if p_new > p_trigger then break end
22 x_old = x_new; y_old = y_new; p_old = p_new
23 end
24 local frac = (p_trigger - p_old) / (p_new - p_old)
25 x_loc = x_old * (1.0 - frac) + x_new * frac
26 y_loc = y_old * (1.0 - frac) + y_new * frac
27 return
28 end
29
30 xshock = {}; yshock = {}
31 for j = 1, 45 do
32 local y = j*0.02
33 xs = {}; ys = {}; ps = {}
34 local cellsFound = fsol:find_enclosing_cells_along_line{p0={x=0.0,y=y},
35 p1={x=1.0,y=y},
36 n=100}
37 print("number of cells found=", #cellsFound)
38 for i,indices in ipairs(cellsFound) do
39 cellData = fsol:get_cell_data{ib=indices.ib, i=indices.i}
40 xs[#xs+1] = cellData["pos.x"]
41 ys[#ys+1] = cellData["pos.y"]
42 ps[#ps+1] = cellData["p"]
43 end
44 locate_shock_along_strip()
45 if x_loc < 0.9 then
46 -- Keep only the good part of the shock.
47 xshock[#xshock+1] = x_loc
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48 yshock[#yshock+1] = y_loc
49 end
50 end
51
52 --[[
53 for j = 1, #xshock do
54 print("shock point j=", j, xshock[j], yshock[j])
55 end
56 --]]
57
58 -- Least-squares fit of a straight line for the shock
59 -- Model is y = alpha0 + alpha1 * x
60 sum_x = 0.0; sum_y = 0.0; sum_x2 = 0.0; sum_xy = 0.0
61 for j = 1, #xshock do
62 sum_x = sum_x + xshock[j]
63 sum_x2 = sum_x2 + xshock[j]*xshock[j]
64 sum_y = sum_y + yshock[j]
65 sum_xy = sum_xy + xshock[j]*yshock[j]
66 end
67 N = #xshock
68 alpha1 = (sum_xy/N - sum_x/N * sum_y/N) / (sum_x2/N - sum_x/N * sum_x/N)
69 alpha0 = sum_y/N - alpha1 * sum_x/N
70 shock_angle = math.atan(alpha1)
71 sum_y_error = 0.0
72 for j = 1, N do
73 sum_y_error = sum_y_error+math.abs((alpha0+alpha1*xshock[j])-yshock[j])
74 end
75 print("shock_angle_deg=", shock_angle*180.0/math.pi)
76 print("average_deviation_metres=", sum_y_error/N)
77 print("Done.")
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A

Surviving the Linux Command Line

For running jobs on a Linux machine, it is worth knowing how to get around and
do things in the shell, which is a command interpreter and programming language.
Sobell’s text [22] is a good source of information but here are a few notes to get you
started.

A basic command is composed of a sequence of words, separated by spaces and
has the usual form
cmd [options] arguments
where

• cmd is the name of the command or utility program that will do the work. Com-
mand names on Linux are often terse, two or three character names.

• options are words that are optionally included and are typically preceded by
one or two dashes. These modify the behaviour of the command, if the default
behaviour is not quite what you want.

• arguments are the things to work on. If these are file names, you can often use
patterns with wildcard characters that may match more then one file at a time.

Commands often put their standard output to the console. If the amount of text output
is overwhelming, it can be redirected to a file or piped through a paging filter. This
latter option is an example of putting multiple commands together so that the output
from one command becomes the input for another. Once you understand the system,
customised commands can be built rather simply in this way. The following tables
summarize a number of commands that you are likely to find useful while using
Eilmer.

Logging in and getting out

ssh user@host Connect to computer named host as user.
Ctrl+d Quit current session.
exit Quit current session.
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Getting help

man cmd-name Display the manual page for the named command.
man cmd-name | less Display the manual page through the paging filter.
ls --help | less Look at the online help provided by the ls command.
man -k keyword List man pages that contain keyword.
apropos subject List man pages on subject.

Moving about and looking in your folders

cd dir Change to directory dir.
cd Change to home directory.
cd .. Change to parent of current directory.
pwd Print current (working) directory.

pushd dir Change to new directory dir, putting the current directory onto a
stack.

popd Go back to the directory at the top of that stack.
ls -l List the files in the current directory, long format.
ls -a .. List the files in the directory above, including all hidden files.
du -h dir Report the size of the directory and its subdirectories.
df -h Report the capacities of the file systems and how much is used for each.
mkdir dir Make new directory.
rmdir dir Remove an empty directory.

Handling files

cat file Displays the content of a text file.
head -n 20 file-to-show Display the first 20 lines of a text file.

tail -f file-to-show
Show the last few lines of a file and continue to
show lines as that file changes.

grep ’ideal’ *.lua
Find the string ideal in all of the Lua files in the
current directory.

mv src-file dest-file Renames the source file to the destination name.
cp src-file dest-file Copy the content from the source file to the destination file.

scp src-file user@host:
Copy the file from the local computer to the home
directory of user on the remote computer host.

rm -r dir Remove a directory and all of its contents (recursively).
gzip src-file Compresses the file, adding the extension .gz to its name.
tar -zcf tarfile dir Pack all of the contents of dir into the tarfile.
tar -zxf tarfile Unpack the contents of tarfile into the current directory.

Managing processes

top
Display information about all running processes. This is very handy for find-
ing out which jobs are taking all of your workstation’s CPU cycles and mem-
ory.

Ctrl+z Stops the current command.
bg Resumes a stopped job in the background.
fg Brings most recent job to the foreground.
Ctrl+c Halts current command.
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Command-line editing

On most Linux systems, it seems that you can use the cursor keys to move about
within the command line. Delete and backspace also seem to have suitable effect.

Ctrl+u Erases whole command line.
!! Repeats last command.
history Shows command history.
!n Repeats command n.





B

A little bit of Lua

We use the Lua language as the format of the user’s input scripts. It makes a very
versatile input format that enables a lot of automation when setting up complex sim-
ulations, however, it demands a bit of understanding from the user. Our first advice
is to get a cup of your favourite beverage and sit down for an hour or so to read
the introductory sections of the Programming in Lua book [12]. The first edition of
this book, which has all that you need, is available online https://www.lua.org/
pil/contents.

That investment of time will be repaid many-fold but, if you are in a hurry to get
some flow simulations going, this section may be just enough to get started. To try
out bits of Lua code within the context of Eilmer but without the concerns of setting
up a full simulation, you can process an arbitrary Lua script with the command:

$ e4shared --custom-post --script-file=myscript.lua

where myscript.lua is the name of the file containing your Lua code.

B.1 Basics and syntax

Short comments start with a double dash -- and finish at the end of the line. Long
comments may span multiple lines by using [[ ... ]] to hold the lines together as
a single string and then comment the whole string with --. For example:

--[[ Long, multiple-line comments
can be used to cut sections of code
out of your script.]]

Commands (or statements) are the lines in you script that actually get things done.
For example:

-- Compute the area of a circle.
radius = 2.0
area = math.pi * radiusˆ2
print("For radius=", radius, "area=", area)
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Identifiers or names, as in the example above, can be any string of letters, digits
or underscores. Names cannot begin with a digit but they can begin with an under-
score. If you see name consisting of a single underscore, it is probably being used as
a dummy variable. And, when we talk about variables, we are talking about names
bound to data. The types of data that you will be manipulating include:

• numbers

• strings

• booleans

• nil

• functions

• tables

• userdata

Numbers are floating-point values. Strings of characters may be delimited by double
or single quote characters. Boolean values are either true or false. In a boolean
context, only false and nil are effectively false. Other values, such as 0 (the num-
ber zero), are effectively true. This might be surprising, especially if you have a C-
programming background.

The special value nil represents nothing and is different from all other types. If
we try to access a variable that is not initialized, the value is nil. We might say that
the name is bound to nothing.

Functions and tables will be discussed below while userdata is a type representing
C data structures and implemented via the C programming interface.

B.2 Operators and expressions

An expression is a combination of operands (data) and operators that results in a sin-
gle value of a certain type. The expression math.pi * radiusˆ2 from the previous
code snippet is an example. Names that appear in such expressions evaluate to the
value that was bound to them.

The assignment operator = is used to bind names to data values, as was done for
the radius and area variables. In Lua, variables can contain any type. The type is
an attribute of the value.

B.3 Tables

Almost all complex data types in Lua are constructed as some form of table. A table
literal is delimited by braces {} and entries can have numeric indices or string keys.
For example:
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t1 = {} -- an empty table
t2 = {["x"]=1.0, [1]=2.0, ["1"]=3.0} -- [1] is different to ["1"]
t3 = {1.0, 2.718, 3.142} -- an array

To access items in the table, use square brackets. For example t2[1] would evaluate
to the number 2, while t3[1] would evaluate to the number 1. There is a shorthand
for indexing items with string keys, so that t2["x"] and t2.x are equivalent and
evaluate to the number 1. If you try to access a nonexistent entry, you obtain the nil
value.

B.4 Functions

Functions are a way to abstract blocks of your code. They are first-class objects that
can be created as anonymous and then assigned to a variable or returned from an-
other function. Here is a simple function that computes a parabolic curve.

myParabola = function(s)
local x = s
local y = sˆ2
return x, y

end
xx, yy = myParabola(0.5)
print("for s=", 0.5, "xx=", xx, "yy=", yy)

The call operator parentheses () following the name myParabola invokes the func-
tion. The numeric value 0.5 is passed as the only argument and assigned to the local
variable s within the function. The commands within the body of the function are
then executed.

Note that a function can return multiple values and those values can be assigned,
in parallel, to multiple variables. An example of this multiple assignment in use for
setting up a simulation can be seen in the setting of the gas model in the introductory
simulation of a sharp-nosed cone on page 11. There we catch the returned number of
chemical species, number of internal energy modes, and a reference to the GasModel
object, and assign these three items to three variables.

Note, also, the prefix local when assigning to the x and y variables in the func-
tion. Variables assigned without a local prefix will be global variables. Sometimes
this default behaviour will be useful but it can be surprising if you are coming to Lua
from another programming language.

B.5 Object-based programming

The underlying D-language objects used in your simulation are wrapped in interface
code and presented to your script in the Lua domain with an object-based notation
that is described in one of the later chapters of the Programming in Lua book.
Here, we will just provide an example of constructing a couple of points in 3D space
and then using those points to define a line segment.
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a = Vector3:new{x=0.0, y=0.0}
b = Vector3:new{x=0.2, y=0.0}
ab = Line:new{p0=a, p1=b}
print("line ab=", ab)
print("midpoint is at ", ab(0.5))

Note the colon : characters before the new method name. These indicate that the
methods are bound to particular objects. Note, also, that the data given to each new
method are contained within single table literal. When calling a function and pro-
viding a single argument that happens to be a table, you may omit the call operator
parentheses ().

B.6 Control statements

Processing of your script statements proceeds sequentially unless a control statement
says otherwise. Code blocks are delimited with key words, usually terminated by the
keyword end. Lua has the usual compound statement constructs to control the flow
of execution of your script.

Selection of one code block or another another is controlled by the if-then-else-end
construct. For example, to conditionally execute some code, you could write:
if condition then

code-block
end
To select between alternative code blocks, the else and elseif keywords are avail-
able. For example:
if condition-1 then

code-block-1
elseif condition-2 then

code-block-2
else

code-block-3
end

Code blocks can be repetitively executed using the while and for loop con-
structs. The while loop looks like:
while condition do

code-block
end
and there are two flavours of for loop. The numerical for loop to print the odd inte-
gers up to 9 might look like the following example:

for i=1, 9, 2 do
print(i)

end

and the generic for loop is good for iterating through table entries:

t = {["pi"]=3.14, e=2.71}
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for k, v in pairs(t) do
print("key=", k, "value=", v)

end

For an array of items, there is the ipairs iterator to work with the same generic for
loop. It provides the index for each value, as so:

t = {"a", 3.142, "b", 2.718}
for i, v in ipairs(t) do

print("index=", i, "value=", v)
end

B.7 Global symbols in the Lua environment

Before your Lua input script is processed by Eilmer, there are a number of symbols
inserted into the global name space of the Lua interpreter. These are for you use in
constructing flow conditions and your description of the flow domain, and for setting
simulation configuration parameters. This list of names can be obtained from within
your script with the line

for k,_ in pairs(_G) do print(k) end

This prints all of the names found in the global namespace table, _G. To avoid un-
pleasant surprises, you should not be rebind any of these names to other objects in
your script.





C

Understanding an AWK script

We use the AWK programming language [23] as a programmable filter for text files.
When an AWK program processes input files, it splits the text into records and fields.
Records, by default, are separated by newlines. Fields, within a record, are separated
by whitespace. For each record, the fields may then be selected for use in calculations
and displayed.

Here, again, is the AWK script used to extract the pressure history for the sharp-
cone simulation back in Section 3.2. The line numbers in the left margin are not part
of the script.

1 # cp.awk
2 # Scan a history file, picking out pressure and scaling it
3 # to compute coefficient of pressure.
4 #
5 # PJ, 2016-09-22
6 #
7 BEGIN {
8 Rgas = 287.1; # J/kg.K
9 p_inf = 95.84e3; # Pa

10 T_inf = 1103; # K
11 rho_inf = p_inf / (Rgas * T_inf)
12 V_inf = 1000.0; # m/s
13 q_inf = 0.5 * rho_inf * V_inf * V_inf
14 print "# rho_inf=", rho_inf, " q_inf=", q_inf
15 print "# t,ms cp"
16 }
17
18 $1 != "#" {
19 t = $1; p = $10
20 print t*1000.0, (p - p_inf)/q_inf
21 }
22
23 END {}

It is used with the command line:

$ awk -f cp.awk hist/cone20-blk-1-cell-20.dat > cone20_cp.dat

to scan the history data file hist/cone20-blk-1-cell-20.dat and write its pressure-
coefficient results, via standard-output redirection, to the file cone20_cp.dat.
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Other than comments, that start with a # character and continue until the end of
the line, the AWK program above consists of pattern-action statements of the form
pattern { action }
As the input text file is scanned, each line is checked against the patterns and any
matching pattern has its action performed. A missing pattern always matches and a
missing action results in the whole line being printed.

The BEGIN and END patterns are special and their actions are performed, unsur-
prisingly, at the beginning of program execution (before any records are processed)
and at the end of program execution (following the processing of all records). We
use the BEGIN action (lines 8 through 16) to set up a number of named constants and
print a header to the standard output. This header is convenient for later reminding
us of the meaning of the computed numbers.

The action that does the interesting work starts on line 18 with a pattern that
matches, so long as the first field (denoted by $1) is not equal to the string consisting
of the single character #. We often use this character in our data files to indicate a com-
ment rather than data because GNUPlot accepts data mixed with such comments. If
the pattern matches, the record is then acted upon. First, field 1 is assigned to the
variable t, representing time in seconds, and field 10 is assigned to the variable p,
representing static pressure in Pascals. We scale the time to milliseconds and convert
the static pressure into a pressure coefficient, normalized by the previously-computed
value of dynamic pressure. The print sends the results to standard output, which
we had redirected to our results file cone20_cp.dat.

There is much more to the AWK programming language. You can have other
forms of patterns based on regular expressions and start,stop pairs. Your action may
include arbitrarily complex calculations using programming constructs such as if
statements and loops. When your AWK code starts to grow in complexity, you will
probably want to define your own special-purpose functions. These will be intro-
duced with the keyword function and be of the form:
function name( parameter-list ) { statements }
You also have access to special variables such as NR, the current record number, and
NF, the number of fields in the current record. There is a slightly more complex script
for computing shear stress on the flat plate in Section 5.1.5.
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Functions for simple gas flows

From within the Lua environment of the main program, you have access to a num-
ber of functions for computing simple gas flow relations. These functions might
be handy when setting flow conditions during simulation preparation, within user-
defined boundary conditions or during post-processing activities.

D.1 Ideal gas

The first set of functions is for simple flow situations of an ideal gas. See page 20
for an example of using one of the functions. All of the functions are contained in
the single table idealgasflow, however, they are grouped below according to flow
situation.

D.1.1 Simple isentropic flow

• A_Astar(M , g = 1.4) returns the area ratio, A
A∗ , for a given Mach number M

and ratio of specific heats, g. If you don’t provide a value for g, the default value
of 1.4 will be used.

• T0_T(M , g = 1.4) returns the total-temperature to static-temperature ratio, T0

T
.

• p0_p(M , g = 1.4) returns the total-pressure to static-pressure ratio, p0
p

.

• r0_r(M , g = 1.4) returns the density ratio, ρ0
ρ

.

D.1.2 Normal shock relations

• m2_shock(M1, g = 1.4) returns the Mach number following shock processing.
The frame of reference has the shock stationary, with the incoming flow being
supersonic, with Mach number M1.

• r2_r1(M1, g = 1.4) returns the density ratio, ρ2
ρ1

, across the shock. State 2 is the
shock-processed state.

• u2_u1(M1, g = 1.4) returns the velocity ratio, u2

u1
, across the shock.

• p2_p1(M1, g = 1.4) returns the pressure ratio, p2
p1

, across the shock.
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• T2_T1(M1, g = 1.4) returns the static-temperature ratio, T2

T1
, across the shock.

• p02_p01(M1, g = 1.4) returns the total-pressure ratio, p02
p01

, across the shock.

• DS_Cv(M1, g = 1.4) returns the normalized entropy change, s2−s1
Cv

, across the
shock.

• pitot_p(M1, g = 1.4) returns the Pitot pressure of the stream (following shock
processing).

D.1.3 1D flow with heat addition

• T0_T0star(M , g = 1.4) returns the total-temperature ratio, T0

T ∗
0

, for a given
Mach number M and ratio of specific heats, g. T0 is the local total-temperature
value and T ∗

0 is the total temperature at the hypothetical critical point where
enough heat has been added for the Mach number to be 1.

• M_Rayleigh(Tr, g = 1.4) returns the local Mach number for a given total-
temperature ratio, Tr = T0

T ∗
0

.

• T_Tstar(M , g = 1.4) returns the static-temperature ratio, T
T ∗ .

• p_pstar(M , g = 1.4) returns the static-pressure ratio, p
p∗

.

• r_rstar(M , g = 1.4) returns the density ratio, ρ
ρ∗

.

• p0_p0star(M , g = 1.4) returns the total-pressure ratio, p0
p∗0

.

D.1.4 Supersonic turning flow (isentropic)

• PM1(M , g = 1.4) returns the Prandtl-Meyer function ν (in radians) for a given
Mach number.

• PM2(ν, g = 1.4) returns the Mach number for a given Prandtl-Meyer value (in
radians).

• MachAngle(M) returns the Mach angle µ in radians.

D.1.5 Oblique shock relations

• beta_obl(M1, θ, g = 1.4, tol = 1.0e− 6) returns the oblique shock angle, β (in
radians), with respect to the undeflected free-stream direction. Required input
includes the free-stream Mach number, M , and the flow deflection angle, θ (in
radians).

• beta_obl2(M1, p2
p1

, g = 1.4) returns the shock wave angle, given free-stream
Mach number and static-pressure ratio across the oblique shock.

• theta_obl(M1, β, g = 1, 4) returns stream deflection angle, θ (in radians),
given shock angle, β (in radians).

• M2_obl(M1, β, θ, g = 1.4) returns the Mach number behind the oblique shock.
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• r2_r1_obl(M1, β, g = 1.4) returns the density ratio, ρ2
ρ1

, across the oblique
shock.

• Vn2_Vn1_obl(M1, β, g = 1.4) returns the normal-velocity ratio, Vn2

Vn1
, across the

oblique shock.

• V2_V1_obl(M1, β, g = 1.4) returns the flow speed ratio, V2

V1
, across the oblique

shock.

• p2_p1_obl(M1, β, g = 1.4) returns the static-pressure ratio, p2
p1

, across the
oblique shock.

• T2_T1_obl(M1, β, g = 1.4) returns the static-temperature ratio, T2

T1
, across the

oblique shock.

• p02_p01_obl(M1, β, g = 1.4) returns the total-pressure ratio, p02
p01

, across the
oblique shock.

D.1.6 Conical shock flow

• theta_cone(V1, p1, T1, β, R = 287.1, g = 1.4) returns four values, θc, Vc, pc, Tc,
that specify the cone surface angle and the surface values of velocity, pressure
and temperature, respectively. Required input includes the free-stream velocity,
V1, the static pressure, p1, static temperature, T1, and the conical shock wave
angle, β (in radians), with respect to the free-stream direction.

• beta_cone(V1, p1, T1, θ, R = 287.1, g = 1.4) returns the shock wave angle,
β (in radians), given the free-stream conditions (in SI units) and cone surface
angle, θ (in radians).

• beta_cone2(M1, θ, R = 287.1, g = 1.4) returns the shock wave angle, β (in
radians), given the free-stream Mach number and cone surface angle, θ (in radi-
ans).

D.2 General gas

The second set of functions is for simple flow situations of a more general gas, using
one of the built-in gas models. These functions operate on GasState objects that have
been constructed in the context of a GasModel.

D.2.1 Steady isentropic flow

• state1, V = gasflow.expand_from_stagnation(state0, p_over_p0)
returns the flow state (1) from a given stagnation condition (0) and pressure ra-
tio. V is the velocity of the expanded gas, assuming isentropic, steady-state
processing.

• state1, V = gasflow.expand_to_mach(state0, mach) returns the expanded-
gas flow state at a particular Mach number.
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• state0 = gasflow.total_condition(state1, V1) returns the stagna-
tion condition given a particular free-stream condition, assuming isentropic,
steady-state processing.

• state2pitot = gasflow.pitot_condition(state1, V1) returns the Pitot-
probe stagnation condition. The free-stream flow (1) may be supersonic, such
that a normal shock will form between the free-stream and the stagnation re-
gion.

• state2, V2 = gasflow.steady_flow_with_area_change(state1,
V1, A2_over_A1, tol)

returns the flow state resulting from a steady isentropic process associated with
a change in stream-tube area. The area change is specified as the ratio A2

A1
and

there is a default value of 10−4 for tol.

D.2.2 Unsteady isentropic flow

• state2, V2 = gasflow.finite_wave_dp(state1, V1,
characteristic, p2, steps)

returns the state (2) following an unsteady isentropic process to a new pressure
p2. The process follows either the "cplus" or "cminus" characteristic. There
is a default value of 100 for the number of steps.

• state2, V2 = gasflow.finite_wave_dp(state1, V1,
characteristic, V2_target, steps, Tmin)

returns the state (2) following an unsteady isentropic process to a new velocity
V2_target. The process follows either the "cplus" or "cminus" character-
istic. There is a default value of 100 for the number of steps. Tmin has a default
value of 200.0 K, and the stepping process will be terminated if the gas temper-
ature falls below this value.

D.2.3 Normal shock relations

• state2, V2, Vg = gasflow.normal_shock(state1, Vs, rho_tol, T_tol)
returns the conditions following shock processing. The frame of reference has
the shock stationary, with the incoming flow (1) being supersonic, with velocity,
Vs. The velocity, Vg, is the velocity of the post-shock (2) gas in the laboratory
frame, in which the shock has travelled past with velocity Vs into quiescent gas.

• V1, V2, Vg = gasflow.normal_shock_p2p1(state1, p2p1) returns the
pre- and post-shock velocities, given the pressure ratio across the shock.

• state5, Vr = gasflow.reflected_shock(state2, Vg) returns the post-
reflected-shock conditions, given the flow condition following the incident shock.
Both velocities are in the laboratory frame, where the initial (1) and final (5) gas
velocities are zero.

D.2.4 Oblique shock relations

• state2, theta, V2 = gasflow.theta_oblique(state1, V1, beta)
returns the post-shock conditions (2) for a given free-stream condition (1) and
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shock-wave angle, beta, (in radians) with respect to the free-stream flow direc-
tion. The angle, theta, is the associated flow deflection angle, also in radians.

• beta = gasflow.theta_oblique(state1, V1, theta) returns the shock-
wave angle (in radians) with respect to the free-stream (1) flow direction.

D.2.5 Example of use

The following example shows the use of the gas flow functions to compute the ap-
proximate test flow conditions for one of the operating conditions for the T4 shock
tunnel. The CEA gas model is used, with a 13-species air specification, and process-
ing is performed state-to-state.

1 model = "CEAGas"
2
3 CEAGas = {
4 mixtureName = ’air13species’,
5 speciesList = {"N2","O2","Ar","N","O","NO","Ar+","NO+","N+","O+","N2+","O2+","e-"},
6 reactants = {N2=0.7811, O2=0.2095, Ar=0.0093},
7 inputUnits = "moles",
8 withIons = true,
9 trace = 1.0e-6

10 }

1 -- reflected-shock-tunnel.lua
2 -- Run with a command like:
3 -- $ e4shared --custom-post --script-file=reflected-shock-tunnel.lua
4 -- PJ, 2017-11-12
5 print("Compute the test-flow conditions for a shot in the T4 shock tunnel.")
6 --
7 print("shock-tube fill conditions")
8 gm = GasModel:new{’cea-air13species-gas-model.lua’}
9 state1 = GasState:new{gm}

10 state1.p = 125.0e3; state1.T = 300.0
11 gm:updateThermoFromPT(state1)
12 print("state1:"); printValues(state1)
13 --
14 print("normal shock, given shock speed")
15 Vs = 2414.0
16 state2, V2, Vg = gasflow.normal_shock(state1, Vs)
17 print("V2=", V2, "Vg=", Vg)
18 print("state2:"); printValues(state2)
19 --
20 print("reflected shock")
21 state5, Vr = gasflow.reflected_shock(state2, Vg)
22 print("Vr=", Vr)
23 print("state5:"); printValues(state5)
24 --
25 print("Expand from stagnation (with ratio of pressure to match observation)")
26 state5s, V5s = gasflow.expand_from_stagnation(state5, 34.37/59.47)
27 print("V5s=", V5s, " Mach=", V5s/state5s.a)
28 print("state5s:"); printValues(state5s)
29 print("(h5s-h1)=", gm:enthalpy(state5s) - gm:enthalpy(state1))
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30 --
31 print("Expand to throat condition (Mach 1.0001)")
32 state6, V6 = gasflow.expand_to_mach(state5s, 1.0001)
33 print("V6=", V6, " Mach=", V6/state6.a)
34 print("state6:"); printValues(state6)
35 --
36 print("Mach 4 nozzle expansion to test-flow condition.")
37 state7, V7 = gasflow.steady_flow_with_area_change(state6, V6, 27.0)
38 print("V7=", V7, " Mach=", V7/state7.a)
39 print("state7:"); printValues(state7)



E

User-defined functions for run-time
customization

User-defined functions (UDFs) are callable functions written in Lua that are used to
perform specialized and/or customized tasks that are not part of the standard flow
solver. These callable functions can be used:

• as specialized boundary conditions;

• for the addition of custom source terms;

• to prescribe grid motion; and

• to perform special operations at the beginning and end of each time step.

Some examples follow to give this idea a more concrete form. A specialized boundary
condition might model mass injection from a porous boundary which is not presently
available as a boundary condition in the simulation code. We use custom source
terms when we are testing the code using the method of manufactured solutions.
The callable functions at the start of each time step could be used to compute a special
flow field variable.

Each of your customizations will be Lua code, typically a function of the form:

function specifiedName(args)
-- Do something interesting,
-- perhaps making use of args,
-- then return a value.

return requiredValue
end

The main simulation code sets up args, specific to the time and place of the call.
It then requests the Lua interpreter to execute the function specifiedName, pass-
ing args. Your Lua code within the function performs whatever custom calcula-
tion is needed and returns requiredVal. The simulation code then makes use of
requiredVal in its subsequent calculations. Of course, you may have other sup-
porting code in your Lua script. The entire script file is interpreted at start-up, so
variables and functions may be defined, files may be read and tables set up. You have
the full capability of the Lua interpreter at your service.
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E.1 Customizing the boundary conditions

Users can affect both convective and diffusive boundary conditions. The customized
boundary conditions may supply ghost-cell flow states and interface values or fluxes
directly. Using a customized boundary condition requires two steps:

1. Setting the UserDefinedGhostCellBC or UserDefinedFluxBC boundary
condition (page 58) in the FluidBlock setup.

2. Constructing a Lua file which defines the boundary condition behaviour.

E.1.1 Setting ghost cells and interface properties

When the user’s (Lua) input script constructs a new UserDefinedGhostCellBC
boundary condition, a Lua file name is specified. This Lua file is interpreted at
the time of boundary-condition construction and it needs to define the Lua func-
tion ghostCells(), at a minimum. For a viscous simulation, you will also need to
define the Lua function interface(). These particular functions are later called,
every time the boundary condition is applied during the simulation. In fact, they are
called for every interface along a boundary; the functions work interface-by-interface.
As well as providing the expected functions, the Lua file may contain whatever sup-
porting code that the user wishes to include. It may start up external processes, read
data files, or any other suitable activity that sets up data for later use in the boundary
condition functions.

To set up a user-defined boundary condition you need to instruct the code about
what to do for the convective (inviscid) update and then, separately, for the vis-
cous effects. The inviscid interaction at the boundary may be handled by defining
a ghostCells(args) function. In this case, you populate the properties of two
ghost cells such that they give the desired convective flow effect at the boundary. The
ghost cells are abstract in that they do not exist in the simulated flow domain but do
exist in the program’s data for each block boundary. They are used in the interpola-
tion phase of the convective update, for cell faces that lie along the boundary. The
function returns two tables of flow data. The first table is for the inner ghost cell, the
one closest to the domain edge. The second table is for the outer ghost cell.

The viscous effects at the boundary are handled by defining an interface()
function. In this case, you set the properties at the interface directly and, as part of
the viscous update, the main code computes spatial derivatives from these specified
flow properties. For example, you could set a temperature at the interface and zero
velocity for a no-slip wall with the function called interface(). By doing this, you
would not directly control the viscous heat flux into the flow directly, however, it
would be controlled indirectly by setting the temperature. Note that, in an inviscid
simulation, any user-specified viscous boundary effect functions are ignored; they are
never called by the code.

Ghost cells

On being called at run time, the function ghostCells(args) returns two Lua ta-
bles. The user writing the function is responsible for constructing and returning these
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two tables. The first contains the flow state in the ghost cell nearest the boundary face,
and the second contains the flow state for the ghost cell farther away from the bound-
ary face. If you do not wish to set the ghost-cell data from your user-defined function,
you may return empty tables. This may sound a strange thing to do, but there are sit-
uations where you would conditionally set the ghost-cell data when it has previously
been set by an exchange action. (See the ExchangeBC_FullFacePlusUDF bound-
ary condition on page 59.)

Items that are supplied in args table include some state information for the up-
date, some geometric information for the ghost cells, the boundary interface, adjacent
interior cell:

t the current simulation time, in seconds

dt the current time-step size, in seconds

timeStep integral time step count

gridTimeLevel integral value indicating the phase of the update for a moving grid

flowTimeLevel integral value indicating the phase of the flow update

boundaryId integral value indicating the which boundary within the block we are
working on For a structured-grid block it may be convenient to use the symbolic
indices north,...

x,y,z coordinates of the midpoint of the interface, in m

csX,csY,csZ direction cosines for unit normal of the interface

csX1,csY1,csZ1 direction cosines for first tangent of the interface

csX1,csY1,csZ1 direction cosines for second tangent of the interface

i,j,k indices of the interior cell adjacent to the interface

gc0x,gc0y,gc0z coordinates of the centre of the first ghost cell

gc1x,gc1y,gc1z coordinates of the centre of the second ghost cell

If you want information on the flow state within the adjacent interior cell, use the
sampleFluidCell service function to get the data shown on page 129. Items to
appear in the returned tables are:

p gas pressure in Pa (required)

T trans-rotational temperature in Kelvin (required)

T modes array of temperatures associated with other internal energy modes. This
is only required if n modes is nonzero.

massf table of named mass fractions. This is only required if n species is greater
then 1. For a single-species simulation, a value of 1.0 for the only species is the
default.
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velx,vely,velz velocity components in x,y,z-directions in m/s. The default value
for any component is 0.0.

tke turbulent kinetic energy per unit mass, in J/kg. Default is 0.0

omega ω for the k − ω turbulence model, in 1/s. Default is 1.0.

S shock-detector value (1 or 0). Default is 0.

Other gas thermodynamic data, such as internal energy and sound speed, are deter-
mined via the gas model.

Note that your ghostCells function is called once for every cell along the bound-
ary, so be mindful of the possibility of repeating calculations that remain fixed across
the full boundary. It may be efficient to do the calculation once, at the time the func-
tion is called for the first cell, and store the resulting data in global variables so that
they are ready for use in subsequent calls.

Interfaces

If viscous effects are active, the Lua function interface(args) is called to get a
few properties right at the bounding interface. These properties are to be returned in
a table containing:

p gas pressure in Pa

T trans-rotational temperature in Kelvin

T modes array of temperatures associated with other internal energy modes.

massf table of named mass fractions.

velx,vely,velz velocity components in x,y,z-directions in m/s.

tke turbulent kinetic energy per unit mass, in J/kg.

omega ω for the k − ω turbulence model, in 1/s.

mu t turbulence viscosity, in Pa.s

k t turbulent heat conduction coefficient

Note that not all parameters may be needed, so the calling D code treats all param-
eters as optional and extracts from your table only the entries that it can find. These
supplied values overwrite the corresponding values in the FlowState object at the
boundary face. If you do not wish to set the interface data from your user-defined
function, you may return an empty table. On entry to the function, args contains all
of the same attributes as for the call to the ghostCells function. Additionally, args
contains:

t the current simulation time, in seconds

dt the current time-step size, in seconds

timeStep integral time step count
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gridTimeLevel integral value indicating the phase of the update for a moving grid

flowTimeLevel integral value indicating the phase of the flow update

boundaryId integral value indicating the which boundary within the block we are
working on For a structured-grid block it may be convenient to use the symbolic
indices north,...

x,y,z coordinates of the midpoint of the interface, in m

csX,csY,csZ direction cosines for unit normal of the interface

csX1,csY1,csZ1 direction cosines for first tangent of the interface

csX1,csY1,csZ1 direction cosines for second tangent of the interface

i,j,k indices of the interior cell adjacent to the interface

Remember that the functions are evaluated in the Lua interpreter environment
that was set up when the boundary condition was instantiated so any data that was
stored then is available to the functions now, possibly via global variables. This allows
a useful pattern where, for example, flow profile data could be read from files at set up
time and stored in a table that then is available for subsequent calls to ghostCells
and interface.

E.1.2 Directly specifying fluxes

Instead of specifying ghost-cell and interface data that are used internally by the sim-
ulation code to compute fluxes of mass momentum and energy across the bound-
ary, the user may provide a function, convectiveFlux(args), that returns a ta-
ble specifying the combined (convective and viscous) interface fluxes. The name
convectiveFlux is configurable via the funcName parameter in the call to the
boundary condition constructor UserDefinedFluxBC:new{}. (See page 59.)

The table of fluxes returned contains the following entries:

mass mass flux per unit area of the interface

momentum x x-direction momentum flux per unit area

momentum y y-direction momentum flux per unit area

momentum z z-direction momentum flux per unit area

total energy flux of energy per unit area

species table of nsp species mass fluxes.

and the input args table contains:

t the current simulation time, in seconds

dt the current time-step size, in seconds

timeStep integral time step count
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gridTimeLevel integral value indicating the phase of the update for a moving grid

flowTimeLevel integral value indicating the phase of the flow update

boundaryId integral value indicating the which boundary within the block we are
working on

x,y,z coordinates of the midpoint of the interface, in m

csX,csY,csZ direction cosines for unit normal of the interface

csX1,csY1,csZ1 direction cosines for first tangent of the interface

csX1,csY1,csZ1 direction cosines for second tangent of the interface

i,j,k indices of the interior cell adjacent to the interface

When setting flux values, the user is responsible for giving the magnitude of flux
that crosses normal to the boundary interface. As such, the user’s function is given
the components of the interface normal vector in the Cartesian frame (nx, ny, nz) to
aid in computing the correct flux magnitude for interfaces of arbitrary orientation.
The positive sense for the unit normal is shown for two-dimensional boundaries on
structured grids in Figure E.1. In words, the normals point inwards for the west
and south boundaries, and the normals point outwards for east and north. For
example, if you are setting a flux that crosses the north boundary and enters the
domain, the magnitude of its value should be negative to indicate flux into the domain.
The same holds for fluxes across the east boundary.

NORTH

EAST

SOUTH

WEST

Figure E.1: The positive sense of direction for unit normals at each of the boundaries
in 2D, using a structured-grid block.

The reason for this arrangement of face-normals in structured grids is that, inter-
nal to the code, all east and west interfaces are part of the single array of i-faces.
For north and south, there is the single array of j-faces and, for top and bottom
faces, there is the array of k-faces. So, a single i-face will serve as the east face
of one cell and the west face of the next cell to its right.
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E.2 Source terms

User-defined source terms add to the internally-computed source terms. These terms
specify the rate of addition of each quantity on a per-unit-volume basis. They can be
applied to any/all conservation equations but, to activate the addition of these terms,
you need to set the configuration options:

config.udf_source_terms = true
config.udf_source_terms_file = ’my_source_terms.lua’

Within the specified Lua file, you will need to provide a function sourceTerms(t, cell)
that is called at each stage in the update over a time step, for every cell in the domain.
Here t is the current simulation time and cell is a table containing the cell data, as
returned by the sampleFluidCell function (See Section E.5.5). Added to that table
are the items

blkId index of the block containing the cell

i,j,k indices of the cell. Note that these indices are in storage space, with imin≤i≤imax.

The table of values that your function returns may include the entries:

mass mass rate of addition per unit volume of the cell

momentum x x-direction momentum flux per unit volume

momentum y y-direction momentum flux per unit volume

momentum z z-direction momentum flux per unit volume

total energy rate of energy addition per unit volume

species table of nsp named species mass additions or a single value if nspecies==1.

energies table of nmodes energy fluxes.

omega rate of addition of ω for the k − ω turbulence model

tke rate of addition of turbulent kinetic energy

nuhat rate of addition of Spalart-Allmaras field variable

E.3 Grid motion

Grid motion is controlled through the movement of the vertices of the grid. The most
flexible arrangement is that you supply the velocities for all vertices in the domain
via the function assignVtxVelocities(t, dt). Vertices with zero velocity may
be skipped. To activate the grid-motion features, you need to set the following con-
figuration options in your simulation input script:

content.config.gasdynamic_update_scheme = ’moving_grid_1_stage’
config.grid_motion = ’user_defined’
config.udf_grid_motion_file = ’grid-motion.lua’
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For the gasdynamic_update_scheme, you could also choose the alternative step-
per ’moving_grid_2_stage’ to get a second-order update scheme.

Within your assignVtxVelocities function, you may use the following functions for
getting the current positions of individual vertices and setting their velocities. Your
Lua function needs to supply velocities of the vertices, not positions.

pos = getVtxPosition(blkId, i, j, k) returns the position of the vertex as a table of
named Cartesian coordinates [x, y, z]

x, y, z = getVtxPositionXYZ(blkId, i, j, k) returns the position of the vertex as three
floating-point values

setVtxVelocity(vel, blkId, vtxId) sets the velocity vector for vertex vtxId in block
blkId. The argument vel is to be provided as a Vector3 object. This works
for both structured and unstructured grids.

setVtxVelocityXYZ(velx, vely, velz, blkId, vtxId) sets the velocity components for
vertex vtxId in block blkId. The velocity components are expected to be pro-
vided as floating-point values. This works for both structured and unstructured
grids.

setVtxVelocity(vel, blkId, i, j) sets the velocity vector for vertex i,j in block blkId
in a two-dimensional structured grid.

setVtxVelocityXYZ(velx, vely, velz, blkId, i, j) sets the velocity components for ver-
tex i,j in block blkId in a two-dimensional structured grid.

setVtxVelocity(vel, blkId, i, j, k) set the velocity vector for vertex i,j,k in block
blkId in a three-dimensional structured grid.

setVtxVelocityXYZ(velx, vely, velz, blkId, i, j, k) set the velocity components for
vertex i,j,k in block blkId in a three-dimensional structured grid.

For setting the vertex velocities of whole blocks or whole domains at once, such
as for rigid-body motion, there are functions for setting the velocities of all vertices in
a block:

setVtxVelocitiesForDomain(vel) sets the one velocity vector for all vertices in all
blocks in the domain.

setVtxVelocitiesForBlock(blkId, vel) sets the one velocity vector for all vertices
in block blkId.

setVtxVelocitiesForBlockXYZ(blkId, velx, vely, velz) sets the one set of velocity
components for all vertices in block blkId.

setVtxVelocitiesForRotatingBlock(blkId, omega) sets rotational speed omega (rad/s)
for rotation about the z-axis.

setVtxVelocitiesForRotatingBlock(blkId, omega, point) sets rotational speed omega
(rad/s) for rotation about the (0,0,1)-axis through point
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setVtxVelocitiesByCorners(blkId, p0vel, p1vel, p2vel, p3vel) sets the velocity vec-
tors for block with corner velocities specified by four corner velocities. This
works for both 2D and 3D meshes. In 3D there is no variation in the k direction.

setVtxVelocitiesByCorners(blkId, p0vel, p1vel, p2vel, p3vel, p4vel, p5vel, p6vel, p7vel)
sets the velocity vectors for block with corner velocities.

E.4 Coordination

If you provide a file name for config.udf_supervisor_file in your input script,
the flow simulation program will call the atTimestepStart(t, step, dt) func-
tion that you define in that Lua file. This function differs from the boundary condi-
tion functions and source-term function because it called only once, at the start of the
update process over the time step, and it does not pass any data back into the sim-
ulation. It can however be used for coordination of other user-defined functions by
sampling flow field data, running external processes and writing files that the other
Lua interpreters can read in the course of their activities.

After calling your atTimestepStart and on returning to the D-domain, there are
a couple of house-keeping actions that may affect other parts of the simulation. The
first is that a check is made for the Lua variable dt_override. If it is non-nil, its
value will override the current timestep. This is useful for situations where you have
made significant and sudden changes, such as rupturing the diaphragm in a shock-
tube simulation, and it would help to immediately adjust the time step. Note that,
on subsequent calls to your atTimestepStart function, you will need to explicitly
set dt_override=nil to avoid the subsequent timesteps from being overridden.
The second thing that is done is to copy the current values of the userPad array
and propagate these values to all of the other active Lua interpreters, as discussed in
Section E.5.1.

There are also points in the main simulation loop where the user-defined Lua func-
tions atTimestepEnd(t, step, dt) and atWriteToFile(t, step, dt) are
called, if they are defined in your supervisor script. The time of writing to file refers to
the point at which the flow-solution data has been written to disk. This may happen
several times during the course of a simulation and may be a good point to invoke an
external program that needs current data for some sort of interaction with the flow
field. Ingo Jahn’s transient solid mechanics solver is a good example of a external
program being coupled to the flow solver.

E.5 Helper variables, functions and modules

There are certain conveniences the code provides to your user-defined functions and
these are set as global variables in your Lua interpreter. For example, the code sets up
a reference to the D-language gas model for use from your Lua functions. It also pro-
vides some information about the block data, specific to the block where you apply
the user-defined boundary condition.
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E.5.1 Variables

If the userPad array is specified as having nonzero length in the job’s input script,
then the array will be set up to be available in the global name-space of each Lua in-
terpreter. The array holds only floating-point numbers and the elements are indexed
from 1, in the usual Lua convention. What you use them for is entirely up to you,
however, the intent is to provide communication between the (possibly many) Lua
interpreters without the need to resort to file writing and reading from within your
Lua functions.

In the input script, you may set the length and some, or all, of the array values. Ele-
ments, for which an initial value is not provided, get a zero value. For example:

config.user_pad_length = 6
user_pad_data = {1.0, 3.14}

This data may be accessed from the Lua script as

x = userPad[1]
y = userPad[2]

Since the array is just a table in the Lua name-space, you may assign new values
to the elements. At return from the atTimestepStart function call, the userPad
content is copied back into the D-language domain and broadcast to all other Lua
interpreters which may be used for setting source terms or boundary conditions. In
an MPI simulation, the master task (rank 0) dominates and broadcasts its values to
all other MPI tasks. On return from any other Lua function call, say for a boundary
condition, the userPad data is not copied back into the D-language domain. On
next occasion to call that Lua function, the master userPad is pushed again into the
Lua interpreter’s copy of userPad. This allows for a one-way synchronization of the
data, which may change during the simulation.

If you want to have common data for many Lua interpreters and that data is to be
unchanged during a simulation, it may be convenient to write a small Lua file con-
taining some assignment statements and then use the Lua dofile() function. This
will evaluate content of that file and bring those assignments into your interpreter.

There are a number of other globally-defined variables that contain configuration
data for the simulation. These include:

blkId index of the current block
Boundary conditions exist in the context a block. This means that the informa-
tion accessible from the UDFs is limited to that contained within the block plus
a little bit of global data. This is particularly important for parallel (MPI) sim-
ulations because blocks exist is separate processes and the data in one block is
not generally available in another.

gmodel gas model object associated with current simulation
This object provides complete access to the gas model services. You might need
to get some gas properties or compute an equation of state. This object helps
with that, and by using this object, you ensure consistency with the gas model
that is internal to the simulation. A fuller description of the services provided
by a gas model object is in the accompanying Gas Model User’s Guide [5].



E.5. Helper variables, functions and modules 127

n species number of species

n modes number of energy storage modes (and temperatures)

Plus data describing the block that owns the current Lua interpreter. These data are
listed in Section E.5.3

In the context of the Lua interpreter for a boundary condition, there are also the
following variables:

boundaryId number indicating to which boundary the user-defined function is
applied

boundaryLabel label given by user to the boundary (or set as default)

boundaryType type of boundary (as a string)
This is optionally set by user in input script or given default settings.

boundaryGroup group to which boundary belongs (also a string)

Note that the Lua interpreter that is started for your boundary condition is specific to
that boundary attached to a particular block. Thus, each user-defined boundary con-
dition within the simulation will have its own interpreter state, independent of all of
the others. You may initialize several boundary conditions with the same Lua script
so that they have common behaviour. To assist with the coordination of calculations
across interpreters, the parameters boundaryId, boundaryLabel, boundaryType
and boundaryGroup are potentially useful.

E.5.2 Functions

As well as the data available in the named variables, there are several functions that
can be called to get more information about the flow at specific locations:

infoFluidBlock(blkId) returns a table of information related to the block with index
blkId.

sampleFluidFace(faceType,blkId,i,j,k) returns a table of information about the geo-
metric and flow properties at an interface in the grid. The argument faceType
is a string. In structured grids, faceType is one of the strings ’i’, ’j’, or ’k’.
In unstructured grids, use ’u’ for faceType.

sampleFluidCell(blkId,i,j,k) returns a table of the flow state for a particular cell. The
data supplied to the user is described below in Section E.5.5.

getRunTimeLoads(loadsGroup) returns two tables, one for the force components
and one for the moment components for the specified loadsGroup name. The
loadsGroup name is a string which matches one of the groups set up when the
boundary conditions are constructed in the input script.

blkId refers to the block of interest. You should restrict your queries to blocks that
are in the same memory space as the current block for your user-defined boundary
condition. i, j, and k are the indices of the interface of interest. Although all values
should be supplied, not all have meaning. For unstructured grids, only the i value
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has meaning. You may supply a value of 0 for j and k because those indices are
ignored. In 2D structured grids, the k has no meaning. Again, just supply the value
0. In 3D structured grids, valid values are required for all of i,j,k. In an MPI-
parallel simulation, be sure to sample only from blocks that are owned by the current
MPI task. Sampling from other blocks will likely result in a segmentation fault.

E.5.3 Data returned by infoFluidBlock

dimensions number of spatial dimensions for this simulation

label string label, possibly identifying the block

grid type string ’structured’ or ’unstructured’

ncells count of interior cells in the block

nfaces count of interfaces defining cells in the block

nvertices count of vertices defining cells in the block

For structured-grid blocks, there are some additional item made available because
they make sense only in the context of the structured-grid index directions. These
are:

nicell number of cells in i-direction

njcell number of cells in j-direction

nkcell number of cells in k-direction

imin, imax range for i-index in storage space

jmin, jmax range for j-index in storage space

kmin, kmax range for k-index in storage space

north boundary index for the North boundary

east boundary index for the East boundary

south boundary index for the South boundary

west boundary index for the West boundary

top boundary index for the Top boundary (3D only)

bottom boundary index for the Bottom boundary (3D only)
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E.5.4 Data returned by sampleFluidFace

The table returned by sampleFluidCell contains:

x,y,z coordinates of the centre of the cell, in m

area surface area of the face, in m2. For an axsisymetric 2D simulation, this will be
area per radian.

nx, ny, nz cosines for the unit normal to the face

t1x, t1y, t1z cosines for the first tangent to the face

t2x, t2y, t2z cosines for the second tangent to the face

Ybar y-coordinate of the centroid of face area for an axisymmetric 2D simulation

gvelx, gvely, gvelz velocity components of the face midpoint. Should be zero for
a non-moving-grid simulation.

plus a description of the FlowState associated with the face. See the following sec-
tion E.5.5.

E.5.5 Data returned by sampleFluidCell

The table returned by sampleFluidCell contains:

x,y,z coordinates of the centre of the cell, in m

vol volume of the cell, in m3

plus a description of the FlowState associated with the cell:

p pressure, in Pa

T trans-rotational temperature, in K

T modes array of other internal-mode temperatures, if nmodes> 0

u specific internal energy, J/kg

u modes array of other internal energies

quality fraction of vapour for a multiphase gas model

massf table of named mass fractions

a sound speed, m/s

rho density, kg/m3

mu dynamic viscosity, Pa.s

k thermal conductivity

k modes array of conductivities of other energy modes
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tke turbulent flow kinetic energy within the cell, J/kg

omega for the k-ω turbulence model, 1/s

mu t turbulence viscosity

k t turbulence conductivity

vel velocity components as a table with entries [x, y, z]

B magnetic field strength vector with components [x, y, z]

psi

divB divergence of magnetic field

Note that not all of these items will be relevant in all simulations. For example,
T_modes and u_modes are not populated for simulations with a single-temperature
gas.

E.5.6 Modules

There are some additional convenience functions available to the user to compute or
obtain values related to the gas model such as thermodynamic properties and trans-
port coefficients. These are documented in the gas model API [5].

Your Lua scripts may also use Vector3 and Matrix objects to provide some 3D
geometric calculation capabilities and some basic linear-algebra operations, respec-
tively. For documentation on Vector3 objects, see the companion report [8]. For the
Matrix operations, see the source code module bbla.d.

E.6 Notes on Lua interpreters and global variables

For each boundary condition that uses a UserDefinedBC boundary condition, an
independent Lua interpreter is started. The global state in each of these interpreters
(read boundary conditions) is kept between time steps (i.e. the interpreter is reen-
trant). However, there is no way to communicate information internally from one
Lua interpreter to another. There is a subtlety here. You could actually write just one
Lua file as the boundary condition but set it on multiple boundaries however, you
would need to make it smart enough to use the Eilmer-provided information to work
out which boundary it was and then act accordingly. Remember that, although you
might use the one file, it is running as an independent process for each boundary.
Those independent processes will not share global state and cannot communicate, so
do not make changes in one script and expect them to be reflected in another.

Further, the sampling functions that give information about blocks, cells and in-
terfaces only work for the blocks in the memory of the computational process. The
implication for MPI simulations is that you cannot get information about blocks and
cells that are resident in a different computational process. You might get a segmen-
tation fault if you try.
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There is a run-time cost associated with the user-defined functions. There may
be much data that need to be packed and unpacked on either-side of the Lua/D in-
terface. If you find that implementing your customisation via user-defined functions
make your simulation very slow, it might be time to think about an implementation in
the core solver, in the D language. Repeated calculations and reading and writing of
files from Lua may be other causes of a slow simulation. In such cases, consider com-
puting or reading once and storing the values in a Lua table that will persist between
calls of your customisation function.

E.6.1 Good Practice in User-Defined Lua Scripts

One can take advantage of the fact that the Lua state persists between time steps to
minimise the number of computations required to return the required information.
Additionally, naive use of the Lua interpreter can lead to problems, as the brief exam-
ple below will demonstrate.

Here we have a simple user-defined ghost cell boundary condition. It fills the
ghost cells at the specified boundary with constant velocity and temperature, with
the pressure varying sinusoidally in time. The first version (page 133) shows an ex-
ample of bad practice, while the second (page 134) shows how the same result can
be achieved in a more efficient manner. The difference in these examples is not that
great. It amounts to careful selection of where some reused objects are created.

In the first example, all the work is done within the ghostCells() function,
with some delegated to getFlowTable, but all internal to ghostCells(). This is
called multiple times per timestep (depending on number of update stages) at every
interface on a user-defined boundary to fill in the adjacent ghost cells. So, in this first
example, the unit conversions, gas calculations and other manipulations to attain the
velocity and temperature are performed at every update stage for every interface
along the boundary. If this were the only problem with this approach, it would not
be a big issue: your calculation would simply take longer to run.

The second problem is more subtle, and relates to the way the Lua interpreter
interacts with the D program underneath. The problem in this case is specifically
with the GasState and GasModel objects. Whenever a GasState or GasModel
object is created in the Lua interpreter, an accompanying object is created in the D
environment beneath.1 Unfortunately, these objects are deliberately retained in the
D run-time environment because we cannot easily communicate the lifetime of a Lua
object to the matching D object. As such, these D objects can and will accumulate over
time. This will lead to increasing memory usage over the lifetime of the simulation.
If you are particularly unlucky, this can lead to locking up of your local machine as
your RAM fills up or the dumping of jobs on HPC facilities due to exceeding memory
limits.

To address these issues, all the calculations which do not depend on the local
simulation status or ghost cell information can be placed in the beginnings of the Lua
file. These calculations will be performed on the initialisation of the Lua state, with
the results being reused each time the ghostCells function is called. The only bit

1This is also true for other objects defined in the D language, such as Vector3 objects or
FlowState objects.
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of work being done in ghostCells is calculating the pressure, which depends on
the current simulation time. This is a value that cannot be calculated beforehand at
initialisation.
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User-Defined BC Script- Bad Practice (.lua)

1 -- An example of a script that will fill in the
2 -- ghost cells with a user-defined flow condition.
3 -- The flow condition will have constant velocity
4 -- and temperature, and a sinusoidally varying pressure.
5 function ghostCells(args)
6 -- Use a secondary function to define the flowstate
7 flowTable = {}
8 getFlowTable(flowTable)
9

10 -- Initialize the tables that will contain the flow data
11 ghostCell1 = {}; ghostCell2 = {};
12
13 -- Grab the base flow data from the flowTable
14 ghostCell1.velx = flowTable.vel
15 ghostCell1.vely = 0
16 ghostCell1.T = flowTable.T
17 ghostCell2.velx = flowTable.vel
18 ghostCell2.vely = 0
19 ghostCell2.T = flowTable.T
20
21 -- Define the sinusoidally varying pressure-
22 -- a constant pressure plus a disturbance
23 -- with frequency of 200kHz and amplitude
24 -- 1 millionth of the freestream pressure
25 freq = 200e3 * 2 * math.pi
26
27 ghostCell1.p = flowTable.p * (1 + 1e-6 * math.cos(freq * args.t))
28 ghostCell2.p = flowTable.p * (1 + 1e-6 * math.cos(freq * args.t))
29
30 return ghostCell1, ghostCell2
31 end
32
33 -- A function that will return the desired
34 -- freestream values as a table
35 function getFlowTable(tab)
36 -- Define the gas state used to calculate the sound speed
37 gamma = 1.4
38 gmodel = GasModel:new{’ideal-air.lua’}
39 gstate = GasState:new{gmodel}
40
41 -- Define the freestream
42 tab.M = 7.99
43 tab.p = 0.060 * 6894.76
44 tab.T = (1250 * 0.55556) / (1 + (gamma - 1) * tab.Mˆ2 / 2)
45 gstate.p = tab.p; gstate.T = tab.T
46
47 -- Update the gas state and use the
48 -- sound speed to get the velocity.
49 gmodel:updateThermoFromPT(gstate)
50 tab.vel = tab.M * gstate.a
51
52 return tab
53 end
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User-Defined BC Script- Good Practice (.lua)

1
2 -- An example of a script that will fill in the
3 -- ghost cells with a user-defined flow condition.
4 -- The flow condition will have constant velocity
5 -- and temperature, and a sinusoidally varying pressure.
6
7 -- The freestream only needs to be defined once in the Lua state
8 gamma = 1.4
9 gmodel = GasModel:new{’ideal-air.lua’}

10 gstate = GasState:new{gmodel}
11
12 -- Define the freestream
13 flowTable = {}
14 flowTable.M = 7.99
15 flowTable.p = 0.060 * 6894.76
16 flowTable.T = (1250 * 0.55556) / (1 + (gamma - 1) * flowTable.Mˆ2 / 2)
17 gstate.p = flowTable.p; gstate.T = flowTable.T
18
19 -- Update the gas state and use the sound speed to get the velocity.
20 gmodel:updateThermoFromPT(gstate)
21 flowTable.vel = flowTable.M * gstate.a
22
23 -- Initialize the tables that will contain the flow data
24 ghostCell1 = {}; ghostCell2 = {};
25
26 -- Grab the base flow data from the flowTable
27 ghostCell1.velx = flowTable.vel
28 ghostCell1.vely = 0
29 ghostCell1.T = flowTable.T
30 ghostCell2.velx = flowTable.vel
31 ghostCell2.vely = 0
32 ghostCell2.T = flowTable.T
33
34 -- Define the frequency of the perturbation (in radians)
35 freq = 200e3 * 2 * math.pi
36
37 -- Only calculations that rely on the cell-local
38 -- properties (i.e. things in the args table) should
39 -- go inside the function called by the boundary condition
40
41 function ghostCells(args)
42
43 -- Define the sinusoidally varying pressure-
44 -- a constant pressure plus a small disturbance of
45 -- frequency 200kHz and amplitude 1 millionth of the freestream pressure
46 ghostCell1.p = flowTable.p * (1 + 1e-6 * math.cos(freq * args.t))
47 ghostCell2.p = flowTable.p * (1 + 1e-6 * math.cos(freq * args.t))
48
49 return ghostCell1, ghostCell2
50 end
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