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E A R LY  A C C E S S  V E R S I O N

This is an Early Access version of the User Guide. The sections that are available are in a final 
draft state. These sections are indicated with red headings in the Contents. Other sections 
await to be written.
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P R E F A C E

This User Guide for version 5.0 of Eilmer provides an introduction to its capabilities and 
use. Our goal is to provide new users with enough instruction to be productive in performing 
their own simulations of compressible flows. We have deliberately avoided discussing every 

feature and configuration available in Eilmer. That decision is primarily because it lowers 
the risk of overwhelming the new user with the complexity of configuration options, and it 
increases the chances of the developers completing the document. In that light, you may 
consider this User Guide like a tasting plate: we aim to give you a flavour of what you can do 

with Eilmer and how to do it. We also give pointers to the broader ecosystem of 
documentation so that the new user can pick up on any details relevant to their curiosity or 
simulation needs.

Let’s talk about that broader ecosystem of documentation. We have a website, https://gdtk.
uqcloud.net, that overviews all of the activities in the Gas Dynamics Toolkit (GDTk) project. 
That website also provides a gateway to all our documentation. Our set of documentation 
falls into different categories. We describe those categories here and the intended audiences.

User Guides, like the one you are reading now, are designed to give a prose-form 
introduction to specific tools and packages. As other examples, we also provide a 
geometry/grid user guide and a gas modelling user guide. User guides are designed with 
the new user in mind in the opening sections. However, they also contain information 
that the initiated or advanced user might like to refer to at times. For this reason, the 
structure of the document is designed so that the reader can drop in at a section relevant 
to their needs.

Tutorials are designed to be followed along by the user to achieve a certain goal. For the 
most part, our Tutorials are embedded in the User Guides. This document contains 
several tutorials, the first of which appears as Chapter 3. Tutorials are aimed at new 
users.

Examples are provided in the source code repository, found in the directory gdtk/

examples. We also host a catalogue on the website to help users navigate the examples: 
https://gdtk.uqcloud.net/docs/eilmer/examples-catalogue/. It is very common for new 
and old users alike to find an example close to their simulation goals and adapt it for use. 
We encourage you to do the same.

Reference Manuals contain comprehensive yet terse information about input options, 
command usage and data formats. They are not written in prose form, but rather more 
like catalogue entries with short descriptions for each entry. Reference manuals are 
written with the familiar user in mind. We rarely try to describe why a certain option 
works in the way it does; we just state how to use it, what are the options. We rely on the 
user to be sufficiently experienced to make judgement about what they are looking for. 
Reference Manuals are hosted on the web (as HTML) because this seems to be the most 
convenient way to use them, that is, with a web browser open and hyperlink navigation. 

The Reference Manual for Eilmer v5.0 is at: https://gdtk.uqcloud.net/docs/eilmer/
eilmer-reference-manual/. We intend this link to be evergreen: content should match 

the latest release version of Eilmer.

Command line help Eilmer is operated by a command line interface. As part of the 
documentation ecosystem, we provide built-in help for the Eilmer commands. You can 
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acces that by typing: lmr help <command-name>. We have also scraped the help 
messages for all commands and placed them in the Reference Manual: https://gdtk.
uqcloud.net/docs/eilmer/eilmer-reference-manual/#_running_a_simulation.

Cheatsheets are 1–2 pages with a concise reminder of commonly used Eilmer commands. 
Stick these beside your monitor or paste into the front cover of your workbook.

Technical notes We have written several short technical notes that provide a deeper look 

at methods, implementation or applications related to Eilmer. You can view them at: 
https://gdtk.uqcloud.net/docs/eilmer/technical-notes.

Issue Tracker As part of the Github-hosted repository, we have enabled the issue tracker. 
Ideally, this forum would be strictly for implementation issues and bugs. However, in a 
complex code like Eilmer, it can be hard to distinguish issues in the code and issues with 
use and user expectations. The developers are happy to support users with queries on the 
issue tracker, and we can usually quickly distinguish between code issues and how one is 
using it. The queries and resolutions on the issue tracker are another form of 
documentation.

Source code Eilmer is open source. You can open and inspect the source code itself. This 
the final word on the implementation. You will also find notes from the developers in the 
source code including: references to original sources; rationale for design decisions (and 
alternatives that were considered); and descriptions of nuances and subtleties that arise 
in the algorithms. Remember: “Use the source, Luke.”

This User Guide is organised in two parts. Part One is designed to get a new user going with 

using Eilmer to simulate compressible flows. It covers basic functionality. For example, Part 
One will cover some commonly used boundary conditions, but it won’t discuss every single 
boundary condition in detail (because some are quite niche in terms of application).

Part Two is called Advanced Usage. In this part, we discuss some of the more advanced usage 

of Eilmer and some of the specialised functionality.

Readers might not read the User Guide from cover-to-cover like a good novel; and random 
access to sections is expected for familiar users of the code. However, we have tried to 
organise Part One of the User Guide so that the concepts of operation are developed and re-
inforced as one reads the pages in a continuous order. We have chosen to intersperse 
tutorials in Part One. Each subsequent tutorial introduces new complexity and dimensions to 
the modelling and simulation toolkit.

We have employed a few typographic conventions to guide the reader. Commands to be typed 

in a terminal are designated with a dollar sign ($) prompt, like so:

$ cmd to type

Complete your command by hitting Enter when you’re ready. Filenames and Eilmer 

constructs (for use in an input file) are indicated in a typewriter font.
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C h a p t e r  O n e

E I L M E R  A N D  YO U

We begin with a conversation about you, your simulation goals, and how Eilmer 

can support them. Eilmer is a versatile tool for the simulation of compressible 
flows. It even includes capabilities to simulate the interaction of gases with 
structures, with both thermal and elastic analyses. However, it is not the right 
tool for every job, and numerical simulation is not the right choice for every gas 
dynamic analysis. That’s why we begin with this conversation to figure out if 

Eilmer is right for you.

It is not our intent to scare away users in this section, although the questions 
might be challenging. Rather, our goal is for you to make informed decisions as 
you plan and execute a simulation.

1.1. Why do you want to do a simulation?

We should start with why: why do you want to do a simulation? We can ask this 
question in a few ways. What are you hoping to learn from a simulation? What 
are your goals? “I was told I should do a simulation” is not a good response. You’ll 
sometimes hear these questions phrased rather bluntly when a user asks for help: 
“what is it you are trying to do, exactly?”

Why is important because it helps you decide if a simulation is the right thing 
to do and, if so, what kind of simulation and what outputs are needed.

Harlow and Fromm [1], in their 1965 article, give us one of the earliest reasons 
for why: to perform experiments in fluid dynamics. In this case, the computer 
simulation augments or replaces the wind tunnel for experiment. The use of 
computational fluid dynamics has expanded in many directions since then. Here 
is a non-exhaustive list of reasons why you might want to perform a simulation. 
They are loosely ordered from fundamental physics investigation to engineering 
design and decision making (and, admittedly, it is imperfect to try to order and 
separate the uses along strict boundaries).

• to perform experiments in fluid dynamics
• to supplement information gathered in physical experiments
• to plan and design physical experiments
• to test and validate a model of how a physical system behaves
• to simulate the operation of a system with gas as working fluid and assess its 

performance
• to estimate the aerodynamics of an object pushing through gas (or immersed in 

moving gas as befits the frame of reference)
• to estimate forces and heat loads from gases interacting with solid objects
• to use analysis to inform design (such as optimisation)
• to use analysis to inform decision making (such as safety assessment)
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• to answer what-if questions when exploring a parameter space, such as in a 
design exercise.

Bossel [6] has attempted to categorise the motivations for simulation into two 

categories: scientific knowledge and technological knowledge. Eilmer has been 
used to advance knowledge in both of these categories, but predominantly its uses 
lean towards the technological side: the creation of applied knowledge; the 
creation of new physical systems or processes. Figure 1 displays a variety of ways 

in which Eilmer has been applied in simulation.

The main point is that you need to have a clear vision of why you are doing a 
simulation because the purpose has a large bearing on how you approach the 
simulation and a large bearing on the required effort. We are talking about both 
the effort of the researcher and the computational effort.

A related point is the credibility of the simulation and how much effort is 
invested. Typically, a high degree of credibility requires a high degree of effort to 
generate the evidence to build trust. That being said, the degree of credibility 
required often scales with how the high consequences are. A what-if-type 
simulation to satisfy curiosity may not require the same effort and care as an 
analysis of the aerothermodynamics surrounding a capsule bound for Jupiter 
when there is one shot at atmospheric entry at the end of a 7-year voyage. A full 
discussion on credibility in scientific computing is given in Section 1.2 of 
Oberkampf and Roy [7].

1.2. Eilmer’s role is to solve equations

If you’re still reading and decided that simulation is right for your needs, then we 

have good news. Eilmer is designed to simulate the dynamic motions of gases 
and their interactions with structures. Before we get into the modelling features, 

let’s talk about what Eilmer does in a fundamental sense.

Fundamentally, Eilmer solves partial differential equations (PDEs), and 
specifically, the Euler equations, Navier-Stokes equations and Reynolds-Averaged 
Navier-Stokes equations. There are other governing PDEs available that move 
beyond gases and move us into the realm of multi-physics simulation. Those 
others include the heat equation in solid domains and magneto-hydrodynamics 
equations. The solution of a PDE requires inputs from the user; at a minimum 
those are: (a) specification of a computational domain; (b) specification of 
boundary conditions at the edge of the domain; and (c) specification of an initial 

condition. Eilmer uses a finite-volume formulation for discretisation of the 
domain. The user also builds the grid of cells to fill the domain. Other inputs are 
required depending on the complexity of the physics being modelled. The theory 
related to the numerical solution process and a discussion of the multi-physics 

capabilities are presented in the Eilmer journal paper [8].

The features for Eilmer are shown in Table 1. Features are grouped by 
physical modelling. For the most part, this means the selections within a group 
are mutually exclusive. For example, you cannot select two different turbulence 
models simultaneously for a single simulation. The features have been 
categorised as Production, Experimental, or Developmental. These 
boundaries of division are not hard; they serve to indicate the maturity of the 
implementation.
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(a) Boundary layer response to far-field disturbances. Density - top; Pressure - bottom; Source: 

Whyborn (2023) [2]

(b) Unsteady flow over a double-cone. Time sequence 

displayed down colum, then moves to next column. 

Source: Hornung et al. (2021) [3]

(c) Coupled fluid-thermal analysis of the 

BoLT-II flight experiment. Source: Damm et 

al. (2024) [4]

(d) Design of Mach 7 nozzle for T4 shock tunnel. Source: 

Chan et al. (2018) [5]

(e) Scale-resolving simulation of mixing 

layer with air and diluted ethylene.

(f) Lifting body optimised for lift-to-drag ratio using adjoint method. left: baseline right: optimised.

Figure 1: A gallery of Eilmer simulations capturing some of the diversity of use cases.
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Table 1: Feature list for Eilmer v 5.0

Feature Production Experimental Developmental

Equation sets Euler heat equation in solid domains magneto-hydrodynamics

Navier-Stokes electric fields

Reynolds-Averaged Navier-Stokes rotating frame

multiple species

Solver mode transient (time-marching) block-marching

steady-state

Grid types structured

unstructured

Spatial approximation piecewise parabolic (structured) 3rd order reconstruction 
(structured)

van Albada limiter (structured) blended 4th/2nd order scheme

least-squares (unstructured grids)

selection of limiters for 
unstructured

Gas models ideal (calorically perfect) state-specific

thermally perfect, mixtures

multi-temperature, mixtures

Gas-phase Kinetics equilibrium chemistry

finite-rate chemistry

finite-rate energy exchange (for 
multi-T models)

Conjugate heat transfer 2D/3D structured domains
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Feature Production Experimental Developmental

Moving boundaries shock-fitting

coupled motion via run-time loads 
and user-defined motion

Turbulence models Spalart-Allmaras (S-A) S-A for IDDES

S-A, BCM variant

S-A, Modified Edwards

𝑘 − 𝜔 (Wilcox, 2006) 𝑘 − 𝜔, vorticity-based source term

User-defined customisation boundary conditions

source terms

grid motion

supervisory functions
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Eilmer is typically used in rolling release mode. Users update the source code 

from the master branch of the github repository if and when updates are 
required for their work. However, we also provide tagged releases with a version 
number. The point of version numbers is to signal which features we feel are 
mature and we are able to support as a development team. So that leads to our 
use of these categories:
Production features that are mature and well-tested; development team 

commit to support and bug fixes
Experimental features that are relatively new and have had limited use 

(perhaps only in a one-off project)
Developmental features that are under active development; inputs and 

implementation may change; no guarantees on stability

A list of supported features for each release is maintained at https://gdtk.
uqcloud.net/docs/eilmer/releases/.

So, Eilmer solves equations. It is up to you to decide what outputs are 
required. This gets back to what is the purpose of your simulation. Do you require 
time history at select locations (like a virtual transducer)? Do you require loads at 

surfaces? Do you need data recorded at a certain outflow plane? Eilmer can give 
you these outputs but only if instructed. This User Guide will help you learn how 

to instruct Eilmer.

1.3. Preliminary planning

Let’s close this conversation with some words of advice on preliminary planning, 
the kind of planning to do with pen and paper before opening a text editor. What 
we’d really like to emphasise is the distinction between transient (time-marching) 
simulations, and those that are accelerated to steady state. We don’t just mean 
the technical distinction of how they operate; we mean understanding the 
differences in use cases for these two solver modes. This is why we laboured the 
earlier point “why do you want to do a simulation”. Here then is our advice.

The time-marching solver, when configured for time-accurate simulations, 
gives a time-dependent physics-based simulation result. If you are looking to 
perform investigation of fluid physics, then you should preference using the time-
marching (transient) solver. All real-world flows are unsteady at some scale.

The steady-state solver should be used when you are reasonably confident 
there is a steady flow solution at the physical scales of interest. A typical use is 
engineering calculations of aerodynamics at modest angles-of-attack.

When starting a new simulation with limited experience of the time and space 
scales involved, we recommend using a coarse-resolution time-marching 
simulation. At coarse resolution, the time-marching solver is the most efficient 
way to get feedback about your simulation. You can use it to check the 
appropriateness of your initial condition, your boundary conditions, and the 
extent of your computational domain.

You should also consider the spatial dimensionality of the problem. All real-
world flows are three dimensional, but some are excellently approximated with 
2D or axisymmetric domains. If your problem permits, begin with a 2D 
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simulation (planar/axisymmetric). You will get feedback much quicker as 
compared to a 3D equivalent.
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Part One

BASIC USAGE
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C h a p t e r  T w o

G E T T I N G  S TA R T E D  W I T H  E I L M E R

The goal of this section is to get you to the point of a working Eilmer 
installation, ready for simulation. You can exercise the installation in the follow-
on tutorial, Chapter 3.

2.1. Prerequisites: operating system and operator

First, let’s talk about operating systems. Eilmer is principally developed on linux 
for linux. All the high-performance computers we have access to run a linux 
operating system, so we need to develop code for that environment. At the 

laptop/desktop scale, Eilmer has been successfully installed on modern versions 
of linux (obviously), macOS and Windows (via version 2 of windows-subsystem-
for-linux, WSL2). We will give instructions for setup and install for linux and 
macOS. For Windows, first install a linux system into WSL2 and then follow the 

linux install instructions. Eilmer use on Windows is within the WSL2 
environment.

Second, let’s talk about you, the operator. More specifically, let’s talk about 
your assumed background. Beyond our expectations of your computing 
environment, we also assume that your mathematics, science or engineering 
background adequately prepares you for CFD analysis. In particular, we assume 
that you have a working knowledge of geometry, calculus, mechanics, and 
thermo-fluid-dynamics, at least to a second- or third-year university level. With 

Eilmer, we try to make the analysis of compressible, reacting flow accessible and 
reliable; we cannot make it trivial.

2.2. Preparing your compute environment

Several pieces of supporting software are required to build and install Eilmer. 
We have tried to keep the number of dependencies small. It helps us maintain a 
nomadic existence with installing and running the code in many places. The 
required supporting software is listed in Table 2 for linux and Table 3 for macOS. 
In Table 2, we have given the package names for some of the more commonly 
encountered systems. On linux, we recommend using the package manner 
appropriate to your distribution to install the packages. On macOS, the package 

manager to use is Homebrew.
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Table 2: Prerequisite software for Eilmer on linux

Software Debian family RedHat family

basic build 
environment

build-essential “C Development Tools and 
Libraries”1

LLVM D compiler ldc ldc

Fortran compiler gfortran, gfortran-
multilib

gcc-gfortran

git git git

readline libreadline-dev readline-devel

ncurses libncurses-dev ncurses-devel

OpenMPI libopenmpi-dev openmpi-devel

Paraview — download latest is recommended —

gnuplot gnuplot gnuplot

Pandas python-pandas python-pandas

matplotlib python-matplotlib python-matplotlib

1 Install this collection using dnf group install

Table 3: Prerequisite software for Eilmer on macOS

Software Package name

basic build environment xcode1

LLVM D compiler ldc

Fortran compiler gcc

git git

readline readline

ncurses ncurses

OpenMPI open-mpi

Paraview paraview

gnuplot gnuplot

Python python

Pandas pandas2

matplotlib matplotlib2

sed gnu-sed3

1 Install xcode as a macOS package, not using Homebrew.

2 Install using pip3.

3 After install, type brew info gnu-sed to get hints about setting your PATH.
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2.3. Dowloading, building and installing

Assuming you have the prerequisite software ready to go, we can proceed with 
download and install of eilmer. Let’s download the complete source code from 
github:

console

$ cd

$ git clone https://github.com/gdtk-uq/gdtk.git gdtk

Now, we change to Eilmer source, then build and install
console

$ cd gdtk/src/lmr

$ make install

2.3.1. A note on FLAVOUR=debug and FLAVOUR=fast

In the make command just shown, we gave only the target install. This sets the 
recipe in action to build using default options and then install to a default area. 
There are a number of options available to control the build and install of 

Eilmer. We discuss these later as part of advanced usage in Chapter 12.

There is one option important to discuss now because it has tripped up users 

in the past who have not read all of the documentation. Eilmer has FLAVOUR 

options for building the executable. The default FLAVOUR is debug. Executables 

built with debug include certain run-time checking and are able to print more 
diagnostic information in the case of an error. This is why we recommend it for 
those new to the code.

The second FLAVOUR option is fast. We recommend this for production 
calculations when speed matters such as when being charged for computer hours 

on a time-shared cluster. The fast build turns on compiler optimisations and 

disables most checking at run-time. Note fast refers to the performance of the 

executable, not the build time. It actually takes much longer to build the fast 
executable because the compiler needs to do more work to find and implement 
optimisations. There is a compromise for speedy executable: we cannot capture 

full diagnostic information in the event of a program error. To build with fast, 
try:

console

$ cd gdtk/src/lmr

$ make clean

$ make FLAVOUR=fast install

2.4. Setting environment variables

There are certain environment variables that require setting for running Eilmer. 
So we do not need to type these at the start of every session, it is convenient to 
place these in a file that is read at the start of a login session. Typical files to place 

these in are .bash_aliases on Ubuntu, .bashrc on Fedora, and .zshrc on 
macOS. It really just depends on what shell you are using. The required 
environment variables with typical settings are:

bash

13



1

2

3

4

5

export DGD_REPO=${HOME}/gdtk

export DGD=${HOME}/gdtkinst

export PATH=${PATH}:${DGD}/bin

export DGD_LUA_PATH=${DGD}/lib/?.lua

export DGD_LUA_CPATH=${DGD}/lib/?.so
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C h a p t e r  T h r e e

T U TO R I A L :  F LO W  O V E R  A  C O N E

This tutorial is designed to get you acquainted with using Eilmer. We do not 
attempt to explain everything here; that comes later in the guide. We do however 
show you the steps to get a simulation result: pre-processing, running a 
simulation, and post-processing. For this tutorial, you will copy from pre-existing 
files from the repository.

Let’s start with a simple-to-imagine flow of ideal air over a sharp-nose of a 
supersonic projectile. Figure 2 is a reproduction of Fig. 3 from Maccoll’s 1937 
paper [9]. and shows a shadowgraph image of a two-pounder projectile, in flight 
at Mach 1.576. We’ll restrict our simulation to just the gas flow coming onto and 
moving up the conical surface of the projectile and work in a frame of reference 
attached to the projectile. Further, we will assume that all of the interesting 
features of the three-dimensional flow can be characterized in a two-dimensional 
plane. The red lines mark out the region of our gas flow simulation, assuming 
axial symmetry about the centreline of the projectile.

on May 30, 2014rspa.royalsocietypublishing.orgDownloaded from 

Figure 2: A two-pound projectile in flight. A conical shock is attached to the sharp 

nose of the projectile. This photograph was published by Maccoll in 1937 [9]. The 

red lines have been added to demark the region of gas flow for which we will set up 

our simulation.

The resulting flow, in the steady-state limit, should have a single shock that is 
straight in this 2D meridional plane (but conical in the original 3D space). The 
angle of this shock can be checked against Taylor and Maccoll’s gas-dynamic 
theory and, since the simulation demands few computational resources (in both 
memory and run time), it is useful for checking that the simulation and plotting 
programs have been built and installed correctly.
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3.1. The simulation set-up

To build our simulation, we abstract the boxed region from Figure 2 and consider 
the axisymmetric flow of an ideal, inviscid gas over a sharp-nosed cone with 20 
degree half-angle. The constraint of axisymmetry implies zero angle of incidence 
for the original 3D flow. In Figure 2, we have suggested a computational domain 
shown in red. Figure 3 shows the two-block computational domain that 
corresponds to the red bounded region in Figure 2.

domain for flow over a sharp cone

a0 b0

c0

c1b1a1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 3: Schematic diagram of the geometry for a cone with 20 degree half-angle. 

The thick dark line represents the cone surface and the green coloured region 

represents the gas domain. Boundary conditions will be added such that gas flows 

into the domain on the left (west) boundary and out on the right (east) boundary. 

The north and south boundaries will be set as walls with slip. This SVG figure was 

generated as a sketch at preparation time.

Despite Figure 2 being a good motivator for this simulation, the free-stream 
conditions of 𝑝∞ = 95.84 kPa, 𝑇∞ = 1103 K and 𝑉∞ = 1000 m/s are actually 
related to the shock-over-ramp test problem in the original ICASE Report [10] 
and are set to give a Mach number of 1.5. It is left as an exercise for the reader to 
run a simulation at Maccoll’s value of Mach number and check that the 
simulation closely matches the shadowgraph image.
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3.2. Preparing the simulation

Assuming that you have the program executable files built and accessible on your 

system’s search PATH, as described in Chapter 2, use the following commands:

$ mkdir ~/temporary-work

$ cd ~/temporary-work

$ rsync -av ~/gdtk/examples/lmr/2D/sharp-cone-20-degrees/

sg-minimal/ .

to set up a work space that is separate to your copy of the source code tree. That 
way you can do what you like within the work space and then just remove it when 

you are finished. The rsync command should have made a copy of the essential 
files for this example in your newly constructed workspace, so you don’t really 
need to type in the content of files discussed below.

3.2.1. Preparing a gas model

The first task in starting our simulation is to prepare an input file for the gas 
model. Our gas model is very simple. It is ideal air. The gas model file is 

correspondingly simple. Create a file, using a text editor, called ideal-air.lua 
and place in it:

lua

1

2

model = 'IdealGas'

species = {'air'}

Once created, we are ready to process that file for use by Eilmer. That command 
is:

$ lmr prep-gas -i ideal-air.lua -o ideal-air.gas

Hopefully unsurprisingly, -i indicates the input file; -o indicates the output file. 

That output file, ideal-air.gas, is what is used by Eilmer. You may inspect 
it; it is just plain text. It contains full information about air properties which has 
been pulled from our species database. You may ask why this gas model 
preparation is a separate process. It seems like something trivial that could be 

captured elsewhere in the input. Eilmer provides more complicated gas models 
for hypersonic flow modelling that are served best by a stand-alone preparation 
process. We do that process too on the simplest of models to provide a consistent 
pattern of user interaction.

3.2.2. Preparing grids

Next, we prepare the grids. The following is the text from a file we prepared called 

grid.lua. As you inspect the file, try to line the constructs up with the schematic 
in Figure 3.

lua

1

2

3

4

-- grid.lua

print("Set up geometry and grid for a Mach 1.5 flow 

over a 20 degree cone.")

--

-- 1. Geometry
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5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

a0 = {x=0.0, y=0.0};     a1 = {x=0.0, y=1.0}

b0 = {x=0.2, y=0.0};     b1 = {x=0.2, y=1.0}

c0 = {x=1.0, y=0.29118}; c1 = {x=1.0, y=1.0}

--

quad0 = CoonsPatch:new{p00=a0, p10=b0, p11=b1, p01=a1}

quad1 = AOPatch:new{p00=b0, p10=c0, p11=c1, p01=b1}

--

-- 2. Grids

grid0 = registerFluidGrid{

   grid=StructuredGrid:new{psurface=quad0, niv=11, 

njv=41},

   fsTag="inflow",

   bcTags={west="inflow"}

}

grid1 = registerFluidGrid{

   grid=StructuredGrid:new{psurface=quad1, niv=31, 

njv=41},

   fsTag="initial",

   bcTags={east="outflow"}

}

identifyGridConnections()

The key steps are:
1. Define some construction points.
2. Use the construction points to define patches.
3. Assemble grids from patches, giving the discretisation in texttt{i} and texttt{j} 

directions as numbers of vertices.

In Eilmer, we treat a grid file like most other CFD programs: it is just a series of 
points that can be interpreted, in our case, as the corners of finite-volume cells. 
This means the grid itself has no information of its relation to the flow domain. 
To bridge this disconnect, we require that the user set some information about 
the grid that can be used later on when preparing the flow field. In this example, 

you will see that we set an fsTag [=flow state tag] to a string label that will later 
define the initial flow state in that grid. We actually use a different initial 

condition in the two grids: 'inflow' in grid0; and 'initial' in grid1. We 
define what those labels mean in terms of flow state later on when preparing the 
flow field description. When registering the grids, we also set boundary 

information on the west boundary of grid0 as an 'inflow' via the bcTags 

[=boundary condition tags], and grid1 gets an 'outflow' set on its east 
boundary. The remaining unset boundaries will receive a default boundary 

condition (WallBC_WithSlip) when we prepare the simulation in a subsequent 
step.

We are ready to prepare the grid. Issue the following at the command line:

$ lmr prep-grid --job=grid.lua

On your screen, you should see output like:
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Set up geometry and grid for a Mach 1.5 flow over a 20 

degree cone.

  #connections: 1

  #grids 2

  #gridArrays 0

On successful completion, Eilmer has created a subdirectory called lmrsim. 

This directory will contain (almost) all files generated by an lmr command or 
process as we move through the workflow. Let’s take a look at what folders and 

files are produced by prep-grid with the tree1 command.

$ tree lmrsim

lmrsim

`-- grid

    |-- grid-0000.gz

    |-- grid-0000.metadata

    |-- grid-0001.gz

    |-- grid-0001.metadata

    `-- grid.metadata

2 directories, 5 files

3.2.3. Preparing the flow domain and configuring settings

The final step in the pre-processing stage is to prepare a flow field description and 
define the numerical settings for the simulation. We will focus on a simulation 
using the transient solver in this example. The following is the text we prepared in 

a file called transient.lua. The file itself is commented (-- in Lua), so 
hopefully that provides some explanation.

lua

1

2

3

4

5

6

7

8

9

10

11

12

13

-- transient.lua

print("Set up transient solve of Mach 1.5 flow over a 

20 degree cone.")

--

-- 0. Assume that a previous processing has step set up 

the grids.

--

-- 1. Domain type, gas model and flow states

config.solver_mode = "transient"

config.axisymmetric = true

setGasModel('ideal-air.gas')

initial = FlowState:new{p=5955.0, T=304.0} -- Pa, 

degrees K

inflow = FlowState:new{p=95.84e3, T=1103.0, 

velx=1000.0}

flowDict = {initial=initial, inflow=inflow}

--

1This was not installed by default on my Mac. Try: brew install tree
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

-- 2. Fluid blocks, with initial flow states and 

boundary conditions.

-- Block boundaries that are not otherwise assigned a 

boundary condition

-- are initialized as WallBC_WithSlip.

bcDict = {

   inflow=InFlowBC_Supersonic:new{flowState=inflow},

   outflow=OutFlowBC_Simple:new{}

}

--

makeFluidBlocks(bcDict, flowDict)

--

-- 3. Simulation parameters.

config.max_time = 5.0e-3  -- seconds

config.max_step = 3000

config.dt_plot = 1.5e-3

config.extrema_clipping = false

Here are some things to note about the transient.lua file. The gas model file 

we prepared earlier ideal-air.gas now makes an appearance when setting the 

gas model on line 9. The fsTags introduced as strings in the grid.lua file are 

now defined as FlowStates on lines 10 and 11. These are packed into a table 

called flowDict for later use. We also create a bcDict table on lines 17–20. 

This maps out bcTags in grid.lua to specific boundary condition objects. 
There is an important and powerful function call on line 22: the 

makeFluidBlocks() function is used to create blocks on our grids and define 

boundary conditions and initial conditions. The last part of the transient.lua 
file is used to configure some simulation parameters.

We use the prep-sim command as the final step in the pre-processing stage:

$ lmr prep-sim --job=transient.lua

Here is what should appear on your screen:

Read Grid Metadata.

  #connections: 1

  #grids: 2

Set up transient solve of Mach 1.5 flow over a 20 degree 

cone.

Build runtime config files.

Build fluid files.

Finally, let’s look at the state of folders and files on disk at the end of a successful 
pre-processing stage:

$ tree lmrsim

lmrsim

|-- blocks.list
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|-- config

|-- control

|-- fluidBlockArrays

|-- grid

|   |-- grid-0000.gz

|   |-- grid-0000.metadata

|   |-- grid-0001.gz

|   |-- grid-0001.metadata

|   `-- grid.metadata

|-- mpimap

`-- snapshots

    |-- 0000

    |   |-- fluid-0000.gz

    |   |-- fluid-0001.gz

    |   |-- grid-0000.gz

    |   `-- grid-0001.gz

    `-- fluid.metadata

4 directories, 15 files

We are ready to run our first simulation!

3.3. Running the simulation

Let’s just do it and then talk about it.

$ lmr run

An abbreviated version of what appears on screen is:

Eilmer simulation code.

Revision-id: 7975e97c

Revision-date: Wed Mar 20 20:16:10 2024 +1000

Compiler-name: ldc2

Parallel-flavour: shared

Number-type: real

Build-flavour: debug

Build-date: Wed 20 Mar 2024 20:18:09 AEST

Heap memory used: 13 MB, unused: 9 MB, total: 22 MB (22-22 MB per task)

Step=     20 t= 1.201e-04 dt= 6.003e-06 cfl=0.50 WC=0.1 WCtFT=6.0 WCtMS=22.1

Step=     40 t= 2.401e-04 dt= 6.003e-06 cfl=0.50 WC=0.3 WCtFT=5.1 WCtMS=19.2

  ...

  ...

Step=    720 t= 4.322e-03 dt= 6.003e-06 cfl=0.50 WC=5.6 WCtFT=0.9 WCtMS=17.8

Step=    740 t= 4.442e-03 dt= 6.003e-06 cfl=0.50 WC=5.7 WCtFT=0.7 WCtMS=17.5

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+   Writing snapshot at step =    750; t = 4.502e-03 s +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Step=    760 t= 4.562e-03 dt= 6.003e-06 cfl=0.50 WC=5.9 WCtFT=0.6 WCtMS=17.3

Step=    780 t= 4.682e-03 dt= 6.003e-06 cfl=0.50 WC=6.0 WCtFT=0.4 WCtMS=17.0

Step=    800 t= 4.802e-03 dt= 6.003e-06 cfl=0.50 WC=6.1 WCtFT=0.3 WCtMS=16.8

Step=    820 t= 4.922e-03 dt= 6.003e-06 cfl=0.50 WC=6.2 WCtFT=0.1 WCtMS=16.5

STOP-REASON: Reached target simulation time of 0.005 seconds.

FINAL-STEP: 833

FINAL-TIME: 0.00500048

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+   Writing snapshot at step =    833; t = 5.000e-03 s +
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++

What do we notice in the output? The simulation finished by taking 833 steps and 
got to a simulated time of 5 ms. That end time corresponds to our request 

config.max_time = 5.0e-3. What happened to our request for 3000 steps 

config.max_step = 3000? Seems it was ignored. Well, the stopping criteria 
will look for maximum steps or maximum time and stop on whichever comes 
first.

Another thing to note is that a new snapshot of the flow field was produced at 
each 1.5 ms (approximately). This corresponds to our request for 

config.dt_plot = 1.5e-3.

3.4. Post-processing the simulation

3.4.1. Producing VTK files for visualisation

If our simulation completed successfully, there should be five snapshots in the 

lmrsim/snapshots area. There is the initial condition 0000 (created at 
preparation stage) plus four more snapshots produced during the simulation. We 
can convert the final snapshot into VTK files with a simple command:

$ lmr snapshot2vtk

since the default snapshot to process is the final one in a sequence.

When that command concludes, there is a new folder: lmrsim/vtk. In that 

folder, you can pick up the fluid.pvd file in Paraview to do some visualisation. 
Figure 4 shows surface plots coloured by pressure (on left) and velocity in 𝑥-
direction (on right with grid overlayed).

9.50e+04 1.10e+05 1.25e+05 1.40e+05 1.55e+05

PRESSURE, Pa
750 812 875 938 1000

X-VELOCITY, m/s

Figure 4: Paraview visualisation of supersonic flow over a sharp cone at 𝑡 = 5.0 ms. 

VTK file produced using the snapshot2vtk command.

The distortion of the grid in the right-hand block is a result of the area-
orthogonality (AO) grid generator making the compromises required to achieve a 
reasonably-orthogonal mesh at the edges of the block. The default transfinite grid 
generator would have produced a mesh that appears less distorted overall but 
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would have individual cells that are more sheared for this particular block. For 
the rectangular block on the left, both generators would produce the same mesh.

The shock displayed in the pressure field shows features that are characteristic 

of a flow solution produced by a “shock-capturing” code such as Eilmer. With 
the coarse grid, the shock has a stair-case appearance. This is accentuated by the 
plotting program which was set to display the cell-average value as a uniform 
colour within each cell.2 Also, when following a line that crosses the shock, a 
small number of cells are passed before the full pressure jump has been reached. 
In an ideal, inviscid simulation, the shock should be a zero-thickness transition. 
This can be approached by increasing the mesh resolution, as seen in Figure 5. 
The high-resolution solution is looking clean but the computational cost, in terms 
of calculation time, has gone up from less than a second to more than 13 
minutes.3

9.50e+04 1.10e+05 1.25e+05 1.40e+05 1.55e+05

PRESSURE, Pa

Figure 5: Pressure field for a mesh with 8 times more resolution in each direction 

compared to the original simulation shown in Figure 4.

1.501 ms 3.001 ms 4.501 ms 5.000 ms

9.50e+04 1.10e+05 1.25e+05 1.40e+05 1.55e+05

PRESSURE, Pa

Figure 6: Evolution with time of supersonic flow over cone.

2If you want a smoother appearance, you can use the Paraview filter Cell Data to 
Point Data.

3These wall-clock numbers resulted when using 2 cores (one per block) on an Apple M4 chip 
with the code compiled as FLAVOUR=fast.
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C h a p t e r  F o u r

W O R K I N G  W I T H  E I L M E R

This chapter is rather brief. It is designed to give you an overview of how you use 

Eilmer. The details are deferred to individual chapters that follow.

4.1. Overview of simulation workflow and user interface

At a top-level view, Eilmer’s workflow is much like most other CFD programs. It 
involves, in order, a preparation stage (or pre-processing), a simulation 
stage, and a post-processing stage to extract or generate desired outputs. 
Those stages might require one or more substeps.

Typical steps at preparation stage are:
• preparing a gas model
• preparing a computational domain and grid
• configuring the computational domain with boundary conditions and initial 

conditions
• configuring the flow solver such as numerics selections, physical models and 

run-time outputs

Some complex simulations might require more steps at preparation stage.

At the simulation stage, typical actions are:
• start a shared-memory simulation on a local machine
• start a distributed-memory simulation on a local machine (using MPI)
• configure and launch a job script to a queue on a shared-resource high-

performance computer

The post-processing stage can vary widely based on the simulation goals, and 
can involve multiple steps for a single simulation. Some typical steps are:
• generate VTK files for visualisation from flow field data
• plot history data recored during simulation
• extract lines or planes of data from the flow field
• extract data from boundary surfaces
• plot surface loads
• compute integral quantities such as mass flow across boundaries or 

aerodynamic loads on bodies

Eilmer’s user interface is text based. Users prepare input files as plain text 

using a text editor. These files are used as input to Eilmer commands that are 
executed in a terminal. We call this a command-line interface and explain it in the 
next section. The preparation of the input files themselves appears in subsequent 

chapters. During user interaction, Eilmer generates folders and files to hold the 
output from executing commands. A brief description of the inputs and outputs is 
given in Section 4.3. You saw this use of the command-line interface and the 

generation of Eilmer outputs earlier in the cone flow tutorial (Chapter 3).

25



4.2. The command-line interface explained

Eilmer is a command-line driven program: commands are used to execute the 

workflow just described. The command-line interface (CLI) in Eilmer is of the 
form:

lmr action options/arguments

lmr4 is used to invoke the Eilmer program. Not all commands require options 
or arguments. You may be familiar with this type of CLI from other tools such as 

git, mercurial and the package managers apt, dnf and brew.

Let’s look at an example for the Eilmer prep-grid command. In its 
simplest form, we can invoke that command using:

1 $ lmr prep-grid

With no options provided, this command will work with the default input file 

job.lua. Had we prepared a different grid input file called grid.lua, then the 
command would be:

1 $ lmr prep-grid --job=grid.lua

In this case, we were explicit with the job script name because we used a non-
default.

Help is available using the help command. It will display a list of commonly 
used commands.

1 $ lmr help

You can also get a list of all available commands by passing the -a option:

1 $ lmr help -a

Help for a specific command can be requested by passing the command name as 
argument:

1 $ lmr help prep-grid

In the interests of reproducible research, we provide revision-id and 

version commands so that users have a convenient way to record which 

repository revision of Eilmer they are using for their production simulations, 
and which compiled version options they had enabled.

4.3. Inputs, outputs and the lmrsim directory

Users create input files to instruct and configure Eilmer operation. Some 
common input files, shown on left in Figure 7 as user-supplied files, are the 

description of the thermochemistry model (gas-model.lua and 

4Why lmr and not eilmer? It’s shorter to type at the command line, and dropping vowels 
is not without precedent; we’ve borrowed from the Phoenecians from more than 3000 years 
back.
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reactions.lua), construction of a domain and grid (grid.lua), and 

configuration of the flow domain and simulation settings (transient.lua).

User-supplied files Generated files

gas-model.lua
detailed
gas model

detailed
chemistry
model

grid.lua

transient.lua

configuration;
initial flow
field data

grid files
and metadata

prep-gas

prep-chem

prep-grids

prep-sim

Figure 7: An overview of the Eilmer simulation process showing inputs and 

outputs. Note that outputs are created in the lmrsim area, except for the gas-

related files. Source: A version of this figure appears in Gollan & Jacobs [11] as Figure 4.

You issue Eilmer commands to process your user-supplied inputs. Such 

commands are shown in Figure 7: prep-gas, prep-chem, prep-grids and 

prep-sim.

The outputs from these commands are generated files. These generated files 

go in the lmrsim directory. (Eilmer will automatically create an lmrsim 
directory when first required.) We like this single top-level directory arrangement 
for storing outputs because it is convenient for copying, synchronising (from 
workstation to remote cluster), archiving and cleaning out (when you want to 
start afresh).

There are exceptions to the “everything generated goes into lmrsim” rule, but 
those exceptions are few. The detailed files for the thermochemistry are placed in 
the current working directory. This is because the thermochemistry files are used 
in many other places and tools in the GDTk collection. We cannot enforce the 

lmrsim location rule on those other tools. So we live with this contained set of 
exceptions.5

5Besides, keeping a record of your inputs is not a big deal. You are keeping all of your own 
inputs in your own repository, right?
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C h a p t e r  F i v e

P R E PA R I N G  A  S I M U L AT I O N

In this chapter, we get into some detail about preparing a simulation. We focus 
mostly on the preparation of input scripts since that is where the bulk of a user’s 
effort will go. Recall that our goal for Part 1 of this user guide is to equip users 

with the basics for a tip-to-tail simulation workflow using Eilmer. So even 
though we present some detail here, we do not present all details. Those can be 

found in Part 2 of this user guide and in the online reference manual: https://
gdtk.uqcloud.net/docs/eilmer/eilmer-reference-manual/.

5.1. Input scripts overview

Because your input scripts become a part of the program when run, it is worth the 

effort to learn just enough Lua to be dangerous. The web site https://www.
lua.org is a good starting point for learning about the Lua programming 
language and the older edition of the text Programming in Lua’‘, which is 
available online, is a good read and has everything that you need to successfully 
write good Lua scripts.

For the simulation of simple non-reacting gas flows, you will usually have 
three Lua input files: one to specify the gas model; one to build the grid; and one 
to configure the simulation domain and related settings. The various preparation 
commands convert the descriptions and instructions in your Lua input files into a 
form that is read by the main simulation program. The advantage of this 
approach is that you have the full capability of the Lua interpreter available to you 
from within your script. You can perform calculations so that you can 
parameterize your geometry, for example, or you can use Lua control structures 
to make repetitive definitions much more concise. Additionally, you may use Lua 
comments and print statements to add documentation to the script file.

The remaining sections in this chapter describe those three basic input files 

individually. We will refer to these files as gas-model.lua, grid.lua and 

flow.lua. The particular choice of names is not important so you may name 

these in a descriptive manner as best fits your needs. The .lua extension is not 

required by Eilmer, though it is helpful if your editor gives you Lua-specific 
syntax highlighting. It is important to note that a complete description of a 
simulation’s inputs comprises all three files. The advantage of separate files is for 
re-use and consistency across families of simulations: you can re-use gas and grid 
definitions by copying those files where needed.6

5.2. Specifying a thermochemical model

The thermochemical models are provided by the gas module [12]. This is a D-
language module with a Lua interface so that its objects and methods can be 

6The advanced user might even place those common files in a common folder and link to 
them as needed.
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accessed from the user’s input script. For the moment, we’ll just remind you how 
to set the gas model for ideal air, which we saw earlier in the cone flow example in 
Chapter 3. Start by placing the following text:

lua

1

2

model = 'IdealGas'

species = {'air'}

into a file called gas-model.lua and run the following command:
console

$ lmr prep-gas -i gas-model.lua -o ideal-air.gas

to produce the file ideal-air.gas which contains the fully-specified gas model.

Later, you will want to make use of this model in your flow.lua input file. To 

do so, add the line (to flow.lua):
lua

setGasModel('ideal-air.gas')

This will initialize the gas model within the simulation preparation program.

For even more sophisticated gas models, the line shown above is all that is 
needed within your job script to initialize the gas model. You will adjust the name 

to match that of the detailed gas file you produced using prep-gas. Of course, 
you will have done all of the detailed work to set up your sophisticated model and 
have the details in a corresponding Lua script. All of the gory details are in the gas 
package documentation [12] but there are a couple of the examples to study later 
in the present user guide.

5.2.1. Finite-rate chemical kinetics

Simulations involving nonequilibrium chemistry require an extra input file 
describing the participating gas species and their reactions. Preparation of this 
file is described in the companion report [12].

5.3. Grid preparation

We mentioned that three separate input files are needed for an Eilmer simulation. 
The second of those is for the grid specification. Commonly, users name this file 

grid.lua.

In Eilmer, grid preparation has its own stage in the overall process to 
prepare a simulation. The grid preparation stage precedes flow domain 

specification. The role of the grid preparation stage is to write a grid, in Eilmer 

format, into the lmrsim/grid area and to declare some metadata about the 
grids, which is mostly about labels on grid boundaries so that boundary 

conditions can be attached at a later stage. The Eilmer command for grid 

preparation is prep-grid.

There are two broad categories for preparing grids in Eilmer: natively-built 

grids using Eilmer tools; and importing grids built using 3rd-party grid 

generators. For both categories, we use lmr prep-grid to prepare grid 
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information in a form ready for an Eilmer simulation.7 We will discuss the two 
categories of grid type separately, but before getting to those, let’s discuss some 
core functions that are the workhorse functions of every grid input script.

5.3.1. Core grid preparation functions

The primary purpose of a grid input script is to declare some information about 
multiple block grids including their grid points, connections and boundary labels. 
We call this declaration process “registering a grid” and provide functions so 

named for that purpose. Here we describe the basic registerFluidGrid.
lua

registerFluidGrid{

  grid, tag, fsTag, bcTags, gridArrayId

}

The parameters in registerFluidGrid are:

grid a StructuredGrid or UnstructuredGrid object that has 
been generated or imported

tag a string to identify the grid later in the user’s script

fsTag a string that will be used to select the initial flow condition 

from a dictionary when the FluidBlock is later constructed

bcTags a table of strings that will be used to attach boundary 

conditions from a dictionary when the FluidBlock is later 
constructed

gridArrayId an integer that needs to be supplied only if the grid is part of a 
larger array

Note that we have not yet mentioned in this section what a FluidBlock is but 

you did see it earlier in the tutorial chapter (Chapter 3) in the transient.lua 

script. FluidBlocks are created in the stage after grid preparation but we need 
to set up some information now during grid preparation that maps from grid to 

the associated block. Those items are the initial condition (fsTag) and the 

boundary conditions (bcTags).

In the grid.lua example script in Chapter 3, you saw registerFluidGrid 
called twice: once to declare a grid in the block upstream of the cone tip, and a 
second time to declare the grid that lies along the cone surface.

There are some other grid registration functions to round out the family. 

Those are: registerFluidGridArray, registerSolidGrid, and 

registerSolidGridArray. These have some specialised purposes. The 

GridArray variants are used to help decouple parallel load balancing from grid 
topology concerns, and certain features, like shock-fitting, require grids arranged 

as a grid array. The Solid variants are used to declare grids that are part of the 
solid domain in coupled fluid-thermal analyses. We discuss these variants as they 
arise in Part II on Advanced Usage.

7For advanced uses cases, one could bypass lmr prep-grid and write appropriate 
information to lmrsim/grid directly. We provide a description of the grid data formats in 
the appendix to this guide for those attempting to build such advanced preparation workflows.
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The next function to mention is not essential for registering grid, but it is 

extremely convenient: identifyGridConnections. This function can be 
called to connect a number of independently registered grids. It searches for 
connections on grid faces with matching corner positions. When it finds a match, 
it connects those faces of the associated grids. That information is propagated 

into the grid metadata. For most uses, identifyGridConnections() is called 
without parameters since the defaults are perfectly adequate. For the rarer special 

cases, you can read about the parameters to identifyGridConnections in the 
reference manual.

The registration functions require a Grid object, and specifically, either a 

StructuredGrid or UnsutructuredGrid object. We discuss the creation of 
those next.

5.3.2. Natively-built Eilmer grids

Eilmer has access to the GDTk geometry engine for building grids. The typical 
way to build grids using the geometry engine is to embed the constructs directly 

in the grid.lua file. In that way, the grids are built just-in-time before 

registration in a call to prep-sim. You can see that approach in grid.lua in 
Chapter 3.

Natively-built Eilmer grids are a good choice for simple domains in 2D and 
3D, and predominantly for structured grids. With care and perseverance, users 
have built quite geometrically-sophisticated domains using the text-based 
interface. There are several advantages to script-style natively-built grids:
• batteries-included Eilmer install — no need for 3rd-party grid packages;
• good reproducibility afforded by text-based record of grid-building process;
• good reusability of grid pieces across multiple simulations; and
• easy parameterisation of geometry and grids.

So how do you go about using the built-in geometry engine? Let’s talk about 
structured grids first. Grids are usually built up from primitive pieces. First is 

construction points (Vector3 objects). From construction points, you can build 

Paths. You can connect Paths as edges on a 4-sided ParametricSurface. A 

ParametricSurface is a mathematical description of (𝑥, 𝑦[, 𝑧]) co-ordinates 
based on two independent parameters (0 ≤ 𝑟, 𝑠 ≤ 1). In 2D, you can build a 

StructuredGrid from a ParametricSurface. To do that, you need to 
provide information about numbers of grid points on the edges and, optionally, 
how those grid points are clustered. In 3D, the process is similar, only now you 

require a ParametricVolume as the mathematical description of the 6-sided 
gridding domain. This description of process is for a single grid. You can build up 
multiple-block grids by repeating this process.

Let’s look at an example that builds a flow domain about a hemi-spherical 
geometry. We will use an axisymmetric assumption, so we only construct 

geometry in 𝑥 − 𝑦 plane. This example is adapted from the Eilmer example: 2D/

sphere-lehr/m355.
lua

1

2

3

R = 7.5e-3 -- nose radius, metres

a = {x=0.0, y=0.0}

b = {x=-R, y=0.0}
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4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

c = {x=0.0, y=R}

d = {{x=-1.5*R,y=0.0}, {x=-1.5*R,y=R}, {x=-R,y=2*R}, 

{x=0.0,y=3*R}}

psurf = CoonsPatch:new{

   north=Line:new{p0=d[#d], p1=c}, east=Arc:new{p0=b, 

p1=c, centre=a},

   south=Line:new{p0=d[1], p1=b}, 

west=Bezier:new{points=d}

}

ni = 16; nj = 32

-- Shock-fitting is coordinated across four blocks.

registerFluidGridArray{

   grid=StructuredGrid:new{psurface=psurf, niv=ni+1, 

njv=nj+1},

   nib=1, njb=4,

   fsTag="initial",

   shock_fitting=true,

   bcTags={west="inflow_sf", north="outflow"}

}

Recall that the Eilmer command for grid preparation is called prep-grid. We 
could call that with this example input file as so:

$ lmr prep-grid -j grid.lua

In this example file, we see the idea mentioned earlier of building up a grid from 
primitives. Points are defined on lines 2–5. Paths — here: lines, an arc and a 
Bézier curve — are created as needed on lines 8–9. Those paths form edges on a 

ParametricSurface; in this case, we chose a CoonsPatch. A 

StructuredGrid is created from the ParametricSurface on line 14, with 
numbers of vertices in the 𝑖 and 𝑗 logical directions chose. (Here 𝑖 runs in the 
radial direction from shock towards body, and 𝑗 runs in the tangential direction 
from axis towards shoulder.) This single-piece grid is shown in Figure 8. Lastly, 
the grids are registered for later use when specifying the flow domain. Here we 

use a registerFluidGridArray function because we want to use the shock-

fitting mode. We have also chosen to split the single StructuredGrid into four 
pieces, with splits along 𝑗 = const lines.

There are some additional notes worth mentioning about this example. We 

did not use Vector3 objects explicitly to specify points; here we preferred Lua 
tables as a lightweight alternative when specifying points. The reason is that for 
these construction points we had no intention of performing any vector 
operations with them. The table form is adequate and the geometry functions will 

convert them internally to Vector3 objects as needed. We have also used some 

other pieces from the geomtry engine such as Paths and 

ParametricSurfaces. We do not intend to document all of those pieces in this 

User Guide. We refer the reader to the Geometry User Guide [13] or the online 
reference manual.
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Figure 8: Single-piece structured grid for flow over a hemi-spherical geometry. This 

grid is built in the 𝑥 − 𝑦 plane for later use in an axisymmetric flow simulation.

Our final comment on this example relates to our earlier point about easy 
parameterisation of geometry and grids. We have a simple but useful 
parameterisation of geometry here: we made the radius of the sphere a variable, 

R. This means we can re-use this grid input file for any sphere radius of interest 
(although one might need to adjust the inflow Bézier curve based on free-stream 
Mach number and the nature of the gas model). We can also change the 

discretisation of this grid by altering ni and nj variables which are numbers of 
cells in 𝑖 − and 𝑗 −directions respectively. This is useful when performing a 
systematic grid refinement study for your flow simulation. We show more 
complicated examples of parametric input files in the later examples in this User 
Guide.

Let’s now talk about building unstructured grids in an Eilmer input script. 
By comparison to structured grids, we have very few GDTk-built tools for 

generating unstructured grids. You could look at a program like Gmsh [14] for 

generating unstructured grids. In an Eilmer input file, you can convert any 

structured grid into an unstructured grid by using the UnstructuredGrid 
constructor. Reasons you might want to do this include: joining structured and 
unstructured grids; and for passing the grid off to a partitioner that works on 

unstructured grids. The example here shows an UnstructuredGrid constructor 

that takes a previously built structured grid with variable name my_sgrid.
lua

my_ugrid = UnstructuredGrid:new{sgrid=my_sgrid}
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For some special use cases, there is an Eilmer command-line tool that can 
convert multi-block structured grids into unstructured grids. You can learn more 

details by looking up the help for Eilmer command 

structured2unstructured.

$ lmr help structured2unstructured

5.3.3. Importing grids from 3rd-party tools

The second category of grids for use in Eilmer are imported grids, usually built 
with 3rd-party grid generators. We find that for complex 3D geometries most 
users prefer a GUI-style grid generator for building grids. Another reason for 
using a 3rd-party grid generator is when dealing directly with CAD surfaces as 

geometry description. Eilmer does not support reading in common CAD formats 
directly.

As the main route, you import grids into an Eilmer grid input file by calling 
an import/read function. There are many grid formats in the big world of CFD. 

Eilmer provides import functions for a few select grid formats. For structured 

grids, there are importers for GridPro and Plot3D; for unstructured grids, SU2 
format. For other grid formats, we recommend converting to one of these types if 
your gridding tool allows. Alternatively, you can write a converter from your 

gridding tool’s output to Eilmer grid format. Let’s look at examples of those 
import function calls.

Importing GridPro grids

This example file shows the import and registration of grid built with GridPro. 

You can find this example in the source code at: examples/lmr/3D/gridpro-

import/. The import of a multi-block GridPro grid occurs in three steps:
1. import GridPro grids as a table of StructuredGrids into Eilmer;
2. a loop to register each of those structured grids; and
3. function calls to configure block connections and boundary condition labels.

lua

1

2

3

4

5

6

7

8

9

10

11

12

13

14

gproGrid = "blk.tmp"

gproConn = "blk.tmp.conn"

gproPty = "blk.tmp.pty"

config.dimensions = 3

scale = 1.0

grids = importGridproGrid(gproGrid, scale)

for i,g in ipairs(grids) do

   registerFluidGrid{grid=g, fsTag="initial"}

end

importGridproConnectivity(gproConn)

importGridproBCs(gproPty)

This script contains examples of the import functions mentioned earlier. Here we 
need three import functions to completely initialise multi-block GridPro grids for 
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use in Eilmer. Also note Eilmer only takes full-face-matching multi-block 
structured grids. GridPro can stitch together elemental blocks into what it calls 
superblocks. These superblocks are connected with cuts and often have faces that 

match up with multiple other blocks. These will not work in Eilmer.

Import Plot3D grids

The next example shows the import of a Plot3D grid. The grid is a single-piece 
structured grid for a flat plate, which comes from the NASA Langley turbulence 
model validation test cases. The interesting part related to this discussion is the 

importPlot3DGrid function call. However, the whole example script is 

included because it shows some Eilmer capability to split a grid into subgrids 
and then place grids in an array for parallel processing. You can find this example 

at: examples/lmr/2D/flat-plate-larc-test-case/larc-grids/lmr-

coarsest-grid.lua.
lua

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

config.dimensions = 2

gridFile = "flatplate_clust2_4levelsdown_35x25.p2dfmt"

nptsInX = 35

nptsInY = 25

nptsOnSolidPlate = 29

-- 1. Read in grid from Plot3D format

singleGrid = importPlot3DGrid(gridFile, config.dimensions)

-- 2. Grid is a single piece. Now split at x = 0

--    We can use the information about number of points on the

--    solid plate to determine the break point in the grid.

--    Then we form two subgrids from the single grid.

nptsOnSymm = nptsInX - nptsOnSolidPlate + 1

subgrid0 = singleGrid[1]:subgrid(0, nptsOnSymm, 0, nptsInY)

subgrid1 = singleGrid[1]:subgrid(nptsOnSymm-1, nptsOnSolidPlate, 0, nptsInY)

-- 3. Use a GridArray to chop these up for parallel processing

--    on 10 processors

registerFluidGridArray{grid=subgrid0, nib=1, njb=2, fsTag='initial',

   bcTags={north='supersonic', west='supersonic', south='symm'}}

registerFluidGridArray{grid=subgrid1, nib=4, njb=2, fsTag='initial',

   bcTags={north='supersonic', east='outflow', south='fixedT'}}

identifyGridConnections()

Importing SU2 grids

The SU2 format is for unstructured grids. We do not require an import function 
for SU2 format. Instead, we can read in these grids directly as part of the call to 

an UnstructuredGrid constructor. We simply have to let the constructor know 

that we want SU2 format, fmt='su2text'. Here is an example of creating an 

unstructured grid based on a file called cone20.su2.
lua

ugrid = UnstructuredGrid:new{filename='cone20.lua', 

fmt='su2text'}

5.4. Flow domain preparation

5.5. Post-processing at the preparation stage
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