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Note about this document

This document has been designed for print and binding at left. The font selections
have been made with print in mind first, but should be reasonable on screen. The
margins are set for binding this document at the left.

If viewing on screen, try 2-page mode in book style (or “show cover page”). This
should have the facing pages displayed correctly, with odd-numbered pages on the
right (for Arabic-numbered pages).

Cover image
Apollo capsule in Mach 20 flow prepared by Nicholas Gibbons and Kyle Damm.

Find the simulation in our examples at gdtk/examples/1lmr/3D/apollo.



EARLY ACCESS VERSION

This is an Early Access version of the User Guide. The sections that are available are in a final
draft state. These sections are indicated with red headings in the Contents. Other sections
await to be written.
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PREFACE

This User Guide for version 5.0 of Eilmer provides an introduction to its capabilities and
use. Our goal is to provide new users with enough instruction to be productive in performing
their own simulations of compressible flows. We have deliberately avoided discussing every
feature and configuration available in Eilmer. That decision is primarily because it lowers
the risk of overwhelming the new user with the complexity of configuration options, and it
increases the chances of the developers completing the document. In that light, you may
consider this User Guide like a tasting plate: we aim to give you a flavour of what you can do
with Eilmer and how to do it. We also give pointers to the broader ecosystem of
documentation so that the new user can pick up on any details relevant to their curiosity or
simulation needs.

Let’s talk about that broader ecosystem of documentation. We have a website, https://gdtk.
uqcloud.net, that overviews all of the activities in the Gas Dynamics Toolkit (GDTk) project.
That website also provides a gateway to all our documentation. Our set of documentation
falls into different categories. We describe those categories here and the intended audiences.

User Guides, like the one you are reading now, are designed to give a prose-form
introduction to specific tools and packages. As other examples, we also provide a
geometry/grid user guide and a gas modelling user guide. User guides are designed with
the new user in mind in the opening sections. However, they also contain information
that the initiated or advanced user might like to refer to at times. For this reason, the
structure of the document is designed so that the reader can drop in at a section relevant
to their needs.

Tutorials are designed to be followed along by the user to achieve a certain goal. For the
most part, our Tutorials are embedded in the User Guides. This document contains
several tutorials, the first of which appears as Chapter 3. Tutorials are aimed at new
users.

Examples are provided in the source code repository, found in the directory gdtk/
examples. We also host a catalogue on the website to help users navigate the examples:
https://gdtk.ugcloud.net/docs/eilmer/examples-catalogue/. It is very common for new
and old users alike to find an example close to their simulation goals and adapt it for use.
We encourage you to do the same.

Reference Manuals contain comprehensive yet terse information about input options,
command usage and data formats. They are not written in prose form, but rather more
like catalogue entries with short descriptions for each entry. Reference manuals are
written with the familiar user in mind. We rarely try to describe why a certain option
works in the way it does; we just state how to use it, what are the options. We rely on the
user to be sufficiently experienced to make judgement about what they are looking for.
Reference Manuals are hosted on the web (as HTML) because this seems to be the most
convenient way to use them, that is, with a web browser open and hyperlink navigation.
The Reference Manual for Eilmer v5.0 is at: https://gdtk.uqcloud.net/docs/eilmer/
eilmer-reference-manual/. We intend this link to be evergreen: content should match
the latest release version of Eilmer.

Command line help Eilmer is operated by a command line interface. As part of the
documentation ecosystem, we provide built-in help for the Eilmer commands. You can
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acces that by typing: Imr help <command-name>. We have also scraped the help
messages for all commands and placed them in the Reference Manual: https://gdtk.
uqcloud.net/docs/eilmer/eilmer-reference-manual /#_running_a_simulation.

Cheatsheets are 1-2 pages with a concise reminder of commonly used Eilmer commands.
Stick these beside your monitor or paste into the front cover of your workbook.

Technical notes We have written several short technical notes that provide a deeper look
at methods, implementation or applications related to Eilmer. You can view them at:
https://gdtk.uqcloud.net/docs/eilmer/technical-notes.

Issue Tracker As part of the Github-hosted repository, we have enabled the issue tracker.
Ideally, this forum would be strictly for implementation issues and bugs. However, in a
complex code like Eilmer, it can be hard to distinguish issues in the code and issues with
use and user expectations. The developers are happy to support users with queries on the
issue tracker, and we can usually quickly distinguish between code issues and how one is
using it. The queries and resolutions on the issue tracker are another form of
documentation.

Source code Eilmer is open source. You can open and inspect the source code itself. This
the final word on the implementation. You will also find notes from the developers in the
source code including: references to original sources; rationale for design decisions (and
alternatives that were considered); and descriptions of nuances and subtleties that arise
in the algorithms. Remember: “Use the source, Luke.”

This User Guide is organised in two parts. Part One is designed to get a new user going with
using Eilmer to simulate compressible flows. It covers basic functionality. For example, Part
One will cover some commonly used boundary conditions, but it won’t discuss every single
boundary condition in detail (because some are quite niche in terms of application).

Part Two is called Advanced Usage. In this part, we discuss some of the more advanced usage
of Eilmer and some of the specialised functionality.

Readers might not read the User Guide from cover-to-cover like a good novel; and random
access to sections is expected for familiar users of the code. However, we have tried to
organise Part One of the User Guide so that the concepts of operation are developed and re-
inforced as one reads the pages in a continuous order. We have chosen to intersperse
tutorials in Part One. Each subsequent tutorial introduces new complexity and dimensions to
the modelling and simulation toolkit.

We have employed a few typographic conventions to guide the reader. Commands to be typed
in a terminal are designated with a dollar sign ($) prompt, like so:

$ cmd to type

Complete your command by hitting Enter when you're ready. Filenames and Eilmer
constructs (for use in an input file) are indicated in a typewriter font.
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Chapter One
EILMER AND YOU

We begin with a conversation about you, your simulation goals, and how Eilmer
can support them. Eilmer is a versatile tool for the simulation of compressible
flows. It even includes capabilities to simulate the interaction of gases with
structures, with both thermal and elastic analyses. However, it is not the right
tool for every job, and numerical simulation is not the right choice for every gas
dynamic analysis. That’s why we begin with this conversation to figure out if
Eilmer is right for you.

It is not our intent to scare away users in this section, although the questions
might be challenging. Rather, our goal is for you to make informed decisions as
you plan and execute a simulation.

1.1. Why do you want to do a simulation?

We should start with why: why do you want to do a simulation? We can ask this
question in a few ways. What are you hoping to learn from a simulation? What
are your goals? “I was told I should do a simulation” is not a good response. You'll
sometimes hear these questions phrased rather bluntly when a user asks for help:
“what is it you are trying to do, exactly?”

Why is important because it helps you decide if a simulation is the right thing
to do and, if so, what kind of simulation and what outputs are needed.

Harlow and Fromm [1], in their 1965 article, give us one of the earliest reasons
for why: to perform experiments in fluid dynamics. In this case, the computer
simulation augments or replaces the wind tunnel for experiment. The use of
computational fluid dynamics has expanded in many directions since then. Here
is a non-exhaustive list of reasons why you might want to perform a simulation.
They are loosely ordered from fundamental physics investigation to engineering
design and decision making (and, admittedly, it is imperfect to try to order and
separate the uses along strict boundaries).

+ to perform experiments in fluid dynamics

« to supplement information gathered in physical experiments

« to plan and design physical experiments

« to test and validate a model of how a physical system behaves

» to simulate the operation of a system with gas as working fluid and assess its
performance

« to estimate the aerodynamics of an object pushing through gas (or immersed in
moving gas as befits the frame of reference)

« to estimate forces and heat loads from gases interacting with solid objects

+ to use analysis to inform design (such as optimisation)

« to use analysis to inform decision making (such as safety assessment)



« to answer what-if questions when exploring a parameter space, such as in a
design exercise.

Bossel [6] has attempted to categorise the motivations for simulation into two
categories: scientific knowledge and technological knowledge. Ei1mer has been
used to advance knowledge in both of these categories, but predominantly its uses
lean towards the technological side: the creation of applied knowledge; the
creation of new physical systems or processes. Figure 1 displays a variety of ways
in which Eilmer has been applied in simulation.

The main point is that you need to have a clear vision of why you are doing a
simulation because the purpose has a large bearing on how you approach the
simulation and a large bearing on the required effort. We are talking about both
the effort of the researcher and the computational effort.

A related point is the credibility of the simulation and how much effort is
invested. Typically, a high degree of credibility requires a high degree of effort to
generate the evidence to build trust. That being said, the degree of credibility
required often scales with how the high consequences are. A what-if-type
simulation to satisfy curiosity may not require the same effort and care as an
analysis of the aerothermodynamics surrounding a capsule bound for Jupiter
when there is one shot at atmospheric entry at the end of a 7-year voyage. A full
discussion on credibility in scientific computing is given in Section 1.2 of
Oberkampf and Roy [7].

1.2. Eilmer’s role is to solve equations

If you're still reading and decided that simulation is right for your needs, then we
have good news. Eilmer is designed to simulate the dynamic motions of gases
and their interactions with structures. Before we get into the modelling features,
let’s talk about what Eilmer does in a fundamental sense.

Fundamentally, Eilmer solves partial differential equations (PDEs), and
specifically, the Euler equations, Navier-Stokes equations and Reynolds-Averaged
Navier-Stokes equations. There are other governing PDEs available that move
beyond gases and move us into the realm of multi-physics simulation. Those
others include the heat equation in solid domains and magneto-hydrodynamics
equations. The solution of a PDE requires inputs from the user; at a minimum
those are: (a) specification of a computational domain; (b) specification of
boundary conditions at the edge of the domain; and (c) specification of an initial
condition. Eilmer uses a finite-volume formulation for discretisation of the
domain. The user also builds the grid of cells to fill the domain. Other inputs are
required depending on the complexity of the physics being modelled. The theory
related to the numerical solution process and a discussion of the multi-physics
capabilities are presented in the Eilmer journal paper [8].

The features for Eilmer are shown in Table 1. Features are grouped by
physical modelling. For the most part, this means the selections within a group
are mutually exclusive. For example, you cannot select two different turbulence
models simultaneously for a single simulation. The features have been
categorised as Production, Experimental, or Developmental. These
boundaries of division are not hard; they serve to indicate the maturity of the
implementation.



(a) Boundary layer response to far-field disturbances. Density - top; Pressure - bottom; Source:
Whyborn (2023) [2]

(b) Unsteady flow over a double-cone. Time sequence (c) Coupled fluid-thermal analysis of the
displayed down colum, then moves to next column. BoLT-1l flight experiment. Source: Damm et
Source: Hornung et al. (2021) [3] al. (2024) [4]

Survey plane Survey plane
Survey plane X =301mm = L

Mach number

EEEEEEEE

(d) Design of Mach 7 nozzle for T4 shock tunnel. Source:  (e) Scale-resolving simulation of mixing

Chanetal.(2018)[5] layer with air and diluted ethylene.
Pressure (Pa) Mach Number Pressure (Pa) Mach Number
1.0e+2 1.0e+3 1.0e+4 01 2 3 456 7 8 9 1.0e+2 1.0e+3

1.0e+4 0123 4586 789

(f) Lifting body optimised for lift-to-drag ratio using adjoint method. left: baseline right: optimised.
Figure 1: A gallery of Eilmer simulations capturing some of the diversity of use cases.
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Table 1: Feature list for Eilmer v 5.0

Feature

Production

Experimental Developmental

Equation sets

Euler
Navier-Stokes
Reynolds-Averaged Navier-Stokes

multiple species

heat equation in solid domains magneto-hydrodynamics
electric fields

rotating frame

Solver mode

transient (time-marching)

steady-state

block-marching

Grid types

structured

unstructured

Spatial approximation

piecewise parabolic (structured)

van Albada limiter (structured)
least-squares (unstructured grids)

selection of limiters for
unstructured

3rd order reconstruction
(structured)

blended 4th/2nd order scheme

Gas models

ideal (calorically perfect)
thermally perfect, mixtures

multi-temperature, mixtures

state-specific

Gas-phase Kinetics

equilibrium chemistry
finite-rate chemistry

finite-rate energy exchange (for
multi-T models)

Conjugate heat transfer

2D/3D structured domains



Feature Production Experimental Developmental

Moving boundaries shock-fitting

coupled motion via run-time loads
and user-defined motion

Turbulence models Spalart-Allmaras (S-A) S-A for IDDES
S-A, BCM variant
S-A, Modified Edwards

k — w (Wilcox, 2006) k — w, vorticity-based source term

User-defined customisation boundary conditions
source terms
grid motion

supervisory functions



Eilmer is typically used in rolling release mode. Users update the source code

from the master branch of the github repository if and when updates are

required for their work. However, we also provide tagged releases with a version

number. The point of version numbers is to signal which features we feel are

mature and we are able to support as a development team. So that leads to our

use of these categories:

Production features that are mature and well-tested; development team
commit to support and bug fixes

Experimental features that are relatively new and have had limited use
(perhaps only in a one-off project)

Developmental features that are under active development; inputs and
implementation may change; no guarantees on stability

A list of supported features for each release is maintained at https://gdtk.
ugcloud.net/docs/eilmer/releases/.

So, Eilmer solves equations. It is up to you to decide what outputs are
required. This gets back to what is the purpose of your simulation. Do you require
time history at select locations (like a virtual transducer)? Do you require loads at
surfaces? Do you need data recorded at a certain outflow plane? Eilmer can give
you these outputs but only if instructed. This User Guide will help you learn how
to instruct Eilmer.

1.3. Preliminary planning

Let’s close this conversation with some words of advice on preliminary planning,
the kind of planning to do with pen and paper before opening a text editor. What
we’d really like to emphasise is the distinction between transient (time-marching)
simulations, and those that are accelerated to steady state. We don’t just mean
the technical distinction of how they operate; we mean understanding the
differences in use cases for these two solver modes. This is why we laboured the
earlier point “why do you want to do a simulation”. Here then is our advice.

The time-marching solver, when configured for time-accurate simulations,
gives a time-dependent physics-based simulation result. If you are looking to
perform investigation of fluid physics, then you should preference using the time-
marching (transient) solver. All real-world flows are unsteady at some scale.

The steady-state solver should be used when you are reasonably confident
there is a steady flow solution at the physical scales of interest. A typical use is
engineering calculations of aerodynamics at modest angles-of-attack.

When starting a new simulation with limited experience of the time and space
scales involved, we recommend using a coarse-resolution time-marching
simulation. At coarse resolution, the time-marching solver is the most efficient
way to get feedback about your simulation. You can use it to check the
appropriateness of your initial condition, your boundary conditions, and the
extent of your computational domain.

You should also consider the spatial dimensionality of the problem. All real-
world flows are three dimensional, but some are excellently approximated with
2D or axisymmetric domains. If your problem permits, begin with a 2D


https://gdtk.uqcloud.net/docs/eilmer/releases/
https://gdtk.uqcloud.net/docs/eilmer/releases/

simulation (planar/axisymmetric). You will get feedback much quicker as
compared to a 3D equivalent.






Part One
BASIC USAGE
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Chapter Two
GETTING STARTED WITH EILMER

The goal of this section is to get you to the point of a working Eilmer
installation, ready for simulation. You can exercise the installation in the follow-
on tutorial, Chapter 3.

2.1. Prerequisites: operating system and operator

First, let’s talk about operating systems. Eilmer is principally developed on linux
for linux. All the high-performance computers we have access to run a linux
operating system, so we need to develop code for that environment. At the
laptop/desktop scale, Eilmer has been successfully installed on modern versions
of linux (obviously), macOS and Windows (via version 2 of windows-subsystem-
for-linux, WSL2). We will give instructions for setup and install for linux and
macOS. For Windows, first install a linux system into WSL2 and then follow the
linux install instructions. Eilmer use on Windows is within the WSL2
environment.

Second, let’s talk about you, the operator. More specifically, let’s talk about
your assumed background. Beyond our expectations of your computing
environment, we also assume that your mathematics, science or engineering
background adequately prepares you for CFD analysis. In particular, we assume
that you have a working knowledge of geometry, calculus, mechanics, and
thermo-fluid-dynamics, at least to a second- or third-year university level. With
Eilmer, we try to make the analysis of compressible, reacting flow accessible and
reliable; we cannot make it trivial.

2.2. Preparing your compute environment

Several pieces of supporting software are required to build and install Ei1mer.
We have tried to keep the number of dependencies small. It helps us maintain a
nomadic existence with installing and running the code in many places. The
required supporting software is listed in Table 2 for linux and Table 3 for macOS.
In Table 2, we have given the package names for some of the more commonly
encountered systems. On linux, we recommend using the package manner
appropriate to your distribution to install the packages. On macOS, the package
manager to use is Homebrew.

11



Table 2: Prerequisite software for EL1mer on linux

Software Debian family RedHat family

basic build build-essential “C Development Tools and
environment Libraries”?

LLVM D compiler ldc ldc

Fortran compiler

git
readline
ncurses
OpenMPI
Paraview
gnuplot
Pandas

matplotlib

gfortran,gfortran-
multilib

git
libreadline-dev
libncurses-dev
libopenmpi-dev

gcc-gfortran

git
readline-devel
ncurses-devel
openmpi-devel

— download latest is recommended —

gnuplot
python-pandas
python-matplotlib

gnuplot
python-pandas
python-matplotlib

1 Install this collection using dnf group install

Table 3: Prerequisite software for EL1mer on macOS

Software

Package name

basic build environment
LLVM D compiler
Fortran compiler
git

readline

ncurses

OpenMPI
Paraview

gnuplot

Python

Pandas
matplotlib

sed

xcodel

ldc

gcc

git
readline
ncurses
open-mpi
paraview
gnuplot
python
pandas?

matplotlib?

gnu-sed?

1 Install xcode as a macOS package, not using Homebrew.

2 Install using pip3.

3 After install, type brew info gnu-sed to get hints about setting your PATH.
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2.3. Dowloading, building and installing

Assuming you have the prerequisite software ready to go, we can proceed with
download and install of eilmer. Let’s download the complete source code from
github:
console
$ cd
$ git clone https://github.com/gdtk-uq/gdtk.git gdtk

Now, we change to Eilmer source, then build and install
console

S cd gdtk/src/1lmr
S make install

2.3.1. A note on FLAVOUR=debug and FLAVOUR=fast

In the make command just shown, we gave only the target install. This sets the
recipe in action to build using default options and then install to a default area.
There are a number of options available to control the build and install of
Eilmer. We discuss these later as part of advanced usage in Chapter 12.

There is one option important to discuss now because it has tripped up users
in the past who have not read all of the documentation. Ei1lmer has FLAVOUR
options for building the executable. The default FLAVOUR is debug. Executables
built with debug include certain run-time checking and are able to print more
diagnostic information in the case of an error. This is why we recommend it for
those new to the code.

The second FLAVOUR option is fast. We recommend this for production
calculations when speed matters such as when being charged for computer hours
on a time-shared cluster. The fast build turns on compiler optimisations and
disables most checking at run-time. Note fast refers to the performance of the
executable, not the build time. It actually takes much longer to build the fast
executable because the compiler needs to do more work to find and implement
optimisations. There is a compromise for speedy executable: we cannot capture
full diagnostic information in the event of a program error. To build with fast,

try:

Y console
$ cd gdtk/src/1lmr

S make clean

S make FLAVOUR=fast install

2.4. Setting environment variables

There are certain environment variables that require setting for running Eilmer.
So we do not need to type these at the start of every session, it is convenient to
place these in a file that is read at the start of a login session. Typical files to place
these in are .bash_aliases on Ubuntu, .bashrc on Fedora, and .zshrc on
macOS. It really just depends on what shell you are using. The required

environment variables with typical settings are: —
as
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a b ON =

export
export
export
export
export

DGD_REPO=${HOME } /gdtk
DGD=${HOME }/gdtkinst
PATH=${PATH} :${DGD} /bin
DGD_LUA_PATH=${DGD}/1ib/?.1lua
DGD_LUA_CPATH=${DGD}/1ib/?.so0

14



Chapter Three
TUTORIAL: FLOW OVER A CONE

This tutorial is designed to get you acquainted with using Eilmer. We do not
attempt to explain everything here; that comes later in the guide. We do however
show you the steps to get a simulation result: pre-processing, running a
simulation, and post-processing. For this tutorial, you will copy from pre-existing
files from the repository.

Let’s start with a simple-to-imagine flow of ideal air over a sharp-nose of a
supersonic projectile. Figure 2 is a reproduction of Fig. 3 from Maccoll’s 1937
paper [9]. and shows a shadowgraph image of a two-pounder projectile, in flight
at Mach 1.576. We'll restrict our simulation to just the gas flow coming onto and
moving up the conical surface of the projectile and work in a frame of reference
attached to the projectile. Further, we will assume that all of the interesting
features of the three-dimensional flow can be characterized in a two-dimensional
plane. The red lines mark out the region of our gas flow simulation, assuming
axial symmetry about the centreline of the projectile.

Figure 2: A two-pound projectile in flight. A conical shock is attached to the sharp
nose of the projectile. This photograph was published by Maccoll in 1937 [9]. The
red lines have been added to demark the region of gas flow for which we will set up
our simulation.

The resulting flow, in the steady-state limit, should have a single shock that is
straight in this 2D meridional plane (but conical in the original 3D space). The
angle of this shock can be checked against Taylor and Maccoll’s gas-dynamic
theory and, since the simulation demands few computational resources (in both
memory and run time), it is useful for checking that the simulation and plotting
programs have been built and installed correctly.
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3.1. The simulation set-up

To build our simulation, we abstract the boxed region from Figure 2 and consider
the axisymmetric flow of an ideal, inviscid gas over a sharp-nosed cone with 20
degree half-angle. The constraint of axisymmetry implies zero angle of incidence
for the original 3D flow. In Figure 2, we have suggested a computational domain
shown in red. Figure 3 shows the two-block computational domain that
corresponds to the red bounded region in Figure 2.

domain for flow over a sharp cone
1.0 2] b1 cl

af bo
I I I |

| I
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 3: Schematic diagram of the geometry for a cone with 20 degree half-angle.
The thick dark line represents the cone surface and the green coloured region
represents the gas domain. Boundary conditions will be added such that gas flows
into the domain on the left (west) boundary and out on the right (east) boundary.
The north and south boundaries will be set as walls with slip. This SVG figure was
generated as a sketch at preparation time.

Despite Figure 2 being a good motivator for this simulation, the free-stream
conditions of p_, = 95.84 kPa, T, = 1103 K and V,, = 1000 m/s are actually
related to the shock-over-ramp test problem in the original ICASE Report [10]
and are set to give a Mach number of 1.5. It is left as an exercise for the reader to
run a simulation at Maccoll’s value of Mach number and check that the
simulation closely matches the shadowgraph image.
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3.2. Preparing the simulation

Assuming that you have the program executable files built and accessible on your
system’s search PATH, as described in Chapter 2, use the following commands:

S mkdir ~/temporary-work

S cd ~/temporary-work

§ rsync -av ~/gdtk/examples/lmr/2D/sharp-cone-20-degrees/
sg-minimal/

to set up a work space that is separate to your copy of the source code tree. That
way you can do what you like within the work space and then just remove it when
you are finished. The rsync command should have made a copy of the essential
files for this example in your newly constructed workspace, so you don'’t really
need to type in the content of files discussed below.

3.2.1. Preparing a gas model

The first task in starting our simulation is to prepare an input file for the gas
model. Our gas model is very simple. It is ideal air. The gas model file is
correspondingly simple. Create a file, using a text editor, called ideal-air.lua

and place in it:
lua

1 model = 'IdealGas’
2 species = {'air'}

Once created, we are ready to process that file for use by Eilmer. That command
is:

S Imr prep-gas -i ideal-air.lua -o ideal-air.gas

Hopefully unsurprisingly, -1 indicates the input file; -0 indicates the output file.
That output file, ideal-air.gas, is what is used by Eilmer. You may inspect
it; it is just plain text. It contains full information about air properties which has
been pulled from our species database. You may ask why this gas model
preparation is a separate process. It seems like something trivial that could be
captured elsewhere in the input. Ei1mer provides more complicated gas models
for hypersonic flow modelling that are served best by a stand-alone preparation
process. We do that process too on the simplest of models to provide a consistent
pattern of user interaction.

3.2.2. Preparing grids

Next, we prepare the grids. The following is the text from a file we prepared called
grid.lua. Asyou inspect the file, try to line the constructs up with the schematic
in Figure 3.
lua
1 -- grid.lua
2 print("Set up geometry and grid for a Mach 1.5 flow
over a 20 degree cone.")
3 -
4 -- 1. Geometry
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5 a@ = {x=0.0, y=0.0}; al = {x=0.0, y=1.0}

6 bo = {x=0.2, y=0.0}; b1 = {x=0.2, y=1.0}

7 c0 = {x=1.0, y=0.29118}; c1 = {x=1.0, y=1.0}

8 -

9 quad@ = CoonsPatch:new{p00=a@, p10=b6, pl11=b1, pBl1=al}
10 quadl = AOPatch:new{p00=b@, p10=c@, p11=c1, pB1=b1}
11 --

12 -- 2. Grids

13 grid@ = registerFluidGrid{

14 grid=StructuredGrid:new{psurface=quad®, niv=11,
njv=41},

15 fsTag="inflow",

16 bcTags={west="inflow"}

17 }

18 grid1 = registerFluidGrid{

19 grid=StructuredGrid:new{psurface=quadl, niv=31,
njv=41},

20 fsTag="initial",

21 bcTags={east="outflow"}

22 }

23 identifyGridConnections()

The key steps are:

1. Define some construction points.

2. Use the construction points to define patches.

3. Assemble grids from patches, giving the discretisation in texttt{i} and texttt{j}
directions as numbers of vertices.

In Eilmer, we treat a grid file like most other CFD programs: it is just a series of
points that can be interpreted, in our case, as the corners of finite-volume cells.
This means the grid itself has no information of its relation to the flow domain.
To bridge this disconnect, we require that the user set some information about
the grid that can be used later on when preparing the flow field. In this example,
you will see that we set an fsTag [=flow state tag] to a string label that will later
define the initial flow state in that grid. We actually use a different initial
condition in the two grids: 'inflow' in grid®;and 'initial' ingridi1. We
define what those labels mean in terms of flow state later on when preparing the
flow field description. When registering the grids, we also set boundary
information on the west boundary of grid@ as an 'inflow' viathe bcTags
[=boundary condition tags], and grid1 gets an 'outflow' set on its east
boundary. The remaining unset boundaries will receive a default boundary
condition (WallBC_WithS1lip) when we prepare the simulation in a subsequent
step.

We are ready to prepare the grid. Issue the following at the command line:
S 1mr prep-grid --job=grid.lua

On your screen, you should see output like:
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Set up geometry and grid for a Mach 1.5 flow over a 20
degree cone.

#connections: 1

#grids 2

#gridArrays 0

On successful completion, Eilmer has created a subdirectory called 1Imrsim.
This directory will contain (almost) all files generated by an 1mr command or
process as we move through the workflow. Let’s take a look at what folders and
files are produced by prep-grid with the tree! command.

S tree lmrsim

Imrsim

‘-- grid
|-- grid-0000.9z
|-- grid-0000.metadata
|-- grid-0ee1.gz
|-- grid-0001.metadata
‘-- grid.metadata

2 directories, 5 files

3.2.3. Preparing the flow domain and configuring settings

The final step in the pre-processing stage is to prepare a flow field description and
define the numerical settings for the simulation. We will focus on a simulation
using the transient solver in this example. The following is the text we prepared in
afile called transient. lua. The file itself is commented (- - in Lua), so
hopefully that provides some explanation. o
ua
1 -- transient.lua
2 print("Set up transient solve of Mach 1.5 flow over a
20 degree cone.")

3__

4 -- 0. Assume that a previous processing has step set up
the grids.

5__

6 -- 1. Domain type, gas model and flow states

7 config.solver_mode = "transient"

8 config.axisymmetric = true

9 setGasModel('ideal-air.gas')

10 initial = FlowState:new{p=5955.0, T=304.0} -- Pa,

degrees K
11 inflow = FlowState:new{p=95.84e3, T=1103.0,
velx=1000.0}
12 flowDict = {initial=initial, inflow=inflow}
13 --

1This was not installed by default on my Mac. Try: brew install tree
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14 -- 2. Fluid blocks, with initial flow states and
boundary conditions.

15 -- Block boundaries that are not otherwise assigned a
boundary condition

16 -- are initialized as WallBC_WithSlip.

17 bcDict = {

18 inflow=InFlowBC_Supersonic:new{flowState=inflow},
19 outflow=0utFlowBC_Simple:new{}

20 }

21 --

22 makeFluidBlocks(bcDict, flowDict)

23 --

24 -- 3. Simulation parameters.

25 config.max_time = 5.0e-3 -- seconds

26 config.max_step = 3000

27 config.dt_plot = 1.5e-3
28 config.extrema_clipping = false

Here are some things to note about the transient. lua file. The gas model file
we prepared earlier ideal-air.gas now makes an appearance when setting the
gas model on line 9. The fsTags introduced as strings in the grid. lua file are
now defined as FlowStates on lines 10 and 11. These are packed into a table
called flowDict for later use. We also create a bcDict table on lines 17—-20.
This maps out bcTags in grid. lua to specific boundary condition objects.
There is an important and powerful function call on line 22: the
makeFluidBlocks () function is used to create blocks on our grids and define
boundary conditions and initial conditions. The last part of the transient.lua
file is used to configure some simulation parameters.

We use the prep-sim command as the final step in the pre-processing stage:
$ 1mr prep-sim --job=transient.lua
Here is what should appear on your screen:

Read Grid Metadata.
#connections: 1
#grids: 2
Set up transient solve of Mach 1.5 flow over a 20 degree
cone.
Build runtime config files.
Build fluid files.

Finally, let’s look at the state of folders and files on disk at the end of a successful
pre-processing stage:

S tree lmrsim
Imrsim
| -- blocks.list
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| -- config

| -- control

| -- fluidBlockArrays

|-- grid

| |-- grid-0000.g9z

| |-- grid-0000.metadata

| |-- grid-6e0e1.gz

| |-- grid-0001.metadata

| -- grid.metadata

| -- mpimap

‘-- snapshots
| -- 0000
| |-- fluid-0000.9gz
| | -- fluid-0001.gz
| |-- grid-0e06.gz
| ‘-- grid-00e1.gz
‘-- fluid.metadata

4 directories, 15 files

We are ready to run our first simulation!

3.3. Running the simulation

Let’s just do it and then talk about it.
$ 1mr run

An abbreviated version of what appears on screen is:

Eilmer simulation code.

Revision-id: 7975e97c

Revision-date: Wed Mar 20 20:16:10 2024 +1000
Compiler-name: 1ldc2

Parallel-flavour: shared

Number-type: real

Build-flavour: debug

Build-date: Wed 20 Mar 2024 20:18:09 AEST

Heap memory used: 13 MB, unused: 9 MB, total: 22 MB (22-22 MB per
Step= 20 t= 1.201e-04 dt= 6.003e-06 cfl=0.506 WC=0.1 WCtFT=6.0
Step= 40 t= 2.4071e-04 dt= 6.003e-06 cfl=0.50 WC=0.3 WCtFT=5.1
Step= 720 t= 4.322e-03 dt= 6.003e-06 cfl=0.50 WC=5.6 WCtFT=0.9
Step= 740 t= 4.442e-03 dt= 6.003e-06 cfl=0.50 WC=5.7 WCtFT=0.7

B
+ Writing snapshot at step = 750; t = 4.502e-03 s +
B I o I e e

Step= 760 t= 4.562e-03 dt= 6.003e-06 cfl=0.50 WC=5.9 WCtFT=0.
Step= 780 t= 4.682e-03 dt= 6.003e-06 cfl=0.50 WC=6.0 WCtFT=0.
Step= 800 t= 4.802e-03 dt= 6.003e-06 cfl=0.50 WC=6.1 WCtFT=0.
Step= 820 t= 4.922e-03 dt= 6.003e-06 cfl=0.50 WC=6.2 WCtFT=0.

STOP-REASON: Reached target simulation time of 0.005 seconds.
FINAL-STEP: 833

FINAL-TIME: 0.00500048

+++++++++++H

+ Writing snapshot at step = 833; t = 5.000e-03 s +
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What do we notice in the output? The simulation finished by taking 833 steps and
got to a simulated time of 5 ms. That end time corresponds to our request
config.max_time = 5.0e-3. What happened to our request for 3000 steps
config.max_step = 30007 Seems it was ignored. Well, the stopping criteria
will look for maximum steps or maximum time and stop on whichever comes
first.

Another thing to note is that a new snapshot of the flow field was produced at
each 1.5 ms (approximately). This corresponds to our request for
config.dt_plot = 1.5e-3.

3.4. Post-processing the simulation

3.4.1. Producing VTK files for visualisation

If our simulation completed successfully, there should be five snapshots in the
Imrsim/snapshots area. There is the initial condition 0000 (created at
preparation stage) plus four more snapshots produced during the simulation. We
can convert the final snapshot into VTK files with a simple command:

S 1mr snapshot2vtk

since the default snapshot to process is the final one in a sequence.

When that command concludes, there is a new folder: Imrsim/vtk. In that
folder, you can pick up the fluid. pvd file in Paraview to do some visualisation.
Figure 4 shows surface plots coloured by pressure (on left) and velocity in -
direction (on right with grid overlayed).

PRESSURE, Pa X-VELOCITY, m/s
9.50e+04 1.10e+05 1.25e+05 1.40e+05 1.55e+05 750 812 875 938 1000
N N

Figure 4: Paraview visualisation of supersonic flow over a sharp cone at¢ = 5.0 ms.
VTK file produced using the snapshot2vtk command.

The distortion of the grid in the right-hand block is a result of the area-
orthogonality (AO) grid generator making the compromises required to achieve a
reasonably-orthogonal mesh at the edges of the block. The default transfinite grid
generator would have produced a mesh that appears less distorted overall but
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would have individual cells that are more sheared for this particular block. For
the rectangular block on the left, both generators would produce the same mesh.

The shock displayed in the pressure field shows features that are characteristic
of a flow solution produced by a “shock-capturing” code such as Eilmer. With
the coarse grid, the shock has a stair-case appearance. This is accentuated by the
plotting program which was set to display the cell-average value as a uniform
colour within each cell.? Also, when following a line that crosses the shock, a
small number of cells are passed before the full pressure jump has been reached.
In an ideal, inviscid simulation, the shock should be a zero-thickness transition.
This can be approached by increasing the mesh resolution, as seen in Figure 5.
The high-resolution solution is looking clean but the computational cost, in terms
of calculation time, has gone up from less than a second to more than 13
minutes.?

PRESSURE, Pa

9.50e+04 1.10e+05 1.25e+05 1.40e+05 1.55e+05
EE————

Figure 5: Pressure field for a mesh with 8 times more resolution in each direction
compared to the original simulation shown in Figure 4.

1.501 ms 3.001 ms 4.501 ms 5.000 ms

PRESSURE, Pa
9.50e+04 1.10e+05 1.25e+05 1.40e+05 1.55e+05
EEE_————

Figure 6: Evolution with time of supersonic flow over cone.

21f you want a smoother appearance, you can use the Paraview filter Cel1l Data to
Point Data.

3These wall-clock numbers resulted when using 2 cores (one per block) on an Apple M4 chip
with the code compiled as FLAVOUR=fast.
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Chapter Four
WORKING WITH EILMER

This chapter is rather brief. It is designed to give you an overview of how you use
Eilmer. The details are deferred to individual chapters that follow.

4.1. Overview of simulation workflow and user interface

At a top-level view, Eilmer’s workflow is much like most other CFD programs. It
involves, in order, a preparation stage (or pre-processing), a simulation
stage, and a post-processing stage to extract or generate desired outputs.
Those stages might require one or more substeps.

Typical steps at preparation stage are:
+ preparing a gas model
+ preparing a computational domain and grid
« configuring the computational domain with boundary conditions and initial
conditions
« configuring the flow solver such as numerics selections, physical models and
run-time outputs

Some complex simulations might require more steps at preparation stage.

At the simulation stage, typical actions are:
« start a shared-memory simulation on a local machine
« start a distributed-memory simulation on a local machine (using MPI)
« configure and launch a job script to a queue on a shared-resource high-
performance computer

The post-processing stage can vary widely based on the simulation goals, and

can involve multiple steps for a single simulation. Some typical steps are:

« generate VTK files for visualisation from flow field data

« plot history data recored during simulation

« extract lines or planes of data from the flow field

« extract data from boundary surfaces

« plot surface loads

« compute integral quantities such as mass flow across boundaries or
aerodynamic loads on bodies

Eilmer’s user interface is text based. Users prepare input files as plain text
using a text editor. These files are used as input to Ei1mer commands that are
executed in a terminal. We call this a command-line interface and explain it in the
next section. The preparation of the input files themselves appears in subsequent
chapters. During user interaction, Eilmer generates folders and files to hold the
output from executing commands. A brief description of the inputs and outputs is
given in Section 4.3. You saw this use of the command-line interface and the
generation of Eilmer outputs earlier in the cone flow tutorial (Chapter 3).
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4.2. The command-line interface explained

Eilmer is a command-line driven program: commands are used to execute the
workflow just described. The command-line interface (CLI) in Eilmer is of the
form:

Imr action options/arguments
1mr# is used to invoke the Eilmer program. Not all commands require options
or arguments. You may be familiar with this type of CLI from other tools such as
git, mercurial and the package managers apt, dnf and brew.

Let’s look at an example for the Eilmer prep-grid command. In its
simplest form, we can invoke that command using:

1 S 1lmr prep-grid

With no options provided, this command will work with the default input file
job.lua. Had we prepared a different grid input file called grid. lua, then the
command would be:

1 $ 1Imr prep-grid --job=grid.lua

In this case, we were explicit with the job script name because we used a non-
default.

Help is available using the help command. It will display a list of commonly
used commands.

1 $ Imr help
You can also get a list of all available commands by passing the -a option:
1 S 1mr help -a

Help for a specific command can be requested by passing the command name as
argument:

1 § 1lmr help prep-grid

In the interests of reproducible research, we provide revision-id and
version commands so that users have a convenient way to record which
repository revision of Ei1lmer they are using for their production simulations,
and which compiled version options they had enabled.

4.3. Inputs, outputs and the Imrsim directory

Users create input files to instruct and configure Eilmer operation. Some
common input files, shown on left in Figure 7 as user-supplied files, are the
description of the thermochemistry model (gas-model. lua and

“Why 1mr and not ei1mer? It’s shorter to type at the command line, and dropping vowels
is not without precedent; we've borrowed from the Phoenecians from more than 3000 years
back.
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reactions.lua), construction of a domain and grid (grid. lua), and
configuration of the flow domain and simulation settings (transient.lua).

User-supplied files Generated files
detailed
gas-model.lua gas model
I 4 prep-gas
detailed
reactions.lua chemistry
v model

»| prep-chem

grid files
and metadata

P prep-grids

i )

configuration;
. fent 1 initial flow
ransient.lua field data
______\\\ \ 4 A 4
—_— > prep-sim

Figure 7: An overview of the Eilmer simulation process showing inputs and
outputs. Note that outputs are created in the 1Imrsim area, except for the gas-
related files. Source: A version of this figure appears in Gollan & Jacobs [11] as Figure 4.

You issue Eilmer commands to process your user-supplied inputs. Such

commands are shown in Figure 7: prep-gas, prep-chem, prep-grids and
prep-sim.

The outputs from these commands are generated files. These generated files
go in the Imrsim directory. (Eilmer will automatically create an Imrsim
directory when first required.) We like this single top-level directory arrangement
for storing outputs because it is convenient for copying, synchronising (from

workstation to remote cluster), archiving and cleaning out (when you want to
start afresh).

There are exceptions to the “everything generated goes into 1mrsim” rule, but
those exceptions are few. The detailed files for the thermochemistry are placed in
the current working directory. This is because the thermochemistry files are used
in many other places and tools in the GDTk collection. We cannot enforce the

Imrsimlocation rule on those other tools. So we live with this contained set of
exceptions.®

5Besides, keeping a record of your inputs is not a big deal. You are keeping all of your own
inputs in your own repository, right?
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Chapter Five
PREPARING A SIMULATION

In this chapter, we get into some detail about preparing a simulation. We focus
mostly on the preparation of input scripts since that is where the bulk of a user’s
effort will go. Recall that our goal for Part 1 of this user guide is to equip users
with the basics for a tip-to-tail simulation workflow using Eilmer. So even
though we present some detail here, we do not present all details. Those can be
found in Part 2 of this user guide and in the online reference manual: https://
gdtk.ugcloud.net/docs/eilmer/eilmer-reference-manual/.

5.1. Input scripts overview

Because your input scripts become a part of the program when run, it is worth the
effort to learn just enough Lua to be dangerous. The web site https://www.
lua.orgis a good starting point for learning about the Lua programming
language and the older edition of the text Programming in Lua”, which is
available online, is a good read and has everything that you need to successfully
write good Lua scripts.

For the simulation of simple non-reacting gas flows, you will usually have
three Lua input files: one to specify the gas model; one to build the grid; and one
to configure the simulation domain and related settings. The various preparation
commands convert the descriptions and instructions in your Lua input files into a
form that is read by the main simulation program. The advantage of this
approach is that you have the full capability of the Lua interpreter available to you
from within your script. You can perform calculations so that you can
parameterize your geometry, for example, or you can use Lua control structures
to make repetitive definitions much more concise. Additionally, you may use Lua
comments and print statements to add documentation to the script file.

The remaining sections in this chapter describe those three basic input files
individually. We will refer to these files as gas-model.lua, grid.lua and
flow. lua. The particular choice of names is not important so you may name
these in a descriptive manner as best fits your needs. The . lua extension is not
required by Eilmer, though it is helpful if your editor gives you Lua-specific
syntax highlighting. It is important to note that a complete description of a
simulation’s inputs comprises all three files. The advantage of separate files is for
re-use and consistency across families of simulations: you can re-use gas and grid
definitions by copying those files where needed.®

5.2. Specifying a thermochemical model

The thermochemical models are provided by the gas module [12]. This is a D-
language module with a Lua interface so that its objects and methods can be

6The advanced user might even place those common files in a common folder and link to
them as needed.
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accessed from the user’s input script. For the moment, we'll just remind you how
to set the gas model for ideal air, which we saw earlier in the cone flow example in
Chapter 3. Start by placing the following text:

lua
1 model = 'IdealGas'’
2 species = {'air'}
into a file called gas-model. lua and run the following command:
console

S 1mr prep-gas -i gas-model.lua -o ideal-air.gas

to produce the file ideal-air.gas which contains the fully-specified gas model.

Later, you will want to make use of this model in your flow. lua input file. To
do so, add the line (to flow. lua): 2
ua

setGasModel('ideal-air.gas')

This will initialize the gas model within the simulation preparation program.

For even more sophisticated gas models, the line shown above is all that is
needed within your job script to initialize the gas model. You will adjust the name
to match that of the detailed gas file you produced using prep-gas. Of course,
you will have done all of the detailed work to set up your sophisticated model and
have the details in a corresponding Lua script. All of the gory details are in the gas
package documentation [12] but there are a couple of the examples to study later
in the present user guide.

5.2.1. Finite-rate chemical kinetics

Simulations involving nonequilibrium chemistry require an extra input file
describing the participating gas species and their reactions. Preparation of this
file is described in the companion report [12].

5.3. Grid preparation
We mentioned that three separate input files are needed for an Eilmer simulation.

The second of those is for the grid specification. Commonly, users name this file
grid. lua.

In Eilmer, grid preparation has its own stage in the overall process to
prepare a simulation. The grid preparation stage precedes flow domain
specification. The role of the grid preparation stage is to write a grid, in Eilmer
format, into the Imrsim/grid area and to declare some metadata about the
grids, which is mostly about labels on grid boundaries so that boundary
conditions can be attached at a later stage. The Eilmer command for grid
preparation is prep-grid.

There are two broad categories for preparing grids in Eilmer: natively-built
grids using Eilmer tools; and importing grids built using 3rd-party grid
generators. For both categories, we use Imr prep-grid to prepare grid
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information in a form ready for an Eilmer simulation.” We will discuss the two
categories of grid type separately, but before getting to those, let’s discuss some
core functions that are the workhorse functions of every grid input script.

5.3.1. Core grid preparation functions

The primary purpose of a grid input script is to declare some information about
multiple block grids including their grid points, connections and boundary labels.
We call this declaration process “registering a grid” and provide functions so
named for that purpose. Here we describe the basic registerFluidGrid.

lua
registerFluidGrid{
grid, tag, fsTag, bcTags, gridArrayId
}
The parameters in registerFluidGrid are:
grid aStructuredGridor UnstructuredGrid object that has
been generated or imported
tag a string to identify the grid later in the user’s script
fsTag a string that will be used to select the initial flow condition
from a dictionary when the FluidBlock is later constructed
bcTags a table of strings that will be used to attach boundary
conditions from a dictionary when the FluidBlock is later
constructed

gridArrayId an integer that needs to be supplied only if the grid is part of a
larger array

Note that we have not yet mentioned in this section what a FluidBlock is but
you did see it earlier in the tutorial chapter (Chapter 3) in the transient.lua
script. FluidBlocks are created in the stage after grid preparation but we need
to set up some information now during grid preparation that maps from grid to
the associated block. Those items are the initial condition (fsTag) and the
boundary conditions (bcTags).

In the grid. lua example script in Chapter 3, you saw registerFluidGrid
called twice: once to declare a grid in the block upstream of the cone tip, and a
second time to declare the grid that lies along the cone surface.

There are some other grid registration functions to round out the family.
Those are: registerFluidGridArray, registerSolidGrid, and
registerSolidGridArray. These have some specialised purposes. The
GridArray variants are used to help decouple parallel load balancing from grid
topology concerns, and certain features, like shock-fitting, require grids arranged
as a grid array. The Solid variants are used to declare grids that are part of the
solid domain in coupled fluid-thermal analyses. We discuss these variants as they
arise in Part I on Advanced Usage.

7For advanced uses cases, one could bypass 1mr prep-grid and write appropriate
information to Imrsim/grid directly. We provide a description of the grid data formats in
the appendix to this guide for those attempting to build such advanced preparation workflows.
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The next function to mention is not essential for registering grid, but it is
extremely convenient: identifyGridConnections. This function can be
called to connect a number of independently registered grids. It searches for
connections on grid faces with matching corner positions. When it finds a match,
it connects those faces of the associated grids. That information is propagated
into the grid metadata. For most uses, identifyGridConnections() is called
without parameters since the defaults are perfectly adequate. For the rarer special
cases, you can read about the parameters to identifyGridConnections in the
reference manual.

The registration functions require a Grid object, and specifically, either a
StructuredGrid or UnsutructuredGrid object. We discuss the creation of
those next.

5.3.2. Natively-built Eilmer grids

Eilmer has access to the GDTk geometry engine for building grids. The typical
way to build grids using the geometry engine is to embed the constructs directly
in the grid. lua file. In that way, the grids are built just-in-time before
registration in a call to prep-sim. You can see that approach in grid.luain
Chapter 3.

Natively-built Eilmer grids are a good choice for simple domains in 2D and
3D, and predominantly for structured grids. With care and perseverance, users
have built quite geometrically-sophisticated domains using the text-based
interface. There are several advantages to script-style natively-built grids:

« batteries-included Eilmer install — no need for 3rd-party grid packages;

« good reproducibility afforded by text-based record of grid-building process;
« good reusability of grid pieces across multiple simulations; and

« easy parameterisation of geometry and grids.

So how do you go about using the built-in geometry engine? Let’s talk about
structured grids first. Grids are usually built up from primitive pieces. First is
construction points (Vector3 objects). From construction points, you can build
Paths. You can connect Paths as edges on a 4-sided ParametricSurface. A
ParametricSurface is a mathematical description of (z, y[, z]) co-ordinates
based on two independent parameters (0 < r, s < 1). In 2D, you can build a
StructuredGrid from a ParametricSurface. To do that, you need to
provide information about numbers of grid points on the edges and, optionally,
how those grid points are clustered. In 3D, the process is similar, only now you
require a ParametricVolume as the mathematical description of the 6-sided
gridding domain. This description of process is for a single grid. You can build up
multiple-block grids by repeating this process.

Let’s look at an example that builds a flow domain about a hemi-spherical
geometry. We will use an axisymmetric assumption, so we only construct
geometry in x — y plane. This example is adapted from the Eilmer example: 2D/

sphere-lehr/m355. o
ua

7.5e-3 -- nose radius, metres
{x=0.0, y=0.0}
{x=-R, y=0.0}

W N =
o o
1
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4 ¢ = {x=0.0, y=R}

5d= {{x=-1.5*%R,y=0.0}, {x=-1.5*R,y=R}, {x=-R,y=2*R},
{x=0.0,y=3*R}}

6

7 psurf = CoonsPatch:new({

8 north=Line:new{p0=d[#d], pl1=c}, east=Arc:new{p0=b,
pl=c, centre=a},

9 south=Line:new{pB=d[1], p1=b},
west=Bezier:new{points=d}

10 }

11 ni = 16; nj = 32

12 -- Shock-fitting is coordinated across four blocks.

13 registerFluidGridArray{

14 grid=StructuredGrid:new{psurface=psurf, niv=ni+1,
njv=nj+1},

15 nib=1, njb=4,

16 fsTag="initial",

17 shock_fitting=true,

18 bcTags={west="inflow_sf", north="outflow"}
19 }

Recall that the Eilmer command for grid preparation is called prep-grid. We
could call that with this example input file as so:

S 1mr prep-grid -j grid.lua

In this example file, we see the idea mentioned earlier of building up a grid from
primitives. Points are defined on lines 2—5. Paths — here: lines, an arc and a
Bézier curve — are created as needed on lines 8—9. Those paths form edges on a
ParametricSurface; in this case, we chose a CoonsPatch. A
StructuredGrid is created from the ParametricSurface online 14, with
numbers of vertices in the ¢ and j logical directions chose. (Here i runs in the
radial direction from shock towards body, and j runs in the tangential direction
from axis towards shoulder.) This single-piece grid is shown in Figure 8. Lastly,
the grids are registered for later use when specifying the flow domain. Here we
use a registerFluidGridArray function because we want to use the shock-
fitting mode. We have also chosen to split the single StructuredGrid into four
pieces, with splits along j = const lines.

There are some additional notes worth mentioning about this example. We
did not use Vector3 objects explicitly to specify points; here we preferred Lua
tables as a lightweight alternative when specifying points. The reason is that for
these construction points we had no intention of performing any vector
operations with them. The table form is adequate and the geometry functions will
convert them internally to Vector3 objects as needed. We have also used some
other pieces from the geomtry engine such as Paths and
ParametricSurfaces. We do not intend to document all of those pieces in this
User Guide. We refer the reader to the Geometry User Guide [13] or the online
reference manual.
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Figure 8: Single-piece structured grid for flow over a hemi-spherical geometry. This
grid is built in the z — y plane for later use in an axisymmetric flow simulation.

Our final comment on this example relates to our earlier point about easy
parameterisation of geometry and grids. We have a simple but useful
parameterisation of geometry here: we made the radius of the sphere a variable,
R. This means we can re-use this grid input file for any sphere radius of interest
(although one might need to adjust the inflow Bézier curve based on free-stream
Mach number and the nature of the gas model). We can also change the
discretisation of this grid by altering ni and nj variables which are numbers of
cells in 7 — and j —directions respectively. This is useful when performing a
systematic grid refinement study for your flow simulation. We show more

complicated examples of parametric input files in the later examples in this User
Guide.

Let’s now talk about building unstructured grids in an Eilmer input script.
By comparison to structured grids, we have very few GDTk-built tools for
generating unstructured grids. You could look at a program like Gmsh [14] for
generating unstructured grids. In an Eilmer input file, you can convert any
structured grid into an unstructured grid by using the UnstructuredGrid
constructor. Reasons you might want to do this include: joining structured and
unstructured grids; and for passing the grid off to a partitioner that works on
unstructured grids. The example here shows an UnstructuredGrid constructor
that takes a previously built structured grid with variable name my_sgrid. 2

ua

my_ugrid = UnstructuredGrid:new{sgrid=my_sgrid}
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For some special use cases, there is an Eilmer command-line tool that can
convert multi-block structured grids into unstructured grids. You can learn more
details by looking up the help for Ei1lmer command
structured2unstructured.

§ 1mr help structured2unstructured

5.3.3. Importing grids from 3rd-party tools

The second category of grids for use in Ei1lmer are imported grids, usually built
with 3rd-party grid generators. We find that for complex 3D geometries most
users prefer a GUI-style grid generator for building grids. Another reason for
using a 3rd-party grid generator is when dealing directly with CAD surfaces as
geometry description. Eilmer does not support reading in common CAD formats
directly.

As the main route, you import grids into an Eilmer grid input file by calling
an import/read function. There are many grid formats in the big world of CFD.
Eilmer provides import functions for a few select grid formats. For structured
grids, there are importers for GridPro and P1ot3D; for unstructured grids, SU*
format. For other grid formats, we recommend converting to one of these types if
your gridding tool allows. Alternatively, you can write a converter from your
gridding tool’s output to Eilmer grid format. Let’s look at examples of those
import function calls.

Importing GridPro grids

This example file shows the import and registration of grid built with GridPro.
You can find this example in the source code at: examples/1lmr/3D/gridpro-
import/. The import of a multi-block GridPro grid occurs in three steps:

1. import GridPro grids as a table of StructuredGrids into Eilmer;

2. aloop to register each of those structured grids; and

3. function calls to configure block connections and boundary condition labels.

lua
1 gproGrid = "blk.tmp"
2 gproConn = "blk.tmp.conn"
3 gproPty = "blk.tmp.pty"
4
5 config.dimensions = 3
6 scale = 1.0
7 grids = importGridproGrid(gproGrid, scale)
8
9 for i,g in ipairs(grids) do

10 registerFluidGrid{grid=g, fsTag="initial"}
11 end

12

13 importGridproConnectivity(gproConn)

14 importGridproBCs(gproPty)

This script contains examples of the import functions mentioned earlier. Here we
need three import functions to completely initialise multi-block GridPro grids for
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use in Eilmer. Also note Eilmer only takes full-face-matching multi-block
structured grids. GridPro can stitch together elemental blocks into what it calls
superblocks. These superblocks are connected with cuts and often have faces that
match up with multiple other blocks. These will not work in Eilmer.

Import Plot3D grids

The next example shows the import of a Plot3D grid. The grid is a single-piece
structured grid for a flat plate, which comes from the NASA Langley turbulence
model validation test cases. The interesting part related to this discussion is the
importPlot3DGrid function call. However, the whole example script is
included because it shows some Eilmer capability to split a grid into subgrids
and then place grids in an array for parallel processing. You can find this example
at: examples/1lmr/2D/flat-plate-larc-test-case/larc-grids/1lmr-

coarsest-grid. lua.
lua

config.dimensions = 2

gridFile = "flatplate_clust2_4levelsdown_35x25.p2dfmt"
nptsInX = 35

nptsInY = 25

nptsOnSolidPlate = 29

-- 1. Read in grid from Plot3D format
singleGrid = importPlot3DGrid(gridFile, config.dimensions)

o N ok WN =

-
® O
1
1
N

. Grid is a single piece. Now split at x = @0
We can use the information about number of points on the
solid plate to determine the break point in the grid.
-- Then we form two subgrids from the single grid.
nptsOnSymm = nptsInX - nptsOnSolidPlate + 1
subgrid® = singleGrid[1]:subgrid(@, nptsOnSymm, @6, nptsInY)

=N =N =S A =N
a b WON =
[
[

16 subgridl = singleGrid[1]:subgrid(nptsOnSymm-1, nptsOnSolidPlate, 0, nptsInY)
17

18 -- 3. Use a GridArray to chop these up for parallel processing

19 -- on 10 processors

20 registerFluidGridArray{grid=subgrid®, nib=1, njb=2, fsTag='initial',

21 bcTags={north="'supersonic', west='supersonic', south='symm'}}

22 registerFluidGridArray{grid=subgrid1, nib=4, njb=2, fsTag='initial',

23 bcTags={north="'supersonic', east='outflow', south='fixedT'}}

24 identifyGridConnections()

Importing SU? grids

The SU? format is for unstructured grids. We do not require an import function
for SU? format. Instead, we can read in these grids directly as part of the call to
an UnstructuredGrid constructor. We simply have to let the constructor know
that we want SU? format, fmt="su2text'. Here is an example of creating an

unstructured grid based on a file called cone20. su2.
lua

ugrid = UnstructuredGrid:new{filename="'cone20.1lua’,
fmt="su2text'}

5.4.

5:5-
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Chapter Six
FLOW OVER A CONE, RELOADED
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Chapter Seven
RUNNING A SIMULATION
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Chapter Eight
POST-PROCESSING A SIMULATION
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Chapter Nine
TUTORIAL: FLOW OVER A CONVEX RAMP
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Chapter Ten
DEBUGGING A SIMULATION
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Chapter Eleven
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Chapter Thirteen
PARALLEL PROCESSING
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Chapter Fourteen
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16.1. Prep-stage customisation
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