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1 INTRODUCTION

1 Introduction

Eilmer is a multi-physics simulation tool that has been developed with a special empha-
sis on the modelling of hypersonic flows and associated physics. The core of the code is
built around solving the governing equations for compressible flows using a finite-volume
discretisation. The simulation tool provides a complete simulation work flow — grid gen-
eration and pre-processing, flow simulation, and post-processing — that we find useful
when working with relatively simple geometric configurations. Eilmer also has interoper-
ability with 3rd-party tools for grid generation, mesh partitioning and visualisation, which
we make use of in larger scale and more complex geometric configurations. This tutorial
has a focus on the“batteries-included” tip-to-tail workflow provided in Eilmer to simulate
hypersonic flows.

Eilmer can be used to solve the governing equations for Euler (inviscid), Navier-Stokes
(viscous), Reynolds-Averaged Navier-Stokes (RANS), and magneto-hydrodynamic flows.
These can be solved in two dimensions (planar and axisymmetric) and three dimensions
on multiple-block body-fitted grids, structured or unstructured. There are two major
iteration modes that can be selected depending on the dynamics of the flow field: a
transient mode for time-accurate simulations; and a steady mode for acceleration of the
flow solution towards steady state. A range of thermochemical modelling options are
available that span ideal gases, chemical nonequilibrium, multiple-temperature thermal
nonequilibrium and an emerging capability to simulate state-specific gas behaviour. In
Eilmer, turbulence can be modelled with the k-ω model (Wilcox (2002)), the Spalart-
Allmaras model (Allmaras et al. (2012)) and a recently-implemented Delayed Detached
Eddy Simulation technique (Shur et al. (2008)). Eilmer provides a simulation capability
for the coupling between the interaction of gases and structures: specifically, fluid-thermal
coupling (as shown in Figure 1) and, separately, fluid-structural coupling. The latter is
enabled with a moving grid technology. In a separate use of moving grids, shock-fitting
can be applied to external flows with a detached bow shock. This is a sample of the
capabilities that have been developed in Eilmer and a fuller discussion is available in
Gibbons et al. (2023). The open-source nature of the code has led to involvement in very
specialised ad hoc modelling as the need arises.

Figure 1: BoLT-2 fluid-thermal solution. Source: Damm et al. (2023)
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1 INTRODUCTION 1.1 A brief history

With these features and capabilities, Eilmer has been used in a large variety of simulation
work. As research engineers, we tend to categorise the simulation work along a contin-
uum from applied engineering calculations to fundamental physics investigations. At the
engineering end, a small selection of example applications include: the simulation of im-
pulse facilities for the production of hypersonic test flows (Jacobs (1994), Goozée et al.
(2006), Gildfind et al. (2018)); flight regime assessment of electron transpiration cooling
for hypersonic leading edges (Gibbons et al. (2021)); and optimised aerodynamic design
of hypersonic devices (Damm (2020) and Damm et al. (2020)). For the investigation of
fundamental flow physics, Eilmer has been used to characterise steady and unsteady flow
behaviours in the supersonic/hypersonic flow over double cones (Hornung et al. (2021)),
and to investigate flow instabilities in hypersonic flow over blunted cones (Whyborn (2023)
and Whyborn et al. (2023)).

We refer the reader to our paper (Gibbons et al. (2023)) for a fuller discussion on the code,
our development process, capabilities of the solver and examples of application. Also, the
website https://gdtk.uqcloud.net has more extensive documentation, including user
guides in PDF and online reference manuals, for those occasions when you have forgotten
some detail.

1.1 A brief history

Today Eilmer is at a version 5 release. That does not necessarily imply that earlier
versions were named as formally or started counting from 1. Instead Eilmer has grown
and evolved over the past 30+ years as development tools, development practices and
computer architectures have evolved. We provide a brief history here to provide context
for where we are today with the project, and why we have made certain decisions about
its direction.

The origins of Eilmer can be traced to its earliest ancestor, cns4u (Jacobs (1991)), which
was a compressible Navier-Stokes time integrator written in the C language. The choice
of C at that time, in 1990, was considered risky by those in the numerical computa-
tion world; Fortran dominated as implementation language in the successful projects
(and not so successful projects — it just dominated that world). cns4u could handle
a single structured-grid block in 2D. A multi-block capability would be required to ex-
ploit domain decomposition on parallel architectures and to allow for more complicated
body-fitted grids requiring more than a single block.1 mb_cns (multi-block compressible
Navier-Stokes) was developed by the mid 1990s to address that need (Jacobs (2004)).
In essence, it was a multiple-block version of cns4u, written in C and used the message
passing interface (MPI) for distributed memory parallelism on the high-performance com-
puters of the day. In the 2000s, the codebase branched into parallel lines of development
before ultimately merging as Eilmer: mbcns2 was mostly written in C++, motivated by
using object-oriented technology to address the complexity in gas modelling for hypersonic
flows, and the variety of geometric entities in our geometry engine; meanwhile, Elmer was
our first code for the 3D geometries, primarily motivated to do large eddy simulation work
where the simulation of turbulent structures required the freedom of three dimensions to

1Today, we still have multi-block capability for the same reasons, but we have decoupled the concerns
of block topology for geometry representation and domain decomposition for parallel performance.
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1.2 Overview for this tutorial 1 INTRODUCTION

develop in a physically realistic manner. Elmer was the first generation of code that was
not named via acronym. We also added a silent ‘i’ to its spelling later on to avoid collision
with a Finnish code of the same name (Elmer) based on the finite-element method.

In September 2007, the project focus was to bring mbcns2 and Elmer2 into a single code-
base. By November 2008, Eilmer3 had arrived: a 2D/3D multiple-block on structured
grids flow solver with a C++ core and user interface in Python. We developed that code
for at least a half decade (Gollan and Jacobs (2013)) and our users got use for more than
a decade. However, as mechanical and aerospace engineers first and software developers
second, we were not happy with the complexity of the C++ language at that time. For
example, we were finding that the apprenticeship for grad students to write safe and per-
formant code was becoming a significant chunk of the 3.5 year PhD thesis in Australia.
We had gone through the C++0x years where the release of the standard was given an
‘x’ because they were unsure when they would agree.2 Our dissatisfaction with C++
motivated our experiments with the D programming language.

In 2014, we began some preliminary experiments with D: could we write the geometry and
gas models in D and maintain our productivity as developers and have code performance
similar to our C++ codes? We did have to have our cake and eat it too, otherwise the
development cost to change to D would not be worth it. Our early experiments seemed
promising so we poured more effort into the D language rewrite of Eilmer. The new code,
written in D with a Lua interface, became known as Eilmer4. By the end of 2015, all
development focus was on Eilmer4 and we had retired the development on Eilmer3 to
maintenance only, no new feature additions. We presented an experience report of the D
language for numerical simulation tool building at the :w 2nd Australasian Conference on
Computational Mechanics in November 2015 (Jacobs and Gollan (2016)).

Today, we are at version 5 of Eilmer. This comes about a decade after the beginnings of
Eilmer4. There are no new surprises in the core code of version 5 compared to version 4;
the number-crunching code is in D, the user interface remains in Lua. The biggest change
in version 5 is to user-facing configuration, a workflow that separates grid preparation
from flow description, and some layout of folders and files generated by Eilmer. The
biggest motivation for building a version 5 of Eilmer was to formalise the distinctions
between the transient solver mode and the steady-state mode. This has been formalised
at both the user interaction and internally in the code.

1.2 Overview for this tutorial

The goal of this tutorial is to introduce how to use Eilmer so that you are ready to get
started using Eilmer for your own simulations of hypersonic flow. Our approach towards
that goal is to provide a set of examples that show different aspects of Eilmer usage.

In the interest of conciseness, we have made some assumptions about the reader of this
tutorial. We have assumed a background in fluid mechanics, familiarity with computa-
tional fluid dynamics (CFD), and some exposure to hypersonics. That explains what we
do cover and what we do not cover in this document. We aim to cover how to use Eilmer

2C++0x later became C++11, once settled.
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2 GETTING STARTED WITH EILMER

for relatively simple hypersonic configurations. We do not intend to cover the methods
of best practice CFD nor give detailed discussion about physical modelling choices in hy-
personic flows. That latter topic is not settled and opinions vary. If the explanations are
too brief or you find them hard to follow, remember that we also have gentler longer-form
documentation available on the web and as PDF.

Here is what you will find in this tutorial document. We use Section 2 to help the reader
install Eilmer so they are ready to simulate! Section 3 is the core of the tutorial. A
series of examples are provided. They have been sequenced to go from basic to more
advanced in terms of complexity, with the dimensions to complexity being geometric,
physical modelling, numerical settings and data extraction/post-processing.

2 Getting started with Eilmer

First, let’s talk about operating systems. Eilmer is principally developed on linux for
linux. All the high-performance computers we have access to run a linux operating system,
so we need to develop code for that environment. At the laptop/desktop scale, Eilmer has
been successfully installed on modern versions of linux (obviously), macOS and Windows
(via version 2 of windows-subsystem-for-linux, WSL2). We will give instructions for setup
and install for linux and macOS. For Windows, first install a linux system into WSL2 and
then follow the linux install instructions. Eilmer use on Windows is within the WSL2
environment.

2.1 Preparing your environment

Several pieces of supporting software are required to build and install Eilmer. We have
tried to keep the number of dependencies small. It helps us maintain a nomadic existence
with installing and running the code in many places. The required supporting software
is listed in Table 1. In Table 1, we have given the package names for some of the more
commonly encountered systems. On linux, we recommend using your package manner to
install the packages (but there are one or two exceptions noted). On macOS, the package
manager to use is Homebrew.

2.1.1 Installing the LLVM D compiler on linux

One of these exceptions is the LLVM D compiler, which should be installed using the
latest stable release from the LLVM website, rather than using a packaged-maintained
version. Our experience is these versions are often quite old, and frequently cause failures
and problems when trying to build our new-ish code. Installing the D compiler can be a
tricky step for some who have not installed something manually before. The steps are:
download, unpack, and point your PATH variable to find the compiler executables.

Here are some steps that you can use at the command line to install the D compiler in an
opt/ area under your HOME directory. If you find this too terse, please look at our guide
at https://gdtk.uqcloud.net/docs/getting-started/install-d-compiler/.
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2.2 Downloading, building and installing 2 GETTING STARTED WITH EILMER

Table 1: Prerequisite software for Eilmer and this tutorial

Software linux, Debian-family linux, RedHat-family1 macOS

build environment build-essential “C Development Tools and Libraries” xcode
LLVM D compiler — on linux, download latest is recommended — ldc

dub

Fortran compiler gfortran gcc-gfortran gcc

gfortran-multilib

git git git git

readline libreadline-dev readline-devel readline

ncurses libncurses5-dev ncurses-devel ncurses

OpenMPI libopenmpi-dev openmpi-devel open-mpi

plotutils libplot-dev plotutils-devel plotutils

Paraview — on linux, download latest is recommended — paraview (as cask)
gnuplot gnuplot gnuplot gnuplot

Python — on linux, system default is fine — python

Pandas python-pandas python-pandas pandas (via pip3)
matplotlib python-matplotlib python-matplotlib matplotlib (via pip3)
sed — on linux, system default is fine — gnu-sed2

1 Quoted packages are via dnf group install.
2 After install, type brew info gnu-sed to get hints about setting your PATH.

1 $ cd
2 $ mkdir opt
3 $ cd opt
4 $ wget https :// github . com/ ldc−deve lope r s / ldc / r e l e a s e s /download/v1 . 3 7 . 0 / ldc2 −1.37.0− l inux−x86 64 . ta r . xz
5 $ tar −Jxvf ldc2 −1.37.0− l inux−x86 64 . ta r . xz

After that, you should add $HOME/opt/ldc2-1.37.0-linux-x86_64/bin to your PATH.
We explain more about setting the PATH variable in Section 2.3. For the moment, you
could set your PATH in your current session with:

$ export PATH=$HOME/opt/ldc2-1.37.0-linux-x86_64/bin:$PATH

2.2 Downloading, building and installing

Assuming you have the prerequisite software ready to go, we can proceed with download
and install of Eilmer. Let’s download the complete source code from github:

$ cd

$ git clone https://github.com/gdtk-uq/gdtk.git gdtk

Now, we change to Eilmer source, then build and install:

$ cd gdtk/src/lmr

$ make install
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3 SIMULATION EXAMPLES 2.3 Setting environment variables

2.3 Setting environment variables

There are certain environment variables that require setting for running Eilmer. So we
do not need to type these at the start of every session, it is convenient to place these
in a file that is read at the start of a login session. Typical files to place these in are
.bash_aliases on Ubuntu, .bashrc on Fedora, and .zshrc on macOS. It really just
depends on what shell you are using. The required environment variables with typical
settings are:

export DGD_REPO=${HOME}/gdtk

export DGD=${HOME}/gdtkinst

export PATH=${PATH}:${DGD}/bin:${HOME}/opt/ldc2-1.37.0-linux-x86_64/bin

export DGD_LUA_PATH=${DGD}/lib/?.lua

export DGD_LUA_CPATH=${DGD}/lib/?.so

3 Simulation examples

In this tutorial, we present three examples as a means to teach the use of Eilmer. The
examples are chosen to demonstrate various aspects of the modelling available in Eilmer

and they are sequenced to increase in complexity. The first example shows how to simulate
supersonic flow over a cone. It introduces the simulation workflow, the basics of geometry
and grid generation, how to run a simulation, and how to post-process to generate VTK
files for visualisation in Paraview. In the second example, we look at the viscous flow over
a convex ramp. Here the geometry is more complicated than the cone, the air is modelled
with two temperatures, and we show how to use MPI-type parallelism in steady solver
mode. For post-processing, we discuss how the loads on the ramp can be extracted and
plotted. The third and final example demonstrates the high-temperature gas modelling
available in Eilmer for aeroshell simulations. This example simulates multi-temperature
reacting flow over a sphere fired into air. We import a grid generated by an external tool
(GridPro) and show the use of shock-fitting, so that we get excellent grid tailoring of the
structured grid and the shock.

3.1 Workflow and the command-line interface

In broad steps, the workflow for an Eilmer simulation is:

1. Pre-processing which includes gas model preparation, grid preparation, and config-
uring a flow field description (boundary conditions and initial conditions);

2. Running the simulation; and
3. Post-processing which may include visualisation, extraction of slice or streamline

data, extraction of history data or extraction of loads data.

Input for Eilmer is via text files. Those text files are in the Lua programming language.
This gives us a programmable environment for our input for free. 3

3Free for the user. There is backend developer cost to maintain the user input interface, but at least
we aren’t trying to maintain a programming language as well!
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3.1 Workflow and the command-line interface 3 SIMULATION EXAMPLES

Eilmer is a command-line driven program: commands are used to enact the workflow just
described. The command-line interface (CLI) in Eilmer 5 is of the form
“noun action options/arguments”. Not all commands require options or arguments. The
noun is lmr to invoke the Eilmer 5 program. You may be familiar with this type of CLI
from other tools such as git, mercurial and the package managers apt, dnf and brew.

Let’s look at an example for the Eilmer prep-grid command. In its simplest form, we
can invoke that command using:

$ lmr prep-grid

With no options provided, this command will work with the default input file job.lua.
Had we prepared a different grid input file called grid.lua, then the command would be:

$ lmr prep-grid --job=grid.lua

In this case, we were explicit with the job script name because we used a non-default.

Help is available using the help command. It will display a list of commonly used com-
mands.

$ lmr help

You can also get a list of all available commands by passing the “-a” option:

$ lmr help -a

Help for a specific command can be requested by passing the command name4 as argument:

$ lmr help prep-grid

In the interests of reproducible research, we provide revision-id and version commands
so that users have a convenient way to record which repository revision of Eilmer they
are using for their production simulations, and which compiled version options they had
enabled. For this tutorial, we used:

$ lmr revision-id

7975e97c

$ lmr version

Eilmer 5.0 compressible-flow simulation code.

Revision-id: 7975e97c

Revision-date: Wed Mar 20 20:16:10 2024 +1000

Compiler-name: ldc2

Build-date: Wed 20 Mar 2024 20:18:09 AEST

Build-flavour: fast

Profiling: omitted

We will show more usage of the commands in the tutorial examples.

4If you were to type lmr help help the whole system might descend into a recursive nightmare.
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3 SIMULATION EXAMPLES 3.2 Supersonic inviscid flow over a sharp cone

3.2 Supersonic inviscid flow over a sharp cone

Files for this example are located in
gdtk/examples/lmr/2D/sharp-cone-20-degrees/sg-minimal.

We will teach you how to simulate the Mach 1.576 flow of ideal air over a sharp cone with
a half-angle of 20◦ using Eilmer. This example has long been used as a starting point for
new users. In this example, you will learn how to:

• prepare a simple gas model for ideal air;
• generate a two-block domain with structured grids;
• configure flow solver settings to run the transient solver;
• run a simulation; and
• post-process the results to generate VTK files for viewing.

Our simulation goal is shown in Figure 2(a). We wish to simulate the conditions from
Maccoll (1937) in which a shadowgraph was taken of a 2-pound projectile in supersonic
flight. In Figure 2(a), we have suggested a computational domain shown in red. Fig-
ure 2(b) shows the two-block computational domain that corresponds to the red bounded
region in Figure 2(a).

on May 30, 2014rspa.royalsocietypublishing.orgDownloaded from

(a) Fig. 3 from Maccoll (1937) (b) Simulation domain for Eilmer.

Figure 2: (a): A two-pound projectile in flight. A conical shock is attached to the sharp
nose of the projectile. This photograph was published by Maccoll in 1937. The red lines
have been added to demark the region of gas flow for which we will set up our simulation.
(b): Schematic diagram of the simulation domain corresponding to red-bounded region.

3.2.1 Pre-processing

Create a new directory where you would like to work for this example. In this directory,
we will prepare a gas model, grid and flow solver description. For each of those steps, we
will create a text file using your favourite editor and process that file with the appropriate
lmr command.
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3.2 Supersonic inviscid flow over a sharp cone 3 SIMULATION EXAMPLES

WARNING:When creating files, it will be tempting to copy and paste from this document.
Be aware that PDF characters may not translate into a plain text editor as expected.
Classic examples for poor translation are quote characters and ligatures. This will cause
errors when the lmr commands try to process your files. It is recommended you type these
by hand to get a feel for the syntax, or copy the source directly from the examples/ area.

Our gas model is very simple. It is ideal air. The gas model file is correspondingly simple.
Create a filed called ideal-air.lua and place in it:

1 model = "IdealGas"

2 species = {’air ’}

Once created, we are ready to process that file for use by Eilmer. That command is:

$ lmr prep-gas -i ideal-air.lua -o ideal-air.gas

Unsurprisingly, -i indicates the input file; -o indicates the output file. That output file,
ideal-air.gas, is what is used by Eilmer. You may inspect it; it is just plain text.
It contains full information about air properties which has been pulled from our species
database. You may ask why this gas model preparation is a separate process. It seems
like something trivial that could be captured elsewhere in the input. Eilmer provides
more complicated gas models for hypersonic flow modelling that are served best by a
stand-alone preparation process. We do that process too on the simplest of models to
provide a consistent pattern of user interaction.

Next, we prepare the grids. The following is the text from a file we prepared called
grid.lua. As you inspect the file, try to line the constructs up with the schematic in
Figure 2(b).

1 -- grid.lua

2 print("Set up geometry and grid for a Mach 1.5 flow over a 20 degree cone .")

3 --

4 -- 1. Geometry

5 a0 = {x=0.0, y=0.0}; a1 = {x=0.0, y=1.0}

6 b0 = {x=0.2, y=0.0}; b1 = {x=0.2, y=1.0}

7 c0 = {x=1.0, y=0.29118}; c1 = {x=1.0, y=1.0}

8 --

9 quad0 = CoonsPatch:new{p00=a0, p10=b0, p11=b1, p01=a1}

10 quad1 = AOPatch:new{p00=b0, p10=c0, p11=c1, p01=b1}

11 --

12 -- 2. Grids

13 grid0 = registerFluidGrid{

14 grid=StructuredGrid:new{psurface=quad0 , niv=11, njv=41},

15 fsTag=" inflow",

16 bcTags ={west=" inflow "}

17 }

18 grid1 = registerFluidGrid{
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3 SIMULATION EXAMPLES 3.2 Supersonic inviscid flow over a sharp cone

19 grid=StructuredGrid:new{psurface=quad1 , niv=31, njv=41},

20 fsTag=" initial",

21 bcTags ={east=" outflow "}

22 }

23 identifyGridConnections ()

The key steps are:

1. Define some construction points.
2. Use the construction points to define patches.
3. Assemble grids from patches, giving the discretisation in i and j directions as num-

bers of vertices.

In Eilmer, we treat a grid file like most other CFD programs: it is just a series of points
that can be interpreted, in our case, as the corners of finite-volume cells. This means the
grid itself has no information of its relation to the flow domain. To bridge this disconnect,
we require that the user set some information about the grid that can be used later on
when preparing the flow field. In this example, you will see that we set an fsTag to a
string label that will later define the initial flow state in that grid. We actually use a
different initial condition in the two grids: ’inflow’ in grid0; and ’initial’ in grid1.
We define what those labels mean in terms of flow state later on when preparing the flow
field description. When registering the grids, we also set boundary information on the
west boundary of grid0 as an ’inflow’ via the bcTags, and grid1 gets an ’outflow’

set on its east boundary. The remaining unset boundaries will receive a default boundary
condition (WallBC_WithSlip) when we prepare the simulation in a subsequent step.

We are ready to prepare the grid. Issue the following at the command line:

$ lmr prep-grid --job=grid.lua

On your screen, you should see output like:

Set up geometry and grid for a Mach 1.5 flow over a 20 degree cone.

#connections: 1

#grids 2

#gridArrays 0

On successful completion, Eilmer has created a subdirectory called lmrsim. This directory
will contain (almost) all files generated by an lmr command or process as we move through
the workflow. Let’s take a look at what folders and files are produced by prep-grid with
the tree command.

$ tree lmrsim

lmrsim

‘-- grid

|-- grid -0000. gz

|-- grid -0000. metadata

|-- grid -0001. gz

|-- grid -0001. metadata

‘-- grid.metadata

2 directories , 5 files
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3.2 Supersonic inviscid flow over a sharp cone 3 SIMULATION EXAMPLES

The final step in the pre-processing stage is to prepare a flow field description and de-
fine the numerical settings for the simulation. We will focus on a simulation using the
transient solver in this example. The following is the text we prepared in a file called
transient.lua. The file itself is commented (-- in Lua), so hopefully that provides some
explanation.

1 -- transient.lua

2 print("Set up transient solve of Mach 1.5 flow over a 20 degree cone .")

3 --

4 -- 0. Assume that a previous processing has step set up the grids.

5 --

6 -- 1. Domain type , gas model and flow states

7 config.solver_mode = "transient"

8 config.axisymmetric = true

9 setGasModel(’ideal -air.gas ’)

10 initial = FlowState:new{p=5955.0 , T=304.0} -- Pa, degrees K

11 inflow = FlowState:new{p=95.84e3, T=1103.0 , velx =1000.0}

12 flowDict = {initial=initial , inflow=inflow}

13 --

14 -- 2. Fluid blocks , with initial flow states and boundary conditions.

15 -- Block boundaries that are not otherwise assigned a boundary condition

16 -- are initialized as WallBC_WithSlip.

17 bcDict = {

18 inflow=InFlowBC_Supersonic:new{flowState=inflow},

19 outflow=OutFlowBC_Simple:new{}

20 }

21 --

22 makeFluidBlocks(bcDict , flowDict)

23 --

24 -- 3. Simulation parameters.

25 config.max_time = 5.0e-3 -- seconds

26 config.max_step = 3000

27 config.dt_plot = 1.5e-3

28 config.extrema_clipping = false

Here are some things to note about the transient.lua file. The gas model file we
prepared earlier ideal-air.gas now makes an appearance when setting the gas model
on line 9. The fsTags introduced as strings in the grid.lua file are now defined as
FlowStates on lines 10 and 11. These are packed into a table called flowDict for later
use. We also create a bcDict table on lines 17–20. This maps out bcTags in grid.lua to
specific boundary condition objects. There is an important and powerful function call on
line 22: the makeFluidBlocks() function is used to create blocks on our grids and define
boundary conditions and initial conditions. The last part of the transient.lua file is
used to configure some simulation parameters.

We use the prep-sim command as the final step in the pre-processing stage:

$ lmr prep-sim --job=transient.lua
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Here is what should appear on your screen:

Read Grid Metadata.

#connections: 1

#grids: 2

Set up transient solve of Mach 1.5 flow over a 20 degree cone.

Build runtime config files.

Build fluid files.

Finally, let’s look at the state of folders and files on disk at the end of a successful pre-
processing stage:

$ tree lmrsim

lmrsim

|-- blocks.list

|-- config

|-- control

|-- fluidBlockArrays

|-- grid

| |-- grid -0000. gz

| |-- grid -0000. metadata

| |-- grid -0001. gz

| |-- grid -0001. metadata

| ‘-- grid.metadata

|-- mpimap

‘-- snapshots

|-- 0000

| |-- fluid -0000. gz

| |-- fluid -0001. gz

| |-- grid -0000. gz

| ‘-- grid -0001. gz

‘-- fluid.metadata

4 directories , 15 files

We are ready to run our first simulation!

3.2.2 Running a simulation

Let’s just do it and then talk about it.

$ lmr run

An abbreviated version of what appears on screen is:

Eilmer simulation code.

Revision-id: 7975e97c

Revision-date: Wed Mar 20 20:16:10 2024 +1000

Compiler-name: ldc2

Parallel-flavour: shared

Number-type: real

Build-flavour: debug

Build-date: Wed 20 Mar 2024 20:18:09 AEST

Heap memory used: 13 MB, unused: 9 MB, total: 22 MB (22-22 MB per task)

Step= 20 t= 1.201e-04 dt= 6.003e-06 cfl=0.50 WC=0.1 WCtFT=6.0 WCtMS=22.1

Step= 40 t= 2.401e-04 dt= 6.003e-06 cfl=0.50 WC=0.3 WCtFT=5.1 WCtMS=19.2

...

...

Step= 720 t= 4.322e-03 dt= 6.003e-06 cfl=0.50 WC=5.6 WCtFT=0.9 WCtMS=17.8

Step= 740 t= 4.442e-03 dt= 6.003e-06 cfl=0.50 WC=5.7 WCtFT=0.7 WCtMS=17.5
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+ Writing snapshot at step = 750; t = 4.502e-03 s +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Step= 760 t= 4.562e-03 dt= 6.003e-06 cfl=0.50 WC=5.9 WCtFT=0.6 WCtMS=17.3

Step= 780 t= 4.682e-03 dt= 6.003e-06 cfl=0.50 WC=6.0 WCtFT=0.4 WCtMS=17.0

Step= 800 t= 4.802e-03 dt= 6.003e-06 cfl=0.50 WC=6.1 WCtFT=0.3 WCtMS=16.8

Step= 820 t= 4.922e-03 dt= 6.003e-06 cfl=0.50 WC=6.2 WCtFT=0.1 WCtMS=16.5

STOP-REASON: Reached target simulation time of 0.005 seconds.

FINAL-STEP: 833

FINAL-TIME: 0.00500048

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+ Writing snapshot at step = 833; t = 5.000e-03 s +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

What do we notice in the output? The simulation finished by taking 833 steps and got
to a simulated time of 5ms. That end time corresponds to our request config.max_time
= 5.0e-3. What happened to our request for 3000 steps (config.max_step = 3000)?
Seems it was ignored. Well, the stopping criteria will look for maximum steps or maximum
time and stop on whichever comes first.

Another thing to note is that a new snapshot of the flow field was produced at each 1.5ms
(approximately). This corresponds to our request for config.dt_plot = 1.5e-3.

3.2.3 Post-processing to produce VTK files

If our simulation completed successfully, there should be five snapshots in the lmrsim/s-
napshots area. There is the initial condition (0000) plus four more snapshots produced
during the simulation. We can convert all of these snapshots into VTK files with a simple
command:

$ lmr snapshot2vtk --all

When that command concludes, there is a new folder: lmrsim/vtk. In that folder, you can
pick up the fluid.pvd file in Paraview to do some visualisation. Figure 3 shows surface
plots coloured by (a) pressure and (b) velocity in x-direction (with grid overlayed).

Figure 3: Paraview visualisation of supersonic flow over sharp cone at t = 5.0ms. VTK
files produced using lmr snapshot2vtk command.
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3.3 Hypersonic viscous flow over a convex ramp

Files for this example are located in gdtk/examples/lmr/2D/convex-ramp.

This example considers external viscous flow at Mach 12.25 over a convex ramp. It is
a simulation of experiments performed by Mohammadian (1972) in the Imperial College
gun tunnel. New aspects of Eilmer use introduced in this example include how to:

• select a thermochemical nonequilibrium gas model
• use Lua to define a custom path to represent the convex ramp
• request surface loads as output during simulation
• run the solver in steady mode using MPI
• gather loads data and plot results against experiment

It’s time to start a new working directory for this example, a suggestion is to call this
convex-ramp.

3.3.1 Selecting a thermochemical nonequilibrium model for air

The flow produced in the gun tunnel is cold; like 42 Kelvin cold! But, there is also an
elevated vibrational temperature due to freezing in the nozzle. So it would seem we should
account for this thermal nonequilibrium in the free stream in our simulation. It turns out
that the thermochemical activity over the convex ramp is not large. Nonetheless, we will
select a gas model that accommodatates two-temperature thermodynamics. To model
this, we take a copy of a two-temperature air gas model from the examples/ area. We
are going to talk about this in more detail in the next example. For now: take a copy,
run prep-gas, and set the model in the Eilmer input file.

$ cp ~/gdtk/examples/air-chemistry-2T/air-5sp-gas-model.lua .

$ lmr prep-gas -i air-5sp-gas-model.lua -o air-5sp-2T.gas

NOTE: There is a trailing dot (.) on the first command above indicating to copy to the
current directory.

The output file needs to appear in the Eilmer job file when setting the gas model. Take
a look in steady.lua at lines 13–16.

nsp, nmodes = setGasModel(’air-5sp-2T.gas’)

print(’5-species, 2T air model: nsp= ’, nsp, ’ nmodes= ’, nmodes)

inflow = FlowState:new{p=p_inf, T=T_inf, T_modes={T_vib,}, velx=u_inf,

massf={N2=0.767,O2=0.233}}

We set the gas model and hang on to the counts of species and energy modes as variables.
The next line prints them to screen as a sense-check for us during the preparation. Note
also the FlowState object. The vibrational temperature is set in a table for T_modes.
There is one entry here, but if we hade more nonequilibrium modes, we would set their
temperatures in that table. The gas composition is set by mass fractions in the table
massf. We did not specify values for N, O and NO; they will be set to 0.0 automatically
because they were unspecified.
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3.3.2 Customized geometry to represent the ramp

Figure 4 shows the geometry, domain and topology to be created in this example. Mostly,
there are straight-line segments. However, the bottom surface representing the ramp is
interesting. Let’s discuss how this is specified in the grid.lua file for this example.

Figure 4: Convex ramp in hypersonic flow. Ramp geometry, domain and block topology.

Mohammadian’s description for the ramp is:

• initially straight at 18◦ until x = 3 inches;
• then a faired section defined by

g = 0.0026s4 − 0.0211s3

where s and g are the local coordinates, in inches, rotated 18◦ to the x, y coordinates;
• the fairing second derivative is zero at both joining points: s = 0 and s = 4.058;
and

• the final straight section is at -1.9◦ in the (x, y) plane, away from the free-stream
flow direction.

Inspect the grid.lua file. The ramp geometry is specified in a parametric form (from
t = 0 to t = 1) in the user-supplied function ramp(t). Path objects in Eilmer are
parameterised from 0 → 1. To help make sense of the ramp() function, there are two
observations worth noting: 1) the t2 parameter converts t to a parameter x in inches;
and 2) Eilmer requires dimensions in S.I. units, so we convert coordinates to metres at
the end of the function.

You can do the grid preparation at this point: lmr prep-grid --job=grid.lua

3.3.3 Requesting loads output on surfaces

Eilmer does not output loads during a simulation unless requested. For this example,
the loads on the ramp are of interest. On line 24 in steady.lua, we added a group tag
‘loads’ to the no-slip boundary condition object. This tag name is the default for writing
loads during a simulation. The tag is not all that is required. We need to tell Eilmer to
write loads and how often. For this steady mode simulation, we configure that on lines
54 and 55:

write_loads = true,

steps_between_loads_update = 20,
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The result of these flags is that every 20 steps the surface loads on the no-slip ramp will
be written into the lmrsim/loads folder.

Now, we are ready to do the simulation preparation: lmr prep-sim --job=steady.lua

3.3.4 Running the solver with MPI

This example used FluidBlockArrays to carve the domain into 28 blocks as shown
coloured in Figure 4. If we have a machine with 28 cores or more, we could run one block
per core in a parallel manner. If we have fewer cores than blocks, then we can distribute
groups of blocks onto each core when running in parallel. The laptop we used for testing
had 8 cores available (but some as hardware threads). In line 28 of steady.lua, we re-
quested a distribution of the 28 blocks across 8 tasks: mpiDistributeBlocks{ntasks=8}.
You may think of each task as occupying a core. This simulation is ready to run on 8
MPI tasks. Using OpenMPI, we launch with the mpirun command as follows:

$ mpirun --use-hwthread-cpus -np 8 lmrZ-mpi-run

Note this command breaks the pattern we are used to with the Eilmer CLI. This is
because we need to invoke the OpenMPI apparatus for launching the executables for
parallel processing.

For this example, the solver_mode is steady. This means the output to screen is quite
different from the transient mode. The transient mode gives progress updates in terms
of simulated time. The steady mode gives progress updates in terms of convergence as
measured by drop of the residuals.

3.3.5 Post-processing loads

For this configuration, the loads are written every 20 steps. They appear in enumer-
ated directories under lmrsim/loads/ as 0000/, 0001/, etc. The loads at the end of
a converged simulation will be in the final numbered directory. In each of those direc-
tories, loads are split by block and boundary. To plot these, it is convenient to gather
the data in a single big array and then use a plotting tool. We find the Python pack-
ages pandas and matplotlib are useful for manipulating data and plotting. We have
provided an example script that plots loads and properties at the ramp surface called
plot_surface_conditions.py. This script also includes Mohammadian’s experimental
results on the plot. The resulting plot is shown in Figure 5.

$ python3 plot_surface_conditions.py [--save-figure]
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Figure 5: Comparison of Eilmer numerical simulation on a relatively coarse grid with
experimental results of Mohammadian (1972) for surface heating and pressure load.

3.4 Multi-temperature reacting air flow over a sphere

Files for this example are located in gdtk/examples/lmr/2D/sphere-nonaka.

Nonaka et al. (2000) performed a series of experiments to measure the shock standoff on
spheres fired into air in a ballistic range, with an aim to study flight in the intermediate
hypersonic regime (Mach 8–15). This final example simulates one of those experiments
and shows a comparison to the measurements of shock shape. In this example, you will
learn how to:

• read in a grid prepared in an external tool, GridPro;
• configure chemical reactions and energy exchange mechanisms;
• configure the simulation to use a shock-fitting boundary;
• use custom post-processing to extract the shock shape; and
• use the slicing tool to extract data along the stagnation streamline.

3.4.1 Reading an externally prepared grid

Figure 6 shows a body-fitted structured grid for an axisymmetric simulation that we
prepared in GridPro. This grid is a starting point for a simulation using shock-fitting
mode, so the grid will move as the shock boundary moves. The import of the grid is a
simple function call (shown below) that takes the name of the grid file as a string and a
scale. Here we use scale 1.0 because the grid dimensions were prepared in metres.

gproGrid = "gridpro/sphere-orig.grd"

grids = importGridproGrid(gproGrid, 1.0)
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Figure 6: Starting grid for sphere simulations prepared with GridPro.

3.4.2 Configuring thermochemistry

In the convex ramp example, we used a two-temperature gas model for air, but we did
not permit any thermochemical activity because we made the modelling judgement that
things were rather cold. Not so for this blunt body example at 3.5 km/s. We want to
model chemical reactions and thermal nonequilibrium via energy exchange.

We generally have a headstart for doing thermochemical nonequilibrium modelling with
Eilmer: we can look in the gdtk/examples/kinetics/ area to see if there are input
files that suit our situation. We are in luck for this case. We can select from the files
in gdtk/examples/kinetics/air-chemistry-2T. Let’s take a copy of the following files
and place them in our working directory:

$ cp ~/gdtk/examples/air-chemistry-2T/air-5sp-gas-model.lua .

$ cp ~/gdtk/examples/air-chemistry-2T/GuptaEtAl-air-reactions-2T.lua .

$ cp ~/gdtk/examples/air-chemistry-2T/air-energy-exchange.lua .

The Gupta air chemistry scheme can be used for 5-species chemistry, 7-species and 11-
species. We will not need more than 5-species here in this speed/density regime, so let’s
select that. Edit line 20 in GuptaEtAl-air-reactions-2T.lua and change the 11 to a 5.
There are notes in that file about the options available and how it works.

Now we are ready to prepare the thermochemistry files. We have seen the prep-gas

command before. Additionally, we will use prep-reactions and prep-energy-exchange.
The following commands need to be issued in the order shown because outputs from one
are used in subsequent commands:

$ lmr prep-gas -i air-5sp-gas-model.lua -o air-5sp-2T.gas

$ lmr prep-reactions -g air-5sp-2T.gas -i GuptaEtAl-air-reactions-2T.lua -o air-5sp-6r-2T.chem

$ lmr prep-energy-exchange -g air-5sp-2T.gas -r air-5sp-6r-2T.chem -i air-energy-exchange.lua -o air-VT.exch
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The output files are needed as settings in the Eilmer job file. We showed how to set the
gas model and flow state in the convex ramp case. The extra configuration required for
setting to active the chemical reactions and energy exchanges are lines 21–23 in job.lua.

config.reacting = true

config.reactions_file = ’air-5sp-6r-2T.chem’

config.energy_exchange_file = ’air-VT.exch’

3.4.3 Configuring the solver for shock-fitting mode

In the input script job.lua directly beneath the grid import, we register a FluidGridAr-

ray. In general, a FluidGridArray is used to carve the domain of a structured grid into
small conforming blocks. We saw that in the previous example with the convex-ramp.
Here there is an additional piece of information set when registering the FluidGridArray:
we also set shock_fitting=true. We took care to set a shock-fitting inflow on the west
boundary. It is a restriction when using Eilmer for shock-fitting that the west boundary
is the shock-fitting inflow boundary. You can see those settings in the snippet here:

registerFluidGridArray{

grid=grids[1],

nib=1, njb=njb,

fsTag=’initial’,

shock_fitting=true,

bcTags={west=’inflow_sf’, north=’outflow’, east=’wall’}

}

The settings just described take care of grid configuration and boundary conditions for
using shock-fitting mode. We set three more configuration settings to enable shock-fitting.
These relate to the time integration:

config.grid_motion = "shock_fitting"

config.gasdynamic_update_scheme = "moving_grid_2_stage"

config.shock_fitting_delay = body_flow_time

The output from this shock-fitting simulation is shown in Figure 7 which displays the
(transrotational) temperature field. The “before” image is from early in the simulation:
flow has developed, no grid motion driven by shock-fitting has taken place yet. The“after”
image is the final state for the simulation after boundary and grid motion have occurred
and when the shock and flow field have steadied.

3.4.4 Extracting the shock shape

Figure 8 shows the shock shape extracted from the Eilmer at the final steady state and
compares to the measurements by Nonaka et al. (2000). In this shock-fitting mode, the
shock shape can be determined by extracting the grid vertex locations directly from the
shock-fitting boundary. We have done that using a custom script called shock-shape.lua,
which you are encouraged to inspect. We can process that custom script as follows:

$ lmr custom-script --job=shock-shape.lua
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(a) (b)

Figure 7: Temperature field at times (a) at 4µs, prior to any grid motion; (b) at 20µs,
after grid motion settles.

3.4.5 Slicing the flow field

When people perform blunt body calculations, they often like to look at the flow properties
along the stagnation streamline. Let’s close out this example showing how that is done.
Eilmer provides a slice-flow command for extracting slices or lines of data. It does
require some knowledge of your grid indices and directions to use it correctly. Here we call
the slice-flow command to produce a data file with temperatures along the stagnation
streamline.

$ lmr slice-flow --final --slice-list="0,:,0,0" --names="T,T-vibroelectronic" \

--output=stagnation-profile-T.dat

The --slice-list option is where grid/blocking knowledge is required. This particular
example with string "0,:,0,0" reads: for block 0, for all i indices, at j=0 and at k=0.
We needed the knowledge that block 0 was against the symmetry plane, that i index ran
from shock to body so we wanted all cells along that index direction, and that j=0 was
the common j-index for cells along the symmetry plane. (k=0 has no effect here, but is
required for the generality of 3D grids.) You can find that information by poking around
in Paraview and inspecting cells. The --names option allows the user to select from the
flow field only those quantities of interest. In the command above, we requested the two
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Nonaka et al. (2000) measurements.
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temperatures. We ran this slice-flow command a second time to extract species mass
fractions also. The stagnation streamline properties are plotted in Figure 9, with the body
at x/Rn = 0 and the shock at x/Rn ≈ 0.1.
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Figure 9: Properties along stagnation streamline for a sphere fired into air, taken at final
simulation time. (a) temperatures; (b) mass fractions of species.
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