Progress of the Eilmer 4 transient flow solvers

Peter Jacobs, Rowan Gollan, Kyle Damm
The University of Queensland

29 Aug 2019

Background CFD ideas (for new members of CfH)
When and why?
How?

Progress 2018-2019
MPI flavour of transient solver
Complex numbers
One-sided flux calculator and moving grids
Complex 2D (unstructured) grids

When should we compute hypersonic flows?

Free-stream

M>>1

Spacecraft

AN
N\

Shock layer,

Detail ‘A’

The flow physics are modelled well,
but interactions are complex.

Physical experimentation provides
insights but has limitations, such as:
scaling (time and length), boundary
conditions, quantification of
uncertainties, expense.

Computer simulation complements
physical experiments, and vice versa.

Analysis via computer simulation
(might) substitute when we don't have
suitable experience.

Computer analysis is good for ‘what-if’
studies, and design.

What | cannot simulate, | do not understand.

What | cannot create,
| do not understand

- Richard Feynman

P> We have to understand nature, just enough to deal with it. —
Ray Stalker.

Compressible flow simulation via finite volumes

» What we compute: solution to the conservation equations for
a viscous compressible flow

» How we compute: discretise in space and time

» Start with a known state and boundary conditions, then use
an update algorithm
» Convective fluxes: reconstruction-evolution approach,
interpolation order, flux calculators, limiters
» Viscous-transport fluxes: gradient estimation
» Time integration

Form of the equations to solve

Integral form of a conservation law
A general conservation law for quantity U is written in integral

form as
o) = =2\ .
&/VUdv_—fS(FC—Fd).ndA+/Vde, (1)

where S is the bounding surface and 7 is the outward-facing unit
normal of the control surface.

What are the quantities U? -

o F
The conserved quantities in a \
compressible flow are mass, <
momentum and energy. In two
dimensions, we can group these
conservation equations with vector
notation.

Surface, S

Volume, V

Integral form of conservation laws in vector form

For an ideal gas in two dimensions, the vector of conserved quantities is:

p
U= | P
puy
pE
with convective flux vector
pUx
2
= pux+p ®
Fc = puy Uy I+
pEux + pux
and diffusive flux vector
0
Fq= oo i+
Tyx

T Ux + Tyx Uy + qx

The vector of sources Q is typically zero.

puy
plx Uy 2
puy +p
pEuy + puy

0

Ty
Tyy
Txy Ux + Tyy Uy + qy

(2)

(4)

Other necessary (and optional) pieces...

Thermodynamic model of the gas
Finite-rate chemical kinetics

Radiation energy exchange (yet to port)
Boundary conditions

Features:

| 2

vVvVvvyVvYvVvyyvyy

3D from the beginning, 2D as a special case

structured- and unstructured-meshes for complex geometries
moving meshes

coupled heat transfer

shared-memory parallelism for multicore workstation use
block-marching for speed (nenzfr and nozzle design)
GPGPU processing for thermochemistry

MPI distributed-memory parallelism

Features — 1/2

» 2D/3D compressible flow
Time: 20.0 us simulation.

» Gas models include ideal, thermally
perfect, equilibrium (LUT).

—

v-*r‘? : » Finite-rate chemistry.
| _E » Multi-temperature and
state-specific thermochemistry.

C
- K

» Inviscid, laminar, turbulent (k-w)
flow.
» Solid domains with conjugate heat transfer in 2D.

» User-controlled moving grid capability, with shock-fitting
method for 2D geometries.

» Dense-gas thermodynamic models and rotating frames of
reference for turbomachine modelling.

Features — 2/2

» Transient, time-accurate, using explicit Euler,
PC, RK updates.

> Alternate steady-state solver with implicit
updates using Newton-Krylov method.

» Parallel computation via shared-memory on
workstations, and using MPI on a cluster
computer.

» Multiple block, structured and unstructured
grids.

» Native grid generation and import capability.

» Unstructured-mesh partitioning via Metis.

» en.wikipedia.org/wiki/Eilmer_of_Malmesbury

» Gas model calculator and compressible flow relations.

en.wikipedia.org/wiki/Eilmer_of_Malmesbury

Documentation

» Web site: cfcfd.mechmining.uq.edu.au/eilmer
» Source code: bitbucket.org/cfcfd/dgd

>
>
>
>

>

SCHOOL FOR
THE GIFTED

Documentation in the Eilmer 4.0 guides:

Guide to the transient flow solver
Guide to the basic gas models package
Guide to the geometry package

Formulation of the transient flow
solver

Reacting gas thermochemistry

Gary Larson, The Far Side

cfcfd.mechmining.uq.edu.au/eilmer
bitbucket.org/cfcfd/dgd

Development progress, in lines of source code.

Source code and documentation development
300000

e3code | O
| edcode =
o 250000 e3doc O O o
] m]
o 200000 | o
'8
S 150000 | o] LI
o
]
§ 100000 - u
5 o) an
50000 |- o © o um
]
0
g2 g ere2e
o o o o o o o o o o o
§ ¢ ¢ ¢ 9 9 9 o9 o9 9
5 55 5 35 35 35 35 35 35 5
S5 5 & & 5 © © 5 ©o o ©°
Date

Margaret Hamilton
(1969) with Apollo
Guidance Computer
source code, assembly,
~11,000 pages.

At 60 lines per page, the Eilmer4 code is
equivalent to a 2500 page document.

Development progress, maturity of code.

> Memory clean-up; but we still have some margin with
dynamic arrays.

» Code can be built with reduced-capabilities.
make DMD=1dmd2 FLAVOUR=fast WITH.MPI=1 \
MULTI_SPECIES GAS=0 MULTI T_GAS=0 \
MHD=0 KOMEGA=0 install

» Most core code is now @nogc. This reduces the number of
temporary copies.

» Improved run time. Eilmer4 is fast as, or faster than the
Eilmer3 code that was written in C4++.

» We catch and handle (more carefully) a larger range of
exceptional situations than we did a year ago.

Parallel calculation with MPI

» First of two big development items in the transient flow solver
for 2018.

» Blocks partition the flow domain into connected pieces and
compute the flow solution in the blocks in parallel.

P This is how we like to keep our workstations busy in 2019.

> logfile.npi
3.mpi

+x run.sh

Simulation run times across the decades.

Time: 5.002 ms

» 1991 SUN workstation with Sparc-2 processor
» 5.36 hours for 2410 steps on a 100 x 100 mesh
» 0.8 milliseconds/cell/predictor-corrector-update
» 2019 Dell Optiplex 990 with Intel i7 (4 cores, 8 threads)
» 37.2 seconds for 2080 steps on a 100 x 100 mesh
» 1.79 microseconds/cell /predictor-corrector-update
» 0.7 seconds for 820 steps on a 40 x 40 mesh (usual test case)
» 0.53 microseconds/cell/Euler-update (benefit of cache?)

Complex numbers are simple in D

» Second of the big development items for the transient flow
solver in 2018.

» The malleability of D code allowed us to experiment with a
redefinition of our numbers.

6 module nm.number;

7

8 | import std.math;

9 | dimport nm.complex;

10

11 version(complex_numbers) {

12 alias number = Complex!double;
13 } else {

14 alias number = double;

15| }

Using complex numbers

» Once numbers and operations/functions are defined, proceed
as usual.

» Derivative can be evaluated a % = Im(f(x 4 ih))/h, without
concern for round-off error as h becomes small (say, 10720).

» Sample code from fvcell.d below.

» Rowan and Kyle will tell you how to use these derivatives in
the steady-state and adjoint solvers.

705 // Time-derivative for Mass/unit volume.

706 number integral = 0.0;

707 foreach(i; 0 .. nf) { integral -= myF[i].mass*area[i]; }
708 my_dUdt.mass = vol_inv*integral + Q.mass;

709

710 // Time-derivative for Momentum/unit volume.

711 number integralx = 0.0; number integraly = 0.0; number integralz = 0.0;
712 foreach(i; 0 .. nf) {

713 integralx -= myF[i].momentum.x*area[i];

714 integraly -= myF[i].momentum.y*area[i];

715 if ((myConfig.dimensions == 3) || (myConfig.MHD)) {
716 // require z-momentum for MHD even in 2D

717 integralz -= myF[i].momentum.z*area[i];

718 }

719 }

One-sided flux calculator

» Main development item (for PJ) in 2019, prompted by
moving-grid simulations.

» Historically, code had used ghost-cells to implement all
boundary conditions because it simplified the interpolation
and flux calculation code.

» With the natural law of conservation of evil, this caused the
boundary conditions to become more complex.

> So, let's not pretend that there is gas where there is none.

» This makes the code for interpolation a bit more complicated
because it needs to adjust to lower order (with fewer data
points) as an external boundary is approached.

One-sided flux calculator — theory 1 of 2

» Consider local flow region (R), close to a solid boundary on
the left.

» One-dimensional flow, normal to boundary, is determined by a
simple wave process into the (ideal) gas on the right.

> Given state of near-wall gas and wall velocity, v*, assume an

isentropic wave to compute pressure at the wall.

p= (V*_U)Q_/}< 1/7)

where Ug is the Riemann invariant Ug = vg — 1

17 2v/(v=1)
2

» This happens to be the core of gas-dynamic calculation within
the L1d flow solver.

One-sided flux calculator — theory 2 of 2

» If there is a pressure rise, assume
that a shock exists and solve the

shock relations iteratively to get
*

p*.

» Given conditions at the boundary,
p*, v*, write the mass, momentum
and energy fluxes as

0, p*, p".v*

simples.

Example 1 — constant-velocity piston pushing gas

- T

piston fixed end

» This is the simplest moving-grid simulation; a simple grid
motion is imposed and there is no feedback from the gas flow.

> With the use of recently-code features, we can simplify
Rowan's piston example from 2018 seminar.

» The one-sided flux calculators have direct application at all
walls, moving or stationary, so that we no longer need to
define our own flux calculation at the piston face.

» We have more convenient functions for interpolating grid
velocities.

Constant-velocity piston pushing gas — input script

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

-- Geometry, grid and block setup.
=0.5; H=0.1

-- Gas region that drives piston.

patch® = CoonsPatch:new{p00=Vector3:new{x=0, y=0},
plo=Vector3:new{x=L, y=0},
pll=Vector3:new{x=L, y=H},
pO0l=Vector3:new{x=0, y=H}}

grid® = StructuredGrid:new{psurface=patch®, niv=51, njv=3}

b1lk®@ = FluidBlock:new{grid=grid@, initialState=initial,

bcList={west=WallBC WithSlipl:new{}}
}

-- Simulation control parameters

config.gasdynamic_ update scheme = "moving grid 1 stage"
config.grid motion = "user defined"
config.udf grid motion file = "grid-motion.lua

> WallBC_WithSlipl is a boundary condition that does not have

ghost cells. WallBC_WithSlip is an alias.

» WallBC_WithSlip0 uses ghost cells (assuming zero grid speed).

Constant-velocity piston pushing gas — grid motion

e

HFoOoWOWoOO~NOU A WNRK

v

-- Authors: Rowan J. Gollan & Peter J.
-- Dates: 2017-01-04 -- 2019-05-21
zero

= Vector3:new{x=0, y=0}
pSpeed =

Vector3:new{x=293.5, y=0}

function assignVtxVelocities(t, dt)
local blkId = 0
-- Corner labels - pooO ple pll poOl
setVtxVelocitiesByCorners(blkId, pSpeed, zero, zero, pSpeed)
end

Several functions available to interpolate grid velocities to all
vertices.

If none of those are suitable, you may set the velocity of
individual vertices as Rowan had done last year.

Constant-velocity piston pushing gas — result at t=0.6ms

Temperature in chamber.
420

400 +

380 -

360

340 -

T.K

320

300 +

280

260 L L L L L L
0.15 0.2 0.25 03 0.35 0.4 0.45 0.5

Temperature profile for
user-defined flux calculator that
uses cell pressure.

Temperature in front of piston.

420

380

360

340

T, K

320

300

280

260 L L L L L L
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Temperature profile for one-sided
flux calculator. Smaller wobbles
are better!

Example 2 — piston in tube, pushed by gas

| 2

>

>

Put piston on right end of gas slug and let the gas expand to
the right.

Add piston dynamics so that the simple grid motion responds
to the gas flow.

Need the gas force on the piston face to compute piston
acceleration.

Retain the dynamic state (x, v) of the piston which is
updated by the user-defined supervisory function at the start
of each time step.

Communicate the piston state to the user-defined function
that sets the grid motion.

Piston in tube — input script

22 -- Geometry, grid and block setup.

23 -- Gas region that drives piston.

24 | driver_patch = CoonsPatch:new{p00=Vector3:new{x=0, y=0},

25 ple=Vector3:new{x=L1l, y=0},

26 pll=Vector3:new{x=L1l, y=H},

27 p0l=Vector3:new{x=0, y=H}}

28 | grid0@ = StructuredGrid:new{psurface=driver patch, niv=101, njv=3}
29

30 blk® = FluidBlock:new{

31 grid=grid®, initialState=initial,

32 bcList={east=WallBC _WithSlipl:new{group="'pistonUpstream'}}
33| }

43 -- Calculate the projectile dynamics in user-defined functions
44 -- but using loads computed by the flow solver.

45 | config.udf supervisor file='udf-supervisor.lua’

46 | config.compute run time loads = true

47 | config.run_time_loads_count =1

48 | run_time_loads={

49 {group="pistonUpstream", moment centre=Vector3:new{x=0, y=0}},
50

51 -- Dimension userPad for storing piston position and velocity.
52 | config.user_pad_length = 2

53 | user _pad data = {0, 0}

Piston in tube — run-time-supervisor script

5| pMass = 1.0 -- kg
6
7 | function atTimestepStart(sim time, steps, dt)
8 -- Unpack current piston state.
9 local x = userPad[1]
10 local xdot = userPad[2]
11 -- Get the surface loads on the piston.
12 local upstreamForce, upstreamMoment = getRunTimelLoads("pistonUpstream")
13 -- Acceleration of the piston.
14 local xdotdot = upstreamForce.x*2*math.pi / pMass
15 -- Update piston state using simple Euler update.
16 X = X + xdot * dt
17 xdot = xdot + xdotdot * dt
18 -- Save data to userPad for vtxSpeed Assignment in grid-motion.
19 userPad[1] = x
20 userPad[2] = xdot
21 return
22 end

» The loads on the piston face are computed internal to the
gas-dynamics code and can be called up by group name.

» Use a = F/m and an Euler update for piston state.

» Put the new piston state into the userPad array.

Piston in tube — grid motion

-- Authors: Rowan J. Gollan, Fabian Zander, Peter J. Ingo J.
-- Date: 2017-01-04 -- 2019-05-21

function assignVtxVelocities(t, dt)

local xdot = userPad[2]

local zeroVel = Vector3:new{x=0, y=0}

local pSpeedVec = Vector3:new{x=xdot, y=0}

local blkId = 0

setVtxVelocitiesByCorners(blkId, zeroVel, pSpeedVec, pSpeedVec, zeroVel)
end

QUOVWoONOUIAE WN

=

» Recover the current value of piston velocity from the userPad
array.

» As noted in the comments, there were a lot of cooks in the
kitchen.

Piston in tube — result over 40ms

velocity, m/s

300

250

200

150

100

Piston trajectory, 1 FluidBlock

50 |7

Eilmer
analytic

2 3 4 5 6
position, m

Complex 2D grid — Defining the flow region with SVGPath

labels = {-- "bounding box",

"TOP_BAR", "MIDDLE BAR", "LOWER BAR"}
svgStrings = {
-- "M-2.0,-2.0;h9.0;v9.0;h-9.0;2",
'M1.0,4.0;h2.5;91.25,0.0 1.5,1.0;h-2.5;9-1.25,0.0 -1.5,-1.0;2",
"M0.5,2.0;h1.5;91.25,0.0 1.5,1.0;h-1.5;9-1.25,0.0 -1.5,-1.0;2",
"M0.0,0.0;h2.5;9q1.25,0.0 1.5,1.0;h-2.5;9-1.25,0.0 -1.5,-1.0;Z"

pTag, cTag, lTag = 4, 4, 1

for i,svgStr in ipairs(svgStrings) do
svgPth = SVGPath:new{path=svgStr}
pTag, cTag, lTag, gmshStr = svgPth:toGmshString(pTag, cTag, lTa¢
f:write(gmshStr)

end

Little language to define paths in "Scalable Vector Graphics”
M X,y move absolute; Z close path

h x horizontal line relative to start point

q x1,y1 x2,y2 quadratic curve relative to start point

So far, have implemented MmLIHhVvQqCcZ

Complex 2D grid — delegate grid generation to Gmsh

Gmsh- pet gmsh. txt

L&l Modules

G|

> Mesh = Define = 2D to get mesh of triangle elements

Geometry
HE1 Mesh

Define
1D

2D

3D

Optimize 3D

Optimize 3D (Netgen)
Set order 1

Set order 2

Set order 3

High order tools
Inspect

Refine by splitting
Partition

Unpartition

Convert old partitioning
Smooth 2D

Recombine 2D
Reclassify 2D

Delete

Save

Solver

» Mesh = Define = Recombine 2D to get mesh of quads

m]

=

it
)
»
i)

Complex 2D grid — simulation script

19 -- Define the flow domain using an imported grid

20 | nblocks = 4

21 grids = {}

22 for i=0,nblocks-1 do

23 fileName = string.format("block %d icon-gmsh.su2", i)

24 grids[i] = UnstructuredGrid:new{filename=fileName, fmt="su2 t", scale=1.0}

25| end

26

27 my_bcDict = {INFLOW=InFlowBC_Supersonic:new{flowState=inflow,
label="inflow-boundary"},

28 OUTFLOW=0utFlowBC_Simple:new{label="outflow-boundary

29 SLIP_WALL=WallBC_WithSlip:new{},

30 METIS_ INTERIOR=ExchangeBC MappedCell:new{cell mapping from file=true}}

31

32| blks = {}

33 | for i=0,nblocks-1 do

34 blks[i] = FluidBlock:new{grid=grids[i], initialState=inflow, bcDict=my bcDict}

35| end

» Have divided the Gmsh grid into 4 blocks using Kyle's Metis

partitioner.

» Unstructured grids are imported as SU2 files.

Complex 2D grid — simulation result after 40ms

Time: 5.003 ms

» Run time 94.3 seconds, 660 steps, on Dell Optiplex 990, 4
cores.

Complex 2D grid — Fluidic oscillator, fuel injector

L7TEe0ss
""0“:“‘:’0
SRR
¢
S

DX
o

Jv
Ko<
SIS

e
£

OSIKS
S
S

TSRS

(RS

pt
5
S

i
“:“

» US Patent 4231519A Fluidic oscillator with resonant inertance
and dynamic compliance circuit. Inventor: Peter Bauer

» Original application to the production of liquid sprays.

» Might allow a fuel jet to penetrate more widely.

[} = =

N

Complex 2D grid — Fluidic oscillator, fuel injector

Time: 0.970 ms

» This is a 2D simulation that might be relevant to a 3D slot
injector where the slot is aligned with the main flow path.
» Animation is more informative for this transient flow.

m]

=

Conclusion: Keep calm and putt.

	Background CFD ideas (for new members of CfH)
	When and why?
	How?

	Progress 2018-2019
	MPI flavour of transient solver
	Complex numbers
	One-sided flux calculator and moving grids
	Complex 2D (unstructured) grids

