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“Classic” calculation process

ESTC and NENZF
“New" codes

nenzf2d: state-to-state with axisymmetric nozzle expansion
nenzfld: state-to-state with quasilD nozzle expansion



Motivation: nozzles with significant nonequilibrium flow.




Classic shock tunnel operation with flow states
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Recipe for estimating flow conditions - 1/2

» Measure State 1 and State 4.
Ideally, we could compute everything from this but it turns out
that practice does not match theory and it takes months of
supercomputer time to do this with any useful precision. So...

» Run the shot and measure V; and ps (and, probably ppjor)-
Should also measure as much as we can reasonably (p2, ps,
etc) noting that, for machines with relatively long shock tubes
(like T4), there is no one-true-value for V4.

» Compute State 2 from State 1 and V4, assuming a normal
shock moving into quiescent gas. Although the gas will react
chemically, we assume that it stays in thermochemical
equilibrium.



Recipe for estimating flow conditions - 2/2

» Compute State 5 from State 2 assuming that the reflected
shock brings the test gas to rest, as described in JD
Anderson's text book. However, the pressure after the
reflected shock is often nothing like that expected from an
ideal computation so...

> Assume an isentropic relaxation from ps down to the observed
equilibrium value ps to get the nozzle-supply condition 5s.

» Take State bs as the stagnation conditions and expand
isentropically to sonic conditions (State 6) at the throat and
further to nozzle-exit conditions. It's probably OK to assume
thermochemical equilibrium down through the throat but not
necessarily further into the low-density and cooler parts of the
nozzle expansion so use a finite-rate thermochemistry model
in this last part.



Codes

for estimating flow conditions (used at UQ)

» ESTC — Equilibrium Shock Tube Conditions — Mclntosh 1968
» NENZF — Nonequilibrium Nozzle Flow — Lordi et al. 1965

» STUBE — Nonequilibrium chemistry in tube and nozzle — Vardavas

1984

Sharc — Axisymmetric, space-marching finite-volume — Brescianini
and Morgan 1992

Surf — Axisymmetric method of characteristics, fast chemistry,
Martin Rein 1992

STN — Shock Tube and Nozzle — Krek and Jacobs 1993
A reimplementation of the interesting bits of ESTC extended to do
the nozzle, for equilibrium air or ideal air/nitrogen.

NENZFr — ESTC+NENZF reloaded 2011 Shock Tubes Workshop.
A combination of ESTCj and an axisymmetric calculation of the
nozzle expansion done with Eilmer3, with block-marching
coordinated by a Python supervisory program.



ESTC: equilibrium shock tube conditions

Malcolm MclIntosh
(1945-2000)

Malcolm K. Mclntosh (1968)

“Computer program for the numerical
calculation of frozen and equilibrium
conditions in shock tunnels.”,

Unpublished Technical Report from the
Department of Physics, Australian National
University.

Good, but old-school, Fortran code.

It is difficult to maintain and you are
responsible for the thermo model. Have seen
some dodgy behaviour, presumably because of
incompatible polynomial pieces.

M.K. Mclntosh (1970) Computer programmes
supersonic real gas dynamics. WRE Technical
Note 180, Australian Defence Scientific
Service, Weapons Research Establishment.



NENZF: nonequilibrium nozzle flow

» J.A. Lordi, R.E. Mates and J.R. Moselle (1966)
Computer program for the numerical solution of
nonequilibrium expansions of reacting gas mixtures. NASA
CR-472

» Fast steady-state analysis produces simple (single number)
values for nozzle-exit flow properties.

» Same thermo model as for ESTC; same responsibilities.

v

Has trouble producing answers for low enthalpies.

> Several versions of the code floating around, even within the
UQ group. It is essentially unmaintained.



NENZF thermo — who's fiddled with my polynomials
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First go at writing modern code for shock tunnel analysis
ESTC;j: Equilibrium Shock Tube Conditions, Junior

> State-to-state gas dynamics relations rewritten in Python.

» Equilibrium thermodynamics with either equilibrium or frozen
chemistry.

» Call out to CEA2 for thermodynamics of a reacting gas in
chemical-equilibrium, so we have outsourced most of the
responsibility for maintaining the polynomials.

» 2002 DLR report appendix

NENZFr: Nonequilibrium Nozzle Flow, Reloaded
» Built on ESTCj and Eilmer3, block-marching mode.

» Python program coordinates running of Eilmer3 on subsets of
blocks.

» Equilibrium thermochemistry via LUT or finite-rate chemistry.
» Thermochemistry uses the CEA2 thermo polynomials.

» 2011 Shock Tubes Workshop presentation.



New codes for shock tunnel analysis
Built on the gas dynamics toolkit library and Eilmer4.

nenzf2d: Nonequilibrium nozzle flow, axisymmetric 2D
> State-to-state calculations to the sonic condition at nozzle throat.
» Eilmer4 simulation of the expanding (supersonic) part of the nozzle.
» Block-marching mode to accelerate the transient 2D solver.

» Run time on order of several hours, depending on resolution and
thermochemical model.

> A better steady-state solver is coming.

nenzfld: state-to-state with quasilD nozzle expansion
» State-to-state calculations to the sonic condition at nozzle throat.

» Steady-state, quasi-one-dimensional calculation of the expanding
part of the nozzle.

» Run time on order of a few seconds, but you need to know when to
stop the expansion.



nenzf2d: Nonequilibrium nozzle flow, 2D axisymmetric

Mach number

» It is just a normal simulation for Eilmer4.

> State-to-state analysis of the equilibrium gas to the sonic
throat condition is handled with a library for shocked and
isentropic flow relations; called from within the input script.

» Supersonic (expansion) part of the nozzle is handled as the
main simulation task.

» Computation time just for nozzle expansion is 2.5 hours on 4
MPI tasks for LUT gas model; nearly 4.5 hours for finite-rate
chemistry.



nenzf2d: state-to-state calculation

Part of the Eilmer4 input script replaces ESTC;.

-- Get flow conditions at the nozzle throat by performing ESTCj-like calculations,
-- using the CEA-backed gas model.

print("shock-tube fill conditions")

gm = GasModel:new{'cea-airl3species-gas-model.lua'}

statel = GasState:new{gm}

statel.p = 200.0e3; statel.T = 300.0

gm:updateThermoFromPT (statel); gm:updateTransCoeffs(statel)

print("normal shock, given shock speed")

Vs = 1678.62

state2, V2, Vg = gasflow.normal shock(statel, Vs)

gm:updateThermoFromPT (state2); gm:updateTransCoeffs(state2)

state5, Vr = gasflow.reflected shock(state2, Vg)

gm:updateThermoFromPT (state5); gm:updateTransCoeffs(state5)

print("Expand from stagnation (with ratio of pressure to match observation)")
state5s, V5s = gasflow.expand from stagnation(state5, 19.3253e6/state5.p)
gm:updateThermoFromPT (state5s); gm:updateTransCoeffs(state5s)
print("state5s:"); printValues(state5s)

print("(h5s-h1)=", gm:enthalpy(state5s) - gm:enthalpy(statel))

state6, V6 = gasflow.expand to mach(state5s, 1.0001)

gm:updateThermoFromPT (state6); gm:updateTransCoeffs(state6)



nenzf2d: expanding (supersonic) part of nozzle

-- then, populate table containing Bezier points.
bez points = {}
for npoints=1,#bezx do
bez_points[#bez_points+1l] = Vector3:new{x=bezx[npoints], y=bezy[npoints]}

end

-- and define some critical geometrical points of this nozzle.
L thr = 0.02 -- axial length of throat

x_start = bez_points[1].x -- start of supersonic expansion

y_throat = bez points[1l].y -- throat radius

-- The throat-region is the constant-area section up to the
-- start of the contoured expansion.
throat_region = CoonsPatch:new{

p00=Vector3:new{x=-L_thr, y=0.0},

plo=Vector3:new{x=x_start, y=0.0},

pll=Vector3:new{x=x_start, y=y throat},

p0l=Vector3:new{x=-L_thr, y=y throat}}
-- Supersonic expansion is fully defined by its north edge
nozzle profile =

ArcLengthParameterizedPath:new{underlying path=Bezier:new{points=bez_points}}
exp_region = NozzleExpansionPatch:new{north=nozzle profile}
-- Define structured grids for both regions.
print "Building grid."
x_cf_throat = RobertsFunction:new{endO=true, endl=true, beta=1.53}
x_cf = RobertsFunction:new{end0=true, endl=false, beta=1.1} --1.1
y_cf = RobertsFunction:new{end0=false, endl=true, beta=1.01}
throat_grid = StructuredGrid:new{psurface=throat_region, niv=31, njv=81,

cfList={west=y cf, east=y cf,
south=x_cf_throat, north=x_cf throat}}
exp_grid = StructuredGrid:new{psurface=exp_region, niv=601, njv=81,
cflList={west=y cf, east=y cf,
south=x_cf, north=x_cf}}



Eilmer4 block marching
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nenzf2d: nozzle-exit profile (equilibrium, LUT gas)
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nenzf2d: nozzle-exit profile compared with measurements
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Nonequilibrium nozzle flow, quasi-one-dimensional, steady

A+ A
X 4+ 0x

|

| p+dp
| p+dp
| uv+du
| v+dv

—
w

» Conservation of mass can be written for the control volume.

< © T D

A

X
l__
|
|
|
|
[

pvA=(p+dp)(v+ov)(A+ dA)
Discard higher-order terms to get a linear constraint equation.

0=pAdv+vAdp+pviA



Nonequilibrium nozzle flow, quasi-one-dimensional, steady

» Conservation of momentum

pVEA+PA+ (p+p/2)6A = (p+6p)(v+6v)’(A+6A) +
(p+0p)(A+6A)

reduces to the linear equation
0=pviv+dp
» Conservation of energy

pvAE+pAv = (p+dp)(v+Iv)(A+JA)E +0E) +
(p+dp)(A+SA)(v +dv)

reduces to the linear equation
0=vEAép+ (pE+p)Adv+pvAdu+ (pE+ p)viA

where E = u—i—%v2 and 0E = du + viv



Nonequilibrium nozzle flow, quasi-one-dimensional, steady

» If the flow quantities at x are given, we now have three linear
equations in the four unknown quantities dp, ép, du and dv.
We close the system with the equation of state p = f(p, u) to
get the fourth linear equation

of
5p+ %

of
0= — du—10
dp voop

p

u

» Now, consider the overall change for internal energy and
pressure to be partly chemical change and partly gas-dynamic
accommodation

ou = 5Uchem + 5Ugda 75P = 5pchem + 5pgda

and let the finite-rate chemical update occur over a time-step
ot, with dx = v §t, to get dpchem and duchem.



Nonequilibrium nozzle flow, quasi-one-dimensional, steady

» The linear constraint equations, in matrix form, are

VA pA 0 0 op
0 pv 1 0 ov
vEA p(E + p)A 0 P vA ' 5pgda
o 0 —1 o O Ugda
—pVvIiA
— _5pchem
—pVAduchem — Vv (pE + p) oA
0

» If the chemistry update is behaving well, ducpem, = 0 for the
isolated reactor model.

» Solve the linear system to get the increments and add them to
the state variables. Rinse and repeat.



nenzfld: input script (t4m7-air.yaml in examples)

title: "T4 shot 11311 with Mach 7 nozzle." # Any string will do.
species: ['N2', '02', 'N', '0', 'NO'] # List
molef: {'N2': 0.79, '02': 0.21} # Map of nonzero values will suffice.

# Gas model and reactions files need to be consistent with the species above.
# Gas model 1 is usually a CEAGas model file.

# Gas model 2 is a thermally-perfect gas model for the finite-rate chemistry.
gas-model-1: cea-air5species-gas-model.lua

gas-model-2: air-5sp-1T.lua

reactions: air-5sp-1T-reactions.lua

# Observed parameter values for shock-tube operation from Table 1 in Appendix A.

T1: 300 # K

pl: 200.0e3 # Pa

Vs: 1679.0 # m/s

pe: 19.33e6 # Pa

ar: 169.2 # Mach 6 nozzle

pp_ps: 0.0105 # From Figure 8.
C: 0.96 # pPitot/(rho*v~2), a value obtained from sphere simulations.

# Define the expanding part of the nozzle as a schedule of diameters with position.

xi: [0.0000, 5.126e-3, 1.021e-2, 2.008e-2, 5.023e-2, 0.1003, 0.2004, 0.4006,
0.6000, 0.8012, 1.0000]

di: [0.0210, 0.6220, ©.0243, 0.0303, 0.0518, 0.0855, 0.1359, 0.2005,
0.2389, 0.2626, 0.2732]



nenzfld: output

Begin part B: supersonic expansion

Throat condition:

velocity
sound-speed
(v-V6)/V6
pressure
density
temperature
massf[N2]
massT[02]
massT[N]
massT[0]
massT[NO]

0.882075 km/s
0.881194 km/s
0.00943504
10637.4 kPa
17.742 kg/m3
2080.35 K
0.762544
0.227701

0

2.94832¢-05
0.00972495

Exit condition:

X
area-ratio
velocity
Mach
p_pitot
pressure
density
temperature
massT[N2]
massf[02]
masst[N]
massT[0]
massT[NO]

0.946781 m
165.75
2.24019 km/s
7.08211
202.964 kPa
3.01241 kPa
0.0421286 kg/m"3
248.108 K
0.762544
0.227703

0
2.80863e-05
0.00972495

Expansion error-indicators:

relerr-mass
relerr-H

0.000440757
4.17032e-06



nenzfld compared with nenzf2d

Compare exit condition 11311

Quantity units nenzfld e4-avg e4-mass-avg

vel.x km/s 2.24 2.237 2.236
Mach 7.08 7 7
p_Pitot kPa 203 204 205
pressure kPa 3.01 3.21 3.23
density kg/m"3 0.0421 0.044 0.0443
T K 248.1 252.7 253.3
massf-N2 0.7625 0.7625 0.7625
massf-02 0.2277 0.2277 0.2277
massf-N 0 0 0
massf-O 2.81E-05 2.89E-05 2.89E-05
massf-NO 0.00972 0.00971 0.00971

» Species mass fractions, Mach number, temperature and velocity are
very good; density and pressure are fairly good.

» Remember that, for 1D analysis, you need to know how your
nozzle's boundary layers behave. Here, this is encoded as the Pitot
pressure to supply-pressure ratio.



Development progress of the code. Are we there yet?

Source code and documentation development
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To quote Bill Gates:

» “Measuring programming progress by lines of code is like measuring
aircraft building progress by weight.”

» “There are no significant bugs in our released software that any
significant number of users want fixed.”
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