
An Introduction to PITOT3
CfH Talk 2021

Christopher M. James

Centre for Hypersonics, The School of Mechanical and Mining Engineering,
The University of Queensland, Brisbane, QLD, 4072, Australia

8th July 2021



Acknowledgement of Country

I Before I begin, I would like to
acknowledge that we are
meeting on custodial land of
the oldest living civilisation in
the world. This is a contested
space, so I pay my respects to
both the Jagera and the Turrbul
people and their Elders, past,
present and emerging, for they
hold the hopes, dreams, and
traditions of Aboriginal
Australia.

Figure: Balun by Shaun Daniel Allen.

2 / 80



Introduction

I Today I am going to talk about PITOT3, which is a new basic impulse
facility simulation code which I have been writing this year.

I It is essentially a rebuild from the ground up of PITOT, a similar code
which I started as a Summer Research Scholar in the CfH in
2011/2012 (almost a decade ago now!), using the Python to D library
in Peter and Rowan’s eilmer4 gas library, Python3, and hopefully the
improved coding skills which I have gained over the last decade.

I The main reasons for doing this were the official retirement of
Python2 at the end of last year (it is even hard to install Python2 on
the latest version of Ubuntu now, as I have come to realise) and the
movement of the old Python gas dynamics library which existed with
Eilmer3 to the new Eilmer4 Python/D libraries.

I I had also wanted a chance to have another crack at writing the code
itself, as I wasn’t that happy with how PITOT was set out.
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Introduction
I As we’re going to be talking about facilities and how to simulate them

today, I thought it might be good to start here:
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Introduction

I Obviously the needs change based on the level of fidelity of the
given simulation tool, but from a facility simulation code we want the
ability to predict the test flow which would be generated for a given
experiment (i.e. a given driver condition, test gas, fill pressures etc.).

I We would also probably like the ability to predict other variables
which are used to verify how well the experiment has been simulated
by the code (in our case that is probably shock speeds in each tube,
wall pressures, pitot pressure, and maybe things like temperature
and species concentrations if our experiments are quite fancy).

I We also probably want to be able to tailor our simulation code to the
given experimental data too to get a ‘semi-empirical’ or ‘inferred’ test
flow.

I We might even want to use the code to get things like uncertainties
too.
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Introduction
I There is a tradeoff to be had between complexity and solution time.
I And there is a place for everything from analytical codes to reacting,

axisymmetric CFD codes at different parts of the test condition
design and quantification process.
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Figure: Rough simulation times for high enthalpy expansion tube conditions
using 0-D, 1-D, and 2-D methods.
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PITOT
I PITOT, as a code, actually started long before I was involved.
I A basic expansion tube facility simulation code called PITOT was

actually written by Richard in the 1990s (I am guessing?) in
GWBASIC.

I I actually used this code in my undergraduate thesis in 2011 to
design X2 test conditions to study giant planet entry.

Figure: Richard’s version of GW Basic.
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PITOT

I PITOT was fairly rudimentary, and it only had perfect gases, but it
allowed the driver gas, secondary driver gas (if used), test gas, and
accelerator gas to be selected by setting the γ and R of the gases.

I The driver condition was set empirically using its rupture pressure
and temperature (p4 and T4).

I The code then exploited a perfect gas way to analytically solve for
the fill pressures in each tube throughout the facility, if the shock
speeds were guessed, to allow the fill pressures in each tube to be
calculated.

I This meant a bit of manual iteration to find test conditions, but as the
code ran in a second, that wasn’t too bad.

I Being a perfect gas code, it did often overestimate the shock speeds
a bit for given fill pressures.
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PITOT

I The output provided a table of all of the relevant facility states:

Figure: Richard’s original Pitot output.
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PITOT

I X2 is normally ran with a hypersonic nozzle, so during my
undergraduate thesis, I would run PITOT to get conditions, then I
had a little Python script where I inputted the unsteadily expanded
test gas condition and then outputted the nozzle exit / freestream
parameters.

I PITOT didn’t do any chemistry either, so I would then manually do a
normal shock using NASA’s CEA program to get the equilibrium
post-shock conditions over the test model.

I It is actually quite painful in retrospect!
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PITOT2 - History

I When I started a Summer Research Internship in our lab the
following summer (2011/2012) Fabs suggested that I convert the
program to Python.

I What I started with was a line-by-line conversion of PITOT into
Python which I then made a bit more user friendly by adding the
ability to set the test gas and driver gas by name instead of by γ and
R, and the ability to do the nozzle expansion and a final CEA
calculation for the post-normal shock state over the model.
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PITOT2 - History
I I called this ‘pitot classic’ (which you can still find in the old cfcfd

repository as pitot classic.py).

Figure: Input and output of my first Python version of PITOT.
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PITOT2 - History

I That didn’t solve the issue of really want the whole calculation to be
equilibrium though, so PITOT was born.

I Which I should probably call ‘PITOT2’, now that I have PITOT3.

I (I originally thought of PITOT3 for Python3, but it works
chronologically too.)
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PITOT2 - History

I Peter Jacobs, Rowan Gollan, Fabian Zander (and potentially others?
I am sorry if I missed anyone, but it was mostly before my time) had
made a Python library which scripted NASA’s CEA program for
equilibrium gas properties and featured a set of gas dynamics
functions for things like shocks, expansions, total conditions etc [1].

I A lot of these objects were used to make ESTCj (Equilibrium Shock
Tube Conditions, junior) for calculating basic reflected shock tunnel
freestream conditions (i.e. without a real nozzle expansion like
NENZFr does) or as an input for a supersonic nozzle calculation in a
code like NENZFr using equilibrium gas properties.

I There were some basic expansion tube examples lying around too,
and I repurposed all of this stuff to make PITOT2.
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PITOT2 - Development
I One of my goals was to make PITOT2 much simpler for the user

than Richard’s PITOT code was.
I I retained the ability to force shock speeds and calculate the related

fill pressures, but the main mode made the user specify the fill
pressures and the code would then calculate the shock speeds.

I Specifying the fill pressures makes it easier for users to use PITOT2
as a ‘virtual experiment’ where they can change various input
parameters (driver condition, fill pressures, test gas, nozzle area
ratio etc.) and see the effect on the generated test flow.
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Figure: Schematic of the X2 expansion tube with the x-axis correctly scaled.

15 / 80



PITOT2 - Development

I Facilities, driver conditions, and test gases were specified by name
instead of manually inputting the γ and R of different gases. (We
also needed the species for the eq chemistry.)

I While it didn’t exist in the original version, eventually I added custom
drivers which could either be specified by rupture conditions or fill
conditions (with some info about the compression) and custom test
gases which could be specified by their fill composition.
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PITOT2 - Development

I The use of equilibrium gases instead of perfect gases also meant
that the code was much better at predicting the shock speeds of real
conditions, which is important.

I A lot of the calculations become iterative with the equilibrium gases
though, which meant thousands of calls to CEA for each run, and
PITOT2 generally took a minute or two to run compared to Richard’s
code’s less than a second.

I Another nice quirk was that the gas dynamics library was
independent of the gas model, so with the change of one variable,
PITOT2 could be ran in perfect gas mode and it too would run in less
than a second.

I (Things like test gases were still inputted by names or species and
then converted to perfect gas objects for the perfect gas calculations
so the simplicity of setting up the calculation worked with perfect
gases as well.)
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PITOT2 - Development

I The fact that CEA has every species under the sun is a real
godsend, but working with a code that had to call CEA thousands of
times each run, with often low pressure conditions from room
temperature up to 20,000 K was a real nightmare sometimes and I
had to wrangle the gas dynamics library and PITOT2 a lot over the
years to keep CEA behaving.

I I even fixed a bug in the output of CEA once which was causing
numbers to not be outputted due to a rounding issue! So our
repository’s CEA version has that unique fix.
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PITOT2 - Development

I One of my big fixes was finally getting CO2 working after a while.

I Anyone who has used CEA a lot knows that CO2 really doesn’t
behave well at low temperatures, especially in mixtures.

I My first implementation of it initially set the CO2 containing gas as a
perfect gas state, however, that caused issues with enthalpy
calculations as there were no reference states for the subsequent
equilibrium states.

I My current implementation initially only allows the fill gases (CO2 or
CO2 and N2 etc.) to be used in the initial CEA calculation to stop the
calculation failing.

I The species restriction is then turned off when the gas temperature
is higher and CEA is a bit more stable with CO2 in the mixture.
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PITOT2 - Development

I To make PITOT2 run reliably I had to add a lot of try / catch
statements to try to catch any issues and keep the code running. It
automatically re-runs low temperature calculations without ions if
they fail (a common CEA issue) and if the equilibrium normal shock
function had an initial perfect gas temperature guess which is too
high it limits it to the more realistic limit of 20,000 K.

I And there are many others!

I I even wrapped the normal shock function call in PITOT2 in a
function called ‘normal shock wrapper’ which tries to capture failed
calculations and fix them (sometimes just changing the shock speed
by 0.1 m/s was enough to make a calculation work...)

I I was eventually able to get PITOT2 running fairly reliably for X2
conditions above 20 km/s towards the end of my PhD.
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PITOT2 - How it Works

I PITOT2 is equivalent to similar basic facility simulation codes which
have been written overseas such as CHEETAH (the CUBRC
equivalent code), a code at Caltech potentially called ‘Expansion
Tube Calculator’ which was benchmarked against PITOT2 when it
was written, and I’m sure that there are many others floating around.

I From reading old papers from our group too, I know that there were
similar codes to PITOT floating around in the 90s as well. I’m not
sure what was around after that though.

I David Gildfind had a similar matlab code too.

I So PITOT2 is definitely not revolutionary, but I think having these
codes around are quite helpful, so most groups seem to either have
their own or have access to them.

I I think my support for PITOT2, and a willingness to add the features
which different people needed helped it catch on well at UQ and
elsewhere.
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PITOT2 - How it Works

I PITOT2 is essentially a ‘0-D’ code as it does not take into account
physical geometry to do its calculations.

I (However it can do things like calculate test time, ‘x-t’ diagrams etc.
using knowledge of the geometry.)

I We have often called it a ‘state-to-state’ code as it calculates each
gas state as it steps through the facility.

I There is a journal article about how it works:

I James, C., Gildfind, D., Lewis, S., Morgan, R., and Zander, F.,
“Implementation of a state-to-state analytical framework for the
calculation of expansion tube flow properties,” Shock Waves, Vol. 28,
No. 2, 2018, pp. 349–377.

I but I thought that it might be worth explaining how it does a few
things as the new code is very similar too and I have got some
questions recently about how the code works.
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PITOT2 - How it Works
I As was stated earlier, driver conditions are either specified from

empirical rupture conditions or can be calculated from an isentropic
compression from the fill state (with a reduced γ if required):
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Figure: Driver during compression representation. (Not to scale.)
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PITOT2 - How it Works
I The use of a facility area change or orifice plate can be taken into

account by inputting the Mach number at the throat:
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PITOT2 - How it Works
I Shock speeds are found iteratively from the tube inlet condition and

the fill state by noting that across the interface behind the shock p3 =
p2 and V3 = V2, and then using a secant solver and shocking the gas
to find p2 and V2, and then unsteadily expanding the inlet condition
to the found p2 and stopping when V3 = V2 to a given tolerance.
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PITOT2 - How it Works

I A similar procedure can be used to guess the fill pressure for a
specified shock speed too, if one chooses.
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PITOT2 - How it Works
I In the high speed and low pressure acceleration tube the unsteadily

expanding test gas is generally expanded to the shock speed after
the iterative calculation is performed to simulate Mirels low density
shock tube effects.

I Here is the initial result below:
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PITOT2 - How it Works
I And then the final result after the over-expansion has been

performed:
I (In the actual PITOT2 code this generally results in p7 actually being

lower than p6 and V7 being faster than V6 though as the
over-expansion is done after the shock speed has been found.)
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PITOT2 - How it Works
I This over-expansion has a non-trivial effect on the test condition, so

we’re starting to get into places where modelling decisions have to
be made:

I (This is for a calculation using Elise Fahy’s Hayabusa entry condition
[2]. More info about the table can be found in the PITOT paper [3].)

State 2 expanded to State 2 expanded to Percentage change
V6 (9,384 m/s) Vs,2 (10,010 m/s) (%)

State 7 (nozzle entry condition)
Static pressure (p7, Pa) 18,426 8,721 −52.7
Static temperature (T7, K) 2,901 2,659 −8.34
Density (ρ7, kg/m3) 2.13×10−2 1.12×10−2 −47.6
Velocity (V7, m/s) 9,384 10,010 6.67
Mach number (M7) 9.39 10.5 11.9
Stagnation enthalpy (Ht , MJ/kg) 47.9 53.4 11.4
State 8 (nozzle exit condition, using an area ratio of 5.64)
Static pressure (p8, Pa) 2,370 1,069 −54.9
Static temperature (T8, K) 2,213 1,904 −13.9
Density (ρ8, kg/m3) 3.72×10−3 1.95×10−3 −47.4
Velocity (V8, m/s) 9,547 10,149 6.31
Mach number (M8) 10.9 12.2 12.4
Stagnation enthalpy (Ht , MJ/kg) 47.9 53.4 11.4
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PITOT2 - How it Works

I The nozzle area ratio is simulated by isentropically expanding the
flow through a given area ratio.
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PITOT2 - How it Works

I The issue is then choosing which area ratio to use (due to boundary
layer growth on the acceleration tube wall and in the nozzle):
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PITOT2 - How it Works
I This is another case which has a large effect on some variables in

the final test flow:
I (Once again for Elise’s Hayabusa condition [2].)
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PITOT2 - How it Works
I When the flow gets to the test section, PITOT2 can do both frozen

(to give the value directly behind the shock) and equilibrium normal
shocks, conical shocks using the Taylor-Maccoll equations for a
given cone half-angle, and oblique shocks for a given wedge angle
to do calculations over the test model.

I The code also calculates pitot pressure, total pressure, stagnation
enthalpy, flight equivalent velocity, unit Reynolds number etc.
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PITOT2 - How it Works

I To do experimental calculations, PITOT2 can be ran with the shock
speeds fixed (from an experiment).

I Variables such as the reflected shock at the secondary diaphragm
(or not), how far the gas expands in the acceleration tube, and the
nozzle effective area ratio can be used to match the measured wall
pressure in the acceleration tube and the measured impact pressure
in the test section.

I This is discussed further in the PITOT paper.
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PITOT2 - Output

I The output was modelled off Richard’s old PITOT code:

Figure: Richard’s original Pitot output.
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PITOT2 - Output
I With some new things added:

Figure: PITOT2 output. 36 / 80



PITOT2 - What Else it can Do

I PITOT2 can also do a lot of other things as well, some of which is a
bit hidden in the code, annoyingly (but that is my fault! features just
kept building up over the years).

I It can run in experimental mode where both fill pressures and shock
speeds are specified, and semi-experimental modes where one
shock speed is specified.

I Generally the unsteadily expanding test gas in the acceleration tube
is expanded to the shock speed to simulate Mirels effects in the low
density acceleration tube (as we discussed before).

I It can drop the post-shock velocity to simulate total pressure loss,
can do normal shocks at diaphragms, can freeze the unsteady
expansion or the nozzle expansion, and probably more things that I
have forgotten!

I It can also simulate reflected shock tunnels and non-reflected shock
tubes.
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PITOT2 - What Else it can Do
I I also wrote several related codes over the years:

I Pitot Condition Builder which allows the code to be scripted to
create performance maps. It can restart if it fails, will skip individual
failed runs, and creates a large summary at the end.

I Pitot Area Ratio Check which will try a lot of different nozzle area
ratios at the end of one calculation.

I Pitot State 2 Reflected Shock Analysis which changes the strength
of a reflected shock at the end of the shock tube between given limits.

I Pitot Bootstrapper which allows large amounts of runs to be ran
with different uncertainties given to different inputs to get statistical
averages of conditions.

I A Pitot compression ratio scripting code and a code to try different
amounts of helium or neon diluent for giant planet entry work in my
PhD.

I I made our experimental Shot analysis code run an experimental
version of Pitot to give an initial estimate of test conditions.

I I wrote a code that would run Pitot with all of the combinations of the
shock speed uncertainties to get the nominal condition and related
uncertainties for any output parameters.
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PITOT2 - Running the Code

I In terms of how the code itself worked, PITOT2 could either be ran
from a terminal with a config file which had to conform to Python
syntax, and was then loaded into Python as a dictionary, or it could
be run in a Python script by importing the run pitot function from
pitot.py and then giving it a configuration dictionary in the script.
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PITOT2 - Running the Code
I An example config file can be seen below which can be run by

running:
$ pitot.py --config_file high-speed-air-theory-simplified.cfg

Figure: PITOT2 config file.
40 / 80



PITOT2 - Running the Code

I The same simulation can be ran using the Python script below by
running: $ python2 pitot_scripting_example.py

#! /usr/bin/env python2
"""
pitot_scripting_example.py
This example shows how the same PITOT configuration shown in high-speed-air-theory.cfg
could be ran from inside Python by using importing run_pitot and giving it the
configuration dictionary directly from inside Python.

Chris James (c.james4@uq.edu.au) - 28/02/16

"""

import sys, os
sys.path.append(os.path.expandvars("$HOME/e3bin")) # installation directory
sys.path.append("") # so that we can find user’s scripts in current directory

from pitot import run_pitot

cfg = {’filename’:’high-speed-air-theory’, ’cleanup’:True,
’test’:’fulltheory-pressure’, ’solver’:’eq’,
’mode’:’printout’, ’facility’:’x2’, ’tunnel_mode’:’expansion-tube’,
’nozzle’:True, ’secondary’:False, ’piston’:’lwp’,
’driver_gas’:’He:1.0’, ’test_gas’:’air’, ’p1’:3000.0, ’p5’:10.0,
’area_ratio’:5.64, ’expand_to’:’shock-speed’, ’expansion_factor’:1.0,
’conehead’:True, ’conehead_angle’:15.0, ’shock_over_model’:True}

run_pitot(cfg=cfg)
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PITOT2 - How the Code Runs

I Behind the scenes, PITOT2 then ran an input check function, a set
up function which created all of the required gas states, and then a
series of functions (depending on the simulation being performed) to
do the calculation and output the results.

I There were a lot of functions, but no classes, and each function had
both its input and its output as four dictionaries:
I cfg (config data)
I states (gas states)
I V (velocities for the gas states)
I M (the Mach number for the gas states)

I Overall, I think that the organisation of the code suffered from the
fact that a lot of features were bolted on over the time, the fact that I
didn’t know how to use classes when I started it, and a lot of the
configuration like default values, named facilities and driver
conditions, named test gases etc. were hidden away in the input
function where users couldn’t see them without rifling through the
source code.
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PITOT2 - What it has Been Used For
I PITOT2 has been a very productive and useful code.
I In my own PhD, I used it generate performance maps for simulating

Uranus entry in X2, and I worked out that I thought that we could just
get to the required 22 km/s for Uranus entry:
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Figure: Effect of secondary driver fill pressure (psd1) on performance for different
Uranus entry test conditions with a set p5 value of 0.5 Pa.
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PITOT2 - What it has Been Used For

I I also then used the code to estimate the uncertainties in the flow
conditions which we were eventually able to generate:

Table: Computed test section freestream and post-shock state ranges for
experiment x2s3249.

Nominal Solution bounds Uncertainties
State 8 (nozzle exit condition, using an effective area ratio of 3.5)
Static pressure (p8, kPa) 0.407 0.187 – 0.860 −54% / +110%
Static temperature (T8, K) 1,390 1,020 – 1,830 −26% / +31%
Density (ρ8, kg/m3) 8.13×10−5 5.09×10−5 – 1.31×10−4 −37% / +61%
Velocity (V8, m/s) 21,400 20,500 – 22,200 −4.1% / +3.6%
Mach number (M8) 8.14 7.09 – 9.70 −13% / +19%
Stagnation enthalpy (Ht , MJ/kg) 242 222 – 261 −8.2% / +7.8%
Flight equivalent velocity (Ue , m/s) 22,000 21,100 – 22,900 −4.2% / +3.8%
Pitot pressure (ppitot , kPa) 34.5 22.8 – 52.5 −34% / +52%
Stagnation pressure (pt , MPa) 151 98.4 – 225 −35% / +48%
State 10e (equilibrium post normal shock pressure in the test section)
Static pressure (p10e , kPa) 34.6 22.8 – 51.9 −34% / +50%
Static temperature (T10e , K) 5,240 4,500 – 6,260 −14% / +19%
Density (ρ10e , kg/m3) 9.96×10−4 5.99×10−4 – 1.63×10−3 −40% / +64%
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PITOT2 - What it has Been Used For
I When we couldn’t simulate Saturn entry directly, it then allowed me

to further investigate use of a test gas substitution to do that:
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Figure: Effect of diluent fraction on the frozen and equilibrium post-normal shock
temperatures in the stagnation region over the test model (state 10)
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PITOT2 - What it has Been Used For

I When I had a quick look at xlabs PhDs just then, (to my knowledge)
the Phds of Sam Stennett, Andreas, Rory, myself, Sangdi, Steven
Lewis, Guerric, Elise, and Han, all made use of PITOT, which is
almost everyone who started a PhD after I wrote the code. As well
as a lot of people who are still students.

I The code has also been used a lot at Oxford, by colleagues at EPFL
and IRS in Stuttgart who were analysing experiments that they did at
UQ, the student from Caltech who used it to benchmark a similar
code, Sangdi in Germany when he was making his paper about
facilities, and the most out there reference is researchers from
Turkey who in fact have an expansion tube.

I That is pretty good, I think!
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PITOT3 - Introduction

I Now that Peter and Rowan have moved to eilmer4 and they have
made a new related Python library, and Python2 is no longer
officially supported, it seemed like the right time to make PITOT3.

I I dawlded a bit last year but then got started over the Christmas /
new year break last year and have been doing more over the last
couple of months.

I My goal was to do a lot more planning so I would (hopefully) end up
with much more well written and modular code.

I I also wanted to bring the configuration of the code out into the open
to make it easier for people to make their own modifications in terms
of creating driver conditions, test gases, facilities etc.
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PITOT3 - Output
I To start at the end I guess, I tried to keep the output very similar to

PITOT2, but I squeezed everything up a bit to get another few
columns in. Here is the PITOT2 output from before:

Figure: PITOT2 output.
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PITOT3 - Output
I And the current PITOT3 output:

Figure: The current PITOT3 output.
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PITOT3 - Setting up the Code

I PITOT3 forms part of the Centre’s Gas Dynamics Toolkit (GDTk)
which can be found at http://cfcfd.mechmining.uq.edu.au/.

I (Internally we might know that as the ‘Eilmer 4 repository’.)

I To use PITOT3, you need to pull down the repository at that link
using git, install the dependencies, and then download CEA and put
it in the folder dgd/extern/cea2.

I Then if one navigates to dgd/src/pitot3 and runs the makefile (i.e.
make install) it will install the GDTk gas library, gas dynamics library,
CEA, and then the PITOT3 program.

I The standard additions to one’s .bashrc file for use of the GDTk gas
libraries are required, as well as the following additions:
I export PITOT3 DATA=$DGD/share/pitot3 data
I export PYTHONPATH=$PYTHONPATH:$DGD/lib:$DGD/bin

I The top line is a new variable for PITOT3 and the addition of the
$DGD/bin folder to the PYTHONPATH lets Python3 find pitot3.py so
PITOT3 can be scripted.
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PITOT3 - Setting up the Code

I In terms of compatible operating systems, I have only ever used
PITOT3 on Ubuntu, but I’m sure that it works on other Linux
distributions too.

I I know that people have used it through the Ubuntu terminal which is
now available in Windows 10 and people can probably get it working
on Mac OS too, but I haven’t tried personally.

I If you are running the code for the first time, I would recommend just
setting up an Ubuntu virtual machine using Virtualbox and going
from there. I think that that is probably the most straight forward way
and PITOT3 isn’t too system intensive anyway.

I The Windows 10 Ubuntu terminal may be a good solution too as
PITOT3 isn’t graphical at all, but I don’t know how hard that is to get
working.
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PITOT3 - Setting up the Code

I Just so everyone knows where things are installed:

I The default pitot3.py installation location is dgdinst/bin.

I The default install location for the other supporting functions
(currently pitot3 classes.py but I make might one for functions too, as
it currently includes classes and functions) is dgdinst/lib/pitot3 utils

I The default configuration file, facility data, and any pre-defined gas
models are installed in dgdinst/share/pitot3 data.
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PITOT3 - Running the Code

I Like PITOT2 the simulation config data can either be given to
pitot3.py as a file or by running the function run pitot3 in a Python
script with the config defined by a Python dictionary.

I In PITOT2, the config file was pure Python, which is a no no these
days as the function in Python2 would execute whatever was in the
config file, which is good for simplicity (i.e. you can change a list into
an array in the config file etc.) but not good for security, so it doesn’t
seem to be a done thing anymore.

I For this reason, PITOT3 uses YAML for all the config files.
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PITOT3 - Running the Code

I Thankfully, YAML syntax is quite similar to Python syntax and
supports the same comment character, strings, lists, and
dictionaries, just with a : instead of an = when declaring variables.

I Here is an example PITOT3 config file which can be ran as:
pitot3.py --config_file PITOT3_input_config.yaml

# PITOT3_input_config.yaml: input config for PITOT3
# Just a simple config file for my talk
# Chris James (c.james4@uq.edu.au) - 07/07/21

# initial code set up
mode : ’fully_theoretical’
# facility set up
facility : ’x2_nozzle’
driver_condition : ’x2-lwp-2.0mm-0’
# shock tube
test_gas_gas_model : ’CEAGas’
test_gas_name : ’n2-o2-with-ions’
p1 : 3000.0
# acceleration tube
p5 : 10.0
acceleration_tube_expand_to : ’shock_speed’
# nozzle area ratio
area_ratio : 5.64
# test section stuff
cone_half_angle_degrees : 15.0 # degrees
wedge_angle_degrees : 45.0 # degrees
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PITOT3 - Running the Code

I And an equivalent Python3 scripted example which can be ran as:
$ python3 pitot_3_scripting_example.py

"""
An example to script PITOT3 for my talk.

Chris James (c.james4@uq.edu.au) - 07/07/21
"""

from pitot3 import run_pitot3

config_dict = {’mode’:’fully_theoretical’,’facility’:’x2_nozzle’,
’driver_condition’:’x2-lwp-2.0mm-0’,
’test_gas_gas_model’:’CEAGas’, ’test_gas_name’:’n2-o2-with-ions’,
’p1’:3000.0, ’p5’:10.0,
’area_ratio’:5.64,
’cone_half_angle_degrees’:15.0, ’wedge_angle_degrees’:45.0}

config_data, gas_path, object_dict = run_pitot3(config_dict = config_dict)

55 / 80



PITOT3 - How the Code Works

I To open everything up to the user, all of the PITOT3 configuration
information is now stored in a default configuration YAML file in the
folder dgdinst/share/pitot3 data called PITOT3 default config.yaml.

I This file is where the default output filename, facilities and preset
gas model folder locations, state names (as some groups define
these differently), standard temperature and pressure, tube names,
secant solver initial guesses, limits, and tolerances, and any other
variables which the program needs a default value for.

I The user is completely free to make their own default configuration
file instead of my one (and store it elsewhere so it won’t get
overridden when the code is next installed).

I (I do need to get this final functionality working as there is no way to
specify your own default configuration file location at the moment...)
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PITOT3 - How the Code Works

I When PITOT3 runs, the default config is read in first from the default
configuration and then values are overridden with values in the user
defined configuration file, followed by any configuration Python3
dictionary which is parsed to the run pitot3 function.

I This means that if the user wants to override any default value for
their current run script they can just add that variable to either their
configuration file or their Python3 dictionary and it will override the
default value.

I (They can also get extra fancy and load in a value from a
configuration file and then later override it by another value in a
Python dictionary. I can’t particularly think of a use for that currently,
but figured that someone may so I wrote it that way.)
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PITOT3 - Specifying Facility Information

I Facility configuration data is now stored externally as well in the
folder dgdinst/share/pitot3 data/facilities in their own YAML config
files.

I I currently only added X2 with a nozzle and with and without a
secondary driver and the Drummond Tunnel with its Mach 7 nozzle
myself.

I One of my undergraduate students, Lewis Barltrop, has converted
over some of the X3 facility configurations but we haven’t put it in the
repository yet.

I We do plan to very soon though!

I (Just working through the million X3 geometry configurations...)
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PITOT3 - Specifying Facility Information
I An example facility configuration file for X2 with its nozzle can be

seen below:
# x2_nozzle.yaml
# Configuration file for X2 facility with nozzle in Pitot 3
#
# Must conform to Yaml syntax, which is pretty forgiving, thankfully...
# Chris James (c.james4@uq.edu.au) - 26/12/20
# Lengths and sensor locations from Gildfind et al. (2014)
# Production of High-Mach-Number Scramjet Flow Conditions in an Expansion Tube
# AIAA Journal, Vol 52, No. 1, pp 162 - 177
# Updated 07/07/21 to correct incorrect acceleration tube diameter - CMJ.

facility_name : ’X2’
facility_type : ’expansion_tube’
secondary_driver : False
nozzle : True

shock_tube_length : 3.418 # m
shock_tube_diameter : 0.085 # m
shock_tube_sensors : [’sd1’,’sd2’,’sd3’]

acceleration_tube_length : 5.167 #m
acceleration_tube_diameter : 0.085 # m
acceleration_tube_sensors : [’st1’,’st2’,’st3’,’at1’,’at2’,’at3’,’at4’,’at5’,’at6’,’at7’,’at8’]

nozzle_geometric_area_ratio : 5.64

sensor_locations : {’sd1’:2.577,’sd2’:2.810, ’sd3’:3.043,’st1’:4.231,’st2’:4.746, ’st3’:5.260,
’at1’:6.437,’at2’:6.615,’at3’:6.796,’at4’:7.590, ’at5’:7.846,’at6’:8.096,’at7’: 8.157, ’at8’:8.197}

driver_conditions_folder : ’x2_driver_conditions’ #inside the facilities folder...
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PITOT3 - Specifying Facility Information
I Only the test time stuff in PITOT3 uses the facility geometry

currently, but I wanted to have it all there for the future, if needed.
# x2_nozzle.yaml
# Configuration file for X2 facility with nozzle in Pitot 3
#
# Must conform to Yaml syntax, which is pretty forgiving, thankfully...
# Chris James (c.james4@uq.edu.au) - 26/12/20
# Lengths and sensor locations from Gildfind et al. (2014)
# Production of High-Mach-Number Scramjet Flow Conditions in an Expansion Tube
# AIAA Journal, Vol 52, No. 1, pp 162 - 177
# Updated 07/07/21 to correct incorrect acceleration tube diameter - CMJ.

facility_name : ’X2’
facility_type : ’expansion_tube’
secondary_driver : False
nozzle : True

shock_tube_length : 3.418 # m
shock_tube_diameter : 0.085 # m
shock_tube_sensors : [’sd1’,’sd2’,’sd3’]

acceleration_tube_length : 5.167 #m
acceleration_tube_diameter : 0.085 # m
acceleration_tube_sensors : [’st1’,’st2’,’st3’,’at1’,’at2’,’at3’,’at4’,’at5’,’at6’,’at7’,’at8’]

nozzle_geometric_area_ratio : 5.64

sensor_locations : {’sd1’:2.577,’sd2’:2.810, ’sd3’:3.043,’st1’:4.231,’st2’:4.746, ’st3’:5.260,
’at1’:6.437,’at2’:6.615,’at3’:6.796,’at4’:7.590, ’at5’:7.846,’at6’:8.096,’at7’: 8.157, ’at8’:8.197}

driver_conditions_folder : ’x2_driver_conditions’ #inside the facilities folder...
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PITOT3 - Specifying Facility Information

I The user can also choose to not need a related facility file by
specifying the facilty as ‘None’ and then input the facility type,
secondary driver and nozzle variables in their script.

I This does not appear to be working currently, but I will fix this...

I I can also probably allow other facility information to be added to the
simulation input config file too.
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PITOT3 - Specifying Driver Condition Information

I As we often have multiple different facility configurations, I decided
to add a driver conditions folder for each facility, which is specified in
the facility configuration files.

I Driver conditions are then specified externally too in their own config
file either as empirical rupture conditions or as an isentropic driver
with the isentropic compression to the rupture condition done by
PITOT3 at the start of the simulation.

I I have currently added every X2 piston driven driver condition,
however, the one cold driven driver condition currently specified
does not work yet as I need to specify it as a perfect gas driver,
which I don’t have working yet.

I The user can also put specify their own custom driver condition with
the simulation by setting the driver condition input variable to
’custom’ and then using the variable ‘driver condition filename’ to
specify the location of their driver configuration file.
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PITOT3 - Specifying Driver Condition Information

I Here is an example of how to set up an empirical driver condition, for
X2’s 2.5 mm diaphragm driver condition:

# X2’s 80%He 2.5 mm driver condition with an empirical T4 value.
# Values from Figure 6.8 in Gildfind (2012)
# Development of High Total Pressure Scramjet Flow Conditions using the X2 Expansion Tube

driver_condition_name : ’x2-lwp-2.5mm-0-empirical’
driver_condition_type : ’empirical’

driver_gas_model : ’CEAGas’
driver_fill_composition : {’He’:0.8,’Ar’:0.2}
driver_speciesList : [’He’,’Ar’]
driver_inputUnits : ’moles’
driver_withIons : False

p4 : 35.7e6 # Pa
T4 : 3077.0 # K

M_throat : 1.0
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PITOT3 - Specifying Driver Condition Information

I And the related isentropic compression (without any losses) input for
the same driver condition:

# X2’s 80%He 2.5 mm driver condition with isentropic compression
# Values from Table 3 of Gildfind et al. (2011)
# Free-piston driver optimisation for simulation of high Mach number scramjet flow conditions

driver_condition_name : ’x2-lwp-2.5mm-0-isentropic’
driver_condition_type : ’isentropic-compression-p4’

driver_gas_model : ’CEAGas’
driver_fill_composition : {’He’:0.8,’Ar’:0.2}
driver_speciesList : [’He’,’Ar’]
driver_inputUnits : ’moles’
driver_withIons : False

driver_p : 77.2e3 # driver fill pressure, Pa
driver_T : 298.15 # driver fill temperature, K

p4 : 35.7e6 # Pa

M_throat : 1.0
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PITOT3 - Specifying Driver Condition Information

I I decided to put the input for the driver gas inside the driver condition
input file so that everything is self contained.

I PITOT3 then makes a CEA gas model file for the driver gas called
PITOT3 cea driver condition.lua at run time which PITOT3 uses for
the calculation.

# X2’s 80%He 2.5 mm driver condition with isentropic compression
# Values from Table 3 of Gildfind et al. (2011)
# Free-piston driver optimisation for simulation of high Mach number scramjet flow conditions

driver_condition_name : ’x2-lwp-2.5mm-0-isentropic’
driver_condition_type : ’isentropic-compression-p4’

driver_gas_model : ’CEAGas’
driver_fill_composition : {’He’:0.8,’Ar’:0.2}
driver_speciesList : [’He’,’Ar’]
driver_inputUnits : ’moles’
driver_withIons : False

driver_p : 77.2e3 # driver fill pressure, Pa
driver_T : 298.15 # driver fill temperature, K

p4 : 35.7e6 # Pa

M_throat : 1.0
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PITOT3 - How the Code is Structured
I PITOT2 had a function for everything, i.e. a secondary driver

calculation function, shock tube calculation function etc.
I For PITOT3 I wanted to make a set of classes which would cover all

that was necessary. These classes are:
I Facility: Loads in the facility configuration file directly and then can

return various inputs when required.
I Driver: Loads in the driver configuration file directly, then can

calculate the driver rupture state and throat state if required.
I Diaphragm: In the ideal case, lets the gas pass. In other modes, can

simulate non-ideal effects which occur at the diaphragm.
I Tube: Simulates what occurs in a shock tube. Has a fill state and an

entrance (driver) state and calculates the related shock speed.
I Nozzle: Performs a steady expansion through a specified area ratio

to simulate a facility’s nozzle.
I Test Section: Calculates everything needed for the test section state

as well as being able to do calculations for basic models.
I Facility State: This replaces the V and M dictionaries from PITOT. It

is a gas state with a velocity attached, like the ‘facility states’ seen in
x-t diagrams (hence the name).
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PITOT3 - How the Code is Structured
I To make PITOT3 as generic as possible, the simulation is built up,

object-by-object as it runs, forming a ‘gaspath’ like L1d does.
I For this to work, every physical class (Driver, Diaphragm, Tube,

Nozzle, Test Section) has what is currently called an ‘entrance state’
and an ‘exit state’ (maybe I should have called them ‘inlet’ and
‘outlet’ states?) which are Facility State objects of the state which
enters and exits each objects.

I These classes also have related functions called ‘get entrance state’
and ‘get exit state’ which allow the next object along in the facility to
grab the exit state of the object before and set that to its own
entrance state.

I The particular objects created depend on the facility type and
configuration which the user has selected i.e. an expansion tube has
a driver, primary diaphragm, shock tube, secondary diaphragm,
acceleration tube, maybe a nozzle, and a test section.

I A reflected shock tunnel has a driver, primary diaphragm, shock
tube, secondary diaphragm, a nozzle, and a test section.
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PITOT3 - How the Code is Structured

I How the code is structured now has more than halved the size of it
compared to PITOT2:

I PITOT2:
I pitot.py: 725 lines
I pitot input utils.py: 1741 lines
I pitot flow functions.py: 2678 lines
I pitot output utils.py: 1383 lines
I total : 6527 lines

I PITOT3:
I pitot3.py: 594 lines
I pitot3 classes.py: 2418 lines:
I total : 3012 lines.
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PITOT3 - Important Classes

I I also thought that I should expand further on the most important
classes.

I In the ideal case, the Diaphragm class does nothing. It just takes
the exit state of the object before it, sets that to its entrance state,
and then sets that entrance state to be its exit state.

I It can also calculate a reflected shock at the diaphragm, either a fully
reflected shock or a reflected shock of a user specified Mach
number.

I To simulate total pressure loss at the diaphragm, it can also reduce
the velocity of the state exiting the diaphragm by a user specified
factor.

I I also hope to one day implement an inertial diaphragm model here.

I It currently takes a Python3 dictionary as an input, as I coded it
straight after the Facility and Driver classes, which are basically just
loaded from files, but the Diaphragm class isn’t really like that.

69 / 80



PITOT3 - Important Classes

I The Tube class replaces a lot of the bulk of the original PITOT2
program as it takes the fill state and entrance state of a tube on a
shock tube and then calculates the shock speed, and shocked and
unsteadily expanded states.

I It also stores the length and diameter of the tube if that information
was in the facility configuration file.

I If the tube is the shock tube of a reflected shock tunnel, it can also
calculate the stagnated condition at the end of the shock tube and
the stagnated driver gas condition.

I It can also be instructed to unsteadily expanded the unsteadily
expanded entrance state to the shock speed or the shock speed or
contact surface velocity multiplied by a factor.

I I plan to implement a Mirels solver as well.

70 / 80



PITOT3 - Important Classes

I The Test Section class mainly exists to calculate any post-shock
states which can be calculated with basic gas dynamic relations.

I It can do a normal shock to simulate the stagnation limit over a test
model.

I It can do a wedge shock for a given wedge angle and a
Taylor-Maccoll conical shock for a given cone half angle.
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PITOT3 - Important Classes

I The Facility State is a very important class.

I Like I said earlier, it replaces what was carried around for each
facility state in PITOT2 in the states, V, and M dictionaries.

I Its main role is to store a gas state and its related velocity together.

I It can also store a reference gas state (usually a room temperature
fill state of a related state) for enthalpy calculations.

I From there, it has enough information to calculate the pitot and total
condition for the facility state which can be used to return the pitot
pressure, total temperature, stagnation enthalpy and the flight
equivalent velocity (and it has functions to return all of these things).

I It can also return the sensible enthalpy and the unit Reynolds
number.
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PITOT3 - Gas Model
I At the moment, I have still written PITOT3 to be mainly backed by

CEA’s equilibrium gas model.
I I plan to try Nick Gibbons’ new equilibrium gas model when I have

some time.
I One large difference between use of CEA in the old Python2 cfpylib

and through the D library now is that it can no longer run CEA
without the list of species being specified.

I This isn’t a big deal for most common cases, but for example, we
used to be able to run PITOT2 with a small amount of aluminium,
carbon, or iron etc. contamination to see what it would form at the
different conditions seen in the facility, which we now can’t do.

I While one can input a gas state into CEA in mole fractions, one can
only currently return mass fractions, so PITOT3 currently only
outputs mass fractions.

I Currently I haven’t yet been able to create a perfect gas object on
the fly for frozen shock calculations (like PITOT2’s ‘state 10f’ to give
the immediate post-shock condition) or perfect gas driver conditions.
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PITOT3 - Gas Model
I Currently in dgdinst/share/pitot3 data/preset gas models I have

added a lot of common gas models which are used on X2.
I I filled out the species list for each gas from calculations without the

species specified in PITOT2, looking at the species in the CEA
calculations, and some intuition.

I The current gases are:
I argon with ions (‘ar-with-ions’)
I CO2 with ions (‘co2-with-ions’)
I giant planet with 20%H2/80%He with ions (‘giant-planet-h2-80-he’)
I giant planet with 20%H2/80%Ne with ions (‘giant-planet-h2-80-ne’)
I helium with ions (‘’he-with-ions)
I ‘bottle air’ (N2/O2) with ions (‘n2-o2-with-ions’)
I pure nitrogen (‘n2-with-ions’)
I Uranus (‘uranus’)

I I have added Mars compositions (CO2 and N2) both with and without
argon, but they don’t work currently.

I As well as the air5species, air7species, air11species, and
air13species CEA gas models from the repository.
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PITOT3 - Gas Model
I Currently in dgdinst/share/pitot3 data/preset gas models I have

added a lot of common gas models which are used on X2.
I I filled out the species list for each gas from calculations without the

species specified in PITOT2, looking at the species in the CEA
calculations, and some intuition.

I The current gases are:
I argon with ions (‘ar-with-ions’)
I CO2 with ions (‘co2-with-ions’)
I giant planet with 20%H2/80%He with ions (‘giant-planet-h2-80-he’)
I giant planet with 20%H2/80%Ne with ions (‘giant-planet-h2-80-ne’)
I helium with ions (‘’he-with-ions)
I ‘bottle air’ (N2/O2) with ions (‘n2-o2-with-ions’)
I pure nitrogen (‘n2-with-ions’)
I Uranus (‘uranus’)

I I have added Mars compositions (CO2 and N2) both with and without
argon, but they don’t work currently.

I As well as the air5species, air7species, air11species, and
air13species CEA gas models from the repository.
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PITOT3 - Gas Model

I Custom test gases, which should easily give the user access to may
of the gas models in the GDtK repository, can be setting the
test gas gas model variable in the input to ‘custom’ and then setting
the variable test gas filename to the name of the gas model file.
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PITOT3 - What is Left to Do
I There is still a lot to do, which includes:

I Getting the condition builder working for performance maps.
I Adding more different facilities and driver conditions.
I Getting experiment mode working as I realised that it wasn’t working

yesterday.
I Get the Mars and Venus test gases working eventually.
I Get perfect gas driver conditions working.
I Trying out Nick Gibbons’ equilibrium solver which will hopefully allow

us to get away from CEA for most cases.
I Be able to output in mole fractions and be able to re-add simple

calculation of frozen states.
I Add the ability to specify a completely independent default

configuration.
I Change how the code is set up slightly so it can output all of the fill

states at the start of the calculation like PITOT2 could. (Currently
PITOT3 doesn’t make any objects until it performs the calculations so
this can’t be done easily.)

I Get simulations with no facility specified running again.
I Add examples to the repository and write documentation.

I I’m sure I forgot many things which still need to be added! 77 / 80



PITOT3 - Requests

I Is there anything which people are itching to do in PITOT3?

I If you are and I don’t have it working yet, please do tell me and I will
add it to the code ASAP! As I am trying to prioritise things which
people will actually use for now.
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PITOT3 - Team
I If there is anyone out there who would like to help me work on the

code, that would be great. Please be in touch!
I Any feedback about the code is appreciated too, either in terms of

what it does or how it is written.
I Thank you to one of my PhD students, Kieren Curtis, who did a lot of

the early PITOT3 testing and Lewis Barltrop an undergraduate
student of mine who has currently been messing around with it too.

Figure: A little motivational poster.
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Any questions?
I Thankyou for listening! Any questions?

Figure: Sunflowers by Vincent van Gogh from the collection of The National Gallery in London.
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