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Abstract

The macroscopic chemistry method for modelling non-equilibrium reacting gas flows with
the direct simulation Monte Carlo (DSMC) method is developed and tested. In the macro-
scopic method, the calculation of chemical reactions is decoupled from the DSMC collision
routine. The number of reaction events that must be performed in a cell is calculated with
macroscopic rate expressions. These expressions use local macroscopic information such
as kinetic temperatures and density. The macroscopic method is applied to a symmetrical
diatomic gas. For each dissociation event, a single diatom is selected with a probabil-
ity based on internal energy and is dissociated into two atoms. For each recombination
event, two atoms are selected at random and replaced by a single diatom. To account
for the dissociation energy, the thermal energies of all particles in the cell are adjusted.
The macroscopic method differs from conventional collision-based DSMC chemistry pro-
cedures, where reactions are performed as an integral part of the collision routine.

The most important advantage offered by the macroscopic method is that it can utilise
reaction rates that are any function of the macroscopic flow conditions. It therefore allows
DSMC chemistry calculations to be performed using rate expressions for which no conven-
tional chemistry model may exist. Given the accuracy and flexibility of the macroscopic
method, it has significant potential for modelling reacting non-equilibrium gas flows.

The macroscopic method is tested by performing DSMC calculations and comparing
the results to those obtained using conventional DSMC chemistry models and experimental
data. The macroscopic method gives density profiles in good agreement with experimental
data in the chemical relaxation region downstream of a strong shock. Within the shock
where strongly non-equilibrium conditions prevail, the macroscopic method provides good
agreement with a conventional chemistry model. For the flow over a blunt axisymmetric
cylinder, which also exhibits strongly non-equilibrium conditions, the macroscopic method
also gives reasonable agreement with conventional chemistry models.

The ability of the macroscopic method to utilise any rate expression is demonstrated
by using a two-temperature rate model that accounts for dissociation-vibration coupling
effects that are important in non-equilibrium reacting flows. Relative to the case without
dissociation-vibration coupling, the macroscopic method with the two-temperature model
gives reduced dissociation rates in vibrationally cold flows, as expected. Also, for the blunt
cylinder flow, the two-temperature model gives reduced surface heat fluxes, as expected.
The macroscopic method is also tested with a number density dependent form of the
equilibrium constant. For zero-dimensional chemical relaxation, the resulting relaxation
histories are in good agreement with those provided by an exact Runge-Kutta solution of
the relaxation behaviour.

Reviews of basic DSMC procedures and conventional DSMC chemistry models are
also given. A method for obtaining the variable hard sphere parameters for collisions
between particles of different species is given. Borgnakke-Larsen schemes for modelling
internal energy exchange are examined in detail. Both continuous rotational and quantised
vibrational energy modes are considered. Detailed derivations of viscosity and collision
rate expressions for the generalised hard sphere model of Hassan and Hash [Phys. Fluids
5, 738 (1993)] and the modified version of Macrossan and Lilley [J. Thermophys. Heat
Transfer 17, 289 (2003)] are also given.



Contents

Abstract
1 Introduction

2 Kinetic theory
2.1 Introduction and summary . . . . . ... ... .00
2.2 Intermolecular collision dynamics . . . . . . . ... ... ... ... .....
2.3 The Boltzmann equation . . . . . . . .. . ... 0oL
2.4 Equilibrium distributions of velocity and speed . . . . . ... ... ... ..
2.5 Equilibrium distributions of energy . . . . . . . ... o L
2.6 Collision integrals and transport properties . . . . ... ... ... .....
2.7 Molecular collision rate and mean free path . . . . .. ... ... ... ...
2.8 Thermal relaxation processes . . . . . . . . . . ..o

2.9 Kinetic temperatures . . . . . . ... Lo oLl e

3 Characteristics of hypersonic rarefied flowfields
3.1 Introduction and summary . . . . . .. . ... ..o oo
3.2 Knudsen number . . . . . ... ..o L e
3.3 Continuum breakdown parameter . . . . . . . . .. ..o
3.4 Cheng’s parameter . . . . . . . . .. L e e

3.5 Classification schemes for rarefied flow . . . . . . . .. . ... ... .....

4 The direct simulation Monte Carlo method
4.1 Introduction and summary . . .. . .. . .. . .. .0t
4.2 The standard DSMC procedure . . . . . . . . . ... oo
4.3 Relationship to the Boltzmann equation . . . . . . ... ... ... ... ..
4.4 DSMC molecular models . . . . . . . .. ... Lo oL Lo
4.5 Modelling molecules with internal energy . . . . . ... ... ... ... ..
4.6 Validating the DSMC method . . . . . . . .. ... ... ... ... ....

5 Molecular reaction dynamics
5.1 Introduction and summary . . ... ... ... .. ... ...
5.2 The equilibrium constant . . . . . .. ... .00 oL

5.3 Bimolecular reactions . . . . . . . . . . .. e e e e e e e e e e

vi

10
12
16
19
20
22

28
28
29
30
31
32

34
34
36
43
43
50
62



viii

54 Recombination reactions . . . . . . . ... oL oL L Lo oL oL 66
5.5 Reaction frequencies and mean probabilities . . . . . . ... ..o 000 67
5.6 Details of the symmetrical diatomic dissociating gas . . . . . ... ... .. 68
6 Conventional DSMC chemistry models 71
6.1 Introduction and summary . . ... ... ... ... ... 71
6.2 Early DSMC chemistry models . . . . .. ... ... ... ..., 72
6.3 Total collision energy model . . . . . . . .. ... ... 73
6.4 Modelling dissociation-vibration coupling . . . . . ... ... ... L. I
6.5 Modelling recombination reactions . . . . . .. ... ..o o L. 81
6.6 Other conventional DSMC chemistry models . . . . ... .. ... ..... 84
6.7 Reaction mechanics and detailed balancing . . . . ... ... ... ..... 86
6.8 A simplified conventional DSMC chemistry model . . . . . . . ... ... .. 88
6.9 Testing and validating DSMC chemistry models . . . . . . .. ... ... .. 89
7 Decoupled chemistry methods 90
7.1 Introduction and summary . . . . ... ... ... 90
7.2 Details of the macroscopic chemistry method . . . . ... .. ... ... .. 92
7.3 Extension to more complex reacting gas mixtures . . . . . . . ... ... .. 98
7.4 Particle selection method suggested by Bartel [7] . . .. ... ... ... .. 99
8 Simulation results 101
8.1 Introduction and summary . . .. . ... ... ... 101
8.2 Gas model used in simulations . . ... ... ... L. 102
8.3 Zero-dimensional chemical relaxation . . . . . . .. .. ..o 102
8.4 Strong shock in dissociating nitrogen . . . . . . ... ..o L. 105
8.5 Blunt cylinder in rarefied dissociating nitrogen . . . .. ... ... ... .. 113
8.6 Discussion on the macroscopic chemistry method . . . . . . . ... ... .. 135
8.7 Discussion on using macroscopic information in DSMC calculations . . . . . 137
8.8 Discussion on the DSMC cell size criterion . . . . . . . .. .. ... ... .. 138
8.9 CPUrequirements . . . . . . . . . . . i 139
9 Summary and conclusions 141
Bibliography 144
A Mathematical miscellanea 157
A.1 Some useful integrals . . . . . . .. ... L L L 157
A.2 Joint distribution functions . . . . . ... ..o Lo Lo o L 158
A.3 Energy distributions for quantised vibrational energy . . . . . ... ... .. 159

A.4 Paraboliccurve fit . . . . . . . . e e e 161



ix

B Physical data for nitrogen 162
B.1 Viscosity and VHS parameters . . . .. ... ... ... ... ........ 162
B.2 Equilibrium constants . . . . . ... ..o oL 0oL 164
B.3 Reactionrates. . . . . . . . . . . e 165

C Further DSMC details 169
C.1 Determining the cell number of a particle . . . . . ... ... ... ..... 169
C.2 Particle trajectory in axisymmetric co-ordinates . . . . . . .. ... ... .. 171
C.3 Generalised hard sphere model . . . . .. .. ... ... ... ........ 172
C.4 Modified generalised hard sphere model . . . . ... ... ... ... ..., 175
C.5 Derivation of TCE model parameters . . . . . . . ... ... ... ... ... 178
C.6 Derivation of VFD model parameters . . . . . . . . ... ... ... 179
C.7 Macroscopic dissociation rates for the TLD model . . . .. . ... ... .. 180
C.8 Macroscopic dissociation rates for the EAE model . . . ... ........ 183

D Pseudo-random number generators and sampling 187
D.1 Pseudo-random number generator used in this study . . .. ... ... ... 187
D.2 Generating points uniformly distributed on a sphere . . . . . ... ... .. 188
D.3 Generating standard normal variates . . . . . . .. ... o000 189

D.4 Sampling from a continuous Boltzmann energy distribution . . . . ... .. 189



List of Figures

2.1

2.2
2.3

4.1

6.1

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10
8.11

8.12

8.13
8.14

Interaction of molecule A with molecule B in the centre-of-mass reference
frame . . . .. 5
Equilibrium distributions of reduced thermal velocity and speed . . . . . . . 12
Distribution of vibrational energy levels for unbounded harmonic oscillators

compared to the continuous Boltzmann approximation . . . . . .. ... .. 15

Exact and DSMC solutions of the relaxation history for the particle selection
scheme of Gimelshein et al. [65] . . . . . . . .. ... ... .. ... ... 55

Mean reaction probabilities for nitrogen dissociation reactions with TCE
model . . .. e e e e 7

Relaxation histories of temperature and dissociation fraction for zero-di-

mensional relaxation calculations . . . . . ... ... ... L0000 L. 104
Profiles of density ratio p/p; downstream of strong shock in nitrogen . . . . 109
Profiles of normalised conditions within a strong shock in nitrogen . . . . . 110

Profiles of normalised conditions downstream of a strong shock in nitrogen . 111
Profiles of a downstream of strong shock in nitrogen calculated using macro-
scopic method with two-temperature model . . . . . ... .. ... ..... 111
Profiles of density ratio p/p; downstream of strong shock in nitrogen cal-
culated using the macroscopic method . . . . . ... ... ... ... .. 112

Comparison of Tiin and & within shock, calculated using the macroscopic

method with K7 and K&, . .. ... ... ... ... .. ........... 112
Mean number of particles per cell for shock simulations performed with the
TCE and TCER models . . . . . .. ... ... . . ... 113
Profile of Z;, through strong shock in dissociating nitrogen resulting from
a constant ¢y, =0.01 . . . . .. L. 114
Blunt cylinder simulation geometry . . . . . . . . ... .o 118

Stagnation streamline profiles of p/ps and kinetic temperatures for non-
reacting blunt cylinder simulation. . . . . ... ... .. 0000 120
Profiles of force and heat transfer coefficients across cylinder face for non-
reacting flow . . . ... 122
Contours of collision rate ratio # for non-reacting blunt cylinder flowfield . . 123

Mean number of particles per cell for non-reacting blunt cylinder flowfield . 123



8.15
8.16
8.17

8.18

8.19
8.20
8.21
8.22
8.23
8.24
8.25

8.26
8.27
8.28
8.29

8.30

8.31
8.32
8.33

8.34

Al
A2

A3

B.1
B.2
B.3
B.4
B.5

Ratio At/mynus for non-reacting blunt cylinder flowfield. . . . . . . ... ..
Ratio (AZ)max/Avus for non-reacting blunt cylinder flowfield . . . . . . ..
Mean number of updates of (0g),,,, Per cell for non-reacting blunt cylinder
simulation . . . . .. ... L e e e e e e e
Stagnation streamline profiles for blunt cylinder flow, calculated using the
conventional TCE model and the macroscopic method with ¥+ = k;{rr (Tkin)
and k1 = kjp (Tirtrots Tyiby 8) < « o v o v v v e e e e e e
p/Pso contours for TCE solution of blunt cylinder flow . . . . ... ... ..
Tir /T contours for TCE solution of blunt cylinder flow . . . .. ... ...
Trot /T contours for TCE solution of blunt cylinder flow . . ... ... ..
Tvib/ T contours for TCE solution of blunt cylinder flow . . ... ... ..
Txin/Too contours for TCE solution of blunt cylinder low . ... ... ...
a contours for TCE solution of blunt cylinder flow . . ... ... ... ...
Demonstration of approach to steady state for TCE solution of blunt cylin-
der flow . . . . . . e e e e e
Mean number of particles per cell for TCE solution of blunt cylinder flow
Ratio (AZ)max/Avus for TCE solution of blunt cylinder flow . . ... ...
Energy distributions for particles hitting the cylinder face . . . . . . .. ..
Stagnation streamlines of a for VFD calculations compared to results from
macroscopic method . . . . . .. ... L L Lo
Stagnation streamline profiles for blunt cylinder flow, calculated using the

conventional TLD model and the macroscopic method with the fitted TLD

Mean number of particles per cell for TLD solution of blunt cylinder flow
Ratio (AZ)max/Avas for TLD solution of blunt cylinder flow . . .. .. ..
Profiles of Az/Ayus along stagnation streamline for TLD solution of blunt
cylinder flow . . . . . . . L.
Profiles of Az/lgraa(Q) along stagnation streamline for TLD solution of
blunt cylinder flow . . . . . .. ... .. L

Distribution of reduced internal energy € . . . . . . . ... oL
Comparison of theoretical and sampled distributions of & = &g + € (g) for
VHS molecules . . . . . . . . . . 0 e
Parabola y = az? + bz + c fitted to the points (z1,%1), (z2,2) and (z3,¥3)

Viscosity of pure diatomic nitrogen . . . . . . . ... L.
Characteristic viscosity pa+p for collisions between Ny and N molecules . .
Viscosity of pure atomic nitrogen . . . . . . ... ... 0oL
Comparison of viscosities for the No + N system . ... ... ... .....

Ny + N mixture viscosity at various o . . . . . . . . .. ... L.

xi



xii

B.6
B.7
B.8
B.9

C.1
C.2
C.3
C.4
C.5
C.6

Curve fit coefficients for K (7',n) at various number densities . . . . . . . .
Ratio of K¢ (T,n) to K;(T) for dissociating nitrogen . . . . . ... ... ..
Comparison of some published rates for No + N - N+N+N . . . ... ..
Comparison of some published rates for No + No -+ N+ N+ Ny . . . . . ..

Schematic representation of a one-dimensional grid . . . . .. ... ... ..
Reduced argon viscosity for the GHS and MGHS collision models. . . . . .
Relative collision rates for the GHS, MGHS and VHS collision models . . .
V versus g behaviour for the GHS and MGHS collision models . . . . . ..
Calculated macroscopic nitrogen dissociation rates for the TLD model . . .

Calculated macroscopic nitrogen dissociation rates for the EAE model . . .



List of Tables

3.1

4.1

8.1
8.2
8.3
8.4

8.5
8.6
8.7
8.8

B.1

B.2

B.3

C.1

D.1

Approximate Knudsen number ranges for rarefied flow regimes . . . . . .. 33
Relaxing particle selection scheme of Gimelshein et al. . . . . . . . . .. .. 53
Conditions for constant volume chemical relaxation of atomic nitrogen . . . 103
Flow conditions of Kewley and Hornung . . . . . ... ... ... ...... 107
Experimental density measurements of Kewley and Hornung . . . . . . .. 107

Temperatures, densities and approximate Damkohler numbers at various

altitudes . . . . . L oL 116
Freestream conditions for blunt cylinder calculations . . . .. ... ... .. 117
Surface fluxes and relative CPU requirements for blunt cylinder calculations 121
Summary of blunt cylinder results using the VFD model . . . . . . ... .. 132
CPU requirements for DSMC shock calculations . ... ... ........ 140

Curve fit coefficients for calculating 7d?Q(11* and 7d2Q(22)* and VHS pa-
rameters for collisions in the dissociating nitrogen system . . ... ... .. 164
Curve fit coefficients for K¢, for the No+M = N+N+M reaction at various
number densities . . . . ... L oL oL 166

Some published nitrogen dissociation rates . . . . . . . . ... ... 167

Percentage of reaction events in Monte Carlo sampling calculation with

(Pi)ip > 1 oo 182

Results of tests on Rf () pseudo-random number generator . . . . . . . . .. 188



Nomenclature

Throughout this study, conventional aerothermodynamic and mathematical notation has
been used where possible. Locally, some nomenclature different to the standard has been
used for clarity. To maintain consistency with the SI system of units, the kmol has been

adopted as the standard unit for amount.

a = Isentropic sound speed = (yRT)'/? (m/s)
Atip = TLD model parameter
b = Miss distance (m)
B = Continuum breakdown parameter
c = Thermal velocity (m/s)
Cmp = Most probable thermal speed in an equilibrium gas (m/s)
ct = Arrhenius reaction rate parameter for bimolecular forward re-  (m?®/kmol/s)
action
c- = Arrhenius reaction rate parameter for termolecular recombina-  (m%/kmol?/s)
tion reaction
c* = Parameter for common form of the equilibrium constant K (kmol/m?)
Cp = Drag coefficient
Ch = Cheng’s parameter
CH = Heat transfer coefficient
do = Differential scattering cross-section (m?)
dw = Element of solid angle
a2 = Element of solid angle
D = Characteristic dimension (m)
Da = Damkdhler number
e = Specific internal energy (J/kg)
f(x) = Continuous probability distribution of Units of 71
fs = Symmetry factor, equals two for like particles and unity oth-
erwise
Frot = firot/ €ex
g = Relative velocity of an intermolecular collision (m/s)
gr = Reference relative speed (m/s)
g Reduced relative speed = g [/ (2kT)]1/ >
h = Specific enthalpy (J/kg)
J = Jacobian
k Boltzmann’s constant = 1.38066 x 10723 J/K
kt = Reaction rate coeflicient for bimolecular forward reaction (m? /kmol/s)
kY. = Reaction rate coefficient for bimolecular forward reaction using  (m?/kmol/s)

Arrhenius rate model
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CHAPTER 1

Introduction

Non-equilibrium flow conditions exist where the local intermolecular collision rate is insuf-
ficient to achieve equilibrium conditions before the molecules are swept downstream. In
aerospace applications, non-equilibrium flow conditions are encountered under the extreme
conditions imposed by hypersonic flight at high altitude. This occurs during ascent to or-
bit, atmospheric entry, and during transits of planetary atmospheres conducted during
aerobraking and aerogravity assist manoeuvres. Non-equilibrium conditions are a defining
characteristic of rarefied flows. Several schemes have been proposed for characterising the
extent of rarefaction. These are considered in Chapter 3. Accurate simulation of non-
equilibrium gas flows is critically important in designing and predicting the performance

of hypersonic vehicles [131].

The direct simulation Monte Carlo (DSMC) method is the most common computa-
tional technique for modelling non-equilibrium gas flows in an engineering context. The
DSMC method recognises the discrete molecular character of gases, and models the macro-
scopic gas behaviour by simulating the motions and collisions of a set of simulator particles,
representative of the real gas molecules, as they move through physical space and interact
with the imposed boundary conditions. In principle, any level of physical detail can be
included in the simulation. The DSMC method is well documented by Bird [21]. Chapter
4 considers basic DSMC procedures, with particular emphasis on DSMC collision models
and the phenomenological Borgnakke-Larsen [26] scheme for modelling internal energy ex-
change processes. Some aspects of kinetic theory relevant to the DSMC procedures used
in this study are presented in Chapter 2. The appendices include some additional material

that extends the discussions presented in the chapters.

This study is concerned with methods for modelling non-equilibrium reacting flows
using the DSMC method. In most DSMC codes, the probability of a chemical reaction
occurring, denoted Pg, is calculated when collision partners are selected. This reaction
probability usually depends on the energies of the molecules participating in the collision.
A reaction is performed if Ry < Pr. Chemical reactions are therefore an integral part of
the DSMC collision routine. Here, these collision-based chemistry models are called con-
ventional DSMC chemistry models. A review of common conventional DSMC chemistry

models is provided in Chapter 6. Some aspects of molecular reaction dynamics relevant



2 Introduction

to DSMC chemistry calculations are considered in Chapter 5.

Conventional chemistry models rely on an expression for Pr that plausibly approxi-
mates the expected real gas behaviour, within the limitations of mathematical tractability,
numerical stability and computational efficiency. The expression for Pg is often selected
to recover a suitable rate equation in the equilibrium limit, with the hope that realistic
behaviour will be captured under non-equilibrium conditions. Often, conventional models
result in Pg > 1, which is physically unrealistic. Also, achieving detailed balancing can
be a problem for some models.

Several DSMC chemistry models have been proposed in which the calculation of chem-
ical reactions is decoupled from the DSMC collision routine. In these decoupled chemistry
methods, reaction events are performed after the collision routine in an independent pro-
cedure. The primary objective of this study is the development and testing of a decoupled
chemistry method, called the macroscopic chemistry method. The macroscopic method
is introduced in Chapter 7. The fundamental premise of the macroscopic method is that
chemical reactions are infrequent events, and provided that the macroscopic reaction rate
is maintained, the microscopic details of the reaction processes have a minimal influence
on the flowfield properties of engineering interest. Simple, approximate schemes can there-
fore be used to select reacting particles and perform post-reaction energy disposal. Using
the macroscopic method with such approximate schemes will provide good agreement
with flowfields calculated using conventional collision-based DSMC chemistry models that
attempt to accurately model reaction processes at the molecular level.

The macroscopic method is developed for a symmetrical diatomic dissociating gas,
and applied to nitrogen. The number of reaction events that must be performed in a cell
is based on the number required to maintain a macroscopic reaction rate. This rate is
calculated with local macroscopic information such as kinetic temperature and density.
For each dissociation event, a single diatomic particle is selected according to a simple
selection rule, and is dissociated into two atomic particles. For each recombination event,
two atomic particles are selected at random, and are combined into a single diatomic
particle. To account for the dissociation energy, the translational thermal velocities of
all particles in the cell are adjusted. The macroscopic method offers several significant
advantages over conventional DSMC chemistry models, as discussed in Chapters 7 and 8.

The macroscopic method is tested by simulating zero-dimensional chemical relaxation,
a strong one-dimensional shock, and the flow over an axisymmetric blunt cylinder. The
simulation results are presented in Chapter 8, and show that the macroscopic method gives
good agreement with the results of existing conventional collision-based DSMC chemistry
models. By calculating dissociation rates with a two-temperature model, it is shown that
macroscopic method can capture the effects of dissociation-vibration coupling, which is an

important phenomenon in non-equilibrium hypersonic flows.



CHAPTER 2

Kinetic theory

2.1 Introduction and summary

This chapter gives some results from elementary kinetic theory that are relevant to the
particle simulation methods considered in this study. Firstly, consideration is given to the
basic dynamics of intermolecular collisions and the definition of the collision cross-section.
The discussion then proceeds to the Boltzmann equation and associated Chapman-Enskog
solution, equilibrium velocity and energy distributions, and then molecular transport prop-
erties. Particular emphasis is given to expressions for calculating the coefficient of viscosity.
Thermal relaxation processes in which energy is exchanged between various energy modes
are then discussed. Finally, methods for calculating the kinetic temperatures of different
energy modes in a gas mixture are given.

Before starting the discussion, molecular and thermal velocities must be defined. The
thermal velocity ¢ of a gas molecule is the velocity in the stationary gas reference frame,
and is given by

C=VvV—u.

Here v is the velocity of the molecule in the laboratory reference frame and u is the
macroscopic flow velocity. In a pure gas, the flow velocity u is simply the mean molecular

velocity v. In a gas mixture containing Ny, species, u is given by

Nsp

u= E YsUs,
s=1

where y; and u; are the mass fraction and mean velocity of species s respectively.

2.2 Intermolecular collision dynamics

Consider two molecules A and B with initial velocities va and vg participating in a binary
elastic collision. These molecules have a pre-collision relative velocity g = va — vp. In

the centre-of-mass reference frame, the initial velocities are

mp ma

g and vpy=-——"-—g,

Vv =
Afm ma + mp

ma + ma
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where
_ MAVA + MBVB

Vi —
ma + ma

is the centre-of-mass velocity. It is convenient to define a reduced mass M, given by

mama

. (2.1)

mA—I—mB'

When ma = mp = m, v, = (va +vg)/2 and 7 = m/2. In terms of 7, the initial

velocities in the centre-of-mass reference frame are

m

Vaim = ——g and Vg, =———g.
m = A / p—

From energy and momentum conservation, the post-collision velocities of the molecules

are

m m
vi=vp+—¢g and vg=v, - —g.

mMA mp
where g’ = v/, — v}; is the relative velocity after the collision. From energy conservation,
the pre-collision relative speed g and post-collision relative speed ¢’ are equal. In the

centre-of-mass reference frame, the post-collision velocities are

m m
! / / /
\Y = — and v = —8.
A/m m g B/m mBg

The geometry of a binary collision may be defined in terms of two impact parameters.
The miss distance b and the collision plane orientation, denoted ¢, are used here, as
illustrated in Fig. 2.1. The miss distance b is the separation of the initial trajectories, and
is also called the distance of closest approach [148]. The angle € is the angle between the
plane containing the initial trajectories of the molecules and some reference plane. The
deflection angle x = x(g,b) for a collision is defined in the centre-of-mass reference frame
as the angle between the vectors g and g’. This deflection angle is the same for both
molecules in the centre-of-mass reference frame [148]. Calculating x and hence g’ requires
detailed consideration of the collision dynamics with the intermolecular force. Generally,

X decreases with increasing b and g. Bird [21] gives

g sin€ gy,
g=| g, | =cosxg+sinx | (g9. — gagy sine) /gy. (2.2)
glz - (ggy + 9.9z sin 6) /gyz
1/2
where g,, = (92 + ¢2) 2,

Intermolecular forces are established through the specification of a molecular model.

Usually, molecular models are defined by an intermolecular potential ). For spherically
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Unit sphere

ma

Ty

Figure 2.1: Interaction of molecule A with molecule B in the centre-of-mass reference frame. The
scattering centre is O. The collision plane is at angle € to the reference plane and b is the miss
distance. The solid angles dQ2 and dw are represented on the unit sphere centred at O'.

symmetric potentials, 1 is related to the force F' between molecules by
F = —dy(r)/dr,

where r is the distance between the molecular centres. A simple yet common intermolec-
ular potential considers molecules as points surrounded by a repulsive potential specified
by

P(r) =a/r*. (2.3)

The parameter o describes the strength of repulsion. Here, this potential is called the
inverse power law (IPL) potential. Real intermolecular potentials are comprised of both
short range repulsion and weak long range attraction. The IPL potential ignores the rel-
atively weak long range attractive forces between molecules. Another common model is
the Sutherland potential, which consists of a hard sphere surrounded by a weak attrac-
tive field. Many model potentials have been proposed to capture both the repulsive and
attractive portions of real potentials. Examples include the Lennard-Jones, Morse and

Maitland-Smith potentials.

To calculate binary collisions, the range of intermolecular forces must be specified.



6 Kinetic theory

This is described in terms of the collision cross-section, which is related to the strength
of interaction between molecules, and can be regarded as a measure of the collision prob-
ability. Traditionally, the collision cross-section is defined by considering a homogeneous
molecular beam of intensity I interacting with a single fixed molecule that acts as a centre
of force to deflect incident molecules. The beam intensity is the rate at which molecules
pass through a unit area perpendicular to the beam axis, and has units of (m2s)~!. For
hard sphere interactions, the collision cross-section is constant and is given by o = N /I
where N is the rate at which incident molecules are deflected by collisions with the fixed

molecule [140]. The units of o are m2.

For molecules that are represented by spherically symmetric point centres of force,
the collision cross-section is defined in terms of the differential scattering cross-section do,
which is related to the rate at which incident molecules are deflected by an angle between
x and x + dx. From Fig. 2.1, collisions with these class x deflections that lie within the
collision plane oriented at angle € are scattered into the element of solid angle d€2. This
solid angle is given by

dS) = sin ydxde.

All molecules in collision class x are deflected into the element of solid angle dw, which is

evaluated by

=21 27
dw = / dQ = / (sin xdyx)de = 2 sin xdy.
e=0 0

Present [140] defined the differential scattering cross-section do by
do = S(g, x) dw = S(g, x) 27 sin xdx, (2.4)

where S(g, x) may be regarded as an angular distribution function for scattered molecules.
The rate at which molecules are scattered into df2 equals the rate at which the molecules
pass through the elemental are bdbde. Similarly, the rate of class x deflections equals the

rate at which molecules pass through the annular area 27bdb. Therefore

do = 2mbdb. (2.5)
Egs. 2.4 and 2.5 give
b |db
S(g:x) = Snx ‘@ :

The total cross-section ¢ is given by integrating do over the range 0 < x < 7. Therefore

m
o= 27r/ S(g, x) sin xdx.
0

For hard sphere molecules, this total cross-section is simply the hard sphere cross-section
o = md?. For many potentials, including the IPL potential, this integral diverges because

deflections still occur as b — oo. Essentially, this means that all molecules in the gas
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interact with all others simultaneously. For practical purposes, the collision cross-section
for such potentials must be limited. Usually, this is achieved by specifying a minimum
deflection angle Xmin. Collisions for which the deflection angle is less than xmin are ignored,
because such collisions result in small deflections and so should have a small effect on the
bulk gas behaviour. In reality, quantum effects dictate that such a cut-off is physically
realistic [148].

For the IPL potential, x depends on the dimensionless impact parameter

~ o\ 1l/a
m
z=2> (_g )
aq
alone. Specifying a maximum z value zpy,x effectively defines a minimum deflection angle
Xmin = Xmin (?max)- It can be shown [21] that this results in a total collision cross-section
o o g*®. Hard spheres are represented by o — oo, giving constant o. Using a = 4

provides analytical simplicity because ¢  g. IPL molecules with o = 4 are called Maxwell

molecules.

2.3 The Boltzmann equation

In kinetic theory, the state of a pure monatomic gas is described by the molecular velocity
distribution function f(x,v,t). The position of a point in phase space is given by both
the position vector x = (z,y,2) and the velocity vector v = (vg,vy,v,). At time ¢, the
number of molecules dN in the six-dimensional element of phase space dz dy dz dv, dv, dv,,

denoted dx dv, is given by
dN =n(x,t) f (x,v,t) dxdv.

The spatial and temporal evolution of f in a dilute gas is described by the Boltzmann
equation. The dilute gas assumption means that the effective range of intermolecular forces
is much smaller than the mean molecular spacing, and that molecules interact through

binary collisions only. The Boltzmann equation is

onf) . Onf) o(nf) [B(Hf )] _
coll

F- =
+v + ot

ot Ox ov (2.6)

The term v - d(nf)/0x represents the movement of molecules out of spatial element dx
due to the molecular velocity v. The term F - 9(nf)/0v accounts for the acceleration of
molecules out of velocity class dv due to the external force per unit mass F. The collision
term [O(nf)/0t]

The collision term represents the net effect of two competing processes on the distri-

con describes velocity changes due to intermolecular collisions.

bution function f. The first process is the depletion of class vi molecules due to class

(vi,va) = (v}, v}) collisions. Per unit volume, it can be shown [148] that the rate of these
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depleting collisions that have the impact parameters b and ¢ is
n?f (vi) f (v2) gbdbde dvydvs.
Integrating over 0 < € < 27 gives
2rn2f (vi) f (v2) gbdbdvydvy,

which is the number of depleting collisions in class (vi,ve) — (v, v}) that have miss

distance b.

The second process is the replenishment of class vi molecules due to inverse collisions
of class (v1,vg) « (v}, Vv)). Per unit volume, it can be shown that the rate of these inverse
replenishing collisions is

2mn? f (v}) f (vh) gbdbav'dvs,.

Inverse collisions are a special case of the principle of detailed balancing, which is the
hypothesis that each molecular process and its inverse proceed, on average, at the same rate
in an equilibrium system. Detailed balancing is a consequence of microscopic reversibility.
Although the principle of detailed balancing does not apply with absolute generality, the

exceptions are unimportant in the study of molecular gas dynamics [148].

The net change in the number of class v; molecules, due to class (vi,vs) collisions

with miss distance b is then

— 27n? [f (vh) £ (vh) = F(v1) f (v2)]gbdbdv1dv2.

8 (nf dvy)] Vvt
ot

coll

The dv; factor cancels, and using bdb = S(g, x) sin xdx from Egs. 2.4 and 2.5,

= 2mn?[f (V1) £ (v4) = f (v1) £ (v2) | (g, X) sin xxvo.

o(ng)|
K3

coll

For all collision classes, the collision term is obtained by integrating this expression over

all possible velocities —0o < vo < oo and all possible deflection angles 0 < x < 7 to give

[B(gtf)]con = 27 /Z /07r n2 [f(v'l)f(vé) - f(vl)f(v2)] gS(g, x) sin xdxdvs. (2.7)

In formulating the collision term of the Boltzmann equation, a key assumption is that
successive collisions of a given molecule are widely separated in space relative to the mean
molecular spacing, such that there is no correlation between the initial velocities vi; and
vy of molecules in a collision [148]. This means that the velocities of collision partners are
distributed independently. This important assumption is known as the molecular chaos

assumption.

It is useful to consider a non-dimensional form of the Boltzmann equation. This is
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achieved by defining the normalised conditions 7 = n/n,, f =ulf, t = t/tgow = tuy/z;,
Vv = v/u,, X = x/z, and F = z,F/u?. Here the subscript 7 denotes a reference value.
Also the differential collision frequency 27ngS(g, x) sin xdx is normalised by dividing by
a reference collision frequency v, [148]. By substituting these values into Egs. 2.6 and 2.7,

the non-dimensional Boltzmann equation

(2.8)

is obtained. The non-dimensional parameter ¢ is

Uy

&=

7
Typly

and may be regarded as a non-dimensional collision time. ¢ is a measure of the departure

from local translational equilibrium [148]. This parameter is further examined in §3.3.

The Boltzmann equation can be extended to gas mixtures and can include molecules
with internal energy, chemical reactions and radiation by adding additional dimensions

and appropriate source terms [59].

The Chapman-Enskog method is used to obtain solutions of the Boltzmann equation.
The Chapman-Enskog method proceeds by assuming that the normalised distribution

function f may be approximated by the power series expansion

Fefr+es+E¢+...)

for small ¢ [148]. Here f* denotes the local equilibrium distribution. The Chapman-
Enskog method involves substituting this expression for f into the Boltzmann equation
and obtaining solutions to the resulting expression. The solution method is mathemati-
cally complicated, and full details are given by Chapman and Cowling [47]. Increasingly
accurate approximations of f are obtained by considering successive ¢! terms. By retaining
only first order ¢ terms, the Navier-Stokes equations can be obtained. This demonstrates
that the Navier-Stokes equations are only accurate for small departures from equilibrium
conditions. Solutions including ¢2 terms give the Burnett equations. The Chapman-
Enskog solution also provides expressions that relate the transport coefficients to the

intermolecular potential, as discussed in §2.6.

Bhatnagar, Gross and Krook [10] proposed a simplified collision term that retains
many features of the detailed collision term of Eq. 2.7. This BGK collision term provides
an approximation to the Boltzmann equation that is more mathematically tractable than

the original form that includes the detailed collision term. The BGK collision term is
2D -,

coll
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Here, f* is the local equilibrium distribution. v may be interpreted as a local collision
frequency that is proportional to density and may depend on temperature but is assumed
to be independent of molecular velocity [148]. By using the normalised parameters 7, f ,

i, v, % and F defined above and » = v /vy, the BGK collision term can be written in the

~. 7 BGK
la(ﬁf)] :@(f*_f)

non-dimensional form

ot

coll
The BGK equation results in a Prandtl number of unity, which is physically unrealistic
compared to typical values of 2/3 and 3/4 in monatomic and diatomic gases respectively
[148].

2.4 Equilibrium distributions of velocity and speed

In an isolated spatially homogeneous volume of a dilute monatomic gas free of external

forces, the Boltzmann equation can be written
df _ <[ ! o .
prie 2w n|f(vi)f(vy) — f(v1)f(ve)|gS(g, x) sin xdxdv,. (2.9)
—o0 J0

By defining the quantity

and substituting Eq. 2.9 into

00
% = . [1+In(nf)] Z—J;dv,

it can be shown [47, 86, 21] that dH/dt is never positive, and that H decreases until it

reaches a minimum value at the equilibrium state where dH/dt = 0. This is known as

the Boltzmann H-theorem. The H-theorem shows the basic irreversible nature of non-

equilibrium systems, and may be regarded as the kinetic theory analogue of the second

law of thermodynamics. Using the H-theorem, the equilibrium Maxwell-Boltzmann dis-

tribution of molecular velocities can be determined. This is given by

m N3 : 2
fle)= (27TkT) P (_%cz) - (2752T> xp (_QZﬁ> '

This normal distribution has a mean of zero and a standard deviation of (kT/m)% =

(RT)%. The distribution of thermal speeds ¢ = |c| is

3
m o 9 1 2 c?
M 2) -y -2 ).
eXp( 2ch) e (27rRT> eXp( 2RT)

N

o= 1e (32)
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The most probable thermal speed ¢y, is

(NI

emp = (2kT/m)? = (2RT)

and the mean thermal speed ¢ is

=

¢ = [8KT/(nm)]? = (8RT/7)? .
For convenience, the reciprocal of ¢, is often used, denoted
B'=1/emp = [m/(2kT)]> = 1/(2RT)5.
This definition allows f (c) and f(c) to be written in the more convenient forms
fle)= (,6/7‘!'%) exp (—ﬂch) and f(c) = (4ﬂ3/7r%) ¢ exp (—ﬁzcz) .

By defining a reduced velocity € = ¢/cmp = ¢f and a reduced speed ¢ = ¢/cmp = ¢f3, these

distributions become
f(€) =exp (—62) /W% and f(¢) = (4/75) ¢ exp (—62) ;

These distributions are shown in Fig. 2.2. The distribution of molecular velocities is given
by

fv) = (/%) exp [-F2 (v — w)?] .
The speed ratio S, which is analogous to the Mach number M = u/a = u/(yRT)Y?, is
defined by

o=

S =u/emp =uf =u/(2RT)>.

In a pure gas M/S = (2/~)'/2. For a monatomic gas with v = 5/3 then M/S ~ 1.10. For
a diatomic gas with v = 7/5 then M/S ~ 1.20.

For species s in a gas mixture containing Ng, species, the fraction of molecules in
thermal speed class ¢ is zs fs(c)de, where fs(c) and zs are the thermal speed distribution
and mole fraction of species s respectively. The fraction of molecules of all species in class

cis
Nep Nep

fle)de = Z zs fs(c)de = stfs(c) de.
s=1 s=1
For a gas mixture, the thermal speed distribution is therefore

Ngp

fle) = zsfilo),
s=1
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0 0.5 1.0 1.5 2.0 2.5 3.0
¢; and ¢

Figure 2.2: Equilibrium distributions of reduced thermal velocity component & and reduced
thermal speed ¢ = |€|.

and the mean thermal speed is simply

The most probable thermal speed in a gas mixture is found by evaluating

d 2

d
2@ = 2> wsfole) = 0.

s=1

In an equilibrium gas, the distribution of relative speeds g between molecules is

:i ﬁ : 2 (_ﬁz_g2> 2.10
f(g) = (%T> gexp| =g |- (2.10)

§* = ig®/ (2kT), (2.11)
Eqg. 2.10 becomes

1G) = (4/7%) 3% exp (-5%). (2.12)

2.5 Equilibrium distributions of energy

The translational kinetic energy of a molecule, denoted e, is given by € = mc?/2. The

distribution of €, is obtained by evaluating f(ey) = f(c)dc/dety, and is

o) = =2 ()" o (-12)
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When considering equilibrium molecular energy distributions, it is often convenient to

employ the reduced energy

e=¢/(kT).
f(€¢r) then becomes 1
F ) = (2/7r%) E2 exp (—&y) - (2.13)

From statistical mechanics, the distribution of discrete energy levels in an equilibrium

gas can be obtained [148]. This discrete Boltzmann distribution is given by

o(l) = N]*V(l) = % g1 €Xp [—%} . (2.14)

Here N*(I) is the number of molecules in level [ at equilibrium and N is the total number
of molecules, so ®(I) is the fraction of molecules in level | at equilibrium. €(/) and g
are the energy and degeneracy of level [ respectively. The partition function @ is the

normalisation constant for the discrete distribution, given by
e(l)
Q= zl:gl CeXp [_k—T] .

In the classical limit where the separation of energy levels tends to zero, it can be shown

[85] that Eq. 2.14 reduces to the continuous distribution

fle) = W (kiT) ¢ exp (_kiT> , (2.15)

where ( is the effective number of DOF. Here this will be called the continuous Boltzmann
distribution. In terms of the reduced energy ¢ = €¢/(kT'), Egs. 2.14 and 2.15 become

(b(l) — N*(l) — g1 €Xp [_g(l)] )

N Q

and
f(&) =e* Lexp (&) /T(¢/2). (2.16)

respectively. The mean energy (€) of the continuous Boltzmann distribution f (€) is eval-

uated by -
(& = /0 (@) de=C/2, so (€)= CkT/2. (2.17)

This provides a definition of the effective DOF (. The translational energy distribution of
Eq. 2.13 is an example of this distribution with ( = 3 for the three DOF in translation.

2.5.1 Rotational energy

For the species typically of interest in hypersonics, the characteristic rotational temper-

ature Ot ~ 2 K. In hypersonic flows, T' > O so the rotational energy mode may
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be assumed to be fully excited. The distribution of rotational energies is then accu-
rately approximated by a continuous Boltzmann distribution with (;ot DOF. For diatomic

molecules, (ot = 2 and Eq. 2.16 reduces to the exponential distribution

f (grot) = eXP(_grot)- (2.18)

2.5.2 Vibrational energy

In contrast to rotation, vibration is usually only partially excited at the temperatures of
interest in hypersonics, so the quantised nature of vibrational energy should be considered.

For diatomic molecules, the degeneracy is unity and Eq. 2.14 gives

N*(q) 1 €vib(9)
Bg) = — 2 = ——exp|-—"L
(9) N Qv 7 [ kT (2.19)
exp | — &in(q)] .
= T Ow | Vhere a=0.1... dmax.

Here, the energy levels €,i,(¢) and the maximum level gmax depend on the vibration model.

The partition function Qy;p is

Quib = Y exp [— GV;;Q)] = exp[—&nlg)]-
q q

The discrete vibrational energy distribution of Eq. 2.19 can be expressed in a contin-
uous form by using the Dirac § function. Here the vibrational energy in a continuous
representation is denoted €%,. In terms of the § function, the continuous distribution of
€xip, 18

~% exp (_E\flb) ~% ~
f(Exy) = ———2% §[efp, — €vib(g)] where ¢=0,1,...,gmax- (2.20)
Qvib

For anharmonic oscillators, the energy levels ey, (q) are obtained from spectroscopic
data. For the harmonic oscillator model, energy levels are equally spaced. The ground
state with ¢ = 0 is used as the reference state. The ground state has vibrational energy
k®yib/2, where O, is the characteristic vibrational temperature. Relative to the ground

state, the vibrational energy of level ¢ is

6vib(Q) = qk@vib glVIDg gvib(Q) = q@vib/T' (221)

For unbounded harmonic oscillators, the maximum level g¢m,x — 00 and the partition

function is given by
1/Qvib = 1 — exp (—Oyip/T) -
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For bounded harmonic oscillators with maximum energy level g4, the partition function is
4Ovib
Quib = Zexp ( - ) (2.22)

The mean reduced vibrational energy is given by

gmax

6v1b Z 6v1b

For unbounded harmonic oscillators

= ®Vi evi vi
) =3 29 a(g) = O o (L),
q=0 vi

q=0

Using z = exp (—Oyip/T) and Y02 gz? = /(1 — z)?, it can be shown that

. Ouin/T
(E) = oo T (2.23)

Eq. 2.17 gives (€) = (/2, so the effective number of vibrational DOF for unbounded

harmonic oscillators is
20,ip/T

Cvib = oxp (O /T) —1° (2.24)

This (yip is often used in Eq. 2.16 to provide a continuous approximation of the discrete
vibrational energy distribution. Discrete and continuous distributions of €, have been
compared in Fig. 2.3. As T — oo, vibration becomes fully excited and Eq. 2.24 shows
that (i — 2. In reality however, at T" ~ O, significant dissociation usually occurs.

Therefore vibration can rarely be regarded as fully excited.

10 ' ' ' '
— Continuous, T/ @, = 0.5
--- Continuous, T/ 0, = 1
—~ 1EN - Continuous, T/ 0O, =5
2 s e Quantised, T/0;,=0.5
b S o Quantised, ' 7/0,;, = 1
F ool e + Quantised, T/®,=5
S foa
s
2
W 1072
<
03k
1 L L :
0 1 2 3 ! ’
€yib

Figure 2.3: Distribution of vibrational energy levels for unbounded harmonic oscillators com-
pared to the continuous Boltzmann approximation of Eq. 2.15. For T/O.m, = (0.5,1,5),
Cvib = (0.626,1.164,1.807). Because (yib/2 — 1 < 0, f (&vin) = 00 as &pb — 0.
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2.5.3 Electronic energy

The spacing of electronic energy levels is generally an order of magnitude larger than
vibrational energy levels. This study does not consider the excitation of electronic energy

levels or the attendant ionisation and radiation phenomena.

2.6 Collision integrals and transport properties

In the Chapman-Enskog theory [47], integrals appear that are used to evaluate transport

properties. Of particular interest are the convergent integrals

op = 27r/ (1 —cosx)bdb
0
= 27T/ S(g,x) (1 — cos x) sin xdx
0

which is called the momentum transfer cross-section, and
o
oy = 27T/ sin? xb db
0
o
= 27r/ (1 — COSQX) bdb
0
™
= 2 / S(g,x) sin® xdx
0

which is called the viscosity cross-section. From the Chapman-Enskog theory [47], the

first approximation to the coefficient of dynamic viscosity u of a pure gas is

(5/8)(rmkT) > '
[m/(4kT)]* [5° 970u(g) exp [—mg?/(4KT)] dg

b=

Using the reduced relative speed §> = mg?/(2kT) = mg?/(4kT) from Eq. 2.11, this

becomes .
(5/8) (kaT) 2

fo 70# exp (—g?)dg

(2.25)

Hirschfelder et al. [86] introduced the general collision integral, denoted Q%) and
defined by

1
5 o o0
Qbs)(T) = (27::T> ’ / / 73 exp (—§2) (1 — cos! X) bdbdg.
o Jo

The non-dimensional collision integral Q(!5)*(T*) is obtained by dividing Q¢*) by the

corresponding hard sphere value [86]

(kT )5 (s +1)! [1_ H(_l)l]mz?.

2mm 2 2+21
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Here md? is the effective hard sphere cross-section which is a measure of the molecular size.
Qs)* ig expressed in terms of the reduced temperature 7% = kT /e, where the energy e
characterises the potential. For hard spheres Q(:5)* = 1. From Hirschfelder et al. [86], it

can be shown that

o
rd?QUDx (1) = / §°op exp (—5"12) dg and (2.26)
0
20(2,2)% (e 1 [ 9\ 4=
wd“ QB2 (T*) = 2 G ouexp (—g°) dg- (2.27)
0

Eq. 2.27 allows the viscosity expression of Eq. 2.25 to be written

5 (rmkT)?

w= 16 T2Q@2" (2.28)

The effective hard sphere cross-section 7d? and € are obtained from experimental viscosity
data with an assumed potential function [86]. For collisions between molecules of species

A and species B, Hirschfelder et al. [86] defined the characteristic viscosity

5 [ (2m) kT2

16 2,2)%’
16 7rd2A+BQSx+1)3*

patn = (2.29)

which may be regarded as the viscosity of a hypothetical gas in which all molecules have
mass 2m and interact according to an intermolecular potential curve characteristic of
A + B collisions. The first approximations for the diffusion and thermal conductivity

coefficients are

=

_ 25 (kaT)% ey
32 7d?2Q22x m

3 (mmkT)

1
= giwd%z(l:l)*; and K

respectively.

2.6.1 Viscosity formulae for various molecular models

Hard sphere molecules have a constant collision cross-section ¢ and hence the constant
viscosity cross-section [86]
o, =20/3.

Substituting this o, into Eq. 2.25 gives

1
o O (rmkT)2 (2.30)
16 o

Hard sphere molecules therefore have y o< T/2.
It can be shown [47] that the IPL potential of Eq. 2.3 gives o, g~ *® which leads to

the power law viscosity behaviour where p oc T2/2t2/¢ This can be written

N|=

w=p (T/T,)>" 5 (2.31)
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where the reference viscosity u, and reference temperature 7, are obtained from experi-
mental data. Hard spheres have a — oo giving u o« T"/2, and Maxwell molecules have

a =4 giving p x T

Real intermolecular potentials are comprised of both attractive and repulsive parts.
At high temperatures, where typical collision speeds are high, the attractive portion of a
potential, which is usually weak, becomes insignificant, and the repulsive portion of the
potential dominates the collision dynamics [86]. This repulsive part of the potential can
often be accurately described by an inverse power repulsion. Consequently, at high tem-
peratures, real molecules approach the behaviour of molecules that have an IPL potential,
which gives the power law viscosity behaviour apparent at high temperatures. For argon,
the accuracy of the power law viscosity model at high temperatures has been demonstrated
by Macrossan and Lilley [126].

The Sutherland potential results in the Sutherland viscosity formula

pr \T,) T+T, \T,) 1+T,T" ‘

As T — 0o, the Sutherland viscosity approaches hard sphere viscosity p o< T"'/2. Despite
the simplicity of the Sutherland model, the resulting viscosity behaviour is accurate over
limited temperature ranges and is therefore often used in gas dynamics. In hypersonic

flows where T is high, the Sutherland viscosity formula may be inaccurate.

For realistic intermolecular potentials, the viscosity behaviour is often described in
terms of tabulated values of Q22* at various T*. These are used in Eq. 2.28 to calculate

viscosity.

It appears that experimental viscosity data is limited to 7" < 2500 K [108, 126]. Various
curve fits have been proposed for viscosity at higher temperatures and some examples for

nitrogen are given in §B.1.

2.6.2 Viscosity of a binary mixture

For a binary gas mixture of species A and B, the first approximation to the mixture

viscosity pmix is given by Hirschfelder et al. [86] and is

1 X+Y
Mmix 1+Z ’

(2.33)
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2 2
T 2L AT x
ZA + “LATB + _B’
27N KA+B KB

v 34% [ﬁ (MA) n 2Wzazp (M2A+B> _|_ﬁ (@)

where X =

5 pa \ Mg PA+B  \ BAKB ps \Ma /|’
3A% Ma [A+B | HA+B Mg
Z = 7“3{332 (—)-I—Qmw [W(—++—+)—1]+x2 (—)},
5 A\ Mp ATB KA KB BAMa
Ma + Mg)? 2,2 1,1
W= W and A} = QU7 Q0N

Here, M and z; are the molar mass and mole fraction of species s respectively. For heavy

isotopes, an approximate binary mixture viscosity p .. is given by [86]

1 TA B
= + . (2.34)
\Y /*t;'knix VHA VB

For mixtures of diatomic and atomic nitrogen, the accuracy of this approximate formula

is assessed in §B.1.

2.7 Molecular collision rate and mean free path

The mean collision rate for a species A molecule with molecules of species B is

VA4+B = <09)A+B ny.

For a species A molecule in a gas mixture containing Ny, species, the mean collision rate

is

Nsp Nsp
VA = ZVA—i—s = Z<09>A+sns-
s=1 s=1
The mean collision rate per molecule in a gas mixture is obtained from [21]
Nsp Nsp Nsp
v=3" (%) =2 | (22) Yotogderom | (2.35)
s=1 s=1 p=1

The mean collision time 7 is simply

T=1/v. (2.36)

The number of collisions occurring between species A and B molecules, per unit volume

per unit time is

(hcolls)A+B = nAVA—|—B/fs = NANB <09)A+B/fs (2'37)

where f; is a symmetry factor that is two for like molecules and unity otherwise. The
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total number of collisions occurring per unit volume per unit time is

Nsp
. 1 ny
Teolls = 5 g NslVs = -
2 2
s=1

For a total of N molecules, the total number of collisions occurring during time At is

NvAt _ NAt

N, = .
colls 2 2

(2.38)

The mean free path A is the average distance travelled by a gas molecule between
successive collisions. It is defined in the reference frame in which u = 0 and is a state
property of the gas. From elementary kinetic theory, the approximate viscosity formula
i ~ pcA/2 can be obtained for hard sphere molecules [148]. A measured viscosity y = p(T)

then allows the definition of a nominal mean free path Apom using
Anom = 24/ (p€) - (2.39)

The nominal collision rate vnom is obtained from Anom using

c 4 pRT 4nkT 4
Vnom = = _ﬂ = - = —g- (240)
Anom T W T W T

A nominal collision time 7y, may also be specified using

1 T W U
= = £ 22 2.41
Thom = T 4nkT  4p (241)

2.8 Thermal relaxation processes

Collision-induced energy exchange processes between molecular energy modes are complex
phenomena. In macroscopic studies, these complex processes are often embodied in a
single, temperature dependent relaxation time, which characterises of the time required
for a disturbance to an initial equilibrium state to relax to a new equilibrium state. For
energy mode i, the relaxation time 7; is conventionally defined by the formula of Jeans
[89] for adiabatic conditions where

dei _ & (1)~ &()

=r 7 2.42
dt T ( )

Here, €;(¢) is the mean energy per molecule in mode 7 and € (¢) is the instantaneous mean
energy per molecule at the translational temperature of the heat bath Ti,. For {; DOF in

mode i, € is defined in terms of the translational temperature by

& () = GkTu(t)/2. (2.43)
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2.8 Thermal relaxation processes

It can be shown that [75]

(3 + Cz’) € (00) — &(t)],

&) —al) = (4

7

where €*(00) is the equilibrium mean energy per molecules in mode 3. For constant 7;, Eq.

el (459)]

2

2.42 has the general solution

7 (00) — €(0)

K3

LI N

In general, 7; may be temperature dependent, so 7; = 7;(t) because there is a one-

to-one correspondence between temperature and time in a simple relaxation process. By

separating variables in Eq. 2.42, the expression

e-*<oo§l€i at) (3 +3 §i> dﬁ)

2

is obtained. If a non-dimensional time

. [t at
t:/o 0 (2.44)

is defined, then

Lo 7o e = o —m] = (%) o = (59)

By defining a normalised energy
AA. E -
T E0) — ¢ ()

the relaxation behaviour can be expressed as

Aé; = exp [— (3%% f] : (2.45)

Therefore, when relaxation behaviour is plotted as Aé; versus ¢, the resulting curve will be
purely exponential, regardless of the temperature dependence of 7;. When £ = 3/(3 + ¢;),
Aé = 1/e = 0.3679.

For energy mode i, the relaxation time is often defined in terms of the collision number
Zi = 1/, (2.46)

which is mean number of collisions that occur per molecule during relaxation the time 7;.

Values of 7; measured by experiment are usually reduced to Z; using the nominal collision
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time of Eq. 2.41, so that

4 u(T
Ti = ZiTnom = Zz;%

With the definition of Z; from Eq. 2.46, the non-dimensional time # from Eq. 2.44 is given

by
" todt ty
F= = | —at, 2.47
/0 Z;T /0 Z; (2.47)

and may be regarded as the cumulative number of relaxing collisions per molecule between

time 0 and t.

Generally, the rotational collision number Z,y is in the range 1 < Zyot < 10. When
most molecules are in the ground vibrational state, vibrational excitation occurs predom-
inantly through vibrational-translational (VT) energy exchange. Under such conditions,
the approximate Landau-Teller theory [102] applies and vibrational transitions occur only
between adjacent energy states. It can be shown [148] that this results in vibrational re-
laxation as described by Eq. 2.42. At low temperatures, the vibrational relaxation number
Zyiv > Zrot- When higher levels are populated, vibration-vibration (VV) transitions be-
come significant, which are generally considered to be more rapid than VT transitions [49].
The different rates of VT and VV transitions at different temperatures result in a vibra-
tional relaxation equation that differs from Eq. 2.42. At high temperatures, Zyip ~ Zyot-
According to Meador et al. [131] comprehensive models of vibrational relaxation processes,
validated by experiment, do not exist.

Many theoretical and experimental investigations have demonstrated that rotational
and vibrational relaxation rates depend on temperature. Over limited temperature ranges,
Z; may be assumed to be constant. However, in flowfields with large temperature vari-
ations, the temperature dependence of Z; should be considered. In general, the rota-
tional collision number Z,, increases with temperature. Usually Z,o(7) is described
by the model of Parker [139]. In contrast, the vibrational collision number Z.j, usually
decreases with temperature. The vibrational relaxation time 7y;, given by the Landau-
Teller theory [102] is not accurate due to the approximations inherent in the simple one-
dimensional treatment. From experimental data, Millikan and White [133] proposed an
empirical expression for 7, that is generally considered to be accurate to T' ~ 8000 K
[28]. At T > 8000 K, a condition common in hypersonic flowfields, 7;, calculated with
the Millikan-White formula can be smaller than the mean collision time 7. This prompted
Park [136] to introduce an empirical modification to the Millikan-White formula to provide

more realistic 7y, at high 7'

2.9 Kinetic temperatures

This section gives expressions for calculating the kinetic temperatures of individual energy
modes in a gas mixture, and the overall kinetic temperature Tyi,. The definition of the

effective DOF ( from Eq. 2.17 can be used to define the kinetic temperature. Here, the
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kinetic temperature of energy mode 7 for species s, denoted (T;)s is defined by

Aei)s _ 2ei)s _ 2
k(gz)s Rs(Cz)s k(gz)st

(T)s = (2.48)

Here, (€;)5 is the mean energy in mode ¢ per species s molecule, ((;)s is the effective number
of DOF in mode i for species s molecules, (e;)s is the specific internal energy in mode %
for species s molecules, R; is the specific gas constant for species s and (E;); is the total

energy contained in mode i for a total of Ny molecules of species s.

In a gas mixture, the kinetic temperature of a particular energy mode may differ for
different species. The kinetic temperature of mode 7 in a gas mixture containing Ny,

species, denoted T;, each of which has ((;)s effective DOF in mode 7 is given by

o 2(e)
Ti= ey (2.49)
where
1 Nsp N, 1 Ngp Ngp
(i) = N Z Z(Gz)‘?, (G) = N Z(CZ)SNS and N = ZNs- (2.50)
s=1 p=1 s=1 s=1

Here N, is the number of molecules of species s and N is the total number of molecules

in the mixture. Similarly, for energy modes %; to i,, the kinetic temperature 7; is

1yeemybn

_ 2<6'51 7---7in)

Tiin = .
I B G ein)

2.9.1 Translational kinetic temperatures

The translational kinetic temperature 7%, is calculated from sampled thermal velocities.
Each velocity component has one translational DOF, so (i = 3 for all gas molecules.
For a particular species with molecular mass m, the mean translational energy of velocity

component z, denoted (e;), is given by

0o e} 2 0o
<6m> = /0 emf(ex)dem = /_ mzcwf(cz)dcx = %/_ ('Ux - Um)Qf(Um)d'Ux-

This integral is the variance of the distribution f(v,). For a sample of N random variates

X, the best estimate of the variance of the parent population is [152]

2

N N
2 1 2 _
[S(X)]” = N 1) NZXj — ZXJ : (2.51)
]:1 ]_1
so the best estimate of (e;) using a sample of N velocities is

(ex) = m[S(vz)]?/2. (2.52)
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Using N? in the denominator in Eq. 2.51 rather than N(N — 1) gives a low estimate of
(€z). For large sample sizes, the difference will be insignificant. However, if translational
temperatures are required from a small sample size, then Egs. 2.51 and 2.52 must be used

to calculate (e;).. For a gas mixture,

Nsp
<6w> = %ZNS<6$)S' (253)
s=1

Similar expressions are used for the kinetic temperatures of the y and z velocity compo-

nents.
For a particular species s, the mean translational energy (ey)s is
(€tr)s = (€z)s + (€y)s + (€2)s-
From Eq. 2.48,

(Tw,y,z)s = 2<€m,y,z>s/k and (Ttr)s = 2<€tr)s/(3k)a

so the mean translational temperature of species s, denoted (Ti;)s, is given by

(Ttr)s = [(Tz)s + (Ty)s + (Tz)S}/?’-

For a gas mixture, the mean translational energy (ei;) is given by

Nsp Nsp
<6tr> = %ZNsktr)s = %Z Ns(<€m>s + <€y>s + <6z>s)
s=1 s=1
1 Nsp Nsp Nsp
= N Z<6x>s + Z<6y>s + Z(ez)s )
s=1 s=1 s=1

where N is from Eq. 2.50. Using Eq. 2.53, this gives
(err) = (ea) + (€y) + (€2)
for a gas mixture. From Eq. 2.49,
Try,. = 2(€xy,2)/k and Ty = 2(er)/(3k),

SO
Tty = (T;c + Ty +Tz)/3

for a gas mixture.
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2.9.2 Rotational kinetic temperatures

In a gas mixture, the overall rotational kinetic temperature is given by

-1

2 6 Nsp N, Nsp

rot

Trot = C = E E 6rot § (Crot)st
rot s=1p=1 s=1

In a partially dissociated mixture of a diatomic gas As and A atoms, the atomic species
do not contribute to Tyot and can therefore be excluded from the calculation of (€yo4) and

(Crot)- Therefore,
Trot = <€r0t>A2/k = (emt)A2 /RA2'

2.9.3 Vibrational kinetic temperatures

For quantised vibration models, a vibrational kinetic temperature 734, can be obtained
from the discrete Boltzmann distribution of vibrational energy levels [21]. From Eq. 2.19,
the ratio of the number molecules in the ground state N*(0) to the number in the first

energy level N*(1) for species s is

N*(0)  exp {—ein(0)/[k(Tvib)s] } which eiv oy &ib(1) — &in(0)
N (D) ~ e {—em W)/ [FTa)s] ] e Tl =g v #0Y
For harmonic oscillators of species s, €yib(q) = gk(Oyib)s, SO
(Tvib)s = (Oyin)s/In [N*(0)/N*(1)]. (2.55)

Based on Eq. 2.49, the overall vibrational temperature in a gas mixture is calculated

using
2(€y;
o= Fiey
Vi

This requires the effective number of vibrational DOF ((,,)s for each species. From Eq.

(2.56)

2.48, these are calculated using

2(€vib)s

(Cvib)s = BTon)s”

Egs. 2.50 are then used to calculate the overall vibrational temperature Ty, for the mix-
ture.

Eq. 2.54 gives negative temperatures if there is a population inversion such that more
molecules occupy the first level than the ground state [21]. From Eq. 2.54, it can be shown
that the gradient of the line of €yip/k versus In N* is —1/(Tyip)s. Ideally, (Tyip)s should
be determined by using linear regression to estimate the gradient from the populations of
all energy levels.

For unbounded harmonic oscillators, an alternative method exists because (i, has a
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closed form solution. Eq. 2.24 gives

2((_)vib)s
exp [(Ovib)s/(Tvin)s] — 1

(Cvib)s =

Here (Tyip)s is obtained from Eq. 2.23 and is given by

(Ovib),
In [k (Ouib), /{€vib)s + 1]
(Oyib),
In [Rs (Ovib), /(evib)s + 1}
(Ovib),
In [kNs (Oyib), /(Eyin)s + 1]

(Tvib ) s -

In a partially dissociated mixture of A, harmonic oscillators and A atoms,

Tyip =

2.9.4 Overall kinetic temperature

Using Eq. 2.49, the overall kinetic temperature in a gas mixture, denoted 7i;,, may be

defined by
Tyin = 2(e)

This overall kinetic temperature may be regarded as an average temperature for all energy
modes in a gas. Here, (€) is the mean energy in all modes and is calculated using
1 Nsp N
<€> = 37 Ns<6tr>s + [(erot) + (evib) ] = <€tr> + <€rot> + <6vib>-
N P P
s=1

= p=1

(¢) is the mean number of DOF and is calculated using

Nesp
<C> =3+ % Z [(Crot)s + (Cvib)s] N;.
s=1
Therefore 2 () + () 4+ (eu)
2 {ér) + (€rot) + (&vib
e S

where (erot) = [25:1 (€rot) p] /N is the mean rotational energy of all molecules, including
monatomic molecules without any rotational energy. Similarly, (€i,) is the mean vibra-
tional energy of all molecules. In a partially dissociated mixture of As harmonic oscillators

and A atoms, (¢) is given by

(Q)=3+C2+G)(1-a)/(1+0a),
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where the dissociation fraction « is the mass fraction of the atomic species. The overall

kinetic temperature is then given by

% <€tr> + <6r0t> + <6vib>

2
Tkin:E 3+(2+Cvib)(1_a)/(1+a).



CHAPTER 3

Characteristics of hypersonic rarefied flowfields

3.1 Introduction and summary

In the hypersonic flow of rarefied gas over a blunt body, gas molecules generally have
insufficient collisions to achieve local equilibrium conditions near the body before being
swept downstream. Consequently, non-equilibrium conditions prevail in the shock layer,
where molecular velocity distributions are perturbed significantly from equilibrium. Under
such conditions, the Chapman-Enskog distribution, and the corresponding Navier-Stokes
equations, are not accurate descriptions of the gas. Furthermore, internal energy distribu-
tions may be perturbed from their equilibrium forms. Non-equilibrium conditions in the
shock layer may be characterised by different kinetic temperatures of translation 73, ro-
tation Ty and vibration Ty;,. Under rarefied conditions, the shock layer merges with the
viscous boundary layer to form a merged shock layer. The influence of surface scattering
is significant, because reflected molecules travel a relatively large distance into the flow
before colliding with other molecules [38]. Such thermal non-equilibrium conditions and

thick shock layers are characteristic of hypersonic rarefied flowfields.

The translational kinetic temperature 7i; rises rapidly through the shock layer, and
is followed quite closely by Ti. because translation-rotation energy exchange requires
relatively few collisions. However, many collisions are generally needed to transfer energy
to the vibrational mode. Therefore Ty, is typically much lower than both T3, and Tie
in rarefied hypersonic blunt body flowfields. Such conditions are called vibrationally cold

because Tyip < Trot S Tir-

It might be expected that intermolecular collision rates in rarefied flows are so low that
flowfield chemistry is essentially frozen. However, under the extreme conditions imposed
by hypersonic flight, intermolecular collisions can be sufficiently energetic to result in a

significant amount of flowfield chemistry, despite the rarefaction.

In all flow regimes, the presence of flowfield chemistry generally has a small effect on
surface pressures and skin friction relative to those for a non-reacting flow. Therefore the
coefficients of lift and drag are essentially unchanged. Dissociation reactions essentially
convert flow kinetic energy into chemical potential energy, and thereby reduce the flowfield

kinetic temperature. Ignoring surface catalysis, this usually results in reduced surface heat
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fluxes relative to those for non-reacting flows. As discussed in §5.3, dissociation-vibration
(DV) coupling results in reduced dissociation rates under vibrationally cold conditions.
When DV coupling effects are present, less flow kinetic energy is converted into chemical
potential energy, and there is a significant increase in the heat fluxes relative to flowfields
in which DV coupling is absent. The increased heat fluxes are an important effect which
must be captured for engineering studies. Modelling non-equilibrium reacting flowfields is

the primary focus of this study and is considered in detail in Chapters 5 to 8.

The aerothermodynamic effects of flowfield chemistry are strongly influenced by vehicle
geometry. Flowfield chemistry can increase the extent of flow separation regions and
thus significantly change the operating characteristics of aerodynamic control surfaces
[88]. Chemistry generally results in an upstream displacement of the aerodynamic centre
relative to that for a non-reacting flow. This results in a change in the pitching moment.

Such effects are generally more marked at higher angles of attack.

This chapter discusses several non-dimensional parameters often used to characterise
the extent of rarefaction in a gas flow. The Knudsen number, a continuum breakdown

parameter and Cheng’s parameter are considered in detail.

3.2 Knudsen number

The non-dimensional Knudsen number Kn is the parameter usually used to characterise

the extent of rarefaction. Kn is defined by
Kn = \/D, (3.1)

where D is some characteristic flow dimension. This dimension may be the length scale

of a local macroscopic flowfield gradient (), defined by

B_Qﬂ

lgrad(Q) = Q o

(3.2)

Here () may be the density, temperature, pressure or flow speed [135]. This gradient length

scale provides a local Knudsen number Kn = A/lgraq.

It is useful to write Kn in terms of other non-dimensional flow parameters. Using the

Reynolds number Re = puD/p and Apom = 2p/(pc) from Eq. 2.39, the expression

K 2u 2u 738 (W)/)é M M
n— = = = | — —  —

pcD  cRe Re 2 Re Re
is obtained, which can be applied to estimate Kn.

Tsien [146] considered rarefaction effects in boundary layer development and intro-

duced a Knudsen number based on the boundary layer thickness J, denoted Kns and
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defined by

For flows with Re < 1, D/§ ~ 1, and where Re > 1, D/§ ~ +v/Re. Therefore

(3.3)

M/Re ~Kn for Re <1,
Kng ~
M/+v/Re for Re > 1.

Tsien’s parameter Kng therefore includes consideration of viscous effects in characterising

rarefied flow. Kng should be considered when Re > 1, where viscous effects are significant.

3.3 Continuum breakdown parameter

The Knudsen number was originally defined to characterise rarefaction where the flow
speed was small compared to the mean thermal speed. In hypersonic flows, it may be
expected that rarefaction effects will depend in some way on the flow speed as well as
the mean free path. The flow speed should be important because it affects the number of
collisions that molecules can have before being swept downstream. At high flow speeds,
molecules have less collisions as they traverse the flowfield. This promotes local non-
equilibrium conditions.

The continuum breakdown parameter is a rarefaction parameter that considers the flow
speed. Two simple derivations of the breakdown parameter are presented here, followed
by the more detailed results of Bird [12] and a result obtained directly from the Boltzmann
equation.

Firstly, it is possible to characterise the extent of rarefaction by the ratio of the mean
collision time 7 = A\/¢ to the time for the flow to traverse a characteristic dimension,

denoted tgow. Over a body of size D, taoyw = D/u. The ratio of 7 to taey is

1 1
TN gyt T Rn = (”—7)2KnMo<KnM. (3.4)
thow DT c 2 8

Ignoring the leading constants, this suggests that rarefaction in hypersonic flows can be
characterised by the product KnM ~ M?/Re.

Secondly, consider the shear stress 7, given by
Ty = p———-.
e = b
A body with characteristic dimension D in a flow with a velocity « can induce a maximum
velocity gradient of approximately u/D. Therefore,

u  pPCAu  pcu
Np—=——=—Kn.
PEApT DT 2 "

In rarefied flows, this shear stress is comparatively high relative to the static pressure p,



3.4 Cheng’s parameter 31

when compared to continuum flows. The ratio of 7, to p is given by

w e Kn el

Kns = (22 %K M o Kn M
~ = nS=|— nM x Kn M.
D 2 pRT cmp

™

3
= o

Bird [12] proposed a non-dimensional parameter P, defined by

U
pv

dp

P
dz|’

(3.5)

to characterise the breakdown of the continuum model in steady one-dimensional gaseous

expansions. Using Eqgs. 2.41, 3.1 and 3.2, this parameter reduces to
N
KnS = (%) "KnM o Kn M.

Consider the non-dimensional form of the Boltzmann equation from Eq. 2.8. This form
includes the non-dimensional parameter ¢ = u,/(z,v;) = u,7,/x, which can be regarded
as a non-dimensional collision time. As £ — 0, the collision rate becomes infinite and
equilibrium conditions prevail. As £ — oo, the collision rate approaches zero and the flow
is free molecular. The parameter £ can therefore be used to characterise the extent of
rarefaction. & can be defined using u, = U, r = D and 7, = 7T, giving £ = Too /tow-
Eq. 3.4 then provides

¢ x Kn M.

The above results all suggest that the parameter Kn M ~ M?/Re is useful for charac-

terising rarefaction in hypersonic flows. Thus a continuum breakdown parameter B may
be defined by
B=KnM ~ M?/Re. (3.6)

For typical «y values, the parameter P of Bird [12] and the breakdown parameter B are
related by B ~ 1.3P. Note that B is related to Tsien’s parameter Kng by

B~ (Kns)? when Re>> 1.

3.4 Cheng’s parameter

For blunt bodies in rarefied hypersonic flow, the merged shock layer is expected to dom-
inate the flow behaviour. Consequently, the Knudsen number based on the freestream
mean free path Ao may not be the appropriate non-dimensional parameter for character-
ising the flow. A rarefaction parameter based on the conditions within the merged shock
layer rather than the freestream conditions, should be more useful for flow characterisation

[124]. Based on the theory of merged shock layers in hypersonic flows with low Re, Cheng
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[48] introduced a rarefaction parameter, denoted here by Ch and defined by

Ch = ‘”";‘%”f. (3.7)

Here, r is the body radius and the non-dimensional parameter C* is defined by

Cc*= T
oo T
where p* is the viscosity evaluated at temperature T which is characteristic of the merged
layer [124]. This characteristic temperature is simply the mean of the post-shock temper-
ature T» and the wall temperature Ty,y [48, 124]. For a flow with significant chemistry, u*
may be evaluated where the post-shock composition may differ significantly from that in
the freestream. Note that Ch has been defined here such that it increases with increasing
rarefaction, as do Kn and B. Also, Ch is related to the y notation of Macrossan et al.
[124] by x = 2/Ch.
Using r = D/2, p = pRT and p/p = A¢/2, it can be shown that
AooCoolloe C*

Using oo ~ oo and RT ~ ago, this reduces to

A
Ch ~ 22 %% o = Kn  M,,C* ~ C*B
D ayx
This shows that Ch is essentially the breakdown parameter B modified by the factor C*.
This factor accounts for different collision cross-sections and hence different collision rates
in the shock layer of a hypersonic flow [123]. Anderson [6] gives a viscous interaction

parameter

V? =C*M?/Re ~ C*B,

which is similar to Ch.

3.5 Classification schemes for rarefied flow

Several schemes have been proposed by various authors to classify flow regimes using the
Knudsen number [146, 143, 21]. Although such schemes are somewhat arbitrary, they can
be used to identify the dominant flow behaviour. Generally, a gas may be regarded as a
continuum when Kn < 1073. In continuum flows, the mean free path near a surface is
very small and many collisions occur near the surface. This results in the formation of
boundary layer near the surface, in which the stream velocity increases continuously from
zero at the surface to the stream velocity in a thin layer.

When 1073 < Kn < 107!, there are insufficient collisions near the surface to give a

boundary layer with a continuous velocity profile, and a finite flow velocity can exist at the
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surface. This flow regime is often called slip flow. The slip flow regime can be modelled
using the Navier-Stokes equations with appropriate modifications for the boundary con-
ditions. The Navier-Stokes equations can therefore be applied to flows with Kn < 1071,
The range where 10~! < Kn < 10! is often called the transition regime, and refers to the
transition between continuum and free molecular flow regimes. For Kn > 10!, the flow
approaches the free molecular limit and is considered to be collisionless. The term rar-
efied typically refers to those flows that cannot be accurately described by the continuum
model, and includes the slip, transition and free molecular flow regimes where Kn > 10-3.

The approximate Knudsen number ranges for each flow regime are included in Table 3.1.

Table 3.1: Approximate Knudsen number ranges for rarefied flow regimes.

Flow regime Kn range
Continuum Kn <1073
Slip 103<Kn<10!
Transition 107! < Kn < 10!

Free molecular 10! < Kn

According to Bird [12, 21], the continuum gas model fails for P > 0.02. In terms
of the breakdown parameter B, this continuum breakdown criterion becomes B 2 0.03.
According to Macrossan et al. [124] rarefaction effects become important when Ch 2 0.2.
For high speed flows over blunt bodies, Macrossan [123] showed that Ch was the most

useful parameter for characterising rarefied flow conditions.



CHAPTER 4

The direct simulation Monte Carlo method

4.1 Introduction and summary

The fundamental description of a dilute gas is provided by the Boltzmann equation.
In principle, a method that solves the Boltzmann equation can be applied under any
conditions, as long as the dilute gas assumption holds. The Chapman-Enskog method
shows that a solution of the Navier-Stokes equations accurately approximates a solution
of the Boltzmann equation where departures from equilibrium conditions are small. Con-
sequently, many computational fluid dynamics (CFD) codes give numerical solutions of
the Navier-Stokes equations. However, in rarefied flows where non-equilibrium conditions
exist, the Navier-Stokes equations fail to provide an accurate description of the gas. Fur-
thermore, CFD solutions using the Burnett equations and more detailed approximations
of the Boltzmann equation are difficult, and few solutions have been attempted [49]. In
non-equilibrium flows, the molecular nature of the gas must be considered, and a method

that solves the more fundamental Boltzmann equation is required.

The Boltzmann equation has remained analytically intractable for all but the simplest
problems. Furthermore, numerical solution of the Boltzmann equation using conventional
CFD methods, known as direct Boltzmann CFD [21], is generally difficult and for engi-
neering applications, accurate solutions of realistic problems have extreme computational
expense. Consequently, particle-based simulation methods that recognise the discrete
molecular character of gases are generally used to obtain accurate flow solutions in the
rarefied regime. For flows of engineering interest, the most common of these is the direct
simulation Monte Carlo (DSMC) method.

The DSMC method models macroscopic gas behaviour by simulating the motions and
collisions of a set simulator particles, representative of the real gas molecules, as they
move through physical space, undergo intermolecular collisions and interact with imposed
boundary conditions. Each DSMC simulator particle represents a very large number of
real gas molecules. Probabilistic rather deterministic techniques are employed to simulate
molecular collision processes. Physical space is divided into grid of computational cells in
which intermolecular collisions are performed.

The most important feature of the DSMC method is that it allows modelling of thermal
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non-equilibrium processes, because all flow phenomena can be simulated at the molecular
level. In this respect, the method is the only available CFD technique that can accurately
capture general non-equilibrium gas behaviour. In principal, models incorporating any
level of physical detail can be used with the DSMC method [134]. In practice, the level of
physical detail is limited by computational expense and the availability of physical data.
The DSMC method was first used by Bird [11], when it was applied to the translational
relaxation of a homogeneous hard sphere gas. The method has been described in detail by
Bird [14, 21]. Other reviews have been conducted by Bird [16], Ivanov and Gimelshein [88]
and Oran et al. [135]. Cheng and Emanuel [49] have reviewed the DSMC method in the
context of non-equilibrium hypersonic flows. More recently, Bird [23, 24] has summarised
the current state and future prospects of the DSMC method. A diverse range of flows

have been studied with the DSMC method, as summarised below.

e Rarefied aerothermodynamics, including thermal non-equilibrium and high temper-
ature gas effects such as flowfield chemistry, ionisation and thermal radiation. Such
flow conditions occur during ascent to orbit, atmospheric entry and during aero-
braking and aerogravity-assist manoeuvres executed by interplanetary exploration
vehicles. Also, atmospheric drag on spacecraft in low Earth orbit occurs in the

rarefied regime.
e Shock wave structure.
e Structure of jets and spacecraft plumes.
e Spacecraft contamination and outgassing.
e Electric spacecraft propulsion systems.
e Interaction of gas flows with micro-electromechanical systems.

e Thin film growth and plasma etching in plasma reactors used for microelectronics

manufacturing.
e Evaporation and condensation phenomena.
e Astrophysical flow phenomena.

This chapter provides a description of the DSMC method. Firstly, the basic DSMC
procedure is considered in §4.2. The relationship between the Boltzmann equation and
the DSMC method is discussed in §4.3. A detailed discussion on DSMC molecular models
appears in §4.4, with particular emphasis on the variable hard sphere model. Borgnakke-
Larsen procedures for modelling internal energy exchange are considered in §4.5. It is
shown that these procedures allow satisfaction of detailed balancing. Finally, a summary
of validation efforts is given in §4.6. The application of the DSMC method to chemically

reacting flows is considered separately in Chapters 6 and 7. Ionisation modelling is beyond
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the scope of this study. This study concentrates on steady flow modelling procedures for
the DSMC method. For aerospace applications, the assumption of steady flow conditions
is by no means restrictive because the freestream conditions typically vary over time scales
that are orders of magnitude longer than the time required for flowfields to reach steady

state.

4.2 The standard DSMC procedure

The standard DSMC procedure is:

1. Determine the cell in which each simulator particle resides. This requires a spatial
sorting algorithm. Where cells are further divided into subcells, the subcell must

also be determined.

2. Select collision partners within each cell and perform intermolecular collisions with
internal energy exchange and chemical reactions. This is a zero-dimensional calcu-

lation that is performed probabilistically.

3. Perform the collisionless particle move step for time At and enforce boundary con-

ditions. The move step is performed deterministically.

4. Sample the flowfield.

The remainder of this section discusses the standard DSMC procedure, with the exception
of chemical reactions.

The DSMC method depends on random numbers. True random numbers cannot be
generated with a computer algorithm, and pseudo-random number generators are used.
As noted by Bird [21], the DSMC method is tolerant of problems with pseudo-random
number generators. However, the quality of the generator used in any DSMC study should
be assessed. Some discussion on the generator used in this study appears in §D.1.

The DSMC method was originally developed using the dilute gas assumption in which
molecules interact through binary collisions alone. For most applications in hypersonics,
this assumption is appropriate. Standard DSMC procedures have been extended to dense

gases by Alexander et al. [3].

4.2.1 Decoupling interval and division of physical space

The fundamental DSMC simplification is that the simulation of molecular collisions is
decoupled from the simulation of molecular motions. The two processes are performed
independently, separated by a decoupling interval or time step At. The time step must
be set to a value substantially less than the local mean collision time. Garcia and Wagner
[61] and Hadjiconstantinou [77, 78] showed that the transport coefficients depend on At,
and that the error in the transport coefficients is of order (At)2. Typically, At ~ 7/3 is

used.



4.2 The standard DSMC procedure 37

Physical space is discretised into computational cells in which collisions are performed
and from which flowfield samples are accumulated to calculate macroscopic flow conditions.
The collision and sampling routines require the number of the cell in which each particle
resides, which requires some form of spatial sorting algorithm. Cells may be further divided
into subcells. Collisions are then performed only between particles within each subcell.
This ensures that collision partners are near neighbours. Where subcells are used, the
subcell number must also be determined.

The characteristic dimension Az of each cell depends on the local mean free path A
and the local flow gradients. The local gradient length scale ly,q(Q) is defined by Eq.
3.2. Since changes in the flow gradients depend on collisions that occur over the mean
free path A, lgraq will always be greater than A. Where lgr,q approaches A, Az should be
substantially less than A. This ensures that the simulation can accurately capture local
flow gradients. Bird [21] recommends Az ~ /3. Where lgraq > A, then Az ~ lgqq/3
is suitable. More discussion on this issue is given in §8.8. According to Alexander et al.
[4, 5], viscosity and thermal conductivity are cell size dependent. For Az < A\/3, the errors
are small. Where Az is small relative to A, subcells are unnecessary.

The above requirements for At and Az result in the computational expense of the
DSMC method being proportional to p’V, where N is the flow dimensionality. This has,
in practice, limited the method to transition regime flows. For near continuum flows, the
mean collision time and mean free path are very small, and the DSMC method becomes
extremely computationally expensive relative to continuum CFD solvers. These practical
limitations on the DSMC method will become less important as computing costs decrease
and more powerful DSMC algorithms are introduced.

In addition to the above criteria for At and Az, Bird [13] notes that the ratio Az/At
must not be large compared to the local sound speed a. This avoids the propagation of
artificial disturbances at a speed ~Axz/At. For Az = A\/3 and At = 7/3, Egs. 2.39 and
2.41 can be used to show that

Az/At ~ ¢~ 1.3a.

Therefore this additional criterion is satisfied.

4.2.2 Collision partner selection and collision simulation

In the DSMC method, simulating intermolecular collisions first requires identification of
collision partners, followed by the actual collision calculation. Collision partners are se-
lected probabilistically. This contrasts to molecular dynamics methods in which collisions
are calculated deterministically. Usually, the no time-counter (NTC) technique of Bird
[20] is employed to select collision partners. In this method, the number of particle pairs

to test for collision in a given cell, denoted Npairs, is calculated using

Npairs = PN (0g) maxAt/2.
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Here, n is the time-averaged number density in the cell and N is the instantaneous number
of particles in the cell. (0g)max is the maximum value of og for the cell. This value is
updated during the simulation when a larger value is found. An initial estimate of (0¢)max

is required at the start of the simulation. Here, an initial value of 1.5(cg) was used.

Npairs is a pure number and has both integer and fractional parts. The factional part
Nirac = Npairs — [ Vpairs| can be considered probabilistically; if Ry < Niac then Nipe = 1,
otherwise Ng,c = 0. Alternatively, Ng,. can be stored as a fractional remainder and then

added to Npairs at the next time step [8].

Particle positions in each cell are ignored when selecting collision partners, and all
possible collision pairs have an equal probability of being selected. For a selected pair of

particles, a collision is performed if

Ry < 0g/(0g)max-

Clearly, the NTC method is an acceptance-rejection technique. Where subcells are used,
the first collision partner is selected at random within the cell, and the second partner
is then selected from the same subcell as the first partner. The NTC method gives the
correct collision rate for any velocity distribution, in both pure gases and gas mixtures
[21].

When collision partners are selected, intermolecular collisions are performed, with in-
ternal energy exchange and chemical reactions. This is a zero-dimensional calculation, and
is performed probabilistically. When performing collisions, particle positions are ignored

and only particle velocities are changed.

Calculating the post-collision velocity vector (g;, g;, g;) using Eq. 2.2 depends on the
deflection angle x and the collision plane orientation e. The deflection angle x(g,b) depends
on the molecular model, as discussed in §4.4. The miss distance b and the collision plane
orientation € are calculated using b = lec/ meax and € = 2mRy. Here bmayx corresponds to

collisions with the minimum deflection angle Xmin = X (9, bmax)-

To select possible collision pairs from a given cell, a list of the particles residing in the
cell is required. This list array is constructed when the cell number of each particle is
determined. Particles in the list array are arranged in order of cell and subcell number.
To select a possible collision pair, a particle is selected at random from the portion of the
list array for the current cell. A second particle is then selected from the portion of the

list array for the same subcell as the first particle.

4.2.3 Particle move step

After the collision routine, particles are moved for time At and the boundary conditions

are enforced. The move step is collisionless. In a three-dimensional Cartesian co-ordinate
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system without body forces, particle positions after the move step are simply
x' = xo + VAt

where xo = (20,90, 20) is the starting position and v = (v, vy, v,) is the particle velocity.
In the (7,6, z) cylindrical co-ordinate system used in axisymmetric simulations, a particle
with starting radius rg, radial velocity v, and tangential velocity vy at time ¢ moves to a

new radial co-ordinate

M

r = [(ro + v, At)? + (vgAt)? (4.1)

at time ¢ + At. Using
zr =19 + v,At and zg = vgAt, (4.2)

Eq. 4.1 reduces to

= (z? +$g)%.

The new axial co-ordinate 2z’ is simply
2 =20 + v, At. (4.3)
The new radial and tangential velocities are obtained from the transformations
vl = [vy (ro + v, At) +v3At]/r' and vy = [vg (1o + v, AL) — vyveAtL] /1

which, using Egs. 4.2, reduce to

v = (v, + zovg) /7 and  v) = (z,vp — Tovr) [T’
respectively. §C.2 contains further details on calculating the intersection points between

particle trajectories and straight lines and circles in axisymmetric co-ordinates.

4.2.4 Boundary conditions

At flow boundaries, new particles entering the simulation domain must be generated.
This involves sampling the velocity and internal energy of each entering particle, and
also determining the location at which each particle crosses the boundary. Particles that
leave the domain are simply deleted from the simulation. Upstream boundaries must be
sufficiently far upstream such that they are in the freestream. For rarefied flows this can
result in relatively large simulation domains, because the large mean free paths result in
flowfield disturbances extending relatively large distances. Methods for generating the
velocities of particles entering the simulation domain have been considered in detail by
Lilley and Macrossan [109]. These procedures apply to both inflow and outflow boundaries

and both subsonic and supersonic flows. They can also be applied to unsteady flows. At
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supersonic outflow boundaries, the number of particles entering the simulation domain is
very small, and can be ignored if the downstream boundary is sufficiently distant from

regions of interest.

For an N-dimensional simulation, N —1 random numbers are required to determine the
location at which an entering particle crosses the simulation boundary. In two-dimensional
simulations, the location of a particle crossing a simulation boundary between i, and
Tmax 1S SIMPLY Tmin + Rf(Tmax — Tmin). In axisymmetric simulations, the radial co-ordinate

r of entering particles is distributed according to [21]

f(?") = 2T/ (Tl?nax - ’rl?nin) )

where rmin and ryax are the minimum and maximum radial co-ordinates of the region of

interest. Radial co-ordinates r for entering particles are generated using

P = [+ Ry (P — )] (4.4)

In two-dimensional flows, axes of symmetry are replaced with a specularly reflecting

surface. In axisymmetric simulations, particles do not cross the axis of symmetry.

If a particle strikes a solid surface, a scattering law is required. The two most common
models are specular and diffuse reflection. For specular reflection, the velocity component
normal to the surface is simply reversed. Components parallel to the surface do not change.
For diffuse reflection, particles are reflected away from the surface in all directions with
equal probability. The normal velocity component of a reflected particle, denoted v/, is

generated using

N

vy, = (— InRf)? cmp (Tiwan) -

Here ¢mp = (2kTywan/m) 1/2 i the most probable thermal speed in an equilibrium gas at the
wall temperature Ty,y. For steady flows, it is assumed that (dTan/dt) At is small, s0 Tyan
may be assumed to be constant. Parallel velocity components are generated from a normal
distribution and internal energies from appropriate Boltzmann distributions, again at the
wall temperature. Engineering surfaces are usually assumed to be completely diffusely
reflecting. However, at high impact energies, a significant fraction of collisions may be
specular [21]. Examples of DSMC studies using a component of specular reflection are
given by Dogra and Moss [54] and Boyd [38]. Under unsteady flow conditions, the time
dependent nature of the flow boundary conditions must be considered when generating
entering particles at flow boundaries, and when considering surface interactions. For
unsteady flows where Ty, varies significantly, the modelled heat flux to the wall, and
the thermal properties of the wall material can be used to calculate T,y (t) during the

simulation.
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4.2.5 Particle weighting factors

Each particle in a DSMC calculation represents a very large number of real gas molecules.
This number is the particle weighting factor W. Statistical problems can arise when
simulating trace species, because they are represented by small numbers of simulator
particles relative to the dominant species. Bird [14] introduced species-based weighting
factors so that all species would be represented by a similar number of particles. Particular
care is required to ensure that momentum and energy are conserved in collisions between
particles with different weighting factors. A conservative species weighting scheme was
proposed by Boyd [36] to accomplish this. This scheme was used by Wu et al. [153] to
model chemical vapour deposition. Species-based weighting factors have not been used

here.

In a typical DSMC calculation, number densities and cell volumes may vary by orders
of magnitude. Consequently, the number of real molecules that must be simulated in each
cell has large variations. To maintain a manageable number of particles in the simulation,
different weighting factors are required for different cells. Cell-based weighting factors
have been used here, such that all particles in a given cell have the same weighting factor.
Ideally, cell-based weighting factors should be set so that all cells contain similar numbers
of particles. In axisymmetric simulations, W generally increases with distance from the

axis.

As a particle moves from one cell with a weighting factor W to a new cell with a
different weighting factor W', the number of real molecules that it represents changes.
The particle may therefore be either deleted or cloned so that it represents, on average, a
constant number of real molecules. If W’ > W, the particle has a probability of deletion,
and the deletion criterion is Ry > W/W'. If W' < W, the particle has a probability of
being cloned, and the required mean number of clones is W/W'—1, which could be greater
than unity. Therefore Ngjones = |[W/W' — 1] clones are made, and another clone is made
if Rf < W/W' —1 — Niones- Cloned particles are not placed into the flow immediately.
The first clone of a particle is delayed by three time steps. Further clones of a particle are

introduced into the flow at intervals of three time steps.

These delays for cloned particles necessitate the use of an array containing the number
of time steps that each particle has been delayed. If the delay value of a particle is
greater than zero, it is decremented at the particle move step. No other computations are
performed for delayed particles. Similar delay procedures are recommended by Bird [21],
and appear to give accurate flowfields. However, the numerical effects of cloning particles,
with their associated delays, have not been studied in detail. In unsteady flows, the effects

of delaying cloned particles may cause numerical problems.
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4.2.6 Flowfield sampling

In a typical steady flow DSMC calculation, the simulation domain will initially be filled
with particles at the ambient conditions. The simulation will then be run for a period
until the average cell conditions do not change with time, within statistical scatter. This is
called steady state. The approach to steady state is required because the initial simulation
conditions usually differ from the calculated steady state conditions. After steady state is
attained, particle properties are sampled until a sufficiently large number of samples has
been obtained. Sampling of some flowfield properties is undertaken during the approach to
steady state, to obtain macroscopic quantities such as the time-averaged number density
n used in the NTC method, or kinetic temperatures. The sampling arrays, discussed
below, are reset periodically during the approach to steady state so that the macroscopic
properties used in the simulation are updated regularly.

In an unsteady flow simulation, the DSMC calculation is repeated several times. The
first several simulations should be used to obtain macroscopic quantities such as the time-
averaged number density n for the NTC method. Subsequent simulations are then per-
formed, and the quantities sampled in each cell during each time step are stored to recover
the time dependent behaviour.

The sampling arrays contain the quantities

2 2 2
Ny Qv vy v D vn vy )% ) e and ) e

for each species in each cell. The mean i velocity component in a cell containing Ny,

species is calculated using

-1

Nsp Nsp
w= S50 ma| - (o wm,
s=1 s s=1
The density is obtained from
Nsp

w
p == ZNsms.
VC s=1

Kinetic temperatures are calculated according to the formulae presented in §2.9.
Solid surfaces are divided into surface cells, and for each particle reflected from a

surface cell, the momentum change AP = WmAv and energy change
Ae=W [mA(vQ)/2 + A€ot + Aerot]
are accumulated for the cell. The mean force on the surface cell is
F = — (AP) o0 /Atls,

where (AP), .. is the total momentum change for particles hitting the cell and At; is the

tota
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total time covered by the sample. The total heat transfer to the cell is simply the sum of

Ae for all reflection events.

4.3 Relationship to the Boltzmann equation

The DSMC method was originally developed and applied in the absence of a formal math-
ematical proof that it provided a solution of the Boltzmann equation. This was an early
criticism of the method, and there has been much debate about whether the DSMC method
does provide a solution of the Boltzmann equation. It may be argued [21] that the DSMC
method provides a physical, rather than mathematical, solution of the Boltzmann equa-
tion, because the physical reasoning used to establish the Boltzmann equation is similar
to that used in DSMC procedures [13].

In the DSMC method, the velocity distribution function f is replaced by a represen-
tative set of simulator particles [61]. Physical space and time are discretised as described
in §4.2.2. The decoupling of collisions and particle movements means that the DSMC
method solves the Boltzmann equation in two steps. In the absence of body forces, the
particle move step solves the collisionless Boltzmann equation

o(nf) o(nf)

o TV Tax

The collision routine solves the collision term

[a(gtf) ] coll

in a probabilistic zero-dimensional calculation for each cell. The solution of the collision

term is essentially a relaxation calculation. As At — 0 and Az — 0, the DSMC procedure
becomes more exact [21].

Several authors have discussed the relationship between the DSMC method and the
Boltzmann equation. Summaries of early studies are given by Bird [21] and Ivanov and
Gimelshein [88]. Wagner [151] has provided a formal proof that DSMC simulations con-
verge to a solution of the time and spatially discretised Boltzmann equation in the limit of
infinite simulator particles. However, this proof applies to a simple gas only. The DSMC
method can incorporate models of rotational, vibrational and electronic excitation, chemi-
cal reactions, ionisation, radiation and surface interactions. Proof that the DSMC method

solves the Boltzmann equation when such phenomena are present have not been provided.

4.4 DSMC molecular models

In the DSMC method, a molecular model is selected that attempts to reproduce the
required transport properties over the temperature range of interest. In early DSMC cal-

culations, various intermolecular potentials were used to model collisions. These included
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the IPL, Lennard-Jones, Morse and Maitland-Smith potentials. The use of such potentials
requires the calculation of the deflection angle x(g, b) for each collision as a function of the
relative speed and miss distance. Such calculations are difficult, and recourse to extensive
tables is necessary when many collisions must be simulated. In an engineering context,
the use of such intermolecular potentials is unnecessary [21], prompting the introduction
of simpler phenomenological molecular models for use in DSMC simulations. This section
summarises several available phenomenological models, with particular emphasis on the

variable hard sphere model.

4.4.1 Variable hard sphere model

The variable hard sphere (VHS) model combines the viscosity cross-section o, o g4/

of IPL molecules with simple hard sphere scattering. Because o = 30,,/2 for hard sphere
scattering, VHS molecules have o « g~ *®. The VHS collision cross-section for collisions

between a particle of species A and a particle of species B can therefore be written

a(g) = or (9r/9)%, (4.5)

where v = 2/« and the reference values o, and g, are constants characteristic of the A
+ B collision pair. This combination of total cross-section and hard sphere scattering
was first used by Borgnakke and Larsen [26] and also by Erofeev and Perepukhov [56].
The VHS model was first formalised and studied in detail by Bird [18]. The parameter v
may be regarded as the deviation from hard sphere viscosity behaviour. Hard sphere and
Maxwell-VHS molecules are simulated with v = 0 and % respectively.

Scattering for hard sphere collisions is isotropic in the centre-of-mass reference frame, so
the components of the post-collision velocity g* are determined by selecting a random point
from the surface of a sphere of radius g* = g. Marsaglia [130] provided a computationally
efficient method of generating such random points, as discussed in §D.2.

Using the Chapman-Enskog viscosity formula of Eq. 2.29 with ¢, = 20/3 for hard

sphere scattering, the VHS viscosity expression

15 [n(2m)kT) (KT /)"
Ba+B =g r'4-o) orgv

(4.6)

is obtained, which shows the expected power law viscosity behaviour p o T2tV For a
pure VHS gas,

15 m(rRT)? (ART)
8 [(4—v) opg2

p= (4.7)

The VHS parameters 0,92Y and v should be selected such that the resulting viscosity
behaviour matches that of the gas being modelled, over the temperature range of interest.
The parameter v is obtained from the slope of log u(T") versus log T, and 0,.g2? is obtained

by specifying a reference viscosity u, = pa+n(7;) at a reference temperature 7,. These
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values are then used in the equation

L 1
ot e () 13)

ordr 8§ Td—v) \m

to give 0,g2V. The choice of a particular expression for g, is arbitrary. Given an expression

for g,, the reference cross-section o, is obtained from Eq. 4.8. Bird [21] used
97" = (2kT; /)" /T(2 — ),

which is the mean value of g%V in collisions at the reference temperature T;.. This gives

_ 15 [x@a)kT]* /u
TR 2-v)B-v)

Alternatively,
1
gr = (2kT, /m)>2 (4.9)

may be used, which gives

_ 15w gem/p _ 15 [r(2)RT,]) uy
778 Td-v) 8 T@d-v) (4.10)

Here, Egs. 4.9 and 4.10 will be used for g, and o,. For a pure VHS gas,

1
_ 15m (wRT;)? [,
and o, = 8§ T@A—uv)

N[

gr = (4RT1")

For VHS molecules, Egs. 2.26 and 2.27 give

rd2QLD* — JTF(32— v) (%)U rd2Q22)* — JTF(4 — ) (2)1)

These give
A* — Q(Z,Q)*/Q(l,l)* — (3 o ’U)/3.

The probability of a collision occurring between two VHS molecules is proportional to
og o< g' 2. This probability biases the equilibrium distribution of ¢ in collisions from the
overall distribution of g as given by Eq. 2.10. For VHS molecules, the resulting distribution

of g in collisions is

2 m \*7 3 4, g’
[£(9)] cons = r(2—v) (2kT> g exp <_21<:—T) '

The relative translational energy in collisions, denoted ¢4, is defined by

€g = Mg?/2.
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For VHS molecules, the distribution of reduced relative translational energy in collisions,
denoted €, = €,/(kT), is

F(&) = & exp (~&) /T (2 — ). (4.11)

By comparison with the continuous Boltzmann distribution of Eq. 2.16, the effective num-

ber of translational DOF in collisions for VHS molecules is then
Cg=4—2v. (4.12)

For hard sphere and Maxwell-VHS molecules, (; = 4 and 3 respectively. The mean value

of €, is found by evaluating

() = / ¢,f(¢,)dé, =2 — v, which gives (e;) = (2 — v)kT.
0

The total energy in a collision between particles A and B, denoted €., may be defined
by
€c =€g+ (Erot)A + (Evib)A + (frot)B + (evib)B .
For independently distributed continuous energy modes, the distribution of reduced colli-

sion energy €. = €./(kT) for VHS molecules can be obtained from Eq. 2.16 and is
f(E) = &)V Hbnexp (=€) /T (2 — v + Cimt) » (4.13)

where

Eint = [(Crot)A + (Cvib)A + (Crot)B + (Cvib)B ] /2 (4'14)

is the mean number of internal DOF in each of the two colliding particles A and B.
The distribution of ¢; and any combination of continuous internal energy modes may be

obtained by including only the internal modes of interest in Cip.

The mean collision rate of a species A particle with particles of species B is given by

vass = nsloghass = no / (0g)asnf(9)dg
0
ns (0r92) 2I°(2 — v) ( m )“_é (4.15)
= B rdr . -
! 2KT

Here, f(g) is from Eq. 2.10. Substituting Eq. 4.8 into Eq. 4.15 yields

1
15 KTy /u, T\
S S o o Ay (- R 4.16
VATB =B 2 - 0)(3 — v) (T,) (4.16)
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For later work, it is convenient to define a parameter
(4.17)

which is a constant that includes the VHS parameters of the A 4+ B collision pair and has
units of m®/s. E may be regarded as a reference value of og. Using this definition for =,

Eq. 4.16 becomes

1 1

—(T\2" _(T\27"

VA+B =NBZ (F) and (og)a+p =E (?) . (4.18)
T T

In a mixture of VHS molecules, the overall mean collision rate is obtained by summing

over all possible collision partners using Eq. 2.35. For a pure VHS gas,

15
L, p/u

2 (2-v)(3—-v)’

From Eq. 2.37, the number of collisions occurring between VHS molecules of species A

and species B per unit volume per unit time is

1

, Snang (T2

fcotls =~ (:F) . (4.19)
S T

From §2.7, the mean time between collisions 7 is simply 7 = 1/v. For a pure VHS gas,
the ratio of 7 to the nominal collision rate of Eq. 2.40 is
9 _ _
vis _ 82 =B oe17 for v —0.25.

Tnom 157

Bird [21] gives expressions for calculating the mean free path in a mixture of VHS

molecules. Firstly, the expression

~1
Nep

(Ap)o = Z frq
g=1
must be evaluated for each species, where

T.\" my 3
qu = 0'7-1—‘(2 — U)nq ? (E) .
Here, the reduced mass 7 and the VHS parameters o,, T and v refer to collisions between
particles of species p and gq. The mean free path in the mixture (Ayps),,;, is then given

by

mix
-1

VB i = 2 oo = D Y foa | - (4.20)
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In a pure VHS gas, N, = 1 and Eq. 4.20 reduces to

N[

o = BB =) pu 1 (g)

g (T v
== . 4.21
1571/2 P T = (Tr ) ( )

The ratio Avus/Anom is

iy
AVHS _ 8(2 — ’U) (3 — ’U) My z 2
>\n0m 157 M(T) TT '

Bird [19] has suggested that Ayus of Eq. 4.21 should be used as the definition of the mean

free path in a real gas.

Although the VHS model approximates the potentials of real molecules with an IPL
potential, it is still of considerable use in modelling high temperature flows because, as
noted in §2.6.1, the IPL potential is accurate at high temperatures. At low temperatures,
attractive intermolecular forces are significant and the IPL potential does not accurately
describe most gases. Because of its accuracy at high temperatures, and its relative sim-
plicity, the VHS model is the most common molecular model used in DSMC calculations.

Most developments in DSMC procedures have been undertaken for the VHS model.

To the first Chapman-Enskog approximation, the VHS model matches the viscosity
of IPL molecules, but gives hard sphere diffusion behaviour. In flows were diffusion is

unimportant, such as many hypersonic flows, the VHS model is appropriate.

4.4.2 Other DSMC molecular models

In an attempt to match both the viscosity and diffusion behaviour of IPL molecules, Koura
and Matsumoto [97] introduced the variable soft sphere (VSS) molecular model. The VSS
model has the same o = 0(g) dependence as the VHS model, but scattering is anisotropic

with the deflection angle given by
X = 2arccos [(b/d)l/“’] .

Here, w is an adjustable parameter that is constant for each species interaction. The
resulting VSS deflection angle is closer to that of IPL molecules than the deflection angle
for VHS molecules. When using the VSS model in DSMC calculations, cos x is generated
using cosy = 2R}1¢/ “ — 1. The VHS model has w = 1. The VSS model should be used

where diffusion effects are significant.

For low temperature flows, a molecular model that includes the effects of long range
attraction as well as short range repulsion should be considered. Kuscer [101] introduced
a molecular model that has the collision cross-section of molecules obeying a Sutherland

intermolecular potential, with hard sphere scattering. The collision cross-section is given
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6k T,
7T (H fng;)’

where o, is a Sutherland cross-section and T is the Sutherland temperature that are

by

constants for a particular gas, and are obtained from viscosity data. This Sutherland-
VHS model gives the Sutherland viscosity behaviour of Eq. 2.32. The model has been
used by Boyd [34] and Lilley and Macrossan [107, 108], and may be regarded as an early

special case of the generalised hard sphere model described below.

The generalised hard sphere (GHS) model, introduced by Hassan and Hash [84], allows
simple modelling of molecules with realistic intermolecular potentials. The GHS cross-

section is given by the sum of N VHS terms such that

N

o= 0ilg:/9)™
i=1
Here, o; and v; are constants that are obtained by matching the GHS viscosity to available
viscosity data. The GHS model uses hard sphere scattering. The original development of
the GHS model was for weak attractive potentials. Kunc et al. [100] extended the model
for strong attractive potentials. Fan [57] introduced the generalised soft sphere model,
which is the logical extension of the GHS model to capture realistic diffusion behaviour.
Further details of the GHS model are given in §C.3.

Despite the improved modelling accuracy afforded by the GHS model, it is rarely used
in favour of the more common VHS model in DSMC calculations. This is probably due to
a combination of two factors. Firstly, as discussed in §4.4.1, the VHS model is sufficiently
accurate at high temperatures, and the GHS model offers little improvement in accuracy
over the VHS model under high temperature conditions. Secondly, as noted by Macrossan
and Lilley [125], the GHS model has poor computational efficiency. This prompted the
introduction of the modified GHS (MGHS) model [125], which is only slightly less efficient
than the VHS model, but represents the low temperature viscosity behaviour of argon more
accurately than both the VHS and GHS models. The MGHS model has the potential to
model low temperature flows more accurately than the VHS model. Further details of the
MGHS model are included in §C.4.

Macrossan [121, 122] introduced two new DSMC collision models in which the collision
frequency is based on the local time-averaged macroscopic translational kinetic temper-
ature Ti;. The second method [122], called pu-DSMC, is more general than the earlier
v-DSMC method [121], and a brief description is given here. The u-DSMC model de-
pends on calculating a local VHS reference cross-section from any viscosity behaviour

= p(T). Using Egs. 4.7 and 4.9 the viscosity of a pure VHS gas is

D=

15m (rRTy)2 1

M(Ttr):§ r'4-v) o
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This viscosity p (Tir) is used to establish a local reference cross-section using

1
B Em (71'RTtr)5 1
or (Ttr) = 8 T(4—v) pu(Ty)

This reference cross-section is used for the VHS collision model in each cell. Standard
NTC collision partner selection procedures are used. The important feature of the u-
DSMC model is that any viscosity law u = p (T};) can be used.

Macrossan [122, 118] performed conventional DSMC calculations with the VHS, Suther-
land-VHS and GHS models, and compared the results to those obtained using the u-DSMC
method with power law, Sutherland and GHS viscosity behaviour. In general, there was
good agreement between the results. Consequently, Macrossan claims that the u-DSMC
method allows any viscosity behaviour to be modelled accurately with the DSMC method.
This is an important advantage, because it permits modelling of gases using experimentally

measured viscosity, for which no conventional DSMC model may be available.

4.5 Modelling molecules with internal energy

In most DSMC calculations, rotational energy is a continuous variable and is therefore
represented by a floating point number. The equilibrium distribution of rotational energy
is given by Eq. 2.16 with ( = (;ot. For diatomic molecules with (o4 = 2, the equilibrium
distribution reduces to the exponential distribution of Eq. 2.18. ¢, can be sampled

directly from this distribution using
€rot = — In (Ry) KT. (4.22)

For each simulator particle, et is stored.

Quantised vibration models are often used in DSMC calculations. The unbounded
harmonic oscillator model is the most common, where the energy levels are given by Eq.
2.21. At equilibrium, the integer quantum level ¢ of an unbounded harmonic oscillator is
sampled using [21]

q=| —In(By) T/Ou)- (4.23)

The integer level q is stored for each particle. For anharmonic oscillators, an acceptance-
rejection method must be applied to sample gq.

During collisions involving molecules with internal DOF, energy can be exchanged
between the internal and translational energy modes. Several models have been proposed
to capture such exchange processes with the DSMC method. The energy exchange method
of Borgnakke and Larsen [25, 26] gives adequate accuracy with low computational expense,
and versions of the method are almost exclusively applied in DSMC studies to model
internal energy exchange. In the Borgnakke-Larsen (BL) method, post-collision energies

for relaxing collisions are sampled from equilibrium energy distributions for the collision.
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The BL method has been formulated to satisfy basic physical requirements, such as the
conservation laws and detailed balancing. However, BL procedures do not capture the
true physical behaviour at the molecular level. For example, most BL versions consider
interactions between internal modes and the translational mode only, and ignore exchange
between internal modes. Clearly, the BL method is a phenomenological approach to

modelling internal energy exchange.

As for the calculation of intermolecular collisions discussed in §4.2.2, the calculation of
internal energy exchange using the BL method involves two steps. Firstly, those collisions
in which energy exchange occurs must identified, followed by the assignment of post-
collision energies. In most applications of the BL. method, a fraction ¢ of collisions are
regarded as being inelastic and subject to BL energy exchange. For a given collision,
energy exchange is performed when R; < ¢. The remaining collisions are purely elastic
with no internal energy exchange. Here, the total energy of the modes that participate in

a BL exchange event is denoted €qx, and the total effective DOF of these modes is denoted
Cex-

The remainder of this section is concerned primarily with the details of BL procedures
for non-reactive collisions. Firstly, various schemes for selecting those collisions in which
BL energy exchange occurs are considered in §4.5.1. This is of considerable importance, as
it allows the simulation to approximate a specified macroscopic relaxation rate. Specific
procedures for continuous rotational energy and quantised vibrational energy are consid-
ered in §4.5.2 and §4.5.3 respectively. Energy exchange in reactive collisions is considered
in §6.7.

4.5.1 Selecting particles for Borgnakke-Larsen energy exchange

In the BL method, collisions in which internal energy exchange occurs are selected such
that the resulting macroscopic relaxation behaviour approximates the desired behaviour.
Several schemes have been devised to select the fraction of relaxing collisions ¢. These
schemes have several subtle differences which are often not elucidated in the literature.
This section gives a brief summary of the various particle selection schemes for the BL

method, with details of the particular scheme adopted in this study.

In the first applications of the BL method [26], relaxation was performed on a collision
pair basis, whereby the internal energy of both particles participating in a collision was
subject to exchange with the translational mode in each inelastic collision. This method
is suited only to pure gases with a single relaxing internal energy mode, because it does
not allow for different relaxation rates for different modes and different species. When
this selection scheme is applied to rotational relaxation, the energy participating in the

exchange is €ex = €5 + (€rot) o + (€rot)- For this selection scheme, Lumpkin et al. [115]
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showed that a rotational relaxation probability

_ L Crot
Prot = 7 (1 + ., ) (4.24)

should be used to recover a desired macroscopic collision number Z.. Bird [21] gives

further details on the application of this selection scheme.

The common versions of the B, method, where only a fraction of collisions are regarded
as inelastic, are physically unrealistic. In reality, all collisions are inelastic to some extent.
To capture more physically realistic behaviour, Larsen and Borgnakke [103] introduced a
restricted exchange version of the BLL method. In this version, all collisions are inelastic,
but only a certain fraction of the collision energy is available for energy exchange. Again,
relaxation was performed on a pair basis. Pullin [141] showed that this restricted exchange
scheme did not satisfy detailed balancing, and proposed a modified version to overcome this
problem. Despite the improved physical realism afforded by restricted exchange schemes,

they are rarely used. The reasons for this poor acceptance are not clear.

Bird [21] discussed a more general relaxation scheme, where BL energy exchange is
performed on a particle basis. In this scheme, several energy modes in either one or
both particles may contribute to €ex. These are termed multiple relaxation events [75].
This particle based selection scheme allows different relaxation rates for different energy
modes and different species. As described by Bird, this scheme is implemented by serial
application of the BL method, in which each internal energy mode interacts independently

with the translational mode.

Haas et al. [75] recommended a selection scheme in which relaxation was performed

on a particle basis, and multiple relaxation events were prohibited. In this scheme,
€ex = €g 1 €,

where ¢; is the energy of the single internal mode subject to exchange. Prohibiting multiple
relaxation events allows the relaxation rate for each mode of each species interaction to
be preserved [75]. For collisions where relaxation occurs, the relaxing mode exchanges
energy only with the relative translational energy ¢, of the collision pair. Calculating the
BL exchange probability ¢ for this scheme is quite complicated. Gimelshein et al. [65]
proposed a simpler scheme that also prohibits multiple relaxation events. This particle

selection scheme has been adopted here, and is illustrated in Table 4.1.

The selection scheme of Gimelshein et al. [65] requires that the sum of all exchange
probabilities, denoted ) ¢, is less than unity. Boyd [28] plotted mean ¢rot and ¢yip values
for nitrogen at various temperatures. Although these probabilities were intended for a
different particle selection scheme, they do indicate that > ¢ < 1. Gimelshein et al. claim
that the assumption of )" ¢ < 1 is probably correct for most gases. Expressions for ¢t

and ¢y;p in terms of the macroscopic collision numbers Z,,t and Zy;, are provided below.
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Table 4.1: Relaxing particle selection scheme of Gimelshein et al. [65]. Here R} is a single random
fraction generated before selecting the relaxing particle.

Let 1= (drot)a | I R} < oy, Cox = €9+ (€rot)
Let ¢o = ¢1 + (¢rot)]3 If ¢ < R}k@ < @2, €ex = €9+ (frot)B
Let ¢3 = ¢o + (duib)a | If d2 < R} <3, €ex = €5+ (€vib)a
Let ¢4 = ¢33+ (dvib)p | If ¢3 < R} < s, €ex = €5+ (€vib)p
If R} > ¢4, perform elastic collision

For adiabatic rotational relaxation, Eq. 2.42 gives

dgrot g1r>kot - Erot
= ) 4.25
dt TZrOt ( )

Here, €4 is the mean rotational energy and €%, = (rotkTtr/2 is the instantaneous average
energy per molecule at the translational temperature of the heat bath 7;.. From Eqgs. 2.43
and 2.48,

2€r*ot/ (kCrot) = Ttr = 2étr/ (kgtr) ) 50 E1r*ot = (Crot/gtr) €tr-

Substituting this into Eq. 4.25 gives

dgrot (Crot / Ctr) €tr — €Erot

= . 4.26
dt TZI‘Ot ( )
To a first order approximation, which is accurate if At < 7,
dgrot ~ f(;tAt E1:50t (4 27)
dt At ’ )

where efggm is the mean rotational energy at time t 4+ At. ertggAt is given by

_ At _
f(jt—;At ( ) ¢r0t ( :(;’EAt)relax + [1 - (T) ¢rot:| 6fot' (4'28)

Here At/7 is the fraction of particles that have a collision during At. In the selection
scheme of Gimelshein et al. [65], each particle in a collision has a probability ¢ of
participating in BL energy exchange. During At the fraction of particles that relaxing is
therefore (At/7)¢rot, and the fraction of particles that do not have a relaxing collision is
1 — (At/T)¢ror- At time t + At, the mean rotational energy of those particles that have
a relaxing collision during time At is denoted ( f;;m) o The first term on the right of
Eq. 4.28 is the contribution to €:*2? from the relaxing particles. The second term is the

rot
—t+At

contribution to €~ from the particles that do not relax. Substituting Eq. 4.28 into Eq.

4.27 gives

T

dérot ~ qsrot —t+AtL —t
dt ~ <€r0t >re1ax_6r0t . (429)

When a relaxing collision occurs, the BL, method divides e.x between the translational
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mode and the participating rotational mode, such that the ratio (Qf(;tAt) | /el is given
relax
by the ratio of the respective DOF [115]. Consequently,

—t+AL _ Crot -t _ Crot _t _t
(%) = (&) 2= (22 <g> (B ¥ %) (4:30)

Substituting this into Eq. 4.29 gives

dérot ~ Prot Crot —t zty _ =t _ Prot (Crot/ Cg) €9 — €rot
dt =7 [(Crot +Cg> (6o +29) Gmt] ST [ (Grot + Cg) /g ] . (4.31)

Equating Eqgs. 4.26 and 4.31, and using €; = ({y/(ix) €&r which applies at equilibrium,

(Crot/Ctr) Etr - Erot ~ ¢r0t [(Crot/Ctr) étr - 6rot:|
7'Zrot T (Crot + Cg) /Cg

is obtained. Thus

~ L Crot
Prot X — (1+ > (4.32)

rot Cg
This demonstrates that the particle selection scheme proposed by Gimelshein et al. [65]
results in an expression for ¢, identical to that given by Lumpkin et al. [115] for pair

relaxation in Eq. 4.24.

For the particle selection scheme of Gimelshein et al. [65], Eq. 4.32 is a new result, and
must be verified. This has been achieved here by performing a zero-dimensional DSMC
calculation of the rotational relaxation behaviour, and comparing the relaxation history
to that provided by the exact solution of Eq. 2.45. The nitrogen parameters from Table
B.1 were used. Z.ot = 5 was used, which gives ¢,y = 0.3149. The initial translational
temperature 7i:(0) was 1000 K and the initial rotational temperature Ty (0) was 5000
K. The equilibrium temperature 7% = T};(00) = Trot(00) was 3400 K. The calculation
contained 10° diatomic particles, and used a time step At = Tyns/10 where Tyvgs = 1/v
is the initial VHS collision time obtained from Eq. 4.18 with T' = T;,(0). Fig. 4.1 shows a

plot of Aé,t versus the non-dimensional time ¢. Here,

Trot(t) = T
Trot(0) — T*°

f—/t dt
B 0 ZrotT(t)'

By counting the number of collisions performed by the DSMC calculation during a time
step s, denoted Neons(s), Eq. 2.38 gives 7(s) = NAt/[2Neonus(s)], where N is the total

number of particles. £ is then given by

Aérot =

From Eq. 2.47, { is given by

. 2 ,
t(s) = ZrOtN Zz_; Ncolls(z)-
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The excellent agreement between the DSMC and exact solutions verifies that Eq. 4.32 is

correct.

1.0 B T T T T T i
08 Exact solution — E
DSMC solution ©
0.6 | E
2
<w"‘
<
04 F E
02 F i
O i L L L L L
0 1 2 3 4 5

Non-dimensional time 7
Figure 4.1: Exact and DSMC solutions of the relaxation history for the particle selection scheme

of Gimelshein et al. [65].

Application of the preceding analysis to the vibrational mode is somewhat complicated
by the temperature dependence of (yj,. For the selection scheme shown in Table 4.1,

Gimelshein et al. [65] give

1 Gib(Tir) Ttr — Cvin(Tvib) Tvib

b = : 4.33
¢Vlb Zvib Cg (Crtr _ T,) ( )

where the temperature T” is found numerically from
Coib(Tyin) Tyib + CgTir = Cuin(T)T' + (T (4.34)

In the above treatments, the implicit assumption is that the rotational relaxation oc-
curs at a rate that far exceeds the vibrational relaxation rate, such that the two processes
may be considered separately. When considering rotational relaxation, vibration is as-
sumed to be frozen, and when considering vibrational relaxation, rotation is assumed to
be at equilibrium. Where more than one relaxation process is proceeding, the selection
schemes considered here may give macroscopic relaxation behaviour that does not match

the target relaxation rate based on the collision numbers.

4.5.2 Rotational energy exchange

The following discussion gives the procedures used here to compute rotational energy
exchange using the BL method. The derivation is similar to that of Haas et al. [76].
The particle selection scheme of Gimelshein et al. [65] has been used, in which multiple

relaxation events are prohibited and the rotational mode of the relaxing particle exchanges
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energy with the relative translational mode of the collision pair only. In this case, €g is

! ! ~ ~ ~ ~t ~
€ex = €g + €rot = €g + €0ty SO €Eex = €g + €rot = €y + €rot-

The post-collision rotational energy €. . may be written as a fraction F,q of the partici-
p 8Y €rot May

pating energy, given by

! ! ~ ~!
F _ 6rot _ 6rot; _ 6rot; _ 6rot
rot — - - - =

13 : 1e :
€g + €0t €g t €rot €g 1 €rot €ex

Note that €'g = €ex(l — Fyot). In the BL method, Fio is sampled from the equilibrium

distribution f (Fyot). The requirement is to obtain this distribution.

From Eq. 4.11, the equilibrium distribution of €'g for VHS molecules is

F(&) =) "exp(~2) /T(2 ). (4.35)

From Eq. 2.16, the equilibrium distribution of €, is

. o \Grot/2—1 .
f (eiot) = (elrot)C / €Xp (_elrot) /F (Crot/2) . (436)
Assuming that f (€)) and f (€,,) are independent distributions, the joint distribution is

1=V 4 ot/ 2— ~
(@) 77 (Eloy) " exp (—Eex)

F(2 - U)F (Crot/Q)

f(ggp gi‘ot) =

This joint distribution must be transformed to a distribution over Fio; and €qx, according
to the method presented in §A.2. The Jacobian J of the transformation is J = —€e,
giving |J| = €ex, SO

()" E)

rot
F(2 - U)F (Crot/2)
Eox VT2 exp (—Eex) (gex —e, ) 1-v ( 2y ) Crot/2-1
I'(2 =) (Crot/2) €ex
€e§_v+<r°t/ 2 exp (—€ex)

= _ 1—v Cmt/Z—l
T TR Gy 0 B R (437)

exp (—€ex) 2
ex

f(Frota gex)

€ex

The distribution of Fio alone is then obtained by integrating this joint distribution over

0 < €ex < 00 to give

I'(2 — v + (ot /2)

1—v Crot/2—1
@ o) (Gorf2) | o) el (438)

rot

f(Frot) = /(; f(Frota gex)dgex =

In general, Fi,; can be sampled from this beta distribution with the acceptance-rejection

method. Gentle [62] summarises other more efficient methods for sampling from the beta
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distribution. For diatomic molecules, (;ot = 2 and Eq. 4.38 reduces to
f(Frot) = (2—v)(1 - Frot)liv-
Fot can be sampled directly from this distribution using

Frow =1 =R, giving dlyy = [1 - R}/(H)] ex-

From Eq. 4.36, (€/.;) = Crot/2. By integrating Eq. 4.37 over the range 0 < Fyot < 1,

the distribution of égy is
f (Fex) = &g VT exp (—Eex) /T (2 = v + Grot/2) = E5/* T exp (=) /T (Cex/2) -

This distribution has the form of Eq. 2.15 and provides (€ex) = 2 — v+ (rot/2 = (ex/2. The

mean of the post-exchange rotational energy e, , used here is the same as the (Ert;;At) |
relax

notation used in §4.5.1. Therefore the ratio

(Eot) _ {erot) _ St

(€ex) {eex)  Cex
confirms the earlier result of Lumpkin et al. [115] which was used to obtain Eq. 4.30.

The relative translational energy after rotational energy exchange is simply e; = €ox —

elos- The relative speed after exchange is then

D=

g = (2e'g /)2 .
For hard sphere scattering, the direction of ¢’ is randomly distributed on the unit sphere.

An internal energy exchange model must satisfy detailed balancing at equilibrium.
The following discussion examines the issue of detailed balancing for the rotational energy
exchange scheme presented above. Consider a total of N collisions between particles
of species A and B. The number of such collisions that result in rotational relaxation of
the species A particle is ¢t Neolig, Where ¢rot is the rotational exchange probability for
species A particles in A + B collisions. Here, ¢,y may be a function of €5 and €yt. The

total number of relaxing collisions of class €, that are also of class € is then

[]Vrela.x]g;Ot = ¢rothollsf (gg) f (grot) dgrotdgg-

It is necessary to find the number of these relaxation events that result in relative trans-
lational energy 62 and rotational energy €., after BL energy exchange. The number of
relaxing collisions of class éfq, €ror and Frog is [Nrelax]gzm f (Frot) dFyot. These collisions un-
dergo BL exchange to give post-exchange rotational energy €., and relative translational

energy éfq. Therefore, the number of relaxing collisions in classes €, and €, that result in
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energies € and &, after BL exchange is

!

[Nrelax]gzi—g)lggrm = ¢r0thollsf (Eg) f (grot) f (Frot) dFrOtdgrotdgg. (439)

~

Similarly, the number of relaxing collisions in classes €, and €lo¢ that result in energies ¢,

and €, after BL energy exchange is

[Nrelax]ggoi)—g::wt = ¢;0thollsf (g;]) f (glrot) f (Frlot) dFrlotdglrotdgfq' (4'40)
For detailed balancing to apply, the expression

Erot—E'To0t _ g’rot_)gmt
[Nrelax]gg _)gg - [Nrelax]gg —ég

must be satisfied. Using Eqgs. 4.39 and 4.40, this becomes

¢rotf (gg) f (grot) f (Frot) dFrotdgrotdgg = ¢;otf (g;) f (girot) f (FI{Ot) dFlfotdgi“otdgft]'

For a given exchange event with €, = &t + A€ and & = &, — A, the energy exchanged
Aé is constant, so dé, = d€; and déroy = dély;. Also Froy = Flo, + A€/€ex, 50 dFyoy = dF),

rot* rot*

The detailed balancing requirement then becomes

¢rotf (gg) f (grot) f (Frot) = QS;otf (glg) f (girot) f (F;ot) . (4'41)

For constant ¢roy = ¢, substituting the expressions for f (&), f (€rot) and f (Frot) into

Eq. 4.41 shows that detailed balancing is satisfied.

As noted in §2.8, the rotational collision number Z.y generally increases with tem-
perature. At the molecular level, ¢t should therefore decrease as the collision energy
increases. To capture this behaviour, a number of variable-¢,,; models have been pro-
posed for the BL method [52, 53, 29]. For an energy dependent ¢roq = ¢rot (€g, €rot), @
different form of f (Fyo¢) must be used to compensate for the biased selection of relaxing

particles. From Eq. 4.41 the relation

f(Frot) — ¢rot (6Iga 6;“01:) f (g_lq) f (girot)
f(Frlot) Prot (Gga 6rot) f (gg) f (grot)

(4.42)

must be satisfied for detailed balancing to hold. Following Abe [1], one possible solution
for the biased distribution of Fyot, denoted f* (Frot), is

f* (Frot) o drot (flga 61,rot) f (glg) f (glrot) :
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Using Eqgs. 4.35, 4.36 and 4.38, this becomes

f* (Frot) X ¢1’0t (e_lq’ 6{Fot) (1 - Frot)l_v Frét-)rgt/Q_l X ¢rot (6;7 elrot) f (FI‘Ot)
X ¢r0t [eex (1 - Frot) s 6exF’rot] f (Frot) .

Because €ex is constant for a given exchange event, this shows that f* (Fi.) depends on
Fiot alone, as required. Selecting Fiot from this biased distribution using the acceptance-
rejection method could involve considerable computational expense. Alternatively, Boyd
[29] used the time-averaged ¢ro for each cell. This effectively means that ¢ro is constant
in each cell, thereby satisfying detailed balancing. Other forms of f* (Fyo) may exist that
also satisfy Eq. 4.42. Also, a local Z,,; could be calculated in each cell from a local kinetic

temperature to provide a local ¢,o;. Variable-¢ro; models have not been used here.

Boyd [33] introduced a version of the BL method for modelling rotational energy
exchange between rigid rotor molecules with quantised rotational energies. Koura [95]
proposed an energy exchange model for molecules with discrete rotational energy that

does not use BL procedures.

4.5.3 Vibrational energy exchange

BL energy exchange procedures for molecules with continuous vibrational energy are sim-
ilar to those for rotational energy, although consideration must be given to the effective
number of vibrational DOF (y;,, which varies with temperature. Versions of BL proce-
dures involving particles with quantised vibration have been proposed by Haas et al. [76]
and Bergemann and Boyd [9]. A detailed derivation of the BL method of Bergemann
and Boyd for a general quantised vibration model is presented here. The expressions are
readily adapted for harmonic oscillators. The combination of harmonic oscillators and the

BL exchange scheme of Bergemann and Boyd is often used in DSMC calculations.

When prohibiting multiple relaxation events, the energy available for exchange between

translation and the vibrational mode of one particle in an inelastic collision is
€ex = €9 + €vin(g) = €, + €vib (¢') s0 Ex =&+ &in(g) = € + &vin(d).

After BL energy exchange, the fraction of particles with vibrational energy level ¢’ is
obtained from From Eq. 2.19 and is

®(¢') =exp | — &ib(q')]/Qvib where ¢ =0,1,..., gmax-

Here, gmax is the maximum possible vibrational energy level, which depends on the vibra-
tion model. In the following discussion, €, denotes the post-exchange vibrational energy

in a continuous representation, as used in §2.5.2 and §A.3. In terms of the § function, the
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e R
distribution of €7, is

. exp (—€ex - -
f (G\Tib) = M 5[6\Tib - 6vib(ql)] where ql = Oa ]-a -+-5 @max-
Qvib

The distribution of €%, for a given value of €. is found by evaluating the conditional

distribution f (€7 |€ex) [152], which is given by
f (Epléex) = f (€exs €0ip) / f (Eex) -

From Eqgs. A.9 and A.12,

L )
o2y = G = &) " exp () s

€vib — gvib(q,)]

1—‘(2 - U)Qvib
and
Flew) = ZPCE) g it S— 3 [ Eanld)]
(2 - ) Quib ’ 7=0 e .

Here, gcx is the maximum possible post-exchange vibrational energy level that corresponds

to the exchange energy ée, and is specified later. From above,
fEpléex) = (Fex — &)™ S[E0, — Einlg)] /S
which becomes
~ ~ - 1—
@ (q,|€ex) = [fex - 6vib(q,)] U/S (4.43)

Because €4, increases monotonically from €,1,(0), the largest value of €ex — €yin(g’) occurs
at ¢’ = 0. Therefore this discrete distribution has a maximum ®max = [€ex —&yin (0)] v /S.

Using €,ip(0) = 0, the ratio ®/®mnax is simply

® _ [t inte)] v - Enl)] T 1 cld)]

Pmax €ex €ex €ex

For unbounded harmonic oscillators, €yin(q') = ¢'kOyip, so

e (1 B Q'k@vib>1U

D max €ex

as given by Bergemann and Boyd [9].

To sample ¢', test values of ¢' are generated according to R; (0, gex) and are accepted
if
1—
Ry < [1 — evib(q')/eex} Y.

For harmonic oscillators, the acceptance criterion is

Rf < (1 — qlk®vib/6ex) v .
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The maximum post-exchange vibrational level gey is required to sample ¢'. For anharmonic
oscillators, the maximum possible vibrational level is the dissociation level q4. If €. >
€vib(gq), then gex = qq4. Otherwise, gex is the quantum level with energy €y (gex) that is

closest to €ex such that €yip (gex) < €ex- For unbounded harmonic oscillators,

€ex T’ €ex
= _ , 4.44
e { Ovib J |j‘/'®Vib J (4.44)

For bounded harmonic oscillators

= min [, p9e) = (567 )
Gex G')vib »4d kevib »4d ) -

Following arguments similar to those presented in §4.5.2, it can be shown that this BL

exchange scheme satisfies detailed balancing. For a total of Ncyns collisions, the number

of vibrationally relaxing collisions of class €, that are also of class ¢ is

¢vicholls(I) (Q) f (Eg) dgg '

The number of these relaxing collisions that result in a post-relaxation vibrational energy
level ¢’ is
¢vicholls(I>(Q)f (Eg) o (q’|€ex) dgg'

Similarly, the number of relaxing collisions of class €, that are also of class ¢' that result

in a post-relaxation vibrational energy level q is

¢vicholls(I) (q,) f ('é;) P (q|€ex) d€;

Again, detailed balancing is satisfied when ¢y, is constant.

As noted in §2.8, the vibrational collision number Z;, generally decreases as tempera-
ture increases. At the molecular level, ¢y, should therefore increase as the collision energy
increases. In hypersonic flowfields, variations in Zy;, can be large. When simulating the
hypersonic flow of a real gas, a variable-¢j, model should therefore be used to capture
such behaviour. As for rotational energy exchange, the implementation of a variable-¢y;,
model must consider detailed balancing. Again, either a time-averaged ¢, can be used
for each cell [9], or as noted by Vijayakumar et al. [147], the method of Abe [1] can be

used.

Lord [112] developed BL exchange procedures for anharmonic oscillators with the
Morse potential. As noted above, the BL method is phenomenological and does not
capture the detailed physical behaviour of vibrational energy exchange. Several alterna-
tive methods have been proposed to capture VT energy exchange more accurately at the
molecular level. Boyd [31, 30] developed a level-to-level transition model for harmonic os-

cillators based on the Landau-Teller theory [102]. This model used a variable-¢y;, where
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$vib = Pvib(€g). Another level-to-level transition model that included both VT and VV
transitions was introduced by Abe [2] for harmonic oscillators.

At high temperatures, multiple quantum level transitions become common. BL pro-
cedures do allow multiple quantum level transitions, but are phenomenological and are
not based on the detailed physics of the exchange processes. Boyd [35], Koura [96] and
Vijayakumar et al. [147] have proposed VT transfer models that capture multiple level
transitions by considering the detailed physics of the exchange process. Gimelshein et al.
[68] introduced a multiple level transition model for both VT and VV transfers.

The number of methods proposed for modelling vibrational energy exchange empha-
sises the importance of such processes in high temperature gas dynamics. The BL method
remains the most common method for modelling VT energy transfer, which is probably
due to its relative simplicity and computational efficiency relative to the alternative mod-
els. A comprehensive review of vibrational energy transfer models for DSMC calculations
has not been performed.

According to Boyd [28], variable-¢ models generally increase the degree of thermal
and chemical non-equilibrium in a flowfield, as compared to constant ¢ models. This
may be due to the decrease in ¢, as temperature increases, which would increase the
extent of rotational non-equilibrium. At high temperatures ¢;, increases, but it seems
that the decreased rotational relaxation rate has a more marked effect on the extent of
non-equilibrium than the accompanying increase in the vibrational relaxation rate. These
significant effects should be captured when simulating high temperature reacting real gas

flows, so variable-¢ models are required.

4.6 Validating the DSMC method

Harvey and Gallis [81] have provided a comprehensive review of DSMC code validation
studies for high speed rarefied flows. To date, most validation studies have been performed
for flows without chemistry or ionisation. For such flows, the available experimental results
suggest that accurate results can be obtained with the DSMC method. For reacting and
ionising flows, there is little experimental data, and validation of the DSMC method for
such flows is incomplete. Testing and validation efforts for chemically reacting flows are
discussed briefly in §6.9.



CHAPTER 5

Molecular reaction dynamics

5.1 Introduction and summary

Under the extreme conditions posed by hypersonic flight, intermolecular collisions may
be sufficiently energetic to result in chemical reactions and ionisation. In general, the
probability of a chemical reaction occurring between two colliding reactant molecules A
and B, denoted Pg, is a function of the collision energy and the internal states of the

colliding molecules. This probability may be written

Pr = Pg [69, (eint)A,(eint)B,S}, (5.1)

where ¢, = 7g?/2 is the relative translational energy and (€in;)a and (€int)p represent
the rotational, vibrational and electronic energy states of the colliding molecules A and
B. The steric factor S accounts for the relative orientations of the collision partners, and
reflects the fraction of collisions with effective orientations [157]. In general Pg is very
low, such that the rate of reactive collisions is orders of magnitude lower than the collision
rate. It is important to note that Pg is usually estimated from measured reaction rates.
Actual calculation of Pg requires detailed quantum mechanical computations, which have

been performed for simple reactions only.

The activation energy of a reaction, denoted ¢,, is the energy threshold that must
be overcome to result in a chemical reaction. The characteristic reaction temperature
O, is defined by O, = ¢,/k. It is also useful to define a reduced activation energy by
€o =€/ (KT) = ©4/T.

This chapter briefly discusses some aspects of molecular reaction dynamics. The sym-
metrical diatomic dissociating gas, which is of considerable interest in hypersonics, has
been examined in particular detail. The dissociation of Ay molecules in a mixture of As

molecules and A atoms is described by the net reaction

Ap = A+ A,
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and proceeds via the two elementary reactions

Reaction1: A9 +A = A+A+A and
Reaction 2: A+ Ay = A+ A+ A,

The activation energy of the dissociation reaction is the bond dissociation energy [148],
denoted here by €4. The characteristic dissociation temperature © is defined by ©4 = €4/k

and the reduced dissociation energy by é; = €q/(kT) = ©4/T.

5.2 The equilibrium constant

The equilibrium constant K* for the symmetrical diatomic dissociating gas is given by
K* = [A]*z/[AQ]*,

where [s]* denotes the molar concentration of species s at equilibrium. In this case, K* has
units of kmol/m?. The equilibrium constant can be obtained from statistical mechanics
by evaluation of the molecular partition functions. In terms of the partition functions,
denoted Q* and Q*4 for atomic and diatomic molecules respectively, the equilibrium

constant for a symmetrical diatomic gas is [21]

. (@Y exp(—&y)
K* = QAA VN

Here V is the system volume. The most common form of the equilibrium constant is
K(T) = C*(T/©4)" exp (~O4/T). (5.2)

The dependence of K} on T alone, as indicated by Eq. 5.2, is an approximation only. In
reality K* has a number density dependence, which is due to the effects of the electronic
partition function. The effects are most significant under low density and high temperature
conditions, as discussed by Gupta et al. [70] and Park [138]. Gupta et al. give curve fits

of the form .

In [K&(T,n)] = ) Gj(n)Z" where Z =1In(10"/T) (5.3)
1=0
for the common reactions in air chemistry. The curve fit coefficients G (n) have a number

density dependence, and are tabulated for various reactions at a range of number densities

[70]. Park [138] also gives a curve fit expression similar to Eq. 5.3.
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5.3 Bimolecular reactions

Consider the general bimolecular reaction
A + B — products, (5.4)

which describes both dissociation and exchange reactions. By convention, the forward
direction is the direction which the largest activation energy e,. Here, the rate of the

forward reaction is denoted kT, and the rate of the reverse reaction is denoted k™.

The reaction rate describes the rate of change in the concentration of reactant species.
If the general reaction of Eq. 5.4 describes the forward reaction direction in which species

A is consumed, then the rate of change in the molar concentration of species A is

d[A]

= = —k*[A]B]

For bimolecular reactions, k¥ has units of m3/kmol/s. In terms of number densities,

dna kTnang
= — . )
i N (5:5)

The modified Arrhenius rate equation
kT oc T exp [—eq/(KT)]
is often used to approximate the forward rate k*. Here, the convenient form
kKt = CH(T/04)" exp (=O,/T) (5.6)

has been adopted, so that C* has the same units as k. Usually, the modified Arrhenius
equation is simply called the Arrhenius equation. The Arrhenius equation is empirical, and
the parameters C* and 5" are obtained by correlation against experimental measurements.
For the reactions of interest in hypersonics, these parameters are generally available in
the literature for moderate temperatures. For the dissociating nitrogen system, some

published rates are compared in §B.3.

Counsider the general diatomic dissociation reaction
AB+M —-A+B+ M. (5.7)

In a diatomic gas, the vibrational excitation and dissociation processes are strongly cou-
pled, because dissociation occurs preferentially for those molecules in higher vibrational
energy levels [150]. Here, this effect is called dissociation-vibration (DV) coupling. Where
DV coupling is present, those molecules that dissociate have a high population of upper

vibrational energy levels, relative to the equilibrium distribution of vibrational energy lev-
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els. This biased distribution is due to the preferential dissociation of vibrationally excited
molecules. Although DV coupling is known to be important for dissociation reactions,
little quantitative information on the extent of coupling is actually available [150].

DV coupling significantly affects dissociation rates where vibrational non-equilibrium
exists. For example, the dissociation rate immediately downstream of a strong shock is
quite low despite the high translational temperature, because the downstream gas is in a
vibrationally cold state. This produces a region in which there is minimal dissociation,
called the dissociation incubation region. Actually determining the extent of this incuba-
tion region is somewhat subjective [82]. As collisions occur, energy is transferred to the
vibrational mode, and significant dissociation then takes place. The delay in dissociation
caused by DV coupling significantly affects the post-shock conditions. DV coupling results
in the depletion of molecules with high vibrational energies. This depletion reduces the
mean vibrational energy of the remaining diatomic molecules, and slows further vibrational
energy exchange and thus further dissociation.

Numerous two-temperature reaction rate models have been introduced to capture DV
coupling in macroscopic studies. A review has been conducted by Losev [114]. In hy-
personic applications, the simple empirical two-temperature model of Park [137] is often

used. This two-temperature model uses an effective temperature T, defined by

T. 1—s
— ml— b
Te = TvibsTterrrot = (Ttr‘—:rot) Ttr—f—rot (58)

where s is a constant that controls the extent of DV coupling. This effective temperature
T, replaces the thermodynamic temperature T in the Arrhenius rate of Eq. 5.6, to give

the two-temperature rate
+
k;T (Ttr—l—rot, Tvib, S) = C+ (T;/G')dy7 exp (—G')d/Te) . (59)

The constant s in Eq. 5.8 typically ranges between 0.5 and 0.7. Lower s values correspond
to higher degrees of DV coupling. When s = 1, Ty;p has no direct effect on the reaction
rate. Eq. 5.8 shows that 7. can be described in terms of the kinetic temperature of
translation and rotation Tiyirot adjusted by the ratio (Tyip /Ttr+r0t)1_s that accounts for
the DV coupling effect. Vibrationally cold flows have Tyi,/Tir+rot < 1, and vibrationally
hot flows have Tyip/Tirirot > 1. At thermal equilibrium, Tyiy, = Tiryrot = 7', and the

two-temperature rate reduces to the Arrhenius form of Eq. 5.6.

5.4 Recombination reactions

An atomic recombination reaction involves the formation of a diatomic molecule AB from
the two atoms A and B. According to Kondrat’ev [93], upon collision between the atoms A

and B, a quasi-molecule A-B forms, which will decompose spontaneously unless stabilised.
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Stabilisation requires the removal of some energy, and can occur either by radiation or by
collision with a third body M. Generally, stabilisation by collision occurs in air chemistry.
Consequently, recombination reactions are generally considered to be termolecular, with
the general form

AB+ M+~ A+B+ M. (5.10)

For recombination reactions, €, = 0 [148]. The recombination rate k£~ describes the rate

of change in the concentration of molecular species AB by

d[AB]  _
—5 = FIAIBIM].

The units of k= are m%/kmol?/s. In terms of number densities,

dna k™ nangn

7 N (5.11)
where n = ny is the total number density. K*, k™ and k™~ are related through
K*=k%/k". (5.12)

The recombination rate k~ is often calculated from k~ = kt/K*.

As noted in §5.3, if the forward dissociation reaction AB+M — A+ B+ M exhibits DV
coupling, then those AB molecules that dissociate have a higher population of the upper
vibrational levels than the equilibrium distribution. Therefore, from detailed balancing
considerations, the recombination of atoms A and B forms AB molecules in which upper

vibrational energy levels are over-populated relative to the equilibrium distribution.

5.5 Reaction frequencies and mean probabilities

For the general bimolecular reaction A + B — products, the number of reaction events

occurring per unit volume per unit time is obtained from Eq. 5.5 and is
nE = ktnang/N.

From Eq. 2.37, the number of collisions occurring between the reactant species A and B,

per unit volume per unit time is

Ticolls = NAVA+B/ fs = nang(og)a+B/ fs

where f; is a symmetry factor that is two for like molecules and unity otherwise. The

mean forward bimolecular reaction probability (Pj) is then

nph kTS

Py = = .
< R> hcolls <09>A+B N

(5.13)
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From Eq. 5.11, the number of reactions for the recombination reaction AB + M +

A + B + M, per unit volume per unit time, is
Np = kanan/N'Q.
For collisions between A and B atoms the mean recombination probability is then

_ Ny k™nfs
pP;y=—8 — .
() Neolls ~ (0g)a+B N2

(5.14)

It is apparent that (Py) depends on the local number density n.

5.6 Details of the symmetrical diatomic dissociating gas

This section gives some further details of the symmetrical diatomic dissociation gas, with
the unbounded harmonic oscillator vibration model. The extent of dissociation in a sym-
metrical diatomic gas is described by the dissociation fraction . The dissociation fraction

is defined as the mass fraction of the atomic species, and is given by

TA TA

A +2T8, 2-—TA

o
where z is the mole fraction of species s. Some useful expressions relating p, o and n are
na = pa/ma, na, =p(l —a)/ma,, n=p(l+a)/mr, and a=mnma,/p—1.

From Vincenti and Kruger [148], the net rate of change of o due to dissociation and

recombination via both reactions 1 and 2 is given by

da 11—« p 2p
— = T,p) = | ki S —(1-a- 2. 5.15
dt a(a, ap) (k1a+k2 9 ) MA ( @ MAK*a ) ( )

Here, ki” and k; are the forward reaction rates for reactions 1 and 2 respectively, as defined
in Egs. 5.1, and M, is the molar mass of the atomic species in kg/kmol. At equilibrium,

& =0 and Eq. 5.15 gives
CM*2 B MAK*
1—o* 2

Therefore
o = [(/32 +4B)7 — /3] /2 where 8= MaK*/(2p).

If recombination rates are negligible, [Ag]* — 0. Therefore K* — oo and & can be

approximated by

1— 1-
b~ ”(T;“) (kfa+k2+ 5 0‘) : (5.16)

Using the fully diatomic state at absolute zero as the reference state and ignoring
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electronic excitation, the specific internal energy of a partially dissociated symmetrical
diatomic gas is

e=aea + (1 —a)ea, + ecp, (5.17)

where e, is the specific internal energy of species s and ey, is the specific chemical potential
energy. FEach dissociation event requires an amount of energy ¢4 = k®y, so the total

chemical potential energy E, in the mixture is
Ecp = Na€q/2 = Nak©qy/2,

where N4 is the number of A atoms and Ny /2 is the total number of dissociation events
that have occurred relative to the reference state. The specific chemical potential energy

is then
E, ak®y
€cp = = = aROy,
b ma (NA+2NA2) ma, d

where R = k/my, is the specific gas constant of the diatomic species. Eq. 5.17 can then
be written

e=aep + (1 — a)er, + aROy.

Only the translational mode contributes to the specific internal energy of the atomic
species, SO
ea = 3RAT: /2 = 3RT,.

Translational, rotational and vibrational modes all contribute to the specific internal en-

ergy of the diatomic species, so
€Ay = 3RTtr/2 + RTrot + CvibRTVib/z

Here it has been assumed that rotation is fully excited. Typically, the characteristic time
scale of reactions Tchem ~ 1/ is much larger than the mean collision time, and also the
characteristic times of rotational and vibrational relaxation. It may therefore be assumed
that the system is always quite close to thermal equilibrium, even when the chemical
processes are not at equilibrium. At thermal equilibrium, T3, = Tyt = Tyvip = T, S0

54+ a+ (1 —a)lvib

e= 5 RT + aRO,. (5.18)

For unbounded harmonic oscillators, Eq. 2.24 gives

i = 20.ip/T
vib = exp (®Vib/T) — 1’

so Eq. 5.18 can be rearranged to give

(Az + B)exp(l/z) — Az +C =0 (5.19)
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where z, A, B and C are non-dimensional parameters given by
z=T/Oup, A=(+a)/2, B=(aOg—e¢/R)/Oyr, and C=1-a—-B.

Eq. 5.19 can be solved numerically to obtain the temperature of a system at thermal
equilibrium with a known specific internal energy e and dissociation fraction a. When

using Newton’s method [99] to solve Eq. 5.19, the (n + 1)th estimate of z is given by
Tnt1 = 2n — f(2)/ ' (2),
where
f(z) = (Az + B)exp(l/z) — Az +C and f'(z) = exp(l/z) (A — A/z — B/2?) — A.
The specific enthalpy h is given by

h=e+==e+(1+a)RT = Gib | BT 4+ RO, (5.20)

RS

T+3a+(1-a)
2

For a given h and «, T can be obtained by solving Eq. 5.19 numerically with

z=T/Oup, A=(7+3x)/2, B=(aO4—h/R)/Oyp, and C=1—a—B.



CHAPTER 6

Conventional DSMC chemistry models

6.1 Introduction and summary

As noted in Chapter 4, one important advantage of the DSMC method is that it permits
modelling of gas flow phenomena at the molecular level. In principle, gas models with any
degree of physical complexity can be used, including chemical reactivity. When simulating
chemical reactions with the DSMC method, the reaction probability Pg is usually calcu-
lated at each collision in which the particle energies exceed a reaction energy threshold. A
reaction is performed if Ry < Pg. Reaction simulation is therefore an integral part of the
collision routine. Here the models used for calculating Pr are called conventional DSMC

chemistry models.

The formulation of an accurate general function for Pr that includes the parameters
incorporated in Eq. 5.1 depends on a detailed knowledge of the actual state-dependent
reaction cross-sections. For the species typically of interest in hypersonics, knowledge
of these cross-sections is very limited [81, 154]. Furthermore, if such cross-section were
actually available, implementation in a DSMC code could impose a prohibitive computa-
tional overhead. Consequently, conventional DSMC chemistry models usually rely on an
expression for Pg that plausibly approximates the expected real gas behaviour, within the
limitations of mathematical tractability, numerical stability and computational efficiency,
and recovers a suitable macroscopic rate in the equilibrium limit. Although conventional
DSMC chemistry models simulate chemistry at the molecular level, the approach is clearly

phenomenological in nature.

Several conventional DSMC chemistry models have been devised, and detailed re-
views have been provided by Wadsworth and Wysong [150] and Boyd [38]. Ivanov and
Gimelshein [88] also give a brief review. It is interesting to note that there have been
relatively few developments in modelling chemistry with the DSMC method in the last
decade. This may be due to the lack of detailed experimental data with which to validate
the existing conventional DSMC chemistry models.

This chapter examines several conventional DSMC chemistry models for bimolecular
and recombination reactions. The total collision energy (TCE) model, the vibrationally

favoured dissociation (VFD) model, the threshold line dissociation (TLD) model and three
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recombination models are considered in detail. Procedures for modelling reaction mechan-
ics and detailed balancing issues are also discussed.

Conventional DSMC chemistry models have been developed primarily for the VHS col-
lision model. In several of the treatments in this chapter, the fraction of reactive collisions
for VHS molecules in binary collisions is required. This equals the mean bimolecular reac-
tion probability, and is denoted (Pfi )vis. From Eq. 5.13, the mean bimolecular reaction
probability is given by

nh _ k'S,

Py = = .
< R> 'fbcolls <09>N

For VHS molecules, Eq. 4.18 gives (og) = E (T/Tr)%”’, so (Pq )vns is given by

K f, (T2
(Pg)vus = Né <?) : (6.1)

6.2 Early DSMC chemistry models

The first application of a particle simulation method to model a chemically reacting flow-
field was undertaken by Koura [94]. This study used a Monte Carlo method to examine
non-equilibrium velocity distributions and reaction rates during zero-dimensional chemical
relaxation. Although constant steric factors and structureless molecules were used, signif-
icant departures from equilibrium velocity distributions and reaction rates were observed.

Attempts at developing more detailed chemistry models for the DSMC method were
made by Bird [14, 15]. In these early models, the forward reaction probability PE depended

only on the relative translational energy in collisions €,, and was given by

0 for e < €,
(1= ea/eg) (€g/€a — )77 for €y > €q.

P;z—(ﬁg):{

Here 7 is the Arrhenius temperature power from Eq. 5.6. This form of PI‘%" is similar to

P;{ = 0 for ¢, < €*,
Pioc (L—€/eg) a(eg—€*) forey > e

as proposed by Light et al. [105] for the study of chemical kinetics. Here, €* is a threshold
energy for the reaction, and the function « accounts for the deviation from hard sphere
behaviour. Bird [15] simulated the flow of dissociating nitrogen downstream of a strong
shock using this simple chemistry model. The DSMC calculations used the flow condi-
tions from the shock tube experiments performed by Kewley and Hornung [91]. In the
chemical relaxation region downstream of the shock, there was good agreement between
the experimental density measurements and the DSMC predictions.

It must be noted that this shock case is not very useful for validating conventional

DSMC chemistry models under non-equilibrium conditions, because the downstream gas
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was essentially in a state of thermal equilibrium. Given that the derivation of the chemistry
model depended on the recovery of the macroscopic rate equations, and that the rates
employed were deduced by Kewley and Hornung [91] from the experimental results, it is

not surprising that the DSMC solution of Bird [21] agreed with the experiments.

6.3 Total collision energy model

Bird [17] extended the early chemistry model with Py = P (¢4) to include contributions
from internal energy modes. It was assumed that all energy modes of the two particles
A and B participating in a collision contributed to the probability of reaction, with no
biasing towards any particular energy mode. Thus the form of P;g depended only on the

total collision energy

€c = €5+ (€int) o + (€int)p -
This model is often called the total collision energy (TCE) chemistry model [74], and
is the most common DSMC chemistry model [38, 154]. The TCE model was originally
developed for the IPL potential, and was extended to the VHS model by Bird [18]. It
was formulated to recover the Arrhenius rate equation of Eq. 5.6 at thermal equilibrium.

As discussed below, when a quantised vibration model is used, the TCE model does not

recover the Arrhenius rates.

In the TCE model, the form of (PE)TCE is assumed to be

Xt X2 X1+Xx2
€ € €. — €
(P) g (€)= Bree (1 - —a) (—C - 1) - ﬁTCE%
€ €c €a
€ Xt €, X2 b ~ \X1+X2
€ € E. — ¢
= Prer (1 - Ta) (TC - 1) = ﬂTCE%
€c FREry

for €. > €,. When €, < €, (Pé" )TCE = (0. For mathematical tractability, Bird [17] used

(6.2)

x1=1-v+ Eint, (6'3)

where (¢ is the mean internal DOF in the colliding particles from Eq. 4.14. For the
unbounded harmonic oscillator vibration model, for which (i, is given by Eq. 2.24, Cint
and thus y; depend on temperature only. The continuous equilibrium distribution of €,

for VHS molecules from Eq. 4.13 becomes
f (&) =Xt exp(—&) /T (xa+1). (6.4)

§C.5 gives details of the method used to derive expressions for the non-dimensional

parameters Stcg and y2 in terms of the Arrhenius rate parameters C™ and ™ and the
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VHS parameters. The resulting expressions are

1 Ctfy (T, \2 "
=nt — - = JSs (T
X2=n"+v-g and preE NE (Ga ) il

F'(x1+1)
X1+ x2+1)

(6.5)

The VHS parameters v, = and T all refer to collisions between particles A and B. Eq. 4.14
shows that (in; depends on (yi, of each particle participating in the collision. The effective
number of vibrational DOF (jy¢ can be assumed to be a constant value characteristic of the
flowfield temperature [72]. Alternatively, using Eq. 2.24, (i could be calculated for each
cell using the local vibrational temperature Ty, calculated from a time-averaged value of
(€vib). This alternative method was used by Lilley and Macrossan [110] and has been used
in this study.

The TCE reaction probability (Pé" )TCE is calculated for each collision pair with €, >
€q- It is the probability of the collision resulting in a reaction. Here the TCE model has
been used to model the dissociation of a symmetrical diatomic gas. In Ay + A, collisions,
either particle could be dissociated if Ry < (PllzIr )TCE, but for simplicity the first collision
partner is dissociated. In Ay + A collisions, the diatom dissociated if Ry < (Pg)pop»
regardless of whether it is the first or second particle in the collision pair. This is an
important point. For computational efficiency, Haas [71] suggested that (P )TCE should
only be calculated if the first particle in the collision pair is diatomic. On average, this
will be the case in only half of the Ay + A collisions. Therefore the TCE dissociation
probability obtained above for As + A collisions must be doubled to compensate. This

results in

5 _2C+<£>5‘“ T (x1 +1)
T NE N6, L'(x1+x2+1)

for both Ay + Ay and Ay + A collisions.

6.3.1 Advantages and disadvantages of the TCE model

The main advantages of the TCE model are that it is relatively simple and that it uses
Arrhenius rate parameters that are generally available for the species of interest in hyper-
sonics. However, the TCE model suffers from several disadvantages, as discussed below.

Apart from the fact that the form of (PI‘%" ) was selected for mathematical tractabil-

TCE
ity and computational efficiency, the most serious problem with the TCE model is that it

does not include any biasing of (Pl?zL ) for any particular energy mode. Consequently,

TCE
the TCE model cannot capture the DVCcoupling behaviour that is important in dissocia-
tion reactions. This issue has prompted the introduction of conventional DSMC chemistry
models that can capture DV coupling, as discussed in §6.4.

In common with the original TCE model of Bird [17, 18], the present implementation
of the TCE model assumes that all internal energy modes of both colliding particles
contribute to the total collision energy e.. As noted by Vincenti and Kruger [148], only

some internal energy modes can contribute to the reaction. Hash and Hassan [83] used a
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version of the TCE model in which half of the rotational and vibrational energy contributed
to €. A similar approach was used by Wadsworth and Wysong [150].

The expressions for Spcg and xo are derived using equilibrium energy distributions.
The TCE model assumes that these same expressions can be used to calculate (PE )TCE
under non-equilibrium conditions. However, there is no way of verifying that this assump-
tion is suitable.

The form of (P}'{ )TCE

effects for certain values of ;1 and x»2. Consider Eq. 6.2, which may be written

causes some numerical instabilities and physically unrealistic

(PI%—)TCE x (60 _ Ea)X1+X2 Ec—x1_

Firstly, when x1 + x2 < 0, then (szL — 00 as €. — € — 07 [43, 21]. This unbounded

)TCE

reaction probability is physically unrealistic. It exists when x1 + x2 = 07 + Cnt + % < 0.
For reactions in high temperature air, —3.5 < ™ < 0 [138], so this singularity can occur.
o €X2. For xo > 0, then (P}“zL

Secondly, as €, — 0o, then (Pl?zL — 00 as €, — 00.

)TCE )TCE
From Eq. 6.5, x2 = n — 0.25 for typical v = 0.25. For air chemistry, o is typically
negative, so this problem with unbounded (P;z_ )

when xs < 0 then (PI'{F )

rcg ab high € is usually avoided. Finally,

— 0 as ¢, — oo [21]. This means that (Pg) has a

TCE TCE
maximum at some €, value. According to Bird [21], this is realistic behaviour, although
it might be expected that (PI'{ )TCE

As noted by Gimelshein et al. [66, 67] and Lilley and Macrossan [110], the TCE model

gives rates that differ significantly from the expected Arrhenius rates when a quantised

should approach unity in high energy collisions.

vibration model is used. The differences arise because the TCE parameters y2 and Srcg
are derived by assuming that all molecular energy modes are distributed according to
the continuous Boltzmann distribution of Eq. 2.16. However, when a quantised vibration
model is used, the actual distribution of total collision energies differs from the assumed
distribution, giving rates that differ from the expected Arrhenius rates. Gimelshein et al.
(66, 67] examined this issue for bimolecular reactions, and proposed procedures to account

for the use of discrete distributions and recover the desired Arrhenius rates at equilibrium.

6.3.2 An alternative version of the TCE model

Boyd and Stark [43] introduced an alternative form of Py for the TCE model, given by

Py s D (1 &)

€xp (_ga) €c

which explicitly includes the forward rate k™ (7). Following the method used in §C.5 for

obtaining BrcEg, it can be shown that

Cf (T
ﬂ_NE(T)
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for this alternative form of PE . Assuming that the thermodynamic temperature 7' can be
replaced by an appropriate kinetic temperature T}, this form of Pé" allows any rates k™ (T})
to be used. To use this method, the local kinetic temperature must be calculated for each
cell, and presumably this would be a time-averaged kinetic temperature. According to
Boyd and Stark [43], this imposes a small extra computational overhead.

Hassan and Hash [84] extended the TCE chemistry model to the GHS collision model.
The resulting expression for Pl?zL includes additional terms. No DSMC studies using this
GHS chemistry model appear in the refereed literature. This is probably because the GHS

model is only required at low temperatures where flowfield chemistry is usually absent.

6.3.3 Mean reaction probabilities for nitrogen

It is instructive to examine the fraction of collisions in which the total collision energy e,
exceeds the activation energy ¢,, the fraction of such collisions that result in a reaction, and
the fraction of all collisions that result in a reaction. Although this analysis is performed
here for an equilibrium gas composed of VHS molecules with the TCE chemistry model,
the results are indicative of the behaviour of a real gas, and shows that few collisions result
in a reaction. Nitrogen has been used as a test case, with the VHS parameters from Table
B.1 and the dissociation rates of Kewley and Hornung [91] from Table B.3.

Firstly, the fraction of collisions in which €, exceeds ¢, is the same as the fraction with
€. > €,. Here this fraction is denoted F¢, s¢,. With f (&) from Eq. 6.4,
1 /oo . T (x1+1,é)

€X' exp (—€.) dé. =

o
o= [ 1@~ 5 ~ Y

(a+1)
The distribution of €, for collisions with €. > €, is given by re-normalising f (€.) and is
[f (€c)lz,se, = €X exp (=€) /T(x1 +1,€), where & <€ < oo.

With the TCE model, the fraction of collisions with €. > €, that result in a reaction is

then

(o]
e = | (Pirosll @lese, b
€q
Brce L N
T oo+ 1,6)e7 /. (€c — &)™ exp (—€.) de.
y “a a €a

Brceexp(—&) T (a +x2+1)
guX2 F(X1+1a€a) )

Here the definite integral was evaluated with Eq. A.1. The fraction of all collisions that
result in a reaction is simply the mean VHS reaction probability (P;g )vus from Eq. 6.1.
The product Fr,~z, x F&

i>e, Bives (PlfzIr )vus, and verifies the above expressions for Fg -,

and F£ For nitrogen, Fig. 6.1 shows Fz ¢, FE . and <P;{)VHS- Even at very high

€c>€Eq" €c>Eq

temperatures, the number of collisions resulting in reaction is ~1%.



6.4 Modelling dissociation-vibration coupling 77

1 - T T T T - e -0
P
10_l OB e vng..'..g/ ,8—”'Q—/G_ 1
P S
2107 Feg g o W
g ST s DU GRS S Sat SR S S
w2
E10°F & o -
g ;s
< 10%F @’/ Reaction I: Ny + N - N+N+N o
& 10  * Reaction2: Ny + N, > N+N+N, o
S o _
E 106 L¢ Fraction of all collisions with €.> ¢, = Féc S8,
., ’,"I Fraction of collisions with €, > €, resulting in reaction = Fg og
107" f S
Fraction of all collisions resulting in reaction = (P;)VHS —
—8 1 1 1 1 1
10
5000 10000 15000 20000 25000 30000 35000

T (K)

Figure 6.1: Mean reaction probabilities for nitrogen dissociation reactions with the TCE model
at thermal equilibrium. The VHS parameters from Table B.1 and the rates of Kewley and Hornung
[91] have been used. The activation energy ¢, is the dissociation energy €5 = k©4 = 113200k.

6.4 Modelling dissociation-vibration coupling

The physical importance of dissociation-vibration (DV) coupling for the general dissocia-
tion reaction
AB+M—->A+B+M

was discussed in §5.3. To accurately model dissociating gas flows with the DSMC method,
this behaviour must be captured, and several conventional chemistry models have been
proposed. The various models have been compared by Wysong et al. [155, 154] and
Wadsworth and Wysong [149, 150]. Here, the vibrationally favoured dissociation and
threshold line dissociation models are considered in detail. Other models that can capture

DV coupling are also discussed briefly in §6.6.

6.4.1 Vibrationally favoured dissociation model

Haas and Boyd [73, 74] proposed the vibrationally favoured dissociation (VFD) model in
an attempt to capture DV coupling phenomena in diatomic gases. Different expressions for
the VFD dissociation probability (PI_%F)VFD were proposed for anharmonic and harmonic
oscillators. These expressions explicitly included a dependence on the vibrational energy
of the particle AB being tested for dissociation. The VFD model attempts to recover the
Arrhenius rate equation of Eq. 5.6 at thermal equilibrium. Only the version for unbounded

harmonic oscillators is examined here, for which

G —Gd)w ¢
(PR )vep 6<;sc+¢c/2—1 Evib (6.6)
C
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when €. > ¢4. When €. < €, (P}}F ) = 0. Here, €jp is the vibrational energy of the

VFD
diatomic molecule AB and (. is the DOF in the total collision energy €.. The parameter

1) depends on the VHS parameters, the DOF of the colliding particles and the Arrhenius
rate parameters. The free parameter ¢ controls the degree of DV coupling. For VHS

molecules,

¢+Cc/2_1 = ¢+ [Cg‘l'(Crot)AB+(Cvib)AB+(Crot)M (v1b) ]/2_1
= ¢+Cg/2+5int_1:¢+1_v+€int
= ¢+xi-

Eq. 6.6 can be written in the convenient forms

€d

éc/ea— 1) (& ¢: ﬁVFng—w(gc— )w~¢
(€ /fd)¢+X1 €4 d géHXl Evib

-1 vi ¢ 1— c— v
(P;%—)VFD = Bvr ((6//2#& (6 b) = PvrD € w%eﬁib
‘ ¢ (6.7)

- IBVFD

in which the parameter Syrp is non-dimensional. The objective is to obtain expressions
for Byrp and 9. These are derived in §C.6 and the results are
n 1
b= ntv-5+x1 = x1txe and

PR cip (3 ) T ($+x+ DT (Gin/2)
VED NE \ 0, T(¢+ Cin/2) T +1)

(6.8)

When ¢ = 0 there is no DV coupling, resulting in Syrp = Brcr and (P}'{ )VFD = (Pfi )TCE'

Here the VFD dissociation probability (PE )VFD

with €. > €4. In As + Ay collisions, €,j, of the first diatom is used to calculate (Pg )

is evaluated for each collision pair
VFD*
In Ay + A collisions, €y, of the diatom is used. The diatom from which ey;, was obtained

is then dissociated if Ry < (PI'{ )VFD.

The expression for Syrp in Eq. 6.8 contains the factor

I (Gin/2) /T (¢ + Gin/2) -

As (i, — 0, this factor approaches infinity and gives (P;'{ )VFD — o0, which is unrealistic.

To avoid this singularity, Hash and Hassan [83] developed an alternative form of the VFD
model in which the model parameters are derived using the condition that (P}}F )VFD must
be bounded at unity. Unlike the original version of Haas and Boyd [73, 74], the DV
coupling parameter ¢ can then be calculated explicitly and does not require calibration
with experimental data. Hash and Hassan claim that this represents an improvement over
the original VFD model. From a numerical perspective, this is certainly true. However,

there is little evidence to suggest that the alternative (szL is actually more physically

)VFD
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realistic than the original form of Haas and Boyd [73, 74], because it was proposed for
primarily numerical reasons and is not based on more rigorous physics than the original
form.

When using quantised vibration models to simulate vibrationally cold reacting flows,

many diatoms will be in the ground state with ey, = 0. This gives (PI‘{" = 0 and

)VFD
results in very low reaction rates. Many flows of interest in hypersonics are vibrationally
cold, so this is particularly problematic. The VFD version of Hash and Hassan [83] does
not rectify this problem. For harmonic oscillators, the ground state energy £©.;,/2 should
be included in €y, SO €yip, = (% + q) kOyib. As shown in §8.5.7, using the VFD model

with eyip = (% + q) kO instead of ey, = gkOyi1, gives more realistic dissociation rates.

6.4.2 Threshold line dissociation model

Based on the assumption of classical impulsive collisions, Macheret and Rich [117] and
Macheret et al. [116] proposed the analytical threshold line concept for modelling dissoci-
ating diatomic molecules where Ty, < Tiryrot- The threshold line model is based on the
premise that dissociation can occur only when ¢, exceeds some threshold energy function
er. The threshold energy e¢r depends on the vibrational energy eyp. This model was
adapted for conventional DSMC chemistry calculations by Boyd [37], and is known as
the threshold line dissociation (TLD) model. The TLD dissociation probability (P )TLD
considers translational, rotational and vibrational energy modes, and has distinctly differ-
ent forms for low and high vibrational levels. This dependence on internal energy modes
allows the threshold line model to include the effects of DV coupling, and some effects

of high rotational energy. Different forms of er and (PE) apply for low and high

TLD
vibrational energies. The implementation of Boyd [37] is presented here for a symmetrical
diatomic gas.

The demarcation between low and high vibrational energy levels depends on the pa-

_ mA 2
a=| ———
ma +m!

For a symmetrical diatomic gas, m' = ma, so a = 0.25 for both reactions 1 and 2. The

rameter «, defined by

threshold energy er depends on €y, and is given by

(NI
N

2
e — [6(’; — (aeyib) ] /(1 —a) for e, < a€

*_

€4 €vib for €vib > 0562.

Here, €, is a modified dissociation energy, which accounts for the reduction in dissociation
energy associated with the centrifugal effects of high rotational energy. The modified

dissociation energy € is given by

* 2 6g‘ot % 6sz’ot %
€4 = €d — €rot + g E €4 — €rot T+ 0.27217 Z .
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The use of this reduced dissociation energy is an important feature of the TLD model. The
dissociation probability is evaluated when e; > €x [150] and €, > €4. For low vibrational

levels where e, < ae;, the TLD dissociation probability is

(P}%—)TLD - Amp (2\7:3) (€g — EF)3/2 .
€F [ (Ve — Vaev) (Ve — 24/6ib + /aeyip) ]
(eg - 6F)g/2

0

~ 0.38211A11D

/2"

er | (Ve — vaam) (/e — 26 + Vaem) |

Here, AT1p is a constant that is used to calibrate the TLD model against experimental
reaction rate data. For high vibrational levels where ey, > e, the TLD dissociation

probability is

1
1+ a)\? (€g — €r)?
(P#) = AtLp ( ) g
ftJILD 1-Va 47r2€i~/2 (vib — ae

V3 (eg — GF)Q

Aro 3 1/2
A (e — ea/4)”

)1/2

2
0.043873 A 11075 (eg — €r)
ep (e — €3/4

Q

)1/2'

Note that (PI‘{" )TLD
both DV coupling and some effects of high rotational energy. The original threshold
line model of Macheret and Rich [117] considered both diatom + atom and diatom +

is a function of €g, €0y and €yj,. Therefore the TLD model can capture

diatom collisions. For simplicity the expressions for diatom + atom collisions are used in
DSMC calculations for all testing reactions for both diatom + atom and diatom + diatom

collisions [37].

In this study, for As + Ao collisions, €0t and €y, from the first diatom in the collision

pair were used to calculate (P;zr For As + A collisions, €0t and €yj, from the diatom

)TLD'

were used. The tested diatom was then dissociated if Ry < (Pl?zL )TLD.

T1.p result in (PI'{ )TLD > 1 at certain energies, which
is physically unrealistic [37, 150, 154]. In such cases, a single dissociation event only is

> 1,

The above expressions for (P;{ )

performed in most DSMC codes. To reduce the number of events with (P;: )TLD

Wadsworth and Wysong [150] suggested that the vibrational energy €., should include
the ground state energy kOy;,/2. For harmonic oscillators, ey = (% + q) k©y;ip should be

used. As shown in §8.5.8 and §C.7, a large fraction of reaction events still have (P;: >

)TLD
1, even when the ground state energy is included. According to Wysong et al. [154], the

occurrence of events with (P}}L ) > 1 is an important limitation of the TLD model.

TLD
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6.5 Modelling recombination reactions

Recombination reactions require ternary collisions which are infrequent in a rarefied gas,
and are therefore usually ignored in DSMC calculations. However, when studying systems
that approach chemical equilibrium, such as the flow downstream of a strong shock, recom-
bination reactions must be considered. Using Eqgs. 5.14 and 4.18, the mean recombination

probability for VHS molecules is

1
_ np k= fen (T,\27°
< R Jvns Tcolls N2E ( T ) (6.9)

Early recombination models [14, 15] were based on assigning a lifetime to binary col-
lisions. Ternary collisions were then calculated as a binary collision between the pair of
particles in the initial binary collision and a third particle. This section considers the more

recent recombination models of Boyd [32] and Bird [21].

6.5.1 TCER recombination model of Boyd [32]

Here, the DSMC recombination model of Boyd [32] has been used. In this model, a
quasi-particle, consisting of two colliding atomic particles, is assumed to interact with
a third body selected at random from the particles within the cell. Under equilibrium
conditions, the distribution of reduced collision energy for the quasi-particle and the third

body, denoted €3, is
F(&) =& Vexp (=&) JT(T/2 + (3/2 —v)

where (3 is the number of internal DOF in the third body [32]. Boyd [32] proposed the

recombination probability

Py = (n/n,) (e3/€a)” = (n/ny) (€3/€1)", (6.10)

where 1/n, and k are constants dependent on the VHS parameters of the atomic species,
the equilibrium constant K* and Arrhenius rate parameters. As for the TCE model, this
form of P plausibly approximates real gas behaviour, with consideration of mathematical
tractability. Because P, = Pp (e3), this recombination model may be regarded as an
extension of the TCE model to include termolecular reactions, and is called the TCER

model here.

Proceeding in a manner similar to that used in §C.5 and §C.6, the mean TCER re-
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combination probability (Pg) is

o) = [ Pr @) ) da
_ n/ (n-éf) ® 5/24(3/2— vtk Ry
- el o o (=) s

_ ﬁ(l)”f‘(7/2+€3/2—v+ﬁ)
N Ny ®d P(7/2+C3/2—’U) ’

where €; = ©4/T has been used. Here the lower integration limit is zero because the
activation energy is zero for recombination reactions [148]. Using Egs. 5.12 and 6.9 the

common form of the equilibrium constant K} from Eq. 5.2,

1;

-k _ o (T)”Jr_"* 1N (T)”(T)%—“r(7/2+<3/2_u+n)

Ky 0 \ey “n fs \O4 T(7/2 + (3/2 — v)

Equating temperature powers provides

1
H=n++v—§—n*=><2—n*, (6.11)

and equating the leading constants gives

O4

1 _Ct § (T) T (7/2+ (/2 = v)

n,  C* N’ T (7/2+(3/2—v+k)

The VHS parameters =, T, and v all refer to collisions between the two atomic particles,
and C* and n™ are the forward Arrhenius rate parameters for the recombination reaction
under consideration. The parameter 1/n, has units of m3, as expected.

It is important to note that the TCER model is limited to the common form of the
equilibrium constant K} of Eq. 5.2, which depends on temperature only. Other more
accurate forms of the equilibrium constant, such those of Gupta et al. [70] and Park [138],
are not mathematically convenient for use in this recombination model [41, 42].

The TCER recombination probability includes the local number density n. This is
a macroscopic property, and during a DSMC calculation it is obtained from the time-
averaged number of particles in each cell. Strictly, the TCER model is not a conventional
chemistry model, because it requires this macroscopic information to calculate the reaction
probability, rather than information from the colliding molecules alone.

When x < 0, which is often the case for recombination reactions in air chemistry, the
TCER model gives P, — oo as e3 — 0. This singularity is encountered more frequently
where the local number density is high, and is of some concern because such conditions
usually prevail where significant recombination occurs.

As discussed for the TCE model in §6.3, the use of a quantised vibration model can
affect the recombination rates realised in a DSMC computation. This applies to recombi-

nation reactions where the third body has vibrational DOF. In such cases, the distribution
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of e3 actually occurring in the simulation differs from the assumed continuous Boltzmann
distribution f(€3) used in the above derivation of the TCER parameters 1/n, and k.
This effect, and the singularity for e3 — 0, result in the TCER model giving a recom-
bination rate that differs significantly from the expected Arrhenius recombination rate
k- =kT/K}.

6.5.2 Recombination model of Bird [21]

Bird [21] proposed a recombination model in which P, depended on the relative transla-
tional energy €, of the two colliding atoms and the local number density. In this model,
Pp had the form

Pp = (n/nr)(eg/€a)” = (n/nr)(ég/éa)",

which is similar to that proposed by Boyd [32] in Eq. 6.10. If recombination occurred, a
third body was selected at random from those in the cell to remove energy. The energy of
this third body was not used in calculating P . The distribution of ¢, for VHS molecules

is given by Eq. 4.11, so the mean recombination probability is

<P§> = M/Ooognf(gg)dgg = M/Oooglwrnexp(_gg)dgg

r'2—w) I 2 —w) I
_ n (T\'T2-v+k)
N Ty (@d) P(Z—’U) '

Equating this expression with (Pg )vrs from Eq. 6.9 gives  as in Eq. 6.11 and

1 Ot f, (T,\*" T(2-v)
O4 r

n,  C* N2 2-v+k)

Again, this recombination model requires the local number density, so it is not strictly a

conventional chemistry model.

6.5.3 Equilibrium collision theory

Bird [21] proposed a conventional DSMC chemistry model for reverse reactions that uses
molecular partition functions to calculate Pp. Bird claims that this model can lead to
exact equilibrium conditions. Different forms of P, are employed for bimolecular and
termolecular reverse reactions. For the termolecular recombination reaction AB + M <«
A + B + M, the recombination probability in each cell is set to Py = (Pg )vus = nF (T),
where n is the local number density and F' depends on temperature only. Eq. 6.9 provides

T:

ko f 7Y
P, =nF(T) = N;Tn (?> , which gives k™ =

F(T)N?2E ( T ) 237v |

fs T,
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In terms of the partition functions, the equilibrium constant K* is given by

_ QMQB exp (—04/T)
- VCQAB N ’

K*
where V, is the cell volume [21]. Using this expression for K* and the Arrhenius form of

k* from Eq. 5.6,
+ 7]+ AB
=t o (L) RO
K* @d QAQB

Equating the two expressions for k= provides F(T') from which

O4

1
_ nCt, ( T )”* (T) 27 V,QMB
is obtained. When a recombination event occurs, a third body is selected at random to

remove energy from the recombining atoms [21].

This recombination model requires the cell temperature to evaluate the partition func-
tions, as well as the local number density. Under non-equilibrium conditions, a kinetic
temperature calculated from time-averaged flowfield samples should be used. Again, these
are macroscopic values, so this recombination model is not strictly a conventional chem-

istry model.

6.6 Other conventional DSMC chemistry models

Several other conventional chemistry models have been proposed for the DSMC method.

This section briefly discusses some of these models.

6.6.1 Quasi-classical trajectory calculations

The quasi-classical trajectory (QCT) method is a procedure for calculating molecular
trajectories that considers the quantisation of reactant molecules, but in which the course
of the reaction is treated classically [87]. The QCT method allows calculation of detailed
state-specific reaction cross-sections, and can therefore capture important phenomena such
as DV coupling in dissociating gases. DSMC chemistry calculations using QCT results
have been performed by Boyd et al. [39] for the Ny + O — N+ NO exchange reaction, and
by Wadsworth and Wysong [150] for the Hy + H — H + H + H dissociation reaction. To
perform QCT calculation, a potential surface for the interacting molecules is required. For
collisions involving more than three atoms, potential surfaces are not generally available.
This has effectively limited the application of the QCT method for many reactions of

interest in hypersonics.
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6.6.2 Generalised collision energy model

Boyd et al. [39] introduced the generalised collision energy (GCE) model, which is a further
generalisation of the VFD model to include a bias for reaction due to rotational energy, in
addition to vibrational energy. The TCE and VFD models are special cases of this GCE
model. The GCE model uses adjustable parameters to control the contribution to P;{
from internal energy modes. For the No + O — N + NO exchange reaction, Boyd et al.
obtained values for these adjustable parameters by calibration against QCT results. The
reaction cross-sections then provided by the GCE model were in reasonable agreement

with those provided by the QCT calculations.

6.6.3 Exact available energy model

Bird [22, 21] proposed the exact available energy (EAE) model for dissociation reactions, in
which vibrational energy exchange and dissociation processes are closely related. Diatoms
are dissociated if BL vibrational energy exchange results in a post-exchange vibrational
energy e, larger than the dissociation energy e¢;. The EAE model may regarded as an
extension of BL procedures to predict dissociation [150]. The model does not explicitly
include adjustable parameters, so the accuracy of this model clearly depends on the phys-
ical accuracy of both the vibration model and the vibrational energy exchange scheme.
The EAE model has been used by Carlson and Bird [45], Wysong et al. [155], Wadsworth
and Wysong [149, 150] and Lord [111, 112, 113]. Like the TCE model, the EAE model
depends only on the total energy of collision, and does not include effects of DV coupling
[149, 150].

The EAE model is simple to implement in a DSMC code. After BL energy exchange,
diatoms with €/, > €4 are simply dissociated into constituent atoms. The internal en-
ergy of the dissociating diatom can be used for the relative translational energy efq of the
two product atoms. The actual DSMC implementation of the EAE model does not di-
rectly depend on the vibration model. However the resulting reaction rates do depend on
the vibration model and vibrational energy exchange procedures. The EAE model was
originally introduced for a continuous vibrational energy distribution with (i, effective
vibrational DOF. Versions for anharmonic oscillators were used by Bird [21] and Carlson
and Bird [45]. Lord [111] considered a version using the Morse potential for vibrational
energy levels.

The macroscopic dissociation rates realised by the EAE model at thermal equilibrium
can be calculated numerically. Three possible methods are given in §C.8. The calculations
have been performed for VHS harmonic oscillators with a constant exchange probability
¢vib = 0.1 and the BL exchange model of Bergemann and Boyd [9] where multiple relax-
ation events are prohibited and relaxing particles are selected according to the scheme of
Gimelshein et al. [65]. For nitrogen, this version of the EAE model results in macroscopic

dissociation rates that are accurately approximated by a rate equation of the Arrhenius
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form. However, the calculated dissociation rates are about two orders of magnitude lower
than published rates. Even by increasing the exchange probability ¢ip, it seems that this
version of the EAE model cannot achieve the published rates. It is possible that better
agreement with the published rates could be achieved by using an anharmonic vibration

model and a variable-¢yj, exchange probability.

6.6.4 Maximum entropy models

It has been observed experimentally that energy distributions in reaction products deviate
from equilibrium distributions. Levine and Bernstein [104] examined these deviations, and
formulated the maximum entropy model that describes the post-reaction energy distribu-
tions as a perturbation away from microscopic equilibrium. The perturbation is described
in terms of maximal parameters \;. The probability of an energy state appearing in the
reaction products equals the probability of this energy state causing the reverse reaction.
Using the principle of microscopic reversibility, this can be used to determine the reaction
probability for a collision between reactant molecules.

Marriott and Harvey [128], Koura [96] and Gallis and Harvey [59, 58, 60] have proposed
conventional DSMC chemistry models based on maximum entropy concepts. These models
use a single adjustable maximal parameter A to control the extent of DV coupling. Gallis
and Harvey developed the model for chemistry in air and the Martian atmosphere. These
maximum entropy models have not been adopted widely, because it seems that the results
obtained do not differ significantly from those obtained with other conventional DSMC
chemistry models [38].

6.7 Reaction mechanics and detailed balancing

The conventional chemistry models discussed in this chapter give the probability Pgr of a
reaction occurring. In these models, Pg is calculated for every collision between reactant
particles with €. > €,. A reaction is performed when R; < Pg. Computing a reacting
event involves changing the reactant species to product species and setting the post-
reaction energies for the product particles. This section considers procedures for setting
post-reaction energies, and discusses the associated issue of detailed balancing.

The topic of post-reaction energy disposal has received little attention in the literature
[38]. The proportional energy partitioning scheme of Haas [71, 72] was used here to
distribute post-reaction energy amongst the various energy modes of reaction products.
In this scheme, all energy modes of the reactant particles are adjusted by a factor which
represents the proportional change in the total collision energy €. due to the reaction.

For the dissociation reaction AB +M — A + B + M, the post-reaction total energy is

€. = €. — €4 and the energy adjustment factor is

Ur =€ /ec=1—€g/ec.
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Energy is partitioned before the reaction is performed. Firstly, the adjusted energies are

calculated for the reactant particles AB and M using
6Ig = \I’jfga (eint)iAB = \IJ: (€int)ap and (Gint){v[ = \I’j (€int) -

The adjusted relative speed ¢’ of particles AB and M is then given by

D[
N[

g = (2¢,/m)> = (¥})2g.

The direction of ¢’ is randomly distributed on the unit sphere. The adjusted internal energy
of the dissociating AB particle (eint)yp is manifested as relative translational energy of
the dissociated A and B atoms. The relative speed of the dissociated atoms is
Iarn = (2 (ént)ap /)] 2,

The direction of this g/, 4 is randomly distributed on the unit sphere. If particle M
is diatomic, the adjusted internal energy (eim){v[ must be partitioned between rotational
and vibrational modes. For unbounded harmonic oscillators, the post-reaction vibrational
energy level ¢' is obtained using R; (0, ¢},,,) Where gl = | (€int)y; /(K©vib) |. The post-
reaction rotational energy is then (erot)ﬁVI = (Gnt){v[ — q'kOyip.

Where reverse reactions such as recombination occur, detailed balancing should be
considered when performing post-reaction energy disposal. However, satisfying detailed
balancing using conventional DSMC chemistry models can be difficult, particularly when
P; has a complicated form as in the TLD model. This is further complicated by the
frequent use of quantised vibration models. No general method has been proposed to
ensure satisfaction of detailed balancing when using such conventional chemistry models.
Fortunately recombination reactions are generally very infrequent in rarefied flows, so
problems associated with violating detailed balancing are usually insignificant and can
often be ignored.

The recombination energy partitioning scheme presented here applies to the TCER
model, for the recombination reaction AB + M < A + B + M. The post-reaction energy

is €, = €. + €4 and the energy adjustment factor is
V- =€ /ec =1+ eq/ec.

It is assumed that the relative translational energy (eg), 4B of the atomic particles is
manifested as the internal energy of the new diatom. The internal energy of the new
diatom is

(€int)as = ¥ (€g) atn -

(fint)iqB is partitioned into rotational and vibrational energy using the procedure discussed

above for dissociation reactions. If particle M is diatomic, its internal energy (eint)ﬁw is
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also calculated with this method. The relative translational energy of the A - B quasi-
particle and the third body M, denoted ¢4, is used to calculate the post-reaction relative
translational energy e; of the new AB diatom and particle M using e; = U e, The

post-reaction relative speed ¢’ of the AB and M particles is then given by

D=
D=

g = (2¢g/m)? = ()% g,
where g is the initial relative translational speed of the A - B quasi-particle and M. Again,
the direction of ¢’ is randomly distributed on the unit sphere.

In DSMC computations where equilibrium conditions are approached, the problems
associated with violating the detailed balancing requirement become apparent. They are
manifested as different kinetic temperatures in different energy modes. It is clear that
conventional DSMC chemistry models require further development to alleviate the detailed
balancing issue. As noted in Chapter 7, decoupled chemistry methods do not suffer from
these problems with detailed balancing.

For each dissociation event, a new particle must be added to the cell. In this study,
the new particle was added during the collision routine, and was therefore available for
subsequent collisions in that cell during the time step. The new particle could be inserted
into the particle list array, but this necessitates changing the positions of many particles in
the list array, and therefore imposes excessive computational expense. Instead, a second
list array was used here, which contained only new atomic particles created by dissociation
events in the current cell and the current time step. The selection routine then included this
second list array when selecting possible collision partners. The additional computational
expense associated with using the second list array is negligible.

The procedure for each recombination event simply involves the deletion of a particle
from the list array. In such cases, the last particle in the list is copied to the position of

the deleted particle.

6.8 A simplified conventional DSMC chemistry model

Cercignani et al. [46] examined the hypersonic flow of rarefied reacting air over a flat
plate at various angles of attack. A simplified DSMC chemistry model was used, which
considered oxygen dissociation only and ignored nitrogen dissociation and the exchange
reactions. For all collisions with ¢, > ¢4, Pg = 1 was used. The results obtained were
compared to the DSMC results of Dogra and Moss [54], which were obtained with a full
air chemistry model. The coefficients of pressure, skin friction, heat transfer and drag
agreed to within 5%. The study of Cercignani et al. indicates that the details of chemical
reaction processes may not be significant in the calculation of the aerodynamic coefficients
of engineering interest. It is noted however, that the flow investigated by Cercignani et

al. was relatively simple, and devoid of the complex shock-shock and shock-boundary
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layer interactions that may occur in flows about more complex geometries. In such flows,
the details of the chemical reaction models could have a significant influence on the flow

characteristics of interest.

6.9 Testing and validating DSMC chemistry models

The most rigorous test for a conventional DSMC chemistry model is to compare the
predicted reaction cross-sections to those obtained from detailed state-specific quantum
calculations validated by experimental data. For most reactions of interest in hypersonics,
quantum calculations have not been performed and experimental state-specific reaction
cross-section data is virtually non-existent [81, 154]. The QCT calculations reported by
Wadsworth and Wysong [150] for the Hy + H — H + H + H reaction and Boyd et al. [39]
for the No + O — NO + N reaction, plus the experimental results reported by Wysong et
al. [154] for the Arj + Ar — Art + 2Ar reaction, all indicate that conventional DSMC
chemistry models provide reaction cross-sections that are of the correct order.

In the absence of detailed reaction cross-section data, the most basic test to which a
DSMC chemistry model can be subjected is the simulation of chemistry under thermal
equilibrium conditions and the measurement of the resulting simulated reaction rates [149].
At equilibrium, the model should provide rates that reproduce known rates with reasonable
accuracy. Most DSMC chemistry models satisfy this test, because most models have been
formulated specifically to recover known rates at equilibrium.

Harvey and Gallis [81] have reviewed validation efforts for DSMC chemistry models.
Experimental validation requires measurements of a non-equilibrium reacting flowfield.
Actually generating such flowfields is difficult. Another problem is the acquisition of accu-
rate, detailed flowfield measurements under such conditions. Although the few available
experimental results suggest that DSMC chemistry models are reasonably accurate, the
models and post-reaction energy distribution procedures have not yet been rigorously val-
idated for non-equilibrium conditions [81]. Experimental density measurements of the
flow downstream of strong shocks in nitrogen, obtained by Kewley and Hornung [91] and
reported by Bird [15], have been used to test DSMC chemistry models [15, 32, 110]. This

case is considered in §8.4.



CHAPTER 7

Decoupled chemistry methods

7.1 Introduction and summary

This chapter is concerned with decoupled chemistry methods for DSMC calculations, with
attention given to the macroscopic chemistry method [110]. In decoupled chemistry meth-
ods, chemical reactions are decoupled from the collision routine, and are performed as
a separate independent process. This decoupling is similar to the fundamental DSMC
assumption where particle motions and intermolecular collisions are decoupled [7]. For
dissociation reactions, decoupling collisions and reactions may have some physical basis,
because collision-induced dissociation of a diatom occurs after excitation by collision with
a second molecule. Decoupled chemistry methods have been considered by several authors,
as discussed below.

Boyd et al. [40] used a decoupled chemistry method, called the overlay method, that
excluded trace species from the DSMC calculation, and modelled each trace species con-
centration by solving a macroscopic diffusion equation with a chemical source term. These
separate calculations used local flow conditions, obtained from the DSMC calculation of
the dominant chemical species. This overlay method was specifically intended to simulate
the chemistry of trace species.

Bartel et al. [8] applied the decoupled approach to capture chemistry in a six species
chlorine plasma reactor, where the trace species dominate the system behaviour of interest.
Using conventional DSMC chemistry procedures to model the system gave incorrect and
physically unrealistic results, due to the large statistical scatter associated with the low re-
action frequencies and small numbers of trace species particles. In this decoupled method,
the number of reaction events required in a cell was calculated from the macroscopic re-
action rate k™ and number densities. Presumably, k™ was calculated using a local kinetic
temperature. The decoupled chemistry routine was invoked after the collision routine to
perform the required number of reactions. For the bimolecular reaction A +B — C + D,

the change in the number of species A particles AN during a time step was given by
ANp = — (Np — Rp) ’an+At/N.

Here Ry is the accumulated fractional remainder of AN, from the previous time step. The
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number density of species B ng was a macroscopic property computed directly from the
assumption of local charge neutrality. The numbers of species C and D particles created

were then
ANg = —ANAWAyB/WC,D + Rz and ANp = —ANAWAyB/WC,D + Rp

respectively. Here W p is the species dependent weighting factor for species A and B,
which is much larger than the weighting factor W p for the trace species C and D.
The fractional remainders Ra, Rc and Rp were used to reduce the effects of statistical
fluctuations. In this decoupled method the production and consumption of product and
reactant particles could essentially occur independently during a time step. However,
on average, the rates of consumption and production were correct. Bartel et al. [8] did
not discuss methods for selecting reacting particles or performing post-reaction energy

disposal.

Bartel [7] considered a similar decoupled chemistry scheme in which species B particles
were present in the simulation. Some methods for selecting reacting A and B particles
were considered. For each reaction event, possible reactant particles were randomly se-
lected from those within in the cell, and a reaction was performed if the energy of the
particles exceeded the energy threshold for the reaction. Presumably, the detailed reac-
tion mechanics were calculated using a method similar to that of Haas [71, 72] as discussed
in §6.7. As an alternative scheme, Bartel [7] suggested that reacting particles could be
selected using a scheme analogous to the NTC method [20] for selecting collision partners.

This alternative selection scheme is investigated in §7.4.

Another decoupled method, called the macroscopic chemistry method, was introduced
by Lilley and Macrossan [110]. The fundamental premise of the macroscopic method is
that chemical reactions are infrequent events, and provided that the macroscopic reaction
rate is maintained, the microscopic details of reaction events have a minimal influence on
the flowfield properties of engineering interest. Therefore little effort is made to accurately
model the details of reaction processes at the molecular level. The macroscopic method

was developed for the symmetrical diatomic dissociating gas and applied to nitrogen.

In the macroscopic method, no attempt is made to select a collision partner when
simulating dissociation events. For each dissociation event, a single diatom is selected from
those in the cell according to a simple selection rule, and is dissociated into two atoms.
Similarly, no attempt is made to select a third body when simulating recombination events.
For each recombination event, two atoms are selected at random and are recombined into a
single diatom. The dissociation energy is accounted for by adjusting the thermal velocities
of all particles in the cell. Details of the macroscopic method are given in §7.2.

The procedures adopted to select reacting particles in the macroscopic method are
fundamentally different to those used in the earlier decoupled method of Bartel [7]. In

the method of Bartel, reactions events were performed only when the total energy of
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the selected reactant particles exceeded a reaction energy threshold. It appears that this
decoupled method attempts to correctly model the reacting gas behavior at the molecular
level. The macroscopic method does not attempt to capture the microscopic details of
reaction processes. However, as shown by the results presented by Lilley and Macrossan
[110, 106] and in Chapter 8, the macroscopic method produces flowfields in reasonable
agreement with those obtained using conventional collision-based DSMC chemistry models

which do attempt to model reactions at the molecular level.

It should be noted that decoupled approach used in the macroscopic method may not
be suitable for modelling flowfield radiation, which depends strongly on the concentration

and internal states of radiating species.

7.2 Details of the macroscopic chemistry method

When using the macroscopic method, the prime concern is to obtain the correct macro-
scopic reaction rate. For the symmetrical diatomic gas, the requirement is to determine
the net change in the number of diatoms, denoted ANy,, in each cell at each time step.
The procedure used here to calculate AN, is discussed in §7.2.1. When ANy, has been
calculated, some selection rule is required to select reacting particles in each cell. Two
possible selection methods are given in §7.2.2. Reaction mechanics for the macroscopic
method are discussed §7.2.3, and the procedure for adjusting thermal velocities to account
for the dissociation energy is given in §7.2.4. Some discussion on the DSMC implementa-
tion of the macroscopic method is provided in §7.2.5, and comments on detailed balancing
in §7.2.6.

7.2.1 Calculating the required number of reaction events

Consider the dissociation fraction « at the start of some zero-dimensional process, given
by
o= NA/ (NA + 2NA2)

where N; is the number of species s particles. After a time At during which chemistry

occurs, the new dissociation fraction is
! ! ! !
o/ = Nj/ (Nj +2Ny,)
where N| is the new number of species s particles. The atom conservation equation

C:NA+2NA2 :NA+2NA2
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allows these dissociation fractions to be expressed as & = Nao/C and o = N} /C. The

change in the number of atomic particles is

ANpA=Np—NpA=C(d —q).
Using ANy = —2AN,,, the net change in the number of diatoms is given by

ANy, = — (Na/2+ Na,) (¢/ — @) . (7.1)
A simple Euler method can be used to estimate o’ according to
o = a+ alt.

Substituting this into Eq. 7.1 gives

ANy, = — (Na/2 4+ Na,) GAt.

If the time interval At is a DSMC time step, this should be a good approximation because
DSMC time steps are small compared to the mean collision time and hence the charac-
teristic reaction time 1/&. From Eq. 5.15, & = &(a, T, p). Because p and « depend on
Nj and Np,, ANp, = ANp, (Na, Na,,T). Under non-equilibrium conditions, 7' may be
replaced by an appropriate kinetic temperature 7Tj. This kinetic temperature could be,

for example, the overall kinetic temperature Ti;, given in §2.9.4.

In the macroscopic method, flowfield samples are used to calculate the time-averaged
quantities No, Na, and T} in each cell. These are used to calculate p, @ and then ¢ in

each cell. AN,, is then calculated using
ANy, = — (Na/2+ Na,) @At (7.2)

Time-averaged rather than instantaneous values are used, because the required mean

number of reaction events, given by
(ANp,) = AN, (Na, Na,, k)
differs from the mean instantaneous value of
(AN, (N, Nay, Ti) ).

Also, using time-weighted rather than instantaneous samples is more computationally
efficient, because flowfield conditions must be calculated less often. For unsteady flows,
the macroscopic method could be implemented by using stored time-averaged properties

obtained for each cell from several successive DSMC simulations of the unsteady flow.
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Sampling procedures for such flows are discussed in §4.2.6.

In the above expressions, ANj, depends on a single kinetic temperature T} only.
However, the macroscopic method is not limited to a single temperature rate equation for
the forward rate k. Other forms of k™ can be used, and these may be any empirical
or theoretical function of the local macroscopic flow conditions. For example, the two-
temperature rate model of Park [137], given in §5.3, can be used to capture the effects of
DV coupling. This model uses the vibrational kinetic temperature 7;, and the kinetic
temperature of translation and vibration Ti;vip Which are calculated from time-averaged

flowfield samples.

The macroscopic method is not limited to the common equilibrium constant K* =
K}(T) as given by Eq. 5.2. Other forms of K* that are any function of the macroscopic
conditions can be used. One example is K* = K (T, n) as given in Eq. 5.3. As noted in
§6.5, such complicated forms of K* may not be mathematically convenient for use in some

conventional DSMC recombination models.

If recombination reactions must be considered when using the macroscopic method
with the two-temperature model [137], then the equilibrium constant K* must be evaluated
at the effective temperature T, in order to calculate &. According to Park [138], K* may
be approximated using

K* ~ K*(T,).

e C

When using K¢, then K* should be approximated with

K* ~ K& (Ta,n).

The macroscopic method simulates the net number of reaction events only. For net
dissociation ANy, < 0, and for net recombination AN, > 0. Where chemical equilibrium
exists AN, = 0, so no reaction events will be computed. When considering both disso-
ciation and recombination, & is calculated with Eq. 5.15. This accounts for the change in
a due to both dissociation and recombination events. If recombination is negligible, Eq.

5.16 can be used to approximate c.

A cumulative total of AN,,, denoted Y ANj,, is maintained for each cell. At every
time step, Y AN, is updated according to the value of ANy, calculated using Eq. 7.2
with stored time-weighted average values of Ny, Na, and &. When |) ANy, > 0.5,
sufficient reaction events are performed to bring ) ANy, back into the range [—0.5,0.5].
The limits of +0.5 are used so that the mean value of ) J ANj, in each cell during the sim-
ulation is close to zero. In a small fraction of cases where there are insufficient particles in
the cell to perform the required number of reaction events, all of the available particles are

consumed and ) ANy, is adjusted according to the number of events actually performed.
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7.2.2 Methods for selecting reacting particles

When performing a dissociation event, a diatom is selected at random from those within
the cell, and a dissociation probability P is calculated according to the selection rule. The
diatom is dissociated if Ry < Ps. This is an acceptance-rejection method that continues
until the required number of diatoms |ANa,| have been dissociated in the cell. Two

possible methods have been considered for selecting dissociating diatoms in this study.

Firstly, Lilley and Macrossan [110] used the selection probability

P, = 6int/ (eint)max -

Here, €int = €rot + €vib is the internal energy of a randomly selected diatom and (€int) oy 15

the maximum instantaneous value of €, in the cell. (Eint)ma.x is found before the diatom
selection routine starts. This selection method approximates the selection of dissociating
diatoms in the conventional TCE method, where particles with higher internal energies
are more likely to dissociate.

For diatoms with DV coupling, the dissociation probability should depend primarily
on the vibrational energy. Diatoms in higher vibrational energy levels should be more

likely to dissociate. Following this logic, Lilley and Macrossan [106] proposed the diatom

1 /1
-4 (i)
qa \2

for harmonic oscillators with DV coupling. The % added to g accounts for the ground state

selection probability

energy. This removes the minor difficulties that occur in vibrationally cold flows where
q is often zero, resulting in an inefficient diatom selection routine. g4 is the vibrational
energy level immediately below the dissociation limit.

For net recombination, two atomic particles are selected from the cell for each re-
combination event. Here, the process for selecting recombining atoms was random and
independent of energy.

In a small fraction of cases, there may be insufficient particles in the cell to perform
the required number of dissociation or recombination events. In such cases, all of the
available particles are consumed, and ) ANy, is adjusted according to the number of

events actually performed.

7.2.3 Reaction mechanics

For dissociation events, it is assumed that all internal energy €y in the dissociating diatom
is manifested as the relative translational energy of the two atoms after the dissociation

event. The relative speed of the atoms is therefore

1
g = (2€in/m)7 .
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The direction of the post-reaction relative velocity vector g’ is random. The centre-of-mass
velocity of the two atomic particles is the same as the velocity of the original diatom.
For recombination events, it is assumed that the relative translational energy e, =
mg?/2 of the two atoms is manifested as the internal energy of the new diatom. The
vibrational energy level is set to that closest to €,/2 such that €,i, < €;. The rotational
energy is then simply €01 = €4 — €yip. The velocity of the new diatom equals the centre-

of-mass velocity of the two atoms before the recombination event.

7.2.4 Accounting for the dissociation energy

The net change in chemical potential energy E, due to ANy, reaction events is
AE., = —ANj,€q4.

In the macroscopic method, AFE., is the net energy that must be removed from the
cell by adjusting the thermal velocities of all particles in the cell. For net dissociation,
ANy, < 0 so AE;, > 0 and the thermal velocities will be reduced. This reduces the
local translational kinetic temperature, as expected. For net recombination, the thermal
velocities will increase. The thermal velocities of all particles are adjusted by a factor ¥..
The new thermal velocity of particle p, denoted c’p, is given by

I
¢, =Yccp.

An expression for ¥, will be derived later. The new thermal speed c;, is then

= ‘CI

p| = VUcley| = Vecp.

The adjusted velocity of particle p is then given by

<|

v]'[J = =T.c
= (Vp -v)+v
= Uev,+(1-T,)v. (7.3)

This velocity adjustment changes the thermal velocities only. The centre-of-mass velocity
of the particles does not change and momentum conservation is satisfied. In the execution
of the macroscopic chemistry method, Eq. 7.3 is the most efficient formula for adjusting
velocities because (1 — ¥.) v is constant in each cell.

To find the expression for V., the total translational thermal energies of all particles
in the cell before and after the adjustment of velocities must be considered. The initial

thermal energy of particle p is

(etr), = mpc§/2.
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The adjusted thermal energy for particle p is then
2
(Etr); =m (c;) /2=m (\Ilccp)2 /2= \Izg (€tr)p_

The total translational thermal energy of all particles before adjustment, denoted FEi,, is

Np

Etr = Z (Gtr)p 3

p=1

where N, is the number of particles in the cell. The total translational thermal energy

after adjustment is

Ny Np
Eér = Z (6£r)p = \Ijz Z (6tr)p - \ch Etr
p=1 p=1

The change in chemical potential energy AE, is the energy that must be removed from
the particles, so Ef, = Ei, — AE,. Therefore V2 Ey, = Ey, — AE,, and

For dissociation AFE;, > 0 giving ¥, < 1. For recombination ¥, > 1.

In a small fraction of dissociation events, the translational thermal energy present in
the cell may be less than the required change in chemical potential energy. In such cases,
the thermal velocities are all set to zero, and the remaining translational thermal energy
AFE., — Ei; to be removed from the cell is stored. This remaining thermal energy is
removed from the thermal velocities when the next reaction is calculated.

For each cell, the thermal velocity adjustments are quite computationally expensive.
However, because reaction events are infrequent, few cells have reactions in any given time
step, and the velocity adjustment procedure does not appear to slow the overall DSMC

simulation significantly.

7.2.5 DSMC implementation of the macroscopic method

The macroscopic method is executed after the collision routine. This involves calculating
ANy, in each cell from stored time-average quantities, and then performing the required
number of reaction events. Because the reactions are performed after the collision routine,
there is no requirement to adjust the particle list array to add new atomic particles created

by dissociation events and remove atomic particles for recombination events.

7.2.6 Satisfaction of detailed balancing

The macroscopic chemistry method considers net changes in composition only. At equilib-
rium, there is no net change in composition, so no reactions are performed. Consequently,

at equilibrium, detailed balancing is not an issue for the macroscopic chemistry method.
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In this respect, the macroscopic method is similar to continuum CFD solvers, which do

not explicitly consider detailed balancing.

7.3 Extension to more complex reacting gas mixtures

The decoupled approach to DSMC chemistry modelling was applied to a complex reacting
chlorine plasma system by Bartel et al. [8] and Bartel [7]. Similarly, the macroscopic
chemistry method can be extended to a complex gas mixture with many species and
many chemical reactions. For example, the common net reactions in high temperature

air, ignoring ionisation and charge exchange reactions, are the dissociation reactions
No=N+N, O02=040 and NO=N+O
and the atom exchange reactions
N+O;=NO+0 and Ny+0O=NO+N.

In a manner similar to the symmetrical diatomic gas considered above, the required
number of reaction events can be calculated for each net reaction with a simple Euler
method. For species A in the net reaction A + B — products, the new number density of

species A, denoted n'y, is given by

d
nly =na + %At.
Using Eq. 5.5 this becomes
kt
nly =na — %At.

Using na = NaAW/V,, where Nj is the number of simulator particles of species A, W is

the cell-based weighting factor and V is the cell volume,

kT NANgW At

Np—Nj = —— =
c

For the net reaction A + B — products, Ny — N} reaction events are performed. As
in §7.2.1, time-averaged numbers of particles Ny and Ny should be used rather than the
instantaneous numbers Nx and Ng. kT is calculated using an appropriate macroscopic
rate equation with local time-averaged kinetic temperatures. For the net reaction A + B
— products, the mean number of reaction events that must be performed in a DSMC cell

during a time step At, denoted (Nj)a s, is

kT NANgW At n
NV,

(Ng)at+n = R. (7.4)

Here R is either a random fraction R = Ry or the fractional remainder from a previous time
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step. Note that Eq. 7.4 applies when A # B and A = B. Methods used to select reacting

particles and distribute energy after reaction events may differ for each net reaction.

7.4 Particle selection method suggested by Bartel [7]

Bartel [7] suggested that decoupled chemistry methods could use procedures analogous to
the NTC method of Bird [20] to select reacting particles. Details of this method were not
actually provided by Bartel. Here, a possible version of this selection method is proposed
for the bimolecular reaction A+B — products. The requirement is to obtain an expression
for the number of A + B pairs that must be tested for reaction, based on the macroscopic

reaction rate k.

Here it is assumed that the selection probability P, for reaction has the form
P, =Af, (7.5)

where A is a constant and f is some function of the energy modes of the participating
particles. Here f could have the form of PE from one of the conventional collision-
based DSMC chemistry models considered in Chapter 6. This allows a biased selection
probability, which may be of use when modelling DV coupling.

For the case where A # B, the total number of possible reacting pairs that are available
for testing, from a total of N particles of species A and Np particles of species B is N Np.
If all of these possible pairs are tested, then the fraction of pairs that react is the mean

reaction probability, given by

(py = Wnlasn
NANg
From Eq. 7.5, (Ps) = A(f), so
(Nf)awB N _ (Nj)a+B
TR =AY and A= GEEL (7.6)

Rather than test all possible pairs, a fraction 8 < 1 will be tested, and the constant A

increased to A’ = A/f so that the mean number of reactions actually performed remains
A#£B
N

pairs = BNaNg and an adjusted reaction

unchanged. The number of pairs tested is then
probability

P =(A/p)f=Af

is used to select reacting pairs. Optimum computational efficiency is achieved when the

maximum probability (P!) . =1 = A'fyax. This provides 8 = A fmax, S0

max

NTe = BNANG = AfmaxNaNp (7.7)

pairs

possible A 4+ B pairs should be tested for reaction. The reaction selection probability is
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then
Psl = f/fmax-

This shows that the value of A is not actually required in the DSMC calculation, so the

value of fiax corresponding to (P! = 1 is not calculated. The value of frnax used to

S)ma,x

calculate P! is simply the maximum value of f encountered during the simulation. By

substituting Egs. 7.6 and 7.4 into Eq. 7.7,

it = () (0 ) (). o

For the case where A = B, the number of possible reaction pairs is Na (N A — 1) /2.
Following the arguments used above, the number of possible pairs to be tested for reaction
is given by

NA=B _ AfmaxNA (NA — 1) /2.

pairs

In this case

(Ng)atn 2
(f)  Na(Na-—-1)

These equations give

= max EtTNZ2WA o
it = i (B5) = (S 1) ().

which is identical to Eq. 7.8 with Ny = Ng.

In this method, fmax must be stored for each reaction in each cell. (f) should be
recalculated at each time step, using a cumulative total f, denoted >’ f, and the number
of samples in Y f. Y f and the number of samples accumulated must also be stored for
each reaction in each cell. During the approach to steady state, (f) will vary, and the

total f should be periodically set to zero and the sampling of f restarted.



CHAPTER 8

Simulation results

8.1 Introduction and summary

This chapter presents the results of DSMC chemistry calculations performed to test the
macroscopic chemistry method. The emphasis has been placed on comparing the results
obtained with the macroscopic method to those obtained with conventional collision-based
DSMC chemistry models, rather than code validation. This approach was adopted through
necessity, because of the very limited amount of experimental data available for validat-
ing DSMC chemistry models, as discussed in §6.9. In this respect, this study uses the
same approach as most published DSMC chemistry studies. Zero-dimensional chemical
relaxation, a strong one-dimensional shock and axisymmetric flows over a blunt circular
cylinder have been used as test cases. For the shock case, the experimental density mea-
surements of Kewley and Hornung [91] have been used to test the macroscopic method.
The zero-dimensional and axisymmetric cases have not been investigated experimentally.
They have been considered here because they exhibit low phenomena of specific interest
in this study, as noted in §8.3 and §8.5. All simulations were performed using C codes writ-
ten specifically for this study. Consequently, some emphasis has been placed on providing

details of the DSMC procedures used in the simulations.

In this chapter, the notation kKrr (Txin) refers to dissociation rates of the Arrhenius
form from Eq. 5.6, calculated using the overall kinetic temperature Ti;,- The notation
k;’T (Tir+rot, Tvib, s) refers to dissociation rates calculated using the two-temperature rate
model of Park [137] from Eq. 5.9.

DSMC calculations have been performed using the macroscopic method with dissoci-
ation rates of the form kzrr (Tkin) and k2+T (Tir4rot, Tvib, ). Calculations have also been
performed with the equilibrium constants K* = K*(T) and K* = K{(T,n). The use
of these forms of k™ and K* demonstrate the flexibility of the macroscopic method. In
principle, the macroscopic method can use any forms of ¥ and K*, and these may be
any empirical or theoretical function of the macroscopic flow conditions. It is shown that
the macroscopic method provides results in reasonable agreement with those provided by

conventional DSMC chemistry models.
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8.2 Gas model used in simulations

All simulation results reported in this chapter used the same dissociating nitrogen model.
The high temperature viscosity parameters for collisions involving No and N molecules,
and the resulting VHS parameters are given in Table B.1. The unbounded harmonic
oscillator vibration model with ©.;, = 3390 K was used. The equilibrium constants and
dissociation rates are provided in §B.2 and §B.3.

For simplicity, constant rotational and vibrational energy exchange probabilities were
used in BL energy exchange procedures. The particle selection logic of Gimelshein et al.
[65], which prohibits multiple relaxation events, was employed. The rotational energy
exchange probability was ¢rot = 0.3. From Eq. 4.32, this gives Z,o; =~ 4.50 for Ny 4+ No
collisions and Zyo; = 4.53 for Ny + N collisions. Both values are slightly lower than Z;o; = 5
often used for Ny relaxation. The vibrational exchange probability was ¢.;p, = 0.01. Fig.
8.9 in §8.4.4 shows the Z,4}, profile through a strong shock resulting from this constant ¢y,
This profile differs from the expected behaviour as discussed in §2.8 where Z;, usually
decreases with increasing temperature. It is recognised that these constant exchange
probabilities do not produce the relaxation behaviour expected of a real gas. However,
considering the comparative nature of this study, this departure from real gas behaviour

is unimportant.

8.3 Zero-dimensional chemical relaxation

The first test case considered the constant volume relaxation of pure atomic nitrogen at

relatively high density and low initial temperature. The following solutions were examined:

1. Conventional DSMC chemistry procedures, using the conventional TCER recombi-
nation model. The TCE model was used for dissociation reactions that occur as the

relaxation calculation approaches equilibrium.

2. Macroscopic method with k™ = ki (Tiyn) and K* = K}(T) from Eq. B.2. The

diatom selection probability was Ps = €ing/ (€int) as discussed in §7.2.2.

max

3. Macroscopic method with k* = k{ (Tkn) and K* = K (T, n) from Eq. B.3. The

diatom selection probability was Ps = €int/ (€int) as discussed in §7.2.2.

max

4. Runge-Kutta solution with K* = K}(T') from Eq. B.2.
5. Runge-Kutta solution with K* = K§(T,n) from Eq. B.3.

This test case permits comparison between the solutions provided by the conventional
TCER and TCE models and the macroscopic method. From Eq. 5.12, it is apparent that
the equilibrium constant K* effectively controls the recombination behaviour, so this case

can be used to test the effects of different forms of K* with the macroscopic method. The
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Runge-Kutta calculations were performed to provide an exact solution of the relaxation
behaviour for comparison with the three DSMC solutions.

The initial conditions are shown in Table 8.1. These conditions result in rapid re-
combination rates. Similar conditions may exist near the stagnation region of hypersonic
flow over a blunt body with a cold wall. The nitrogen dissociation rates of Kewley and
Hornung [91] were used in all solutions. The final equilibrium conditions depend on the
form of K*. These equilibrium conditions were obtained numerically using an iterative
method to find the root of Eq. 5.19, and are included in Table 8.1.

Table 8.1: Initial conditions and calculated equilibrium conditions for constant volume chemical
relaxation of atomic nitrogen at density p = 0.2 kg/m3.

Initial Calculated equilibrium conditions
conditions Using K from Eq. B.2 | Using K¢, from Eq. B.3
ap =1 o = 0.778 a* =0.768
Tp = 1000 K T =9164 K T = 9520 K

no = 8.60 x 10%*/m? n* = 7.64 x 10%* /m? n* = 7.60 x 10?4 /m3
(Tvas)g = 2352 x 10710 s | s = 1553 x 1070 s | g = 1.546 x 10710 s

8.3.1 DSMUC solutions

Initially, the DSMC simulation contained 10° atomic simulator particles. This number

decreased as recombination occurred. The initial time step (At), was

1
(TVHS)O 11 (T.\?7" —11
At), = oI — 5.882 x 1
(At)o 4 AnE\T 5.882 x 107 s,

where (Tyus)o = 1/vyns comes from Eq. 4.18. The collision rate changes during the
calculation, so the time step was adjusted for subsequent time steps so that At ~ Tyyg/4
throughout the entire simulation. This was achieved by counting the number of collisions
actually performed by the DSMC calculation, denoted NPSMC and then adjusting At to

colls

At at the end of every time step according to

At’ ( requlred/ DSMC)

colls colls

required .
Ncolls

Using Neois = NvAt/2 from Eq. 2.38, the required number of collisions is

required __ E At

colls 9 TVHS -

Using At = 1yus/4,
At = N/( DSMC)At.

colls

The Ti;, and « relaxation histories obtained from the DSMC calculations are shown in
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Fig. 8.1. These histories show that the solution obtained with the conventional TCER and
TCE models does not attain the calculated equilibrium conditions shown in Table 8.1. This
can be attributed to the fact that the DSMC implementation of the conventional TCER
and TCE models does not actually realise the Arrhenius rates, as these models intend. The
reasons for this are discussed in §6.5.1 and §6.3.1 respectively. The macroscopic method

attains the calculated equilibrium conditions. The relaxation histories in Fig. 8.1 show

that different forms of K* result in markedly different relaxation behaviour.

10000 T T T A
9000 F TCER and TCE models pe —
< 8000 | MCM, Kj
< 7000 F MM, K
&E 6000 | " .
— 5000 | Runge-Kutta, Ki i
5 4000 - Runge-Kutta, K -
& 3000 E
2000 i
1000 10 9 8 : 7 : 6
107 10 10~ 107 10
1(s)
1.00 T T
0.95 E
0.90 F TCER anf TCE models
3 MCM, K,
0.85 F MCM, KE
0.80 F Runge-Kutta, K:
- Runge-Kutta, KE N
0.75 ] L L L L
1071 107 1078 107 1076
t(s)

Figure 8.1: Relaxation histories of temperature 7" and dissociation fraction « for zero-dimensional
relaxation calculations. The relaxation histories obtained with the conventional TCER and TCE
models do not reach the calculated equilibrium conditions shown in Table 8.1, whereas those
obtained with the Runge-Kutta method and the macroscopic method do reach the calculated
equilibrium conditions.

During the DSMC calculations using the conventional TCER and TCE models, the
number of reactions with Pr > 1 was recorded. For the TCER model, 4.97% of recom-
bination events for the reaction No + N <~ N + N + N had P, > 1. For the reaction
N3 + N3 <~ N + N + Ny, 4.93% of recombination events had P, > 1. In these simulations,

the TCE model did not give any dissociation reactions with (PE ) > 1.

TCE

8.3.2 Runge-Kutta solutions

By assuming thermal equilibrium conditions, relaxation histories of T" and a were obtained
by applying a fourth-order Runge-Kutta method, as given by Kreyszig [99]. In this Runge-
Kutta method, the dissociation fraction at the end of the Runge-Kutta time step (At)grxk,

denoted o, was estimated by firstly evaluating four intermediate values of the dissociation
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fraction. These intermediate values, denoted «;, were evaluated using

At)rk @fa,T,p],
[
[
[

t)RK OéOt—l—Otg, C¥+C¥3, )’p]

a; =
a+a1/2,T(a+a1/2,e),p],

az = a+a/2,T(a+az/2,¢e),p] and

>

(At)

ay = (At)rx @
(At)

ay = (Al)

Evaluating the intermediate dissociation fractions as, ag and ay4 required the thermody-
namic temperature at dissociation fractions of a + a1/2, @ + a2/2 and o + a3. These
intermediate temperatures T(a + a1/2,¢e), T(a + az/2,e) and T (o + a3, e) were obtained
by numerical solution of Eq. 5.19. The specific internal energy e was given by Eq. 5.18.
The Runge-Kutta time step was

1 |ap— o

At)rk = ~
(Abri = 7 Nyteps — 500

where Ngieps = 5000 was the number of time steps used for the Runge-Kutta solution.

The dissociation fraction at the end of the time step o' was calculated from
o =a+ (o) +2as + 203 + ay) /6.

To avoid numerical instabilities, a constant (At)rx was used when « was within 0.1% of
the equilibrium value o*.

The Runge-Kutta solutions for 7" and « relaxation are shown in Fig. 8.1. The relax-
ation histories obtained using the macroscopic method with both K} and K are in good
agreement with those provided by the exact Runge-Kutta solution. This shows that the
macroscopic method can include a number density dependent form of K*. The results ob-
tained using the conventional TCER and T'CE models deviate from the exact Runge-Kutta

relaxation behaviour.

8.4 Strong shock in dissociating nitrogen

This section describes one-dimensional DSMC calculations of the chemical relaxation re-
gion downstream of a strong shock in nitrogen. These calculations were performed to
compare solutions provided by conventional DSMC chemistry models and the macro-
scopic method. These solutions are also compared to the experimental density measure-
ments of Kewley and Hornung [91]. The macroscopic method with k% = kX (Tkin),
kT = k;’T (Tir+rot> Tviv, 8), K* = K}(T) and K* = K{(T,n) has been examined. The

following five shock calculations were performed:

1. Conventional DSMC chemistry procedures, using the TCE model for dissociation

reactions and the TCER recombination model. The parameters Srcg, X2, nr and K
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were obtained from the nitrogen dissociation rates of Kewley and Hornung [91] and
K* = K}(T) from Eq. B.2.

2. Macroscopic method with k+ = k’err (Txin), the nitrogen dissociation rates of Kewley
and Hornung [91] and K* = K}(T') from Eq. B.2. Dissociating diatoms were selected

according to method A where Py = €int/ (€int) pax-

3. Macroscopic method with &+ = err (Txin), the nitrogen dissociation rates of Park
[138] and K* = K}(T) from Eq. B.2. Dissociating diatoms were selected according
to method A where Ps = €int/ (€int ) max-

4. Macroscopic method with k™ = ki (Tirtrot, Tuibs 0.5) and k™ = ki (Tirtrots Tvib, 0.7)
to capture DV coupling. The nitrogen dissociation rates of Park [138] and K* =
K}(T) from Eq. B.2 were used. Dissociating diatoms were selected according to
method B where P; = (% + q) /33. A shock calculation was also performed using
the rates of Park with k™ = kX (Tkin)-

5. Macroscopic method with k* = kj{rr (Txin), the nitrogen dissociation rates of Kewley
and Hornung [91] and K* = K{(T,n) from Eq. B.3. Dissociating diatoms were

selected according to method A where P; = €int/ (€int) pax-

8.4.1 Shock conditions

The highest enthalpy flow conditions in the experiments of Kewley and Hornung [91], as
reported by Bird [15], have been simulated. The upstream conditions are shown in Table
8.2. The upstream viscosity u1, used to calculate the upstream nominal mean free path
A1 = 2u1/(p1¢1), is that recommended by Cole and Wakeham [51].

The equilibrium downstream conditions were obtained with an adaption of the method
used by Macrossan [120]. In one dimension, the mass, momentum and energy conservation

equations for a symmetrical diatomic gas are
X; =pu, Xo=pu’p(1+a)RT and X3=u?/2+h (8.1)

respectively, where X 23 denotes the conserved quantities. For a symmetrical diatomic
dissociating gas in thermal equilibrium with the unbounded harmonic oscillator vibration

model, the specific enthalpy is given by Eq. 5.20. For a particular « value, the equation

X9 — X4 [2(X3 — h,) + (1 - Oé)RT]

20X — W12 =0

was solved numerically to obtain T. This gives h and allows evaluation of u using the
last of Egs. 8.1. Next, & = &(a, T, p) was evaluated according to Eq. 5.15, with suitable
expressions for the dissociation rates kf, k; and K*. If & > 0 then a was increased,

otherwise o was decreased. The procedure was terminated when successive a values
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Table 8.2: Flow conditions of Kewley and Hornung [91], as reported by Bird [15], and calculated
downstream conditions. Here A; = 2u1/(p1¢1) is the nominal upstream mean free path from Eq.
2.39, and Aypgs is the VHS mean free path from Eq. 4.21.

Upstream conditions Equilibrium downstream conditions
Using K from Eq. B.2 | Using K, from Eq. B.3

u; = 7.31 km/s p*/p1 = 14.72 p*/p1 = 14.43

My, = 20.71 T Ty = 25.62 T /Ty = 26.23

p1 = 7.48 x 1073 kg/m3 o* = 0.486 ot = 0.479

Th =300 K n*/ny = 21.88 n*/ny = 21.34

a; =0 Az /Xypg = 0.327 Az /Xy = 0.318

ni = 1.608 x 10% /m? At/ T5yg = 0.332 At/ T5yg = 0.326

p1 = 17.90 pPa-s

¢ = 476.1 m/s

A1 = 10.052 pm

(Avas); = 7.029 pm Rankine-Hugoniot conditions downstream of a

Az/ (Avus); = 0.0475 vibrationally and chemically frozen shock
At/ (tvus); = 0.00741 p2/p1 =5.93, Ty/T) =84.34

differed by less than 1078, The resulting equilibrium downstream conditions are included
in Table 8.2, for both K* = K (T') and K* = K (T, n) from Egs. B.2 and B.3 respectively.
These equilibrium conditions differ slightly from those of Bird [15].

Kewley and Hornung [91] measured densities downstream of this shock with a Mach-
Zehnder interferometer. These densities have been obtained from the figures presented by
Bird [15], and are contained in Table 8.3. Lilley and Macrossan [110] estimated the errors
associated with these experimental values. The approximate errors in p/p; and z/\; are
+0.63 and +£8 respectively.

Table 8.3: Experimental density measurements of Kewley and Hornung [91], obtained from data
plotted by Bird [15]. The z co-ordinate has been normalised using the upstream nominal mean
free path A\; = 10.052 pm from Table 8.2.

z (mm) 0 0158 0.373 0.473 0.855 1.141
/M 0 15,7 371 471 851 113.5
p/p1 729 926 11.92 1255 13.49 14.85

8.4.2 Shock simulation details

The shock simulation domain extended a distance of 380 ()\VHS)1 ~ 265.7)\1 from —41)\;
to 225)\;. It contained 8000 equally sized cells, each with 6 subcells. As will be shown in
§8.4.3, downstream equilibrium conditions were not quite achieved in some calculations.

However, for computational efficiency, the simulation was not extended. The DSMC
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time step was At = (tyms); /135 &~ 1.094 x 1071 5. The ratios Az/ (Avns);, AZ/Ans,
At/ (Tvus); and At/T{yg included in Table 8.2 show that both Az and At were sufficiently
small for DSMC calculations.

At the start of the simulation, the domain was split into upstream and downstream
regions with lengths z; and z* respectively. Using target of 1.176 x 10% simulator particles,
these distances were used to calculate the weighting factor W = (z1n1 + z*n*)/1.176 x
108, which was the same for all cells. The initial upstream cells were then filled with
particles at the upstream conditions, and initial downstream cells were filled with particles
at the calculated equilibrium downstream conditions. During the simulation, the shock
stabilisation routine [21] was invoked when the total number of particles differed by more
than 12 x 10® from the initial number of 1.176 x 10%. Steady state was assumed to have
been reached after a time 5 (z1/u1 + z*/u*), which required 185,634 time steps.

The velocities of particles entering the simulation domain across the upstream bound-
ary were generated using the method of Lilley and Macrossan [109]. The downstream
piston [21] was used for the downstream boundary.

The sampling interval was 7At. For the upstream flow, the ratio 7Tu; At/Az ~ 16.8,
which means that the upstream flow travelled more than the requisite one cell width
between samples. For the downstream flow, 7u*At/Az =~ 1.14. During the approach to
steady state, five flowfield samples were used to calculate the required time-averaged flow
conditions in each cell. Therefore the conditions were recalculated only once in every 35
time steps, which is a minimal computational overhead. After the time-averaged conditions
were recalculated, the sampling arrays were cleared. When steady state had been achieved,
time-averaged conditions were still recalculated once every five sample periods, but the
sampling arrays were not cleared. The simulations were run until 5000 flowfield samples
were obtained, which required a total of 220,628 time steps. As shall be shown in Fig. 8.8,
the mean numbers of particles in the upstream and downstream flows were about 9 and 195
respectively. Therefore the upstream and downstream sample sizes were approximately
45 x 10% and 975 x 103 respectively. The shock stabilisation routine [21] was invoked before

each sample was recorded.

8.4.3 Shock simulation results

Downstream density profiles obtained using the TCE and TCER models and the macro-
scopic method are shown in Fig. 8.2. The origin of the z-axis has been set to the point
where p/p1 = 5.93, which is the frozen Rankine-Hugoniot density ratio given in Table 8.2.
The z co-ordinate was normalised using the nominal upstream mean free path A; = 10.052
pm from Table 8.2. The experimental density measurements obtained by Kewley and
Hornung [91] are included in Fig. 8.2, with the error estimates of Lilley and Macrossan
[110]. Both DSMC solutions give reasonable agreement with the experimental results.

Also, there is good agreement between the results of the TCE and TCER models and the
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macroscopic method. It could be argued that this agreement was expected, because the
flow was close to thermal equilibrium in the chemical relaxation region downstream of the
shock, and that this case is not a rigorous test of the macroscopic method. A comparison
of the solutions within the shock, were highly non-equilibrium conditions exist, is a more

rigorous test.
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Figure 8.2: Profiles of density ratio p/p; downstream of strong shock in nitrogen, calculated
using the TCE and TCER models and the macroscopic method. The nitrogen dissociation rates of
Kewley and Hornung [91] were used, as given in Table B.3. The experimental density measurements
of Kewley and Hornung, as reported by Bird [15], are included with approximate error bars [110].

Normalised profiles of p, the various kinetic temperature and o within the shock are

given in Fig. 8.3. The normalised density p is defined by

p=(p—p1) /(" = p1),

and likewise for the kinetic temperatures and a. The origin of the z-axis was set as in Fig.
8.2. At the origin, p = 0.359. The profiles show that non-equilibrium conditions prevail
within the shock. Despite the non-equilibrium conditions, there is still good agreement
between the profiles provided by the TCE and TCER models and the macroscopic method.

For the same shock conditions, Lilley and Macrossan [110] used larger cells Az /g =
0.654 and a longer time step At/7yg & 0.6. Despite the fact that these are larger than
recommended for DSMC calculations, the detailed shock structure reported by Lilley and
Macrossan is essentially identical to that shown in Fig. 8.3.

For the shock calculated with the TCE and TCER models, profiles of p, & and Tiin
near the downstream limit of the simulation domain are shown in Fig. 8.4. For clar-
ity, a 51-point moving filter was applied to smooth the profiles, with a reduced number of
points near the downstream boundary. Despite the scatter, it is apparent that the solution

obtained using the TCE and TCER models gives profiles that overshoot the calculated
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Figure 8.3: Profiles of normalised quantities p, Ttr, Tmt, Tvib, Tiin and & within a strong shock in
nitrogen, calculated using the TCE and TCER models and the macroscopic method. The nitrogen
dissociation rates of Kewley and Hornung [91] were used, as given in Table B.3.

downstream equilibrium conditions at z/A; &~ 212. This contrasts with the expected
behaviour where the profiles should approach the calculated equilibrium downstream con-
ditions asymptotically. This failure to achieve the expected downstream conditions is a
consequence of the difference between the Arrhenius rates and the actual rates realised
by the DSMC implementation of the TCE and TCER models, as discussed in §6.3.1 and
§6.5.1. The downstream profiles calculated with the macroscopic method are also shown in
Fig. 8.4, and show that the expected behaviour where the profiles approach the calculated
equilibrium downstream conditions asymptotically.

During the shock solution with the TCE and TCER models, the number of reactions
with Pr > 1 was recorded. For dissociation reactions 1 and 2 calculated with the TCE
model, the respective percentages of events with (PE)TCE > 1 were 0.041% and 0.012%.
For the recombination reactions calculated with the TCER model, the respective percent-
ages of events with Py > 1 were 3.01% and 4.91%.

The « profiles calculated using the two-temperature model kt = k;’T (Tir+trots Tyvibs S)
and the rates of Park [138] are shown in Fig. 8.5. The profile calculated using k* =
err (Txin) is also shown. These profiles show that the two-temperature model can capture
the delay in dissociation expected from DV coupling, as compared to the single temper-
ature rate with k™ = k{__ (Tin). For these calculations, the downstream profiles of p/p1
are shown in Fig. 8.6. It appears that the two-temperature rate with s = 0.5 gives better
agreement with the experimental measurements of Kewley and Hornung [91] than s = 0.7.
Note that the profiles in Fig. 8.6 differ slightly from those of Lilley and Macrossan [110],
due to the use of method B to select dissociation diatoms instead of method A.

Fig. 8.2 shows that DSMC solutions obtained using the rates of Kewley and Hornung
[91], without any consideration of DV coupling, give reasonable agreement with the ex-

perimental results. This suggests that these rates implicitly include the effects of DV
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Figure 8.4: Profiles of normalised conditions p, Tkin and & downstream of a strong shock in ni-
trogen. Some smoothing has been applied for clarity, as detailed in §8.4.3. The solution obtained
with the macroscopic method displays the expected behaviour in which the profiles approach the
calculated equilibrium conditions asymptotically. The profiles obtained with the TCE and TCER
models do not achieve the equilibrium downstream conditions, because they overshoot the calcu-
lated equilibrium state at x/A; &~ 212, rather than approach the equilibrium state asymptotically.
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Figure 8.5: Profiles of a downstream of strong shock in nitrogen, calculated using the macroscopic
method with the two-temperature model [137]. The nitrogen dissociation rates of Park [138] were
used, as given in Table B.3.

coupling downstream of the shock, and therefore apply only where there is a high degree
of vibrational non-equilibrium [32]. For conditions near thermal equilibrium, Boyd [32]
recommends the rates of Byron [44].

As shown in Fig. B.7, the difference between K} (T) and K§(T,n) is largest at high
temperatures and low densities, which are the conditions of interest in hypersonic rarefied
flows. Because K* effectively controls the recombination rate, and because the recombi-
nation rate is low within the shock, the use of K¢, rather than K should have a minimal

effect on the internal shock structure. The profiles from the calculations using the macro-
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Figure 8.6: Profiles of density ratio p/p1 downstream of strong shock in nitrogen, calculated using
the macroscopic method. The nitrogen dissociation rates of Park [138] were used, as given in Table
B.3. The experimental density measurements of Kewley and Hornung [91], as reported by Bird
[15], are included with approximate error bars [110].

scopic method with K and K¢, are shown in Fig. 8.7. In this representation, Tiin and &
are plotted versus p to emphasise differences between the profiles within the shock, where
the density gradient is high. The results in Fig. 8.7 were normalised using the downstream
conditions calculated with K. These results confirm that under conditions that are pri-
marily dissociative, such as those within a strong shock, the number density dependence

of K* has little effect on the macroscopic flowfield.

Normalised quantity

Figure 8.7: Comparison of Ticin and & within shock, calculated using the macroscopic method
with both K}(T) and K¢ (T,n). Twin and & are plotted versus p to emphasise differences where
the density gradient is high.

The mean number of particles per cell N during steady state sampling is shown in Fig.
8.8 for the solution obtained using the TCE and TCER models. In the upstream flow,
N =~ 9. This is lower than the minimum 10 < N < 20 recommended by Bird [21]. N
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increases rapidly through the shock, so it can be argued that the relatively small N ~ 9

in the upstream flow will not cause significant errors.

200 F T T T T T 7]

Total particles

150

N particles
100

50 N, particles

Mean number of particles per cell

0 50 100 150 200

Figure 8.8: Mean number of particles per cell for shock simulations performed with the TCE and
TCER models.

8.4.4 Vibrational relaxation number in shock

As noted in §8.2, using a constant ¢y, = 0.01 in the BL vibrational energy exchange
procedure results in unrealistic temperature dependent vibrational relaxation behaviour.
This is due to the temperature dependence of (y;,. Using the kinetic temperatures through
the shock, as computed with the TCE and TCER models, the vibrational relaxation
numbers Z,;, have been calculated for Ny + Ny and Ny + N collisions. Gimelshein et
al. [65] give a method for finding Zy;p, as given by Egs. 4.33 and 4.34. The profiles of
Zyib, presented in Fig. 8.9, show an increase in Zy41, through the shock as the temperature
increases. This is opposite to the expected behaviour discussed in §2.8 where Z;, generally
decreases with temperature. Although this effect is physically unrealistic, it does not
detract from the testing of the macroscopic chemistry method. The small difference in the

two curves shown in Fig. 8.9 is due to the different (4 values for each collision.

8.5 Blunt cylinder in rarefied dissociating nitrogen

This section examines the flow of hypersonic rarefied dissociating nitrogen over an axisym-
metric blunt cylinder. The main purpose of the simulations was to test the performance of
the macroscopic method against the conventional collision-based DSMC chemistry models
under thermal non-equilibrium conditions. §8.5.1 gives the flow conditions, and details of
the DSMC code are discussed in §8.5.2. The following blunt cylinder calculations were

performed:

e Flow without chemistry
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Figure 8.9: Profile of Z;, through strong shock in dissociating nitrogen resulting from a constant
¢vib = 0.01. The shock was calculated using the TCE and TCER models. Only —20 < z/\; < 20
is shown, where steep flow gradients exist.

e Conventional TCE model for dissociation reactions. The TCE parameters Srcr and
X2 were obtained from the nitrogen dissociation rates of Kewley and Hornung [91].
Initially, a simulation was performed using the TCE model with the TCER model
for recombination reactions. The TCER parameters x and n, were calculated using
K}(T) from Eq. B.2. This initial simulation showed that recombination events were
extremely rare in this case. For computational efficiency, recombination events were
therefore ignored in subsequent blunt cylinder simulations. This flow was considered
by Lilley and Macrossan [110, 106].

e Macroscopic method with kt = k;’{rr (Txin) and the nitrogen dissociation rates of
Kewley and Hornung [91]. When recombination events are ignored K* — o0, so
Eq. 5.16 was used to calculate &. Dissociating particles were selected according
to method A where P; = €int/ (€int)
Macrossan [110, 106].

This flow was considered by Lilley and

max*

e Macroscopic method with ¥+ = k;’T (Tir4rots Tvib, 8) using s = 0.5 and 0.7 and the
nitrogen dissociation rates of Kewley and Hornung [91]. Again, recombination events
were ignored by using Eq. 5.16 to calculate ¢&. These calculations were performed
to demonstrate that the macroscopic method can capture the expected effects of
DV coupling, which include increased surface heat fluxes and reduced dissociation
rates. Both method A with P; = €n¢/ (€int);y, and method B with P, = (% + q) /33
were used to select dissociating diatoms. This flow was also considered by Lilley and
Macrossan [106].

e Conventional VFD model, as presented in §6.4.1. The VFD parameters Syrp and 1)

were obtained from the nitrogen dissociation rates of Kewley and Hornung [91]. ¢
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values of 0, 0.1, 0.5, 1, 2, 3 and 4 were used to test the extent to which ¢ can control
DV coupling. Recombination reactions were also ignored in these calculations. Cal-
culations were performed using both €y, = ¢kOy;p,, as proposed in the original VFD
model [73, 74] and €y, = (% + q) kOyip. As will be shown in §6.4.1, the latter form
avoids the low reaction rates obtain when using the VFD model with a quantised

vibration model in vibrationally cold flows.

e Conventional TLD model, as presented in §6.4.2. Following Boyd [37], (ATLp), = 14
and (ATLD)2 = 5 were used for reactions 1 and 2 respectively. Recombination

reactions were ignored. This case was also considered by Lilley and Macrossan [106].

e Macroscopic method using the fitted TLD rates for nitrogen, as calculated in §C.7.

For reactions 1 and 2 in nitrogen, the curve fits

ki

ks

2.0 x 10'%(7/122000) ! exp(—122000/7) m?/kmol/s and
9.5 x 10'1(7/120500) 1 exp(—120500/T) m?/kmol/s

Q

Q

accurately approximate the calculated rates. To capture the effects of DV coupling,
the two-temperature model kT = k;’T (Ttr+rot, Tvib, 8) was used. Here s = 0.9 was
used, which was found by running test simulations with various s values. Both
method A with Py = €int/ (€int) mayx @0d method B with Py = (% + q) /33 were used
to select dissociating diatoms. This case was examined to demonstrate that the
macroscopic method can capture the TLD flowfield with reasonable accuracy. This

case was also considered by Lilley and Macrossan [106].

Results for these simulations are presented and discussed in §8.5.3 to §8.5.9.

The general flowfield features observed in the flow over a blunt cylinder will be similar
to those for other blunt entry bodies. For hypersonic flows over blunt cylinders where
Kn > 0.01, the shock wave merges with the thick viscous boundary layer [79], and a
monotonic density increase is observed along the stagnation streamline up to the face [81]
such that no discrete shock exists. Such flows have a significant region of thermal non-
equilibrium and a thick shock layer with an extensive stagnation region. The density at
the cylinder face is orders of magnitude higher than p.,, particularly if the body has a cold
wall. The high densities result in a high collision rate such that local thermal equilibrium
conditions prevail near the body. According to Bird [21], a cold wall decreases the shock
stand-off distance relative to that for an adiabatic wall. Experimental and computational
studies of hypersonic rarefied flow over a blunt cylinder have been reported by Metcalf et
al. [132], Pullin et al. [142], Macrossan [119], Davis et al. [53], Harvey [79], Dominy [55],
Harvey et al. [80], Gilmore and Harvey [64], Marriott [127] and Bird [21].
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8.5.1 Freestream conditions, surface properties and rarefaction param-

eters

To test the various DSMC chemistry models, a rarefied reacting flowfield is required.
High altitude atmospheric entry at superorbital speeds produces such flowfields. Higher
density freestream conditions usually result in extensive flowfield chemistry, but require
long computation times when using the DSMC method. Lower densities give less chemistry
but can be computed quickly. The requirement is to select freestream conditions that result
in flowfields with a significant degree of dissociation that can still be computed within a
convenient time using the DSMC method.

To characterise the extent of dissociation in the blunt cylinder flow, it is useful to

examine an approximate Damkohler number Da for the flow, defined by

Da = tﬂow/ tchem-

Here,

taow = Tc/u2 and  tchem = 1/

were used to obtain Da, where uy is the flow speed downstream of a normal shock. For
frozen chemistry Da = 0, and for equilibrium chemistry Da — oo. A cylinder radius
r. = 0.5 metres was used.

Here, & was calculated with the temperature downstream of a vibrationally and chem-
ically frozen normal shock, with the nitrogen dissociation rates of Kewley and Hornung
[91] and K* = K}(T') from Eq. B.2. This approximate Damkohler number is related to
the reaction rate parameter R, of Macrossan et al. [124] by Da = 1/ (2R;). Atmospheric
conditions at altitudes of 90 km, 95 km and 100 km, with us = 10 km/s, were used for

Poo and Ty, as shown in Table 8.4.

Table 8.4: Temperatures, densities and approximate Damkdhler numbers at various altitudes.
The calculations used the nitrogen dissociation rates of Kewley and Hornung [91] and K* = K*(T')
from Eq. B.2. The cylinder radius r, = 0.5 metres.

Altitude Source Poo Teo Da
(km) (kg/m?) (K)
90 Gerhart et al. [63] 3.17x10°% 180.7 0.186
95 Mean of values at 90 km and 100 km 1.835 x 1076 195.35 0.108
100 Seinfeld and Pandis [144] 4.99 x 1077 210 0.029

The approximate Damkéhler numbers shown in Table 8.4 indicate that significant non-
equilibrium chemistry will occur at altitudes of 90 km and 95 km. At 100 km, chemistry
will be practically frozen. The freestream conditions at 95 km altitude were selected for the
blunt cylinder calculations, because this case requires less computation time than the 90

km case. These freestream conditions are the same as those used by Lilley and Macrossan
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[110, 106]. The stagnation enthalpy is hg = heo + u2,/2 ~ 50.2 MJ /kg. The ratio of hg to
the specific dissociation energy Rn,©, is about 1.5, which shows that the flow energy is

sufficient for significant dissociation.

Table 8.5: Freestream conditions for blunt cylinder calculations. The subscript 2 refers to
Rankine-Hugoniot conditions behind a vibrationally and chemically frozen shock at M., = 35.1.
Here pioo = ir(Too /T)Y/?17 is the freestream viscosity for VHS molecules calculated with T, p,
and v for Ny from Table B.1.

Poo = 1.835x 1076 kg/m? oo = 11.16 pPa-s
Tow = 1954K (AVHS)oe = 2563 x1072m
U = 10km/s Kn,, = 0.026

Qo = 0 By = 091

Poo = 0.106 Pa Ch = 0.66

My, = 3510 Ty/Ts = 240.5

Neo = 3.944 x 10'% /m3 p2/Pso = 5.98

A hot wall at T,y = 1000 K was used. This gave densities in the stagnation region
that were lower than those resulting from a cold wall at Ty, ~ 300 K. This avoided the
long computation times required when performing DSMC calculations for high density
flows. Fully diffuse reflection was assumed.

For this flow, the rarefaction parameters Kny,, By, and Ch, as introduced in Chapter
3, are shown in Table 8.5. Here Kn,, and B, were calculated with Egs. 3.1 and 3.6
respectively, with the mean free path for VHS molecules (Avms),, from Eq. 4.21. The
length scale was the cylinder diameter 2r. = 1 metre. Cheng’s parameter Ch was calculated
with Eq. 3.7. In calculating Ch, it was assumed that 7% = (Tywan + 72)/2, where T* is the
temperature characteristic of the shock layer. The viscosity at this temperature p*(7*)
was evaluated with a power law viscosity relation which applies for VHS molecules. The
parameters T,., pu, and v for No from Table B.1 were used to calculate p*. From the
classification schemes discussed in §3.5, Kny,, By and Ch all show that the flow was
rarefied and that significant departures from equilibrium conditions are expected. The
freestream Reynolds number Reo, = poctioo (27¢) /pioc = 1644, which is in the laminar

regime.

8.5.2 Blunt cylinder simulation details

The simulation geometry is shown in Fig. 8.10. The simulation domain contained of two
rectangular regions and two radial regions. The grid details are summarised below. The

simulation contained 60,601 cells in total.

e Region 1 was a rectangular region that contained 180200 cells in the z xr directions.
Cells were spaced equally in the r direction. A geometric progression in cell sizes

was used in the z direction, with smaller cell sizes near the cylinder. The ratio of
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adjacent Az values was 1.0152.

e Region 2 was a radial region that contained 180x 90 cells in the d x 8 directions, where
d denotes the radial direction and 8 the angular direction. The region was centred at
(0,7c), but started at a distance of r./100 from this centre to accommodate region
4. Cells were spaced equally in the 8 direction. A geometric progression in cell sizes

was used in the d direction, and the ratio of adjacent Ad values was 1.01.

e Region 3 was a rectangular region that contained 70 x 120 cells in the z X r direc-
tions. Geometric progressions in cell sizes were used in both directions. The ratio

of adjacent cell sizes was 1.01 in both the z and r directions.

e Region 4 was a small radial region that contained a single cell. The region was the
upper left quadrant centred at (0,7.) with a radius r./100. This region was used
to avoid the very small cell sizes associated with extending region 2 to the cylinder
edge at (0, 7).

e The cylinder face was divided into 200 surface cells, spaced equally between 0 and

re. These cells were aligned with the cells in region 1.

u,, = 10 km/s 4

T.=1954K

p..=1.835% 10 kg/m’

(xoo =

M, =351

_— Ry Ry
kb
~
~

Ry
1
R, Cylinder T, = 1000 K
................................................. | 0
-3 z/r 0 1

Figure 8.10: Blunt cylinder simulation geometry. The cylinder radius r. = 0.5 metres. Flow is
from left to right. R; denotes region i.

The blunt cylinder calculations used the time step
At =1y/8 = 3.743 x 107" s,

where 75 is the mean VHS collision time behind a vibrationally and chemically frozen
shock at My, = 35.10. The sample period was 7TAt. During the approach to steady state,
macroscopic properties were recalculated for every 5 flowfield samples.

Cell-based weighting factors were used. These weighting factors were calculated so

that the mean number of particles N in each cell during steady state was close to 20.
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This is the upper end of the recommended range 10 < N < 20 [21]. To obtain the
weighting factors, a non-reacting simulation was first performed with cell-based weighting
factors proportional to the radial distance of the cell centroid from the axis. These initial
weighting factors, the mean number of particles in each cell at steady state and the final
conditions in each cell were written to a file at the end of the simulation. For subsequent
simulations, these weighting factors and particle numbers were read by the program, and

the weighting factor for each cell was then calculated using

Wnew = Wsaved N, saved / N, target -

Niarget = 20 was used. The saved final conditions from the first simulation were used
to generate the initial particles in each cell, assuming equilibrium velocity and internal
energy distributions. Cell-based weighting factors were adjusted by rounding In Whey to
the nearest 0.2 and then recalculating Whey. This meant that adjacent cells with close
weighting factors had Wyeyw adjusted to the same value. This saved some computation
time, because particles were tested less often for cloning or deletion, because they moved
into a cell with a different weighting factor less often. Cloned particles were delayed as
discussed in §4.2.5. Subcells were not used in the blunt cylinder simulations.

The method of Lilley and Macrossan [109] was used to generate the z velocities of
particles entering the simulation domain across the upstream and top boundaries. Some
care was required to calculate the positions of particles entering the domain across the
circular boundary of region 2. Firstly, the radial co-ordinate of the particle r. was gen-
erated using Eq. 4.4, where ryi, and rpay refer to the minimum and maximum radial
co-ordinates of the cell boundary, respectively. The z co-ordinate of the entry point is then
ze = — (r2 —r?) "2 The z co-ordinate of the new particle was then given by RyAtv, — 2.
This may place the particle in a cell different to the cell through which it entered the
simulation domain. In such cases, standard routines were used for cloning and deletion.
Particles entering the domain across the downstream boundary were ignored.

For all blunt cylinder calculations, the total number of particles in the simulation and
the total energy of all particles was plotted to determine the number of time steps required
to attain steady state. An example is given in Fig. 8.25 in §8.5.4. The time required to
achieve steady state was about 10 X 47./us, where 4r. is the length of the simulation
domain in the z direction. This required 5384 time steps. 5000 flowfield samples were
obtained at steady state, so the final sample size was about 10° particles per cell. The

simulation continued for a total of 40378 time steps.

8.5.3 Flow without chemistry

For the blunt cylinder flowfield without chemistry, the stagnation streamline profiles of
P/Por T/ Toos Tr/Too, To/To0s Tir/Toos Trot/Too and Tyin /T are shown in Fig. 8.11. The

conditions along the stagnation streamline are approximated by the conditions in the
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row of cells adjacent to the axis. The profiles show the behaviour expected for a non-
equilibrium blunt body flowfield. In particular, the disparate kinetic temperature profiles
illustrate the expected high degree of non-equilibrium between the various molecular en-

ergy modes.

100 F . . . . 500 . .
rrrrr T. and T,
400 f — Ty .
o Trot
Tyip
: : 300 E
< o} ) = T,/ T, =240.5
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Figure 8.11: Stagnation streamline profiles of p/ps and kinetic temperatures for non-reacting
blunt cylinder simulation. The upstream simulation domain is only shown from z/r, = —2.

Force and heat transfer coefficients may be defined by

F/(WT) and Cpg = Q

Cr, =

respectively, where F; is a force acting on the surface and Q is the heat transfer rate.
During steady state, the total momentum and heat transferred to the cylinder face were
recorded, and used to calculate F; and Q. The drag coefficient Cp is associated with the
normal force D = F,. (Cr), and (Cr)g are the force coefficients in the r and 6 directions
respectively. For the blunt cylinder case without flowfield chemistry, the drag and heat
transfer coefficients are shown in Table 8.6. Profiles of (Cr); and Cg across the face
are shown in Fig. 8.12. Near the axis, the gradients in (Cr); and Cy are small, which
indicates that axis problems associated with the use of cell-based weighting factors [21]
are not apparent in the code developed for this study.

An indication of the extent of translational non-equilibrium can be obtained by com-
paring the theoretical number of collisions to the number actually performed by the DSMC
computation at steady state, denoted N (glslls\/lc From Eq. 4.19, the number of collisions that
should occur between particles of species A and particles of species B during a sampling
interval (At), is

Artheory ENANs (&) VW (AY),
colls 5 \T, v,
where N, is the mean number of species s particles in the cell during (At);, W is the

cell-based weighting factor and V, is the cell volume. For the non-reacting blunt cylinder
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Table 8.6: Surface fluxes and relative CPU requirements for blunt cylinder calculations. For
method A, dissociating diatoms were selected with probability Py = (€int),,.y /€int- For method
B, dissociating diatoms were selected with probability P; = (1 + ¢) k©,i,. CPU requirements are
discussed in §8.9.

Chemistry model Rate data Cp Cy Relative
CPU time
No chemistry - 1.772  0.289 1
Conventional TCE model Kewley & Hornung 1.772 0.233 1.05
MCM, k%, (Tiin), method A Kewley & Hornung 1.770 0.234 1.06

MCM, k;T (Tertrot, Tvib, 0.5), method A Kewley & Hornung 1.772  0.275 0.98
MCM, k;‘T (Tirtrot, Tvib, 0.5), method B Kewley & Hornung 1.772  0.279 0.96
MCM, k;T (Tirtrot, Tvib, 0.7), method A Kewley & Hornung 1.771  0.259 1.04
MCM, ki (Tirtrots Tvib, 0.7), method B Kewley & Hornung 1.770  0.261 1.01

Conventional VED model, ¢ =0 Kewley & Hornung 1.772 0.232 1.10
Conventional VFD model, ¢ = 0.1 Kewley & Hornung 1.772 0.236 1.04
Conventional VED model, ¢ = 0.5 Kewley & Hornung 1.770 0.253 1.05
Conventional VED model, ¢ =1 Kewley & Hornung 1.771 0.264 1.04
Conventional VFD model, ¢ = 2 Kewley & Hornung 1.772 0.271 1.04
Conventional VFD model, ¢ = 3 Kewley & Hornung 1.770 0.273 1.00
Conventional VED model, ¢ = 4 Kewley & Hornung 1.770 0.274 1.03
Conventional TLD model - 1.788 0.163 1.21
MCM, kf_.(Tiin), method A Fitted TLD rates  1.792 0.143 1.33

MCM, k;T (Tertrot, Tvib, 0.9), method A Fitted TLD rates  1.787 0.155 1.26
MCM, k;T (Tertrot, Tvib, 0.9), method B Fitted TLD rates  1.787 0.158 1.28

calculations, Fig. 8.13 shows the collision rate ratio § = NDHMC Ctgﬁsry for Ng + Ny
collisions. The results show near-equilibrium conditions in the freestream and near the

body, and non-equilibrium conditions within the diffuse shock, as expected.

Fig. 8.14 shows contours of the mean number of particles per cell. As required, the
mean number was close to 20 [21]. The pattern of contours in Fig. 8.14 is a direct result
of the procedure used to round Whey to improve computational efficiency, as described
in §8.5.2. Note that the gaps between regions 1 and 2 and between regions 2 and 3 that
appear in this and later contour plots are an artifact of the data presentation method,
and did not actually exist in the DSMC calculation. Fig. 8.15 shows contours of the ratio
At/Tyus in each cell. The mean VHS collision time Tvgs = 1/vyus was calculated using
Egs. 4.18 and 2.35 with the local translational kinetic temperature Ty, instead of T'. Fig.
8.16 shows contours of the ratio (Az)max/Avus. For each cell, a local VHS mean free path
Avus was calculated using Eq. 4.20 with T}, instead of T'. Here, (AZ)max is the maximum
cell dimension.

As noted in §4.2.1, the ratios (AZ)max/Avas and At/7vug should both be less than
1/3. Figs. 8.15 and 8.16 show that these criteria are violated near the cylinder face. The

criterion (Az)max/Avas < 1/3 is also violated in the freestream. The violations near the
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Figure 8.12: Profiles of force coefficients (Cr); and heat transfer coefficients Cy across cylinder
face for non-reacting flow. The force coefficient in the axial direction (Cr), is the drag coefficient
Cp. The face was divided into 200 equally sized surface cells.

face are due to the high densities and hence high collision rates and small mean free paths
in that region. The region with At/7yug > 1/3 is limited to a zone about 0.0357, from the
cylinder face. More discussion on the issue of (Az)max/Avus is given in §8.8. The cell sizes
and time step could be reduced with an attendant increase in computational expense, but
for the purposes of this study, these problems have been ignored. The effects introduced
by the locally large time step and cell sizes should be limited to the small zone near the
cylinder face.

As noted in §4.2.2, the NTC method for collision partner selection requires that (0¢)max
for each cell be updated during simulation when a value higher than the stored value is
found. This updating process has a small effect on the collision rate for the time step in
which the update occurs. Fig. 8.17 shows the mean number of (0g)max updates per cell per
simulation time step. After steady state was attained, (6¢)max was updated infrequently,

and the resulting effects on the collision rate should therefore have been negligible.

8.5.4 Solution using conventional TCE model

The stagnation streamline profiles of p/poc, Tir/Too, Trot/Toos Tvib/Too and a calculated
using the TCE model are shown in Fig. 8.18. The coefficients Cp and C'y for this case are
shown in Table 8.6. Chemistry has a small effect on Cp but decreases Cp significantly,
as expected from the general behaviour discussed in §3.1.

Contour plots of p/poc, Tir/Toos Trot/Toos Tvib/Toos Tkin/Too and « are shown in Figs.
8.19 to 8.24. The p/poo contours in Fig. 8.19 show some structure in the freestream flow
where none should exist. The cause of this structure is not clear, but possible sources could
be the boundary conditions or the particle cloning process. Similar freestream structure
is also apparent in the results from the MONACO code at the University of Michigan,

which was used to perform axisymmetric DSMC calculations similar to those reported
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Figure 8.13: Contours of collision rate ratio § = NRSMC /N for non-reacting blunt cylinder

flowfield.

Figure 8.14: Mean number of particles per cell for non-reacting blunt cylinder flowfield.
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Figure 8.15: Ratio At/7yus for non-reacting blunt cylinder flowfield. The contour intervals
emphasise regions with At/7yug > 1/3.
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Figure 8.16: Ratio (Ax)max/Avas for non-reacting blunt cylinder flowfield. The contour intervals
emphasise regions with (Az)max/Avus > 1/3.
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Figure 8.17: Mean number of updates of (og), ., per cell for non-reacting blunt cylinder simula-
tion. Only one point per 100 is shown for clarity. When the number of updates was zero, 1.1 x 10~°
was plotted.

here. Given that the amplitude of the freestream density fluctuations was less than 1%, it
is unlikely that the freestream structure will affect the results, and so it may be deemed
insignificant. Fig. 8.20 shows that T}, begins to rise a distance z/r. ~ 3 from the cylinder.
This shows that the effects of the blunt body persist a long distance upstream in rarefied
flow. In Fig. 8.22, the tracks visible in the freestream are due to individual N9 particles
with vibrational energy level ¢, > 0 that have moved upstream during the simulation.
One such particle can give Tyip /T > 1, which is clearly visible within the rest of the
freestream that has Tyip /T = 0.

Fig. 8.25 shows the total number of particles and the total energy of all particles in
the simulation for the TCE solution. This plot demonstrates that steady state conditions
were attained after about 5000 time steps. In this case, sampling commenced after 5384
time steps.

Figs. 8.26 and 8.27 show the mean number of particles per cell and (AZ)max/Avas for
the TCE solution. Except for the limited zone near the cylinder face and the freestream,
the criterion (AZ)max/Avas S 1/3 is satisfied. A discussion on the issue of (AzZ)max/Avas
is given in §8.8. Contours of the ratio At/myus were similar to those shown in Fig. 8.15,
except that the zone with At/7ygs > 1/3 extended to a distance 0.05r, from the cylinder
face.

The results shown in Fig. 8.18 and Table 8.6 were calculated using a grid that dif-
fered from that used by Lilley and Macrossan [110]. Furthermore, in the calculations
reported here, there were about 20 particles in every cell. In the calculations of Lilley and
Macrossan, there were fewer particles per cell. In fact, within the shock, some cells had
an mean of less than two particles per cell. Despite these differences, the results reported
here are essentially identical to those of Lilley and Macrossan [110].

Bird [21] noted that specular reflection becomes significant at high impact energies.
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Figure 8.18: Stagnation streamline profiles for blunt cylinder flow, calculated using the
conventional TCE model and the macroscopic method with k* = kX, (Tkn) and kT =
kQLT (Tirtrot> Tvib, §). The dissociation rates of Kewley and Hornung [91] were used in all cases.
The upstream simulation domain is only shown from z/r, = —2.
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r/r

Figure 8.19: p/p,, contours for TCE solution of blunt cylinder flow. Fluctuations in the
freestream are exaggerated by the small contour intervals. The structure visible in the freestream
is discussed in §8.5.4.

r/r

Figure 8.20: Ti,;/To, contours for TCE solution of blunt cylinder flow. Fluctuations in the
freestream are exaggerated by the small contour intervals.
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Figure 8.21: Ty, /T contours for TCE solution of blunt cylinder flow. Fluctuations in the
freestream are exaggerated by the small contour intervals.
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Figure 8.22: Ty;,/Tw contours for TCE solution of blunt cylinder flow. Fluctuations in the
freestream are exaggerated by the small contour intervals. The tracks visible in the freestream are
discussed in §8.5.4.



8.5 Blunt cylinder in rarefied dissociating nitrogen 129

r/r

-3 -2 -1 0 1
z/r,

Figure 8.23: Tyin/T contours for TCE solution of blunt cylinder flow. Fluctuations in the
freestream are exaggerated by the small contour intervals.
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Figure 8.24: Dissociation fraction a contours for TCE solution of blunt cylinder flow. Fluctua-
tions in the freestream are exaggerated by the small contour intervals.
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Figure 8.25: Demonstration of approach to steady state for TCE solution of blunt cylinder flow.
The numerical scatter after steady state conditions were attained is ~1%.

When surface impact energies are more than several electron volts, the usual assumption
of diffuse reflection should be critically reviewed. During the TCE solution, the axial
velocities v, of ~10°% particles hitting the cylinder face were recorded. Fig. 8.28 shows the
energy distribution of these surface collisions. It is apparent that most surface collisions
occurred at energies much less than 1 eV. The assumption of diffuse reflection used here
therefore appears suitable. It seems that specular reflection should only be considered in
highly rarefied hypersonic flow where many molecules hit the surface with v, ~ -
During the TCE calculations, only 0.36% of dissociation events for reaction 1 had
(Pl?zL )TCE > 1. For reaction 2, only 0.057% of dissociation events had (Pé" )TCE > 1. This
> 1 is not a serious problem for the

shows that the occurrence of events with (PE )
TCE model.

TCE

8.5.5 Solution using macroscopic method with k™ =k} __ (Tiin)

The stagnation streamline profiles obtained using the macroscopic method with kT =
k;{rr (Txin) are shown in Fig. 8.18. The coefficients Cp and Cp are included in Table
8.6. There is good agreement between the results obtained using the TCE model and the

macroscopic method. Similar results were reported by Lilley and Macrossan [110, 106].

8.5.6 Solution using macroscopic method with k™ = ki (Tir 4 rot, Tvib, S)

For the calculations using the two-temperature rates, Cp and Cpy are shown in Table
8.6. The stagnation streamline profiles are included in Fig. 8.18. It appears that the
macroscopic method with the two-temperature model can capture the expected DV cou-
pling behaviour, in that dissociation rates decrease and C'y increases relative to case with
Et = k}{rr (Txin) which does not capture DV coupling. Also, Cy increases as s decreases

as expected. In these cases, it appears that the method for selecting dissociating particles



8.5 Blunt cylinder in rarefied dissociating nitrogen 131

Mean
particles
per cell
23
22
21
3F 20
19
18
17
o
~ 2
~
1F
1 1
0
-3 -2 1

Figure 8.26: Mean number of particles per cell for TCE solution of blunt cylinder flow.
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Figure 8.27: Ratio (Az)max/Avus for TCE solution of blunt cylinder flow. The contour intervals
emphasise regions with (Az)max/Avas > 1/3.
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Figure 8.28: Distributions of translational energy in the axial direction e, = mv?2/2 for particles
hitting the cylinder face during the TCE solution. Note that 1 eV = 1.60 x 10719 J.

has little effect on the either the flowfield or Cy.

8.5.7 Solution using conventional VFD model

For the blunt cylinder calculations performed using the VFD model with €1, = ¢kOyip,
the Cp and C'y values are included in Table 8.7. As expected, the results for ¢ = 0 are very
close to those obtained using the TCE model. Using ¢ > 0 has the expected effect on the
heat flux, in that C'y increases relative to the ¢ = 0 case. However, ¢ gave minimal control
over DV coupling. The coefficients obtained using eyj, = (% + q) kOyip are also shown in
Table 8.7. These results show a more significant variation of C'y with ¢, and indicate
this method for calculating €j, should be used when implementing the VFD model. For
comparison with other chemistry methods, the VFD results with €., = (% + q) kO, are
also included in Table 8.6.

Table 8.7: Summary of blunt cylinder results using the VFD model.

P 0 0.1 0.5 1 2 3 4
€vib = qkOyip

Cp 1.772 1.773 1.771 1.771 1.771  1.770 1.770
Ch 0.232 0.270 0.269 0.271 0.273 0.273 0.276

% of events with Reaction 1: 0.36% 0.051% 0.13% 0.39% 2.5% 7.5% 13.4%
(PE)VFD>1 Reaction 2: 0.06% 0.008% 0.028% 0.069% 0.23% 0.55% 1.3%

€vib = (% + (I) kOyin

Cp 1.772 1.772 1.770 1.771 1.772 1.770 1.770
Cwr 0.232 0.236 0.253 0.264 0.271 0.273 0.274
% of events with  Reaction 1:  0.36% 0.37% 0.31% 0.42% 2.6% 8.0% 14.0%
(Pi)yep >1  Reaction2: 0.06% 0.12% 0.19% 0.17% 0.24% 0.56% 1.4%
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Fig. 8.29 shows the stagnation streamline profiles of o obtained using the VFD model
with €, = (% + q) kOyib- The a profiles obtained using the macroscopic method with
kEt = k;T (Tir+rot, Tvib, 0.7) are included. These profiles, and the Cy values included in
Table 8.6, indicate that the VFD model with 0.5 < ¢ < 1 results in a flowfield similar to
the two-temperature model of Park [137] with s ~ 0.7.
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Figure 8.29: Stagnation streamlines of a for VFD calculations using evi, = (3 + ¢) kOuip, com-
pared to results from macroscopic method using kT = k;T (Tirtrot, Tvib, 0.7). The upstream simu-
lation domain is shown from z/r, = —1.4 only.

As noted in §6.4.1, (Pé" )VFD > 1 can occur when using the VFD model. The percent-

ages reaction events with (PIQEL ) > 1 are included in Table 8.7. It appears that the

VFD

VFD version with e, = (% + q) kOy;ip results in slightly more instances of (PE ) >1

VFD
than the version with eyj, = ¢gkOyip-

8.5.8 Solution using conventional TLD model

For the calculations performed using the conventional TLD model, the coefficients C'p and
Cp are included in Table 8.6. The stagnation streamline profiles are shown in Fig. 8.30.
In this case, dissociation proceeds to a greater extent than in the former cases, so C'y is
lower. Similar results were reported by Lilley and Macrossan [106].

During the TLD calculations, the numbers of reaction events with (Pé" )TLD > 1 was

Lo > 1
> 1is

recorded. For reactions 1 and 2, the respective percentages of events with (PI}'E )
were 43.7% and 70.1%. As noted in §6.4.2, the existence of events with (Pf{')

an important limitation of the TLD model.

TLD

Fig. 8.31 shows that the mean number of particles per cell was close to 20, as recom-
mended by Bird [21]. Contours of the ratio (AZ)max/Avus are shown in Fig. 8.32. The
region where (AZ)max/Avas > 1/3 is larger than that shown for the non-reacting and TCE
cases, as shown in Figs. 8.16 and 8.27. This is because the TLD solution results in a smaller

Avus, due to the higher number densities arising from extensive dissociation. More dis-
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Figure 8.30: Stagnation streamline profiles for blunt cylinder flow, calculated using the conven-
tional TLD model and the macroscopic method with the fitted TLD rates. The upstream simulation

domain is only shown from z/r, = —2.
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cussion on the issue of (Az)max/Avas is given in §8.8. Contours of the ratio At/rvus were
similar to those shown in Fig. 8.15, except that the zone with A¢/7yus > 1/3 extended to

a distance 0.08r, from the cylinder face.

8.5.9 Solution using macroscopic method with fitted TLD rates

For the macroscopic method using the fitted TLD rates, the coefficients Cp and Cp are
included in Table 8.6. The stagnation streamline profiles are shown in Fig. 8.30. The
agreement between these results and those obtained using the conventional TLD model is
generally reasonable. Similar results were reported by Lilley and Macrossan [106].

From Fig. 8.30, there are minor differences in the results obtained when using methods
A and B to select dissociating diatoms. Further investigations are required to determine
the best method for selecting dissociating diatoms. The similar results obtained for the two
different selection methods confirms the original premise of the macroscopic method, in

that the details of the reaction processes have little influence on the macroscopic conditions.

8.6 Discussion on the macroscopic chemistry method

The macroscopic method offers several significant advantages over conventional DSMC
chemistry models. The most important advantage is that it can use any macroscopic
rate expressions, and these may be any empirical or theoretical function of the local
macroscopic flow conditions. This has been demonstrated by the examples presented
in this chapter. The macroscopic method allows DSMC chemistry calculations to be
performed using reaction rates for which no conventional DSMC chemistry model exists.
Importantly, the macroscopic method allows the large amount of literature on macroscopic
reaction rates, as used in continuum studies, to be applied directly to DSMC chemistry
studies [106]. The ability to use any rate expressions offers considerable flexibility for
modelling reacting flows with the DSMC method.

Most conventional DSMC chemistry models have been developed for the VHS collision
model only. Although the existing conventional models could be applied to other collision
models, the resulting reaction rates will differ from the expected rates, due to the differ-
ent collision rates relative to the VHS model. The macroscopic method permits simple
chemistry modelling with any DSMC collision model, including realistic potentials, such
that the desired macroscopic reaction rates are recovered.

As noted above, conventional DSMC chemistry models often have Pg > 1, which is
physically unrealistic. The occurrence of events with Pr > 1 certainly results in reduced
reaction rates relative to the expected rates. However, there may be more subtle effects
introduced by Pr > 1 that are not immediately obvious. The macroscopic method does
not suffer from any singularities or numerical instabilities.

The macroscopic method may offer advantages over conventional DSMC chemistry

models in hybrid codes that employ both continuum solvers in near-equilibrium regions
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Figure 8.32: Ratio (A%)max/Avas for TLD solution of blunt cylinder flow. The contour intervals
emphasise regions with (A%)max/Avus > 1/3.
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and the DSMC method in non-equilibrium regions. The macroscopic method allows the
same chemistry model to be used throughout the entire simulation domain, because the
rate model used in continuum regions can be used directly in the DSMC regions.

For the TLD case considered in §8.5.8, it could be argued that using the macroscopic
method instead of the conventional TLD model offers no advantages, because the TLD
model is already available and calculating the macroscopic TLD rates requires some effort.
This is true for the TLD case, because it was examined here to provide a comparison case
between a conventional chemistry model and the macroscopic method. However, the
important point is that the macroscopic method can use any macroscopic rates, without
the need to develop expressions for the reaction probability Pr at the molecular level.
Again, this allows DSMC chemistry calculations to be performed using reaction rates for
which no conventional DSMC chemistry model exists.

The methods A and B used in this study to select dissociating particles could be
regarded as being quite arbitrary, and therefore a disadvantage. Bartel et al. [8] and
Bartel [7] suggested methods that could be used to implement the decoupled approach
whilst allowing individual reaction events to be modelled with any desired level of physical
detail. One such method, which is analogous to the NTC method for selecting collision

partners, is discussed in §7.4.

8.7 Discussion on using macroscopic information in DSMC

calculations

The macroscopic chemistry method differs from the conventional approach to DSMC cal-
culations in that macroscopic information derived from all energy modes in a cell, rather
than from individual collisions as they occur, is used to determine the reaction rate [110].
This use of macroscopic information is not limited to the macroscopic chemistry method,
and several examples of DSMC procedures that use macroscopic information exist, as

listed below.

e The NTC method for selecting collision partners, as discussed in §4.2.2, depends on
the local macroscopic number density to calculate the number of possible collision

pairs to test for collision.

e In flows where temperature dependent relaxation behaviour must be captured, rota-
tional and vibrational relaxation numbers in each cell can be calculated from local

kinetic temperatures. This approach has been suggested by Bird [21].

e As noted in §4.5.2 and §4.5.3, variable-¢ models for calculating the BL rotational
and vibrational energy exchange probability can use a time-averaged ¢ value for each
cell. This is macroscopic property, because it is obtained from all exchange events

in a cell.
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e Using the TCE and VFD chemistry models with quantised vibration models requires
some method to calculate the effective vibrational DOF (1,. Here, a cell-based (yip
was used. This (i, was calculated from the local kinetic temperature, which a macro-

scopic property obtained from a time-averaged vibrational energy per molecule.

e The version of the TCE model proposed by Boyd and Stark [43] depends on a
local kinetic temperature to calculate a reaction rate which is then used directly to

_|_
calculate Ppg.

e The three recombination models discussed in §6.5 all require the local number density
to calculate the recombination probability P, . The equilibrium collision theory of
Bird [21], presented in §6.5.3, also requires the local kinetic temperature to evaluate
the partition functions. Although these recombination models are generally consid-
ered to be conventional chemistry models, they do in fact rely on local macroscopic

information.

e The simplified DSMC collision models of Macrossan [121, 122], discussed in §4.4.2,
use local kinetic temperatures to calculate the collision rates to recover any desired

viscosity law.

One justification for these macroscopic approaches is that they work effectively. This sug-
gests that the microscopic details of collision processes are relatively unimportant. Another
justification is that these methods do not rely on the physical details of collision processes
at the molecular level. In general, such details are poorly known. These methods use
available macroscopic near equilibrium information about reaction rates, relaxation rates
and viscosity laws, but make no detailed assumptions about how the gas behaves far from
equilibrium, or how individual collisions proceed. The same near-equilibrium information
is usually used to formulate conventional collision-based DSMC procedures, with the hope
that the models will behave realistically under non-equilibrium conditions. Clearly, it
would be good if the conventional collision-based procedures behaved realistically under
non-equilibrium conditions. However, there is often no data to confirm the accuracy of
the collision-based procedures under non-equilibrium conditions. In the absence of such
data, it can be argued that the methods using macroscopic data provide a similar level of

modelling accuracy as the conventional collision-based DSMC procedures [110].

8.8 Discussion on the DSMC cell size criterion

The importance of the (Az)max/Avas S 1/3 criterion can be critically examined by con-
sidering the relationship between local flow gradients and cell size. From Eq. 3.2, gradi-
ent length scales lgr,q(Q) can be obtained. Along the stagnation streamline, the ratios
Az[lgraqa(Q) describe how quickly the gradients change within a cell. Where Az/lgraq(Q)

is small, the cell size is small relative to the flow gradients and it is postulated that the
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DSMC cell size criterion Az/A < 1/3 can be violated with little effect on the flowfield.
The argument supporting this is as follows.

Imagine two adjacent cells, each of which has Az/A = 1/3. Where the flow gradients
are small, disturbances are small, so the velocity distribution must be similar in both cells.
This occurs in either near-equilibrium flow, or in non-equilibrium flow where the collision
rate is low. Because these cells have similar conditions, they could be replaced by a single
cell of size Az/X ~ 2/3 with little effect on the flowfield. It therefore follows that cells
with Az/X > 1/3 can be used where the flow gradients are small.

For the TLD solution, the profile of Az/Avus along the stagnation streamline is shown
in Fig. 8.33. This shows that the Az/A < 1/3 criterion is violated for z/r. < —1.3 and
for z/r. 2 —0.25. For the TLD solution, the length scales lg04(Q) were calculated at the
centre of each cell along the stagnation streamline for @ = Avus, p, Ttr and «. For all cells
but the first and last cell, the local @) profile was obtained by fitting a parabola to the
QQ values in the cell and the two adjacent cells. This procedure is described in §A.4. For
the first and last cells, the gradient was based on @ in the cell and the adjacent cell, and
was assumed to be linear. The resulting profiles of Az/lgr,q(Q) are shown in Fig. 8.34. If
the scatter in the region —2 < z/r. < —1 is ignored, then Az/lyr,q(Q) is only large near
the cylinder face. In the freestream, the flow gradients are small and the violations of the

(Az)max/Avus < 1/3 criterion are not important.
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Figure 8.33: Profiles of Az/Ayus along stagnation streamline for TLD solution of blunt cylinder
flow.

8.9 CPU requirements

The DSMC results presented in this chapter were obtained by running codes on a Linux
cluster consisting of 66 nodes. Each node contained two AMD Opteron 248 processors.

These processors each had a nominal clock speed of 2.2 GHz. Each job was run on a single
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Figure 8.34: Profiles of Az/lgraq(Q) along stagnation streamline for @ = Avns, p, Tt and a for
TLD solution of blunt cylinder flow. In all cases a reduced number of points have been shown for
clarity.

dedicated processor. The codes were compiled using the GNU C compiler gcc with the
-03 flag for maximum optimisation.

The relative CPU times for the shock calculations and blunt cylinder calculations are
shown in Tables 8.8 and 8.6 respectively. The results suggest that the CPU requirements of
the macroscopic method are similar to those of conventional DSMC chemistry models. It is
important to note that the C codes used in this study were not optimised for computational
efficiency, and that substantial improvements in efficiency may be possible for all chemistry

models examined here.

Table 8.8: CPU requirements for DSMC shock calculations reported in §8.4.

Chemistry model Rate data K* Relative
CPU time

Conventional TCE & TCER models Kewley & Hornung K} (T 1

MCM, ki (Tiin), method A Kewley & Hornung  K}(T) 0.85
MCM, k%, (Tiin), method A Kewley & Hornung K¢ (T,n) 0.76
MCM, k¥ (Tiin), method A Park K} (T) 0.80
MCM, k37 (Tirtrot, Tvib, 0.5), method B Park K:(T) 0.83
MCM, k3. (Tirtrot, Tvib, 0.7), method B Park K3 (T) 0.87




CHAPTER 9

Summary and conclusions

The main objective of this study was to develop a decoupled chemistry method for DSMC
calculations of non-equilibrium reacting flow. This decoupled method has been called the
macroscopic chemistry method, and has been developed for a symmetrical diatomic dis-
sociating gas. To test the macroscopic method, zero-dimensional chemical relaxation, a
strong one-dimensional shock and flow over a blunt axisymmetric cylinder were examined.
The results obtained with the macroscopic method were compared to solutions obtained
with conventional collision-based DSMC chemistry models. The results of the shock cal-
culations were also compared to experimental density measurements. Nitrogen was used

in all cases.

The zero-dimensional case considered the chemical relaxation of pure atomic nitrogen
at high density and initial low temperature. For both the common form of the equilibrium
constant K* = K}(T') and the form of Gupta et al. [70] where K* = K(T,n), the
macroscopic method gave results in good agreement with exact solutions provided by a
Runge-Kutta technique. The use of these different forms of K* demonstrates that the
macroscopic method can use any macroscopic information to calculate reaction rates. A
DSMC solution using conventional chemistry models gave poor agreement with the Runge-
Kutta solution using K(7"). This poor agreement occurred because the parameters used in
the conventional models were derived by assuming that all energy modes were distributed
according to a continuous Boltzmann distribution. Because a quantised vibration model
was used, the actual energy distributions occurring in the DSMC calculations differed
from the continuous distribution. This resulted in actual reaction rates that differed

substantially from the expected rates.

The shock structure was calculated using conventional chemistry models and the
macroscopic method. The conventional calculations used the TCE model for dissocia-
tion reactions and the TCER model for recombination reactions. Both the conventional
and macroscopic solutions gave downstream density profiles that were in reasonable agree-
ment with the experimental density measurements of Kewley and Hornung [91]. Within
the shock, where highly non-equilibrium conditions prevail, there was good agreement
between the results provided by the conventional models and the macroscopic method.

This shows that the macroscopic method can capture non-equilibrium reacting flowfields
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with a level of accuracy similar to that provided by the conventional models. The solution
using the macroscopic method approached the calculated downstream equilibrium condi-
tions. When using the conventional models, the downstream equilibrium conditions were
not attained. This was due the difference between the actual rates realised by the the
conventional chemistry models and the expected rates, which was again caused by the use
of a quantised vibration model.

Shock calculations were also performed using the macroscopic method with the two-
temperature rate model of Park [137]. This empirical model accounts for the DV coupling
effect which is an important phenomenon in non-equilibrium flows. The solution obtained
with the two-temperature model resulted in the expected decrease in the dissociation rate
and an attendant decrease in the downstream density, relative to the case without DV
coupling. The downstream density profiles were also reasonably close to the experimental
results of Kewley and Hornung [91]. Again, the use of a two-temperature dissociation
model demonstrates that the macroscopic method can employ reaction rates calculated
from any macroscopic information.

Blunt cylinder calculations were performed using the several conventional DSMC chem-
istry models and the macroscopic method. This flow exhibited strongly non-equilibrium
conditions within the merged shock layer. Again, there was good agreement between the
results provided by the macroscopic method and the conventional TCE model despite
the non-equilibrium conditions. To capture DV coupling, the two-temperature model of
Park [137] was again used. As expected, this rate model decreased dissociation rates
and increased surface heat fluxes, compared to the case without DV coupling. The blunt
cylinder flowfield was also calculated with the conventional TLD model that also captures
DV coupling. The macroscopic rates realised by the TLD model at thermal equilibrium
were calculated with a Monte Carlo sampling technique, and then used in the macroscopic
method to calculate the blunt cylinder flowfield. This calculation used the two-temperature
model to account for DV coupling effects. The resulting flowfield was in reasonable agree-
ment with that obtained using the conventional TLD model. This demonstrates that the
macroscopic method can give a flowfield close to that calculated using the conventional
collision-based TLD model, which was formulated specifically to capture DV coupling.

Several blunt cylinder calculations were performed using the conventional VFD model
with various values of the parameter ¢ which controls the extent of DV coupling. The
results showed that the vibrational energy should include the ground state vibrational
energy. Without this ground state energy, the parameter ¢ afforded little control over the
extent of DV coupling.

Again, the most important advantage of the macroscopic method is that it can use any
macroscopic information to calculate the reaction rates. The rates may be any empirical
or theoretical function of this macroscopic information. Using the macroscopic method
removes the need to develop reaction probabilities at the molecular level for use in conven-

tional collision-based DSMC chemistry models. The macroscopic method allows simple
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chemistry modelling with any DSMC collision model, for which no conventional chemistry
model may be available. The accuracy and flexibility of the macroscopic method demon-
strate that it has significant potential for modelling non-equilibrium reacting flow with
the DSMC method.

In addition to DSMC chemistry procedures, this study considered several other as-
pects of non-equilibrium gas dynamics and the DSMC method. Methods for characterising
non-equilibrium reacting flows were reviewed. The basic DSMC method was described,
with particular emphasis on the VHS collision model and BL energy exchange schemes.
A method for obtaining the VHS parameters for collisions involving particles of differ-
ent species was introduced. It was shown that BL procedures satisfy detailed balancing
for constant exchange probabilities when using the relaxing particle selection scheme of
Gimelshein et al. [65]. A detailed review of several conventional collision-based DSMC
chemistry models was also provided. Detailed derivations of viscosity and collision rate
expressions for the GHS [84] and MGHS [125] collision models have been provided. These

expressions are more general than those provided by Macrossan and Lilley [125].
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APPENDIX A

Mathematical miscellanea

A.1 Some useful integrals

The complete gamma function I'(m + 1) is defined by
o0
F'(m+1) = / "™ exp(—x)dx.
0
The solution -
/ (x —a)™ exp(—x)dz =T'(m + 1) exp(—a) (A.1)
a

has application in this study. The incomplete gamma function I'(m + 1, @) is defined by
o0
F'm+1,a) = / z™ exp(—z)dz.

a

Incomplete gamma functions in the form

/ z%exp (—bz?) dz = [Zb(’”’l)/Q] o r (a +1 , bw2> (A.2)

and -
I,(w) = / z"exp (—z?) dr where n€Z
w

appear in this study. Integrals of the form I,, are encountered when evaluating viscosity
and collision rate expressions for the modified generalised hard sphere model. In terms of

the incomplete gamma function,

1 [ 1 (n+1
L) =5 [y 2 ep(-gay = 57 (U e?).
w

2

By applying the reduction formula T'(m+1, @) = mI'(m,a)+a™exp (—a) and T (3, w?) =

Tz — W%erf(w) = w%erfc(w), it can be shown that

7 wexp (—w?
L(w) = % erfc(w) + %, (A.3)
Lw) = exp (~w) (1+w?), (A.4)

2
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1
1572 1 1
Is(w) = b erfe(w) + wexp (—w?) 15 + §(;12 +-w*) and (A.5)
16 8 4 2
.2
L(w) = M (6 + 6w + 3w* + w°). (A.6)
Note that . )
L) =", LO)=2 I0) =" and L(0) =3
20) =7 BUO=5 lll)=—p— a 7(U) = 9.
For this study, it is also convenient to define
w
Il (w) = / z" exp (—2?) dz = I,(0) — I,,(w). (A.7)
0

A solution of the beta function that has application in this study is

Pm+1D0(n+1) 1ing
a .
L'(m+mn+2)

/ (a —z)"z"dx =
0

A.2 Joint distribution functions

Consider two statistically independent continuous distributions fy, (z1) and f;, (z2). The
joint distribution is given by f (21, 22) = fz, fz,- A transformation of variables in the joint
distribution from zi,z2 to yi (z1,%2),y2 (z1,%2) requires consideration of the Jacobian

determinant J (y1, y2). Following Grimmett and Stirzaker [69], the joint distribution of y;

and yo is
fy W1, 92) = fo[z1 (y1,92) 32 (y1,92) | |J (w1,92) |,
where
Oz, Oz,
Tyr,yp) = 2Z022) | Oy Oyr | 0w, Oz O Orp
i 0 (y1,92) Oz Oz Oy Oya Oy Oy1
Oya Oy
For

y1 =ax1+bxrey and ys = cx1 + dzo

where a, b, ¢ and d are constants, it can be shown that
J = (ad — bc)™".
For a joint distribution f(x,y), the marginal distribution of z can be obtained with
wa) = [ fewdy

where R is the range of y. The marginal distribution of y is obtained similarly.
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A.3 Energy distributions for quantised vibrational energy

From Eq. 2.20, the continuous distribution of the reduced vibrational energy €, (q) is

given by

—€*
f (g\tlb) = M 6[’6’:1b - gvib(q)] where q= 07 1a ---3 @max-

Qvib

Here, €7, is the reduced vibrational energy in a continuous representation and gmayx is
the maximum possible vibrational energy level, which depends on the vibration model.
It is useful to derive the distribution of é; = € + €&,(¢) where € is some reduced energy

distributed according to the continuous Boltzmann distribution
f(&) =e%exp (=) /T(¢ +1).
The joint distribution of € and €3, is

. €¢exp —€ N ~
f(E€x) = F(qS-I—il()Qt-)b 5[6:,21) — evib(q)] where ¢ =0,1,..., ¢max.

The joint distribution of € and € is found by transforming this distribution as discussed
in §A.2. In this case, 11 = €, 3 = €5, y1 = & and yo = €%, giving a Jacobian J = 1.

Therefore,

(& — €";-b)¢exp (—&) .. 5
1 0 &np — & h =0,1,...,g. A9
I‘(¢ + 1)Qvib [6v1b €y b(Q)] where ¢ q ( )

f (gta g\le) =
Here, ¢; is the quantum level with reduced energy €., (¢;) that is closest to € such that
€vib (qt) < €. However if € > €yib (gmax), then ¢ = gmax must be used. The distribution

of € alone is therefore

r@) = c22CD [ ) oled, — amla]de
_ ep(-E) N~ s a6
= m;[et—em(q)} : (A.10)

For bounded harmonic oscillators, éyi,(q) = ¢Oyib/T, giving

gt = min &l 44 | = min < 2 4d | -
Ovib kOyip

For unbounded harmonic oscillators,

. gtT . €t
%= Ovib| L kOyib]"

As an example, consider the distribution of internal energy €in¢ in unbounded harmonic
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oscillator molecules. In this case, the rotational energy €, is distributed according to Eq.
2.18, so ¢ = 0. From Eq. A.10, the distribution of total internal energy €int = €rot + €vib

is given by

f (€int) = P (~fint) i 1= M(Qt +1) = exp (=) [gintT + 1J. (A.11)

Quib = Qvib Quib Ovib

This result can be checked by sampling €, and €, from equilibrium distributions and
comparing the resulting sampled distribution of €y to the theoretical distribution of Eq.

A.11. The results of such a comparison are shown in Fig. A.1 and confirm that Eq. A.11

is correct.
04 I I Clontinuou; vibratioln A I I I I Conltinuouls vibr;\tion -
m Quantised vibration — 0.40 Quantised vibration — 1
Sampled °
03 F | 0.38 |
o2 | & 036
< <
i 0.34
0.1
032 P\
0 1 1 1 1 1 1 1 1 1
0 1 2 ~3 4 5 6 07 08 09 1.0 ~1.1 1.2 13 14 15
Eint €int
(a) Theoretical distributions. (b) Detail of theoretical distributions compared

to sampled distribution of €ins.

Figure A.1: Distribution of reduced internal energy €, for diatomic molecules with a continuous
rotational energy distribution and the unbounded harmonic oscillator vibration model at T/ O, =
5.90.

As a second example, consider the equilibrium distribution of & = €+ &b (g) for VHS
molecules with quantised vibrational energy. From Eq. 4.11, the distribution of reduced

relative translational energy in collisions €, is

(&) = &V exp(—&) /T (2 —v).

For this example, ¢ = 1 — v and Eq. A.10 gives

~ qt
fE) =P8 o here S= S (& - éanla)] (A.12)

F(2 - U)Qvib q=0

Note that S is constant for a given &.

This distribution has been calculated for both unbounded and bounded harmonic os-

cillators. This example used v = 0.25 and g3 = 33. These theoretical distributions are
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shown in Fig. A.2. Sampled values of €, and €,(q) were used to obtain a sampled dis-
tribution of €. These sampled distributions are also shown in Fig. A.2 and demonstrate

that Eq. A.12 is correct.

f (&)

10% F  — Theoretical distribution, unbounded Ta A
--- Theoretical distribution, bounded A ™

e Sampled distribution, unbounded

& Sampled distribution, bounded

—8 1 1 1

0 5 10 15 20

Figure A.2: Comparison of theoretical and sampled distributions of & = €, + &, (g) for VHS
molecules with v = 0.25 at T//Oy;, = 8.85. For the bounded harmonic oscillators, g; = 33.

A.4 Parabolic curve fit

Consider the three points (z1,y1), (z2,y2) and (z3,ys) as shown in Fig. A.3. The parabola
y = ax? + bz + ¢ passing through these points can be obtained by specifying

Y1 x% z; 1 a
y=| v |, Z=| 23 =z 1 and v=1| b (A.13)
Y3 a:% 3 1 c

and then solving v = Z~'y. The gradient at the point (z2,2) is then 2azo + b.

y=ax2+bx+c

\

Figure A.3: Parabola y = az? + bz + c fitted to the points (z1,y1), (72,y2) and (z3,y3).



APPENDIX B

Physical data for nitrogen

This appendix contains viscosity, equilibrium and reaction rate data for the dissociating

nitrogen system. The collisions Ny + N9, Ny + N and N + N occur in this system.

B.1 Viscosity and VHS parameters

The CRC Handbook of Chemistry and Physics [145] recommends the use of the curve
fits given by Cole and Wakeham [51] for the viscosity of molecular nitrogen and oxygen

mixtures. Over the temperature range 110 K < 7' < 2100 K, Cole and Wakeham give

In [0(2’2)* (T*)] = 0.41132 — 0.40972In T* + 0.0228 (InT*)? + 0.0365 (In T*)>
—0.00857 (InT™)*

for diatomic nitrogen, where 7" = T/104.2. This Q22* was used in Eq. 2.28 with
d = 3.632 A [51] to obtain the recommended viscosity, which is shown in Fig. B.1. This
recommended viscosity is within 2% of 11 sets of experimental data in the temperature
range 110 K < T < 2100 K. Fig. B.1 also shows the viscosity obtained by extrapolating
the curve fit beyond 2100 K.
For the major species present in high temperature air, Gupta et al. [70] give expressions
for QY% and Q22 in the form
3
In [ﬂdQQ(j’j)*] =3 @Y 7y, (B.1)
i=0

L* or Q@2+ regpectively. For collisions in the

)

where 7 corresponds to 1 or 2 for Q2
dissociating nitrogen system, the curve fit coeflicients Gl(j 1) are given in Table B.1. These
coefficients have been used to calculate 7d?Q®2*  and then the characteristic viscosity
pa+p using Eq. 2.29. The resulting viscosity behaviour for the Ny + Ny, No+N and N+ N
systems is shown in Figs. B.1 to B.3. Fig. B.1 indicates that the viscosity fit of Cole and
Wakeham [51] is inaccurate when extrapolated above T' ~ 4000 K, because the viscosity
rises rapidly. Consequently, the viscosity fits of Gupta et al. have been used here. The
viscosity data of Yun et al. [156] for atomic nitrogen is also shown in Fig. B.3.

Power law viscosity relations have been fitted to the data of Gupta et al. [70] for 1000
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10 F e Cole and Wakeham, T <2100 K e
- Cole and Wakeham, 7> 2100 K :

— Gupta et al.

----- Power law approximation

0.1 1 10
T/T

r

Figure B.1: Viscosity of pure diatomic nitrogen using the values recommended by Cole and
Wakeham [51], the curve fit of Gupta et al. [70] and the power law viscosity relation p/p, =
(T/T,)* ™. Here p, = 38.61 pPa-s and T, = 1000 K. The data of Cole and Wakeham is accurate
for temperatures below the limit of reliable experimental data at T ~ 2100 K. For T" > 2100 K,
the extrapolated viscosity is shown.

10 F — Gupta et al. ]
----- Power law approximation

0.1 1 10
T/T

r

Figure B.2: Characteristic viscosity pa+p for collisions between Ny and N molecules. The curve
fit of Gupta et al. [70] and the power law viscosity relation p/p, = (T/T,)*™ are shown. Here
e = 36.87 pPa-s and T, = 1000 K.

K < T < 20000 K and are also shown in Figs. B.1 to B.3. The T, y, and v values have
been used to obtain the VHS collision parameters, which are included in Table B.1. Fig.
B.4 shows the differences between the power law viscosities and the predictions of Gupta
et al. over the temperature range 1000 K < 7T' < 30000 K. Up to 20000 K, the differences
were less than 5%. These power law viscosities, and the resulting VHS model parameters,
are therefore considered to be sufficiently accurate at high temperatures. The cross-species
collision cross-sections, given by Koura and Matsumoto [98] for the VSS model, can also
be used for the VHS model.
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Table B.1: Curve fit coefficients from Gupta et al. [70] for calculating 7d?Q(*V* and wd?Q(%2)*
according to Eq. B.1, and VHS parameters for collisions in the dissociating nitrogen system.
For these collisions, Ggl’l) = 0 and G:(,M) = 0. The VHS parameters were calculated from the
power law viscosity u/p, = (T/Tr)l/ >tV fitted to the viscosity correlation of Gupta et al. at high
temperatures. In all cases, 7. = 1000 K was used. The mass of nitrogen atoms has been calculated
using Mn/N = 14.01/N = 2.3264 x 10725 kg. Here My is the molar mass of nitrogen atoms in

kg/kmol.

Properties Collision partners
N, + N, N, + N N +N

G —41.0253 —41.9462 —41.0065
Gty —0.1182 0.0119 —0.0572
Gty —0.0112 —0.0194 —0.0033
a3 —41.9617 —41.8735 —41.7265
G+ 0.0683 0.0239 —0.0960
G2 —0.0203 —0.0190 —0.0118

pr  (uPas) 38.61 36.87 44.75

v 0.26 0.29 0.28

or (m?) 4.991 x 10~1° 4.421 x 10719 3.118 x 1071°

g (m/s) |1089.5 1334.3 1540.7

2 (m?/s) 5.625x10~16 6.061x10~16 4.946x10~16

Both accurate and approximate formulae for calculating the viscosity of binary mix-
tures were presented in §2.6.2. The nitrogen viscosity correlations of Gupta et al. [70] have
been used to compare these accurate and approximate formulae. The results are shown
in Fig. B.5. For various dissociation fractions, the approximate formula gives viscosity up

to 4.5% higher than the accurate formula.

B.2 Equilibrium constants

The equilibrium constant for the net nitrogen dissociation reaction N9 = N + N is often
represented using the common form of the equilibrium constant K} given by Eq. 5.2. For

this form, Vincenti and Kruger [148] provide

K* =1.8 x 10*exp (=04/T) kmol/m?>. (B.2)
For nitrogen, the characteristic dissociation temperature ©4 = 113200 K [91]. As given in
Eq. 5.3, Gupta et al. [70] represented K* by the curve fit

5
In [K&(T,n)] = Z:G;"(n)ZZ where Z = In (10*/7).
1=0

(B.3)
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10 b Gupta et al. e
°  Yunetal g
----- Power law approximation

0.1 1 10
T/T

r

Figure B.3: Viscosity of pure atomic nitrogen calculated using the curve fit of Gupta et al. [70]
and the power law viscosity relation p/u, = (T/TT)0'78. Here p, = 44.75 pPa-s and T, = 1000 K.

(MasBlpL/ (Masp)g — 1 (%)

1000 K 20000 K
-8 1
1 10

T/T

r

Figure B.4: Comparison of viscosities for the N + N system between 1000 K and 30000 K. Here
(a+B)py, is the power law approximation and (ua4B)g is the viscosity recommended by Gupta
et al. [70].

For the nitrogen dissociation reaction, the curve fit coefficients G are given in Table B.2.
For a given number density n, the G values can be approximated by linear interpolation
against logn. Fig. B.6 shows that this interpolation method will be quite accurate. A
comparison between K and K¢, is given in Fig. B.7. This figure shows that differences

between K and K¢, are large at low n and high T'.

B.3 Reaction rates

Some published nitrogen dissociation rates are given in Table B.3. These rates are
compared in Figs. B.8 and B.9 for reactions 1 and 2. Using the two-temperature rate

model of Park [137], the reduced dissociation rates realised in vibrationally cold condi-
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1.05 : . r
1.04
=
£ 1.03
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« E
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1.02
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Figure B.5: Comparison of Ny + N mixture viscosity at various «a using accurate and approximate
mixture viscosity formulae. The mixture viscosity pmix was calculated using the accurate formula
of Eq. 2.33 and the approximate mixture viscosity u);. using Eq. 2.34. The nitrogen viscosity
correlations of Gupta et al. [70] were used.

Table B.2: Curve fit coefficients for K¢ (T, n) for the No = N + N dissociation reaction at various
number densities, as given by Gupta et al. [70]. For this reaction G§ = 0. These coeflicients are
used in Eq. B.3 to provide K¢ (T, n).

n G} G} G3 G3 G
102/m® —0.86284 —17.2635 —0.152245 —1.79191 —1.42518
102! /m® —1.41108 -15.6315 —0.655486 —2.11364 —1.31460
1022 /m®  —1.79526 —14.0810 —1.23908  —2.40055 —1.20533
102 /m®  —1.99903 -12.8199 -1.81730 —2.60376 —1.11597
1024 /m3 —2.08088 —11.6894 —2.46330 —2.73172 —1.04068
10%/m® —2.06856 —11.0496 —2.93912  —2.74128 —1.00734

tions are shown. Here, the effective temperature T, was calculated using Eq. 5.8 with
Tvib/Tir+rot = 0.8 and 0.5. The rates of Park [138] and s = 0.7 was used. Note that
Tyib/Tir+rot = 1 refers to thermal equilibrium conditions where Tyi, = Tirtrot = 7. Where
Toiv/Tortrot 7 1, the rates in Figs. B.8 and B.9 have been plotted versus 10% /Ty, 1o

It is important to note that most available rate data is limited to moderate temper-
atures and near-equilibrium conditions. At the high temperature and non-equilibrium
conditions of hypersonic flight, reaction rates are poorly known. Through necessity, rates
measured at relatively low temperatures are often extrapolated to very high temperatures

without experimental confirmation.
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Figure B.6: Curve fit coefficients for K (T,n) at various number densities, using G} from Table
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Figure B.7: Ratio of K} (T, n) to K}(T') for dissociating nitrogen.

Table B.3: Some published nitrogen dissociation rates. The parameters CT and 5t refer to
+
the Arrhenius rate equation of Eq. 5.6 where k™ = C* (T/0,)" exp (—0©4/T). For nitrogen,

04 = 113200K [91].

Source Temperature Reaction 1 Reaction 2
range No+N=N+N+N | Ny+N;=N+N+Ny
c+ nt c+ nt
(K) (m?/kmol /s) (m?/kmol/s)
Byron [44] 6000 < T < 9000 | 1.129 x 10'? | —1.5 | 1.427 x 10'2 —0.5
Kewley and Hornung [91] | 6000 < T < 14000 | 1.972 x 10'° | —2.5 | 4.713 x 108 -3.5
Park [138] Not given 2.460 x 1011 | —1.6 | 5.740 x 10%° -1.6
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Figure B.8: Comparison of some published rates for the nitrogen dissociation reaction Ny + N —
N + N + N. The rates of Park [138] are plotted for the two-temperature rate model [137].
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Figure B.9: Comparison of some published rates for the nitrogen dissociation reaction Ny + Ny —
N + N + Ny. The rates of Park [138] are plotted for the two-temperature rate model [137].



APPENDIX C

Further DSMC detalils

This

appendix gives some further details of several aspects of the DSMC method that

were excluded from Chapters 4 and 6, as listed below.

Expressions for determining the cell number of a simulator particle are given in §C.1.

Aspects of particle trajectories in an axisymmetric co-ordinate system are considered
in §C.2.

Further details of the GHS and MGHS collision models are given in §C.3 and §C.4.
These include detailed derivations of viscosity and collision rate expressions in a pure
gas at equilibrium. The expressions derived here are more general than those given
by Macrossan and Lilley [125]. Argon has been used as a test case to compare the

models.
Derivations of the TCE and VFD model parameters are given in §C.5 and §C.6.

Numerical methods for calculating the macroscopic reaction rates realised by the
TLD and EAE dissociation models at thermal equilibrium are given in §C.7 and
§C.8.

C.1 Determining the cell number of a particle

In DSMC calculations, efficient algorithms are required to determine the cell in which each

simulator particle is located. Consider the one-dimensional grid of N cells as shown in

Fig. C.1. For equally sized cells, the cell number n of a particle at x, is simply

n = [(xp—a:o) /AmJ,

where Az = (znx — o) /N is the cell size.

Cell 0 Cell 1 _ _ _ _ _ _CelN-1
[ ————— W) ———f«—— W1 ——] l— W N —_1—"
Zo z1 T2 - T T TN-1 TN

Figure C.1: Schematic representation of a one-dimensional grid.
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A more efficient grid uses small cells in high density regions and larger cells in lower
density regions. For blunt body flows, it is often convenient to use a geometric progression
in cells sizes, with the smallest cells near the body [21]. Referring to Fig. C.1, the widths
of adjacent cells 7 and 7 + 1 are related by

Wwit1 = fw,

where f is the ratio of adjacent cell widths which is constant for a particular grid. The

total width W = zx — z¢ of the grid is

N-1 N—-1
W = Zwi =wo+w +wy+ ... +wWN-1 zwo—l—fwo—l—f2w0+...+fN_1w0 = Wy Zfz
=0 1=0

Using mathematical induction, it can be shown that Zi]i_ol fi=@Q-fN)/@ - f). The
width of the first cell wy is therefore

wo=W(1l-f)/(1-f").

This equation is applied to calculate wy from given W, N and f. The starting co-ordinate

of cell n is given by

n—1 n—1
Tp = To +Wo + ... + Wp—1 ZIEO—FZwi::v0+w02f’::vo—|—w0(1—f”)/(l—f).
i=0 =0

For a particle at z;, the position in the grid relative to the cell boundaries is

S PR (S AV (£

A particle resides in cell m if n < m < n + 1. By defining the convenient parameters

Y1 =(1- f)/wo and Yo = 1/1n f which are constant for a particular grid geometry, the

cell number of the particle at z, is given by

n= [rz In [1 = (2, — ) ]J. (C.1)

In a rectangular grid, with a geometric progression in cell sizes in the z and y directions,
Eq. C.1 is applied to find the row and column of the cell in which a particle is located.
With the base address of the first cell in the region, the cell number can then be calculated.
Similar procedures apply in a radial grid with a geometric progression in cell sizes in the

radial and angular directions.
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C.2 Particle trajectory in axisymmetric co-ordinates

From Eq. 4.3, the axial co-ordinate at the end of the DSMC move step is z = zp + v, At.
Therefore
At = (z — 29) /v, = Z/vy,

where Z = z — 2 is a normalised z co-ordinate. Substituting this into Eq. 4.1 gives

P2 = [ro + 0 zo)r + [@(z . zo)r

o o
= (1}3 + @g) 22 + [2177« (ro — Or20) — 2'65,20] z 4 (ro — f),azg)2 + ﬁgzg (C.2)

= (ro+9,2) + (692)°, (C.3)

which is the trajectory of a particle moving in a straight line projected into the (z,7)
plane. Here, 9, = v, /v, and 9y = vy /v, are normalised velocities.
Consider the intersection of this trajectory with the straight line in the (z,7) plane

described by r = mZz + ¢ = mz + ¢ — mzy. Substituting this into Eq. C.3 gives

(m2 + ¢)? = (ro + 9,2)% + (092)?,

which may be rearranged to give
A2+ B2+ C=0

where

A:ﬁf—kﬁg —m?, B =2ryd, —2mc and C:rg -
The z co-ordinates of the two intersection points are then found by evaluating
z=[-B+ (B*-4AC)] / (24) + 2.
For a line with constant r at re¢onst, the gradient m is zero, and

A=02+03, B=2rod, and C =18 —12

should be used. For a line with constant Z at Zconst = Zconst — 20, Eq. C.3 gives the r

co-ordinate of the intersection point at

M

r= [(7"0 + 'F’réconst)Q + ('ﬁeéconst)Z]

Consider a circle centred at the origin with radius R, described by 22 + r? = R?. By

letting

A=02+0F, B=2b(rg—tr20) — 20320 and C = (ro — d,20)> + 0723,
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the trajectory of Eq. C.2 is simply
r? = A2+ Bz +C.
The two intersection points between this trajectory and the circle are found by solving
(A+1)2>+ Bz+C - R?> =0,

and are

=

—B+ [B?—4(A+1)(C — R?)]
2(A+1)

Zz =

C.3 Generalised hard sphere model

The collision cross-section ¢ of the generalised hard sphere (GHS) model [84] is given as
the sum of N VHS terms, such that

N

o= ailg/9)™".

i=1

Here o; and v; are constants and g, is a reference relative speed defined by g, = (4RT,«)%
where T, is a reference temperature. It is useful to define a normalised relative speed
g = g/gr-. Also, using a reference cross-section o,, a normalised cross-section &; can
be defined by 6; = 0;/0,. The GHS collision cross-section can then be written in the

normalised form N
&= 6i/§". (C.4)
i=1
Note that the Sutherland-VHS model, described in §4.4.2, is obtained by using N = 2,
v1 =0,vy =1, 01 = 05 and g3 = 0, (6kT}) / (ﬁzgf)

From Eq. 2.28, the Chapman-Enskog viscosity expression can be written

1
5m (mRT)2
= C.5
K= g (C.5)
where (2 is a weighted average viscosity cross-section, given by
[e.e]
Q= / § o, exp (—§°) dg. (C.6)
0

Here §° = ¢?/(4RT) is the reduced relative speed introduced in Eq. 2.11. Using o, = 20/3,
I

this integral is

2 [~ [&
Qcus = 5/0 [Z Ui/gm‘l g"exp (—4°) dg
i=1
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for the GHS cross-section of Eq. C.4. Note that

=§Ts, (C.7)
s0 § 2V = g 2vi /T, Using Eq. A.2,
1 L o7 (4 — ;)
Qerre — 57—2v; do— -5 il &)
GHS = Z i / eXP ) 9= 3 z—Z1 T
This shows that Qgpns is a function of T alone. For N = 2,
1ol (4—v1) 0ol (4 —w9)
QGHS - 3 [ T'Ul + T’UQ . (C.S)

For N = 2, Macrossan and Lilley [125] obtained GHS parameters for argon that provided
adequate agreement with the viscosity values recommended by Kestin et al. [90]. These
values were (09/01,v1,v2) = (39/61,2/13,14/13). By using these values and p, = 22.83
pPa-s at T, = 300 K [90] in Egs. C.8 and C.5, 01 = 3.920x 107! m? and g9 = 2.507x 1019
m? are obtained. The resulting GHS viscosity behaviour is shown Fig. C.2. This viscosity
behaviour is in better agreement with the recommended values than the power law viscosity

relation p o< 707 for T < 300 K.

3 i .
G
8
Q
<~
«3. l
I
2
8
2
g Recommended by Kestin ez al. ©
= o -
§ GHS model —
Z MGHS model ----- E
. 0.72
Power law, fLoc T ' =
0.2 \ ;

0.1 1 10 100

Normalised temperature = T'

Figure C.2: Reduced viscosity p/T2 = (u/pr)/(T/T,)'/? o 1/Q versus normalised temperature
T = T/T, for argon using the GHS and MGHS models, compared to that recommended by Kestin et
al. [90] and the power law viscosity with u oc 7072, Here vr = 2/13, vy = 14/13, 01 = 3.920x 10~ 19
m?, gy = 2.507 x 107" m® and p, = 22.83 pPa-s at T, = 300 K have been used. The MGHS
transition point was (V*, §*) = (me,gmm)

By defining V = og, V, = 0,9, and V= V/V,, the mean collision rate ¥ may be
expressed as
v=mn(og) =n(V) = n(V;V) = nV;(69).
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From Eq. 2.12, the equilibrium distribution of g is f () = (4/#1/2) g% exp (—g%), so

AnV, [ .. . 9\ g~
V= 1/; / (64) §% exp (—92) dg. (C.9)
™ 0
For the GHS model,
N
4nV, [ r Al—2u ~ 9\ g
VGHS = m/o Zaigl 2vi G2 exp (-g%) dg
=1
N
4nV, c1 o [ a0 ~9\ g
_ nV, AZT; v g3 2u; exp (_g )dg
71-1/2 i=1 0

Using Eq. A.2, this becomes

"Nz N .
vgus = 2nV; (Z> > M. (C.10)

™ A'U'
i=1 TV

This shows that vgus is a function of n and T'. For N = 2,

1
T\? [6:7(2 — 5oT(2 —

vgus = 2nV, (—) [01 (A v) + 2 (A v2)
s Tv1 T2

This GHS collision rate, using the argon parameters from above, is shown in Fig. C.3. Here
vgus has been normalised relative to the nominal collision rate vnom = (4/7)(nkT/u) from

Eq. 2.40, using the argon viscosity u = p(7T') from Kestin et al. [90].

T
VGHs /Vnom .
VMGHS /Vnom

B VvHs / Vhom E

A~ L N

Ratio of collision rates

0.7

Normalised temperature = T'

Figure C.3: Relative collision rates for the GHS, MGHS and VHS models. The GHS and MGHS
parameters are given in Fig. C.2.

For the GHS model V is given by

N

V=Y 6ig'

=1
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For argon, the V versus § behaviour is shown in Fig. C.4. At low collision speeds, it is
apparent that V' — co. When using the NTC method [20] for selecting collision partners,
as described in §4.2.2, the GHS model has poor computational efficiency because Npairs
becomes very large as V becomes very large. This results in a very large number of particle
pairs being tested for collision, each of which has an extremely small probability of actually

participating in a collision.

g* =gmin/4’

10 f oL = tangent to curve at § = g*

VIV,

"""""""""""""""""""""""""" GHS model —

1k (8min/ &-Viin ! Vy) MGHS model ------ ]

0.1 1 10 100
2=zg/g,

Figure C.4: V = V/V, = og/(0,g,) versus § = g/g, behaviour for the GHS model and two
possible versions of the MGHS model. The GHS parameters for argon from Fig. C.2 and ¢, = 0
have been used.

For the GHS model, Macrossan and Lilley [125] used an alternative reference cross-
section o] = 01 + o2 and defined o1 = ¢ol.. These give gy = 0/.(1 — ¢). For N = 2,
0'; |:¢P (4 - ’U1)

Qgrs = — For

3 r(4—uQ)]_

+ (1 - ¢) Tvz

Also, V.61 = ¢V, and V.62 = (1 — ¢)V/!, so Eq. C.10 reduces to

B , f : I'(2—1wv) T2 -v)
vGHs = 2nV, (W> [4571;“1 +(1 45)71;“2 ]

These forms of Qgus and vgus are identical to those given by Macrossan and Lilley [125].

C.4 Modified generalised hard sphere model

Macrossan and Lilley [125] introduced the modified GHS (MGHS) model to improve the
computational efficiency of the GHS model whilst retaining its realistic viscosity behaviour.
Essentially, this involved limiting the value of V' at low collision speeds, which effectively
reduces the number of particle pairs that must be tested for collision when using the
NTC method for selecting collision partners. The MGHS model is implemented by first
specifying a transition point (g*,V*) in the V versus § behaviour of the original GHS
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model. Then, for § < §*, the V versus g behaviour of the GHS model is simply replaced
by a straight line. The gradient « of this line may be set to the tangent at the transition

point, given by
N

> (1 - 2u;) 63/

i=1

av
dg

(67

Two possible versions of the MGHS model are shown in Fig. C.4. The linear portion of
the MGHS model is described by the equation

which provides

V=V"-a(§*—§) =aj+V*—ag".
The normalised collision cross-section of the MGHS model is then given by the conditional

equation

. {a—l—(V*—aﬁ*)/Q for g < g* (©.11)

<
g =
SN 6§ for §> §*.

The viscosity behaviour of the MGHS model is found by evaluating the viscosity ex-
pressions of Eqgs. C.5 and C.6 with the MGHS cross-section of Eq. C.11. In this case, {2 is
given by

2UT 9= 7% Ak sl ~T ~2\ 75
Quers = /0 [a+(V —aj )/g]g exp (—§°) dg

25, [* [
P2 [T S| e ()
9=9" Li=1

At the MGHS transition point where g = g*, Eq. C.7 gives § = §* /T%. For convenience,
this will be denoted using

M

w=g*/T>.

Therefore

2 w~ R § V*_ A~ w~ R R
Ouvgrs = g’" la/o g"exp (—-7°) d9+(j117/(2xg)/0 % exp (—§°) dg]

20, L 5 [
r ? ~T7—2v; _~2 ~
+5 ZT“/w g" v exp (—g%) dg-

Using the integrals in Egs. A.2, A.5 and A.6, this gives

QMGHS = (20’,~/3) (A + B),
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where

O w?
A= all(w) + VTTIG( and B = Z sl 2TU1:“ ) .

For a particular version of the MGHS model, Qugns is also a function of 7' alone. The
viscosity behaviour of the MGHS model with (V* A*) = (Vmin, gmin) is shown in Fig. C.2.
At low temperatures, the viscosity behaviour of the MGHS model is in better agreement
with the argon viscosity recommended by Kestin et al. [90] than the viscosity behaviour
provided by the GHS model.

The MGHS collision rate is derived by evaluating Eq. C.9 with the MGHS expression

for g, which is

v of2g+ (V= ag?)  for §g<g

og=V = .
Ts YN gt i /T for § > g

Using Eq. C.9,
~ l A
T\ v o V —ag* )
vMgHS = 4nV; (;) / o + — g 92] exp (—g°) dg
0

This can be written

=

vvaas = 4nV; (T/W) (C+D),

where N
* — T (2 — v, w?
Vi(ngQ( ) and D= 6iw.
T/2 —~
1=

C = ali(w) +

It is apparent that vygas depends on T and n. The ratio vycus /Vnom is shown in Fig. C.3
for argon with the MGHS transition point (V* §*) = (Vmin, gmin). At low temperatures,
the vmars is much lower than vggs.

Using the notation of Macrossan and Lilley [125], it can be shown that the expressions

for A and C remain unchanged, and that B and D become

F(4—v1 w2) I‘(4—U2 w2)
r_ ’ _ ’
B=¢— e —+ (1-¢) o
and
D - F(Z—ful,wQ) 1 P(2—’U2,w2)
=0 —m,  t (1-9) P
respectively.

Macrossan and Lilley [125] examined the computational efficiency of the MGHS model
relative to the GHS and VHS models. Over a wide range of temperatures, the MGHS

model is significantly more efficient than the GHS model. This is due to a combination of
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two factors. Firstly, when using the NTC method to select collision partners, the number
of collision pairs that must be tested for the MGHS model is greatly reduced relative to
that for the GHS model, because V = og is limited at low collision speeds. Secondly, as
shown in Fig. C.3, the MGHS model has a lower collision rate than the GHS model. The
MGHS model requires no more than 15% more CPU time than the VHS model.

C.5 Derivation of TCE model parameters

This section gives a method for obtaining expressions for the non-dimensional TCE pa-
rameters Stcg and Yo that include the Arrhenius rate parameters CT and nt and the
VHS parameters of the collision pair. In deriving these expressions, it is assumed that the
total reduced collision energy €, is distributed according to the continuous distribution
f (€) from Eq. 6.4. Using the TCE reaction probability (PI}L )
TCE reaction probability is

rcg rom Eq. 6.2, the mean

(Pg)TcE = N (PR) g (€) f (Ee) dé
0

_ IBTCE * ~ ~ X1+X2 ~ ~
= Tt iR (€. — €q) exp (—¢€.) dé.
a €

I(x1+1)
_ BrcE exp(—€q) I'(x1 + x2 + 1)
€ L(x1+1)

Here Eq. A.1 was used to evaluate the definite integral. This mean TCE reaction proba-

bility equals the mean VHS reaction probability (Pg )vus from Eq. 6.1. Therefore

k* = Brer

1
NEexp(—&,) (T)2“ T(xi+x2+1)
T,

fs 63(2 F(Xl + 1)

The TCE model attempts to recover the Arrhenius rate equation at thermal equilibrium,

so this expression for k™ is equated with Eq. 5.6. Therefore

+ l_
(TN _, NE (1)"2(2)2 "Thatxe+1l)
¢ (®a> = Pree fs O, T, P(X1+1)

where €, = ©,/T has been used. Equating the temperature powers gives

1 1
77+:X2+§—’U and X2:77++U—§-

Equating the leading constants gives

O,

5 _c+fs(Tr>%—“ T (x1+1)
TOR = NE Toa+xe+ 1)
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C.6 Derivation of VFD model parameters

This section gives a method for obtaining expressions for the non-dimensional VFD pa-
rameters Bypp and 1 that include the Arrhenius rate parameters C* and ' and the
VHS parameters of the collision pair. This derivation applies to the general dissociation
reaction AB+ M — A + B+ M. The VFD dissociation probability (Pé" )VFD applies to
the dissociation probability of the diatomic particle AB. The vibrational energy of AB,

denoted (€yip)op, is used directly in calculating (PE) The remaining energy €rem is

VFD"
defined as the amount of collision energy remaining in the total collision energy e, after

subtracting €yi,. In terms of reduced energies,
grem = gc - (gvib)AB = gg + (grot)AB + (grot)M + (gvib)M .

The DOF associated with €.y, is

Crem = gg + (Crot)AB + (Crot)M + (4vib)M -

Here, the effective number of vibrational DOF in the diatomic particle AB being tested for

dissociation is denoted (yib. The form of (PI‘%") in Eq. 6.6 was proposed by Haas and

VFD
Boyd [73, 74] for harmonic oscillators. However, the derivation of the VFD parameters

Bvrp and 1 depends on the assumption of continuous equilibrium energy distributions,

which have the form of Eq. 2.16. For €;.m and €,p, these distributions are

~<vib/2_1

g(rem/Q_l A
and f(gvib) = vib T

f (grem) _ Grem €xXp (_gvib)

(Gvin/2)

€xXp ( - grem)

I (Crem/2)

Using Eqgs. 4.12, 4.14 and 6.3, it can be shown that

Grem/2 =1 =1 = v+ Cnt — &in/2 = X1 — Gvib/2,
S)
f (Erem) = gr)(ca%n_CVib/Z exp (—érem) /T (X1 — Gyib/2 +1).
Assuming that f(€em) and f(€ip) are independently distributed, the joint distribution is

1 —Cuib /2 Gyin/2— 1 _
eX1—¢ b/ efibb/ exp (—¢€.)

T (x1 — Gib/2 + 1) T (Gin/2)

f (gremagvib) = f (grem) X f (gvib) =

This joint distribution function may be transformed from f (€rem, €vib) t0 f (€c, €vib) using
the method in §A.2. For this transformation, |J| = 1. Therefore

- ~Cuin/2 2 Cuin/2-1 _
(€ — Evip) X Gvib/2 exfibb/ exp (—&.)
I (x1 = ¢vib/2 + 1) T (Gvin/2)

f (gc,gvib) =
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The mean VFD dissociation probability (P4 )vep is obtained from

o] éc
(PH)vep = / / (P)vep f (s vib) dévindee
o Jo

~X1—Y
BvFD €4

T (x1 = Gin/2 + 1) T (Gin/2)

(€, — €4 4 - fe o e /2 0/2—1 - .
N B e B B A S A I
gd €c¢+X1 0

Bvep EXVT (¢ + Cuin/2) [, R .
F(¢+X1+1)F(Cv1b/2) éd (C Gd) exp( 60)
=" T+ Gin/2) Ty +1)
a P () R DT (Ganf2)

= pvrFDE

Egs. A.8 and A.1 were used here to evaluate the definite integrals. This mean VFD
reaction probability <PI'{ )VFD equals the mean VHS reaction probability <PE )vas from
Eq. 6.1. Therefore

kt = Byrp T

NE (T)“ (%) Y T (g 4+ Can/2) T+ 1) o (~22)

fs \Ir T L(¢+x1+1)T (Cin/2)

where €; = ©4/T has been used. The VFD model attempts to recover the Arrhenius rate

at thermal equilibrium, so this expression for kT is equated with Eq. 5.6. Therefore

o (5) o ME (3)5” (@) ATV T (6 + Guan/2 T( +1)
0s) ~ P \T T T(¢+x1+1)T (Gin/2)

Equating powers of T" gives

1 1
77+=§—’U—(X1—1/))a S0 ¢=n++v—§+X1=X1+X2-

Equating leading constants gives

son — s (g)é‘“mwxﬁl)r(@ibm)
VED T NE \ 0y T(¢+ Gin/2)T W +1)°

C.7 Macroscopic dissociation rates for the TLD model

Many published studies use zero-dimensional DSMC heat bath simulations to obtain the
macroscopic reaction rates realised by conventional DSMC chemistry models under ther-
mal equilibrium conditions. A heat bath simulation was performed here to calculate the
macroscopic nitrogen dissociation rates realised by the TLD model. The calculation used
6 x 10° Ny particles and 4 x 10° N particles, with the VHS parameters from Table B.1.
Colliding particles were selected with probability 0¢g/(0¢g)max- BL energy exchange was
performed using the schemes described in §4.5.2 and §4.5.3. Relaxing particles were se-

lected according to the scheme of Gimelshein et al. [65]. TLD reaction probabilities were
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calculated using the procedures discussed in §6.4.2. To reduce the number of collisions
with (Pg )TLD > 1, €ip = (% + q) kOyip, was used in calculating (P;{ )TLD [150]. When
Ry < (P;{ )TLD a reaction was counted but not actually performed. For a given temper-
ature a target number of dissociation events, denoted NE, was specified. The simulation
was run until this target number of events occurred. Using Eq. 6.1, the dissociation rate

at a given temperature was then obtained from

1 1
NE (T\2Y N NE/T\z"
+ _ (p+ - — R —
b (T) - <PR >VHS fs (Tr) Ncolls fs (Tr) ’ (0.12)

where N¢qi5 is the number of collisions performed to obtain NE events. The macroscopic
TLD rates calculated with this heat bath simulation are compared to some published rates
in Fig. C.5.
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Figure C.5: Calculated macroscopic nitrogen dissociation rates for the TLD model compared to
fitted rates and the published rates of Byron [44] and Kewley and Hornung [91].

Essentially, heat bath simulations just sample collision energies, and can therefore
be avoided by using a Monte Carlo technique that samples the collision energies from
appropriate equilibrium distributions, and then uses these sampled energies to calculate
(PllzIr )TLD. Lilley and Macrossan [106] used such a Monte Carlo sampling technique to cal-
culate the TLD dissociation rates at thermal equilibrium. From Eq. 4.11, the distribution

of reduced translational energy in collisions €, for VHS molecules is

f (&) =& ¥ exp (—&) /T(2 — v).

Here, the Cheng-Feast algorithm [50] was used to sample €, from this gamma distribution
rather than the much less efficient acceptance-rejection method. €, was obtained from

€g = €kT. Some details of the Cheng-Feast algorithm are provided in §D.4. For diatoms,
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the rotational energy €,o; is obtained using
€rot = —In(Ry) kT
from Eq. 4.22, and the vibrational energy level ¢ for harmonic oscillators using
q=[—In(Rs)T/Oyip]

from Eq. 4.23. Again, €y, = (% + q) k®yi, was used to reduce the number of events
with (Pg).pp > 1 [150]. The sampled collision energies were then used to calculate the

dissociation probability (P;'z' ) A reaction was counted when R; < (P}'{ )TLD. Again,

TLD"
a target number of reactions Ng was specified for each temperature examined. The
number of samples required to obtain NIJ{ reactions was the number of collisions N¢gjjs-
The macroscopic dissociation rates were calculated with Eq. C.12, and are shown in Fig.
C.5. The Monte Carlo sampling method was much more computationally efficient than
the heat bath simulation. For the Monte Carlo results, N;z' was generally larger, so these

results are subject to less statistical scatter and are regarded as being more reliable.

Accurate fits to the TLD rates calculated with the Monte Carlo sampling method are

also included in Fig. C.5. These curve fits were found by trial and error, and are

ki 2.0 x 10'2(7/122000) ~ ! exp(—122000/7) m?/kmol/s and
ky =~ 9.5x 10" (7/120500) '3 exp(—120500/7) m?/kmol/s

Q

(C.13)

for reactions 1 and 2 respectively. Note that k; differs slightly from that used by Lilley
and Macrossan [106].

Table C.1 shows the percentage of reaction events with (PI}L ) > 1. These results

show that (Pz{ )

TLD

Tp > 1 in a large fraction of reactive collisions.

Table C.1: Percentage of reaction events in Monte Carlo sampling calculation with (P}) ., 5 > 1.
Reaction 1is No + N — N + N + N and reaction 2 is Ny + Nog — N + N + Ns.

T Reaction 1 Reaction 2 T Reaction 1 Reaction 2
(K) (K)

6000 35.8% 33.9% 20000 65.0% 73.8%
8000 39.0% 43.5% 25000 72.1% 79.9%
10000 44.4% 50.6% 30000 77.4% 84.2%
12000 49.2% 57.0% 35000 81.5% 87.5%
15000 55.8% 64.9% 40000 84.7% 89.9%
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C.8 Macroscopic dissociation rates for the EAE model

This section gives the macroscopic nitrogen dissociation rates realised by the EAE model
at thermal equilibrium. The nitrogen VHS parameters from Table B.1 were used. Three
different methods were used to obtain these rates, as discussed below. The version of
the EAE model examined here applies to VHS harmonic oscillators with the BL vibra-
tional energy exchange scheme of Bergemann and Boyd [9], as described in §4.5.3. The
post-exchange vibrational energy level ¢’ was selected as for unbounded harmonic oscilla-
tors. Molecules were then dissociated if ¢’ exceeded the dissociation level g4. A constant
vibrational exchange probability ¢y, = 0.1 was used.

The first method was a DSMC heat bath simulation similar to that described in §C.7.
In this simulation, the initial vibrational energy levels of the diatoms were sampled from
the distribution for bounded harmonic oscillators with ¢n.x = g4. This distribution was
used because no diatoms can have ¢ > g4 when the EAE model is used. BL energy ex-
change was performed according to the schemes described in §4.5.2 and §4.5.3. Relaxing
particles were selected according to the scheme of Gimelshein et al. [65]. When a diatom
had a post-exchange vibrational energy ¢’ greater than the dissociation level q; = 33,
a dissociation event was counted, but a reaction was not actually performed. After the
event was counted, the vibrational energy level was re-sampled according to the distribu-
tion for bounded harmonic oscillators. The simulation was run until a target number of
reactions N;E occurred. The macroscopic rates were then calculated with Eq. C.12, and

are compared to some published rates in Fig. C.6.
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Figure C.6: Calculated macroscopic nitrogen dissociation rates for the EAE model compared
to fitted rates and the published rates of Byron [44] and Kewley and Hornung [91]. A constant
vibrational energy exchange probability ¢yi, = 0.1 was used.

The second method for obtaining the macroscopic EAE rates was a Monte Carlo sam-
pling technique similar to that described in §C.7. Firstly, €, was sampled as in §C.7, and

€vib Was sampled as for bounded harmonic oscillators. These provided €ex = €4+ €yip. Next,
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vibrational energy exchange was performed using the BL, method described in §4.5.3. If the
post-exchange vibrational energy level ¢’ exceeded the dissociation level g4, then a dissoci-
ation event was counted. The sampling routine was run until a target number of reactions
N;{ occurred. The number of €., samples required for N;E reactions was the number of
relaxation events Nigax. In the particle selection scheme of Gimelshein et al. [65], the
probability of an exchange event occurring is ¢4, for each diatom. Because both particles
are tested for exchange, the probability of a vibrational energy exchange event occurring
for a collision pair is fs¢yip, for constant ¢yi,. For Negys collisions, Nielax = fs®vibNeollss
which gives Neons = Nrelax/ (fsbvib). The macroscopic EAE dissociation rates were then

calculated with Eq. C.12, and are also shown in Fig. C.6.

The third method for obtaining the macroscopic EAE rates involved deriving an in-
tegral expression for the mean EAE reaction probability (P )gar, and evaluating this
integral numerically. Consider N5 collisions between diatoms A, and species M par-
ticles. For a constant BL exchange probability ¢yip, the number of these collisions in
which Ay particles are subject to BL vibrational energy exchange is fsdyipbNeons- The
number of these relaxing collisions that have BL exchange energy in class €s is then
FsPvibNeons S (€ex) déex. Again, it has been assumed that vibrational energy levels are dis-
tributed according to bounded harmonic oscillator model, because all diatoms that have
q' > qq after BL exchange will dissociate. From Eq. A.12, the equilibrium distribution of

€ex Tor VHS molecules and bounded harmonic oscillators is

BHO

~ exp (—€ex) BHO BHO __ T ~ q'Oyip, v
fex) = =———=—x 8", where S = Z €ex — .

F(2 - U)Qvib T
€ox 1
Gor'© = min ng J,qcz>
vib

is the maximum possible vibrational energy level for the bounded harmonic oscillator
SBHO

q'=0

Here,

model that corresponds to the reduced exchange energy €.x. Note that is constant

for a given €q. In this case, the partition function )y, comes from Eq. 2.22 and is

Qv1b = Z €xp ( 1 ®v1b)

For this version of the EAE model, ¢’ was selected as for unbounded harmonic oscilla-

tors. From Eq. 4.44, the maximum value of ¢’ is therefore
Gox O = [€exT/Ouib ).

From §4.5.3, possible values of ¢’ are generated according to R; (0 qUHO) and then accepted
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! 1—v
q ®vib
Rr<(|1———— .
/ ( €ex T’ >

If qUHO < qqg, then the dissociation probability is zero, because ¢’ cannot exceed g;. When

if

qe UHO ~ g4, there is a possibility that molecules will dissociate. The mean dissociation

probability for class €. collisions, denoted (P;{ Yo 1S Obtained from Eq. 4.43 and is

€ex

UHO UHO
ex Gex q @ b —v
-+ _ 1~ V1
<PR >€ex = E o (q |6€X SUHO E (eeX - ) )
q¢'=qq+1 q=qq+1
where
gee™® / 1—v
GUHO _ - q' Oyip
= E €ox — .
- T

q¢'=0

Note that SUHO is constant for a given &, value.

The number of class €.y collisions that result in dissociation is

<P1—%—>€ex X fs(bvichollsf (gex) dgexa

and the total number of dissociation events is given by

00
N;E = / fs¢vicholls<P1:3|_>€ex f (gex) déex
€d

UHO

o0 qex ! 1—-v ~ BHO
~ qO6ip exp (—€ex) (S _
= fs¢v1cholls/ (fex - TV ) T - 'U)Qvib (SUHO déey.

“g'=qq+1

The mean EAE dissociation probability is given by

(PAYeaE = N# /Neotis = fsdvin]

where

* €Xp (_gex) SBHO qg(HO 5 qI®Vib 1-v 3
= /€ F(2 - ’U)Qvib SUHO Z €ex — T déex- (C.14)

d q¢=q4+1

Using Eq. C.12, the macroscopic dissociation rate is then given by
K (T) = dunINE(T/T,)7 ", (C.15)

which is independent of the symmetry factor fs.

The definite integral I was evaluated numerically at various temperatures to give the
macroscopic EAE dissociation rates. Here, I was evaluated using 4 x 10° points in the

range €g < €ex < 20¢4. The resulting kT values are shown in Fig. C.6 for reactions 1 and
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2 in nitrogen. Good fits to these numerically calculated rates are provided by

Ef &~ 7.0x10°(T/04)°? exp(—O4/T) m®/kmol/s and
kS 8.0 x 10'0 (T/04)"? exp (—O4/T) m?®/kmol/s,

Q

which are of the Arrhenius form.

There is good agreement between the rates calculated with the three different methods
described above. Even with the high vibrational exchange probability ¢y, = 0.1, the
dissociation rates are much lower than those recommended by both Byron [44] and Kewley
and Hornung [91]. Bird [22] claims that the EAE model provides reaction rates close to

published rates, which contrasts with the results obtained here.



APPENDIX D

Pseudo-random number generators and sampling

This appendix briefly discusses the pseudo-random number generator used in this study,
and gives the results of a basic statistical test to assess its adequacy. Efficient computa-
tional algorithms for generating the direction cosines of points uniformly distributed on
the surface of a sphere and standard normal variates are also presented. Methods for

sampling from continuous Boltzmann energy distributions are also considered.

D.1 Pseudo-random number generator used in this study

This study used the random() function, supplied with the LINUX operating system, to
generate successive pseudo-random integers in the range [0,23! —1]. According to the sys-
tem documentation, random() uses a non-linear additive feedback random integer genera-
tor and has a large period of approximately 16 (231 — 1). A total of 23! integers are avail-
able. The function Rf () used random() to return uniformly distributed double-precision

fractions Ry in the range (0,1). The function Rf () generated Ry with
Ry =05+ (double)random()]/231.

This formula was used to prevent Rf () from returning zero, which causes problems when

evaluating In (Ry).
Numerous authors, including Knuth [92] and Gentle [62], give the details of several

statistical tests that can be used to examine the adequacy of pseudo-random number
generators. One simple test, used by Bird [21], considers the two-dimensional distribution
of successive pairs of pseudo-random numbers. In this test, the location of each pair
within a unit square is given by the point with Cartesian co-ordinates (Ry 1, Ry2). For
108 points, a 100 x 100 array of equally sized cells is considered within the unit square,
and each point is assigned to the cell it occupies. The total number of points within each
cell is calculated, and compared to the expected mean number of 10* points per cell to

determine the deviation of the total from the mean.

For randomly distributed points, the distribution of the number of points in each cell,
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denoted N, conforms to the Poisson distribution

P(N) = N"exp (-N) /N!.

For large N, this is indistinguishable from the normal distribution

o=

P(N) =exp |- (N = N)*/ (2) ] / (22 N)

which has a standard deviation ¢ = N'/2. A perfect random number generator would
provide this theoretical distribution of N. For the normal distribution, the theoretical
fraction of points within ao of N is erf (a / \/5) The adequacy of a pseudo-random number
generator can be assessed by comparing the deviation of N from N = 10* for each cell to
that for the normal distribution.

This test was performed 40 times on the Rf () function, and the mean results are shown
in Table D.1. The results are quite close to those for the theoretical normal distribution,
and are similar to the results that Bird [21] gives for various other generators. Therefore

Rf () appears to be adequate.

Table D.1: Mean results for 40 tests performed on the Rf () pseudo-random number generator,
compared to the normal distribution. N = 10* and ¢ = 100.

Range Number of cells with N in specified range

Rf () function Normal distribution
<lo 6856.1 6826.9
> lo 3143.9 3173.1
> 20 447.2 455.00
> 3o 27.575 26.998
> 4o 0.55 0.63342
> 5o 0.0 0.005733

D.2 Generating points uniformly distributed on a sphere

Marsaglia [130] provided an efficient algorithm for generating the direction cosines of points

uniformly distributed on the surface of a unit sphere. The algorithm is:
1. Generate u; = 2Ry — 1 and up = 2Ry — 1.
2. Let s = u? + u3.
3. If s > 1 return to step 1.

4. Let ¢ =2(1 — s)1/2,
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5. The three direction cosines are then 1 — 2s, qu; and qus.

Approximately 1.273 iterations are required to generate each set of direction cosines. For
108 sets, this algorithm requires only about 61% of the CPU time used by the conventional
method, where cos¢ = 2R; — 1 and 6 = 27 R are generated to give the three direction

cosines cos ¢, sin ¢ cos @ and sin ¢ sin 6.

D.3 Generating standard normal variates

The Box-Muller transformation [27] is often used to generate pairs of standard normal
variates. In this method r = (—2In Rf)l/2 and 6 = 2w R; are generated, and then two in-
dependent standard normal variates z1 = r cos # and zo = rsin @ are calculated. Marsaglia
[129] introduced a more efficient polar algorithm for generating standard normal variates.

The algorithm is:
1. Generate u; = 2R; — 1 and up = 2Ry — 1.
2. Let s = u? + u3.
3. If s > 1 return to step 1.
4. Let ¢ = (—21ns/s)'/2.

5. Two independent standard normal variates are then calculated by z; = qu; and

22 = qu2.

Again, approximately 1.273 iterations are required to generate each pair of normal variates.
For 10® pairs, this polar algorithm requires only about 76% of the CPU time used by the

Box-Muller transformation.

D.4 Sampling from a continuous Boltzmann energy distri-

bution

From Eq. 2.16, the continuous Boltzmann energy distribution for ( DOF is

F(&) = &> Lexp (&) /T((/2),

where € = ¢/(kT) is a reduced energy. This distribution is called the gamma distribution.
To sample from this distribution using the acceptance-rejection method, the maximum of

the distribution fmax is required. From differentiation, fmax occurs at € = (/2 — 1 and is

Fmax = (/2 — 1)/ L exp(—¢/2 + 1) /T(¢/2).

For convenience,

a=(/2—1 and b=a"/exp(a)
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may be defined, so the acceptance criterion f/fmax becomes

f/frnax =é“ exp(—g)/b.

When sampling from f(€) with the acceptance-rejection method, uniformly distributed €

values are generated within the range of interest, and are accepted if

Rf < f/fmax-

When ¢ = 2, the gamma distribution reduces to the exponential distribution f(€) =
exp(—¢€) and € is sampled using
€=—In(Ry).

For this case, € = oo as Ry — 0, so Ry = 0 must be avoided.
The Cheng-Feast algorithm [50] can be used to sample from the gamma distribution

f(@) =& exp(—#)/T(a)

where the shape parameter & > 1. Usinga = a—1, b = [a—1/(6)] /a, ¢ = 2/a and
d = ¢+ 2, the Cheng-Feast algorithm is:

1. Generate u; = Ry and up = Ry.

2. Let w = buy Jus.

3. fcug —d+w+ 1/w <0 go to step 6.

4. If clnug —Inw+ w < 1 go to step 6.

5. Return to step 1.

6. Use € = aw.

For the distribution of €, in collisions for VHS molecules, given by Eq. 4.11, a—1=1-v
so @ = 2 — v. For typical v = 0.25, o = 1.75 and the Cheng-Feast algorithm can be used
for efficient generation of €.

For v = 0.25, a comparison between the CPU requirements of the Cheng-Feast algo-
rithm and the acceptance-rejection method was performed. 108 values of €4 Were gener-
ated. The acceptance-rejection method generated €, values between 0 and 10. In this
test, the Cheng-Feast algorithm required only about 17% of the CPU time required by the
acceptance-rejection method. The CPU requirements of the acceptance-rejection method

increase quickly as the upper limit of €, is increased above 10.



