
Thursday 28 September 2023

Rowan Gollan

Centre for Hypersonics

School of Mechanical & Mining Engineering

The University of Queensland, Australia

 ______ _ __ ______
 / ____/(_)/ /____ ___ ___ _____ / ____/
 / __/ / // // __ `__ \ / _ \ / ___/ /___ \
 / /___ / // // / / / / // __// / ____/ /
/_____//_//_//_/ /_/ /_/ ___//_/ /_____/

A Preview of

Why an Eilmer5? Why now?

No backwards compatibility in output files between Eilmer4 and Eilmer5, hence major number bump.

Proposed release numbering for Eilmer series

4︸︷︷︸
major

. 2︸︷︷︸
minor

. 15︸︷︷︸
patch

patch number trivial changes; bug fixes or very small
enhancements to features; no new features;
changes are backwards compatible

minor number new features (probably isolated features)
introduced; backwards compatible; use even/odd
numbers to indicate stable/experimental release

major number marks boundaries of compatibility; expected to
have new features/sets of features

This style of release numbering is known as semantic versioning. 6

Some recent history

May 2020: new website launch

Source: Gibbons et al. (2023),
 CPC 282:108551

Dec 2020: continuous integration testing goes live

Source: Hornung et al. (2021), JFM 916(A5)April 2021: largest numerical experiment conducted
with Eilmer; 300+ simulations; 500 GB data

Feb 2022: repository moved to Github

Some recent history

GDTk CHANGELOG 2022-q4
A newsletter for the GDTk Community
23 October 2022

Welcome to the inaugural newsletter for the GDTk community!
There’s been a lot happening in the past few months and it seemed
the timing was right to record and broadcast those happenings in
an informal newsletter. Our intent is to release on a quarterly basis.
The newsletter will be principally written and compiled by the
developers, but we will also readily welcome contributions from the
community. Without further ado, read on to find out what’s been
happening lately amongst the group of users.

Since this is our first newsletter, I’ll take the liberty of a loose
definition for the period of a quarter. Let’s share some of the activ-
ities going back half a year or so. We’ve had some exchanges and
visits, some serious paper writing and some even more serious code
writing resulting in a program called Chicken.

Eilmer in the archive

Computer Physics Communications 282 (2023) 108551

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Eilmer: An open-source multi-physics hypersonic flow solver ✩,✩✩

Nicholas N. Gibbons, Kyle A. Damm, Peter A. Jacobs, Rowan J. Gollan ∗

Centre for Hypersonics, School of Mechanical & Mining Engineering, The University of Queensland, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 May 2022
Received in revised form 10 September
2022
Accepted 19 September 2022
Available online 27 September 2022

Keywords:
Scientific computing
Computational fluid dynamics
Hypersonics
Parallel computing

This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at
the University of Queensland, designed to support research calculations in hypersonics and high-speed
aerothermodynamics. Eilmer has a broad userbase in several university research groups and a wide
range of capabilities, which are documented on the project’s website, in the accompanying reference
manuals, and in an extensive catalogue of example simulations. The first part of this paper describes the
formulation of the code: the equations, physical models, and numerical methods that are used in a basic
fluid dynamics simulation, as well as a handful of optional multi-physics models that are commonly
added on to do calculations of hypersonic flow. The second section describes the processes used to
develop and maintain the code, documenting our adherence to good programming practice and endorsing
certain techniques that seem to be particularly helpful for scientific codes. The final section describes a
half-dozen example simulations that span the range of Eilmer’s capabilities, each consisting of some
sample results and a short explanation of the problem being solved, which together will hopefully assist
new users in beginning to use Eilmer in their own research projects.

Program summary
Program Title: Eilmer
CPC Library link to program files: https://doi.org/10.17632/gy2ds2fyxm.1
Developer’s repository link: https://github.com/gdtk-uq/gdtk
Code Ocean capsule: https://codeocean.com/capsule/7226427
Licensing provisions: GPLv3
Programming language: D, Lua
Supplementary material: https://gdtk.uqcloud.net
Nature of problem: Eilmer solves the compressible Navier-Stokes equations with a particular emphasis
on flows at hypersonic speeds. The code includes modelling for high-temperature gas effects such as
chemical and vibrational nonequilibrium. Eilmer can be used for the simulation for unsteady and steady
flows.
Solution method: The code is implemented in D [1] and built on a finite-volume formulation that is
capable of solving the Navier-Stokes equations in 2D and 3D computational domains, discretised with
structured or unstructured grids. Grids may be generated using a built-in parametric scripting tool or
imported from commercial gridding software. The inviscid fluxes are computed using the reconstruction-
evolution approach. In structured-grid mode, reconstruction stencils up to fourth-order spatial accuracy
are available. In unstructured-grid mode, least-squares reconstruction provides second-order spatial
accuracy. A variety of flux calculators are available in the code. Viscous fluxes are computed with compact
stencils with second-order spatial accuracy. For unsteady flows, explicit time-stepping with low-order
RK-family schemes are available, along with a point-implicit Backward-Euler update scheme for stiff
systems of equations. For steady flows, convergence can be greatly accelerated using a Jacobian-free
Newton-Krylov update scheme, which seeks a global minimum in the residuals using a series of large
pseudo-timesteps. Domain decomposition is used for parallel execution using both shared memory and
distributed memory programming techniques.
Additional comments including restrictions and unusual features: Eilmer provides a programmable interface
for pre-processing, post-processing and user run-time customisations. The programmable interface

✩ The review of this paper was arranged by Prof. Hazel Andrew.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding author.
E-mail address: r.gollan@uq.edu.au (R.J. Gollan).

https://doi.org/10.1016/j.cpc.2022.108551
0010-4655/© 2022 Elsevier B.V. All rights reserved.

Figure 1: The Eilmer paper is avail-
able in CPC volume 282.

The dev team has recently published a paper in the archival lit-
erature on the D language version of Eilmer (colloquially called
Eilmer 4). The paper appears in Computer Physics Communications.1 1 N. N. Gibbons, K. A. Damm, P. A.

Jacobs, and R. J. Gollan. Eilmer: an
open-source multi-physics hyper-
sonic flow solver. Computer Physics
Communications, 282(108551), 2023.
doi: 10.1016/j.cpc.2022.108551

For a limited time, we’ve been given a link to share the work freely.
2 After that time, you can likely get to the paper through your insti-

2 https://authors.elsevier.com/c
/1fsPB2OInkAiF

tution’s access to Elsevier journals.
Eilmer is in the archive in more ways than one now. Computer

Physics Communications are serious about the reproducibility of re-
sults derived from simulation programs, so they archive the source
code as well. As part of the publication process, Nick Gibbons had
to ensure that the code built, installed and ran as advertised. This
was done in a container environment that the article reviewers were
able to inspect. The source code now has its own DOI

https://doi.org/10.17632/gy2ds2fyxm.1

and a location on Code Ocean

https://codeocean.com/capsule/7226427 .

The paper covers the formulation and numerics in Eilmer, our
development process, and gives several examples of applications. I
wrote more about the story behind the paper on our GDTk blog.

https://gdtk.uqcloud.net/blog/the-paper-on-eilmer-v4-is-o
ut.-go-read-it

Hacking at Chickens

Figure 2: A postcard for Easter time
by Wally Fialkowska with hens
pulling a cart, first sold in 1914.
https://tuckdbpostcards.org/item
s/35560

Putting aside the clickbait-inpsired gore of the title, what we’re
talking about here is writing code (hacking) for a new flow solver
called Chicken.

We’re really excited that the team has been selected to attend
a GPU Hackathon in Canberra, hosted by National Compute In-
frastructure Australia. The team will get to work with NVIDIA

Oct 2022: Newsletter launch

Jan 2023: coupled fluid/solid
heating simulations for BoLT-II

Sep 2023: simulations of electron
transpiration cooling effectiveness

Some recent history

Computer Physics Communications 282 (2023) 108551

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Eilmer: An open-source multi-physics hypersonic flow solver ✩,✩✩

Nicholas N. Gibbons, Kyle A. Damm, Peter A. Jacobs, Rowan J. Gollan ∗

Centre for Hypersonics, School of Mechanical & Mining Engineering, The University of Queensland, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 May 2022
Received in revised form 10 September
2022
Accepted 19 September 2022
Available online 27 September 2022

Keywords:
Scientific computing
Computational fluid dynamics
Hypersonics
Parallel computing

This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at
the University of Queensland, designed to support research calculations in hypersonics and high-speed
aerothermodynamics. Eilmer has a broad userbase in several university research groups and a wide
range of capabilities, which are documented on the project’s website, in the accompanying reference
manuals, and in an extensive catalogue of example simulations. The first part of this paper describes the
formulation of the code: the equations, physical models, and numerical methods that are used in a basic
fluid dynamics simulation, as well as a handful of optional multi-physics models that are commonly
added on to do calculations of hypersonic flow. The second section describes the processes used to
develop and maintain the code, documenting our adherence to good programming practice and endorsing
certain techniques that seem to be particularly helpful for scientific codes. The final section describes a
half-dozen example simulations that span the range of Eilmer’s capabilities, each consisting of some
sample results and a short explanation of the problem being solved, which together will hopefully assist
new users in beginning to use Eilmer in their own research projects.

Program summary
Program Title: Eilmer
CPC Library link to program files: https://doi.org/10.17632/gy2ds2fyxm.1
Developer’s repository link: https://github.com/gdtk-uq/gdtk
Code Ocean capsule: https://codeocean.com/capsule/7226427
Licensing provisions: GPLv3
Programming language: D, Lua
Supplementary material: https://gdtk.uqcloud.net
Nature of problem: Eilmer solves the compressible Navier-Stokes equations with a particular emphasis
on flows at hypersonic speeds. The code includes modelling for high-temperature gas effects such as
chemical and vibrational nonequilibrium. Eilmer can be used for the simulation for unsteady and steady
flows.
Solution method: The code is implemented in D [1] and built on a finite-volume formulation that is
capable of solving the Navier-Stokes equations in 2D and 3D computational domains, discretised with
structured or unstructured grids. Grids may be generated using a built-in parametric scripting tool or
imported from commercial gridding software. The inviscid fluxes are computed using the reconstruction-
evolution approach. In structured-grid mode, reconstruction stencils up to fourth-order spatial accuracy
are available. In unstructured-grid mode, least-squares reconstruction provides second-order spatial
accuracy. A variety of flux calculators are available in the code. Viscous fluxes are computed with compact
stencils with second-order spatial accuracy. For unsteady flows, explicit time-stepping with low-order
RK-family schemes are available, along with a point-implicit Backward-Euler update scheme for stiff
systems of equations. For steady flows, convergence can be greatly accelerated using a Jacobian-free
Newton-Krylov update scheme, which seeks a global minimum in the residuals using a series of large
pseudo-timesteps. Domain decomposition is used for parallel execution using both shared memory and
distributed memory programming techniques.
Additional comments including restrictions and unusual features: Eilmer provides a programmable interface
for pre-processing, post-processing and user run-time customisations. The programmable interface

✩ The review of this paper was arranged by Prof. Hazel Andrew.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding author.
E-mail address: r.gollan@uq.edu.au (R.J. Gollan).

https://doi.org/10.1016/j.cpc.2022.108551
0010-4655/© 2022 Elsevier B.V. All rights reserved.

Jan 2023: The (new) Eilmer paper

Eilmer5: a primary motivator

Application of a Jacobian-Free Newton-Krylov Method
to the Simulation of Hypersonic Flows

Kyle Damm, Nicholas Gibbons, Peter Jacobs and Rowan Gollan

AIAA SciTech Forum, National Harbor MD, 23 -- 27 January 2023

Centre for Hypersonics

School of Mechanical & Mining Engineering

The University of Queensland, Australia

The Newton-Krylov steady-state accelerator is ready for prime time

lmr5: development migration path

• presently: majority of Eilmer5 source code is Eilmer4 source code

• when ready: migrate all Eilmer4 source across to Eilmer5 for active development

• Eilmer4 then goes into maintenance mode

­­­
Language files blank comment code
­­­
D 24 1054 1988 7761
Lua 4 111 142 624
make 3 64 33 436
Python 1 25 53 213
Bourne Shell 1 1 0 3
­­­
SUM: 33 1255 2216 9037
­­­

Eilmer4:

Eilmer5:

Source: Gibbons et al. (2023),
 CPC 282:108551

­­­
Language files blank comment code
­­­
D 106 4586 11228 61439
Lua 21 380 830 5981
Python 6 148 248 1181
make 1 100 36 1008
HTML 2 120 67 666
Ruby 4 44 61 448
Tcl/Tk 1 56 66 374
OpenCL 1 11 0 172
CUDA 1 5 1 137
Other 4 13 3 58
­­­
SUM: 147 5463 12540 71464
­­­

lmr5: development approach

auto finished = false;
buildNewIOLayer();
while (!finished) {
 buildNewUI();
 refactorAlgorithms();
 performVerification();
 reworkExamples();
 writeDocumentation();
}

Source: Chicago Metal Rolled Products

lmr5: development approach

auto finished = false;
buildNewIOLayer();
while (!finished) {
 buildNewUI();
 refactorAlgorithms();
 performVerification();
 reworkExamples();
 writeDocumentation();
}

Source: Sculpture by Olafur Eliason

> git log --oneline | grep lmr | wc -l

85

lmr5: buildNewUI()

• git-like command-line interface: command + sub-commands structure

• anticipated many sub-commands, each doing "one thing well" (Unix design philosophy)

• commands are grouped: common, developer/diagnostics, meta

See 'lmr help <command>' to read about a specific subcommand.

Available commands
 compute­norms Compute field norms (possibly with respect to a reference solution).
 help Display help about using Eilmer.
 limiter2vtk Convert fields of limiter values to VTK format.
 prep­flow Prepare initial flow fields for an Eilmer simulation.
 prep­grid Prepare grids for an Eilmer simulation.
 prep­grids Prepare grids for an Eilmer simulation.
 revision­id Print version control revision ID.
 run­steady Run a steady­state simulation with Eilmer.
 snapshot2vtk Convert snapshots of flow fields to VTK format.

Developer/diagnostics commands
 check­jacobian Check the formation of the Jacobian.

Meta commands
 version Print condensed version information about lmr program.
 version­long Print full version information about lmr program.

> lmr help -a

lmr5: refactorAlgorithms()

 1x10-16

 1x10-14

 1x10-12

 1x10-10

 1x10-8

 1x10-6

 0.0001

 0.01

 1

 0 10 20 30 40 50 60 70

[rev 719552f3]

phase 0:
 1st order

phase 1:
 2nd order

r
e
l
.

g
l
o
b
a
l

r
e
s
i
d
u
a
l

iteration

k=3
k=2
k=1
k=0

Iterative convergence for 3D MMS-NS grid levels

NewtonKrylovPhase:new{
 residual_interpolation_order = 1,
 jacobian_interpolation_order = 1,
 frozen_preconditioner = true,
 frozen_limiter_for_jacobian = false,
 use_adaptive_preconditioner = false,
 steps_between_preconditioner_update = 10,
 linear_solve_tolerance = 0.1,
 use_local_timestep = true,
 use_auto_cfl = true,
 threshold_relative_residual_for_cfl_growth = 0.9,
 start_cfl = 100.0,
 max_cfl = 1.0e6,
 auto_cfl_exponent = 1.0
}

NewtonKrylovPhase:new{
 residual_interpolation_order = 2,
 jacobian_interpolation_order = 2,
 start_cfl = 100.0,
}

lmr5: performVerification()

3D N-S Manufactured Solution with Unstructured Solver

10-5

10-4

10-3

10-2

 0.01 0.1

[rev 719552f3]

ρ
n
o
r
m
s

Δx

Wed Sep 27 22:31:42 2023

L1
L2
L∞

10-2

10-1

100

101

 0.01 0.1

[rev 719552f3]

T

n
o
r
m
s

Δx

Wed Sep 27 22:31:42 2023

L1
L2
L∞

100

101

102

103

 0.01 0.1

[rev 719552f3]

p

n
o
r
m
s

Δx
Wed Sep 27 22:31:42 2023

L1
L2
L∞

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1

[rev 719552f3]

ρ
o
b
s
.

o
r
d
e
r

Δx

Wed Sep 27 22:31:42 2023

L1
L2
L∞

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1

[rev 719552f3]

T

o
b
s
.

o
r
d
e
r

Δx

Wed Sep 27 22:31:42 2023

L1
L2
L∞

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1

[rev 719552f3]

p

o
b
s
.

o
r
d
e
r

Δx
Wed Sep 27 22:31:42 2023

L1
L2
L∞

3D N-S Manufactured Solution with Unstructured Solver

10-3

10-2

10-1

100

101

 0.01 0.1

[rev 719552f3]

v
x

n
o
r
m
s

Δx

Wed Sep 27 22:31:42 2023

L1
L2
L∞

10-3

10-2

10-1

100

 0.01 0.1

[rev 719552f3]

v
y

n
o
r
m
s

Δx

Wed Sep 27 22:31:42 2023

L1
L2
L∞

10-3

10-2

10-1

100

101

 0.01 0.1

[rev 719552f3]

v
z

n
o
r
m
s

Δx
Wed Sep 27 22:31:42 2023

L1
L2
L∞

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1

[rev 719552f3]

v
x

o
b
s
.

o
r
d
e
r

Δx

Wed Sep 27 22:31:42 2023

L1
L2
L∞

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1

[rev 719552f3]

v
y

o
b
s
.

o
r
d
e
r

Δx

Wed Sep 27 22:31:42 2023

L1
L2
L∞

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1

[rev 719552f3]

v
z

o
b
s
.

o
r
d
e
r

Δx
Wed Sep 27 22:31:42 2023

L1
L2
L∞

> lmr-verify

lmr5: reworkExamples()

lmr5: live demo

> lmr help

lmr5: summary of changes

• new command-line interface

• new file and directory layout

• staged preparation is default

• temporal settings/BCs only have meaning for transient mode solver

• common names for job files expected, eg. job.lua

• summary listing of examples

• tests coordinated with pytest

• aim for reproducibility in workflows: makefiles, lmr revision­id

2022.Q4 -- 2023.Q3 : pre-alpha

• capabilities: single-species, structured/unstructured, parallel, turbulence models

• RJG developing

• RBO limited use

2023.Q4 : alpha

• capabilities: add multi-species and multi-temperature

• all principal developers move to Eilmer5

• gdtk core group start using

2024.Q1 : beta

• capabilities: feature complete with Eilmer4

• members of CfH invited to migrated to Eilmer5

2024.Q3 : tagged release on github

lmr5: what it means for you

> git log -n 1 32c20b27

commit 32c20b27d221849e5f100e57d2627bcea8006de2
Author: Rowan J. Gollan <r.gollan@uq.edu.au>
Date: Sat Oct 22 23:43:18 2022 +1000

 lmr5: first commit in public master

 Don't panic! v4 of Eilmer is not going away anytime soon.

 This commit brings the eilmer 5 work­in­progress code into
 the master branch on the public­facing github. This is so
 that I can work more closely with the developments in master.

 Eilmer v5 is a change at the interface level, but uses almost
 all of the core files from Eilmer v4. The migration path
 is that new code goes in:

 src/lmr

 but uses a lot of code from src/eilmer.

 There is an example of the new interface in:

 examples/lmr/2D/convex­corner

