
Estimating Parallel Compute Performance
for Eilmer Simulations

Rowan Gollan

03 October 2019

Outline

• A model of parallel execution

• Parallel execution in Eilmer

• Strategies for load-balancing

• An approach to estimate parallel performance
• Some examples:

• double cone
• flared cone
• JCEAP configuration

1

A model of performance for parallel execution

• How does execution time and efficiency vary with increasing processor
count?

• What is the fastest I can solve my problem on a cluster with many cores
available?

• fixed-size problem analysis, or strong scaling

Execution time of an algorithm on a single processor:

T1 = sT1 + pT1

where:

s: serial part of the algorithm; no benefit from increasing
processor count

p: parallel part of the algorithm; work divides perfectly across
more processors

2

Speed-up with multi-processor computer

Execution time of an algorithm on a single processor:

T1 = sT1 + pT1

Execution time of same algorithm on n processors:

Tn = sT1 +
p
n

T1

Speed-up is how much faster the algorithm executes on n processors compared
to a single processor:

S =
T1

Tn

For large n, speed-up is limited by serial fraction of algorithm to:

S =
1
s
=

1
1 − p

The consequence is we require a very high fraction of parallel work to get benefit
from increasing the number of processors we use.

3

Limits on Speed-up: Amdahl’s Law

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

s
p
e
e
d
-
u
p
,

T
_
1
/
T
_
n

number of processors

p = 0.5
p = 0.75
p = 0.9
p = 0.95
p = 0.99

p = 0.995
p = 0.9999

4

Limits on Efficiency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

r
e
l
.

e
f
f
i
c
i
e
n
c
y

number of processors

p = 0.5
p = 0.75
p = 0.9
p = 0.95
p = 0.99

p = 0.995
p = 0.9999

Erel =
T1

nTn 5

Parallel Execution in Eilmer

We use domain decomposition to increase the parallel fraction of the algorithm
in Eilmer.

Tn = sT1 +
p
n

T1

s: global coordination activities; global decisions; I/O;
communication; waiting on other processors to finish

p: timestep update on a block or collection of blocks

6

Parallel Execution in Eilmer

We use domain decomposition to increase the parallel fraction of the algorithm
in Eilmer.

Tn = sT1 +
p
n

T1

s: global coordination activities; global decisions; I/O;
communication; waiting on other processors to finish

p: timestep update on a block or collection of blocks

ADIABATIC

x

-0.02 0 0.02 0.04 0.06 0.08 0.1

y

0

0.02

0.04

in-0-0

SLIP_WALL

S
U
P
_I
N

in-0-1

SLIP_WALL

S
U
P
_I
N

p1-0-0

p1-0-1

p1-1-0

ADIABATIC

p1-1-1

p1-2-0

p1-2-1

p1-3-0

p1-3-1

SLIP_WALL

p1-4-0

p1-4-1

p1-5-0

p1-5-1

p1-6-0

ADIABATIC

p1-6-1

p2-0-0

p2-0-1

p2-1-0

FI
X
E
D
_P
_O
U
T

p2-1-1

SLIP_W
ALL

FI
X
E
D
_P
_O
U
T

7

Load-balancing options in Eilmer

Balancing the compute work across the processors is key to maintaining a high
parallel fraction. If processors finish work early, they are idle. Idle time
contributes to serial fraction.

Options for load balancing in Eilmer:

• manual: build by hand blocks of roughly equal workload (ie. number of
cells)

• FBArray: the fluid-block-array object can carve up a large (hand-built)
block into many smaller blocks of equal work

• load-balance tool: assign collections of blocks to processors, distribute the
collections of blocks to try to equalise work on the processors

• Metis: 3rd-party tool to partition unstructured grids

8

A suggested approach for estimating parallel fraction

• parallel fraction varies due to: number of cells, how well load balanced,
patterns of block-to-block communication

• easiest to determine parallel fraction by small time trials

1. Time the execution for 1000 steps (for example) on n1 processors. Record
the time spent on time-stepping. Ignore the start-up cost.

2. Time the execution for 1000 steps on n2 (for example n2 = 2n1). Record
the time spent on time-stepping.

3. Compute speed-up from using n1 to using n2:

S =
Tn1

Tn2

4. Estimate the parallel fraction as:

p =
S − 1

S − 1 + 1
n1

− S
n2

5. Repeat for n3, n4, . . . until you are satisfied you have a clear picture of the
parallel fraction

9

Double cone

FBArray:new{nib=..., njb=...}

10

Double cone

number of cells: 192 k
load-balance: 1 block per core, domain partitioned with FBArray

objects

no. cores time (s) for 1000 steps speed-up p rel. efficiency

70 89.0 - - -
140 43.4 2.05 1.00034 1.02534
280 22.7 1.9119 0.9997 0.9559
560 10.5 2.1619 1.00024 1.0809

1120 7.0 1.5 0.9991 0.75
2240 5.25 1.333 - 0.6667

11

Flared cone

Thanks to Isaac Convery-Brien for test case and images.

> e4loadbalance --job=flared-cone --ntasks=28
12

Flared cone

number of cells: ≈ 140 k
load-balance: 448 blocks for every case, distributed with
load-balance tool

no. cores time (s) for 1000 steps speed-up p rel. efficiency

28 60.3 - - -
56 30.2 1.9967 0.99994 0.99834

112 15.2 1.9934 - 0.9967

13

Flared cone

number of cells: ≈ 140 k
load-balance: 448 blocks for every case, distributed with
load-balance tool

no. cores time (s) for 1000 steps speed-up p rel. efficiency

28 60.3 - - -
56 30.2 1.9967 0.99994 0.99834

112 15.2 1.9934 - 0.9967
112 15.9 1.89937 0.99900 0.94968

14

Flared cone

number of cells: ≈ 140 k
load-balance: 448 blocks for every case, distributed with
load-balance tool

no. cores time (s) for 1000 steps speed-up p rel. efficiency

28 60.3 - - -
56 30.2 1.9967 0.99994 0.99834

112 15.9 1.89937 0.99900 0.94968
224 8.8 1.8171 - 0.9086

15

Flared cone

number of cells: ≈ 140 k
load-balance: 448 blocks for every case, distributed with
load-balance tool

no. cores time (s) for 1000 steps speed-up p rel. efficiency

28 60.3 - - -
56 30.2 1.9967 0.99994 0.99834

112 15.9 1.89937 0.99900 0.94968
224 8.8 1.8171 - 0.9086
224 8.0 1.9875 0.99994 0.99375

16

Flared cone

number of cells: ≈ 140 k
load-balance: 448 blocks for every case, distributed with
load-balance tool

no. cores time (s) for 1000 steps speed-up p rel. efficiency

28 60.3 - - -
56 30.2 1.9967 0.99994 0.99834

112 15.9 1.89937 0.99900 0.94968
224 8.0 1.9875 0.99994 0.99375
448 4.1 1.9754 - 0.9877

17

Flared cone

number of cells: ≈ 140 k
load-balance: 448 blocks for every case, distributed with
load-balance tool

no. cores time (s) for 1000 steps speed-up p rel. efficiency

28 60.3 - - -
56 30.2 1.9967 0.99994 0.99834

112 15.9 1.89937 0.99900 0.94968
224 8.0 1.9875 0.99994 0.99375
448 4.1 1.9754 - 0.9877
448 4.5 1.7777 0.99936 0.8888

18

Flared cone

number of cells: ≈ 140 k
load-balance: 448 blocks for every case, distributed with
load-balance tool

no. cores time (s) for 1000 steps speed-up p rel. efficiency

28 60.3 - - -
56 30.2 1.9967 0.99994 0.99834

112 15.9 1.89937 0.99900 0.94968
224 8.0 1.9875 0.99994 0.99375
448 4.5 1.7777 0.99936 0.8888
896 2.75 1.6363 - 0.8181

19

JCEAP configuration

Thanks to Kyle Damm for test case and images.

20

JCEAP configuration

> ugrid partition jceap.su2 mapped cells 28 3

21

JCEAP configuration

number of cells: ≈ 700 k
load-balance: 1 block per core, domain partitioned with Metis

no. cores time (s) for 1000 steps speed-up p rel. efficiency

28 272.1 - - -
56 138.3 1.9674 0.9994 0.9837

112 74.5 1.8563 0.9985 0.9282
224 38.9 1.9152 0.9996 0.95758
448 23.5 1.6553 0.9988 0.8277
896 15.8 1.4873 - 0.7437

22

Concluding remarks

• Load balance is critical for good parallel performance
• Eilmer provides several methods to make load balancing

easy:
• FBArray: structured grids, relatively simple geometries
• e4loadbalance: when blocking (topology) is dictated by

geometry
• ugrid partition: using Metis for unstructured grids

• Some simple time trials can give you a quick estimate on
how your simulation will scale given your problem size and
the cluster you are using

• Eilmer shows very good strong scaling on modern clusters
when care is taken with load balance

23

