
User-defined Run-time Customisation
for Eilmer Simulations

Rowan Gollan, Peter Jacobs and Ingo Jahn

19 July 2018

Outline

• User-defined hooks in Eilmer: why and what
• Implementation

• Mental model of interaction
• Contracts between user and calling code
• Tour of helper variables, functions and modules
• Some restrictions/warnings on use

• Examples
• User-defined source terms
• User-defined boundary conditions AND user-defined grid

motion

• Troubleshooting tips

1

The Why of User-defined Customisation

User-defined hooks are pieces of customised code that users can build to do a certain
modelling job that isn’t available in the standard implementation. In Eilmer, users write
the custom code in Lua.

From the user’s perspective:

• Provide an easy interface to simulation customisation without needing to learn D
programming and details of the compilation process

• Provide a means to customise modelling that does not rely on developer’s timeline
• Provide a means to prototype and test models that might later be included in the

standard modelling kit

From the developer’s perspective:

• Delivers flexibility of modelling to users
• Allows one-off experimentation of ideas without major changes to D source code

infrastructure
• Allows one-off modelling jobs without the ongoing maintenance burden of

inclusion in the mainline source code
• Simplifies addition of new modelling features in the standard kit if users can

provide a debugged and tested implementation as a user-defined hook

2

The What of User-defined Customisation

• User-defined functions are called at particular points in the
simulation to do some customisation of the modelling

• The functions are defined in a Lua script
• The customisations allow modifications to source terms,

boundary conditions and prescription of grid motion.
• There is also a supervisory user-defined function available

Steps to use:

1. Build a Lua script that defines a customisation function
according to certain rules1

2. In the main input script, configure the simulation program to
look for and use your customisation script

1See the appendix of the Eilmer user manual

3

Implementation: mental model for user

Some things for the user to keep in mind:

• Each “customisation” you apply is its own isolated Lua program

• Each “customisation” is loaded at the start of the simulation (initialisation)

• You may do some initial configuration of your customisation during
start-up

• Alternatively, you can wait until the function is first called

• On each timestep, Eilmer looks for the specific customisation function and
calls it, possibly many times, expecting a particular return value

• Aside from the specific function, Eilmer does not care what else is in your
script. It will silently ignore anything superfluous to the job at hand

• The “customisation” programs are reentrant and hold state between calls.
If you change a global value in your program, that change will persist
across calls.

4

Implementation: mental model for user

• Each “customisation” you apply is its own isolated Lua program
• Each “customisation” is loaded at the start of the simulation (initialisation)
• On each timestep, Eilmer looks for the specific customisation function and calls it, possibly many times,

expecting a particular return value
• Aside from the specific function, Eilmer does not care what else is in your script. It will silently ignore anything

superfluous to the job at hand
• The “customisation” programs are reentrant and hold state between calls. If you change a global value in your

program, that change will persist across calls. 5

The user-defined function contract

6

The user-defined function contract

7

The user-defined function contract

8

The user-defined function contract

9

The user-defined function contract

10

The user-defined function contract

11

Tour of helper variables, functions and modules

Eilmer defines some objects at global scope inside the Lua
customisation programs. Some examples are:

nFluidBlocks number of fluid blocks in simulation domain
gmodel access to gas model functions used in current

simulation
sampleFluidCell() function to give properties of a cell in the simu-

lation domain
sampleFluidFace() as above but properties at face
Vector3 object from Eilmer geometry package
Matrix object from Eilmer bare-bones linear algebra

module

These can be used to make your Lua customisations rather
general. For example, if you change the gas model in your
simulation, you don’t need to hard-code the equation-of-state
expressions: just use Eilmer’s gas model functions. 12

Some restrictions/warnings on use

• Remember that the customisations run in isolation (in their own sandbox).
Don’t expect changes in one script to be reflected in another.

• The sampling functions that give information about blocks, cells and
interfaces only work for blocks in the memory of the process. So, for MPI
simulations, you cannot get information about blocks and cells running in
a different process. In fact, you might get a segmentation fault if you try
this.

• There is a run-time overhead associated with user-defined functions. If
you find things are really slow, it might be time to think about an
implementation in the core solver in the D language.

• The other thing that could cause slow execution is sloppy Lua
programming. For example, reading/writing files is possible, but slow.
Consider storing values in a Lua table.

• Be careful of memory too. Don’t try to store very large amounts of data in
the memory of the Lua program.

• Basically, you have the full power of a programming language at your
disposal: be careful. 13

User-defined source terms: implementation

• User-supplied source
terms add to internally
computed source terms

• Source terms are a rate of
change on a per-volume
basis, and can be applied
to any/all conservation
equations

• User-supplied function
(sourceTerms) is called
nStages per time step for
every cell in the domain

14

User-defined source terms: common uses

• To implement manufactured source terms when using the
Method of Manufactured Solutions for code verification

• To give rates of species change for specialised chemistry
schemes

• To model momentum loss in flow through porous media

• To model heat sources/sinks in the flow field, eg. radiation
cooling effect

15

User-defined source terms: example

Modelling deposition of energy to modify shock location in front
of a blunt slab

16

User-defined source terms: example script

1 Q = 2.0e3 -- W
2 h = 1.0
3 x_on_h = 0.9
4 xC = -h/2 - (x_on_h * h)
5 xL = xC - (0.5*h/15)
6 xR = xC + (0.5*h/15)
7 yE = 0.5*h/56
8
9 function sourceTerms(t, cell)
10 src = {}
11 x = cell.x
12 y = cell.y
13 src.mass = 0.0
14 src.momentum_x = 0.0
15 src.momentum_y = 0.0
16 src.total_energy = 0.0
17 if (y < yE) then
18 if (x >= xL and x <= xR) then
19 src.total_energy = Q/cell.vol
20 end
21 end
22 return src
23 end
24

17

User-defined source terms: additions to input script

config.udf source terms = true

config.udf source terms file = ’energy-deposition.lua’

18

User-defined boundary conditions: implementation

• Users can affect both convective
and diffusive boundary conditions

• Users decide if they wish to
supply ghost cell values, interface
values or fluxes directly

• When specifying fluxes or
interface values, users decide
which values they supply. It is
assumed that the values related
to other conservation equations
are already set.

• When specifying ghost cells, the
user must supply all requisite
values.

19

User-defined boundary conditions: common uses

• To implement time-varying and/or spatially-varying
boundary conditions

• To patch inflow data from another simulation or code

• To specify exact conditions on boundaries for Method of
Manufactured Solutions

• To implement fluid-structure interaction BCs where the
boundary responds to the fluid state

20

User-defined grid motion: implementation

• We cannot predict all cases of moving grids so we allow the
user to control grid motion.

• Grid motion is controlled through movement of vertices.

• The user supplies the velocities of the vertices, not positions.

• Users supply a function assignVtxVelocities that needs to
give velocities for all vertices in the domain. Vertices with
zero velocity may be skipped.

• For moving whole blocks or whole domains at once, there
are convenience functions:

• setVtxVelocitiesForBlock

• setVtxVelocitiesForDomain

21

Example of piston driving shock

This example employs both a user-defined boundary condition and
user-defined grid motion.

It is a piston of constant velocity. The piston does not get any feedback

from the gas in the cylinder, in this simple case.

User customisations:

1. The moving piston face BC will be supplied as a user-defined function. The
convective fluxes for all of the conservation equations will be given.

2. The grid motion will be defined by setting velocities of grid vertices.
Vertices at the piston face have the piston velocity. Vertices at the fixed
end have zero velocity. All vertices in between will have a velocity
assigned according to a linear distribution. 22

User-defined BC for moving piston face

1 pSpeed = 293.5 -- m/s
2
3 function convectiveFlux(args)
4 -- We need to get the pressure at the
5 -- cell adjacent to the boundary.
6 -- We aren't going to do any fancy
7 -- reconstruction of the piston face
8 -- pressure; we are simply going to take
9 -- the adjacent cell pressure.
10 cell = sampleFluidCell(blkId, args.i, args.j)
11 p = cell.p
12 flux = {}
13 flux.mass = 0
14 flux.momentum_x = p
15 flux.momentum_y = 0.0
16 flux.total_energy = p*pSpeed
17 return flux
18 end
19

The convectiveFlux flux function is called, in turn, at every
interface along the user-defined boundary. Here, 4 times.

23

User-defined boundary conditions: additions to input script

blk.bcList[west] = BoundaryCondition:new{type="user_defined",

ghost_cell_data_available=false,

convective_flux_computed_in_bc=true,

postConvFluxAction = {UserDefinedFlux:new{fileName=’piston-bc.lua’,

funcName=’convectiveFlux’}

}

}

24

A note on flux directions

NORTH

EAST

SOUTH

WEST

These are the positive sense of fluxes for the various boundaries
in a 2D structured grid. 25

User-defined grid motion: example script

1 pSpeed = 293.5 -- m/s
2 L = 0.5 -- m
3 H = 0.1 -- m
4 endDomain = L
5
6 function assignVtxVelocities(sim_time, dt)
7 -- Compute present position of piston
8 pPos = pSpeed * sim_time
9 -- Compute current length of domain
10 L = endDomain - pPos
11 -- Loop over all cells, assigning vertex velocities
12 imin = blockData[0].vtxImin
13 imax = blockData[0].vtxImax
14 jmin = blockData[0].vtxJmin
15 jmax = blockData[0].vtxJmax
16 for j=jmin,jmax do
17 for i=imin,imax do
18 -- Find position in duct
19 pos = getVtxPosition(0, i, j, 0)
20 -- Linearly scale vertex speed based
21 -- on how far the vertex is from the
22 -- fixed end of the duct.
23 vtxSpeed = ((endDomain - pos.x)/L)*pSpeed
24 -- Set vertex as Vector3 object
25 setVtxVelocity(Vector3:new{x=vtxSpeed}, 0, i, j)
26 end
27 end
28 end
29

26

User-defined grid motion: additions to input script

config.gasdynamic_update_scheme = "moving_grid_1_stage"

config.grid_motion = "user_defined"

config.udf_grid_motion_file = "grid-motion.lua"

27

Troubleshooting tips, 1/2

• The user-defined hooks are considered features for advanced users.
We do not give much in the way of error messages when things go
wrong in your function. Partly because of the effort for such a
small user base and partly because of the additional run-time
overhead in doing checks on every user-supplied input. Recall how
often the functions are called.

• The Lua print() function should be your friend for debugging.
Remember that the user-defined functions are called many times.
It might be helpful to also exit the program after you have some
debug information: os.exit(1)

• If you want to check that your Lua script is syntactically correct
before you start, use the Lua compiler in parse-only mode.

> luac -p piston-bc.lua

28

Troubleshooting tips, 2/2

• Check you are playing by the rules:
• supplying functions with correct signatures and return types
• not trying to access flow field data unavailable to that process

• Start small and build up complexity as you go

• Design simple tests that run in minutes before launching a
multi-day simulation

• RTEM: Read the Eilmer manual (see Appendix in user guide
and examples in repository)

29

