Direct Numerical Simulation (DNS) of High-Speed Flows using Graphics Processing Units (GPUs) CfH Seminar

Christine Mittler

Principal Advisor: Dr Rowan Gollan Associate Advisor: Dr Peter Jacobs

August 1, 2024

DNS of High-Speed Flows using GPUs

August 1, 2024

1/42

Christine Mittler

Introduction

- Motivation
- Flow solver development
 - Proof of concept
 - Objectives
 - Flow solver (Spatz)
 - Verification
 - Performance
- Flat plate investigations

< ∃ >

э

Source: https://thehighfrontier.blog/ 2016/01/02/reagans-impossible-dreamthe-x-30-national-aerospace-plane/

- Predicting transition on hypersonic vehicles one of key challenges in their design
- Transition prediction directly influences estimate of aerodynamic heating and drag
- For National Aerospace Plane (NASP) payload-to-gross-weight ratio nearly doubled depending on how optimistic or conservative predictions of transition were made

- Compared to Reynolds-averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES), direct numerical simulation (DNS) most computationally expensive turbulence simulation technique, but gives highest physical fidelity
- Approach to manage large computational cost of DNS is to improve computational efficiency
 - algorithm enhancement
 - hardware advancement
- Find and develop fluid algorithms best suited to new hardware accelerators
- Graphics Processing Units (GPUs) as hardware accelerators
- Current Literature on DNS on GPUs shows promising speed-ups for certain problem sizes and suitable algorithms
- GPUs dominant choice amongst high performance compute systems across the world

Transition investigation on a flat plate

Christine Mittler

	<ロ> (四) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	୬୯୯
DNS of High-Speed Flows using GPUs	August 1, 2024	5 / 42

Flow solver development - Proof-of-concept

Is there a performance benefit for GPUs compared to CPUs for compressible flow simulations? Strategy: Build 1D flow solver and test with two flux calculators on both architectures

DNS of High-Speed Flows using GPUs

August 1, 2024

Goals

- Speed-up DNS with GPUs
 - $\bullet\,$ Extend 1D code to 2D/3D on CPU and GPU
 - Test and verify 2D solver
 - Test and verify 3D solver
- Investigate flow physics underlying hypersonic transition
 - Apply GPU solver on heat flux case study

2D / 3D extension from 1D flow solver

DNS of High-Speed Flows using GPUs

Algorithm

CPU Code

- Initialisation (Flow states in cells)
- Start time loop
 - i-dir:
 - Flux calculation
 - j-dir:
 - Transform to local frame
 - Flux calculation
 - Transform to global frame
 - Conserved quantities update
 - Cell average flow properties update
 - Output
- End time loop

Flux calculators in Spatz

Reconstruction - Evolution:

- Approximate Osher-type Riemann (OR) solver
- Roe flux solver

Flux - Reconstruction:

 Summation-by-parts Alpha-Splitting-Flux (SBP-ASF)

(Direct numerical simulations of instabilities in the entropy layer of a hypersonic blunted slender cone, Whyborn, L., 2023)

Flux-Solver(L,R) \rightarrow Flux over Face

 $\mathsf{Flux-Solver}(\Box\Box\Box) \to \mathsf{Flux} \text{ over Face}$

August 1, 2024

Viscous Flow

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

Adjustments for GPU implementation

CPU Code (Host)

- Initialisation (Flow states in cells)
- Memory allocation on GPU
- Data transfer to GPU
- Start time loop

- Data transfer from GPU
- Output
- End time loop
- Free GPU memory

GPU Code (Device)

- Boundary condition
- Flux calculation
- Conserved quantities update
- Cell average flow properties update

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

2D

- Isentropic Vortex
- Method of Manufactured solutions (MMS)
 - inviscid
 - viscous
- Self-similar laminar boundary-layer

3D

- Method of Manufactured solutions (MMS)
 - inviscid
 - viscous

э

Verification - Isentropic Vortex

Simulation of one period

• Simulation of 1 period

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

Figure: L_2 -norm density and orders of accuracy p

DNS of High-Speed Flows using GPUs

August 1, 2024

Process

- define analytic solution
- generate source terms using governing equations
- boundary conditions: manufactured solution
- perform simulations with varying grid sizes and compare to exact solution

2D Method of Manufactured solutions (MMS) - inviscid

Simulation results

Convergence history - density

DNS of High-Speed Flows using GPUs

August 1, 2024

2D Method of Manufactured solutions (MMS) - results

Observed Order of Accuracy

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

3D Method of Manufactured solutions (MMS) - viscous

Simulation results (viscous)

Convergence history - density

3D Method of Manufactured solutions (MMS) - results

DNS of High-Speed Flows using GPUs

August 1, 2024

Performance: 2D run-time comparison inviscid flow

2D Sod's shock tube on CPU (Intel Core i7-4790) and GPU (NVIDIA GeForce GTX 1070)

DNS of High-Speed Flows using GPUs

August 1, 2024

Performance: 3D run-time comparison viscous flow

3D viscous MMS on CPU (Intel Core i7-4790) and GPU (NVIDIA GeForce GTX 1070) 1×10^{6} CPU CPII 100000 10000 S runtime, 1000 GPU speed up: 51.7 100 10 1/32 1/16 1/8 Δx

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024 22 / 42

Bunya - HPC at UQ

- NVIDIA H100 GPU
- 7 H100 nodes with 3 H100 cards each
- each H100 has 80GB of GPU RAM
- nodes have 2TB of CPU RAM

NVIDIA H100 GPU Source: https://resources.nvidia.com/enus-tensor-core/gtc22-whitepaperhopper?ncid=no-ncid

DNS of High-Speed Flows using GPUs

August 1, 2024

Case study - Flat plate hypersonic transition

Fig. 19. Flat plate schlieren - Mach 5.5 enthalpy, Re_{π} = 9.58 \times 10⁶ 1/m.

Source: *Electrically-heated flat plate testing in a free-piston driven shock tunnel* Chang, E.W.K., Chan, W.Y.K., Hopkins, K.J., McIntyre, T.J. and Veeraragavan, A. (2020)

DNS of High-Speed Flows using GPUs

August 1, 2024

N 2 E

Flow properties according to T4 experiments by Eric Chang

Flow parameter	M 7 enthalpy	M 5.5 enthalpy	
Pressure	2624	2649	
Velocity	2221	1857	
Temperature	250	162	
Mach	7	7.3	
Re _{unit} (/m)	5.06e+06	9.58e+06	

Source: *Electrically-heated flat plate testing in a free-piston driven shock tunnel* Chang, E.W.K., Chan, W.Y.K., Hopkins, K.J., McIntyre, T.J. and Veeraragavan, A. (2020)

Flat plate simulation - stages

			mo			
1.2e-02	0.02	0.03	0.04	0.05	0.06	6.9e-02
	1	-	1			

- Stage 0: x: 0-40mm, y: 10mm
- Stage 1: x: 30-200mm, y: 40mm
- Stage 2: x: 175-300mm, y: 30mm

Case study - Stage 0 setup

Boundaries

Outflow: linear extrapolation

Number of cells in simulation: 2000×400

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

Case study - Stage 0 results

Wall-clock time: 00:47:43

DNS of High-Speed Flows using GPUs

Obtained inflow profile at position $\mathsf{x}=0.03\mathsf{m}$

Christine Mittler

August 1, 2024

Case study - Stage 1 setup

Boundaries

Outflow: linear extrapolation

Inflow: Profile from stage 0

Outflow: linear extrapolation

No-slip wall with fixed temperature

Number of cells in simulation: 2800×480

DNS of High-Speed Flows using GPUs

August 1, 2024

Case study - Stage 1 results

Convergence stage 1

Obtained inflow profile at position x = 0.175m

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

Case study - Stage 2 setup

Boundaries

Outflow: linear extrapolation

Outflow: linear extrapolation

31 / 42

No-slip wall with fixed temperature

rho 0.04

0.05

0.06 6.9e-02

0.03

1.20.02

Number of cells in simulation: 1800×540

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

Pressure disturbance according to Johnston and Candler 2022: *Modal analysis of instabilities in the bolt-2 flowfield*:

$$p' = A(2R - 1)$$

$$\rho' = p' \frac{1}{\bar{a}_{\infty}^2}$$

$$u'_i = p'$$

$$T' = p' \frac{(\gamma - 1)\bar{T}}{\bar{\rho}\bar{a}_{\infty}^2}$$

R: random number between 0 and 1, A: magnitude of white noise disturbance In this case study (according to T4 white noise measured in experiments): A = 0.7% of free stream pressure

Flat plate heating setups

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

→ < ∃ →</p>

33 / 42

э

Flat plate heating setups

heated strip - 20mm wide at 40mm

heated strip - 40mm wide at 40mm

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

2 E

Case study - Schlieren results

Schlieren results for Mach 7.3 case

(b) Heated, $T_w \approx 500 \text{ K}$

Fig. 19. Flat plate schlieren - Mach 5.5 enthalpy, $Re_u = 9.58 \times 10^6 1/m$.

Source: *Electrically-heated flat plate testing in a free-piston driven shock tunnel* Chang, E.W.K., Chan, W.Y.K., Hopkins, K.J., McIntyre, T.J. and Veeraragavan, A. (2020)

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024 36 / 42

DNS results Mach 7.3 - unheated vs fully heated (500K)

Simulation results for Mach 7.3 case

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024

Case study - Schlieren results

Schlieren results for Mach 7 case

(b) Heated, $T_w \approx 720$ K

Fig. 18. Flat plate schlieren - Mach 7 enthalpy, $Re_u = 5.06 \times 10^6 1/m$.

Source: *Electrically-heated flat plate testing in a free-piston driven shock tunnel* Chang, E.W.K., Chan, W.Y.K., Hopkins, K.J., McIntyre, T.J. and Veeraragavan, A. (2020)

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024 38 / 42

DNS results Mach 7 - unheated vs fully heated (825K)

Simulation results for Mach 7 case

Christine Mittler

DNS of High-Speed Flows using GPUs

August 1, 2024 39 / 42

DNS results Mach 7 - partially heated (825K)

DNS results Mach 7 - heated strips

(a) Heated strip 20mm wide

(b) Heated strip 40mm wide

DNS of High-Speed Flows using GPUs

August 1, 2024 41 / 42

- GPU code developed
- Verification completed
- Single-GPU enough performance for transition investigation
- Application: unheated and heated flat plate

▶ < ∃ ▶</p>

э