
Reducing the Global Warming Potential of Coal
Mine Ventilation Air by Combustion in a Free-Piston

Engine

by

Brendan Twain O’Flaherty

Bachelor of Engineering, Honours IIa

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in June 2012

Division of Mechanical Engineering,

School of Mechanical and Mining Engineering,

The University of Queensland,

Australia.

Declaration by Author

This thesis is composed of my original work and contains no material previously published or

written by another person except where due reference has been made in the text. I have clearly

stated the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical

assistance, survey design, data analysis, significant technical procedures, professional editorial

advice, and any other original research work used or reported in my thesis. The content of my

thesis is the result of work I have carried out since the commencement of my research higher

degree candidature and does not include a substantial part of work that has been submitted

to qualify for the award of any other degree or diploma in any university or other tertiary

institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify

for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University

Library and, subject to the General Award Rules of The University of Queensland, immediately

made available for research and study in accordance with the Copyright Act 1968.

I acknowledge that copyright of all material contained in my thesis resides with the copyright

holder(s) of that material.

Statement of Contributions to Jointly Authored Works Contained in

the Thesis

No jointly-authored works.

Statement of Contributions by Others to the Thesis as a Whole

No contributions by others.

Statement of Parts of the Thesis Submitted to Qualify for the

Award of Another Degree

None.

Published Works by the Author Incorporated into the Thesis

1. O’Flaherty, B.: 2004. Mitigation of Methane from Ventilation Air using a Free-Piston

Combustor. Technical Report 2005/04, Department Mechanical Engineering, University

of Queensland, Australia

Additional Published Works by the Author Relevant to the Thesis

but not Forming Part of it

1. Jacobs, P., Gollan, R., Denman, A., O’Flaherty, B., Potter, D., Petrie-Repar,

P., Johnston, I.: 2010. Eilmer3 theory book. Technical Report 2010/09, Department

Mechanical Engineering, University of Queensland, Australia

2. Gollan, R., O’Flaherty, B., Jacobs, P., Johnston, I.: 2009. Casbar User’s Guide.

Technical Report DSTO-GD-0594, Defence Science and Technology Organisation, Edin-

burgh, South Australia

3. Jacobs, P., Gollan, R., Blyton, P., Bosco, A., Boutamine, D., Brown, L., Buttsworth,

D., Chan, W., Chiu, S., Craddock, C., Cook, B., Czapla, J., de Miranda-Ventura,

C., Denman, A., Gildfind, D., Goozeé, R., Hess, S., Jacobs, C., Johnston, I.,

Joshi, O., Kirchhartz, R., McGilvray, M., Mee, D., Montgomery, L., Nap, J.-P.,

O’Flaherty, B., Petrie-Repar, P., Potter, D., Ramanath, D., Scott, M., Sheikh,

U., Stewart, B., Tang, J., Tanimizu, K., van der Laan, P., Vesudevan, J., Wendt,

M., Wheatley, V., Window, A., Wojciak, H., Zander, F.: 2008. The Eilmer3 Code:

User Guide and Example Book. Technical Report 2008/07, Department Mechanical En-

gineering, University of Queensland, Australia

Acknowledgements

I gratefully acknowledge the help and guidance of my current supervisors, Assoc. Prof Peter

Jacobs and Prof Richard Morgan (UQ, St Lucia), and of my late supervisor Dr Michael Wendt

(CSIRO, QCAT), without whom this document would not have been completed. This thesis

is dedicated to Michael Wendt who unfortunately passed away in 2005. He formed the initial

ideas for this thesis and was a lovely man: enthusiastic, creative and helpful. Dr Peter Jacobs

has been very supportive for every year this long PhD has taken me. He has helped me with

scope by telling me where to stop (and hindered me with scope by finding new and interesting

papers) and was very timely with his guidance. Thanks to Professor Richard Morgan for his

very helpful feedback on the completed document. Also to Rowan Gollan for helping me with

code, Linux, disillusionment and LATEX among many, many other things and never asking for

anything in return. He is the kind of person who finds collaboration truly rewarding. Thanks to

my friends who have helped me keep a semblance of work-life balance. And last but not least,

thanks to my family, Marie and Joscelyne, for their unwavering love and support and to Diana

Cholewska for her time taken with many proof reads and for making sure I ate during the last

few months.

Dr Michael Noel Wendt (1968–2005)

Preface

Originally, this project was to be an experimental investigation into a device for mitigating the

global warming potential of coal mine ventilation air. With the passing of Dr Michael Wendt, it

became infeasible to continue this approach and the investigation became primarily a numerical

one.

Abstract

The increase in the atmospheric mole fraction of greenhouse species since pre-industrial times

has forced Earth’s atmosphere to higher temperatures. The individual effect of these species

on the atmosphere is compared using a global warming potential (GWP) index, which is the

cumulative radiative forcing of a species over a given period relative to carbon dioxide (CO2).

After CO2, the next highest contributing species to global warming is methane (CH4). Over a

hundred-year period, the GWP of CH4 produces a twenty-five times greater heating effect than

CO2
1.

One such anthropogenic source of CH4 is that of underground coal mines. For Australia,

this source constitutes 6.5% of its greenhouse gas emissions2. Of this, almost two-thirds are

contained in mine ventilation air at mole fractions typically between 0.3 and 0.7% and flow rates

between 150 and 300m3s-1. The CH4 is purposefully diluted to ensure safe operation of the

mine. If the CH4 contained in the ventilation air from these mines were converted to CO2 by

combustion, for example, the result would be a 73% reduction in the GWP of ventilation air.

The problem that will be addressed in this thesis is: can the CH4 in ventilation air be oxidised

using a self-sustaining process (and without a supplementary fuel or catalyst) in order to reduce

its global warming potential?

For selection of a device to employ for this task, consideration was given to both the operating

temperature and the thermal efficiency. After a review of potential devices a reciprocating

engine concept was selected for investigation, primarily since compression ignition occurs at

temperatures too low for nitrogen chemistry to be significant.

Engines are by definition work producing devices, however, the purpose of this device is not

principally to produce work but instead to burn ventilation air, converting it to less harmful

products. The engine would be applied primarily as an emission control device. However, even

without aiming to produce power, the operation of an engine on a <0.7% mole fraction of

methane represents a substantial challenge. Diesel engines, for example, may run well at very

low global equivalence ratios, but ignition occurred in a region surrounding vaporising droplets

where the stoichiometric ratio locally passes through the optimum range for ignition. It is

harder to ignite the low equivalence ratios for premixed CH4 mixtures of uniform composition.

At 37MPa, for example, the ignition temperature is about 1330K – much higher than the pre-

injection temperatures of about 900K found in even large stationary diesel engines. The main

objective of this thesis is to evaluate a conceptual engine design which is capable of achieving

combustion of these weak mixtures.

The proposed device makes use of the “free-piston” concept, whereby an unconstrained

piston is contained between two in-line, opposing combustors. Oscillation of the piston along

1Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., H.L., M.: 2007.

Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate

Change. Technical report, Cambridge, United Kingdom and New York, NY, USA
2Wendt, M., Mallett, C., Lapszewicz, J., Xue, S., Foulds, G., Mark, R., Sharma, S., Dannell, R.,

Worrall, R., Balusu, R.: 2000. Methane Capture and Utilisation. Technical Report 723R, CSIRO

the axis of the cylinders drives the thermodynamic cycles in both combustors. A linear electric

motor provides the energy to drive the engine with the moving piston representing the driven

element. The same motor can also be used to extract energy from the piston if it is available.

The problem of oxidising ventilation air in this way was approached in three parts which

form the body of material for this thesis. The first investigated the thermochemical properties of

ventilation air itself to find a suitable gas model and kinetic mechanism. The second investigated

the modelling of the component processes including piston dynamics, cylinder exhausting, heat-

transfer, friction and control models. The third combined these processes into a free-piston

engine model which was then used to find the minimum mole fraction of CH4 required to sustain

operation.

The free-piston engine designed for this application had a 0.16m bore, 1.1m cylinder length

and 200kg piston mass. The net cycle output was found to be insufficient to overcome the

associated losses with the models based on current diesel engine technology and the T4 shock

tunnel. The analysis showed that low friction piston seals will be essential to make the concept

work. Lower friction seals may be able to be developed since the sealing demands for this engine

are not as rigorous as for a normal engine, where the sump oil has to be protected from gas

leakage.

If the CH4 content increases above about 0.9%, the cycles become self sustaining and positive

energy can be generated. Alternatively, if about 15 MJ.kgCH4

−1 of work were added, this device

could be used to reduce the GWP of ventilation air. In effect, for this application, the engine

would have to be partially motored. Multiple engines would be required to process all of the

ventilation air.

This thesis has established the basic principles for evaluating the viability of systems for low

mole fraction CH4 conversion by combustion. It sets the groundwork for a family of similar

devices and has identified critical issues which need to be addressed to enable the technology.

The analysis can be refined as needed by incorporating more detailed physical models of the

various processes involved, such as multidimensional flow. Useful generic tools have also been

developed which may have other applications.

Keywords

global warming potential, free-piston engine, real gas models, finite-rate chemistry, unsteady

heat transfer, mixed friction, control

Australian and New Zealand Standard Research Classifications

(ANZSRC)

0913 100%

Contents

Contents vii

List of Figures xi

List of Tables xix

Nomenclature xx

Glossary xxiii

1 Introduction 1

1.1 Anthropogenic sources of atmospheric methane 1

1.2 Reducing the GWP of ventilation air by combustion 3

1.3 The potential for utilisation by conventional methods 3

1.4 Candidate emission control devices . 4

1.5 Comparison of candidate devices . 5

1.5.1 A potential free-piston engine for emission control 6

1.6 Previous studies of free-piston engines . 9

1.7 Scope and contribution of this thesis . 10

I Thermodynamics and chemistry of ventilation air 13

2 Gas models 14

2.1 Gas state . 14

2.1.1 Evaluation of state . 15

2.1.2 Evaluation of calorific values . 16

2.1.3 Mixing rules . 17

2.2 Entropic relations . 18

2.A Chapter end notes . 19

2.A.1 General cubic equation of state and parameters 19

2.A.2 General form for some gas variables . 19

2.A.3 Evaluation of temperature from internal energy and density in a real gas . 19

vii

3 Finite-rate chemistry 21

3.1 Chemistry of methane . 21

3.1.1 Methane combustion . 22

3.2 Reaction modelling . 23

3.2.1 Elementary reactions . 23

3.2.2 Species production rates . 23

3.2.3 Experimental methods for elucidating reaction models 25

3.2.4 Methane decomposition . 26

3.2.5 Validation of pressure-dependent rate coefficients 26

3.3 Programming methodology . 28

3.4 Perfectly mixed reactors . 29

3.5 Methane chemical delays . 33

3.5.1 Review of ignition delay experiments . 33

3.6 Methane heat release . 39

3.6.1 The production of Nitrous Oxides . 39

3.7 Mechanism selection summary . 40

3.8 The effect of real gas models on finite-rate chemistry 41

3.A Chapter end notes . 44

3.A.1 reactor.py . 44

3.A.2 simple reactor.py . 46

3.A.3 Hydrogen mechanism . 47

3.A.4 DRM19 mechanism . 48

3.A.5 Ignition delay definitions . 50

3.A.6 Calculation of the equilibrium constant 51

3.A.7 Derivation of the Lindemann-Hinshelwood Form 51

3.A.8 The rate coefficient of Li and Williams . 53

3.A.9 The rate coefficient of Smooke and Giovangigli 53

3.A.10 Lua input for a pressure-dependent rate coefficient 53

II Engine component models 55

4 Engine dynamics 56

4.1 Dynamics of a free-piston compressor . 56

4.2 Otto cycle . 60

4.3 Autoignition in a rapid compression machine . 62

4.4 Combustion of ventilation air in a free-piston compressor 63

4.4.1 Finite-rate chemistry of a real gas in a free-piston compressor 67

4.5 Dynamics of a dual piston type compressor . 69

4.A Chapter end notes . 73

4.A.1 test free piston compressor.py . 73

5 Engine exhausting 75

5.1 Exhausting process . 75

5.2 Gas dynamics . 76

5.2.1 Finite-waves in real gases . 77

5.2.2 Discharge coefficient . 79

5.3 Exhausting regimes . 80

5.4 Valve area . 82

5.5 Variable valve timing . 83

5.A Chapter end notes . 85

5.A.1 Riemann flux solvers . 85

5.A.2 Sod’s shock tube [64] . 86

5.A.3 Full form of conservation of energy . 88

6 Engine losses 90

6.1 Friction . 90

6.1.1 Mixed friction coefficient . 91

6.2 Heat transfer in a reciprocating engine . 94

6.2.1 Heat transfer models . 95

6.2.2 Quasi-steady models . 96

6.2.3 Unsteady models . 97

6.2.4 Boundary layer models . 99

6.2.5 Heat transfer in a free-piston compressor with and without finite-rate

chemistry . 105

6.A Chapter end notes . 108

6.A.1 Quasi-steady models . 108

6.A.2 Unsteady models . 110

6.A.3 Numerical boundary-layer methods . 111

7 Engine control 112

7.1 Control . 112

7.1.1 Finding the required electromagnetic force 112

7.1.2 Control of entrained mass of ventilation air 113

7.1.3 PID control of the piston velocity . 113

7.2 Engine start-up . 114

7.A Chapter end notes . 116

7.A.1 Finding the required electromagnetic force to reach a peak temperature . 116

7.A.2 Piston-solenoid dynamics for a linear system 116

III Complete engine model 118

8 Engine cycle 119

8.1 Engine program overview . 119

8.2 Engine program verification . 120

8.3 Parametric study . 120

9 Conclusions 129

9.1 Summary of the reference engine design . 129

9.2 Findings . 130

9.3 Future work . 131

References 133

A Gas model source code 140

A.1 Real equations of state . 140

A.2 Real thermal behaviour . 151

A.3 Pressure-dependent rate coefficient . 159

B Engine source code 163

B.1 Free-piston engine kernel . 163

B.2 Free-piston engine tests . 166

B.3 Free-piston engine system . 188

B.4 Free-piston engine models . 220

B.5 Free-piston engine control . 230

B.6 Sod’s shock tube simulator . 233

List of Figures

1.1 Variation of methane concentration in ventilation air for an Australian coal mine.

Anonymous data reinterpreted from [6]. The flow rate for this mine varied be-

tween 150 to 300m3s-1. 2

1.2 Compression-ignition free-piston engine. This engine design is similar in geometry

to those investigated in this thesis. The long piston and cylinder lengths the

cylinder were a consequence of exhausting requirements. Details will be discussed

more completely in later sections of this document. 7

1.3 Piston trajectory, gas temperature and methane concentration during one period

of a free-piston engine. 8

2.1 Validation of the gas model implementation using isothermal compression of He-

lium with reinterpreted data from [28]. The Abel-Noble and van der Waals gas

models deviate from the ideal gas model. 16

3.1 Pressure-dependent rate coefficient and the Arrhenius asymptotes (Reaction 51,

GRI-Mech3.0). Both the Lindemann-Hinshelwood and Troe forms of Reaction 51

were compared to show the effect of the Troe coefficients. Due to limitations in

the code (as of revision 672), efficiencies could not be incorporated at this level.

This feature will be added in future revisions. 27

3.2 Decomposition of CH4 (const-T , p) showing equilibrium mole fractions. The

species concentrations predicted by the Smooke and Giovangigli reaction do not

approach their equilibrium value because a backward rate was specified for this

elementary reaction. 28

3.3 Perfectly mixed reactors (homogeneous and adiabatic) 29

3.4 Effect of timestep on the operator-split method. Effects are seen as the timestep

becomes larger than the period between ignition delay and combustion delay. . . 31

3.5 Constant-pressure reaction using Hydrogen mechanism, dt chem = 1×10-7. This

is the example provided in Appendix 2 of the Chemkin II manual. 32

3.6 CPFM PMR using DRM19 with mixture nCH4 , nO2 , nN2 = 1,2,7.52, dt chem=2×10-7.

On each of these, Chemkin-II matches well with Gaspy , even down to mole frac-

tions of 1×10-10. 32

xi

3.7 Total density versus temperature for ignition delay studies. The boxed region

shows conditions for isentropic compression of a thermally-perfect gas from the

atmospheric state. Thus we will continue the investigation using the ignition

delay data of [36] and [37]. 36

3.8 Reduced induction times for transcribed data using the ignition delay formula of

[36]. The data taken from [37] agrees well with this trend. 37

3.9 Ignition delay of experimental results for the lowest and highest density tests by

Tsuboi and Wagner compared with the numerical results over the same conditions

using four kinetic mechanisms. The slope predicted by the kinetic mechanism is

more important than the offset as the former is an indication of global activation

energy whereas the latter is a consequence of the ignition delay definition. The

mechanisms of Li and Williams and Smooke and Giovangigli were not included in

the comparison. The former is solely an ignition mechanism and has non-smooth

species production rates. The latter is a flame mechanism that does not attempt

to capture ignition delay. 38

3.10 A comparison of heat release for all six mechanisms. As can be seen, all but the

ignition delay mechanism of Li and Williams result in equal heat release, albeit

at different combustion delays. Tests were performed using a constant-pressure

fixed-mass perfectly mixed reactor with ventilation air at initial conditions of

T0=2226 K and p=1 atm. 39

3.11 Greenhouse species for a constant-pressure, fixed-mass, perfectly mixed reactor

at 2226 K, 1 atm. 40

3.12 GWP reduction for a constant-pressure, fixed-mass, perfectly mixed reactor at

2226 K, 1 atm. 40

3.13 High pressure decomposition of CH4 (const-T , p) at T=3000K using different gas

models. As can be seen, the van der Waals equation of state retards the rate of

decomposition compared to the thermally perfect equation of state. In addition,

the equilibrium value attained by Smooke and Giovangigli is incorrect. This is

because a backwards rate is specified for this reaction. Thus, only kinetic mech-

anisms in which the reverse rates are calculated using the equilibrium constant

should be used with real gas models. Specifying a reverse rate couples the kinetic

mechanism and the thermal model, which is undesirable. The pressure was chosen

to exaggerate the difference between thermally-perfect and thermally real models.

Peak pressures seen in a free-piston engine are expected to be substantially lower. 42

4.1 Ideal free-piston compressor. 57

4.2 Piston trajectory. Note the sharp deceleration. Initial conditions for this case

were mp=100kg, D=0.2m, L=1.0m filled with thermally-perfect ventilation air

at atmospheric conditions. 58

4.3 System energy balance showing components of piston kinetic energy and gas sen-

sible energy for an Otto cycle using air of various gas models starting at the

atmospheric state. 58

4.4 Stroke length for free-piston compression of ideal standard air where mp = 100kg

and D = 0.25m. Numerical results correspond to peak temperatures of 400K to

1800K in 200K increments. 59

4.5 The effect of real gas models on compression of ventilation air. The output here

has been normalised as indicated. The analytical solution for an ideal gas is in-

cluded for contrast. As can be seen, the real gas models require progressively

lower piston velocities to reach the same peak temperature, which occurs at prac-

tically the same volumetric compression ratio. For example, for compression to

1400K, the piston speed needs to be about 0.8% slower using a van der Waals

gas as opposed to a thermally-perfect gas. This effect increases with compression

ratio. 60

4.6 The Otto cycle performed using ideal air starting at the atmospheric state and

adding 140kJ.kg-1 heat at the point of piston reversal. This figure validates the

ideal gas implementation and clearly shows the low energy content of ventilation

air. This cycle has a volumetric compression ratio of 23.14, with parameters of

mp = 400kg, Lc = 4m, D = 0.1m and up,0 = 10m.s-1. 61

4.7 Schlieren photographs of compressed dry air with time in ms from top dead center

(reprinted from [48] with permission). The piston remains stationary throughout

this sequence. As can be seen, the boundary layer is highly turbulent. The den-

sity gradients are the result of spatially nonuniform temperature, since pressure

gradients would disappear in a few milliseconds. The dark areas correspond to

regions of higher temperature. Test conditions were: initial pressure, 107kPa, ini-

tial temperature 338K and compression ratio 12.6. The thermal boundary layer

at time t = 0 appears to be larger than the cylinder length. 63

4.8 p-ν diagram comparing finite-rate chemistry for DRM19 and GRI-Mech3.0 mecha-

nisms with instantaneous heat addition of 140kJ.kgmix
−1 in a free-piston compres-

sor. The gas is thermally-perfect ventilation air at initial conditions of standard

temperature and pressure. Engine parameters are mp = 400kg, up,0 = 11.64m.s-1,

D = 0.1m and Lc = 4.0m. The compression ratio for these parameters is about

45:1 and the peak temperature (without combustion) is 1200K. Finite-rate chem-

istry is instrumental in answering the question of whether ventilation air can be

combusted in a free-piston compressor since without finite-rate chemistry using

a verified kinetic mechanism, the ignition point can only be approximated. It

should also be noted that the two mechanisms given here predict different ig-

nition delays, which is why the mechanism selection process was so thorough.

The instantaneous heat addition (for the same initial conditions) shows a similar

heat release, and thus the enthalpy of combustion can be said to be practically

independent of the initial gas state. 64

4.9 Compression to 1200K with and without finite-rate chemistry. Reactions occur

throughout the cycle, despite the fact they only release heat above 1200K. Turning

the chemistry off at a lower temperature (to lower computational expense) yields

incorrect results. Engine parameters are mp = 400kg, up,0 = 11.64m.s-1, D =

0.1m and Lc = 4.0m. The compression ratio for these parameters is 45.15:1 and

the peak temperature (without combustion) is Tp = 1200K. 65

4.10 Species production and destruction for ventilation air as it is raised to 1200K

in a free-piston compressor. System initial conditions are mp = 400kg, up,0 =

11.63m.s-1, D = 0.1, Lc = 4.0m. 66

4.11 Reduction in global warming potential of ventilation air as it is compressed to

1200K. System initial conditions are mp=400kg, up,0=11.63m.s-1, D=0.1, Lc=4.0m. 66

4.12 p-ν diagram of ventilation air in a free-piston compressor reaching different peak

temperatures using DRM19. As can be seen, for parameters mp = 100kg, D =

0.2m and Lc = 5m, a peak temperature of between 1200 and 1300 K is required

for complete combustion. 67

4.13 GWP reduction of ventilation air in a free-piston compressor using a thermally

perfect gas and DRM19. Temperatures correspond to peak temperature due to

compression only. 68

4.14 The effect of piston mass on combustion yield for a peak temperature of 1100K.

This scales linearly with residence time and exponentially with temperature (which

is largely dictated by the initial velocity). Note that the piston period is largely

dictated by the factor
(

A
mpLc

)1/2
which is related to the piston acceleration and

the distance travelled. 69

4.15 The Otto cycle performed using air of different gas models, starting at the at-

mospheric state and adding 140kJ.kg-1 heat at the point of piston reversal. The

thermally-perfect, Abel-Noble and van der Waals gas models have volumetric

compression ratios of 24.5, 23.7 and 23.7 respectively with mp = 400kg, Lc = 4m,

D = 0.1m and up,0 = 10m.s-1. 70

4.16 Combustion yield in a free-piston compressor for peak temperatures of 900K-

1800K (due to compression only) using DRM19, mp =100kg, D=0.2 and Lc =5.0m.

The largest discrepancy between real gas models occurs for a peak temperature

of 1200K when reactions are frozen midway by the expanding piston. At temper-

atures higher than this, reactions go to completion for all gas models. 71

4.17 A simplified dual piston type compressor. 72

4.18 The components of a simplified free-piston engine. 72

5.1 Sod’s shock-tube problem . 78

5.2 Expansion of ideal air from the atmospheric state to a range of downstream

pressures. This figure validates the implementation and tests for robustness over

a large range of pressure ratios. Transport of species and energy have similar

profiles. 79

5.3 Expansion of ideal air from the atmospheric state to a range of downstream

pressures. 80

5.4 Interpolated and measured discharge coefficients for a four-valve Caterpillar en-

gine [65]. Coefficients are held constant outside the measured range. 81

5.5 Species ‘B’ is being exhausted with species ‘A’ using perfect-mixing and perfect-

displacement regimes. The initial temperature of all volumes is 298.15K, with the

upstream pressure being 2atm and the cylinder and downstream pressures being

1atm. The geometry is S = ϑ = 1. 81

5.6 Free-piston engine valves. 82

5.7 Valve timing logic for the right hand cylinder . 83

5.8 A piecewise-constant flow state . 85

5.9 An x− t plot of one possible flow state after timestep ∆t 85

5.10 Ideal solution to Sod’s shock tube, generated using two numerical procedures:

one specific to an ideal gas and one which may also be used for a real gas. There

is error in both procedures (due to the iteration) which is controlled by tolerances. 88

5.11 Real gas solutions to Sod’s shock tube problem. For this test p4 = 1×107 Pa, ρ4

= 10 kg.m-3, p1 = 1×105 Pa, ρ1 = 10 kg.m-3. Using the conditions for the classic

shock tube problem (that is ρ4 = ρ1 = 1kg.m-3) resulted in temperatures too low

in the region between the shock wave and the contact shock and caused numerical

errors. The lower density in this region and the lower total velocity clearly show

the effect of the real gas models. Note that the thermally-perfect model does not

differ from the ideal solution. 89

6.1 Note the new normalised velocity, which includes the friction factor and ring

contact area. For a frictionless compressor, these extra terms go to zero leaving the

normalization factor seen previously (for example, in Figure 4.4). This new factor

shows that friction may be overcome by increasing the initial piston velocity by a

predictable amount. For a simple boundary friction model (where f is constant)

this amount is
(
1 + f ArA

) 1
2 . This provides a useful first-pass guess when estimating

the additional required piston speed. 92

6.2 A mixed friction coefficient (6.5) with experimental data from [69]. For this func-

tion, b = 0.03m, µ = 0.222Pa.s and the constants c1 = 4.8, c2 = 0.5 correspond

to a parabolic profile. 93

6.3 Reinterpreted data of Annand [33] shown outside of its range of experimental

data. Clearly, the coefficient of Annand’s model does not fit this data, as it was

based instead on experiments performed at Reynold’s numbers between 1×105

and 1×107. 97

6.4 Conduction coefficient of thermally-perfect air. 98

6.5 A comparison between unsteady heat transfer models and the reinterpreted data

of Lawton [71]. The discrepancies between heat-transfer models clearly show their

specificity to a particular engine. The model of Lawton does not seem to match

the data here as well as in his paper. The implementation here is clearly described

in case of error. 100

6.6 Nomenclature for the unsteady thermal boundary layer and piston geometry. The

idealised boundary layer shown was formed during the exhausting stage. 100

6.7 Boundary layer profile. 104

6.8 Comparison of instantaneous heat transfer with data of [71]. The engine used is

a Perkins 98.4mm bore, 127mm stroke, naturally aspirated, four-cylinder, water-

cooled diesel of compression ratio 15.6:1. Coefficients were chosen particularly to

match with this data. This model was applied using the state equations for a

crankshaft engine. 105

6.9 Comparison of the total heat transfer over one stroke between Annand’s model

with c1 = 0.12 (6.13) and the integral boundary layer model (6.32). The engine

parameters are a 98.4mm bore, 127mm stroke, with a compression ratio 15.6:1.

This data was generated using a crankshaft engine model. It shows that the total

heat transfer predicted by the integral boundary layer model scales relatively well

with engine speed. 106

6.10 Comparing the effect of steady and unsteady heat transfer models. Annand’s

model had a coefficient of c1 = 0.0363 (6.13) and the integral boundary layer

model (6.32) was unmodified. The total heat transfer over a stroke for both heat

transfer models is about 60kJ. The peak temperature for adiabatic and steady

and unsteady heat transfer was 1400K, 1363K and 1323K respectively. Engine

parameters were up,0 = 13.01m.s-1, mp = 400kg, R = 40, D = 0.1m and Ts =

1400K (without chemistry). Each run takes about 1min on one core of an AMD

1090T Phenom X6 processor. 106

6.11 Comparing the effect of steady and unsteady heat transfer models on finite-rate

chemistry. Annand’s model again had a coefficient of c1 = 0.0363 (6.13) and the

integral boundary layer model (6.32) was unmodified. The effect of the unsteady

model was to reduce the total heat transfer over the stroke to 40kJ, even while

it lowered the peak temperature at the point of piston reversal and thus retarded

combustion. The unsteady model in contrast predicted a total heat transfer of

about 72kJ over the stroke, which is greater than without combustion. Engine

parameters were up,0 = 13.01m.s-1, mp = 400kg, R = 40, D = 0.1m and Ts =

1400K (without chemistry). Each run takes about 130mins on one core of an

AMD 1090T Phenom X6 processor. 107

7.1 Control block diagram. The solenoid here is used to adjust the piston velocity by

application of an electromagnetic force. 113

7.2 Logic for calculation of the electromagnetic force. 114

7.3 Forced response of the piston during start-up for the reference engine with a

target initial velocity of up,0=14.77 m.s-1. The maximum electric motor force

applied here is Fe = 10 kN. Exhausting and combustion is performed during this

process. 115

7.4 System dynamics of a spring-mass-damper system coupled to an inductance-

capacitance-resistance circuit. This shows the free response of the system given

an initial displacement of the mass. 117

8.1 A flowchart of the free-piston engine program showing the operator-split process. 121

8.2 Isentropic engine mass and energy balance. Note that the piston velocity was set

to up,0 at the start of each stroke, which can be seen as a step-change in total

energy. 122

8.3 Engine mass and energy balance with friction and heat loss. Here, the piston

velocity was set to up,0 at the start of the stroke, which can be seen as a step-

change in the kinetic energy. This is not obvious in the total system energy

because wf , QL and QR were set to zero at the same instant such that the losses

over one stroke could be quantified. 122

8.4 Initial piston velocity for a range of engines operating at an exhausting efficiency

of 100%. To read this plot, first pick a diameter, D, and piston mass, mp, from

the inset key. Then take this line and point style and find the corresponding line-

point combination on the plot. Cylinder length, Lc, increases from 1.0m along

each line from left-to-right at 0.5m increments. The initial velocity is within a

remarkably small range across all engine types indicating that this velocity is

favourable for exhausting. 123

8.5 Specific entropy for the same range of engines. To read this plot, first pick a

diameter, D, and piston mass, mp, from the inset key. Then take this line and

point style and find the corresponding line-point combination on the plot. Cylin-

der length, Lc, increases from 1.0m along each line from left-to-right at 0.5m

increments. It seems that the specific entropy reduces with increasing cylinder

diameter and reducing cylinder length. Piston mass has little effect on the specific

entropy, but does affect the compression ratio. The effect of diameter seems to

diminish as the diameter increases. Indeed this was the case: the improvement

beyond D = 0.16m was minimal. 124

8.6 Peak temperature reached for engines whereD = 0.16m, mp = 200kg and ηex = 100%.

125

8.7 Temperature of the left and right-hand cylinders during start-up of the reference

engine. Exhausting and combustion is performed during this process. 125

8.8 Piston trajectory . 126

8.9 Methane entrainment and combustion . 126

8.10 Species and GWP for a free-piston engine operating on ventilation air. This sim-

ulation uses the GRI-Mech3.0 mechanism to show that the generation of N2O is

negligible, even for the peak temperature (without combustion) of about 1400K.

As before, the piston velocity was reset at the beginning of each stroke to sustain

the engine. Only data for the left-hand cylinder is shown here for clarity. 127

8.11 Work required to operate engine for different mole fractions of CH4 in air. 128

8.12 Extrapolation was used to find the minimum mole fraction of CH4 required to

sustain operation of the reference engine. From this graph it can seen to be about

0.92%. 128

List of Tables

1.1 Anthropogenic sources of methane [9] . 1

1.2 Global warming potential for various greenhouse gases relative to CO2. Data

taken from [8]. 2

1.3 Burner type comparison . 4

2.1 Species constants for a real-gas equation of state [35] 19

2.2 Equation of state derivatives . 20

3.3 Hydrogen test condition . 31

3.4 Methane test condition . 32

3.5 Mole fractions used in ignition studies. Values have been derived when not

stated explicitly. The range displayed here is based on maximum and minimum

CH4 mole fractions. 35

3.6 Concentrations used in ignition studies. Values have been derived when not stated

explicitly. The range displayed here is based on maximum and minimum [CH4]. . 35

3.7 A summary of ignition delay coefficients for the mixtures given in Table 3.6. . . . 35

3.8 Mechanism selection criteria. 41

3.9 Reaction 10, Li and Williams. This seems to overpredict the rate coefficient at

low densities when compared to other mechanisms. 53

3.10 CH4 decomposition model of [40]. 53

3.11 CH4 decomposition model of [40] in Chemkin-II form. Rate coefficients are of the

form of (3.6). 54

4.1 Engine cycle stages. 61

xix

Nomenclature

This thesis brings together several areas of mechanical, heat, fluid and chemical modelling.

In order not to depart too drastically from the conventions normally employed in papers on

each subject, it was found to be necessary to use the same symbol to denote several different

quantities. For example, h denotes both the convection coefficient and enthalpy. It should be

clear from the context which quantity is being referred to.

Symbol Description

General

A area, m2

b piston ring thickness, m

cd discharge coefficient

D cylinder diameter, m

F force, N

g acceleration due to gravity, m.s-2

L length, m

m mass, kg

r compression ratio

R cylinder length to diameter ratio

S surface area, m2

t time, s

u,v,w velocity components, m.s-1

U conserved quantities vector

w,W work, J.kg-1, J

x,y,z cartesian co-ordinates, m

ϑ volume, m3

Gasdynamics, chemistry

a speed of sound, m.s-1

A frequency factor, s(cm3mol-1)
∑
i ci

cν , c̄ν specific heat at constant density, J.kg-1K-1, J.mol-1K-1

cp, c̄p specific heat at constant pressure, J.kg-1K-1, J.mol-1K-1

xx

Symbol Description

e, ē, E internal energy, J.kg-1, J.mol-1, J
E
R activation energy, K-1

g, ḡ,H Gibbs free energy, J.kg-1, J.mol-1, J

h, h̄,H enthalpy, J.kg-1, J.mol-1, J

hc, h̄c, Hc heat of combustion, J.kg-1, J.mol-1, J

hr, h̄r, Hr enthalpy of reaction, J.kg-1, J.mol-1, J

n moles, mol

M molecular mass, kg.mol-1

[M] third body value, mol.m-3

p pressure, Pa

Q gas state vector

R,R gas constant, J.kg-1K-1, J.mol-1K-1

s, S entropy, J.kg-1K-1,J.K-1

T temperature, K

Tig ignition temperature, K

Tc combustion temperature, K

Xi species i mole fraction

[Xi] species i concentration, mol.m-3

Yi species i mass fraction

α real gas constant

γ =
cp
cν

isentropic exponent

ν,ν̄ specific volume, m3kg-1, m3mol-1

ν0,ν̄0 covolume, m3kg-1, m3mol-1

ωi rate of production of species i, mol.s-1

φ stoichiometric ratio

ρ density, kg.m-3

ρ̄ molar density, third body concentration, mol.m-3

θ total energy, J

Thermal boundary layers

h convection coefficient, W.m-2K-1

k thermal conductivity, W.m-1K-1

Nux = hx
k Nusselt, dimensionless temperature gradient at a surface

q,Q heat transfer, J.kg-1, J

q′′, Q′′ heat flux, J.kg-1m-2, J.m-2

Rex = ρux
µ Reynolds, ratio of the inertia and viscous forces

α = k
ρcp

thermal diffusivity, m2s-1

Symbol Description

δ boundary layer thickness, m

η = y
δ non-dimensional height

µ dynamic viscosity, kg.m-1s-1

Subscripts

c cylinder

d discharge

e electromagnetic

f friction

g gas

p piston

pv poppet valve

r ring

rv reed valve

s stroke

sp species

va ventilation air

w wall

2 momentum

3 thermal

∞ freestream

Glossary

atmospheric residence time the time taken for an atmospheric species to

decay, 1

bimolecular reaction a reaction between two reagents, 22

chemical delay the time required for the concentration of a

reagent to fall to a specified fraction of its

initial concentration [7], 32

code validation the process of comparing the output of a pro-

gram to experimental data to check the code

is accurate, 28

code verification the process of comparing the output of a pro-

gram with a known result to show there are

no mistakes, 28

combustion delay the time interval between the reference state

and the dead state of a mixture, 33

combustion temperature the temperature associated with the point at

which reactions go to completion., 3

combustion temperature the temperature during compression at which

combustion goes to completion, 63

discharge coefficient the ratio of the actual mass flow rate to the

inviscid mass flow rate through nozzles of the

same geometric area, 79

equivalence ratio the molar ratio of fuel-to-air normalized by

the stoichiometric ratio, 22

exhausting efficiency the mass of ventilation air used to replace the

combustion products, normalised by the mass

of the combustion products, 76

xxiii

forward reaction a reaction that proceeds from left to right, 23

friction coefficient the ratio of friction force to applied normal

force, 90

ignition delay for homogeneous combustion, the ignition de-

lay is defined by a characteristic point in the

concentration history of an indicative inter-

mediary species, commonly OH, 33

instantaneous radiative forcing the perturbation to the energy balance of the

Earth-atmosphere system, W.m-2ppm-1, 1

operator-splitting a numerical method in which the changes in

the state variables due to different coupled

processes are evaluated independently, 119

peak temperature the temperature a gas mixture reaches after

adiabatic compression by a free-piston to the

point of piston reversal, 57

perfect-displacement an exhaust model whereby the inlet gas does

not mix with the cylinder gas, 80

perfect-mixing an exhaust model whereby all the inlet gas in-

stantaneously and completely mixes with the

cylinder gas, 80

pressure-dependent reaction a reaction involving one or two reagents, de-

pending on the third body concentration, 22

radiative forcing the perturbation to the energy balance of the

Earth-atmosphere system, W.m-2ppm-1, iv

recursive a function or definition that refers to itself.

See, recursive, 1

residual gas fraction the mole fraction of products that remain af-

ter the exhausting stage, 75

reverse reaction a reaction that proceeds from right to left, 23

third body concentration the molar density of a gas mixture, 24

third body reaction a reaction between three reagents, 22

third body value the sum over all species of the product of con-

centration and collision efficiency, 24

unimolecular reaction isomerization or decomposition of a single

species to form one or two product species

respectively [7], 24

valve delay the time between port close and valve close

during the compression stroke, 83

work delay the time interval between the initial state and

the peak state of the compression process, 25

Chapter 1

Introduction

In April 1990 a letter was published in Nature [8] which aggregated a body of research showing

that the combined effect on climate of a number of species could rival or even exceed that of

CO2. In this letter, an index named the global warming potential was used to compare the

relative contributions of individual species. Each species has its own value for instantaneous

radiative forcing which is a function of its absorption bands and concentration. In addition,

since different species decay in the atmosphere at different rates (referred to as the atmospheric

residence time) the GWP is both a species- and time-dependent effect. Using this, it was found

that, after CO2 (contributing 71.5% of the total global emissions), CFCs (at 9.5%) and CH4 (at

9.2%) were the next highest contributors to global warming.

1.1 Anthropogenic sources of atmospheric methane

Methane-air mixtures in concentrations <1% are common to wetlands, fermenting wastes, agri-

culture, oil and gas systems and coal mines. Worldwide anthropogenic sources are shown in

Table 1.1.

source contribution, 109kg/yr

ruminants (particularly cattle)

rice agriculture

>50

landfills

coal mines

biomass burning

urban areas

sewage disposal

natural gas leakages

10–50

industrial sources <5

Table 1.1: Anthropogenic sources of methane [9]

Take the fugitive emissions from underground coal mines. Ventilation air is used to dilute

the fugitive methane to low mole fractions to ensure a safe working environment. The result is

a mixture of air, methane and trace amounts of other hydrocarbons that is unsteady in both

concentration and flow rate (see Figure 1.1). The ventilation air is subsequently exhausted

1

2 Introduction Chapter 1

0.000

0.002

0.004

0.006

0.008

0.010

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

X
C

H
4

mean = 0.0033

st.dev. = 0.0014

Figure 1.1: Variation of methane concentration in ventilation air for an

Australian coal mine. Anonymous data reinterpreted from [6]. The flow

rate for this mine varied between 150 to 300m3s-1.

through large above-ground nozzles at flow rates between 150 and 300m3s-1.

To quantify the impact of this source, the GWP index of Lashof and Ahuja [8] was used,

which combines the effect of the radiative forcing of a molecule with its atmospheric residence

time. Table 1.2 shows the global warming potential of a selected number of species.

species, i residence time, instantaneous GWP,

years forcing, 1-yr

W.m-2ppm-1 molar basis

CO2 230 0.015 1.0

CO 2.1 0.65 1.4

CH4 14.4 0.65 3.7

N2O 160 3.8 180

Table 1.2: Global warming potential for various greenhouse gases relative

to CO2. Data taken from [8].

The GWP index of a gas mixture may be calculated using

GWPmix =
∑
i

GWPiXi , (1.1)

where Xi is the mole fraction and i is a greenhouse species. With this index, mine ventilation

air constitutes 4.2% of Australia’s greenhouse gas emissions [6].

The challenge presented is how to process the CH4 content of such a source in order to reduce

its GWP. One method to achieve this would be via combustion. According to Table 1.2, the

reaction

CH4 + 2O2 + 7.52N2 GGGGBFGGGGCO2 + 2H2O + 7.52N2

Section 1.3 Reducing the GWP of ventilation air by combustion 3

reduces the GWP of a stoichiometric methane-air mixture by a factor of 3.7. The goal therefore

was to reduce the environmental impact of this ventilation air by conversion of the entrained

CH4 to CO2. This thesis documents the design and analysis of a device to perform this conver-

sion.

1.2 Reducing the GWP of ventilation air by combustion

At the atmospheric state, the extinction limit for a flame is 5.26±0.3% at zero strain-rate [10].

The concentration of methane in ventilation air is well below this limit. However, as the pre-

combustion temperature of the mixture increases, the flame extinction limit goes to zero as

the combustion enthalpy required to sustain the flame goes to zero. Above this temperature,

combustion occurs homogeneously instead of propagating via a flame. This type of combustion

(known as oxidation or volumetric combustion) only occurs in very lean methane mixtures and

is purely a chemical process. To burn CH4 therefore, the ventilation air will need to be raised

to its combustion temperature until reactions have gone to completion.

Coal mine ventilation air is not a pure methane-air mixture. However, hydrocarbon impuri-

ties are known to accelerate reactions [11, 12], hence modelling ventilation gas as a methane-air

mixture is conservative when considering the combustion delay. For the purposes of modelling,

ventilation air was simplified by assuming that

1. the mixture is homogeneous (such that turbulent combustion can be ignored)

2. the concentration of methane in ventilation air is quasi-steady at 0.5% (corresponding to

a calorific value of 140kJ.kgmix
−1) and

3. the methane concentration is below the flame extinction limit (allowing flame ignition and

propagation to be ignored).

With this definition ventilation air has a GWP of 0.0185 which reduces to 0.005 if all the CH4 is

oxidized.

1.3 The potential for utilisation by conventional methods

Two conventional methods to utilise the methane from ventilation air are concentration and

storage or supplementation of the ventilation air with additional fuel for use in a power plant.

The former approach was found to be uneconomical for methods such as absorption, adsorption

and permeability due to the large volumes of ventilation air which need to be processed [6].

For the latter approach, utilisation of ventilation air methane is of secondary importance to

the supplementary fuel and, as such, this approach is subject to the efficiency and cost of the

power generation method. Conventional technologies for electricity production from methane

cost about $0.06 per kW.hr (excluding the cost of storage) which is only economical during peak

periods [6]. BHP’s Appin and Tower Colliery uses this approach and consumes 15-25% of the

mine’s ventilation air along with drainage methane in ninety-four 1MW reciprocating engines.

The use of coarse reject coal instead of drainage gas as a supplementary fuel has also been

investigated. A pilot plant that used a rotating kiln combustor which exchanged heat with an

4 Introduction Chapter 1

indirect-fired turbine was trialled at CSIRO QCAT, Pinjarra Hills in 2004 but combustion of

the fuels could not be sustained [13].

Thus, it was decided that an emission control device should be pursued instead.

1.4 Candidate emission control devices

During selection of a device, both the thermal efficiency and the operating temperature was

considered. For the device to oxidise ventilation air in a self-sustaining way, losses had to be

equal to or less than (on average) the heat released due to combustion. The thermal efficiency

of a heat engine is

ηth =
wout

hc
(1.2)

where wout is the work performed and hc is the enthalpy of combustion. For the candidate

device, it is enough to have a thermal efficiency of zero so long as the methane is oxidised.

Oxidation of ventilation air is performed by raising the temperature of the ventilation air

to its combustion temperature. For this application, methods of piston compression and heat

exchange were investigated. Turbomachinery was considered unsuitable since, without a supple-

mentary fuel, volumetric compression ratios of at least 37 are required for oxidation of ventilation

air which are not attainable with current axial-flow compressors. A general comparison of the

chosen methods is made in Table 1.3.

combustion via heat exchange combustion via piston compression

work extracted from excess work extracted from piston

heat by steam turbine or by an electromagnetic generator,

thermoelectric generator [14] shaft-work or hydraulics [15]

const-p combustion at low pressure const-ν combustion at high density

heat and viscous losses heat and frictional losses

higher combustion temperature lower combustion temperature

5-10% efficiency up to 56% efficiency

Table 1.3: Burner type comparison

A general comparison these devices follows.

Flow-reversal reactors comprise two connected volumes of inert ceramic material as either

a pelletized-bed or monolithic heat exchange medium. Flow between the volumes is con-

tinuously reversed such that heat is exchanged to and from the ventilation air as it is

heated and burned. Pelletized-bed reactors exhibit a high pressure drop compared during

heat exchange. Krzysztof et al. [16] compared thermal and catalytic combustion of lean

methane-air mixtures in both pelletized-bed and monolithic flow-reversal reactors. Peak

temperatures of about 1473K and 1073K were required for thermal and catalytic combus-

tion respectively. For the thermal combustion in a monolithic reactor, sustained operation

was achieved for a methane mole fraction of 1.83%. Catalytic flow-reversal reactors have

Section 1.5 Comparison of candidate devices 5

achieved sustained operation at methane mole fractions of 0.22% and slightly lower tem-

peratures [17]. However, the lifespan of the catalysts are reduced by the high temperatures

required for homogeneous combustion and the impurities in ventilation air methane. A

reliable cost analysis is required before either catalytic or thermal reactors of this type

may be considered suitable.

Counterflow heat exchangers recycle heat directly to the incoming fuel-air mixture such

that it is brought to the combustion temperature. The flow rate for these devices is

typically limited by the flame speed, however, this limit disappears for air preheated to

the adiabatic flame temperature [18]. Experiments performed on double-spiral (also known

as “Swiss roll”) burners show that temperature is virtually constant over a range of flow

velocities and extinction does not occur until velocities are two orders of magnitude in

excess of normal burning velocities [18]. Unlike the pelletized-bed heat exchangers, these

heat exchangers do not suffer from high pressure loss. Pumping losses were always below

10% of the heat released, even with mixtures leaner than 1% by volume [18]. It is envisaged

that a double-spiral burner could be started using a stoichiometric mix of methane and air

until the heat contained in the device was sufficient for the reaction of ventilation air to

be self-sustaining. It is assumed that the operating temperature of these devices is that of

the adiabatic flame temperature of a stoichiometric methane-air mixture at atmospheric

pressure, that is, 2226 K [7]. It is suggested that thermoelectric generators (which operate

at efficiencies between 5-10%) could possibly be used to extract electrical energy from the

exhaust stream. It should be noted however that no example of power generation using

this method has been found and that they may negate the performance of such a device

by impeding the heat exchange process.

Compression ignition engines have potentially the highest efficiencies of all engine types

due to their high volumetric compression ratios. A particular diesel engine idles at a mole

fraction of about 3%, (17.5% of the stoichiometric fuel-air ratio) and has an indicated

efficiency of 56% [19, page 142]. This particular engine has a 13” bore, a volumetric com-

pression ratio of 15 and a mean piston speed of 6.29m.s-1. Typical volumetric compression

ratios for automotive two-stroke diesel engines are 17 to 19 with a piston speed of 9.14m.s-1

[19, page 461] whereas large marine and stationary engines have lower ratios (14 to 16)

and slower piston speeds (7.11m.s-1). Free-piston engines have the potential to operate on

even lower concentrations due to the absence of mechanical linkages and sidewall friction,

and because the double-acting nature of the piston effectively makes it a “single-stroke”

engine.

1.5 Comparison of candidate devices

The adiabatic flame temperature of a stoichiometric CH4-air mixture at atmospheric pressure

is 2226 K [7]. However, the reaction rate of a gas mixture is a function of species concentration

and temperature (see §3.5). Thus, the combustion temperature of a compression device is lower

6 Introduction Chapter 1

than for a heat exchanger due to the reactions occurring at a higher concentration. Beyond this

observation, a potential device must be investigated before the combustion temperature can be

known.

Since N2O has a GWP index of 180, if significant quantities of N2O were produced during

oxidation of ventilation air then the effectiveness of the device would be reduced. Nitrous oxides

only form at high temperatures so combustion should be performed at a lower temperature if

possible. For a compression ignition device, the combustion temperature of ventilation air is not

high enough for N2O to be produced in significant quantities (see §4.4). For a constant-pressure

fixed-mass perfectly-mixed reactor however, significant quantities of N2O begin to develop for

reaction conditions of 2226 K and 1 atm (see §3.6.1). Thus, the primary reason for investigating

a free-piston engine over a double-spiral heat exchanger is its lower combustion temperature.

The operation of an engine on ventilation air hinges on the accuracy of the loss models which

include exhausting, friction and heat transfer. It is difficult to know a priori which of these losses

dominate and thus where to concentrate effort. Take, for example, friction. The work over a

stroke is dependent on the stroke length, compression ratio, compression ring thickness and

friction coefficient. All these variables are unknown. A similar situation is seen for heat transfer

and exhausting. Thus, the level of modelling was chosen to be as accurate and scalable for a

range of engine geometries (particularly with respect to the heat transfer model) as feasible. In

order of importance, the performance of an engine of this type was found to be limited by

1. the exhausting efficiency,

2. heat transfer and

3. compression ring friction.

An energy balance was performed post-simulation to determine the fraction of energy lost by

each process and to verify the complete model. The efficacy of this device is determined by these

processes.

1.5.1 A potential free-piston engine for emission control

As mentioned in the preface, this project developed from an experimental project on a free-

piston engine into a purely numerical study. The engine under investigation comprised two

cylinders separated by a free-piston (see Figure 1.2). Due to the lack of a crankshaft the piston

trajectory is unlike that of a conventional engine and requires a linear electric motor for both

control and extraction of work. Oscillation of the piston along the axis of the cylinders drives

the thermodynamic cycles in both combustors (see Figure 1.3).

Section 1.5 Comparison of candidate devices 7

A A

BC

SECTION A-A
SCALE 1 : 10

DETAIL B
SCALE 1 : 4

D

DETAIL C
SCALE 1 : 4 DETAIL D

SCALE 1 : 2

Figure 1.2: Compression-ignition free-piston engine. This engine design is

similar in geometry to those investigated in this thesis. The long piston and

cylinder lengths the cylinder were a consequence of exhausting requirements.

Details will be discussed more completely in later sections of this document.

8 Introduction Chapter 1

0.000

0.002

0.004

0.006

X
C

H
4

left cylinder
right cylinder

0

200

400

600

800

1000

1200

1400

1600

1800

T
,

K

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

5.65 5.7 5.75 5.8 5.85 5.9 5.95 6 6.05 6.1 6.15
-16

-12

-8

-4

0

4

8

12

16

x
p
,

m

u
p
,

m
.s

-1

t, s

xp
up

Figure 1.3: Piston trajectory, gas temperature and methane concentration

during one period of a free-piston engine.

Section 1.6 Previous studies of free-piston engines 9

This engine has inherent mechanisms that increases its efficiency above conventional com-

pression ignition engines and might allow it to operate at very low concentrations of methane.

These are:

• high compression ratios afforded by the low combustion enthalpy of ventilation air which

improves the Otto cycle efficiency

• the short ignition delay of methane, allowing the engine to approach constant volume

combustion

• a crankshaft-less design which results in lower sidewall friction, lower heat loss (particularly

at the point of piston reversal) and a variable compression ratio

• the power output of a double-acting engine without the sealing problems associated with

the connecting-rod (or conrod) [20].

From numerical experiments performed in later chapters, the combustion temperature required

by ventilation air in a compression device was found to be about 1330 K (depending on the

residence time). This requires volumetric compression ratios of about 37.

Needless to say, this engine design brings technical challenges. Such an engine must operate

at its natural frequency [15] which is dependent on the gas properties, the piston mass, the

piston surface area and the cylinder length1. It requires specialised methods for exhausting (due

to the lack of an exhausting stroke as in a four-stroke engine, or a high pressure crankcase as in

a traditional two-stroke engine), extraction or addition of work (due to the lack of a crankshaft)

and sealing (due to high pressures). It is envisaged that the piston will carry a permanent

magnetic field and be driven by one or more solenoids located on the surface of the cylinder.

Electrical work would be extracted from the piston by the same mechanism.

1.6 Previous studies of free-piston engines

The free-piston engine design of Figure 1.2 is referred to as a “dual-piston” type due to the

opposed piston-cylinder arrangement. It has a coupled intake and compression process, that

is, whilst one cylinder is undergoing compression the other is being exhausted (see Figure 1.3).

A review of free-piston engine concepts [15] compared single-piston, dual-piston and opposed-

piston free-piston engine types. Work was extracted from these engines using hydraulic fluid

and control was performed using pause-pulse modulation of the hydraulic fluid flow. The paper

advocated that a single-piston engine (which consisted of a single cylinder) was the only type for

which control problems had been solved since the presence of a conrod allowed for contact with

the hydraulic fluid. However, power electronics have progressed since the time this paper was

written and the conclusions reached may no longer apply. Nevertheless, the biggest challenge

for the dual-piston engine type remains the control of the volumetric compression ratio.

1More correctly, the engine operates at a forced frequency since a force is imparted by the linear electric

motor.

10 Introduction Chapter 1

Goldsborough and van Blarigan [21] performed a numerical investigation into the thermal

efficiency and exhaust emissions of a free-piston engine that utilised homogeneous combustion

of hydrogen. A zero-dimensional, thermodynamic model with finite-rate chemistry, empirical

scavenging, Woschni’s heat transfer model [22] and mixed friction component models were used.

They used the model to optimize the thermal efficiency of the engine by varying the fuel-air

ratio. Control of the compression ratio and the exhausting processes were found to be critical

factors affecting the engine’s performance.

Mikalsen and Roskilly [23] designed a compression ignition free-piston engine generator for

electric power generation. The engine was of dual piston type, but had a bounce chamber in

place of the second combustion cylinder. A single zone combustion model was used along with

an ignition delay formula. The quasi-steady heat transfer model of Hohenberg [24] was used

along with an assumed mean effective pressure of 120kPa to model friction. The exhausting

process was modelled using polytropic expansion of the gas along with a perfect displacement

model. The exhausting pressures were modelled using the external turbocharger-supercharger

model of [20].

In these studies, fuel mole fraction is a variable quantity and focus is placed on maximizing

efficiency or power output of the engine. Because of this, accuracy in the modelling of losses such

as heat transfer and friction is not of great concern. Engine heat transfer models in particular

still only capture (at best) the average heat transfer. There is substantial literature investigating

these component processes. A review of this literature is performed in the subsequent chapters.

1.7 Scope and contribution of this thesis

Unlike previous studies, the purpose of this computational model is to determine the minimum

amount of fuel required to sustain operation of this engine. As such, any substantial error in the

sub-models directly reflects in the conclusions drawn. Thus, every effort was made to validate

the models of friction and heat transfer and to select an appropriate kinetic mechanism for

the very lean combustion regime such that, when combined, the resultant model was a close

approximation of an actual engine.

Engine modelling can combine many effects including a mixed friction coefficient for the

compression ring, turbulent heat transfer, turbulent mixing, finite-rate chemistry, real gas mod-

elling and control. This high level of modelling introduces high levels of uncertainty. The engine

model was simplified by limiting the modelling to the following physical processes:

1. finite-rate chemistry

2. piston-gas dynamics

3. unsteady, bulk fluid flow

4. mixed friction and

5. unsteady heat transfer.

Section 1.7 Scope and contribution of this thesis 11

The principal contribution of this thesis is the complete modelling of a free-piston engine in

the very lean burn regime and its subsequent application to the task of emission control. This

went as far as to investigate the effect of real gas models on combustion and, in the case of the

heat transfer, resulted in a new transient integral boundary layer model that correctly captured

the heat flux inversion about the point of piston reversal (see §6.2.4 on page 99) as well as a

novel PID control system.

The investigation was split into three parts:

Part I quantifies the available chemical energy of ventilation air by selection of appropriate

thermodynamic and chemical models. This comprised an investigation of gas models in

Chapter 2 and the selection of a kinetic mechanism in Chapter 3. Because of the high

computational cost of the finite-rate chemistry, various reduced schemes were explored

and evaluated for their accuracy in approximating the ignition delay and heat release of

ventilation air.

Part II investigates the component models of the engine cycle. The piston-gas dynamics are

covered in Chapter 4, cylinder exhausting in Chapter 5, heat transfer and friction models

are developed in Chapter 6 and the engine control system is developed in Chapter 7.

Part III brings all the modelling pieces together into a full engine model (Chapter 8) which is

used to conduct a parametric study. Based on these results, conclusions were drawn and

the question of whether the proposed engine was a suitable device with which to reduce

the global warming potential of coal mine ventilation air was answered.

Part I

Thermodynamics and chemistry of

ventilation air

13

Chapter 2

Gas models

Real gases include phenomena such as the change in the number of particles constituting the gas

(finite-rate chemistry), change in the number of degrees-of-freedom in the motion of the particles

(multiple energy modes) and intermolecular forces due to the proximity between particles (dense

gas effects). Real gas models are important for predicting the performance of hypersonic wind

tunnels [25] where it has been found the projectile velocity is reduced due to the dominance of

intermolecular forces. They are also important for use in shock tube studies [26], particularly

those used in the elucidation of reaction rate coefficients.

More recently, it has been suggested that real gas phenomena have an appreciable effect under

the conditions seen in modern diesel engines [27]. If the ideal gas model begins to incorrectly

predict the state, there will be a corresponding effect on the chemical reaction rates1. As was

found during this investigation, the high volumetric compression ratios required by this engine

do indeed approach the limits of accuracy of the ideal equation of state. Thus, along with the

ideal and thermally-perfect gas models, cubic equations of state and real thermal behaviour are

investigated here. These models more accurately capture the gas state at high densities and

provide better values for use by the finite-rate chemistry module. This was done to quantify the

effect of these models on engine operation.

Dense gas effects are governed by the equation of state of the gas model. Real thermal

effects are evaluated by the thermal model, using the state provided by the gas model. This is

the programming methodology used for the gas models. In this case, the existing framework for

the gas models was available, and the Abel-Noble and van der Waals gas models were added.

They are included as Listing A.1 on page 140 and A.3 on page 145 respectively. The real thermal

behaviour model also built on existing code and is included in Listing A.5 on page 151.

2.1 Gas state

While its motion is subsonic, the gas contained in a piston-compression device is of variable

density. The state, Q, of an ideal (that is, thermally and calorifically perfect) gas is completely

specified by two calorific values, two dependent state variables and velocity. Using the set

1Density (or more precisely, species concentration) affects reaction rates in a polynomial manner whereas

temperature affects reaction rates in an exponential manner. These effects will be covered in Section 3.2.1.

14

Section 2.1 Gas state 15

{R, γ, T, p, u}, the atmospheric state for dry air may be written

Qatm = {R, γ, 298.15, 101325, 0} (2.1)

where R is the gas constant and γ = cp/cν is the isentropic exponent. This state is used as

a reference state for the evaluation of thermodynamic properties. The gas constant may be

calculated

R =
R

M
(2.2)

where M is the molecular mass of the gas mixture.

The dependent state variables are related by the equation of state discussed in §2.1.1. The

calorific values of a gas are dependent on this state and may be evaluated using a number of

models in §2.1.2. The equations in the following sections apply to a gas mixture (unless otherwise

specified), so mixing rules are covered in §2.1.3.

2.1.1 Evaluation of state

There are three types of equation of state, namely virial, analytical and empirical. Of the

analytical type, two cubic models (namely, Abel-Noble and van der Waals models) along with

the ideal model were selected for study. It is important to note that the cubic models apply only

to gases, that is, of a single phase, and again become inaccurate as the gas state approaches the

critical point.

The dependent state variables comprise {p, T, ν, ρ}. Using the set {p, T, ν}, the state equation

for an ideal gas may be written

p =
RT

ν
(2.3)

where the gas constant is specific to the mixture.

The state of an Abel-Noble gas (also known as a covolume gas) requires an additional con-

stant, namely the covolume, ν0, which is the specific volume taken up by the molecules of a gas.

Using {p, T, ν, ν0}, the state equation is

p =
RT

ν − ν0
for ν > ν0. (2.4)

This model deviates from ideal behaviour as the specific volume of a gas approaches its covolume.

The gas becomes incompressible when ν = ν0.

The state of a van der Waals gas requires a further constant, α, which is a measure of the

intermolecular force

p =
RT

ν − ν0
− α

ν2
for ν > ν0. (2.5)

Values of ν0 and α are given for selected species in Table 2.1, see §2.A.1 on page 19. The Abel-

Noble and van der Waals equations are derived from the general form of the cubic equation of

state (included in §2.A.1 on page 19).

For validation of the numerical implementation of these equations, Figure 2.1 compares

the isothermal compression of Helium with the data of Akin [28]. The thermally perfect gas

16 Gas models Chapter 2

1×104

1×105

1×106

1×107

1×108

1×10-3 1×10-2 1×10-1 1×100 1×101

p
,

P
a

ν, m3kg-1

data from [28]
ideal

thermally perfect
Abel-Noble

van der Waals

Figure 2.1: Validation of the gas model implementation using isothermal

compression of Helium with reinterpreted data from [28]. The Abel-Noble

and van der Waals gas models deviate from the ideal gas model.

model shows no deviation from ideal behaviour for isothermal compression, whereas both the

Abel-Noble and van der Waals gases slightly overestimate pressure.

The effect of these models in a free-piston compressor is covered in §4.2.

2.1.2 Evaluation of calorific values

For all gas models, the definition of enthalpy [29] is

h = e+ pν. (2.6)

For a calorifically-perfect gas, the calorific value cp is assumed to be constant, such that dh =

cpdT . This assumption however is only valid over a small temperature range. For a thermally-

perfect gas, the specific heat, absolute enthalpy and entropy are temperature dependent prop-

erties [29]. Polynomial fits are used and take either the form suggested in [30]

c̄p,i
R

= a1T
−2 + a2T

−1 + a3 + a4T + a5T
2 + a6T

3 + a7T
4 (2.7a)

h̄0
i

RT
= −a1T

−2 + a2T
−1 lnT + a3 +

a4

2
T +

a5

3
T 2 +

a6

4
T 3 +

a7

5
T 4 +

a8

T
(2.7b)

s̄0
i

R
= −a1

2
T−2 − a2T

−1 + a3 lnT + a4T +
a5

2
T 2 +

a6

3
T 3 +

a7

4
T 4 + a9 (2.7c)

or this form with the first two terms omitted as in [31]. Species coefficients were sourced

primarily from the Chemkin thermodynamic database [31]. When species data was not available,

data from CEA [30] and the JANAF tables [32] were used in that order.

Section 2.2 Gas state 17

For a thermally real gas, values of de, dh and ds are dependent on the gas state. The general

forms of these properties are

de = cνdT +

(
T
∂p

∂T

∣∣∣∣
ν

− p
)
dν, (2.8a)

dh = cpdT +

(
ν − T ∂ν

∂T

∣∣∣∣
p

)
dp and (2.8b)

ds =
1

T
(dh− νdp) (2.8c)

respectively [29]. The pressure dependency of these relations reduces to zero for the ideal

equation of state, which is said to be thermally perfect. As such, it is only necessary to use

equation (2.8) with the Abel-Noble and van der Waals equations of state. Relevant derivatives

for these models are supplied in §2.A.3 on page 19.

Substituting (2.8a) and (2.8b) into (2.6) yields

cν = cp + T
∂ν

∂T

∣∣∣∣
p

2 ∂p

∂ν

∣∣∣∣
T

(2.9)

which reduces to the well-known relation cv = (cp −R) for an ideal gas.

2.1.3 Mixing rules

For real gas mixtures, Dalton’s law of additive pressures has been used as an approximation.

The covolume of a gas mixture is a weighted sum of the covolumes of the component species

whereas α (in the simplest case) is a geometric sum, viz.

ν̄0 =

nsp∑
i=1

Xiν̄0,i and (2.10a)

ᾱ =

(nsp∑
i=1

Xiᾱ
1
2
i

)2

, (2.10b)

where the overbar denotes the property is per unit mole.

The calorific values for a gas mixture are a weighted sum of the calorific value of the com-

ponent species. An example of this is the specific heat at constant pressure (2.7a),

c̄p =

nsp∑
i=1

(Xic̄p,i) . (2.11)

The molecular mass may be used to convert between mole and mass specific values by

cp =
c̄p
M

(2.12)

where

M =

nsp∑
i=1

XiMi =

(nsp∑
i=1

Yi
Mi

)−1

. (2.13)

18 Gas models Chapter 2

The viscosity of a gas mixture may be approximated [33] using∑nsp

i=1

(
Xiµi
√
Mi

)∑nsp

i=1

(
Xi

√
Mi

) . (2.14)

This property will be used later for calculating the Reynolds number for heat transfer (see

§6.2.2).

2.2 Entropic relations

Entropy is a nonconserved property of a gas. From (2.8c), the entropy generated by an ideal

gas undergoing an adiabatic process may be written

ds = cν
dT
T +Rdν

ν

s2 − s1 = cν ln T2
T1

+R ln ν2
ν1

 ≥ 0. (2.15)

For an ideal gas undergoing an isentropic process ds0→1 = 0, (2.15) becomes

p1
p0

=
(
ν0
ν1

)γ
(2.16a)

T1
T0

=
(
ν0
ν1

)γ−1
. (2.16b)

These functions will be used for free-piston compressor models in §4.1 and heat transfer models

in §6.2.

Le Châtelier’s principle states that when a gas at equilibrium is subjected to a change (for

example, in pressure), it will shift in composition in such a way as to minimise the change (for

example, by shifting in a direction that produces fewer moles). Gibb’s free energy is used to

describe the energy of such a gas and is defined (for all gas models [29]) as

g = h− Ts (2.17)

where h and s may be calculated using (2.8b) and (2.8c) and the appropriate mixing rule. This

function is used for the calculation of the equilibrium constant for finite-rate chemistry (see

§3.A.6 on page 51).

Section 2.A Chapter end notes 19

2.A Chapter end notes

2.A.1 General cubic equation of state and parameters

The general form of the cubic equation of state is

p =
RT

ν̄ − ν̄0
− Θ (ν̄ − η)

(ν̄ − ν̄0) (ν̄2 + δν̄ + ε)
, (2.18)

which reduces to the ideal gas law in the low density limit2. The values Θ, η, ε, δ and ν̄0 may

be constants (including zero) or functions of temperature or composition depending on the gas

model type [34]. For the Abel-Noble and van der Waals models, Θ = α, η = ν̄0 and ε = δ = 0

and the critical temperature and pressure of a gas (Tc, pc) are used to evaluate ν̄0 and ᾱ.

ν̄0 =
1

8

RTc
pc

(2.19a)

ᾱ =
27

64

(RTc)
2

pc
(2.19b)

The values of ν̄0 and ᾱ are given for a selected number of species in Table 2.1.

species ν̄0, m3mol-1 ᾱ, m3Jmol-2 Tc, K pc, Pa

O2 3.184×10-5 0.1381 154.58 50.43×105

N2 3.864×10-5 0.1368 126.20 33.98×105

H2O 3.051×10-5 0.5542 647.14 220.64×105

CH4 4.306×10-5 0.2303 190.56 45.99×105

CO 3.951×10-5 0.1473 132.85 34.94×105

CO2 4.286×10-5 0.3658 304.12 73.74×105

He 2.376×10-5 0.00346 5.19 2.27×105

Table 2.1: Species constants for a real-gas equation of state [35]

2.A.2 General form for some gas variables

Real gas equations-of-state are written using specific-volume instead of density. To find the

derivatives with respect to density, we can use the chain rule.

∂

∂ρ
=

∂

∂ν

∂ν

∂ρ

= −ν2 ∂

∂ν

(2.20)

The derivatives for the three gas models considered are shown in Table 2.2.

2.A.3 Evaluation of temperature from internal energy and density in a real gas

There is a coupled relation between the specific heats, internal energy and temperature of a gas.

For an Abel-Noble gas, enthalpy is evaluated the same as for a thermally perfect gas. For a

2Note the nomenclature here has been changed slightly as ν̄0 is commonly designated b.

20 Gas models Chapter 2

Ideal Abel-Noble van der Waals

∂T
∂p

∣∣∣
ν

ν
R

(ν−ν0)
R

(ν−ν0)
R

∂T
∂ν

∣∣
p

p
R

p
R

1
R

[
p− α

ν3
(ν + 2ν0)

]
∂p
∂ν

∣∣∣
T
−RT

ν2
− RT

(ν−ν0)2
− RT

(ν−ν0)2
− 2α

ν3

∂ν
∂T

∣∣
p

R
p

R
p R

[
p− α

ν3
(ν + 2ν0)

]−1

Table 2.2: Equation of state derivatives

van der Waals gas however,

dh = cpdT +

{
ν −RT

[
p+

α

ν3
(2ν0 − ν)

]−1
}
dp. (2.21a)

Once h is known, we may evaluate e by combining (2.6) with the state equations for an ideal,

Abel-Noble and van der Waals gas,

e = h−RT (2.22a)

e = h− RTν

(ν − ν0)
(2.22b)

e = h− RTν

(ν − ν0)
+
α

ν
(2.22c)

If e is known, the correct value for temperature may be found by iteration.

Chapter 3

Finite-rate chemistry

This chapter comprises two parts: the first is the selection of an appropriate kinetic mechanism

for methane and the second is the investigation into the effect of real gas models on finite-rate

chemistry.

Ventilation air burns homogeneously when raised to the adiabatic flame temperature since

the methane concentration is practically at the flame extinction limit, even for a preheated

mixture [14]. Mole fraction mixtures of around 1% are commonly chosen for use in ignition

delay experiments conducted using reflected shock tubes (for example, [36] and [37]) because

they remain almost isothermal during the reaction. For combustion in a free-piston compressor,

the state of the gas at the point of piston reversal and the combustion it promotes is very similar

to these post-shock conditions, so experimental data was used to select a mechanism.

Finite-rate chemistry involves the application of a global reaction scheme or a chemical

kinetic mechanism to model the production and destruction of chemical species in a gas. Global

reactions model a single reaction, do not include intermediary species (going straight from

reagents to products) and hold only over a limited range of conditions. In contrast, kinetic

mechanisms comprise many elementary reactions, including those with intermediary species.

The latter was deemed necessary simply because intermediary species such as CO, OH and

N2O were of interest. In addition, reactions in a free-piston engine may not always go to

completion (due to the reactions being frozen by the rebounding piston).

Many kinetic mechanisms for methane exist in the literature. To determine which mech-

anisms were applicable to the conditions in a free-piston engine, two selection criteria were

applied: the first (and the one given most attention here) was ignition delay1, the second was

heat release. Both are important, and the kinetic mechanism was selected based on how accu-

rately it predicted both of these phenomena. As it happened, more than one mechanism was

found to be suitable so computational expense was included in the selection criteria.

3.1 Chemistry of methane

Methane is the simplest hydrocarbon, yet kinetic mechanisms that describe its combustion can

prove computationally prohibitive when used for numerical modelling of engines. As such, they

are commonly reduced (simplified) using a number of techniques [38]. Six methane mechanisms

were selected from the literature for investigation (see Table 3.1).

1Ignition delay was defined as a particular point in the CH4 concentration history during combustion

21

22 Finite-rate chemistry Chapter 3

Name Species Reactions Ref

Li and Williams 18 24 [39]

Smooke and Giovangigli 16 25 [40]

Jazbec et al. 16 28 [41]

DRM19 21 84 [42]

DRM22 24 104 [43]

GRI-Mech3.0 53 325 [44]

Table 3.1: Investigated Methane mechanisms2. The DRM19 mechanism

is included as Listing 3.4 on page 48.

Of these six, only GRI-Mech3.0 is a “full” mechanism. The remaining five are so-called

“reduced” mechanisms which sacrifice accuracy in either ignition delay (such as the flame mech-

anism of Smooke and Giovangigli) or heat release (such as the ignition mechanisms of Li and

Williams) in order to reduce the computational work. Reduced mechanisms may also exclude

reactions that do not produce appreciable amounts of products over their intended range of

temperatures and densities (for example, nitrogen chemistry for low temperature mechanisms

as in DRM19 and DRM22).

3.1.1 Methane combustion

The equivalence ratio for methane is

φ =
2XCH4

XO2

. (3.1)

For air, N2 may be treated as the diluent (also known as the bath gas). For a stoichiometric CH4-

air mixture (that is, for φ = 1.0) the lower and higher3 heating values are 76.271kJ.mol-1 and

84.677kJ.mol-1 of mixture respectively. By comparison, the nominal mole fraction of methane in

ventilation air is 0.005 [6] which corresponds to heating values of 4.011kJ/mol and 4.454kJ/mol

of mixture respectively.

For methane in air, the reaction

CH4 + 2O2 + 7.52N2 GGGGBFGGGGCO2 + 2H2O + 7.52N2,

was modelled using a kinetic mechanism.

Kinetic mechanisms are comprised of many elementary reactions and include intermediary

species. Elementary reaction rates use integer exponents (equal to the stoichiometric mole

numbers). The elementary reactions are either bimolecular, third body or pressure-dependent

depending on their behaviour and number of participating species. These terms refer to the

rate coefficients used in the calculation of the elementary reaction rates. All rate coefficients

2During a chemical reaction, the evaluation of specific heats (and hence temperature) is coupled to the

reaction-rate (which is very temperature sensitive). Thus, it is important to use the same thermodynamic data

when comparing two mechanisms, see §2.1.2.
3The higher heating value includes the latent heat of fusion of water, which is included for experimental

reasons.

Section 3.2 Reaction modelling 23

are strongly temperature dependent, however pressure-dependent coefficients are additionally

dependent on the third body concentration. The investigated methane mechanisms contained

all three types with the exception of Jazbec et al., which excluded the pressure-dependent

coefficients.

The decomposition of the methane molecule is one possible first step in the chain branching,

and the reaction

CH4EGGGGGGGGCCH3 + H (3.2)

will receive special attention as it is known to have pressure-dependent rate coefficients.

3.2 Reaction modelling

The gas model and finite-rate chemistry module Gaspywas developed in-house4 largely by

Rowan Gollan [45]. The capability of multiple energy modes was added due to the work of

Daniel Potter. Due to the work in this document, Gaspy now also includes real gas models and

pressure-dependent reactions. This section validates the implementation of pressure-dependent

rate coefficients in Gaspy . The associated program code is included as Listing A.7 on page 159.

3.2.1 Elementary reactions

From Anderson [46] the syntax of an elementary reaction is

∑
i=i′

cii
kf

GGGGGGBFGGGGGG

kr

∑
i=i′′

cii (3.3)

where c is the stoichiometric coefficient, i′ and i′′ denote the reagents and products respectively,

and kf and kr are the forward and reverse reaction rate coefficients respectively. The reaction

rate is a function of the rate coefficient and reagent concentrations, and the rate coefficient is a

function of temperature.

3.2.2 Species production rates

The production rate of a species is a function of temperature and reagent molar concentrations.

The total production rate of species i is the sum of its production rate over all elementary

reactions in a mechanism,

d[Xi]

dt
=

n∑
j=1

(
d[Xi]

dt

)
j

, (3.4)

where n is the total number of reactions.

Reaction rates can refer to either the rate of production or destruction of a species partici-

pating in a reaction. The net rate of change in the concentration of species i is

d[Xi]

dt
= (ci′′ − ci′)

{
kf
∏
i=i′

[Xi]
ci − kr

∏
i=i′′

[Xi]
ci

}
for i′, i′′ ∈ i (3.5)

where kf and kr are the forward and reverse rates and [Xi] is the concentration of species i.

4Dept. of Mechanical Engineering, University of Queensland

24 Finite-rate chemistry Chapter 3

Elementary rate coefficients

Rate coefficients are classed as either Arrhenius or Pressure-dependent.

Arrhenius form The Arrhenius form of the rate coefficient is based on collision theory and

applicable to the majority of reactions.

k (T) = AT β exp

(
− E

RT

)
(3.6)

where the frequency factor, AT β, and the activation energy, E, are determined exper-

imentally. The general units for these variables are mole(vol.time)-1 and energy.mole-1

respectively.

In a third body reaction, different species effect a reaction at different efficiencies, ηi. The

third body value is defined as

[M] =

nsp∑
i=1

ηi[Xi] (3.7)

where Xi is the concentration of species i and nsp is the total number of species. This is

distinct from the third body concentration of a gas which is equivalent to the molar density.

Pressure-dependent form Pressure-dependent coefficients transition between two limiting

Arrhenius coefficients depending on the third body value. This transition is due to the

fact their reactions exhibit both unimolecular and bimolecular (also known as first and

second order) characteristics. The rate coefficient tends to a constant value, k∞, as the

molar density goes to infinity. At high temperatures, essentially all unimolecular reactions

exhibit this behaviour [47].

Pressure-dependent reactions are denoted using parentheses around the third body, as in

A (+M)
kf

GGGGGGBFGGGGGG

kr
B + C (+M) .

This signifies that the low pressure reaction involves two participants, whereas the high

pressure reaction involves only one. Care must be taken when evaluating the units of the

rate coefficient for this reaction. Pressure-dependent rate coefficients commonly take one

of two forms: Lindemann-Hinshelwood or Troe.

The Lindemann-Hinshelwood form of the forward rate coefficient is given by

kf =
k∞k0[M]

k∞ + k0[M]
=

k0[M] lim[M]→0

k∞ lim[M]→∞
, (3.8)

where the rate coefficients k0 and k∞ are provided by the kinetic mechanism in Arrhenius

form. The derivation of this rate can be found in §3.A.7 on page 51. The reverse rate

coefficient for these reactions may be calculated using the equilibrium constant (c.f. §3.A.6

on page 51) or specified explicitly, as in the mechanism of Smooke and Giovangigli (see

§3.A.9 on page 53).

Section 3.2 Reaction modelling 25

The Troe form is based on the Lindemann-Hinshelwood form but includes strong and weak

collision broadening effects in one broadening factor, F [47].

kf =
k∞k0[M]

k∞ + k0[M]
F (3.9)

F may be calculated using

logF =

[
1 +

(
logPr + c

n− d (logPr + c)

)2
]−1

logFcent , (3.10)

where

Pr =
k0[M]

k∞

c = −0.4− 0.67 logFcent

n = 0.75− 1.27 logFcent

d = 0.14 and

Fcent = (1− a) exp

(
− T

T ∗∗∗

)
+ a exp

(
− T

T ∗

)
+ exp

(
−T

∗∗

T

)
.

The four parameters a, T ∗∗∗, T ∗ and T ∗∗ must be specified as input for the Troe form.

3.2.3 Experimental methods for elucidating reaction models

To a large extent, rate coefficients for these models have been derived from combustion ex-

periments. Experimental devices used include RCMs, reflected shock-tubes and so-called static-

and flow-systems. Initially, rapid-compression devices were used to elucidate the rate coefficients

(see [48, 49]). However, a number of shortcomings, including long work delay (relative to the

chemical delay) and spatial non-uniformity of gas temperature within the compressed cylinder

(especially at higher pressures and temperatures) led to the use of reflected shock tubes.

Reflected shock tubes use a shock compression process (generated by a rapidly expanding

reservoir of high-pressure gas) to create ignition conditions in a test gas. When compared to

rapid-compression devices, reflected shock tubes more completely isolate combustion from other

phenomena and allow more control over the conditions at which combustion occurs. While

remaining the best device, they are not without limitation. During combustion, the energy lib-

erated by the reactions has a compounding effect on the reaction which makes their rates difficult

to quantify. Isothermal conditions are also required to keep shock waves as one-dimensional as

possible [50]. For methane oxidation, these conditions are only obtained if the CH4 content of

the mixture remains below 1% [36], although a correction may be used to account for shock

attenuation and non-ideal reflection (for example, 20 K [51] or -35 K [52]).

A set of test cases were selected to validate the finite-rate chemistry of Gaspy , and partic-

ularly the pressure-dependent rate coefficients. Pressure-dependent rate coefficient values were

plotted alongside their low- and high-pressure limiting coefficient values, and equilibrium mole

fractions were validated by comparison to those from CEA. A constant-volume fixed-mass re-

actor was used to compare the ignition delay of the mechanisms in Table 3.1 with shock-tube

tests in order to prove their applicability.

26 Finite-rate chemistry Chapter 3

3.2.4 Methane decomposition

Kinetic mechanisms are models in their entirety, and elementary reactions are not accurate in

isolation. An exception to this is when an experimental study of a single species is conducted

to determine the rate coefficient. Take for example the decomposition of CH4, which is known

to have pressure-dependent rate coefficients. To find the rate coefficients, Hartig et al. [53]

performed reflected shock tube experiments using pure CH4. Experiments were performed at

conditions between 1850 to 2500 K and total densities between 5.5×10-5 and 1.5×10-3mol.cm-3.

Over these conditions they found the rate constant for methane decomposition to vary between

first and second-order. The high and low limiting rate coefficients were found to be

k∞ = 1× 1015 exp (−104000/RT) and (3.11a)

k0 = 1× 1017.8 exp (−88000/RT) (3.11b)

respectively (in units of cm, cal, K and mol).

Kondratiev [49] determined the rate coefficient for methane decomposition in a rapid-compression

device. He overcame the shortcomings of the device noted earlier by combining the reaction rate

formula with the piston dynamics. The experimental conditions ranged between 1590 to 1750 K

at a pressure of 20 atm over which the rate constant was found to be

k = 1× 1015 exp (−103000/RT) (3.12)

which is remarkably similar to the high pressure rate coefficient of [53]. Importantly, he found

that the thermal dissociation of methane under these conditions was seen to obey a strictly

first-order law. This means that under compression ignition conditions, the high pressure rate

coefficient of methane is reached before the reaction begins.

While the focus here is on CH4 decomposition, there are many pressure-dependent rate

coefficients in the full mechanism of GRI-Mech3.0. Take, for example, the rate coefficient of

reaction 184

N2O(+M)EGGGGGGGGCN2 + O(+M) (3.13)

which is also pressure-dependent (confirmed in [26]). Nitrogen chemistry will be investigated in

the §3.4.

3.2.5 Validation of pressure-dependent rate coefficients

Take reaction 51 from the GRI-Mech3.0 mechanism (see Table 3.2). As a validation test, the

Gaspymodule was called upon to return the rate coefficients for this reaction over a range of

pressures (and hence third body values) to compare them to the limiting Arrhenius rates (see

Figure 3.1). The Troe form includes some offset from the low pressure Arrhenius coefficient.

While the decomposition methane is a pressure-dependent reaction, the high pressure limiting

rate, k∞, is the active rate during compression ignition.

Verification of equilibrium mole fractions

Equilibrium mole fractions were verified in the low and high pressure limit for the methane

decomposition reaction of four mechanisms. When the equilibrium constant is used to calculate

Section 3.3 Reaction modelling 27

Reaction A (mol,cm,s,K) β E (cal.mol−1K−1)

H + CH3(+M) GGGGBFGGGGCH4(+M) 1.390×1016 -5.34×10-1 5.360×102

low 2.620×1033 -4.76×100 2.440×103

Troe coefficients (a, T ∗∗∗, T ∗, T ∗∗) 0.7830, 74.00, 2941.00, 6964.00

efficiencies CH4=3.00, Ar=0.70

Table 3.2: Reaction 51, GRI-Mech3.0

105

106

107

108

109

103 104 105 106 107 108 109

100 101 102 103 104 105

k

p, Pa

ρ̄, mol.m-3

k0ρ̄

k∞

Lindemann
Troe
k0ρ̄
k∞

Figure 3.1: Pressure-dependent rate coefficient and the Arrhenius asymp-

totes (Reaction 51, GRI-Mech3.0). Both the Lindemann-Hinshelwood and

Troe forms of Reaction 51 were compared to show the effect of the Troe

coefficients. Due to limitations in the code (as of revision 672), efficiencies

could not be incorporated at this level. This feature will be added in future

revisions.

the backwards rate coefficient (as in (3.26)), the species’ concentrations should always approach

their equilibrium value, differing only by the rate at which this occurs.

Species production rates were integrated at constant temperature and constant pressure

conditions using Gaspy . Equilibrium values were then compared to the output of CEA2 [54] (see

Figure 3.2). These reactions were only used to verify the equilibrium condition since elementary

reaction rates are not valid in isolation. The species concentrations predicted by the Smooke

and Giovangigli reaction do not approach their equilibrium value because a backward rate was

specified for this elementary reaction.

At this point, both the rate coefficient and the equilibrium mole fraction of products for

pressure-dependent reactions have been verified. Thus it is appropriate to continue with the

numerical modelling of reacting systems.

28 Finite-rate chemistry Chapter 3

1×10-4

1×10-3

1×10-2

1×10-1

1×100

0.0e+00 1.0e-03 2.0e-03 3.0e-03 4.0e-03

X

t, ms

CH4

H, CH3

CEA2
Li and Williams

Smooke and Giovangigli
DRM19

GRI-Mech3.0

(a) 1×103Pa

1×10-4

1×10-3

1×10-2

1×10-1

1×100

0.0e0 5.0e-10 1.0e-9 1.5e-9

X

t, ms

H, CH3

CH4

CEA2
Li and Williams

Smooke and Giovangigli
DRM19

GRI-Mech3.0

(b) 1×109Pa

Figure 3.2: Decomposition of CH4 (const-T , p) showing equilibrium mole

fractions. The species concentrations predicted by the Smooke and Gio-

vangigli reaction do not approach their equilibrium value because a backward

rate was specified for this elementary reaction.

3.3 Programming methodology

The numerical models developed in this thesis used and extended existing code from the Dept. of

Mechanical Engineering, University of Queensland. They were written in a number of computer

languages: C++ was used to do the numerical work, Python was used to set up test case

parameters and call the C++ functions (wrapped using SWIG) and finally Lua was used for the

input files (including the kinetic mechanisms).

Code verification is the process of comparing the output of a program with a known result

to show there are no mistakes. Code validation is the process of comparing the output of a

program to experimental data to check the code is accurate. Both methods were used to reduce

numerical error.

Sources of numerical error may be classified into five types [55]:

1. the degree to which a mathematical model approximates a physical process

2. the degree to which a numerical model approximates the mathematical model (for instance,

the use of operator-split method to approximate coupled equations)

3. the error in computation of the discrete physical properties of the numerical model (such

as floating point error and discretisation)

4. the ability of the grid (if applicable) to resolve the computational domain through the size

and shape of individual elements (for discretisation) and

5. the inaccuracy in the interpolation of a discrete solution.

The extent of the first type of error is determined by comparison to numerical data, where

possible. The extent of the second type is determined by comparison to the analytical solution.

Section 3.4 Perfectly mixed reactors 29

The extent of the third type depends on the qualities of the time-marching integration scheme,

any interpolation methods and machine precision. Machine precision error inherent to floating-

point operations (including truncation and round-off error) depends largely on good coding

practices. The extent of the fourth and fifth sources of error depends largely on the qualities of

the timestep selection.

Timesteps

Chemical reactions occur very rapidly compared to changes in the thermodynamic state and the

piston dynamics of a free-piston engine. In addition, it is desired that the state of the system

only be recorded every so often. As such, four different timesteps were used during simulations:

dt chem time between evaluating the species production rates

dt therm time between evaluating the thermodynamic state

dt sys time between evaluating piston dynamics

dt print time between writing system state to file.

Timesteps were selected for each operation to minimise computational work whilst maintaining

an acceptable level of error. Each timestep could include substeps of dt therm and dt chem. The

state of the system was printed to file at intervals of dt sys. When no chemistry is evaluated,

dt therm and dt sys were equal.

3.4 Perfectly mixed reactors

For code verification of the pressure-dependent finite-rate chemistry, both constant-pressure and

constant-volume fixed-mass reactors were used.

(a) constant-pressure,

fixed-mass reactor

(b) constant-volume,

fixed-mass reactor

Figure 3.3: Perfectly mixed reactors (homogeneous and adiabatic)

A rapid-compression device is equivalent to the constant-pressure, fixed-mass perfectly mixed

reactor (see Figure 3.3a). The process is not strictly at a constant pressure, but can be approx-

30 Finite-rate chemistry Chapter 3

imated as such using an operator-split process. The differential equations for this reactor are

dT

dt
=
−
∑nsp

i

(
h̄iω̇i

)∑nsp

i ([Xi]c̄p,i)
and

dYi
dt

=
ω̇iMi

ρ
, i = 1, . . . , nsp

(3.14)

where nsp is the number of species, h̄i is the specific enthalpy, ω̇i is the rate of production of

species i, [Xi] is the concentration of species i, and c̄p,i is the specific heat at constant pressure,

Yi is the mass fraction of species i and Mi is the molecular weight of species i.

A shock tube device can be modelled using a constant-volume, fixed-mass reactor (see Fig-

ure 3.3b). A shock tube is not strictly of fixed mass (since one boundary is a moving shock

wave), yet this is a fair assumption given that the chemical timescale is much smaller than the

bulk flow timescale of the nearly stagnant gas in the shock-reflection region of the shock tube.

The differential equations for this reactor are

dT

dt
=
−
∑nsp

i (ēiω̇i)∑nsp

i ([Xi]c̄ν,i)
,

dp

dt
= RT

nsp∑
i=1

ω̇i + R
dT

dt

nsp∑
i=1

[Xi] and

dYi
dt

=
ω̇iMi

ρ
, i = 1, . . . , nsp

(3.15)

where ēi is the internal energy and c̄ν,i is the specific heat at constant density. These equations

are coupled by the term dT
dt .

The equations of (3.15) and (3.14) were implemented in the program reactor.py (see List-

ing 3.1 on page 44). The constant-pressure, fixed-mass equations (3.14) were then replaced by

an operator-split process (see simple reactor.py , Listing 3.2 on page 46). It consisted of three

operations over each global timestep:

1. integrating the chemistry using a number of substeps (which changes internal and chemical

energy)

2. expanding the gas isentropically such that it returned to its original pressure

3. evaluating the state (assuming correct properties for density and internal energy).

To verify this process, the difference between the output of reactor.py , simple reactor.py

and Chemkin-II for a constant-pressure fixed-mass reactor using a hydrogen mechanism was

compared for a range of timesteps (see Figure 3.4). The gas state and chemical rates were

evaluated only once each timestep, but the species concentrations were updated over multiple

substeps. Upon inspection of Figure 3.4, it can be seen that the assumption of a small change

in gas state (and hence chemical rates) is violated as the timestep becomes large.

Section 3.4 Perfectly mixed reactors 31

1×10-12

1×10-10

1×10-8

1×10-6

1×10-4

1×10-2

1×100

0e+00 1e-04 2e-04 3e-04

X

t, s

Chemkin-II
dt=1e-8
dt=1e-7
dt=1e-6
dt=1e-5

1000

1200

1400

1600

1800

2000

2200

2400

2600

0e+00 1e-04 2e-04 3e-04

T
,

K

t, s

Chemkin-II
dt=1e-8
dt=1e-7
dt=1e-6
dt=1e-5

Figure 3.4: Effect of timestep on the operator-split method. Effects are

seen as the timestep becomes larger than the period between ignition delay

and combustion delay.

Constant-pressure, fixed-mass, perfectly mixed reactor

A constant-pressure fixed-mass perfectly mixed reactor using Chemkin-II is provided as an

example in Appendix 2 of the Chemkin II manual [56]. This was used to verify both the

chemistry of Gaspy using both reactor.py and simple reactor.py . These programs integrate

the constant-pressure fixed-mass equations (Case 2 of §3.4) in time, using a stiff ODE solver. In

the latter case, the ODE solver of SciPy v0.6.0-r4 was used.

The comparison was made using two mechanisms so as to separate testing of the different

reaction types. They were:

1. a hydrogen mechanism (Listing 3.3) to verify the two- and three-body rate implementations

and

2. DRM19 (Listing 3.4 on page 48) to verify the pressure-dependent rate implementation.

Verification of two- and three-body rates

To verify the implementation of bimolecular and third-body rates, a comparison between Gaspy and

Chemkin-II was performed using a hydrogen mechanism (Listing 3.3 on page 47) in a constant-

pressure fixed-mass reactor. A summary of these tests is provided in the Table 3.3.

script mechanism initial state nH2 ,nO2 ,nN2

conp.f [56] h2-chemkin.dat 1000K,

1×105Pa
1,3,0.1

simple reactor.py (Listing 3.1) h2-chemkin.lua

Table 3.3: Hydrogen test condition

The result in Figure 3.5 shows that an operator-split method using Gaspy and a dt chem of

1×10-7s achieves the same result as Chemkin-II. The mole fraction values were also checked the

output in [56].

32 Finite-rate chemistry Chapter 3

1000

1200

1400

1600

1800

2000

2200

2400

2600

0e+00 1e-04 2e-04 3e-04

T
,

K

t, s

Chemkin-II
simple reactor

o/s simple reactor
1×10-12

1×10-10

1×10-8

1×10-6

1×10-4

1×10-2

1×100

0e+00 1e-04 2e-04 3e-04

X

t, s

Chemkin-II
simple reactor

o/s simple reactor

Figure 3.5: Constant-pressure reaction using Hydrogen mechanism,

dt chem = 1×10-7. This is the example provided in Appendix 2 of the

Chemkin II manual.

To verify the implementation of pressure-dependent rates, a comparison between Gaspy and

Chemkin-II was performed using the DRM19 mechanism (Listing 3.4) in a constant-pressure

fixed-mass reactor. A summary of these tests is provided in the Table 3.4.

script mechanism initial state nCH4 ,nO2 ,nN2

conp.f [56] drm19.dat 2000K,

1×105Pa
1,2,7.52

simple reactor.py (Listing 3.1) drm19.lua

Table 3.4: Methane test condition

2000

2200

2400

2600

2800

3000

3200

0e+00 1e-04 2e-04 3e-04 4e-04

T
,

K

t, s

Chemkin-II w/ DRM19
o/s simple reactor w/ DRM19

1×10-12

1×10-10

1×10-8

1×10-6

1×10-4

1×10-2

1×100

0e+00 1e-04 2e-04 3e-04 4e-04

X

t, s

Chemkin-II
simple reactor w/ DRM19

Figure 3.6: CPFM PMR using DRM19 with mixture

nCH4
, nO2

, nN2
= 1,2,7.52, dt chem=2×10-7. On each of these, Chemkin-II

matches well with Gaspy , even down to mole fractions of 1×10-10.

Section 3.5 Methane chemical delays 33

3.5 Methane chemical delays

As is evident in (3.4), the rate of change in concentration of a species is proportional to its

concentration. The chemical delay is defined as the time required for the concentration of a

reagent, S, to fall to a specified fraction of its initial concentration [7]

τchem =
1

kf
∏
i=i′ [Xi]0

ci

=
1

A exp
(
− E
RT0

)∏
i=i′ [Xi]0

ci

 i′ 6= S (3.16)

where [Xi]0 is the initial concentration of species i and T0 is the initial temperature. Note

this form is only correct when one species is in far greater abundance than the other (see [7,

page 133]).

The ignition delay (also known as the induction time) of a reaction is a chemical delay defined

by a characteristic point in the history of an indicative intermediary species. Being a special

type of chemical delay, it has the same form as (3.16). For methane, experimenters commonly

choose the peak concentration of OH, but the concentration histories of many other species have

been measured along with pressure and temperature. For reflected shock tube experiments the

concentrations used in (3.16) refer to the conditions behind the reflected shock. Experiments

are conducted in order to obtain an ignition delay formula that characterizes a particular fuel.

Consider a homogeneous, combustible, CH4-air mixture in an adiabatic chamber of a fixed

volume at a given reference state. The physical and chemical state of the mixture will change

with time until the dead state, or equilibrium, is reached. The combustion delay is defined here

as the time between the reference state and the dead state.

Ignition and combustion delay formulae are closely related to global reactions and, as such,

cannot be used to elucidate a kinetic mechanism [51]. Instead, ignition delay data will be used

to validate and aid in selection of a suitable kinetic mechanism. The chosen mechanism will

then be used in a free-piston engine model in §4.4.

3.5.1 Review of ignition delay experiments

The ignition delay of methane has been given different definitions depending on the measured

property. The chosen definition has a large effect on the ignition delay constants and fair

comparisons between papers can only be made when the same definition has been used. In

most tests, ignition delay was defined as the delay between shock reflection and the onset of a

sharp change in the emission (or absorption) history of an indicative species. Onset is defined

as the intersection between the asymptote of the emission or absorption curve and a baseline

value. The species selected differ between methane oxidation studies but, in general, the spike

in emission of or absorption by the OH radical is preferred.

Seery and Bowman [52] and Lifshitz et al. [51] defined ignition delay as the delay between

shock heating and the sudden rise in pressure due to combustion. Additionally, Seery and

Bowman [52] measured species emission (OH, CH, C2, CO) and absorption (OH) but decided

34 Finite-rate chemistry Chapter 3

that chemiluminescence was a poor criterion for ignition delay due to the sensitivity of their

apparatus.

In more recent experiments, with highly diluted CH4-O2 mixtures, chemiluminesence is used

almost exclusively. Tsuboi and Wagner [36] used CH4 emission (3.43µm) (although the onset of

OH absorption (3100Å), CH3 absorption (2160Å) and pressure increase were said to agree well

with this indicator). Zallen and Wittig [57] used the first point of inflection of OH emission,

while Grillo and Slack [58] used the delay between shock heating and the first rapid emission of

OH (although this point also matched the onset of CO2 and H2O emission and pressure rise).

Krishnan and Ravikumar [50] were less explicit, defining ignition delay as the time between

shock heating the appearance of visible light. Petersen et al. [37] used OH absorption (306nm),

CH4 emission (3.4µm) and pressure measurements.

A complete list of definitions as quoted from selected papers is included in §3.A.5 on page 50.

The ignition delay formulae selected for use were chosen based on their test conditions.

Test conditions

When considering the chemical delay equation (3.16), species concentrations, temperature and

total molar density are the required variables. However, almost all ignition delay experiments

provide initial conditions in the form of an equivalence ratio, diluent fraction of either Argon,

Nitrogen or Helium, and total pressure.

When comparing experiments, total molar density is a more meaningful property than pres-

sure [51] but not as easily measured. When not stated explicitly by the authors, the molar

density was derived using the ideal gas law

ρ̄ =
p0

RT0
. (3.17)

Similarly, individual concentrations of CH4 and O2 are more meaningful properties than an

equivalence ratio. Using (3.1), the species mole fractions could also be derived.

XO2 =
1−Xd

1 + φ/2
(3.18a)

XCH4 =
φ

2
XO2 (3.18b)

Equations (3.18) and (3.17) were used to convert the reinterpreted data of Krishnan and Raviku-

mar. Unfortunately, not all papers provide sufficient data for even these conversions to be per-

formed. A summary of some ignition studies (using reflected shock-tubes) is given in Tables 3.5

and 3.6, using units of species mole fraction and concentration respectively. The approach of

Tsuboi and Wagner was particularly refined, as the mole fractions were kept constant and the

temperature was varied at different total densities to achieve the test ranges.

In the literature, the general equation for ignition delay is given in the form

τig = A exp

(
E

RT

)
[CH4]cCH4 [O2]cO2 [Ar]cAr (3.19)

where ci is the reaction order of species i and E is apparent activation energy. The coefficients

for the mixtures in Table 3.6 are given in Table 3.7.

Section 3.5 Methane chemical delays 35

XCH4 XO2 XN2 XAr Ref

2.000×10-2–3.330×10-1 1.960×10-1–1.330×10-1 7.840×10-1–5.340×10-1 [52]

1.000×10-2–6.700×10-2 2.000×10-2–6.700×10-2 9.700×10-1–8.660×10-1 [51]

2.000×10-3 2.000×10-2 9.780×10-1–9.780×10-1 [36]

1.690×10-2–2.000×10-2 1.690×10-2–4.000×10-2 1.520×10-1–0.0 8.142×10-1–9.400×10-1 [58]

2.500×10-3–5.000×10-2 1.000×10-2–5.000×10-2 0.0–9.746×10-1 9.875×10-1–8.990×10-1 [37]

4.545×10-3–3.571×10-2 4.545×10-2–1.429×10-2 9.500×10-1–9.500×10-1 [50]

Table 3.5: Mole fractions used in ignition studies. Values have been derived

when not stated explicitly. The range displayed here is based on maximum

and minimum CH4 mole fractions.

[CH4], mol.cm-3 [O2], mol.cm-3 [N2], mol.cm-3 [Ar], mol.cm-3 Ref

5.352×10-7–9.886×10-6 5.245×10-6–3.949×10-6 2.098×10-5–1.585×10-5 [52]

6.572×10-7–5.641×10-6 1.314×10-6–5.641×10-6 1.681×10-5–7.292×10-5 [51]

4.800×10-8–3.600×10-6 4.800×10-7–3.600×10-5 2.347×10-5–1.760×10-3 [36]

1.912×10-7–7.127×10-7 3.824×10-7–7.127×10-7 1.720×10-6–0.0 9.020×10-6–3.421×10-5 [58]

3.140×10-7–3.701×10-5 6.392×10-7–7.401×10-5 5.512×10-5–3.517×10-3 [37]

8.440×10-8–1.522×10-6 8.440×10-7–6.087×10-7 1.764×10-5–4.048×10-5 [50]

Table 3.6: Concentrations used in ignition studies. Values have been de-

rived when not stated explicitly. The range displayed here is based on max-

imum and minimum [CH4].

ρ̄, mol.cm-3 cCH4
cO2

cN2
cAr

5 A, s(cm3mol-1)
∑

i ci E
R

, K-1 T , K Ref

2.676×10-5 – 2.969×10-5 0.40 -1.60 0 7.65×10-18 25.87×103 1735 – 1646 [52]

1.878×10-5 – 8.420×10-5 0.33 -1.03 0 3.62×10-14 23.40×103 1655 – 1883 [51]

2.400×10-5 – 1.800×10-3 0.32 -1.02 0, -0.5 4.00×10-15 26.67×103 2068 – 1743 [36]

1.146×10-5 – 3.563×10-5 0.33 -1.03 0 0 4.40×10-15 26.32×103 2020 – 1710 [58]

5.607×10-5 – 3.628×10-3 0.33 -1.05 0 4.05×10-15 26.07×103 2043 – 1617 [37]

1.857×10-5 – 4.261×10-5 0.33 -1.05 0 2.21×10-14 22.65×103 1969 – 1716 [50]

Table 3.7: A summary of ignition delay coefficients for the mixtures given

in Table 3.6.

From these tests it may be said in general that ignition delay for methane is strongly short-

ened by increasing the oxygen concentration and is slightly lengthened by increasing the methane

concentration. This is encouraging when considering combustion of very low stoichiometries.

The apparent activation energy for the oxidation of methane increases with

• increasing CH4 concentration

• increasing diluent concentration and

• decreasing O2 concentration.

In the limit of decreasing O2 concentration, the activation energy approaches that of the CH3-H

bond in low pressure experiments as methane oxidation simply becomes methane decomposition.

5For CH4 concentrations below 5×10-8mol.cm-3 and total densities below 5×10-5mol.cm-3. There is some

debate as to whether the diluent affects the ignition delay. Spadaccini and Colket [11] provide a good discussion.

36 Finite-rate chemistry Chapter 3

While all the coefficients in Table 3.7 are similar, we focus on experiments that include the

conditions seen in a free-piston engine. These are low mole fraction (of the order of 0.005), low

temperature (≤1500 K) and high density experiments. Referring to Figure 3.7 and Table 3.5,

these conditions are only matched by [36] and [37], although the former conducted tests over a

wider range of total densities.

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

1×10-5 1×10-4 1×10-3 1×10-2

T
,

K

ρ̄, mol.cm-3

[52]
[51]
[36]
[58]
[50]

[37] Fig. 4

Figure 3.7: Total density versus temperature for ignition delay studies. The

boxed region shows conditions for isentropic compression of a thermally-

perfect gas from the atmospheric state. Thus we will continue the investi-

gation using the ignition delay data of [36] and [37].

To verify data was correctly transcribed from these papers, the reduced induction times are

shown in Figure 3.8 together with the ignition delay formula of [36]

τig[CH4]−0.32[O2]1.02 = 4× 10-15 exp
(
26.67× 103T

)
. (3.20)

Petersen et al. found measured values of XOH matched well with those predicted by the

earlier GRI-Mech1.2. They used the peak in OH concentration to indicate ignition, even though

a peak value was not always present (see results, Table 2 of [37]). When a peak in OH was

present, it correlated well with the point at which XCH4 goes to zero. Thus, in this thesis, the

method used to get the ignition delay from numerical data was as follows:

1. A gas mixture was reacted under constant-volume, fixed-mass conditions until the point

of inflection of pressure (midway through the reaction).

2. The last two [CH4] concentration values were then recorded and linearly extrapolated to

zero.

Section 3.5 Methane chemical delays 37

1×10-9

1×10-8

1×10-7

1×10-6

1×10-5

4.5 5.0 5.5 6.0 6.5 7.0 7.5

140015001600170018001900200021002200

τ i
g
[C

H
4
]−

0
.3

2
[O

2
]1
.0

2

1× 104/T , K-1

T , K

(3.20)
[36]
[37]

Figure 3.8: Reduced induction times for transcribed data using the ignition

delay formula of [36]. The data taken from [37] agrees well with this trend.

3. The time at this point was recorded and taken to be the ignition delay.

The gradient of ignition delay (with respect to temperature) is a better indication of the

accuracy of a mechanism than individual values. A comparison of the four mechanisms is shown

in Figure 3.9. As can be seen, even the full mechanism underestimates measured ignition delay,

although it did a better job than the ignition delay mechanism of Li and Williams (not shown).

Somewhat fortuitously, DRM19 and DRM22 are closer to the correct values and trends. The

Jazbec mechanism seems to predict the ignition delay at low density very well, but not as well at

high density. This observation may be explained by the fact that this is a low pressure mechanism

that does not include pressure-dependent rate coefficients for methane decomposition.

Methane oxidation pathway

Here a brief digression is made to look at the methane oxidation pathway. It is well known that

methane oxidation takes a different pathway at high (2200 K) and low (<1500 K) temperatures

(see page 166 of [7]). However, upon investigation of the literature, discrepancies were found

with the ignition delay formula of different authors. In particular, it was proposed [57] (and

later refuted [58]) that the third body had an effect on ignition delay. Unfortunately [57] does

not include enough information for the results to be properly compared in Table 3.6. The

former conducted experiments at total densities between 1.338×10-6 and 2.007×10-6mol.cm-3

and CH4 concentrations below 2.941×10-8mol.cm−3, derived assuming a constant temperature

of 1870 K, whereas the latter conducted experiments at total densities between and 1.131×10-5

and 4.129×10-5mol.cm-3 and CH4 concentrations above 1×10-7. Even though the densities given

38 Finite-rate chemistry Chapter 3

1×10-5

1×10-4

1×10-3

4.5 5 5.5 6 6.5 7

15001600170018001900200021002200
τ i

g
,

s

T , K

24mol.cm-3

1800mol.cm-3

DRM19
1×10-5

1×10-4

1×10-3

4.5 5 5.5 6 6.5 7

15001600170018001900200021002200

T , K

24mol.cm-3

1800mol.cm-3

DRM22

1×10-5

1×10-4

1×10-3

4.5 5 5.5 6 6.5 7

15001600170018001900200021002200

τ i
g
,

s

104/T , K-1

24mol.cm-3

1800mol.cm-3

GRI-Mech3.0
1×10-5

1×10-4

1×10-3

4.5 5 5.5 6 6.5 7

15001600170018001900200021002200

104/T , K-1

24mol.cm-3

1800mol.cm-3

Jazbec et al.

Figure 3.9: Ignition delay of experimental results for the lowest and high-

est density tests by Tsuboi and Wagner compared with the numerical re-

sults over the same conditions using four kinetic mechanisms. The slope

predicted by the kinetic mechanism is more important than the offset as

the former is an indication of global activation energy whereas the latter

is a consequence of the ignition delay definition. The mechanisms of Li

and Williams and Smooke and Giovangigli were not included in the com-

parison. The former is solely an ignition mechanism and has non-smooth

species production rates. The latter is a flame mechanism that does not

attempt to capture ignition delay.

here were derived (and so are approximate) the range of the former are an order of magnitude

below those of the latter. Thus, it is unfair to say these results conflict.

Tsuboi and Wagner investigated ignition delay of methane for pressures from 3 to 300 atm at

1800 K. For total densities below 5×10-5mol.cm−3 and CH4 concentrations below 5×10-8mol.cm−3,

the reaction order of the diluent tended towards cAr = −0.5 ± 0.1. For all total densities with

CH4 concentrations greater than 1%, the influence of the third body concentration disappeared,

that is, cAr = 0.0 ± 0.1. If, at very low concentrations, the methane oxidation is limited by

methane decomposition, the ignition delay would be somewhat dependent on the total molar

density (see, for example, Figure 3.1). This would also explain the discrepancy found between

Zallen and Wittig [57] and Grillo and Slack [58]. Thus, it is suggested in this thesis that the

reaction pathway for the oxidation of methane changes not only according to temperature but

also according to total density. Investigation of methane pathways at very low densities and

concentrations is suggested as future work. Here ends the digression since, for a free-piston

engine, only the low temperature, high density pathway need be considered.

Section 3.7 Methane heat release 39

3.6 Methane heat release

Along with correct ignition delay, the chosen kinetic mechanism must release the correct amount

of heat. A fixed-mass perfectly mixed reactor test was performed at 2226 K and 1 atm using

ventilation air and all six mechanisms. The final temperature is compared in Figure 3.10. All

2200

2300

2400

0 0.002 0.004 0.006

T
,

K

t, s

GRI-Mech3.0
DRM19
DRM22

Smooke and Giovangigli
Jazbec et al.

Li and Williams

Figure 3.10: A comparison of heat release for all six mechanisms. As can

be seen, all but the ignition delay mechanism of Li and Williams result in

equal heat release, albeit at different combustion delays. Tests were per-

formed using a constant-pressure fixed-mass perfectly mixed reactor with

ventilation air at initial conditions of T0=2226 K and p=1 atm.

mechanisms (except that of Li and Williams, which is an ignition mechanism and thus only

predicts ignition delay) produce roughly the same amount of heat. The combustion delay at

these conditions is about 6ms. Again, it can be seen from (3.6) that species production rates are

polynomially dependent on concentration and at least exponentially dependent on temperature.

Thus, the combustion delay in a rapid-compression device is shorter at the same temperature

since species concentrations (or molar density) increase with compression. Alternatively it can

be said that reactions occur at a lower temperature in rapid-compression devices.

3.6.1 The production of Nitrous Oxides

A perfectly mixed reactor of ventilation air at the stoichiometric adiabatic flame temperature

(2226K) and atmospheric pressure produces the greenhouse species shown in Figure 3.11. The

global warming potential during this reaction is shown in Figure 3.12. As can be seen, N2O is

produced in quantities of about 1ppm. This has a small but finite effect on the GWP.

40 Finite-rate chemistry Chapter 3

1×10-25

1×10-20

1×10-15

1×10-10

1×10-5

1×100

0 0.002 0.004 0.006

X
i

t, s

CH4
CO

CO2
N2O

Figure 3.11: Greenhouse species for a constant-pressure, fixed-mass, per-

fectly mixed reactor at 2226 K, 1 atm.

0

20

40

60

80

100

0 0.001 0.002 0.003 0.004 0.005 0.006

G
W

P
1
→

4

t, s

thermally perfect ventilation air

Figure 3.12: GWP reduction for a constant-pressure, fixed-mass, perfectly

mixed reactor at 2226 K, 1 atm.

3.7 Mechanism selection summary

Of the five methane mechanisms, DRM19 was selected for use in the engine ignition delay study

of Part II, based on the selection criteria presented in Table 3.8.

Section 3.8 The effect of real gas models on finite-rate chemistry 41

correct correct relative

ignition delay heat computational

at high density release expense

Li and Williams y n -

Smooke and Giovangigli n y -

Jazbec et al. n6 y 1.0

DRM19 y y 3.07

DRM22 y y 3.50

GRI-Mech3.0 y y 11.45

Table 3.8: Mechanism selection criteria.

Considering these, the mechanisms DRM19, DRM22 and GRI-Mech3.0 all provide accurate

modelling of ignition delay and heat release. Note that NO2 is a greenhouse gas but is not

included in the reduced kinetic mechanisms of DRM19 and DRM22. Since the peak conditions

and work delay of a free-piston engine are unknown, it is also as yet unknown whether Nitrogen

chemistry plays a role in reactions. Thus, GRI-Mech3.0 will be used to determine if this is the

case, and DRM19 will be used subsequently (as it was the least computationally expensive) if

not.

A special mention should be made of the mechanism of Jazbec et al.It was designed for

methane-air mixtures methane mole fractions between 1 and 2% and temperatures between

1000 and 1200 K. Nevertheless, the mechanism performed remarkably well in ignition delay for

temperatures up to 2000 K and provides correct heat release at still higher temperatures. Its

computational expense is also the lowest of the mechanisms tested due to the small number of

species and reactions it contains. The only reason it is not used in the engine modelling of Part

II is that it incorrectly predicts ignition delay at high pressures.

At this point the program Gaspy has been validated in modelling both a real gas and finite-

rate chemistry. Thus, a brief investigation into the combined effect of these models is made

here.

3.8 The effect of real gas models on finite-rate chemistry

Once elucidated, a kinetic mechanism is independent of the gas model7. However, real gas

models influence reactions via the thermal model (specifically, the calculation of the Gibbs free

energy) which affects both the reverse reaction rate and the equilibrium mole fraction.

Take again the reaction for decomposition of methane at constant temperature and pressure.

6The ignition delay for this mechanism is not as accurate as the other (valid) mechanisms, but its low

computational expense justifies its consideration.
7It is however, important to include real gas effects when deriving the rate coefficients from shock tube

experiments operating at conditions where the perfect gas equation of state no longer applies [26]. It is particularly

important for pressure-dependent rate coefficients in which the post-shock conditions lie within the bounds of the

fall-off regime, since this compounds the error in the perceived reaction rate.

42 Finite-rate chemistry Chapter 3

Figure 3.13 compares the equilibrium mole fractions reached by a thermally-perfect gas and a

van der Waals gas under high pressure. Both the equilibrium mole fraction and the reaction

1×10-4

1×10-3

1×10-2

1×10-1

1×100

0.0e0 5.0e-10 1.0e-9 1.5e-9

X

t, ms

H, CH3

CH4

CEA2
Li and Williams

Smooke and Giovangigli
DRM19

GRI-Mech3.0

(a) 3000 K, 1×109Pa,

thermally-perfect gas

1×10-4

1×10-3

1×10-2

1×10-1

1×100

0.0e0 5.0e-10 1.0e-9 1.5e-9

X

t, ms

H, CH3

CH4

CEA2
Li and Williams

Smooke and Giovangigli
DRM19

GRI-Mech3.0

(b) 3000 K, 1×109Pa,

van der Waals gas

Figure 3.13: High pressure decomposition of CH4 (const-T , p) at T=3000K

using different gas models. As can be seen, the van der Waals equation of

state retards the rate of decomposition compared to the thermally perfect

equation of state. In addition, the equilibrium value attained by Smooke

and Giovangigli is incorrect. This is because a backwards rate is specified

for this reaction. Thus, only kinetic mechanisms in which the reverse rates

are calculated using the equilibrium constant should be used with real gas

models. Specifying a reverse rate couples the kinetic mechanism and the

thermal model, which is undesirable. The pressure was chosen to exaggerate

the difference between thermally-perfect and thermally real models. Peak

pressures seen in a free-piston engine are expected to be substantially lower.

rates are different between the two gas models.

There is an additional complication for the reaction of Smooke and Giovangigli. Here, the

backwards rate is specified based on low pressure experiments and as such, it is no longer

independent of the equation of state. Thus, this mechanism is inapplicable at high pressures or

with real gas models. More generally, it can be said that any kinetic mechanism with specified

reverse rates should not be used away from the state at which they were derived, and are, in

addition, incompatible with real gas models.

From Figure 3.13 it appears as though dissociation (and hence combustion) of methane is

retarded by real gas effects. The compression ratio required for homogeneous combustion of

ventilation air is much greater than that for a conventional diesel engine. As such, while the

pressures in a free-piston engine are expected to be substantially lower, real gas effects may

still be significant for the compression ignition of ventilation air. This possibility is investigated

using a model of a a free-piston combustor in §4.4.1 on page 67.

At this point, the finite-rate chemistry module Gaspyhas been validated and a mechanism

that correctly models ignition delay and heat release for the conditions seen in a free-piston

Section 3.8 The effect of real gas models on finite-rate chemistry 43

engine has been selected.

44 Finite-rate chemistry Chapter 3

3.A Chapter end notes

3.A.1 reactor.py

def c o n s t v f i x e d m a s s (y , t , Q, g , r , dt chem , t e s t F l a g) :

Y − mass f r a c t i o n s (kg/kg)

w − concentra t ion (mol/m∗∗3)
dwdt − molar product ion ra t e (mol/ s)

M − molecular we igh t s (kg/mol)

nsp = g . g e t n u m b e r o f s p e c i e s ()

unpack array

Q.T[0] = y [0] # temperature

Q. p = y [1] # pressure

Y = y [2 : nsp+2] # mass f r a c t i o n

dYdt = ze ro s (nsp)

dwdt = vectord (nsp ∗ [0 . 0])

w = vectord (nsp ∗ [0 . 0])

update gas

for i s p in range (nsp) :

Q. massf [i s p] = Y[i s p]

g . eva l thermo state pT (Q) # concs a r e updated here

copy concs to w

w = convert mass f2conc (Q. rho , Q. massf , g .M())

ge t rates−of−change
dwdt = r . r a t e o f c h a n g e p y (Q)

sum ew = 0.0

sum wcv = 0 .0

for i in range (nsp) :

e i = g . i n t e r n a l e n e r g y (Q, i) ∗g .M() [i]

sum ew += e i ∗dwdt [i]

sum wcv += w[i]∗ g . Cv(Q) ∗g .M() [i] # where c v i s in J/mol .K

dTdt = −sum ew/sum wcv

dpdt = PC R u∗Q.T[0] ∗ sum(dwdt) + PC R u∗dTdt∗sum(w)

dYdt = (array (dwdt) ∗g .M()) /Q. rho

return array ([dTdt] + [dpdt] + l i s t (dYdt))

def c o n s t p f i x e d m a s s (y , t , Q, g , r , dt chem , t e s t F l a g) :

Y − mass f r a c t i o n s (kg/kg)

w − concentra t ion (mol/m∗∗3)
dwdt − molar product ion ra t e (mol/ s)

M − molecular we igh t s (kg/mol)

nsp = g . g e t n u m b e r o f s p e c i e s ()

unpack array

Q.T[0] = y [0] # temperature

Section 3.A Chapter end notes 45

Q. p = y [1] # pressure

Y = y [2 : nsp+2] # mass f r a c t i o n

dYdt = ze ro s (nsp)

dwdt = vectord (nsp ∗ [0 . 0])

w = vectord (nsp ∗ [0 . 0])

update gas

for i s p in range (nsp) :

Q. massf [i s p] = Y[i s p]

g . eva l thermo state pT (Q) # concs a r e updated here

copy concs to w

w = convert mass f2conc (Q. rho , Q. massf , g .M())

ge t rates−of−change
dwdt = r . r a t e o f c h a n g e p y (Q)

sum hw = 0.0

sum wcp = 0 .0

for i in range (nsp) :

h i = g . enthalpy (Q, i) ∗g .M() [i]

sum hw += h i ∗dwdt [i]

sum wcp += w[i]∗ g .Cp(Q) ∗g .M() [i] # J/mol .K

dTdt = −sum hw/sum wcp

dpdt = 0 .0

dYdt = (array (dwdt) ∗g .M()) /Q. rho

return array ([dTdt] + [dpdt] + l i s t (dYdt))

Listing 3.1: An implementation of the constant-pressure and constant-

volume, fixed-mass equations. An ODE update method was used to march

the solution in time, not shown for clarity.

46 Finite-rate chemistry Chapter 3

3.A.2 simple reactor.py

def c o n s t v f i x e d m a s s (dt , a rgs) :

Q, g , r , dt chem = args

update assuming const volume

dt chem = r . update s ta t e py (Q, dt , dt chem)

update s t a t e

g . e v a l t h e r m o s t a t e r h o e (Q)

return [Q, g , r , dt chem]

def c o n s t p f i x e d m a s s (dt , a rgs) :

Q, g , r , dt chem = args

p 0 = Q. p

v 0 = (1 . 0/Q. rho)

gamma = g .gamma(Q)

update assuming const volume

dt chem = r . update s ta t e py (Q, dt , dt chem)

g . e v a l t h e r m o s t a t e r h o e (Q)

expand i s e n t r o p i c a l l y

dp = Q. p − p 0

v 1 = v 0 ∗(Q. p/ p 0) ∗∗ (1 . 0/gamma)

dv = v 1 − v 0

de = 0 . 5∗ (p 0 + Q. p) ∗dv

Q. e [0] −= de

Q. rho ∗= v 0 / v 1

update s t a t e

g . e v a l t h e r m o s t a t e r h o e (Q)

return [Q, g , r , dt chem]

Listing 3.2: An operator-split implementation of the constant-pressure and

constant-volume, fixed-mass equations. An ODE update method was used

to march the solution in time, not shown for clarity.

Section 3.A Chapter end notes 47

3.A.3 Hydrogen mechanism

ELEMENTS

H O N

END

SPECIES

H2 H O2 O OH HO2 H2O2 H2O N N2 NO

END

REACTIONS

H2+O2<=>2OH 0.170E+14 0 .00 44780

OH+H2<=>H2O+H 0.117E+10 1 .30 3626

O+OH<=>O2+H 0.400E+15 −0.50 0

O+H2<=>OH+H 0.506E+05 2 .67 6290

H+O2+M<=>HO2+M 0.361E+18 −0.72 0

H2O/ 18 .6/ H2/ 2 .86/ N2/ 1 .26/

OH+HO2<=>H2O+O2 0.750E+13 0 .00 0

H+HO2<=>2OH 0.140E+15 0 .00 1073

O+HO2<=>O2+OH 0.140E+14 0 .00 1073

2OH<=>O+H2O 0.600E+09 1 .30 0

H+H+M<=>H2+M 0.100E+19 −1.00 0

H2O/ 0 .0/ H2/ 0 .0/

H+H+H2<=>H2+H2 0.920E+17 −0.60 0

H+H+H2O<=>H2+H2O 0.600E+20 −1.25 0

H+OH+M<=>H2O+M 0.160E+23 −2.00 0

H2O/ 5/

H+O+M<=>OH+M 0.620E+17 −0.60 0

H2O/ 5/

O+O+M<=>O2+M 0.189E+14 0 .00 −1788

H+HO2<=>H2+O2 0.125E+14 0 .00 0

HO2+HO2<=>H2O2+O2 0.200E+13 0 .00 0

H2O2+M<=>OH+OH+M 0.130E+18 0 .00 45500

H2O2+H<=>HO2+H2 0.160E+13 0 .00 3800

H2O2+OH<=>H2O+HO2 0.100E+14 0 .00 1800

O+N2<=>NO+N 0.140E+15 0 .00 75800

N+O2<=>NO+O 0.640E+10 1 .00 6280

OH+N<=>NO+H 0.400E+14 0 .00 0

END

Listing 3.3: Chemkin-II Hydrogen mechanism [56, Ch. VII].

48 Finite-rate chemistry Chapter 3

3.A.4 DRM19 mechanism

!<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><!

! Reduced vers ion o f GRI−MECH 1 . 2 . 19 sp e c i e s (+ N2, AR) ; 84 reac t i on s . !

! PennState Dec , 1994 !

!<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><!

ELEMENTS

O H C N AR HE

END

SPECIES

H2 H O O2 OH H2O HO2

CH2 CH2(S) CH3 CH4 CO CO2 HCO

CH2O CH3O C2H4 C2H5 C2H6

N2 AR HE

END

REACTIONS

O+H+M<=>OH+M 5.000E+17 −1.000 0 .00

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

O+H2<=>H+OH 5.000E+04 2 .670 6290.00

O+HO2<=>OH+O2 2.000E+13 0 .000 0 .00

O+CH2<=>H+HCO 8.000E+13 0 .000 0 .00

O+CH2(S)<=>H+HCO 1.500E+13 0 .000 0 .00

O+CH3<=>H+CH2O 8.430E+13 0 .000 0 .00

O+CH4<=>OH+CH3 1.020E+09 1 .500 8600.00

O+CO+M<=>CO2+M 6.020E+14 0 .000 3000.00

H2/2.00/ O2/6.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/3.50/ C2H6/3.00/ AR/0.50/

O+HCO<=>OH+CO 3.000E+13 0 .000 0 .00

O+HCO<=>H+CO2 3.000E+13 0.000 0 .00

O+CH2O<=>OH+HCO 3.900E+13 0 .000 3540.00

O+C2H4<=>CH3+HCO 1.920E+07 1 .830 220 .00

O+C2H5<=>CH3+CH2O 1.320E+14 0 .000 0 .00

O+C2H6<=>OH+C2H5 8.980E+07 1 .920 5690.00

O2+CO<=>O+CO2 2.500E+12 0 .000 47800.00

O2+CH2O<=>HO2+HCO 1.000E+14 0 .000 40000.00

H+O2+M<=>HO2+M 2.800E+18 −0.860 0 .00

O2/0.00/ H2O/0.00/ CO/0.75/ CO2/1.50/ C2H6/1.50/ N2/0.00/ AR/0.00/

H+2O2<=>HO2+O2 3.000E+20 −1.720 0 .00

H+O2+H2O<=>HO2+H2O 9.380E+18 −0.760 0 .00

H+O2+N2<=>HO2+N2 3.750E+20 −1.720 0 .00

H+O2+AR<=>HO2+AR 7.000E+17 −0.800 0 .00

H+O2<=>O+OH 8.300E+13 0.000 14413.00

2H+M<=>H2+M 1.000E+18 −1.000 0 .00

H2/0.00/ H2O/0.00/ CH4/2.00/ CO2/0.00/ C2H6/3.00/ AR/0.63/

2H+H2<=>2H2 9.000E+16 −0.600 0 .00

2H+H2O<=>H2+H2O 6.000E+19 −1.250 0 .00

2H+CO2<=>H2+CO2 5.500E+20 −2.000 0 .00

H+OH+M<=>H2O+M 2.200E+22 −2.000 0 .00

H2/0.73/ H2O/3.65/ CH4/2.00/ C2H6/3.00/ AR/0.38/

H+HO2<=>O2+H2 2.800E+13 0 .000 1068.00

H+HO2<=>2OH 1.340E+14 0 .000 635 .00

H+CH2(+M)<=>CH3(+M) 2.500E+16 −0.800 0 .00

LOW / 3.200E+27 −3.140 1230.00/

TROE/ 0.6800 78 .00 1995.00 5590.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+CH3(+M)<=>CH4(+M) 1.270E+16 −0.630 383 .00

LOW / 2.477E+33 −4.760 2440.00/

TROE/ 0.7830 74 .00 2941.00 6964.00 /

Section 3.A Chapter end notes 49

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+CH4<=>CH3+H2 6.600E+08 1 .620 10840.00

H+HCO(+M)<=>CH2O(+M) 1.090E+12 0 .480 −260.00

LOW / 1.350E+24 −2.570 1425.00/

TROE/ 0.7824 271 .00 2755.00 6570.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+HCO<=>H2+CO 7.340E+13 0 .000 0 .00

H+CH2O(+M)<=>CH3O(+M) 5.400E+11 0 .454 2600.00

LOW / 2.200E+30 −4.800 5560.00/

TROE/ 0.7580 94 .00 1555.00 4200.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/

H+CH2O<=>HCO+H2 2.300E+10 1 .050 3275.00

H+CH3O<=>OH+CH3 3.200E+13 0 .000 0 .00

H+C2H4(+M)<=>C2H5(+M) 1.080E+12 0 .454 1820.00

LOW / 1.200E+42 −7.620 6970.00/

TROE/ 0.9753 210 .00 984 .00 4374.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+C2H5(+M)<=>C2H6(+M) 5.210E+17 −0.990 1580.00

LOW / 1.990E+41 −7.080 6685.00/

TROE/ 0.8422 125 .00 2219.00 6882.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+C2H6<=>C2H5+H2 1.150E+08 1 .900 7530.00

H2+CO(+M)<=>CH2O(+M) 4.300E+07 1 .500 79600.00

LOW / 5.070E+27 −3.420 84350.00/

TROE/ 0.9320 197 .00 1540.00 10300.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

OH+H2<=>H+H2O 2.160E+08 1 .510 3430.00

2OH<=>O+H2O 3.570E+04 2 .400 −2110.00

OH+HO2<=>O2+H2O 2.900E+13 0 .000 −500.00

OH+CH2<=>H+CH2O 2.000E+13 0 .000 0 .00

OH+CH2(S)<=>H+CH2O 3.000E+13 0 .000 0 .00

OH+CH3<=>CH2+H2O 5.600E+07 1 .600 5420.00

OH+CH3<=>CH2(S)+H2O 2.501E+13 0.000 0 .00

OH+CH4<=>CH3+H2O 1.000E+08 1 .600 3120.00

OH+CO<=>H+CO2 4.760E+07 1.228 70 .00

OH+HCO<=>H2O+CO 5.000E+13 0 .000 0 .00

OH+CH2O<=>HCO+H2O 3.430E+09 1 .180 −447.00

OH+C2H6<=>C2H5+H2O 3.540E+06 2 .120 870 .00

HO2+CH2<=>OH+CH2O 2.000E+13 0 .000 0 .00

HO2+CH3<=>O2+CH4 1.000E+12 0.000 0 .00

HO2+CH3<=>OH+CH3O 2.000E+13 0 .000 0 .00

HO2+CO<=>OH+CO2 1.500E+14 0 .000 23600.00

CH2+O2<=>OH+HCO 1.320E+13 0 .000 1500.00

CH2+H2<=>H+CH3 5.000E+05 2.000 7230.00

CH2+CH3<=>H+C2H4 4.000E+13 0 .000 0 .00

CH2+CH4<=>2CH3 2.460E+06 2 .000 8270.00

CH2(S)+N2<=>CH2+N2 1.500E+13 0 .000 600 .00

CH2(S)+AR<=>CH2+AR 9.000E+12 0 .000 600 .00

CH2(S)+O2<=>H+OH+CO 2.800E+13 0 .000 0 .00

CH2(S)+O2<=>CO+H2O 1.200E+13 0 .000 0 .00

CH2(S)+H2<=>CH3+H 7.000E+13 0 .000 0 .00

CH2(S)+H2O<=>CH2+H2O 3.000E+13 0 .000 0 .00

CH2(S)+CH3<=>H+C2H4 1.200E+13 0 .000 −570.00

CH2(S)+CH4<=>2CH3 1.600E+13 0 .000 −570.00

CH2(S)+CO<=>CH2+CO 9.000E+12 0 .000 0 .00

CH2(S)+CO2<=>CH2+CO2 7.000E+12 0.000 0 .00

CH2(S)+CO2<=>CO+CH2O 1.400E+13 0 .000 0 .00

50 Finite-rate chemistry Chapter 3

CH3+O2<=>O+CH3O 2.675E+13 0 .000 28800.00

CH3+O2<=>OH+CH2O 3.600E+10 0 .000 8940.00

2CH3(+M)<=>C2H6(+M) 2.120E+16 −0.970 620 .00

LOW / 1.770E+50 −9.670 6220.00/

TROE/ 0.5325 151 .00 1038.00 4970.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

2CH3<=>H+C2H5 4.990E+12 0 .100 10600.00

CH3+HCO<=>CH4+CO 2.648E+13 0 .000 0 .00

CH3+CH2O<=>HCO+CH4 3.320E+03 2 .810 5860.00

CH3+C2H6<=>C2H5+CH4 6.140E+06 1.740 10450.00

HCO+H2O<=>H+CO+H2O 2.244E+18 −1.000 17000.00

HCO+M<=>H+CO+M 1.870E+17 −1.000 17000.00

H2/2.00/ H2O/0.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/

HCO+O2<=>HO2+CO 7.600E+12 0 .000 400 .00

CH3O+O2<=>HO2+CH2O 4.280E−13 7 .600 −3530.00

C2H5+O2<=>HO2+C2H4 8.400E+11 0 .000 3875.00

END

Listing 3.4: DRM19 methane mechanism [43].

3.A.5 Ignition delay definitions

For the papers selected here, ignition delay was defined to be the time between:

1. Seery and Bowman [52] - “the heating of the gas by the reflected shock wave and the most

rapid increase in pressure or characteristic emission (or absorption)” including “chemilu-

minescent emission of OH, CH, C2 and CO and the 3067Å absorption of the OH* radical.”

2. Lifshitz et al. [51] - the arrival of the shock and the sudden rise in “both the p and heat

flux traces . . . from their plateau values, or a change in their slope, in the shocked, slightly

reacted gas caused by the onset of combustion.”

3. Tsuboi and Wagner [36] - the reflected wave and the intersection between the [CH4] gradi-

ent and its original concentration. This was defined graphically. Measurements were made

of the emission of CH4 at wavelengths between 3.1–3.8µ.

4. Grillo and Slack [58] - “the maximum pressure rise and the maximum positive rate of

change of the OH emission signal.”

5. Krishnan and Ravikumar [50] - “the arrival of the shock at the end plate and the appear-

ance of visible light.”

6. Petersen et al. [37] - “the initial OH formation [or the arrival of the reflected shock wave]

and the peak OH concentration.”

7. Zallen and Wittig [57] - “the shock arrival to the maximum change in the signal gradient”

of the “chemiluminescent radiation emitted from radicals such as OH*, CH* and others.”

Section 3.A Chapter end notes 51

3.A.6 Calculation of the equilibrium constant

At equilibrium, the production and destruction rates of each species are equal and opposite.

Hence, the time rate-of-change of all species is zero. Applying this to (3.5) and rearranging

yields
kf
kr

= Kc =

∏
i=i′′ [Xi]

ni∏
i=i′ [Xi]ni

. (3.21)

The ratio of the forward to reverse rate coefficient is called the equilibrium constant, Kc.

Pressure-dependent rate coefficients have no influence on this value.

Kc =

k0[M]

kr
=

[CH4][M]

[CH3][H][M]
=

[CH4]

[CH3][H]
at low pressures

k∞
kr

=
[CH4]

[CH3][H]
at high pressures

(3.22)

The condition for equilibrium can also be described using the Gibbs free energy

dg|T p ν = 0 . (3.23)

Using this definition, Kc becomes

Kc = Kp

(patm

RT

)∑nsp
i=1 ci

(3.24)

where

Kp = exp

(∑nsp

i=1 cigi
RT

)
. (3.25)

If the forward rate coefficient is known, the reverse rate coefficient (that yields the correct

equilibrium species’ concentrations) may be calculated as

kr =
kf
Kc

. (3.26)

Many mechanisms supply just the forward rate data with this intention.

3.A.7 Derivation of the Lindemann-Hinshelwood Form

Consider the decomposition for methane:

CH3 + H (+M)
kf

GGGGGGBFGGGGGG

kr
CH4 (+M)

Applying (3.5), the net production rate of [CH4] is

[CH4]

dt
= [M] (kf [CH3][H]− kr[CH4]) . (3.27)

This was found experimentally to reduce to a unimolecular forward reaction at high pressures

[59].
[CH4]

dt
= kf [CH4] (3.28)

52 Finite-rate chemistry Chapter 3

Lindemann proposed the following two-step reaction to model the forward rate

CH4 + M
k0

GGGGGGBFGGGGGG

k1

CH4* + M

CH4*
k2

GGGGGGACH3 + H

(3.29)

where CH4* is an intermittent radical which undergoes either a bimolecular or unimolecular

reaction depending on the concentration of the third body. This model was further developed

by Hinshelwood [60] to include multiple degrees of freedom.

The reactions k0 and k1 are bimolecular whereas k2 is forward and unimolecular. The

resulting reaction is said to be second order. Qualitatively, at the low pressure limit there are

not enough third-bodies to facilitate the reverse reaction before the radicals go to completion.

In numerical modelling of these reactions, [CH4*] is not treated as a species.

For a unimolecular reaction, it is necessary to rewrite equation (3.5)

d[Xi′′]

dt
= (ci′′ − ci′)

{
k2[Xi*]

∏
i=i′

[Xi′]
ci

}
(Xi* /∈ Xi) . (3.30)

From equation (3.30) the reaction rate for the reagents and products of (3.29) are

d[Xi′]

dt
= [M] (k0[CH4]− k1[CH4*]) and (3.31a)

d[Xi′′]

dt
= k2[CH4*] (3.31b)

respectively. Equating (3.31) and assuming d[CH4*]
dt = 0 (steady-state), [CH4*] may be expressed

as

[CH4*] =
k0[M]

k2 + k1[M]
[CH4] . (3.32)

The forward rate can now be found by combining (3.32) and (3.31a)

d[Xi′′]

dt
=

(
k2k0[M]

k2 + k1[M]

)
[CH4] (3.33)

This is the Lindemann-Hinshelwood form of the rate coefficient [56] which is one type of a

greater class known as pressure-dependent rate coefficients. The reverse rate may be calculated

using the equilibrium constant or specified explicitly.

In literature, kf takes one of two forms, either

kf =
k∞

1 + α
[M]

where α =
k2

k1
(3.34)

as in [61], or

kf =
k0[M]

1 + k0[M]
k∞

where k∞ = k0
k2

k1
(3.35)

as in [56].

Section 3.A Chapter end notes 53

3.A.8 The rate coefficient of Li and Williams

The decomposition of CH4 was elementary reaction 10 of Li and Williams included for com-

parison. It seems to overpredict the rate coefficient at low densities when compared to other

mechanisms.

j Reaction A (mol,cm,s,K) β E (kJ.mol−1K−1)

10
H + CH3(+M) GGGGBFGGGGCH4(+M) 2.220×1016 0.00×100 4.390×102

low 6.590×1025 -1.80×100 4.390×102

Table 3.9: Reaction 10, Li and Williams. This seems to overpredict the

rate coefficient at low densities when compared to other mechanisms.

3.A.9 The rate coefficient of Smooke and Giovangigli

The decomposition of CH4 is elementary reaction 10 of the reduced mechanism of Smooke and

Giovangigli. Note that this rate coefficient is supplied in a slightly different form to that in [56]

and specifies a backward rate coefficient.

j Reaction A (mol,cm,s,K) β E (cal.mol−1K−1)

10f CH4 (+M)GGGGGACH3 + H (+M) 6.300×1014 0.00 1.040×105

10r CH3 + H (+M)GGGGGACH4 (+M)8 5.200×1012 0.00 -1.310×103

Table 3.10: CH4 decomposition model of [40].

The rate coefficients are of the form

k =
k∞

1 + kfall
[M]

, (3.36)

where kfall = 6.300 × 10-3 exp
(
−1.8×104

RT

)
. These coefficients must be converted before being

used in a Chemkin-II-like finite-rate chemistry code. According to [40], the third body value

does not include efficiencies and as such will be denoted here as the third body concentration

ρ̄ = patm
RT .

The Chemkin-II equivalent format for this reaction is given in Table 3.11 for completion.

Flame kinetics are quite different from ignition kinetics and thus their rates may not be

suitable for modelling ignition delay (private correspondence with Bilger, 2008).

3.A.10 Lua input for a pressure-dependent rate coefficient

The syntax for including a pressure-dependent rate coefficient in Lua is

8The keen observer will note that the reverse unimolecular reaction (given in this notation) is not consistent

with the Lindemann-Hinshelwood model, as it is actually a unimolecular deactivation of the CH4* radical. This

is the result of the numerical implementation rather than the chemical process.

54 Finite-rate chemistry Chapter 3

j Reaction A (mol,cm,s,K) β E (cal.mol−1K−1)

10f
CH4 (+M)GGGGGACH3 + H (+M) 6.300×1014 0.00 1.040×105

low 1.000×1017 0.00 8.600×104

10r
CH3 + H (+M)GGGGGACH4 (+M) 5.200×1012 0.00 -1.310×103

low 8.254×1014 0.00 -1.931×104

Table 3.11: CH4 decomposition model of [40] in Chemkin-II form. Rate

coefficients are of the form of (3.6).

−− s c a l i n g f a c to r , 1/R

S = 1 .0/1 . 987

r e a c t i o n { ’H + CH3 (+ M) <=> CH4 (+ M) ’ ,

f r ={ ’ p r e s su r e dependent ’ ,

k i n f={A=1.39000 e+16, n=−5.34000e−01, T a=5.36000 e+02∗S} ,

k 0={A=2.62000 e+33, n=−4.76000e+00, T a=2.44000 e+03∗S} ,

Troe={a =.7830 , T3=74.00 , T1=2941.00 , T2=6964.00} ,

} ,

e f f i c i e n c i e s ={CH4=3.00 , Ar=0.70} ,

l a b e l=’ r0 ’

}

Listing 3.5: Reaction 51 of GRI-Mech3.0

where fr, br, Troe, inf, low and efficiencies are the forward and reverse rate coefficients (each

consisting of an inf and low rate coefficient), the Troe variables and the third body efficiencies

respectively.

Part II

Engine component models

55

Chapter 4

Engine dynamics

The engine design makes use of the “free-piston” concept, whereby an unconstrained piston is

contained between two in-line, opposing combustors (see Figure 1.2 on page 7). This engine type

has inherent mechanisms that improve efficiency over standard compression ignition engines and

might allow operation at very low concentrations of methane. Oscillation of the piston along

the axis of the cylinders drives the thermodynamic cycles in both combustors. A linear electric

motor provides the energy to drive the engine with the moving piston representing the driven

element. The same motor can also be used to extract energy from the piston if it is available.

To find the minimum mole fraction of CH4 required to sustain operation this engine, a

numerical model was developed by building up a verified set of component processes. These

processes include piston and gas dynamics, finite-rate chemistry, one-dimensional fluid flow,

heat transfer, friction and control by the electric motor. The energy imparted by the motor per

stroke allowed the minimum mole fraction of CH4 to be determined.

In addition to this, the effect of the Abel-Noble and van der Waals equations of state was

assessed since it has been suggested that the compression ratios required in modern diesel engines

approach the limits of accuracy of the perfect gas equation of state [27]. This assessment included

thermal behaviour during isentropic compression and the rate of reaction near the point of piston

reversal.

To begin with, an analytical model of a free-piston compressor was developed. This was used

to both verify the numerical implementation and help in the development of the control system

(see Chapter 7 on page 112). The exhausting process for this engine is described in Chapter 5.

Models for friction and heat transfer are developed in Chapter 6.

4.1 Dynamics of a free-piston compressor

The peak temperature reached in a free-piston compressor is determined by the state of the

system at the start of the stroke. Consider the idealised free-piston compressor of Figure 4.1.

The gas is assumed to be at the atmospheric state. It is also assumed that, during compression,

the rings form a perfect seal with the cylinder wall and no blow-by of gas occurs. For isentropic

compression of an ideal gas from state 0, the acceleration of a frictionless piston may be written

as
du

dt
= −pA

mp
= −p0A

mp

(ν0

ν

)γ
. (4.1)

56

Section 4.1 Dynamics of a free-piston compressor 57

Qatm

up,0

Figure 4.1: Ideal free-piston compressor.

Using separation of variables and performing the co-ordinate transform L = (xc − xp), equation

(4.1) may be written as

udu =
p0A

mp

(
L0

L

)γ
dL. (4.2)

Completing the integration to the point of piston reversal [x, u] = [xs, 0] yields the stroke length

Ls = L0 −
[
L0

(1−γ) − mp (1− γ)

2p0AL0
γ up,0

2

] 1
(1−γ)

. (4.3)

The peak temperature is defined here as the temperature a gas mixture reaches at the point of

piston reversal. The initial piston velocity is defined as the piston velocity at poppet valve close.

For a given initial piston velocity, the additional force required for the gas to reach a given peak

temperature can also be determined. The procedure for this is shown in §7.A.1 on page 116.

Using the energy method, the acceleration of the piston and change in energy of the gas may

be written as

du

dt
= −pA

mp
and (4.4a)

de

dt
= pAu (4.4b)

respectively. These are the state equations which (by incorporating a gas model) may be inte-

grated numerically to completely describe an isentropic free-piston compressor. This numerical

model has the advantage of allowing the inclusion of friction and heat transfer models as needed

(see Chapter 6 on page 90).

This approach was implemented in the free-piston compressor code in Listing B.6 on page 194.

The piston trajectory is shown in Figure 4.2. The final step here was linearly interpolated to

up = 0.

This program was verified in two ways:

1. by an energy balance and

2. by comparison to the analytical solution (4.3).

For the energy balance, the state equations were integrated over a stroke using different gas

models and the energy of the system was summated and shown to be constant (see Figure 4.3).

The ideal gas model has constant specific heats and uses the perfect gas equation of state. The

thermally-perfect gas model uses the thermodynamic curve fits and the perfect gas equation of

58 Engine dynamics Chapter 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20
x
p
,

m

u
p
,

m
.s

-1

t, s

xp
up

Figure 4.2: Piston trajectory. Note the sharp deceleration. Initial condi-

tions for this case were mp=100kg, D=0.2m, L=1.0m filled with thermally-

perfect ventilation air at atmospheric conditions.

-10

0

10

20

30

40

50

60

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

E
,

k
J

t, s

kep

eg

total

ideal
thermally-perfect

Abel-Noble
van der Waals

Figure 4.3: System energy balance showing components of piston kinetic

energy and gas sensible energy for an Otto cycle using air of various gas

models starting at the atmospheric state.

Section 4.1 Dynamics of a free-piston compressor 59

state. The Abel-Noble and van der Waals gas models combine thermodynamic curve fits with

real thermal behaviour and their respective equations of state. These are more fully described

in §2.1.

The second part of validation included the comparison between the analytical (4.3) and

numerical solutions (using an ideal gas) shown in Figure 4.4. The curves in this figure are

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0 10 20 30 40 50 60 70 80

L
s
,

m

up,0, m.s-1

numerical
L0 = 1
L0 = 2
L0 = 3
L0 = 4
L0 = 5

Figure 4.4: Stroke length for free-piston compression of ideal standard air

where mp = 100kg and D = 0.25m. Numerical results correspond to peak

temperatures of 400K to 1800K in 200K increments.

similar, that is, they converge to a single curve when normalised. Not only does this figure

verify the program, it shows important relationships between the system variables, namely that

the compression ratio is determined for a given mass of air by particular initial kinetic energy.

These relationships remained the most predominant as more secondary process models were

incorporated.

The compression of a gas in a free-piston compressor was repeated using thermally-perfect,

Abel-Noble and van der Waals gas models to show the difference between them. The resulting

curves were then normalised for clarity (see Figure 4.5). The normalised initial piston velocity

of Figure 4.5 can be interpreted as the velocity required by one kilogram of piston to compress

one kilogram of gas to a given peak temperature. It can also be interpreted as the initial con-

ditions required to achieve a particular volumetric compression ratio. The difference between

the thermally-perfect and real gas models becomes more pronounced at higher volumetric com-

pression ratios. Figure 4.5 can be used as is to design an ideal compressor, for example, for

up,0=20m.s-1, Tig=1300K and ρ0 = ρatm,
mp
ALc

=4.765×103, which can be used to choose the

remaining variables. Applying this result to an engine means that if large volumes of ventilation

60 Engine dynamics Chapter 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800 1000 1200 1400

L
s

L
c

up,0

(
mp
2mg

) 1
2

400K

600K

800K
1000K

1200K

1400K

1600K

1800K

ideal gas, analytical
ideal gas, numerical

thermally perfect gas
Abel-Nobel gas

van der Waals gas

Figure 4.5: The effect of real gas models on compression of ventilation air.

The output here has been normalised as indicated. The analytical solution

for an ideal gas is included for contrast. As can be seen, the real gas

models require progressively lower piston velocities to reach the same peak

temperature, which occurs at practically the same volumetric compression

ratio. For example, for compression to 1400K, the piston speed needs to be

about 0.8% slower using a van der Waals gas as opposed to a thermally-

perfect gas. This effect increases with compression ratio.

air required to be processed, heavy pistons and small bore areas or cylinder lengths will also be

necessary.

4.2 Otto cycle

The ideal Otto cycle (see Figure 4.6) involves isentropic compression, constant-volume heat

addition, isentropic expansion and constant-volume heat removal (usually through exhausting).

Figure 4.6 shows the first three stages of the Otto cycle using the ideal gas model, where heat

equivalent to the combustion enthalpy of ventilation air has been added to the gas at the point

of piston reversal.

This cycle may be described using the state of the piston or the state of the gas (see Table

4.1). Work is performed between xp,1 and xp,2 as the piston moves through the electric motor.

The Otto cycle is defined as the process Q1→4. If this process is performed isentropically with

an ideal gas, work is produced at the Otto cycle efficiency

ηth,Otto =
wout

hc
= 1− 1

r(γ−1)
, (4.5)

where r is the compression ratio and γ is the isentropic exponent. Increasing the compression

Section 4.2 Otto cycle 61

1×105

1×106

1×107

1×108

1×10-2 1×10-1 1×100

p
,

P
a

ν, m3kg-1

ideal air, γ = 1.4
p0

(
ν0
ν

)γ

Figure 4.6: The Otto cycle performed using ideal air starting at the at-

mospheric state and adding 140kJ.kg-1 heat at the point of piston reversal.

This figure validates the ideal gas implementation and clearly shows the low

energy content of ventilation air. This cycle has a volumetric compression

ratio of 23.14, with parameters of mp = 400kg, Lc = 4m, D = 0.1m and

up,0 = 10m.s-1.

engine description piston gas description gas state

location

exhaust valves close xp,1 initial state Qatm

piston leaves solenoid xp,2 compression Q1

piston reversal xp,s ignition and subsequent combustion Q2,3

piston enters solenoid xp,2 expansion Q4

exhaust valves open xp,1 atmospheric pressure Qatm

Table 4.1: Engine cycle stages.

ratio increases the efficiency diminishingly. This trend is limited by the peak pressure that may

be contained by the cylinder, which is the result of both the compression ratio and combustion

enthalpy. Since the combustion enthalpy of ventilation air is low, the compression ratio may be

greater for a given peak pressure. For this engine, the compression ratio is determined by the

piston kinetic energy at poppet valve close.

For an ideal Otto cycle, heat release due to combustion is instantaneous and occurs at the

point of piston reversal. Actual chemical reactions occur at a finite rate and are a function of

temperature and species concentration as discussed in §3.2.1. Ideally these go to completion at

62 Engine dynamics Chapter 4

the point of piston reversal. The irreversibilites of a real Otto cycle are both internal (mixing,

chemistry and viscous dissipation) and between the system and its surroundings (heat-transfer,

friction and work). Under suitable conditions, the Otto cycle efficiency can be improved using

regeneration of heat and/or pressure.

Heat regeneration is the process in which some of the enthalpy of the exhaust gas is trans-

ferred to the unprocessed gas prior to compression. Heat regeneration is attractive when

excess heat is not used to produce work in the heat cycle (for example, when using fuel-rich

mixtures). It is not possible for ventilation air because of the low calorific value.

Pressure regeneration may be performed either by expanding the gas to patm within the

cylinder, by shaft work (between a turbine and compressor), or as an expansion wave (in a

tuned exhaust pipe). The first option is preferable since it does not require an additional

process (with an associated efficiency). The additional length required to expand the

combustion products to patm is not a simple fraction of the cylinder length, but for high

compression ratios, 0.5Lc was found to be sufficient.

4.3 Autoignition in a rapid compression machine

Prior to shock tubes, combustion was investigated using rapid compression machines [48]. A

rapid compression machine is a piston-cylinder assembly that operates over a single stroke at

subsonic speeds. Livengood and Leary [48] investigated premixed combustion in such a device.

They noted, in particular, the spatial nonuniformity of the ignition process and that combustion

was almost always preceded by bright spots near the circumference of the cylinder. Nonuniform

of the temperature field was found to be the most convincing explanation. To visualise this,

Schlieren photography of the compression of dry air was performed (see Figure 4.7). As can

be seen, the compression process resulted in an undeveloped, turbulent boundary layer. The

fact that ignition occurred first in the boundary layer suggested that the boundary layer had

a higher temperature than the isentropic core temperature. It was surmised that this was due

to either the heated walls generating this profile initially, or due to viscous work performed by

the piston scraping the boundary layer off the cylinder wall. This unusual temperature field

has a large effect on the heat transfer and has been the source of a number of difficulties in its

modelling (see §6.2).

It is important to note that for homogeneous combustion there is no initiation and prop-

agation of a flame as was seen here. As such, the nonuniform temperature field has no effect

on the ignition process. Certainly, combustion occurs at a different rate in the boundary layer,

but combustion of the majority of the gas in the isentropic core is determined solely by the

compression process.

Livengood and Leary reviewed the literature on similar devices and found the ignition delay

to vary between devices. Since the work delay of rapid compression machines is large compared

to the ignition delay, the assumption that ignition begins after compression was being violated.

This eventually led to the use of shock tubes for ignition delay experiments.

Section 4.4 Combustion of ventilation air in a free-piston compressor 63

Figure 4.7: Schlieren photographs of compressed dry air with time in ms

from top dead center (reprinted from [48] with permission). The piston

remains stationary throughout this sequence. As can be seen, the boundary

layer is highly turbulent. The density gradients are the result of spatially

nonuniform temperature, since pressure gradients would disappear in a few

milliseconds. The dark areas correspond to regions of higher temperature.

Test conditions were: initial pressure, 107kPa, initial temperature 338K

and compression ratio 12.6. The thermal boundary layer at time t = 0

appears to be larger than the cylinder length.

4.4 Combustion of ventilation air in a free-piston compressor

Consider a CH4-air mixture undergoing compression ignition by a free-piston. Similar to the the

operator-split, constant-pressure fixed-mass reactor (validated in §3.4) a free-piston compressor

simulation (see Listing B.4 on page 168) performs the following operations each timestep:

1. integrating the chemistry using a number of substeps (which changes internal and chemical

energy)1

2. expanding (or compressing) the gas isentropically subject to the dynamics of a free-piston

3. evaluating the state (assuming correct properties for density and internal energy).

The combustion temperature is defined as the temperature during compression at which combus-

tion goes to completion. It is desired that the peak temperature is the same as the combustion

temperature. That is, as the piston velocity approaches zero, the combustion delay approaches

zero, such that combustion has gone to completion at up = 0.

The free-piston compressor described in §4.1 on page 56 was used along with the DRM19

and GRI-Mech3.0 kinetic models to find the combustion temperature (see Figure 4.8). This

1There are two separate substeps involved here: the reaction rate coefficients are updated every dt chem and

the state is updated every dt therm.

64 Engine dynamics Chapter 4

1×105

1×106

1×107

1×108

1×10-2 1×10-1 1×100

p
,

P
a

ν, m3kg-1

140kJ.kgmix
−1 heat addition

DRM19
GRI-Mech3.0

Figure 4.8: p-ν diagram comparing finite-rate chemistry for DRM19

and GRI-Mech3.0 mechanisms with instantaneous heat addition of

140kJ.kgmix
−1 in a free-piston compressor. The gas is thermally-perfect

ventilation air at initial conditions of standard temperature and pressure.

Engine parameters are mp = 400kg, up,0 = 11.64m.s-1, D = 0.1m and Lc

= 4.0m. The compression ratio for these parameters is about 45:1 and the

peak temperature (without combustion) is 1200K. Finite-rate chemistry is

instrumental in answering the question of whether ventilation air can be

combusted in a free-piston compressor since without finite-rate chemistry

using a verified kinetic mechanism, the ignition point can only be approxi-

mated. It should also be noted that the two mechanisms given here predict

different ignition delays, which is why the mechanism selection process was

so thorough. The instantaneous heat addition (for the same initial condi-

tions) shows a similar heat release, and thus the enthalpy of combustion

can be said to be practically independent of the initial gas state.

combustor has a peak temperature of 1200K which is sufficient for the residence time associated

with the bore area, cylinder length and piston mass indicated.

When chemistry is included, the time to complete the simulation increases from 1m47s to

43m51s for DRM19 and 272m42s for GRI-Mech3.0 (although this varies depending on both the

gas model used and the peak temperature reached) (see Listing 4.1 on page 73). Simulations

were run on one core of an AMD Phenom X6 1090T CPU. Using gprof , this additional work was

seen to be consumed by the evaluation of the reaction rates and, by extension, the evaluation

of the rate coefficients, the gas state and associated functions. A comparison between two

compression tests (one with and one without chemistry) is shown in Figure 4.9. Although it is

not observable, reactions occur along the entire length of the stroke; they cannot be turned on

Section 4.4 Combustion of ventilation air in a free-piston compressor 65

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
,

K

t, s

without chemistry
DRM19

GRI-Mech3.0

Figure 4.9: Compression to 1200K with and without finite-rate chemistry.

Reactions occur throughout the cycle, despite the fact they only release heat

above 1200K. Turning the chemistry off at a lower temperature (to lower

computational expense) yields incorrect results. Engine parameters are mp

= 400kg, up,0 = 11.64m.s-1, D = 0.1m and Lc = 4.0m. The compression

ratio for these parameters is 45.15:1 and the peak temperature (without

combustion) is Tp = 1200K.

part-way through compression (or expansion) to save computational work. The production and

destruction of greenhouse species throughout this process is shown in Figure 4.10.

In a rapid compression machine, combustion does not always go to completion as the re-

bounding piston expands the reacting gas below combustion conditions. The burnt fraction of

methane over the compression process (1→ 4) is defined here as

X1→4
CH4

=
X1

CH4
−X4

CH4

X1
CH4

. (4.6)

Similarly, the percentage reduction in GWP of an incomplete reaction is

GWP1→4
mix =

(
1.0− GWP′′

GWP′

)
× 100%, (4.7)

where GWP′′ and GWP′ denote the global warming potential of the products and reactants

respectively. This scalar allows for reactions that do not go to completion.

Using this scalar, the GWP reduction for ventilation air undergoing compression by a free

piston is shown in Figure 4.11. The greatest reduction in GWP coincides with combustion

completion. The full GRI-Mech3.0 mechanism was used here to show the production of nitrous

oxides. While some nitrogen chemistry does occur, it is less than that for a CVFM PMR at the

66 Engine dynamics Chapter 4

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

X
i

t, s

CH4
CO

CO2
N2O

Figure 4.10: Species production and destruction for ventilation air as it is

raised to 1200K in a free-piston compressor. System initial conditions are

mp = 400kg, up,0 = 11.63m.s-1, D = 0.1, Lc = 4.0m.

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

G
W

P
1
→

4

t, s

thermally perfect ventilation air

Figure 4.11: Reduction in global warming potential of ventilation air

as it is compressed to 1200K. System initial conditions are mp=400kg,

up,0=11.63m.s-1, D=0.1, Lc=4.0m.

Section 4.4 Combustion of ventilation air in a free-piston compressor 67

2226 K and 1 atm see Figure 3.12) and does not greatly affect the reduction in global warming

potential.

The combustion completion (also known as combustion yield) is dependent on the integral

of gas temperature and residence time. To find the combustion temperature for a particular

engine, compression tests over a range of peak temperatures were performed (see Figure 4.12).

Figure 4.13 shows the GWP reduction for the same range of temperatures. For this engine, the

1.0×105

1.0×106

1.0×107

1.0×108

1.0×109

1.0×10-3 1.0×10-2 1.0×10-1 1.0×10

p
,

P
a

ν, m3kg-1

900K
1000K
1100K
1200K
1300K
1400K
1500K
1600K
1700K
1800K

Figure 4.12: p-ν diagram of ventilation air in a free-piston compressor

reaching different peak temperatures using DRM19. As can be seen, for

parameters mp = 100kg, D = 0.2m and Lc = 5m, a peak temperature of

between 1200 and 1300 K is required for complete combustion.

combustion temperature is between 1200 and 1300 K. However, the same degree of combustion

can be achieved at a slightly lower peak temperature and pressure for a longer residence time.

This is demonstrated in Figure 4.14, where a range of piston masses used to complete the

same engine cycle achieved different combustion yields. A lower pressure is desirable, since the

combustion temperature must be reached without the pressure exceeding material limits. The

residence time is largely proportional to
(
mpLc
A

)1/2
and so it may also be increased with heavier

pistons, smaller cross-sectional areas and longer cylinder lengths. For a dual-piston type free-

piston engine however, these variables also have an effect on cylinder exhausting and so cannot

be changed independently. Finding the ideal operating condition is the topic of the parametric

study in §8.3 on page 120.

4.4.1 Finite-rate chemistry of a real gas in a free-piston compressor

Real gas effects act to retard the rate of combustion. As discussed in §2.1, the compression

ratio required to reach the combustion temperature of ventilation air may be high enough for

68 Engine dynamics Chapter 4

0

20

40

60

80

100

40 45 50 55 60 65 70 75

G
W

P
1
→

4

up,0, m.s-1

900K 1000K 1100K

1200K
1300K

1400K

1500K

1600K

1700K

thermally perfect

Figure 4.13: GWP reduction of ventilation air in a free-piston compressor

using a thermally perfect gas and DRM19. Temperatures correspond to

peak temperature due to compression only.

these effects to become significant. The effect of real gas models on the Otto cycle (with heat

added instantaneously at the point of piston reversal) is shown in Figure 4.15. To determine

the effect on finite-rate chemistry, a free-piston combustor was also run using real gas models.

Combustion yield is shown in Figure 4.16 for a number of peak temperatures. Here it is made

clear that real gas models retard the rate of reactions but not the products. An exception to

this is when the reactions were frozen midway by the expanding piston for the peak temperature

of 1200K. This case is undesirable: besides releasing less heat, exhaust gas will include more

molecules of a higher GWP than CO2 (such as CO) although the GWP will still be lower than

that of ventilation air (see Figure 4.13). As such, real gas models will have no effect on the

global warming potential only for a properly designed engine cycle where combustion has gone

to completion.

It is conceivable that reactions may not go to completion in this way during the parametric

study. To ensure this was not the case, a simulation with real-gas chemistry was performed for

just the reference engine (see Chapter 8 on page 119). However, the computational expense of

adding real gas effects to the chemistry throughout the study was not justified.

It has been shown at this point that it is possible to burn ventilation air in a free-piston

compression device in order to reduce its GWP index. However, it is still unknown as to whether

this can be done in a self-sustaining way, that is, by way of a reciprocating engine. The final

stage in the engine cycle is that of cylinder exhausting. This stage is discussed in the next

chapter.

Section 4.5 Dynamics of a dual piston type compressor 69

0.000

0.001

0.002

0.003

0.004

0.005

0.0e+00 5.0e-03 1.0e-02 1.5e-02 2.0e-02

X
C

H
4

(
A

mpLc

)0.5
t, s

1000kg
1500kg
2000kg
2500kg
3000kg
3500kg
4000kg
4500kg
5000kg

Figure 4.14: The effect of piston mass on combustion yield for a peak

temperature of 1100K. This scales linearly with residence time and expo-

nentially with temperature (which is largely dictated by the initial velocity).

Note that the piston period is largely dictated by the factor
(

A
mpLc

)1/2
which

is related to the piston acceleration and the distance travelled.

4.5 Dynamics of a dual piston type compressor

After the dynamics of a free-piston compressor were validated, the model was extended to two

compression cylinders. Consider the dual piston type compressor of Figure 4.17. The energy

method was used for this system, incorporating heat loss, friction and the application of an

external force, to find the applicable state equations. To derive the system dynamics, Figure

4.17 was separated into components (see Figure 4.18). The acceleration of the piston is dependent

on the sum of the forces acting upon it

du

dt
=

1

mp
[(p0 − p1)A+ Fe − Ff] (4.8)

where Fe is the force applied by the linear electric motor and Ff is the force due to friction.

The required external force was determined by applying constraints on the cycle (see Chapter 7

on page 112). Investigation into and selection of appropriate heat transfer and friction models

is addressed in Chapter 6.

Assuming the gas is at a homogeneous state Q∞ far away from the cylinder wall, the con-

servation of energy equation (5.37) may be applied to the control volumes in Figure 4.18

de0 = −dq0 − p0Adν (4.9a)

de1 = −dq1 + p1Adν, (4.9b)

70 Engine dynamics Chapter 4

1×105

1×106

1×107

1×108

1×10-2 1×10-1 1×100

p
,

P
a

ν, m3kg-1

ideal
thermally-perfect

Abel-Noble
van der Waals

Figure 4.15: The Otto cycle performed using air of different gas models,

starting at the atmospheric state and adding 140kJ.kg-1 heat at the point of

piston reversal. The thermally-perfect, Abel-Noble and van der Waals gas

models have volumetric compression ratios of 24.5, 23.7 and 23.7 respec-

tively with mp = 400kg, Lc = 4m, D = 0.1m and up,0 = 10m.s-1.

where qw = Sdqw
′′, the wetted surface area is

S =
πD2

2
+ πDL (4.10)

and the work done by the piston is

pdν =
pAdx

mg
. (4.11)

At this point, the state equations required to model a free-piston engine operating with a

constant-mass of ventilation air have been described. They are prepared as

ẋ = u

u̇ =
1

mp
[(pL − pR)A− Ff − Fe]

ẇ = Feu

ėL =
pAu

mg,L
− q̇R

ėR = − pAu
mg,R

− q̇R

(4.12)

where the subscripts L and R denote the left- and right-hand cylinder respectively. The next

stage in the engine cycle is the exhausting process which is investigated in the next chapter.

Section 4.5 Dynamics of a dual piston type compressor 71

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 0.05 0.1 0.15 0.2 0.25 0.3

X
C

H
4
,

m
ol

.m
-3

t, s

900K, 1000K

1100K

1200K

1300K
1400K
1500K
1600K
1700K
1800K

thermally perfect
Abel-Noble

van der Waals

Figure 4.16: Combustion yield in a free-piston compressor for peak

temperatures of 900K-1800K (due to compression only) using DRM19,

mp =100kg, D=0.2 and Lc =5.0m. The largest discrepancy between real

gas models occurs for a peak temperature of 1200K when reactions are

frozen midway by the expanding piston. At temperatures higher than this,

reactions go to completion for all gas models.

72 Engine dynamics Chapter 4

Q0 Q1

up,0

Figure 4.17: A simplified dual piston type compressor.

→ −p0Adν0 → p1Adν1

↘
dq0

↘
dq1

p0A→ ← p1A

up,0

Ff , Fe

Figure 4.18: The components of a simplified free-piston engine.

Section 4.A Chapter end notes 73

4.A Chapter end notes

4.A.1 test free piston compressor.py

from l i b f p e import ∗
from z e r o f i n d i n g import ∗
from numpy import array

import sys

def z e r o f u n c t i o n (u p , args) :

fout , Q, T ig , D, x p , x s , m p , L p , L c , m g , p b = args

d = g e t g l o b a l d a t a p t r ()

y0 = vectord ([x p , u p , Q. e [0] , 0 . 0 , 0 . 0])

r v a l = t e s t f r e e p i s t o n c o m p r e s s o r (fout , y0 , 1 , Q, x p , u p , m p , L p , L c ,

D, p b , d . dh , d . t , d . t l a s t , d . dt wr i t e ,

d . dt sys , d . dt therm , d . t o l)

x s = r v a l [0]

u s = r v a l [1]

e s = r v a l [2]

T = r v a l [3]

a rgs [5] = x s

print ”%.7eK , %.7em/s , %.7em” % (T, u p , x s)

return T − T ig

def main (g a s f i l e) :

d a t a f i l e = ” input . lua ”

#chemf i l e = ”drm19”

s e t g l o b a l d a t a (d a t a f i l e)

s e t ga s mode l (” . . / . . / i n p u t f i l e s /”+g a s f i l e+” . lua ”)

#se t r e a c t i on upda t e (” . . / . . / i n p u t f i l e s /”+chemf i l e +”. lua ”)

gas

g = ge t ga s mode l p t r ()

Q = gas data ()

g . i n i t i a l i s e g a s d a t a (Q)

air with 0.5% CH4

X = 0.995∗ array ([0 . 0 , 0 . 21 , 0 . 7 9])

X[0] = 0.005

molef = { ’CH4 ’ :X[0] , ’O2 ’ :X[1] , ’N2 ’ :X[2] }

#molef = { ’O2 ’ : 0 . 21 , ’N2 ’ : 0 . 79}
s e t m o l e f (Q, g , molef)

Q.T[0] = T atm

Q. p = p atm

g . eva l thermo state pT (Q)

g . e v a l t r a n s p o r t c o e f f i c i e n t s (Q)

d = g e t g l o b a l d a t a p t r ()

L p = 0

x p = 0

p b = 0 # back pressure , atm

74 Engine dynamics Chapter 4

f i c s = ” ic−%s−%i . dat” % (g a s f i l e , p b)

fout = open (f i c s , ”w”)

fout . wr i t e (”# m p , m g , T ig , L c , u p , x s , A\n”)

fout . c l o s e ()

x s = 0 .0

u p v = []

for m p in d . m p :

for D in d .D:

fname = (” ic−%s−%4.3fkg−%4.3fm . dat ” % (g a s f i l e , m p , D))

print ”# wr i t i ng to : %s ” % fname

fout = open (fname , ”a”)

fout . wr i t e (”# D, L c , L s , u p , m p , m g , T ig , y CH4\n”)

fout . c l o s e ()

R = d .R[0]

for T ig in d . T ig :

L c = D∗R;

x R = L c

A = 0.25∗ PI∗D∗D

V = A∗L c

m g = V∗Q. rho

print ”# running %gK, %gm, %gkg , %gkg” % (T ig , L c , m p , m g)

fout = ”%s−%03.0 fkg−%2.1 fx %4.3fm−%04.0fK−%1.0fatm−bp . dat” % (g a s f i l e , m p ,

L c ,D, T ig , p b)

d . t = 0 .0

u low = (1 e2∗ T ig ∗m g/m p) ∗∗0 .5

u high = (3 e3∗ T ig ∗m g/m p) ∗∗0 .5

print (”# u = [%g %g] ” % (u low , u high))

args = [fout , Q, T ig , D, x p , x s , m p , L p , L c , m g , p b∗p atm]

u p = m u l l e r r o o t (z e r o func t i on , u low , u high , t o l =0.1 , args=args)

u p v . append (u p)

x s = args [5]

pr in t some data po in t s

f out = open (f i c s , ”a”)

fout . wr i t e (”%8.7e %8.7e %8.7e %8.7e %8.7e %8.7e %8.7e\n” % (m p , m g ,

T ig , L c , u p , x s , A))

fout . c l o s e ()

you know at t h i s po in t I do b e l i e v e we can wr i t e our own input f i l e s .

and then maybe run them l a t e r with some chemistry .

f l u a = ” input−%s . lua ” % (g a s f i l e)

w r i t e l u a f i l e (f lua , [m p] , u p v , d .R, [D] , d . T ig)

u p v = []

i f name == ’ ma in ’ :

s e l e c t from ’ thermal ly−per f e c t−drm19 ’ , ’ noble−abe l−drm19 ’ , ’ van−der−waals−drm19 ’

main (’ thermal ly−pe r f e c t−drm19 ’)

print (”#done . ”)

Listing 4.1: Free-piston compressor test function.

Chapter 5

Engine exhausting

The previous chapter examined piston dynamics using pre-charged cylinders. This chapter in-

vestigates the details of the exhausting process. Ventilation air must be forced into each cylinder

under a pressure difference, either by precompression of the ventilation air or by expansion of

the cylinder to a negative gauge pressure. The former is typically performed by a crankcase (as

in a two-stroke engine) and the latter by a piston (as in a four-stroke engine). For a free-piston

engine, it may be performed using one of three methods:

1. by a modified crankcase,

2. by a separate compressor or

3. by natural aspiration

with any combination of valves and/or ports. The method chosen was natural aspiration to avoid

the complication of an additional process (with an associated efficiency). The level of modelling

used for the exhausting stage was that of non-steady, isentropic, one-dimensional ideal gas flow

in an infinite pipe of constant diameter.

5.1 Exhausting process

The exhausting process should aim to maximise the purity and density of the charge at valve

closure for an exhausting efficiency of 100% [62].

Charge purity is measured by the residual gas fraction, which is defined as the mole fraction of

products that remain after the exhausting stage. For this engine, the residual gas fraction

acts to dilute the fuel content of the cylinder (which is undesirable given the low fraction

of CH4 in ventilation air) and the compression of exhaust products is wasted work.

After exhausting, although it is undesirable, some residual fraction of the exhaust gas will

almost always remain due to mixing. The amount of fuel drawn into the engine is

mCH4 = ρ0LcAXCH4Xva (5.1)

where Xva is the mole fraction of ventilation air in the cylinder and XCH4 is the mole

fraction of CH4 in ventilation air. The larger the entrained mass of CH4 the better and

thus, the larger the cylinder volume and charge density the better.

75

76 Engine exhausting Chapter 5

Charge density can only be increased through the use of a modified crankcase or separate

compressor. A higher initial pressure has a correspondingly higher concentration of fuel

in the cylinder. Mathematically,

[XCH4] = XCH4

p

RT
. (5.2)

For a fixed cylinder volume, precompression of the premixed fuel is desirable if the pressure

work may be recuperated by regeneration. However the same effect (that is, increasing the

mass of fuel) may be achieved by increasing cylinder length or cross-sectional area. As the

stroke length is unconstrained and the engine was naturally aspirated, focus was instead

placed on optimising the geometry of the cylinder.

Exhausting efficiency is effectively a measure of the pumping work. It is defined as the mass

of ventilation air used to replace the combustion products, normalised by the mass of the

combustion products.

ηex =
mva

mg,0
(5.3)

Exhausting efficiency is largely dependent on the exhausting regime, limited here to either

perfect mixing or perfect displacement.

In a free-piston compressor, the period of a cycle is roughly proportional to
(

A
mpLc

) 1
2

for a

given gas model. The longer the period, the more time available for cylinder exhausting. Too

long, and excess pumping work is performed. Thus the aim is to find the shortest period that

still allows for complete refuelling.

Uniflow port-port exhausting is the most effective exhausting method because it minimises

the resistance to flow (or momentum) through the cylinder and approaches perfect displacement

of the combustion products [63]. For a free-piston engine, a valve-valve configuration was re-

quired to allow for better control of the entrained mass of ventilation air. The inlet valve was a

reed valve, and the exhaust valve a poppet valve. This was chosen to remove all but one of the

controlling variables, namely, the timing of the poppet valve.

5.2 Gas dynamics

The Euler equations are a set of hyperbolic partial differential conservation equations [46].

Physically, they describe the rate of change of the conserved quantities of an inviscid compressible

fluid. They are obtained by removing the viscous terms from the Navier-Stokes equations. The

mass, momentum and energy of such a fluid are conserved due to three laws that are, in order,

continuity, Newton’s second law and the first law of thermodynamics. The characteristic features

of inviscid compressible flow are finite waves that propagate pressure information through a fluid.

The one-dimensional Euler equations for conservation of mass, momentum, energy and

species fraction may be expressed in integral form as

∂

∂t

∫∫�� ��∫
ϑ

U dϑ+

∫�� ��∫
S

F · n̂ dS = H (5.4)

Section 5.2 Gas dynamics 77

where U is the algebraic vector of conserved quantities, F is the inviscid flux vector and H is

the source vector of mass, momentum, energy and species density

U =

ρ

ρu

ρ(e+ 0.5u2)

ρYi

 , F =

ρu

ρuu + p̂i

(ρe+ p) u

ρuYi

 , H =

0

pAî− Fµî
Q

0

 . (5.5)

The column vector H contains source terms of mass, momentum and energy. For the ho-

mogeneous form of the Euler equations, these terms are zero. In its inhomogeneous form, they

prescribe boundary sources such as mass addition, wall pressure and heat and work transfer.

For a cylinder undergoing exhausting, (5.4) becomes

∂

∂t

∫∫�� ��∫
ϑ

U dϑ =

ρAvug

0

ρAvuge

ρAvugYi

 (5.6)

for a constant cylinder volume.

The state equations for a constant-volume cylinder undergoing exhausting are prepared as

d

dt
(ρ) = [ρ0u0Arv + ρ1u1Apv]

1

ϑ
d

dt
(ρe) = [ρ0u0e0Arv + ρ1u1e1Apv]

1

ϑ
d

dt
(ρYi) = [ρ0u0Yi′Arv + ρ1u1Yi′′Apv]

1

ϑ

(5.7)

where the subscripts 0 and 1 denote value at the throat of the reed and poppet valves respectively,

A is the instantaneous valve area and ϑ is the instantaneous cylinder volume.

5.2.1 Finite-waves in real gases

The bulk flow of a compressible fluid is driven by, and acts to reduce, a pressure difference.

Disturbance information propagates through a compressible fluid by finite waves. From [46],

du =

−
ν

a
dp C+ characteristic

ν

a
dp C− characteristic.

(5.8)

Substituting a form of the isentropic equation for an ideal gas,

dp =
2γ

(γ − 1)

p

a
da (5.9)

yields the general form for the Riemann invariants

du =

− 2γ

(γ − 1)

νp

a2
da J+ and

2γ

(γ − 1)

νp

a2
da J−

(5.10)

78 Engine exhausting Chapter 5

respectively. Consider now the unsteady isentropic expansion of an ideal gas down a constant

area duct. The relation between the upstream and downstream Riemann invariants (along the

C+ characteristics) is

u↗
0

0 +
2a0

(γ − 1)
= u+

2a

(γ − 1)
(5.11)

where the subscript 0 denotes the reservoir (stagnation) condition. The flow velocity is thus

u =
2a0

(γ − 1)

[
1−

(
a

a0

)]
(5.12)

which may be reduced to

umax =

(
2

γ − 1

)
a0, (5.13)

which is the limiting velocity (if the gas were expanded to zero pressure). This effectively sets a

limit to the proposed exhausting method. If the piston velocity were to exceed umax, a vacuum

would form behind the piston. The general form for the speed of sound in a gas is

a2 = − γν2 ∂p

∂ν

∣∣∣∣
T

(5.14)

which reduces to

a2 = γRT (5.15)

for an ideal gas. The derivatives for the covolume and van der Waals gas models are given in

§2.A.3 on page 19.

The opening of a poppet valve in an engine results in a wave pattern somewhat similar to

Sod’s shock tube problem. Sod’s shock-tube problem consists of a constant-area tube filled with

a high- and low-pressure gas separated by a diaphragm [64]. The flow field at some time t

after the diaphragm is removed (Figure 5.1) has an analytical solution comprised of an unsteady

expansion, a contact discontinuity and a contact shock (also called a contact shock or slip-line).

The solution to this problem will be used in the exhaust model. The details of this are included

rarefaction wave contact

discontinuity, u

normal shock

wave, W

4 3 2 1

Figure 5.1: Sod’s shock-tube problem

in §5.A.2 on page 86.

For validation (and to test the robustness of the model), the velocity of the contact disconti-

nuity was plotted against a range of downstream to upstream pressure ratios (Figure 5.2). The

velocity approaches the theoretical maximum as the downstream pressure approaches zero.

Consider a constant volume cylinder of gas being exhausted by an upstream reservoir of high

pressure gas to the atmosphere. From (5.4) the rate of change of mass, momentum, energy and

Section 5.2 Gas dynamics 79

0

500

1000

1500

2000

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

u
,

m
.s

-1

log
(
p
p0

)
ideal expansion

2a0
γ−1

Figure 5.2: Expansion of ideal air from the atmospheric state to a range of

downstream pressures. This figure validates the implementation and tests

for robustness over a large range of pressure ratios. Transport of species

and energy have similar profiles.

species fraction in the cylinder is

d

dt
Uϑ = (Fi + Fe)S (5.16)

where subscripts i and e denote the intake and exhaust valves respectively. The one-dimensional

flux at an opening between two very long reservoirs is

F =

ρu

0

ρue

ρuYi

 for i ∈ [1 : nsp]. (5.17)

Using Sod’s shock tube problem, the momentum may also be calculated (see Figure 5.3).

Observe that this figure indicates that the fastest way to fill a cylinder is not to evacuate it, but

instead to maintain a downstream-to-upstream pressure ratio of about 0.1.

5.2.2 Discharge coefficient

The mass flow rate was calculated using the finite wave equations for an ideal gas. However,

these only capture the pressure effects of nozzle flow. To capture viscous effects, a discharge

coefficient was applied to match the inviscid mass flow to the observed mass flow

cd =
ṁm

ṁ
(5.18)

where ṁm is the measured mass flow rate.

80 Engine exhausting Chapter 5

0

20

40

60

80

100

120

140

-6 -5 -4 -3 -2 -1 0

ρ
u

,
k
g.

m
-2

s-1

log
(
p
p0

)

ideal expansion

Figure 5.3: Expansion of ideal air from the atmospheric state to a range

of downstream pressures.

When taking discharge coefficients from the literature, the same mass flow rate model should

be adopted. Zhu and Reitz [65] used a one-dimensional model, which is similar to the model

used here. They derived the discharge coefficients of Figure 5.4 using measurements from a

four-valve Caterpillar engine. The Euler equations along with an exact Riemann solver (see

§5.A.1 on page 85) were employed to solve the one-dimensional flow state caused by an opening

valve.

5.3 Exhausting regimes

The incoming ventilation air and cylinder product gas do not remain separated by a contact

discontinuity (as in Sod’s shock tube problem) but instead undergo a degree of mixing. Unless

short-circuiting occurs, the mixing regime is bounded by two simple models, namely perfect-

displacement and perfect-mixing. Perfect-mixing is where the inlet ventilation gas instanta-

neously and completely mixes with the cylinder gas (implicit in (5.16)) and perfect-displacement

is where the inlet ventilation gas does not mix with the cylinder gas (as in the ideal Sod solution).

The perfect displacement exhaust model is

d

dt
(ρYi) = (ρ0u0Yi′ + ρ1u1Yi′′)

A

ϑ
(5.19)

where Yi′′ are the combustion product mass fractions. To implement this, the simulation code

(see Listing B.6 on page 194) keeps track of the mass exhausted from the cylinder. When the

initial mass of the cylinder has been removed, the code switches to the perfect mixing model.

The mass contained within the control volume in this test is unsteady, so the complete first law

of thermodynamics (5.34) was required to model the energy in a cylinder of changing volume.

This is achieved by applying both equations (5.16) and (4.9) to the cylinder.

Section 5.4 Exhausting regimes 81

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

c D

Lv/Dv

intake flow
exhaust flow

data from [65]

Figure 5.4: Interpolated and measured discharge coefficients for a four-

valve Caterpillar engine [65]. Coefficients are held constant outside the

measured range.

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Y

t, s

species A

species B

perfect mixing
perfect displacement

Figure 5.5: Species ‘B’ is being exhausted with species ‘A’ using perfect-

mixing and perfect-displacement regimes. The initial temperature of all

volumes is 298.15K, with the upstream pressure being 2atm and the cylinder

and downstream pressures being 1atm. The geometry is S = ϑ = 1.

82 Engine exhausting Chapter 5

5.4 Valve area

Valve area is a function of time. The faster the area can reach its maximum the better. In

the chosen design, the intake valve is a reed valve that opens once the cylinder reduces below

the atmospheric pressure and then closes again once it exceeds it. The over-expansion of the

cylinder to approximately twice its original volume should allow for ample intake of ventilation

air. Finally, during the compression stroke, the exhaust valve may be closed such that the

desired mass of ventilation air is trapped in the cylinder (see Figure 5.6).

 reed valve

poppet valve

Lc + Lgap

Figure 5.6: Free-piston engine valves.

For the reed valve, the maximum throat area is equal to the cylinder area, since the reed

valve openings may be made as long as required. Because the piston ring travels over these

openings, the fraction of the circumference taken up by the ports should be less than or equal

to half the cylinder circumference. Taking the fraction to be half and the area to be at least

that of the cylinder, the reed valve length is then

Lrv = 0.5D. (5.20)

The maximum throat area of the poppet valve is determined by the cylinder head type (such

as flat or peaked) and the ratio of the cylinder and poppet valve diameters. In this engine, the

cylinder head will be flat to prevent collision by the unconstrained piston. For a single poppet

valve there are two potential throats, one resulting from the annulus between the poppet valve

head and cylinder, and one resulting from the poppet valve lift Lpv (5.21),

Axy =
π

4

(
D2 −Dpv

2
)

(5.21a)

Axz = πDpvLpv (5.21b)

where D is the cylinder diameter. Equating (5.21), the following conditions are found

Lpv
Dpv

= 0.25

D

Dpv
=
√

2

 (5.22)

indicating the largest throat area is reached when the poppet valve lift is greater than or equal

to 0.25Lpv/Dpv.

Section 5.5 Variable valve timing 83

5.5 Variable valve timing

Variable valve timing is an essential part of the control system as it allows for control over the

purity and mass of the charge within the limits set by the system dynamics. For ventilation air,

there are no benefits in heat regeneration from exhaust gas recirculation and compression of the

combustion products is a waste of piston work [1].

The control variables used for valve actuation are the cylinder pressure and the entrained

mass of ventilation air. Actuating valves according to cylinder pressure allows for a better

control of the flow rate. Actuating valves according to the entrained mass allows for control of

the compression ratio. The nominal valve actuation over the exhausting process is enumerated:

1. All valves remain closed whilst cylinder pressure is above atmospheric pressure during the

expansion stroke.

2. As the cylinder pressure drops below the atmospheric pressure, the reed valve opens,

allowing the piston to draw in ventilation air.

3. On the compression stroke the pressure rises above the atmospheric pressure and the reed

valve closes whilst the poppet valve is opened.

4. The poppet valve is then closed as the entrained mass of ventilation air approaches the

target mass.

The logic used for this operation is shown in Figure 5.7. A caveat to this method is that the

input : dt, L, up, p, mg

output: incremental valve movement

if up < 0 then

if p < patm then
open intake valve(dt)

else

if p > patm then

//we have taken in all the fuel possible at this point

close intake valve(dt)

if mg > mg,0 then
open exhaust valve(dt)

else
close exhaust valve(dt)

Figure 5.7: Valve timing logic for the right hand cylinder

entrained mass which is a difficult value to quantify experimentally. While it cannot be directly

measured, the relation mg = pV
RT may be used to evaluate it.

84 Engine exhausting Chapter 5

In addition to controlling the trapped mass of ventilation air, variable valve timing may be

used to increase the purity of the charge. Assuming a perfect-displacement exhausting regime,

the valve can be actuated so that just the combustion products are exhausted during compres-

sion, increasing the mole fraction of ventilation air in the cylinder. Valve delay is defined here

to be the time delay between port close and valve close during the compression stroke which

may be used to achieve this.

Actuation of the poppet valves is not simulated but is assumed to be pneumatically actuated

with a lift velocity of 10m.s-1. If valve actuation is slow compared to piston speed, this can have

a significant effect on engine operation. In a real engine, the poppet valves should be actuated

by a single-acting cylinder with a spring return (such that they fail in the closed position).

At this point the program includes all the operations required to complete a full engine cycle

(namely, compression, combustion, expansion and exhausting), however, before answering the

question of whether this process can be done in a self-sustaining way using ventilation air as the

working fluid, the effect of heat transfer and friction must be investigated.

Section 5.A Chapter end notes 85

5.A Chapter end notes

5.A.1 Riemann flux solvers

An initial-value problem for a nonlinear conservation law with piecewise-constant data is referred

to as a Riemann problem [66]. In computational fluid flow the Riemann problem originates

from the discretisation of the domain space which produces a piecewise-constant flow state, Ut
x.

Consider two such adjacent flow states Uj
i and Uj

i+1 depicted in Figure 5.8. The piecewise-

Uj
i

Uj
i+1

Figure 5.8: A piecewise-constant flow state

constant flow state may be expressed mathematically as

U(x, tj) =

U(xi, tj) if x < xi + Ωh,

U(xi+1, tj) if x ≥ xi + Ωh,
(5.23)

where h is the node spacing and Ω is a number between 0 and 1 that determines the location of

the discontinuity between the two states. Now consider one possible state after a small timestep

∆t of Figure 5.9. The three possible wave states that may result from this problem are the

S
S
S
S
S
S
S
S
S

T
T
T
T
T
T
T
T
T

A
A
A
A
A
A
A
A
A�
�
�
�
�
�
�
�
�

Uj
i

Uj+1
i

∗
C Uj+1

i+1

∗

Uj
i+1

Figure 5.9: An x− t plot of one possible flow state after timestep ∆t

rarefaction-wave, the contact-discontinuity and the shock-wave, although other combinations

are possible. These waves are created by the pressure difference between Uj
i and Uj+1

i , hence

the respective states at the next time interval find pressure equilibrium, that is

pj+1
i

∗
= pj+1

i+1

∗
= p∗ and

uj+1
i

∗
= uj+1

i+1

∗
= u∗

(5.24)

where u∗ is the velocity of the contact discontinuity, given by (5.12).

The keen observer will recognise this as Sod’s shock tube problem, and the procedure outlined

previously as the exact solution. However, due to the iteration involved, this procedure is

86 Engine exhausting Chapter 5

expensive, and approximate Riemann solvers are commonly substituted in computational fluid

dynamics. The number of approximate Riemann solvers that exist in the literature is vast. Due

to the relatively few times the code will be required to solve this problem (compared to a 2- or

3-dimensional model), the exact solution will be used (along with programming techniques to

reduce the computational cost).

5.A.2 Sod’s shock tube [64]

The flow field of Sod’s shock tube at some time after the diaphragm is removed is determined

entirely by the initial diaphragm pressure ratio and the gas model. The energy change across a

shock is provided by the Hugoniot equation

e2 = e1 +
1

2ρ1
(p1 + p2)

(
1− ρ1

ρ2

)
. (5.25)

For a given density ratio ρ1
ρ2

there exists a unique solution for e2 and p2, where p2(e2, ρ2) is

provided by the relevant equation of state.

Ideal gas

The solution for an ideal gas is outlined in [46], but the procedure used to find the pressure ratio

is shown here for completion. Substituting the ideal equation of state, p2 = ρ2e2 (γ − 1), into

(5.25), the pressure ratio across the shock may be found using a zero-finding method with the

zero function

f =
p4

p1
− p2

p1
(1− T2)

− 2γ4
γ4−1 (5.26)

where

T2 =
(γ4 − 1)

(
a1
a4

)(
p2
p1
− 1
)

{
2γ1

[
2γ1 + (γ1 + 1)

(
p2
p1
− 1
)]}0.5 (5.27)

within the range p2/p1 ∈ [0 : p4/p1].

In the free-piston engine model, the bisection method was first used as the zero-finding

method. Later, however, Muller’s method was implemented due to its speed since the pressure

ratio needs to be evaluated at least once per timestep during the exhausting portion of the

stroke.

Real gas

Considering the physics of a real gas, the presence of intermolecular attractive forces acts to

retard expansion. This has been observed to the reduced driver performance of hypersonic wind

tunnels [25]. Here we investigate the numerical procedure for solving Sod’s shock tube for a real

gas. Since e2(T2) for a thermally-perfect gas and e(T2, ρ2) for a real gas, the whole flow state of

Sod’s shock tube must be used to evaluate the zero function.

To find the velocity behind the shock, take the continuity and momentum equations (in the

shock frame of reference)

ρ1W = ρ2 (W − u2) (5.28a)

p1 + ρ1W
2 = p2 + ρ2 (W − u2)2 (5.28b)

Section 5.A Chapter end notes 87

where W is the shock speed. Substituting (5.28a) into (5.28b) gives

W =

 1

ρ1

(p2 − p1)(
1− ρ1

ρ2

)
 1

2

. (5.29)

Given continuity, ρ1
ρ2

and W

u2 = W

(
1− ρ1

ρ2

)
(5.30)

and the conditions across the contact-discontinuity are

p2 = p3

u2 = u3

}
. (5.31)

Taking the general form for entropy (2.8c) and the C+ characteristic (5.8), the following

conditions must hold across an isentropic rarefaction wave:

dT =
ν

cp
dp (5.32a)

du = −ν
a
dp (5.32b)

assuming cp is constant over a small step. With (5.32) we can integrate from p4 → p3 to find u3.

The correct value for ρ1
ρ2

may then be found using a zero-finding method with the zero function

f = u3 − u2. Once ρ1
ρ2

has been found, the entire solution may then be evaluated (remembering

to step across the rarefaction wave using du this time).

One observation that can be made is that the speed of sound in a real gas is slightly faster

than for an ideal gas. For example, take the sound speed for an Abel-Noble gas:

a2 =
γpν2

ν − ν0
. (5.33)

This is greater than for a perfect gas by the factor ν
(ν−ν0) . Thus, the tip of the expansion wave

should be faster than that for an ideal gas by this factor.

The program was first validated by comparing the solution using the ideal gas procedure to

the solution using the real gas procedure with an ideal gas model (see Figure 5.10). The real

gas procedure was then applied using the gas models in Section 2.1.1 (see Figure 5.11).

For Sod’s shock tube problem with a real gas, the following observations can be made:

• the shock speed is slower

• the gas velocity is faster and

• the gas density between the shock and the contact discontinuity is lower.

The result of these effects is to retard the gas momentum and further increase the entropy

rise across the shock. Finally, when setting up Sod’s shock tube problem with real gases, it

is important to specify properties of density and pressure since two gas models at the same

temperature and pressure will result in different masses.

88 Engine exhausting Chapter 5

0.0×100

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

0.0 0.2 0.4 0.6 0.8 1.0

p
,

P
a

x, m

ideal gas proceedure
real gas proceedure

Figure 5.10: Ideal solution to Sod’s shock tube, generated using two nu-

merical procedures: one specific to an ideal gas and one which may also be

used for a real gas. There is error in both procedures (due to the iteration)

which is controlled by tolerances.

5.A.3 Full form of conservation of energy

The first law of thermodynamics is the conservation of energy, which states that the rate of

change of energy in a system is equal to the sum of the rate of energy change within the volume

and the energy transferred across its boundary via heat, work and mass [29].

dQ− dW +
∑

ṁiθi −
∑

ṁeθe = dE +mdke +mdpe (5.34)

where Q is the heat transfer to the gas, W is the work done by the gas,

θ = h+ ke + pe, (5.35)

and the kinetic and potential energies are

ke =
1

2
u2

pe = gz

dke =
1

2

(
u1

2 − u0
2
)

dpe = gdz

(5.36)

respectively. For a fixed mass, (5.34) reduces to

dq − dw = de+ dke + dpe. (5.37)

Section 5.1 Chapter end notes 89

5.0×100

1.0×101

1.5×101

2.0×101

2.5×101

3.0×101

0.0 0.2 0.4 0.6 0.8 1.0

ρ
,

k
g
.m

-3

x, m

thermally perfect
Abel-Noble

van der Waals

0.0×100

5.0×102

1.0×103

1.5×103

2.0×103

2.5×103

3.0×103

3.5×103

0.0 0.2 0.4 0.6 0.8 1.0

T
,

K

x, m

thermally perfect
Abel-Noble

van der Waals

0.0×100

2.0×106

4.0×106

6.0×106

8.0×106

1.0×107

1.2×107

0.0 0.2 0.4 0.6 0.8 1.0

p
,

P
a

x, m

thermally perfect
Abel-Noble

van der Waals

0.0×100

1.0×102

2.0×102

3.0×102

4.0×102

5.0×102

6.0×102

7.0×102

0.0 0.2 0.4 0.6 0.8 1.0

u
,

m
.s

-1

x, m

thermally perfect
Abel-Noble

van der Waals

Figure 5.11: Real gas solutions to Sod’s shock tube problem. For this test

p4 = 1×107 Pa, ρ4 = 10 kg.m-3, p1 = 1×105 Pa, ρ1 = 10 kg.m-3. Using the

conditions for the classic shock tube problem (that is ρ4 = ρ1 = 1kg.m-3)

resulted in temperatures too low in the region between the shock wave and

the contact shock and caused numerical errors. The lower density in this

region and the lower total velocity clearly show the effect of the real gas

models. Note that the thermally-perfect model does not differ from the

ideal solution.

Chapter 6

Engine losses

6.1 Friction

Friction refers to forces between loaded surfaces in relative motion. It always acts to oppose the

motion such that the vector force on the piston is

Ff = −ûFf (6.1)

where û is the normalised velocity vector and Ff is the friction force magnitude.

Three regimes exist for lubricated sliding surfaces: boundary, mixed and hydrodynamic [67].

In the boundary regime, the surfaces are in contact and friction is the result of their interference.

The mixed regime exists when the average film thickness is of the order of the apparent surface

roughness and exhibits characteristics of both boundary and hydrodynamic regimes. In the

hydrodynamic lubrication regime, friction is dependent on the oil viscosity and the velocity

profile. As the relative speed increases, the friction first reduces as the surfaces separate due to

hydrodynamic effects, then increases due to viscous effects [68]. The viscosity in turn is affected

by the oil temperature and pressure which change throughout the cycle.

For this engine, three rings will be used per cylinder: a compression ring, a bearing ring

and an oil ring. The compression ring is of chevron type with a thickness of 5mm and used

to prevent blow-by of the high pressures. A bearing ring should be used to support the weight

of the piston, but its thickness should not affect the normal force and so it was ignored for

modelling purposes. The oil ring was assumed to carry no normal force and so was also ignored

with regards to ring contact area. This design (not including the oil ring) is similar to that used

for the piston in the T4 shock tunnel at the Mechanical Engineering Department, University of

Queensland. For the current engine, a mixed model will be used for the friction factor.

Consider a piston of mass mp supported by a ring set of this type. The friction force of each

ring is proportional to the normal force by the friction coefficient f such that

Ff = f

[
nr∑
i=1

(Ar,ipr,i) +mpg

]
(6.2)

where Ar,i is the compression ring contact area and pr,i is the contact pressure of ring i, f is

the friction factor, nr is the number of rings and g is the acceleration due to gravity. Thus, the

contact force is the combination of both the force of the gas pressure forming a seal with the

90

Section 6.1 Friction 91

cylinder wall and the force due to the weight of the piston. In conventional engines, instead

of the piston weight there is a force applied by the crankshaft pushing the piston against the

cylinder wall. For chevron-type rings, the contact pressure pr,i is the sum of the ring tensile

stress and the gas pressure acting behind the ring

pr,i = pi(t) + σt. (6.3)

Some small tensile stress is required for the ring to make contact with the cylinder wall when

there is no gas pressure, but for the purposes of modelling this was assumed to be zero.

Assuming the friction due to piston weight is small compared to the ring contact pressure,

the stroke length with friction may be found using a similar method to (4.3)1,

Ls = L0 −
[
L0

(1−γ) − mp (1− γ)

2p0L0
γ (A+ fAr)

up,0
2

] 1
(1−γ)

, (6.4)

where Ar is the total piston ring area. From this it can be seen that the addition of friction acts

to reduce the stroke length for a given initial piston velocity. Conversely, to achieve a particular

stroke length, the initial piston velocity must be increased. The amount it must be increased by,

for a given engine geometry, is
(
1 + f ArA

) 1
2 (see Figure 6.1). Thus, for a given engine, the effect

of friction can be reduced principally by reducing the ring surface area and friction coefficient.

6.1.1 Mixed friction coefficient

The friction coefficient in a mixed model is a linear combination of boundary and hydrodynamic

friction models,

f = αfb + (1− α) fh (6.5)

where α is a function of the bearing parameter,
µup
p , which varies from unity to zero. The tran-

sition point depends on variables such as the quantity of lubricant, the ring and bore materials,

the operating temperature and the age of the bearing.

Boundary model

A constant friction coefficient of 0.1 adequately models the boundary friction for cast iron

compression rings like the ones used here.

Hydrodynamic model

Hydrodynamic pressure is a dynamic force resulting from the viscosity of the lubricant. For

hydrodynamic lubrication to occur, two surfaces require sufficient relative motion and relative

inclination (or equivalent geometry) such that a load carrying film is generated. Similar to

modelling of the boundary layer for heat transfer, a detailled approach includes modelling of

the boundary layer using an integral boundary layer method or a numerical method. Without

experimental data, these models merely shift the unknown variables, for example, from friction

coefficient to apparent roughness.

1While the effect of the piston weight could be included in this equation, to do so would make the analytical

solution intractable.

92 Engine losses Chapter 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800 1000 1200 1400

L
s

L
c

up,0

(
mp

2ρ0(A+fAr)Lc

) 1
2

without friction
with friction

Figure 6.1: Note the new normalised velocity, which includes the friction

factor and ring contact area. For a frictionless compressor, these extra

terms go to zero leaving the normalization factor seen previously (for exam-

ple, in Figure 4.4). This new factor shows that friction may be overcome by

increasing the initial piston velocity by a predictable amount. For a simple

boundary friction model (where f is constant) this amount is
(
1 + f Ar

A

) 1
2 .

This provides a useful first-pass guess when estimating the additional re-

quired piston speed.

McGeehan [69] conducted a literature review of compression ring friction. Experiments have

shown that liner lubrication is predominantly hydrodynamic with localised contact near the

point of piston reversal. A hydrodynamic friction coefficient model is also required given the

potentially high ring velocities (see §4.2). In [69], the presence of a continuous oil film was

detected by the measurement of electrical resistance and capacitance between the piston ring

and the liner (low values corresponding to direct contact). The factors affecting the friction

include the ring loading, the number of rings and their respective contact areas and operating

profiles (after wear-in). The factors affecting the friction coefficient include dynamic viscosity,

ring velocity, thickness, profile and effective pressure. The general form of the friction coefficient

was found to be

fh = c1

(
µup
prb

)c2
(6.6)

where µ is the dynamic viscosity (approximately 0.222 for SAE30 oil at 300K), and typically

c1 ∈ [1 : 5] and c2 ∈ [0.33 : 0.66] depending on the ring profile [69]. The lowest viscosity

oil that still generates a load carrying film for the majority of the stroke is ideal. A friction

coefficient curve using a ring with a parabolic profile (that is, c1 = 4.8 and c2 = 0.5) was deemed

Section 6.1 Friction 93

sufficient as a first approximation. The resultant function for the mixed friction coefficient is

shown along with experimental data from [69] in Figure 6.2. The transition between boundary

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 50 100 150 200

f

1× 104
(
µup
pb

) 1
2

mixed coefficient
50% 100psi
50% 50psi

30% 100psi
30% 50psi

20% 100psi
20% 50psi

Figure 6.2: A mixed friction coefficient (6.5) with experimental data from

[69]. For this function, b = 0.03m, µ = 0.222Pa.s and the constants c1 =

4.8, c2 = 0.5 correspond to a parabolic profile.

and hydrodynamic friction and the gradient of the hydrodynamic curve depends on the ring

profile: a flat profile contacts the cylinder liner only at low speed due to squeeze action and

generates a thin film at mid-stroke due to wedge action, whereas a curved profile contacts the

cylinder liner at a higher speed due to squeeze action and generates a thick film at mid-stroke

due to wedge action. The transition function used here was

α = exp (−300ν) for ν ∈ [0 : 1] (6.7)

where ν =
(
µup
patmb

) 1
2
.

Along with friction, heat transfer was also investigated for this engine.

94 Engine losses Chapter 6

6.2 Heat transfer in a reciprocating engine

In the 1980s there were attempts to create an “adiabatic” engine, with the promise of high fuel-

efficiency. Insulated walls were used to increase the wall surface temperature, reducing the bulk

gas-wall temperature difference in the hope of reducing heat transfer. Contrary to expectations,

average heat transfer increased [70].

Heat transfer in a reciprocating engine is a complex phenomenon. Accurate modelling of

the temperature gradient at the wall requires modelling of the compressible boundary layer

equations (even though the piston velocity was small compared to the speed of sound) and can

include effects such as rotational flow, turbulence and heat generation. As such, the assumptions

made for the convection equation qw
′′ = h (T − Tw) do not apply to a rapid compression device.

These assumptions include:

• incompressibility in the near-wall region,

• steady-state conditions in the freestream fluid and surface and

• the subsequent similarity between velocity and thermal boundary layers (Reynold’s anal-

ogy).

In the adiabatic engine, increasing the wall surface temperature thinned the laminar boundary

layer which correspondingly increased the surface temperature gradient and consequently the

heat transfer rate. This explained the unexpected increase in average heat transfer. Due to the

very low combustion enthalpy of ventilation air, the adiabatic engine is again pursued here.

Consider a compressible fluid element in motion close to the cylinder wall. The energy is

determined by the internal energy, the conduction of heat, the convection of heat with the

motion and the generation of heat through friction, as well as work due to due to expansion (or

compression) as the volume is changed. The quantity of heat dq added to the volume externally

and through friction serves to increase its internal energy and to perform expansion work:

dq = cνdT︸ ︷︷ ︸
internal energy

+ pdν︸︷︷︸
work

. (6.8)

The quantity of heat added due to conduction obeys Fourier’s law,

qw
′′ = −k∇T . (6.9)

Now consider an element of the cylinder wall adjacent to the fluid element. The heat lost from

the fluid element through the shared surface is gained by the wall element. The temperature

profile across the wall element develops in accordance with the diffusion equation

∂T

∂t
= α∇2T . (6.10)

These two profiles form the basis for the majority of models in the literature.

Radiation may also be present but will be neglected here. For compression ignition en-

gines, radiation sources comprise high temperature gas and particulates. Moderate combustion

temperatures result in low gas emissivity. Homogeneous charge combustion and a low fuel

concentration result in few or no particulates [24].

Section 6.2 Heat transfer in a reciprocating engine 95

6.2.1 Heat transfer models

Models in the literature generally attempt to model either quasi-steady or unsteady heat transfer.

The models may be further classed as either boundary layer or diffusion methods depending on

whether measurements of the temperature gradient were made gas-side (as in [71]) or wall-side

(as in [72, 73, 74]). In [75], both are modelled using a finite-difference method, matching the

temperature at the wall. The different models in these areas are diverse and have not developed

independently.

Despite the difficulties in modelling, some general observations can be made from heat trans-

fer models in the literature. First, increasing engine speed decreases the heat transferred over a

single stroke, even while increasing the heat-transfer rate. This is because the effect of a reduced

stroke time is greater than the increase in effectiveness of the heat transfer mechanism. Second,

the heat transfer per stroke can be reduced by minimising the surface area per unit volume of

the cylinder2.

Heat transfer in piston-compression devices has been investigated using gas heaters [76],

reciprocating engines (both motored [71, 77, 78] and fired [19, 33] with either compression or

spark ignition) and gun-tunnel drivers [79, 80]. A good review is provided in [81]. The literature

on heat-transfer in reciprocating engines is the most extensive and models are commonly adapted

from this material.

Since all models for reciprocating engines involved crankshaft driven pistons, the equations

of motion for this type of engine had to be implemented for the purposes of comparison. They

were prepared as

ẋ = u

u̇ = ω2

[
−ls cos θ − ls

2 cos2 θ − sin2 θ(
lr

2 − ls2 sin2 θ
)1/2 − ls

4 sin2 θ cos2 θ

lr
2 − ls2 sin2 θ

3/2

]
q̇ = 0

ė = −pAu
mg
− q̇

θ̇ = ω

(6.11)

where ls = Lc
2

(
1− 1

r

)
is the length of the crankshaft, lr = 2ls is the length of the connecting

rod and r is the compression ratio. The length of the connecting rod is commonly not provided

in papers but variations on the value used here did not make a large difference to the piston

trajectory. This system was used to validate the models with data from the literature.

After validation of these models a decision was made to develop a new unsteady integral

boundary layer model. This model more accurately captured the instantaneous heat transfer

data of Annand and Pinfold [73], particularly after top-dead-center. In addition, since this

model was developed using the integral boundary layer method, more of the physics of the heat

2Finding the minimum volume to surface area of a cylinder using dS
dD

= 0 yields L = D. To achieve this

condition at the peak heat-flux (presumably the point of piston reversal) the volumetric compression ratio should

be D/Lc, where Lc is the initial cylinder length.

96 Engine losses Chapter 6

transfer process was captured and so there was less reliance on the coefficients used to match

the heat transfer rate to this data. As such, the model could be applied without modification

to a free-piston engine with the hope that the change in piston trajectory did not largely affect

the heat transfer rate.

6.2.2 Quasi-steady models

Quasi-steady (or averaged) models (a select number of which are described in §6.A.1 on page 108)

assume fully developed flow. They provide correct average heat transfer rates for the engines

upon which they are based. However, since the physics of a compression device are not correctly

captured, they inevitably yield incorrect predictions outside their range of experimental data.

Taylor [19] collected experimental results on water-cooled spark ignition, water-cooled com-

pression ignition and air-cooled compression ignition engines. For this data, engine sizes ranged

from 3.25” by 4.5” to 28.3” by 47.3” bore by stroke, which is a comfortable range within which

to conduct a parametric study. The original curve fit applied by Taylor was

Nu = 10.4Re0.75 . (6.12)

Annand [33] reinterpreted this data by making a distinction between the different engine

types (see Figure 6.3). He then determined the heat transfer in a compression ignition engine

was greater due to the radiation contribution and fit a model that included both radiation

and convection to the data. The exception to this hypothesis was the heat transfer coefficient

of the air-cooled compression ignition engine, which was assumed to be due to a higher bulk-

gas wall temperature difference. The reinterpreted curves (shown in Figure 6.3) more closely

approximated the trend of the data. For the experimental apparatus used by Annand (and after

the inclusion of the radiation term), the coefficient reduced from between 14–20 to between 0.35–

0.8, which is an entire order of magnitude reduction in the heat transfer coefficient. It wasn’t

clear which of these changes accounted for the reduction, however, using Annand’s equation

without the radiation term for fired engines underestimates the total heat-transfer. That said,

radiation will not be considered for combustion of ventilation air due to the low combustion

enthalpy and the lack of soot and radiative particles. Thus, it will be considered valid here to

use the coefficients of Annand without the contribution due to radiation,

qw
′′ = c1

k

D
Re0.7 (T − Tw) (6.13)

where c1 is a coefficient corresponding to the experimental engine (between 0.35–0.8 in this

paper), D is the bore diameter, k is the conduction coefficient, T is the average gas temperature,

Tw = Tatm and the Reynolds number is calculated using

Re =
ρūpD

µ
. (6.14)

The average piston speed was taken to be the mean of the peak velocity, calculated using

ūp = ls
2
ω√
2
. The conduction coefficient is evaluated using Sutherland’s law. Figure 6.4 shows

the conduction coefficient for air along with an approximate equation used by Lawton [71] for

Section 6.2 Heat transfer in a reciprocating engine 97

1.0×101

1.0×102

1.0×103

1.0×104

1.0×105

1.0×103 1.0×104 1.0×105

N
u

Re

spark-ignition, water cooled (ten engines)

15Re0.7

compression-ignition, water cooled (eight engines)

20Re0.7

compression-ignition, air cooled (one engine)

14Re0.7

equation of [33] without radiation term, 0.3Re0.7

Figure 6.3: Reinterpreted data of Annand [33] shown outside of its range

of experimental data. Clearly, the coefficient of Annand’s model does not

fit this data, as it was based instead on experiments performed at Reynold’s

numbers between 1×105 and 1×107.

comparison. Despite the variation in c1 for quasi-steady models, the factor Re0.7 is remarkably

consistent. Thus, the first test of any unsteady model should be that it is able to scale according

to this factor.

6.2.3 Unsteady models

From experiments, the instantaneous heat transfer in an engine has been observed to be out-

of-phase with the bulk gas-wall temperature difference [33, 72, 73, 78, 82, 83, 84]. This is due

to the effect the compression work has on the spatial temperature gradient in the boundary

layer, which acts to increase the heat transfer during the compression stroke and decrease (or

somewhat surprisingly, even reverse) the heat transfer during the expansion stroke.

Unsteady (or instantaneous) models assume a partially developed boundary layer (as with

external flow) and attempt to capture the instantaneous heat transfer rates. The early attempts

were quasi-steady models that incorporated an unsteady term which increased the heat transfer

during compression and reduced it during expansion to match what was observed. This term

usually had a mean value of zero, such that the steady-state heat transfer was not affected. As

the field progressed, unsteady models based on Fourier’s law were solved numerically. Numerical

attempts at turbulent boundary layer heat transfer in the literature apply incompressible flow

98 Engine losses Chapter 6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

200 400 600 800 1000 1200 1400 1600 1800 2000

k
,

W
.m

-1
K

T , K

Sutherland’s law for air
2.35× 10-4T 0.75 [71]

Figure 6.4: Conduction coefficient of thermally-perfect air.

theory as a first approximation [85, 86].

Gas-side finite-difference methods resolve the boundary layer to find its temperature pro-

file. Annand and Pinfold [73] used a motored 122×140mm (bore×stroke) 4-stroke compression-

ignition engine. Measurements found cycle to cycle variation in the gas velocity, particularly in

the induction stroke, and to a lesser extent in the heat flux. Nevertheless, an empirical corre-

lation was proposed containing a steady term to model the average cycle-to-cycle heat transfer

and an unsteady term to model the phase lag (6.15).

qw
′′ = 0.3

k

D
Re0.7

(T − Tw)︸ ︷︷ ︸
steady

+ 0.27
D

u

dT

dt︸ ︷︷ ︸
unsteady

 (6.15)

The paper used the measured instantaneous gas velocity for u. It was observed that the measured

gas velocity was roughly constant at ūp, so this value was substituted in its implementation in

this thesis. This substitution results in a lower negative heat flux during the expansion stroke

than seen in [73].

Lawton’s numerical model [71] assumes one-dimensional heat conduction along the cylinder

axis (that is, that the cylinder wall is adiabatic). This along with the compressible boundary

layer equations yielded
∂T

∂t
+ u

∂T

∂x
= α

∂2T

∂x2
+

1

ρcp

dp

dt
(6.16)

where α = k
ρcp

. Generally speaking, in (6.16) the first term on the right-hand side describes heat

diffusion within the boundary layer and the second term describes isentropic compression in the

Section 6.2 Heat transfer in a reciprocating engine 99

cylinder. This was solved using a Crank-Nicolson method which involved an explicit update for

the time derivative and a second-order central difference update for the space derivative. During

compression, work is done on the fluid directly in contact with the wall, so the real part of the

heat transfer is in phase with the work (dTdt) rather than the temperature difference (T − Tw).

Based on this numerical model Lawton proposed an unsteady form of Annand’s relation

qw
′′ =

k

D

[
0.28Re0.7 (T − Tw)− 2.75CTw

]
(6.17)

which contained steady and unsteady terms. The first term is a function of the bulk gas-wall

temperature difference and the second term is a function of the compressibility factor

C = (γ − 1)
up
Lc

√
D3

α0ūp
(6.18)

where α0 = k0
ρ0cv,0

is the diffusivity of air at port closure. This value for α0 is faithfully reproduced

here, even though it is commonly defined elsewhere as k0
ρ0cp,0

.

The unsteady models of Annand and Pinfold and Lawton were compared, along with the

steady model of Annand, to instantaneous data from a crankshaft driven compression cycle (see

Figure 6.5). All models overestimate the heat transfer coefficient and even the unsteady models

don’t seem to adequately capture the heat transfer inversion about top dead center. Because of

this, further investigation was performed into the use of boundary layer models.

6.2.4 Boundary layer models

A branch of heat transfer models that has been extensively developed is based on the boundary

layer equations. Boundary layer models attempt to resolve the temperature profile across the

boundary layer either analytically (by integration over an assumed profile) or numerically (using

finite-difference methods) to determine the wall heat flux.

Consider the gas in a piston-compression device (Figure 6.6). We assume there exists a

laminar thermal boundary layer between an isentropic core of gas and the cylinder wall across

which heat is transferred. Boundary layer growth on the cylinder walls is unimpeded and so the

local flow can be said to be external (see Figure 6.6). Neglecting buoyancy forces, the boundary

layer equations for non-steady, compressible flow may be written [87]

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (6.19a)

∂

∂t
(ρu) + u

∂

∂x
(ρu) + v

∂

∂y
(ρu)︸ ︷︷ ︸

convection

= −∂p
∂x

↗0

︸ ︷︷ ︸
pressure work

+
∂

∂y

(
µ
∂u

∂y

)
︸ ︷︷ ︸
viscous work

(6.19b)

∂

∂t
(ρh) + u

∂

∂x
(ρh) + v

∂

∂y
(ρh)︸ ︷︷ ︸

change in enthalpy

=
∂

∂y

(
k
∂T

∂y

)
︸ ︷︷ ︸
heat transfer

+
∂p

∂t
+ u

dp

dx

↗0

︸ ︷︷ ︸
work

+µ

(
∂u

∂y

)2

+
dqh
dt︸ ︷︷ ︸

heat generation

(6.19c)

where µ and k may be temperature dependent. Equations (6.19) are usually reduced to their

one-dimensional forms and linearised before being solved either numerically (as in Lawton and

100 Engine losses Chapter 6

-200

0

200

400

600

800

1000

-150 -100 -50 0 50 100 150

q w
′′
,

k
W

.m
-2

crank angle, degree

705rpm [71]
[33]
[73]
[71]

-200

0

200

400

600

800

1000

-150 -100 -50 0 50 100 150

q w
′′
,

k
W

.m
-2

crank angle, degree

1336rpm [71]
[33]
[73]
[71]

-200

0

200

400

600

800

1000

-150 -100 -50 0 50 100 150

q w
′′
,

k
W

.m
-2

crank angle, degree

1722rpm [71]
[33]
[73]
[71]

-200

0

200

400

600

800

1000

-150 -100 -50 0 50 100 150

q w
′′
,

k
W

.m
-2

crank angle, degree

2395rpm [71]
[33]
[73]
[71]

Figure 6.5: A comparison between unsteady heat transfer models and the

reinterpreted data of Lawton [71]. The discrepancies between heat-transfer

models clearly show their specificity to a particular engine. The model of

Lawton does not seem to match the data here as well as in his paper. The

implementation here is clearly described in case of error.

rho_inf T∞ ρ∞

Tw ρw

↑
δ3

↓

up,0

Figure 6.6: Nomenclature for the unsteady thermal boundary layer and

piston geometry. The idealised boundary layer shown was formed during

the exhausting stage.

Buttsworth who used finite-difference methods) or analytically. According to (6.19c), the energy

of a volume of gas local to the wall is dependent on both the heat transfer and the work done

Section 6.2 Heat transfer in a reciprocating engine 101

by the piston. To reduce the boundary layer equations to a one-dimensional form, heat transfer

is considered “small” in one dimension or a stream function may be used. Most of the unsteady

models in literature involve the use of finite-difference methods to find the heat transfer rate.

Laminar boundary layers are modelled in [71, 76, 88]. Turbulent boundary layers are modelled

in [85, 86, 89].

Tani et al. extended previous work on end wall heat transfer from a non reacting gas in a

rapid compression device to include heat transfer to the cylinder wall. They used a pneumatically

operated rapid compression device which had a typical stroke length of 12cm over 30ms and

operated on a compression chamber of 3.8x3.8cm square. They noted that the heat transfer

at the wall induced a convective transport of energy, ρcp
∂T
∂t , towards the wall, and noted this

occurs at all surfaces. In a similar method to Isshiki and Nishiwaki [90], Tani et al. used a

stream function to linearise the two-dimensional temperature gradient which was then integrated

numerically. Results compared very well to experiments and it was concluded that unsteady

heat transfer to a cylinder wall during compression may be determined from the solution of

the laminar boundary layer equations. The experiment also confirmed that the isothermal wall

assumption was appropriate. However, since the experiment did not include the expansion

stroke, no consideration was made to the inversion of heat transfer about the point of piston

reversal.

Buttsworth [80] compared the numerical scheme of Lawton [71] to heat flux measurements

from a gun tunnel barrel undergoing transient compression. The pressure was spatially hetero-

geneous in these experiments. Experimental results found that heat flux to the barrel and end

walls were of the same magnitude, suggesting that the adiabatic cylinder wall assumption of

[71] is not valid. In addition, Buttsworth found spatial variation of the heat transfer (which has

also been seen in spherical bomb tests [33]) suggesting turbulence plays an important role, in

contrast to the assumption of steady laminar flow used in the derivation of (6.50). He found

reasonable agreement with the end wall peak heat flux values (when using the turbulent con-

duction coefficient (6.51)), but at other times found flux was underestimated by a factor of two

or more. He also applied the model to the barrel wall and found the heat flux there was also

underestimated. He concluded the model to be an improvement on quasi-steady models, but

was limited by the lack of turbulent heat transport.

There are many other examples of numerical models (especially those based on the work of

Isshiki and Nishiwaki [90]; see §6.A.2), however, to reduce the computational work required for

the engine model, an integral boundary layer method is pursued instead. Turbulent models are

usually developed from laminar models (indeed, laminar boundary layers form part of them) so

a suitable laminar model is developed here and the turbulent model left to future work.

Integral boundary layer method

Integrating over the boundary layer is an approximate solution to the unsteady boundary layer

equations. Suitable methods satisfy these equations only in the average across the boundary-

layer thickness. Gas properties are continuous, but for approximate methods we define a bound-

ary layer thickness, δ, and say the property of the fluid equals the freestream value at this point.

102 Engine losses Chapter 6

Momentum (δ2) and thermal (δ3) boundary layer thicknesses are defined in this way. There is

a similarity between these two boundary layers, which is to say the shear τ = −µ∇u and the

heat flux q′′ = −k∇T behave similarly. To integrate across, say, the momentum thickness, an

expression for the distribution of momentum in the boundary layer, f(η) (where η = y/δ(x)) is

first chosen to satisfy the boundary conditions.

The assumption that most of the heat flux is lost to the cylinder wall is violated as the piston

and cylinder head areas become the larger fraction of the total wetted surface area. However the

piston and cylinder head were assumed to be adiabatic for the purpose of applying the integral

boundary layer method. The resultant unsteady heat transfer model was then applied to the

entire wetted area.

For this engine, flow is assumed to be inviscid, so there is a slip-wall condition and conse-

quently no momentum boundary layer. However, there is still a thermal boundary layer due

to the heat transfer at the wall. For subsonic compression, pressure is assumed to be isotropic,

that is, T
T∞

= ρ∞
ρ holds throughout the cylinder. The boundary conditions then become

f(η2) = 0 : ρu = 0, v = 0

f(η2) = 1 : ρu = 0, v = ρ∞v∞

}
(6.20)

for the momentum profile and

f(η3) = 0 : T = Tw

f(η3) = 1 : T = T∞

}
(6.21)

for the thermal profile. From these boundary conditions we can make the following observations:

1. the thermal profile varies from the wall temperature to the isentropic core temperature

and

2. the thermal boundary layer thicknesses varies with cylinder length.

Knöös [76], modelled laminar heat transfer to an isothermal wall in a piston gas heater using

an integral boundary layer approach. He assumed an ideal gas, subsonic flow and heat flux

perpendicular to the cylinder wall. With the aid of the transformed continuity equation

∂ρ

∂t
= − ∂

∂y
(ρv) (6.22)

and a form of the ideal equation of state

ρh =

[
γ

(γ − 1)

]
p, (6.23)

the energy equation (6.19c) was written as

qw
′′ = −h∞

d

dt

∫ y

0
(ρ(t, y)− ρ∞(t)) dy. (6.24)

Section 6.2 Heat transfer in a reciprocating engine 103

Here, subscript ∞ refers to the condition in the core and qw
′′ to the heat-transfer rate at the

wall (see (6.9)). Since temperature and density do not go to zero at the wall, Knöös used the

similarity profile

f(η3) =
ρ(t, η3)− ρ∞(t)

ρw(t)− ρ∞(t)
(6.25)

where ρ and T exist at some point within the boundary layer, η3 = y
δ3

, and δ3 is a char-

acteristic thermal boundary layer thickness. Knöös then went on to find a time-dependent,

non-dimensional heat-transfer equation which was correlated to experimental data. The paper

is somewhat unique and has had almost no further application in the literature. Development

of this integral boundary layer method diverges from Knöös at (6.25).

Applying the co-ordinate transform L = (xc − xp) and the similarity profile, equation (6.24)

becomes

h∞up
d

dL

(
ρ∞ −

p

RTw

)
δ3

∫ 1

0
f(η3)dη3 = −qw ′′. (6.26)

With isentropic freestream conditions and constant wall temperature, the remaining unknowns

may be found

dp

dL
= −γp0L0

γ

L(γ+1)
and (6.27a)

dρ

dL
= −ρ0L0

L2
. (6.27b)

where the subscript 0 denotes the property at valve close.

The similarity profile f(η3) = (1 + aη3) exp
(

η3
η3−1

)
was chosen as it has a number of useful

properties. First, it satisfies the boundary conditions of (6.28)

η3 = 0 : f(η3) = 1

η3 = 1 : f(η3) = 0

}
(6.28)

but more importantly, it also allows for the temperature gradient at the wall to be independent

of the bulk gas-wall temperature (see Figure 6.7).

Given f ′(η3 = 0) = (1− a), Fourier’s law becomes

qw
′′ = − k

δ3
(1− a) (T∞ − Tw) (6.29)

Inserting this and (6.27) into (6.26) and given
∫ 1

0 f(η3)dη3 = −(1 + a), the equation for the

thermal boundary layer thickness may then be written

δ3 =

[
α0

|up|
(1− a)

(1 + a)

(
1− Tw

T∞

)(
L(γ+1)

γL0
γ − L0L(γ−1)

)] 1
2

(6.30)

where α0 = k
ρ0cp

.

This new model was then matched to data from [71]. The reverse of the temperature gradient

at the wall (due to the addition of work to the boundary layer) is allowed for in the selection

of the boundary layer profile. To model this, the value for a must be chosen such that the

104 Engine losses Chapter 6

0.0

0.2

0.4

0.6

0.8

1.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

η

f(η) = T−T∞
Tw−T∞

a = 2

a = 0

a = −2

(1 + aη) exp η
η−1

Figure 6.7: Boundary layer profile.

predictions match data but should still hold some relation to the work performed by the piston.

In particular, a proportionality to the velocity was expected to yield a good result. The value

for a was chosen to be

a = −0.8
up
up,0

(6.31)

which is applicable to both the left and right-hand cylinder (remembering that up,0,L = −up,0,R).

This value for a makes the boundary layer thickness asymmetrical about the point of piston

reversal. The final equation became

qw
′′ = −1.6

k

δ3
(0.5− a) (T∞ − Tw) , (6.32)

This was used with a crankshaft compression cycle and compared to data from Lawton in

Figure 6.8. Compared to other models (see Figure 6.5) it predicts a lower heat transfer but

seems to match the heat flux of [71] well, particularly the negative heat transfer coefficient seen

after top dead center.

Finally, the total heat transfer over a stroke was compared with that of the steady model of

Annand with a coefficient of c1 = 0.15 for different engine speeds (see Figure 6.9). The total

heat transfer over a stroke scales relatively well with engine speed, which is seemingly the only

consistent factor between steady-state experimental heat transfer data. At this point, then, it

can be said that the unsteady heat transfer model, (6.32), is validated as much as is possible

without an experimental apparatus.

Section 6.2 Heat transfer in a reciprocating engine 105

-200

0

200

400

600

800

1000

-150 -100 -50 0 50 100 150

q w
′′
,

k
W

.m
-2

crank angle, degree

705rpm [71]
(6.32)

-200

0

200

400

600

800

1000

-150 -100 -50 0 50 100 150

q w
′′
,

k
W

.m
-2

crank angle, degree

1336rpm [71]
(6.32)

-200

0

200

400

600

800

1000

-150 -100 -50 0 50 100 150

q w
′′
,

k
W

.m
-2

crank angle, degree

1722rpm [71]
(6.32)

-200

0

200

400

600

800

1000

-150 -100 -50 0 50 100 150

q w
′′
,

k
W

.m
-2

crank angle, degree

2395rpm [71]
(6.32)

Figure 6.8: Comparison of instantaneous heat transfer with data of [71].

The engine used is a Perkins 98.4mm bore, 127mm stroke, naturally aspi-

rated, four-cylinder, water-cooled diesel of compression ratio 15.6:1. Coef-

ficients were chosen particularly to match with this data. This model was

applied using the state equations for a crankshaft engine.

6.2.5 Heat transfer in a free-piston compressor with and without finite-rate chem-

istry

Once the integral boundary layer model was validated using the state equations for a crankshaft

engine, it was compared to the steady model of Annand using the free-piston compressor. The

result of this (not shown) was that the original steady model of Annand predicted a total heat-

transfer over a stroke far greater than the integral boundary layer model. It was assumed that

the result predicted by the steady-state model was incorrect and due (at least in part) to the

difference in engine geometry and piston trajectory. It was also assumed that, since the integral

boundary layer model developed was not specific to a particular engine type, that its result was

at least more accurate. Thus, for the purpose of comparison, the coefficient c1 of Annand’s

steady-state model was reduced until the total heat transfer over the stroke matched between

the two models (see Figure 6.10).

The same simulation was then run with finite-rate chemistry to determine the effect of un-

steady heat transfer on chemistry. It is interesting to note that while the total heat transfer

106 Engine losses Chapter 6

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000

Q
,

k
J

rpm

(6.32)
(6.13)

Figure 6.9: Comparison of the total heat transfer over one stroke between

Annand’s model with c1 = 0.12 (6.13) and the integral boundary layer model

(6.32). The engine parameters are a 98.4mm bore, 127mm stroke, with

a compression ratio 15.6:1. This data was generated using a crankshaft

engine model. It shows that the total heat transfer predicted by the integral

boundary layer model scales relatively well with engine speed.

0.00e+00

1.00e+04

2.00e+04

3.00e+04

4.00e+04

5.00e+04

6.00e+04

7.00e+04

8.00e+04

9.00e+04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

q,
J
.k

g
-3

t, s

(6.32)
(6.13)

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T
,

K

t, s

adiabatic
(6.32)
(6.13)

Figure 6.10: Comparing the effect of steady and unsteady heat transfer

models. Annand’s model had a coefficient of c1 = 0.0363 (6.13) and the in-

tegral boundary layer model (6.32) was unmodified. The total heat transfer

over a stroke for both heat transfer models is about 60kJ. The peak tempera-

ture for adiabatic and steady and unsteady heat transfer was 1400K, 1363K

and 1323K respectively. Engine parameters were up,0 = 13.01m.s-1, mp =

400kg, R = 40, D = 0.1m and Ts = 1400K (without chemistry). Each run

takes about 1min on one core of an AMD 1090T Phenom X6 processor.

Section 6.2 Heat transfer in a reciprocating engine 107

0.00e+00

1.00e+04

2.00e+04

3.00e+04

4.00e+04

5.00e+04

6.00e+04

7.00e+04

8.00e+04

9.00e+04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

q,
J
.k

g
-3

t, s

(6.32)
(6.13)

1×10-22

1×10-20

1×10-18

1×10-16

1×10-14

1×10-12

1×10-10

1×10-8

1×10-6

1×10-4

1×10-2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

X
C

H
4

t, s

(6.32)
(6.13)

Figure 6.11: Comparing the effect of steady and unsteady heat transfer

models on finite-rate chemistry. Annand’s model again had a coefficient

of c1 = 0.0363 (6.13) and the integral boundary layer model (6.32) was

unmodified. The effect of the unsteady model was to reduce the total heat

transfer over the stroke to 40kJ, even while it lowered the peak temperature

at the point of piston reversal and thus retarded combustion. The unsteady

model in contrast predicted a total heat transfer of about 72kJ over the

stroke, which is greater than without combustion. Engine parameters were

up,0 = 13.01m.s-1, mp = 400kg, R = 40, D = 0.1m and Ts = 1400K

(without chemistry). Each run takes about 130mins on one core of an

AMD 1090T Phenom X6 processor.

matched between these two models without chemistry, it doesn’t match with chemistry. In par-

ticular, the unsteady model increases heat release during combustion and subsequently reduces

it during expansion, whereas the steady model increases heat transfer throughout combustion

and expansion. Despite having a lower total heat loss over the stroke, the unsteady model

reduced the peak temperature and so reduced the rate of combustion when compared to the

steady model. This can be seen in the larger fraction of CH4 remaining (see Figure 6.11). The

unsteady heat transfer model predicted a lower peak temperature than Annand’s model.

The purpose of developing this model was threefold. Firstly, it allowed for instantaneous

heat transfer throughout the stroke which has an effect on the finite-rate chemistry. Secondly,

since the model is not specific to a particular engine type, it should be directly transferable to

a free-piston engine, and indeed, that is what was done. Finally, it is hoped that due to the

boundary layer method employed, more of the actual physics of the heat transfer process was

captured and so there was less reliance on the coefficients used to match the heat transfer rate

to data. Thus, the heat transfer model developed here is expected to perform better in the

parametric study than an existing heat transfer model from the literature.

108 Engine losses Chapter 6

6.A Chapter end notes

6.A.1 Quasi-steady models

The field of quasi-steady heat transfer models has been extensively developed [24, 72, 83, 91]

et al. These models are correlated to the total heat transfer measured in motored or fired

engines running at constant speed. They use the convective heat flux equation to model the

instantaneous heat flux using the bulk gas-wall temperature difference

qw
′′ = h (T∞ − Tw) . (6.33)

Using Reynold’s analogy, steady heat transfer between a forced turbulent flow and a wall obeys

a Nusselt-Reynolds relation

N̄u =
hx

k
= c1Rec2 , (6.34)

although heat transfer in an engine is an unsteady process. The Nusselt number is defined as the

dimensionless temperature gradient at a surface. The first such model was proposed by Annand

[33] who, after a review of existing literature, used dimensional analysis to yield

qw
′′ = c1

k

D
Rec2 (T − Tw) + c3

(
T 4 − T 4

w

)
(6.35)

where Re is for fully developed pipe flow3

Re =
ρūpD

µ
. (6.36)

The mean piston speed is employed since flow in the cylinder due to other effects is largely un-

known. This is a more accurate assumption for a motored engine, where there is no combustion.

For an engine with a crankshaft, this may be calculated using Lsω
2
√

2
. For a free piston engine, the

mean piston speed was calculated using ūp =
up,0√

2
. A value of c1 within the range 0.35 to 0.8 was

suggested, depending on the intensity of the charge motion. Analysis of previous experimental

data provided correlations of

c1 =

0.38 for a 460×381mm two-stroke engine

0.49 for a 521×390mm four-stroke engine
(6.37)

c2 = 0.7 and

c3 =

1.6× 10-12 for diesel engines

2.1× 10-13 for spark-ignition engines
(6.38)

although in other papers the radiative heat transfer term is commonly dropped. It is noted in

the paper that while the instantaneous heat transfer coefficients provided by (6.35) are strictly

incorrect (due to the phase lag) the average heat transfer prediction is still accurate.

3The mixing rule for viscosity is provided in §2.1.3.

Section 6.A Chapter end notes 109

Based on (6.34), Woschni [22] developed a more general formula for heat transfer based on

bomb calorimeter and motored and fired engine experiments. The heat transfer formula for a

motored engine was

h = 110D−0.2p0.8T−0.53c1ūp
0.8 (6.39)

where ūp was the mean piston speed,

c1 =

6.18 during exhausting

2.28 during compression and expansion.
(6.40)

and c2 = 0.8. The coefficient c1 seems to scale with engine size whereas c2 seems to be related

to fluid dynamics and is more constant between engines. Equation (6.39) is not dimensionally

consistent and units of m, kp.cm-2, K and m.s-1 must be observed. A heat transfer formula in-

cluding terms for fuel injection and combustion was also presented. Subsequent papers included

additional terms for effects such as swirl [72].

Kamel and Watson [91] studied an indirect injection diesel engine 100×127mm (stroke×bore)

at speeds of 1320 to 2800rpm. An indirect injection engine has a greater heat loss than a

similar direct injection engine due to the pre-chamber. To account for this, Kamel and Watson

implemented a swirl model (based on conservation of kinetic energy) for the gas velocity instead

of using the mean piston speed. Viscous decay in velocity was modelled by assuming a forced

vortex flow field and applying rotating disc friction data. The velocity was increased by adding

the kinetic energy of the injected fuel in the fired case. They arrived at coefficients of

c1 =

0.023 (pre-chamber)

0.012 (main chamber)
(6.41)

and c2 = 0.8. They included a radiation model with the emissivity based on gaseous CO2,

H2O and soot, stating the influence was small but not insignificant at these conditions. The

engine size is much smaller in this experiment and both Annand and Woschni’s equations over-

estimated the heat loss by a factor of two.

Hohenberg [24] conducted an investigation on heat transfer in diesel engines ranging in size

from 97mm×128mm to 128mm×142mm (bore×stroke) and speeds of 600 to 2300rpm. Surface

temperature, local heat flux and pressure measurements were all taken and used independently

(with appropriate relations) to recover total heat loss. The heat transfer predictions from (6.39)

were found to be too low during compression and too high during combustion [24]. Hohenberg

modified (6.39) by defining D as the diameter of a sphere with a volume equivalent to the

cylinder volume and proposed a relation between the mean gas velocity and gas properties. The

resulting convective heat transfer coefficient was

h = c1ϑ
−0.06p0.8T−0.4 (ūp + c4)0.8 , (6.42)

where c1 = 130, c4 = 1.4. It was noted that for engines outside of this range or type (such

as low speed, gasoline or pre-chamber engines) measurements must be made to determine the

constants for the proposed heat transfer equation.

110 Engine losses Chapter 6

Aichlmayr [92] solved (6.16) by assuming spatially homogeneous temperature, producing a

model that captured volume-to-surface-area effects for a millimeter-scale free-piston compressor.

Spatially homogeneous temperature requires the condition BiL < 0.1, which is very conservative

for large engine geometries. Using a modified Bessel function of the second kind for a finite

cylinder, the following relation was derived:

q̇ =
2× 103k (T∞ − Tw)

L

(
0.440332π2 + 5.09296 LD

2

π + 2π LD

)
. (6.43)

This was not compared with experimental data.

6.A.2 Unsteady models

Wendland [82] proposed a one-dimensional numerical model comparing numerical results to

experimental data from a small (58×40mm bore×stroke) motored reciprocating engine. The

so-called “adiabatic plane model” assumed heat transfer from an adiabatic plane that existed

at a point midway along the cylinder to the isothermal end wall. The model used the enthalpy

and conservation of energy equations to derive

q′′w = ρ
dh

dt
− dp

dt
. (6.44)

This model captured the heat flux inversion after top dead center but underestimated the total

heat transfer.

Kornhauser and Smith [74] measured wall-side heat flux and used a complex Nusselt number

to account for the phase shift between the heat flux and the bulk gas-wall temperature difference.

Writing (6.34) with a complex temperature and assuming sinusoidal wall temperature, they

derived a form of the heat flux similar to that found empirically by [73].

qw
′′ =

k

Dh

[
Nur (T − Tw) +

Nui
ω

dT

dt

]
, (6.45)

where T = T0 + Ta cos (ωt) and

Nur = Nui = 0.56Peω
0.69. (6.46)

Wall-side finite-difference methods model the diffusion of heat through the cylinder wall

(assuming a periodic boundary condition). Assuming constant properties, the temperature

distribution in a solid wall is determined by the diffusion equation

dTw
dt

= α∇2Tw (6.47)

which is usually reduced to a one-dimensional form for use in analytical solutions.

Sihling and Woschni [72] performed measurements on an externally supercharged four-stroke

165×155mm (bore×stroke) diesel engine over a limited range in speed (1499 to 1506rpm). They

solved the diffusion equation using a periodically varying temperature distribution to find the

surface temperature using a Fourier transform [72]

Tw(t) = T̄w(0) +
∞∑
n=1

(An cosnωt+Bn sinnωt) (6.48)

Section 6.1 Chapter end notes 111

The steady-state component normal to the surface could not be determined exactly from mea-

surements. A correlation could not be made for two proposed reasons:

1. the heat flux was not one-dimensional or

2. the bulk gas-wall temperature difference is decisive to local heat transfer.

Comparisons with (6.39) agreed during the high pressure phase of the cycle but were found to

be inaccurate during the exhausting stage.

6.A.3 Numerical boundary-layer methods

Isshiki and Nishiwaki [90] reduced the enthalpy equation to the form of the 1-D transient equation

for heat conduction by assuming adiabatic walls, a laminar boundary layer and the Lagrangian

coordinate transform

y′ =

∫ y

0

ρ

ρ0
dy (6.49)

where the subscript 0 denotes the value of a gas property at the beginning of the compression

stroke. This has been solved numerically by a number of authors (e.g. [89]).

Lawton [71] developed a laminar one-dimensional heat transfer model which was solved both

analytically (see §6.2.3) and numerically. The convective term of (6.19c) was removed using the

continuity equation. The internal form of (6.19c) in the x-direction was then used (assuming
∂T
∂x = 0) to derive

∂T

∂t
=

k

ρcν

∂2T

∂x2
− (γ − 1)

ν
T
dν

dt
, (6.50)

where k was taken to be the turbulent thermal conductivity of air modelled as

kt = 25k = 2.35× 10-4T 0.75 . (6.51)

The coefficient of 25 may be due to the fact that the Nusselt-Reynolds relation was taken from

Annand but excluded the radiation term.

Chapter 7

Engine control

The two cylinders in a free-piston engine of this type are coupled, that is, the exhausting process

of one cylinder is dictated by the compression process of its opposing cylinder and the exhausting

process in turn has a large effect on the next compression process. The initial piston velocity

(that is, the piston velocity at poppet valve close) is paramount since it affects both of these

processes.

For control of the initial piston velocity, energy was subtracted from (or added to) the piston

during expansion stroke. This decreased (or increased) the piston velocity to the initial velocity

required for the next exhausting process. Control of the entrained mass fraction was aided by

the timing of the poppet valve.

7.1 Control

A dual piston type free-piston engine should ideally operate at its natural frequency [15]. The

natural frequency is a function of the piston mass, the entrained mass of ventilation air, the piston

surface area and the cylinder length. These parameters must be chosen to ensure sufficient time

for both combustion and the exhausting process. For a given piston mass, the compression ratio

is determined largely by the entrained mass of ventilation air, mg, and the initial piston velocity

up,0. These variables are coupled, but the former may be controlled largely by variable valve

timing (as discussed in §5.2.1), while the latter may be controlled using a force imparted by a

linear electric motor.

The design of the linear electric motor is left for future work, although a brief time-domain

analysis of a similar linear system is provided in §7.A.2. It is envisaged that it will be designed

to keep the engine operating at its natural frequency. As such, it will extract energy from the

piston as its frequency increases above its natural frequency and provide energy below it, as in

Fe = fn(fp − fp,n), where fp is the piston frequency and fp,n is its natural frequency.

A free-piston engine control system is developed here using the isentropic model developed

in Chapter 4.

7.1.1 Finding the required electromagnetic force

Consider a frictionless free-piston cylinder arrangement where the gas is expanding. The change

in momentum of the piston (where an external force is applied) is defined as

mpudu = Fedx+ pAdx . (7.1)

112

Section 7.2 Engine start-up 113

Because the pressure at reed valve open is a known quantity (that is, patm) this was used to

determine the electromagnetic force. Only one cylinder was considered because, by design,

the opposing cylinder should be undergoing exhausting during this period and so not remove

substantial energy from the piston. The required electromagnetic force was derived using the

dynamics method. It may be calculated using

Fe =
1

(Lex − L)

[
patmA

Lex
γ (γ + 1)

(
Lex

γ+1 − Lγ+1
)

+
1

2
mp

(
up,0

2 − up2
)]

, (7.2)

Lex =

(
patm

p

) 1
γ

(7.3)

and instantaneous values for L, up and p. The first term of (7.2) accounts for the potential

energy stored as pressure in the cylinder. The second term accounts for the error in the piston

velocity. Limiting the force provided by the linear electric motor to 10 kN prevented overshoot

of the target velocity and resulted in quite a robust control system.

7.1.2 Control of entrained mass of ventilation air

As shown in §5.5, the entrained mass of ventilation air is an important parameter for control of

the volumetric compression ratio. This variable is controlled by the timing of the poppet valve,

which may be closed as the entrained mass approaches the desired value. In a real engine, since it

cannot be measured directly, this variable must be inferred using the gas pressure, temperature

and the cylinder volume.

7.1.3 PID control of the piston velocity

There will be an error in the initial velocity ε = up,0 − up due to

• incorrect approximation of the exhaust length Lex

• the heat and frictional losses (which are not included in the control system analysis).

This error leads to a difference in the target velocity, and this difference is used by the electric

motor to correct the force. The resulting control block diagram for this system is shown in

Figure 7.1. The control logic that determined the electromagnetic force is provided as Figure 7.2.

-
up,0 + h -

ε
solenoid -

Fe
piston-cylinder q -

up

6−

Figure 7.1: Control block diagram. The solenoid here is used to adjust the

piston velocity by application of an electromagnetic force.

114 Engine control Chapter 7

input : up, up,0, LL, LR, Lc, pL, pR, γL, γR

output: Fe

if up ≥ 0 then

if LR > Lc then

if pL > patm then
a = γL + 1.0

Lex = LL ∗ pow((patm/pL), (1.0/γL))

b = patm ∗A/(a ∗ pow(Lex, γL))

dx = LL − Lex

Fe = (0.5 ∗mp ∗ (up0 ∗ up0− up ∗ up) + b ∗ (pow(Lex, a)− pow(LL, a)))/dx

else

if LL > Lc then

if pR > patm then
a = γR + 1.0

Lex = LR ∗ pow((patm/pR), (1.0/γR))

b = patm ∗A/(a ∗ pow(Lex, γR))

dx = −LR + Lex

Fe = (0.5 ∗mp ∗ (up0 ∗ up0− up ∗ up) + b ∗ (pow(Lex, a)− pow(LR, a)))/dx

if Fe > 1× 104 then

Fe = 1× 104

if Fe < −1× 104 then

Fe = −1× 104

return : Fe

Figure 7.2: Logic for calculation of the electromagnetic force.

7.2 Engine start-up

For the purpose of this thesis, a reasonable maximum value for the electromagnetic force was be

chosen as 10kN, which was then applied to achieve a desired initial velocity (see Figure 7.3). As

can be seen, the target initial velocity (up,0 = 14.77 m.s-1) was reached with little error. Engine

performance is then estimated from the steady-state cycles after t = 4 s in Figure 7.3.

Section 7.2 Engine start-up 115

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

0 1 2 3 4 5 6 7

u
p
,

m
.s

-1

t, s

Figure 7.3: Forced response of the piston during start-up for the reference

engine with a target initial velocity of up,0=14.77 m.s-1. The maximum

electric motor force applied here is Fe = 10 kN. Exhausting and combustion

is performed during this process.

116 Engine control Chapter 7

7.A Chapter end notes

7.A.1 Finding the required electromagnetic force to reach a peak temperature

Defining the instantaneous cylinder length and stroke length to be

L = (xc − xp) and

Ls = (xs − x0)

respectively, equation (4.3) may then be rewritten as

Ls = L−
[
L(1−γ) − mp (1− γ)

2p0ALγ
up

2

] 1
(1−γ)

. (7.4)

Allowing an external force Fe to be applied to the piston, (4.1) becomes

Fe =
1

Ls

{
1

2
mpup

2 − p0AL
γ

(1− γ)

[
(L− Ls)(1−γ) − L(1−γ)

]}
. (7.5)

Applying the additional constraint Ts = Tig,

Ls = Lc

[
1−

(
Tig

T0

) 1
(1−γ)

]
(7.6)

which, when combined with (7.4), yields the force required to reach the ignition temperature for

any initial conditions:

Fe =

[
1
2mpu0

2 − p0ALc
(1−2γ)

(1−γ)

(
Tig
T0
− 1
)]

Lc

[
1−

(
Tig
T0

) 1
(1−γ)

] . (7.7)

Equation (7.2) can be used directly with the control system.

7.A.2 Piston-solenoid dynamics for a linear system

Consider a spring-mass-damper system whereby the mass carries a static magnetic field. Now

consider an inductance-capacitance-resistance circuit, where the inductor is a solenoid. Finally,

consider the two systems are coupled by allowing the mass to move through the solenoid, gen-

erating current.

The force on the mass is proportional to the current in the solenoid, and the voltage in the

solenoid is in turn proportional to the velocity of the mass. Thus, the coupling equations for

the force by the solenoid on the mass (Fe) and the back electromagnetic force on the solenoid

(eb) are

Fe = −k1i

eb = k2um
(7.8)

where k1,k2 are constants of proportionality. The resulting system dynamics are shown in

Figure 7.4. As can be seen, the current is initially proportional to the velocity.

To a first approximation, a free-piston engine may be modelled by this system. Assuming the

gas acts as a linear spring results in a lower bound to the actual dynamics. The piston trajectory

Section 7.1 Chapter end notes 117

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 2 4 6 8 10

u
p
,

m
.s

-1

i,
A

t, s

up
i

Figure 7.4: System dynamics of a spring-mass-damper system coupled to

an inductance-capacitance-resistance circuit. This shows the free response

of the system given an initial displacement of the mass.

of a free-piston engine is closer to a (nonlinear) triangle wave, which may be approximated by

a superposition of sine waves1. It is envisaged that a number of the terms in this series could

be used to mimic the actual piston trajectory such that the linear electric motor and associated

power electronics may be designed in the frequency domain. Complete design of the linear

electric motor and associated electronics was considered to be outside the scope of this thesis.

1The Fourier series for a triangle wave is

f(t) =
8

π2

∞∑
n=1,3,5...

(−1)
n−1
2

n2
sin
(nπ
L
t
)

.

where

L(sin (ωt)) =
ω

s2 + ω2

Part III

Complete engine model

118

Chapter 8

Engine cycle

Now that the component processes have been verified and validated using experimental data

(where available), the final task was to combine them into a single program and verify the

result. Once verified, this program was run using a range of engine parameters to find the set

that minimised losses whilst maximising the entrained mass of CH4.

8.1 Engine program overview

The complete free-piston engine model was created by combining

• the engine state equations (4.12) of Chapter 4

• the exhausting model state equations (5.7) of Chapter 5

• the friction model of Section 6.1

• the heat transfer model of Section 6.2.4 and

• the PID control system of Section 7.1

along with one of the gas models of Chapter 2 and either the DRM19 or GRI-Mech3.0 mechanism

investigated in Chapter 3. The complete lumped-parameter engine model was then used to

determine a range of suitable engine geometries.

To make the program versatile, these operations were performed using an operator-split

method. Operator-splitting is defined here as evaluating independently the changes in the state

variables due to the different coupled processes. This allowed the inclusion of one or all of these

operations each timestep. It is based on the assumption that decoupling does not affect the

system accuracy over a small timestep. Operator-splitting is used to simplify programs (and

increase their versatility) and the associated errors are managed by selection of an appropriate

timestep. This method was valuable as it allowed for both addition of operations when advancing

the engine model, and removal of them when debugging.

119

120 Engine cycle Chapter 8

The geometry of an engine is defined by choosing Lc and D and calculating the remaining

geometry using

Lp = Lc + Lrv

xp,0 = −0.5Lp

xR = Lc

xL = −Lc − Lp − Lgap

(8.1)

where Lrv = 0.5D as defined earlier. During simulations, it was found that the combustion

enthalpy caused the reed valve to remain closed for too long during the expansion stroke. Ex-

tending the engine by Lgap = 0.5Lc allowed for both pressure regeneration and effective cylinder

exhausting. These variables were specified by a Lua input file. An example file is shown in

Listing 8.1.

data = {
u = {14 .7679615940 ,} ,

m p = {200 .0 , } ,

L c = {1 .10 , } ,

D = {0 .16 , } ,

T ig = {1317 .2 ,} ,

dh = 0 ,

t = 0 . 0 ,

t l a s t = 10 ,

d t w r i t e = 5e−4,

d t s y s = 5e−6,

dt therm = 5e−6,

t o l = 1e−3,

}

Listing 8.1: An example input file for an engine simulation.

A flowchart of the complete free-piston engine program is shown in Figure 8.1 and the source

code is attached as Appendix A and B.

8.2 Engine program verification

The engine model was run for a number of cycles such that it could approach a quasi-steady

state. A mass and energy balance for this isentropic engine (for one cycle) is shown in Figure 8.2.

During the first stroke the left-hand cylinder underwent exhausting while the right-hand cylinder

underwent compression and expansion. During the next stroke these processes occurred in the

opposing cylinder and so on. The piston velocity was set to up,0 at the beginning of each stroke

to keep the engine running. Finite-rate chemistry was not included in this simulation.

The heat transfer and friction processes were then included in the engine update routine and

a mass and energy balance over one stroke was repeated (see Figure 8.3).

8.3 Parametric study

The processes incorporated in the engine model, particularly the finite-rate chemistry, is compu-

tationally expensive and symmetric multiprocessing was used to conduct the parametric study.

Section 8.3 Parametric study 121

initialize gas models,

chemistry,

engine geometry

input
kinetic

mechanism

advance chemistry

advance dynamics

advance fluid-

dynamics

finalise step

write state

reached

steady-

state?

end

update over dt sys

no

yes

Figure 8.1: A flowchart of the free-piston engine program showing the

operator-split process.

The aim of this study was to find the ideal operating conditions for an engine of this type, such

that the entrained mass of ventilation air might be sufficient to sustain its operation.

A dual-piston type free-piston engine should ideally operate at its natural frequency. The

piston velocity that corresponds to this frequency must also achieve both a high exhausting

efficiency (preferably ηex = 100%) and a compression ratio sufficient for combustion. In addition

to this, the heat transfer and friction loss must be less than or equal to the chemical energy of

the entrained ventilation air.

Due to the low mole fraction of CH4 in ventilation air, an exhausting efficiency of 100% was

desirable. This condition was sought with the aid of a zero-finding algorithm for a range of

piston masses, cylinder diameters and cylinder lengths. Figure 8.4 shows that for almost every

set of engine parameters there is a small range of piston velocities between about 12 and 14 m.s-1

122 Engine cycle Chapter 8

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

m
g
,

k
g

t, s

total
mg,L
mg,R

∆mg,L,ex
∆mg,R,ex

-5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E
,

k
J

t, s

total
EL
ER

∆EL,ex
∆ER,ex

ke

Figure 8.2: Isentropic engine mass and energy balance. Note that the

piston velocity was set to up,0 at the start of each stroke, which can be seen

as a step-change in total energy.

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4

m
g
,

k
g

t, s

total
mg,L
mg,R

∆mg,L,ex
∆mg,R,ex

-5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
,

k
J

t, s

total
EL
ER
ke

∆EL,ex
∆ER,ex

QL
QR
wf

Figure 8.3: Engine mass and energy balance with friction and heat loss.

Here, the piston velocity was set to up,0 at the start of the stroke, which can

be seen as a step-change in the kinetic energy. This is not obvious in the

total system energy because wf , QL and QR were set to zero at the same

instant such that the losses over one stroke could be quantified.

that will result in an exhausting efficiency of 100%. This range suggests that these velocities

help maintain a favourable cylinder-to-atmospheric pressure ratio during the exhausting process

(c.f. Figure 5.3).

The other constraint previously mentioned is that operation of such an engine is dependent

on the chemical energy contained in ventilation air being greater than that the combustion

enthalpy due to heat transfer and friction. This can be calculated using the specific entropy.

s =
Eloss

mgTatm
(8.2)

This parameter is shown in Figure 8.5 for the same range of engines. Upon inspection of

Figure 8.5, it may be said that larger diameters and shorter cylinder lengths are beneficial. This

may simply be due to the larger cylinder volume and thus the larger mass of entrained methane

Section 8.3 Parametric study 123

0

2

4

6

8

10

12

14

16

600 700 800 900 1000 1100 1200 1300

u
p
,0

,
m

.s
-1

up,0

(
mp
2mg

)1/2

200

300

400

500

0.10 0.12 0.14 0.16

m
p
,

k
g

D, m

key

Figure 8.4: Initial piston velocity for a range of engines operating at an

exhausting efficiency of 100%. To read this plot, first pick a diameter, D,

and piston mass, mp, from the inset key. Then take this line and point style

and find the corresponding line-point combination on the plot. Cylinder

length, Lc, increases from 1.0m along each line from left-to-right at 0.5m

increments. The initial velocity is within a remarkably small range across

all engine types indicating that this velocity is favourable for exhausting.

(given the fixed mole fraction). Further simulations showed that increasing the diameter much

beyond 0.16m had no additional benefit.

Thus, the bore diameter and piston mass combination {0.16m, 200kg} was taken. For these

parameters, and a piston velocity range between 12 and 14m.s-1, only a limited range of stroke

lengths results in a volumetric compression ratio suitable for combustion. The cylinder length

parameter searched to obtain a peak temperature that would meet this criteria (see Figure 8.6).

The cylinder length Lc = 1.1m resulted in a peak temperature of 1330 K. Thus, a near-optimum

set of engine parameters was found to be:

D = 0.16m

Lc = 1.1kg

mp = 200kg

up,0 = 14.77m.s-1 .

(8.3)

This engine will be referred to as the reference engine. It reaches a suitable peak temperature

of about 1330 K at a volumetric compression ratio of about 37 and a peak pressure of about

16.3 MPa.

The reference engine was then run with finite-rate chemistry included in the update routine.

124 Engine cycle Chapter 8

0

50

100

150

200

250

300

350

400

600 700 800 900 1000 1100 1200 1300

s,
k
J
.k

g
-1

K
-1

up,0

(
mp
2mg

)1/2

200

300

400

500

0.10 0.12 0.14 0.16

m
p
,

k
g

D, m

key

Figure 8.5: Specific entropy for the same range of engines. To read this

plot, first pick a diameter, D, and piston mass, mp, from the inset key.

Then take this line and point style and find the corresponding line-point

combination on the plot. Cylinder length, Lc, increases from 1.0m along

each line from left-to-right at 0.5m increments. It seems that the specific

entropy reduces with increasing cylinder diameter and reducing cylinder

length. Piston mass has little effect on the specific entropy, but does affect

the compression ratio. The effect of diameter seems to diminish as the

diameter increases. Indeed this was the case: the improvement beyond

D = 0.16m was minimal.

During this testing, two things were noticed: first, that a slightly higher initial velocity was

required when the control system was used (as opposed to the step change in velocity applied

earlier) and second, that the engine became unstable when burning CH4 mole fractions above

0.5%, with initial conditions of up = up,0 and QL = QR = Qatm. Thus, it was deemed that

the engine needed to be started-up like a real engine to enable it to reach a quasi-steady-state.

This is shown in Figure 8.7. For this simulation, the DRM19 mechanism was used. The piston

trajectory for the final stroke for this engine is shown in Figure 8.8. The work used by the electric

motor during the quasi-steady state portion of this simulation was about 2 kJ per stroke. This

means work is still required to keep this engine operating, even with complete combustion. The

entrainment and combustion of methane for this engine is shown in Figure 8.9. Whilst this

engine configuration resulted in an exhausting efficiency of ηex = 100% without combustion,

this efficiency reduced when combustion was included. The effect of combustion was to slightly

reduce the exhausting efficiency. It was deemed too expensive to optimise this engine when

including finite-rate chemistry in the update routine.

Section 8.3 Parametric study 125

1100

1200

1300

1400

1500

1600

1700

1800

0.8 0.9 1.0 1.1 1.2 1.3 1.4

T
p
,

K

Lc, m

Figure 8.6: Peak temperature reached for engines where D = 0.16m,

mp = 200kg and ηex = 100%.

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7

T
,

K

t, s

left cylinder
right cylinder

Figure 8.7: Temperature of the left and right-hand cylinders during start-

up of the reference engine. Exhausting and combustion is performed during

this process.

To ensure that nitrous oxides were not generated during this engine cycle, the GRI-Mech3.0

mechanism was also used, the species fraction and GWP of which is shown in Figure 8.10. The

126 Engine cycle Chapter 8

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

5.65 5.7 5.75 5.8 5.85 5.9 5.95 6 6.05 6.1 6.15
-16

-12

-8

-4

0

4

8

12

16

x
p
,

m

u
p
,

m
.s

-1

t, s

xp
up

Figure 8.8: Piston trajectory

0.000

0.002

0.004

0.006

X
C

H
4

left cylinder
right cylinder

Figure 8.9: Methane entrainment and combustion

shortcomings of the engine model should be taken into account when considering the accuracy

of this prediction. As can be seen, nitrogen chemistry is not significant. Thus it can be said

that the reference engine is capable of reducing the GWP of ventilation air by 72%, but cannot

operate in a self-sustaining way.

The work required to sustain operation of the reference engine with different mole fractions of

CH4 in air is shown in Figure 8.11. The average work required per stroke for these mole fractions

was extrapolated to zero to find the minimum concentration of CH4 required to sustain operation

(see Figure 8.12). It was found to be about 0.92%, which is higher than that for ventilation

air. As can be seen in Figure 8.11, the higher the mole fraction, the more unstable the cycles

become. This is because the system became undamped at the break even point. Thus, some

additional control may be required for operation of this engine above a CH4 mole fraction of

0.92%.

Section 8.3 Parametric study 127

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

X

t, s

CH4
CO

CO2
N2O

20

30

40

50

60

70

80

90

100

110

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

G
W

P
1
→

4

t, s

Figure 8.10: Species and GWP for a free-piston engine operating on venti-

lation air. This simulation uses the GRI-Mech3.0 mechanism to show that

the generation of N2O is negligible, even for the peak temperature (without

combustion) of about 1400K. As before, the piston velocity was reset at the

beginning of each stroke to sustain the engine. Only data for the left-hand

cylinder is shown here for clarity.

The trends observed during the parametric study are summarised here:

1. As with the free-piston compressor, the initial normalised piston velocity and compression

ratio are coupled in a free-piston engine.

2. Piston frequency is reduced by heavier pistons, smaller bore areas and longer cylinder

lengths.

3. Including exhausting results in an additional dependency on piston velocity (about 12 to

14 m.s-1 being ideal for the engines tested here).

4. Including friction results in an additional dependency on the piston mass and stroke length:

lower values of both piston mass and stroke length reduce friction.

5. Including heat transfer results in an additional dependency on piston frequency: higher

frequency results in lower heat loss. The dependency on geometry (that is, the volume to

surface area ratio) was not seen to be a dominant factor.

6. Including finite-rate chemistry results in an additional dependency on piston frequency, as

lower piston frequency corresponds to higher work delay (and hence residence time).

Ultimately, while this engine has very low losses, the mole fraction of methane in ventilation

air is simply too low to sustain its operation. If desired, the reference engine could be used to

processes ventilation air by performing the additional work on the piston (via the electric motor)

each stroke. In effect the engine would be partially motored.

128 Engine cycle Chapter 8

-3

-2

-1

0

1

2

3

6 6.2 6.4 6.6 6.8 7 7.2

w
e
,

k
J

t, s

0.5%
0.6%
0.7%
0.8%
0.9%
1.0%
1.1%

Figure 8.11: Work required to operate engine for different mole fractions

of CH4 in air.

0.0

0.5

1.0

1.5

2.0

2.5

0.005 0.006 0.007 0.008 0.009

w
e
,

k
J

XCH4

Figure 8.12: Extrapolation was used to find the minimum mole fraction of

CH4 required to sustain operation of the reference engine. From this graph

it can seen to be about 0.92%.

Chapter 9

Conclusions

This thesis details the design of an engine whose purpose is not to generate power, but rather

to process large volumes of coal mine ventilation air in order to to reduce its global warming

potential. The sustained operation of this engine hinged on the condition that the chemical en-

ergy contained in ventilation air is greater than the energy that would be lost due to exhausting,

heat-transfer and friction.

9.1 Summary of the reference engine design

The reference engine design was a naturally aspirated dual piston type free-piston engine. Vali-

dated models for mixed friction and unsteady heat transfer were used. The piston ring set was

chosen such that the high pressures could be sealed whilst minimising the friction loss. A novel

heat transfer formula was developed which captured the inversion of heat flux about top dead

center. The unsteady heat flux was found to have an effect on the peak temperature and hence

combustion. The total heat loss was also seen to scale well with engine speed. The resulting

engine simulation program incorporated all of these processes and was run to quasi-steady-state

to find an optimum thermal efficiency by varying the engine geometry and piston mass. This

optimization process elucidated a few trends.

With a fixed mole fraction of methane, larger cylinder volumes of ventilation air result in a

larger entrained mass of methane. This trend is limited by the ability of the engine to refuel

the cylinder after each stroke and the increasing piston mass required to achieve a sufficient

compression ratio. An optimum engine has an exhausting efficiency of 100%, that is, a full

cylinder of ventilation air is replaced each stroke without pumping ventilation air out the poppet

valve. For control of the piston velocity via the electric motor, priority was given to achieving

an exhausting efficiency of ηex = 100%. The cylinder length was then chosen such that a

compression ratio suitable for combustion was reached for this piston initial velocity. If the

entrained mass of fuel was not a concern, then priority could conceivably have be given to

controlling the peak temperature instead of exhausting, however, for this application, the reverse

was required.

The optimised reference engine had a bore of 0.16 m, a cylinder length of 1.1 m, a piston mass

of 200 kg and maximum piston speed of 14.77 m.s-1 (or a frequency of about 2.3 Hz). Ideally this

engine would entrain about 0.035 kg of ventilation air each stroke, requiring at least 0.14 m3s-1

for continuous operation. Each stroke had a compression ratio of 34 which resulted in a peak

129

130 Conclusions Chapter 9

temperature of about 1330 K and peak pressure of about 37 MPa. It was found that this engine

required a mole fraction of CH4 of 0.92% to sustain operation. Thus, it was not capable of

burning ventilation air in a self-sustaining way. That said, if 15 MJ.kgCH4

−1 of work were added

per stroke for this mole fraction, this engine may be used to burn ventilation air. In effect, the

engine would have to be partially motored.

Even with motoring, only some of the coal mine ventilation air will be able to be processed.

For 150 m3s-1 flow rate, a bank of hundreds of engines of this size would be required. It was

thought initially that larger volumes could be processed per cylinder, but the high piston masses

required by these volumes made these engines impractical to pursue.

9.2 Findings

This investigation produced a number of findings for this type of engine:

1. The initial normalised piston velocity, defined as up,0

(
mp
2mg

) 1
2
, may be used along with

Figure 4.5 to determine the compression ratio of a free-piston compressor.

2. Real gas models, as opposed to the thermally-perfect gas model, behave slightly differently

during the compression process. Specifically, a van der Waals gas requires a 0.8% lower

initial normalised piston velocity than a thermally-perfect gas to reach the same peak

temperature.

3. Kinetic mechanisms that specify reverse reaction rates are coupled to the thermal model

used during their derivation. Thus, only kinetic mechanisms where the reverse rates are

calculated using the equilibrium constant are compatible with real gas models.

4. Combustion using a real gas (as opposed to a thermally-perfect gas) increases the ignition

temperature of methane in a free-piston engine. In the example presented in this thesis,

it increases it from approximately 1200K to 1250K, but this range will vary with piston

work delay. Real gas models retard the rate of reaction, but affect neither the combustion

enthalpy nor the products. Thus, the net effect is zero provided combustion goes to

completion. For the design condition, the computational expense of real gas chemistry is

not justified for a free-piston engine. For the parametric study performed in this thesis,

this observation allowed thermally perfect gas models to be used to find the final engine

geometry.

5. The effect of combustion on unsteady heat transfer acts to increase the heat transfer

rate during compression and reduce it during expansion. This effect is not captured by

quasi-steady models. Thus it is important to use an unsteady model when simulating

compression ignition of CH4, and a new model was developed for this.

6. Careful control of both the entrained mass of ventilation air and piston speed is required

to both reach the combustion temperature and avoid exceeding material limits. For the

reference engine, the peak temperature of about 1330K corresponded to a peak pressure

of 20MPa.

Section 9.3 Future work 131

9.3 Future work

Before a free-piston engine of this type can be operated, the following work is still recommended

as a minimum:

1. the design of the linear electric motor and associated power electronics,

2. the investigation into the effect of initial conditions for ventilation air (such as humidity

and ambient temperature) on engine operation,

3. a control system that can handle varying mole fractions of methane, specifically those that

generate net work and

4. the development of low friction seals and lubricants.

To operate the engine solely on ventilation air, the development of low friction piston seals is a

critical enabling technology. Lower friction seals may be able to be developed since the sealing

demands for this engine are not as rigorous as for normal engines, where the sump oil has to be

protected from gas leakage.

In addition to these areas, a number of other findings were made during this thesis that have

an opportunity for future work:

1. The experimental validation of the laminar heat transfer model presented here.

2. The development of this model by including a stream function or turbulent boundary layer

model.

3. The investigation of the methane oxidation pathway at very low densities and concentra-

tions. It is suggested that under these conditions, the reaction pathway and (so ignition

delay) is determined by both temperature and total density.

4. The application of the real gas functionality of Gaspy (developed during this thesis) to

the study of other areas such as the operation of reflected shock tunnels

References

[1] O’Flaherty, B.: 2004. Mitigation of Methane from Ventilation Air using a Free-Piston

Combustor. Technical Report 2005/04, Department Mechanical Engineering, University of

Queensland, Australia

[2] Jacobs, P., Gollan, R., Denman, A., O’Flaherty, B., Potter, D., Petrie-Repar,

P., Johnston, I.: 2010. Eilmer3 theory book. Technical Report 2010/09, Department

Mechanical Engineering, University of Queensland, Australia

[3] Gollan, R., O’Flaherty, B., Jacobs, P., Johnston, I.: 2009. Casbar User’s Guide.

Technical Report DSTO-GD-0594, Defence Science and Technology Organisation, Edin-

burgh, South Australia

[4] Jacobs, P., Gollan, R., Blyton, P., Bosco, A., Boutamine, D., Brown, L.,

Buttsworth, D., Chan, W., Chiu, S., Craddock, C., Cook, B., Czapla, J.,

de Miranda-Ventura, C., Denman, A., Gildfind, D., Goozeé, R., Hess, S., Jacobs,

C., Johnston, I., Joshi, O., Kirchhartz, R., McGilvray, M., Mee, D., Montgomery,

L., Nap, J.-P., O’Flaherty, B., Petrie-Repar, P., Potter, D., Ramanath, D., Scott,

M., Sheikh, U., Stewart, B., Tang, J., Tanimizu, K., van der Laan, P., Vesudevan,

J., Wendt, M., Wheatley, V., Window, A., Wojciak, H., Zander, F.: 2008. The

Eilmer3 Code: User Guide and Example Book. Technical Report 2008/07, Department

Mechanical Engineering, University of Queensland, Australia

[5] Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor,

M., H.L., M.: 2007. Contribution of Working Group I to the Fourth Assessment Report

of the Intergovernmental Panel on Climate Change. Technical report, Cambridge, United

Kingdom and New York, NY, USA

[6] Wendt, M., Mallett, C., Lapszewicz, J., Xue, S., Foulds, G., Mark, R., Sharma,

S., Dannell, R., Worrall, R., Balusu, R.: 2000. Methane Capture and Utilisation.

Technical Report 723R, CSIRO

[7] Turns, S.: 2000. An Introduction to Combustion: Concepts and Applications. McGraw-

Hill, 2nd edition

[8] Lashof, D., Ahuja, D.: 1990. Relative contributions of greenhouse gas emissions to global

warming. Nature 344(6266):529–531

133

134 References

[9] Khalil, M., Shearer, M.: 2000. Sources of Methane: An Overview. In: Atmospheric

Methane Its Role in the Global Environment, ed. Khalil, M., pp. 98–111. Springer-Verlag

[10] Egerton, A., Powling, J.: 1948. The Limits of Flame Propagation at Atmospheric Pres-

sure. II. The Influence of Changes in the Physical Properties. Proceedings of the Royal Soci-

ety of London. Series A, Mathematical and Physical Sciences (1934-1990) 193(1033):190–

209

[11] Spadaccini, L., Colket, M.: 1994. Ignition delay characteristics of methane fuels.

Progress in energy and combustion science 20(5):431–460

[12] Higgin, R., Williams, A.: 1969. A Shock-Tube Investigation of the Ignition of Lean

Methane and n-Butane Mixtures with Oxygen. Proceedings of the Combustion Institute

12:579–590

[13] Wendt, M.: 2004. personal communication

[14] Hardesty, D., Weinberg, F.: 1974. Burners Producing Large Excess Enthalpies. Com-

bustion Science and Technology 8(5):201–214

[15] Achten, P.: 1994. A Review of Free Piston Engine Concepts. SAE Transactions

103(3):1836–1868

[16] Krzysztof, G., Yurii, S., Krzysztof, W., Jaschik, M., Tanczyk, M.: 2008. Homo-

geneous vs. catalytic combustion of lean methane — air mixtures in reverse flow reactors.

Chemical Engineering Science 63:5010–5019

[17] Salomons, S., Hayes, R., Poirier, M., Sapoundjiev, H.: 2003. Flow reversal reactor

for the catalytic combustion of lean methane mixtures. Catalysis Today 83:59–69

[18] Jones, A. R., Lloyd, S. A., Weinberg, F. J.: 1978. Combustion in heat exchangers.

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences

360(1700):97–115

[19] Taylor, C.: 1960. The internal-combustion engine in theory and practice. MIT and John

Wiley

[20] Stone, C.: 1992. Introduction to Internal Combustion Engines. SAE International

[21] Goldsborough, S., van Blarigan, P.: 1999. A numerical study of a free piston IC engine

operating on homogeneous charge compression ignition combustion. SAE Transactions

108(3):959–972

[22] Woschni, G.: 1967. A Universally Applicable Equation for the Instantaneous Heat Transfer

Coefficient in the Internal Combustion Engine. SAE Transactions 76(670931):3065–3084

References 135

[23] Mikalsen, R., Roskilly, A.: 2008. The design and simulation of a two-stroke free-piston

compression ignition engine for electrical power generation. Applied Thermal Engineering

28:589–600

[24] Hohenberg, G.: 1979. Advanced Approaches for Heat Transfer Calculations. In: Diesel

Engine Thermal Loading, ed. Chu, A., pp. 17–22. SP-449

[25] Enkenhus, K., Parazzoli, C.: 1970. Dense gas phenomena in a free-piston hypersonic

wind tunnel. AIAA Journal 8:60–65

[26] Davidson, D., Hanson, R.: 1996. Real gas corrections in shock tube studies at high

pressures. Israel Journal of Chemistry 36:321–326

[27] Evlampiev, A., Somers, L. M. T., G., B. R. S., de Goey, L. P. H.: 2008. On The

Impact of the Ideal Gas Assumption to High-Pressure Combustion Phenomena in Engines.

Combustion Science and Technology 180(2):371–390

[28] Akin, S.: 1950. The Thermodynamic Properties of Helium. Transactions of the ASME

72(6):751–757

[29] Çengel, Y., Boles, M.: 2002. Thermodynamics, An Engineering Approach. McGraw Hill,

New York, 4th edition

[30] Gordon, S., McBride, B.: 1971. Computer Probram for Calculation of Complex Chem-

ical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and

Chapman-Jouguet Detonations. Technical Report NASA SP-273, NASA

[31] Kee, R., Rupley, F., Miller, J.: 1993. The Chemkin Thermodynamic Data Base. Tech-

nical Report SAND87-8215B, Sandia National Laboratories, Livermore, California

[32] Chase, M. R. J., Davies, C. A., Downey, J. J.: 1985. JANAF Thermochemical Tables.

Journal of Physical and Chemical Reference Data 14(1)

[33] Annand, W.: 1963. Heat transfer in the cylinders of reciprocating internal combustion

engines. Proceedings of the Institution of Mechanical Engineers 177(36):973–990

[34] Poling, B., Prausnitz, J., O’Connell, J.: 2001. The Properties of Gases and Liquids.

McGraw Hill, 5th edition

[35] Sandler, S.: 1999. Chemical and Engineering Thermodynamics. John Wiley & Sons, 3rd

edition

[36] Tsuboi, T., Wagner, H.: 1975. Homogeneous Thermal Oxidation of Methane in Reflected

Shock Waves. In: Fifteenth Symposium (International) on Combustion, pp. 883–890

[37] Petersen, E., Röhrig, M., Davidson, D., Hanson, R., Bowman, C.: 1996. High-

Pressure Methane Oxidation Behind Reflected Shock Waves. In: Twenty-Sixth Symposium

(International) on Combustion, pp. 799–806

136 References

[38] Frenklach, M. Reduction of chemical reaction models. In: Numerical approaches to

combustion modeling, eds. Oran, E., Boris, J.

[39] Li, S., Williams, F.: 2002. Reaction Mechanisms for Methane Ignition. Journal of Engi-

neering for Gas Turbines and Power 124:471

[40] Smooke, D. M., Giovangigli, V.: 1991. Formulation of the Premixed and Nonpremixed

Test Problems. In: Lecture Notes in Physics, volume 384, ed. Smooke, M. D., pp. 1–28.

Springer-Verlag

[41] Jazbec, M., Fletcher, D., Haynes, B.: 2000. Simulation of the ignition of lean methane

mixtures using CFD modelling and a reduced chemistry mechanism. Applied Mathematical

Modelling 24(8-9):689–696

[42] Kazakov, A., Frenklach, M. DRM19. http://www.me.berkeley.edu/drm/drm19.dat.

[Online; accessed July 2008]

[43] Kazakov, A., Frenklach, M. DRM22. http://www.me.berkeley.edu/drm/drm22.dat.

[Online; accessed July 2008]

[44] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Gold-

enberg, M., Bowman, T. C., Hanson, R. K., Song, S., Gardiner, W. C. J., Lissianski,

V. V., Qin, Z. GRI-Mech3.0. http://www.me.berkeley.edu/gri_mech/. [Online; ac-

cessed June 2008]

[45] Gollan, R.: 2003. Yet Another Finite-Rate Chemistry Module for Compressible Flow

Codes. Technical Report 2003/09, Department Mechanical Engineering, University of

Queensland, Australia

[46] Anderson, J.: 2003. Modern Compressible Flow with Historical Perspective. McGraw Hill,

3rd edition

[47] Gilbert, R. G., Luther, K., Troe, J.: 1983. Theory of thermal unimolecular reactions

in the fall-off range. II. Weak collision rate constants. Berichte der Bunsengesellschaft fr

physikalische Chemie 87(2):169–177

[48] Livengood, J., Leary, W.: 1951. Autoignition by Rapid Compression. Industrial &

Engineering Chemistry 43(12):2797–2805

[49] Kondratiev, V.: 1965. Determination of the rate constant for thermal cracking of methane

by means of adiabatic compression and expansion. In: Tenth Symposium (International)

on Combustion, pp. 319–322

[50] Krishnan, S., Ravikumar, R.: 1981. Ignition Delay of Methane in Reflected Shock Waves.

Combustion Science and Technology 24(5):239–245

References 137

[51] Lifshitz, A., Scheller, K., Burcat, A., Skinner, G.: 1971. Shock-Tube Investigation

of Ignition in Methane-Oxygen-Argon Mixtures. Combustion and Flame 16(3):311–321

[52] Seery, D., Bowman, C.: 1970. An Experimental and Analytical Study of Methane Oxi-

dation Behind Shock Waves. Combustion and Flame 14(1):37–48

[53] Hartig, R., Troe, J., Wagner, H.: 1971. Thermal Decomposition of Methane Behind

Reflected Shock Waves. In: Thirteenth Symposium (International) on Combustion

[54] Gordon, S., McBride, B. J.: 1996. Computer program for calculation of complex chemical

equilibrium compositions and applications. Technical report, NASA Reference Publication

1311

[55] Liseikin, V. D.: 1999. Grid Generation Methods. Springer-Verlag, Berlin

[56] Kee, R., Rupley, F., Miller, J.: 1993. Chemkin-II: A Fortran Chemical Kinetics package

for the analysis of gas phase chemical kinetics. Technical Report SAND-89-8009, Sandia

National Laboratories, Livermore, California

[57] Zallen, D., Wittig, S.: 1975. Effects of Nitrogen on the Shock Induced Ignition of

Methane. In: Tenth International Shock Tube Symposium, ed. Kamimoto, G., pp. 640–647

[58] Grillo, A., Slack, M.: 1976. Shock Tube Study of Ignition Delay Times in Methane-

Oxygen-Nitrogen-Argon Mixtures. Combustion and Flame 27(3):377–381

[59] Pilling, M., Seakins, P.: 1995. Reaction Kinetics. Oxford University Press

[60] Hinshelwood, C.: 1926. On the theory of unimolecular reactions. Proceedings of the Royal

Society of London. Series A 113(763):230–233

[61] Bilger, R., Esler, M., Starner, S.: 1991. On Reduced Mechanisms for Methane-Air

Combustion. In: Lecture Notes in Physics, volume 384, ed. Smooke, M. D., pp. 86–110.

Springer-Verlag

[62] Annand, W., Roe, G.: 1974. Gas flow in the internal combustion engine. G.T. Foulis

[63] Goldsborough, S.: 2004. Optimizing the Scavenging System for High Efficiency and Low

Emissions : a Computational Approach. Ph.D. thesis, Colorado State University

[64] Sod, G. A survey of several finite difference methods for systems of nonlinear hyperbolic

conservation laws. Journal of Computational Physics

[65] Zhu, Y., Reitz, R.: 1999. A 1-D gas dynamcis code for subsonic and supersonic flows

applied to predict EGR levels in a heavy-duty diesel engine. International Journal of

Vehicle Design 22(3/4):227–252

[66] Gustafsson, B., Kreiss, H.-O., Oliger, J.: 1995. Time Dependent Problems and Dif-

ference Methods. Wiley-Interscience

138 References

[67] Patir, N., Cheng, H. S.: 1978. Average Flow Model for Determining Effects of 3-

Dimensional Roughness on Partial Hydrodynamic Lubrication. Journal of Lubrication

Technology — Transactions of the ASME 100(1):12–17

[68] Groth, C. P. T., Gottlieb, J. J.: 1988. Numerical Study of Two-Stage Light-Gas Hy-

pervelocity Projectile Launchers. Technical Report 327, University of Toronto

[69] McGeehan, J.: 1987. A Literature Review of the Effects of Piston and Ring Friction and

Lubricating Oil Viscosity on Fuel Economy. SAE Transactions 87(780673):2619–2638

[70] Woschni, G., Spindler, W.: 1988. Heat Transfer With Insulated Combustion Chamber

Walls and Its Influence on the Performance of Diesel Engines. Transactions of the ASME

110:482–502

[71] Lawton, B.: 1987. Effect of compression and expansion on instantaneous heat transfer

in reciprocating internal combustion engines. Proceedings of the Institution of Mechanical

Engineers. Part A. Power and process engineering 201(3):175–186

[72] Sihling, K., Woschni, G.: 1979. Experimental investigation of the instantaneous heat

transfer in the cylinder of a high speed diesel engine. In: Diesel Engine Thermal Loading,

ed. Chu, A., pp. 95–102. SP-449

[73] Annand, W., Pinfold, D.: 1980. Heat Transfer in the Cylinder of a Motored Reciprocating

Engine. SAE Technical Paper Series (800457):1–6

[74] Kornhauser, A., Smith, J.: 1994. Application of a complex Nusselt number to heat

transfer during compression and expansion. Journal of heat transfer 116(3):536–542

[75] Greif, R., Namba, T., Nikanham, M.: 1979. Heat transfer during piston compression

including side wall and convection effects. International Journal of Heat and Mass Transfer

22(6):901–907

[76] Knöös, S.: 1971. Theoretical and experimental study of piston gas-heating with laminar

energy losses. AIAA Journal 9:2119–2127

[77] Yang, J., Pierce, P., Martin, J., Foster, D.: 1989. Heat Transfer Predictions and

Experiments in a Motored Engine. SAE Transactions 97:1608–1622

[78] Dao, K., Uyehara, O., Myers, P.: 1973. Heat Transfer Rates at Gas-Wall Interfaces in

Motored Piston Engine. SAE Transactions 82(730632):2237–2258

[79] Edney, B.: 1967. Temperature measurements in a hypersonic gun tunnel using heat-

transfer methods. Journal of fluid mechanics 27(3):503–512

[80] Buttsworth, D.: 2002. Heat Transfer During Transient Compression: Measurements and

Simulations. Shock Waves 12(2002):87–91

References 139

[81] Borman, G., Nishiwaki, K.: 1987. Internal-combustion engine heat transfer. Progress in

energy and combustion science 13(1):1–46

[82] Wendland, D.: 1968. The effect of periodic pressure and temperature fluctuations on

unsteady heat transfer in a closed system. Technical Report 19680012217, NASA

[83] LeFeuvre, T., Myers, P., Uyehara, O.: 1969. Experimental Instantaneous Heat Fluxes

in a Diesel Engine and Their Correlation. SAE Transactions 78(690464):1717–1738

[84] Annand, W., Ma, T.: 1970. Instantaneous heat transfer rates to the cylinder head sur-

face of a small compression-ignition engine. Proceedings of the Institution of Mechanical

Engineers 71(185):976–987

[85] Han, Z., Reitz, R.: 1997. A temperature wall function formulation for variable-density

turbulent flows with application to engine convective heat transfer modeling. International

journal of heat and mass transfer 40(3):613–625

[86] Yang, J., Martin, J.: 1989. Approximate Solution— One-Dimensional Energy Equation

for Transient, Compressible, Low Mach Number Turbulent Boundary Layer Flows. Journal

of Heat Transfer 111(3):619–624

[87] Schlichting, H.: 1968. Boundary-layer Theory. McGraw-Hill

[88] Tani, K., Itoh, K., Takahashi, M., Tanno, H., Komuro, T., Miyajima, H.: 1994.

Numerical study of free-piston shock tunnel performance. Shock Waves 3(4):313–319

[89] Yang, J.: 1995. IC Engine Gas-Wall Convective Heat Transfer — History, Problems, and

Solutions. Transport Phenomena in Combustion 2:1611–1621

[90] Isshiki, N., Nishiwaki, N.: 1970. Study on laminar heat transfer of inside gas with cyclic

pressure change on an inner wall of a cylinder head. Heat Transfer pp. 1–10

[91] Kamel, M., Watson, N.: 1979. Heat Transfer in the Indirect Injection Diesel Engine. In:

Diesel Engine Thermal Loading, ed. Chu, A., pp. 81–94. SP-449

[92] Aichlmayr, H., Kittelson, D., Zachariah, M.: 2002. Miniature Free-Piston Homoge-

neous Charge Compression Ignition Engine-Compressor Concept – Part II: Modeling HCCI

Combustion in Small Scales with Detailed Homogeneous Gas Phase Chemical Kinetics.

Chemical Engineering Science 57(19):4173–4186

Appendix A

Gas model source code

A.1 Real equations of state

// \ author : Brendan T. O’ F laher ty

// \ b r i e f : Abel−Noble equat ion o f s t a t e

#ifndef NOBLE ABEL GAS EOS HH

#define NOBLE ABEL GAS EOS HH

extern ”C” {
#include <lua . h>

#include < l a u x l i b . h>

#include < l u a l i b . h>

}
#include ” gas data . hh”

#include ” equation−of−s t a t e . hh”

class Noble Abel gas : public E q u a t i o n o f s t a t e {
public :

Noble Abel gas (l u a S t a t e ∗L) ;

˜ Noble Abel gas () ;

// python func t ion

double covolume (gas data Q) { int s t a t u s ; return s covolume (Q, s t a t u s) ; }

private :

s td : : vector<double> R ;

std : : vector<double> nu 0 ;

int s e v a l p r e s s u r e (gas data &Q) ;

int s eva l t empe ra tu r e (gas data &Q) ;

int s e v a l d e n s i t y (gas data &Q) ;

double s g a s c o n s t a n t (const gas data &Q, int &s t a t u s) ;

double s p r h o r a t i o (const gas data &Q, int i s p) ;

double s dTdp const rho (const gas data &Q, int &s t a t u s) ;

double s dTdrho const p (const gas data &Q, int &s t a t u s) ;

double s dpdrho const T (const gas data &Q, int &s t a t u s) ;

double s dpdrho i cons t T (const gas data &Q, int i sp , int &s t a t u s) ;

double s dpdT i cons t rho (const gas data &Q, int itm , int &s t a t u s) ;

double s covolume (const gas data &Q, int &s t a t u s) ;

} ;

double nag pre s su re (double rho , double T, double R, double nu 0) ;

double nag temperature (double rho , double p , double R, double nu 0) ;

140

Section A.1 Real equations of state 141

double nag dens i ty (double T, double p , double R, double nu 0) ;

#endif

Listing A.1: Abel-Noble equation of state, header file.

#include <iostream>

#include <sstream>

#include <cmath>

#include <c s t d l i b>

#include ” . . / . . / u t i l / source / u s e f u l . h”

#include ” . . / . . / u t i l / source / l u a s e r v i c e . hh”

#include ” p h y s i c a l c o n s t a n t s . hh”

#include ” noble−abel−gas−EOS. hh”

using namespace std ;

Noble Abel gas : :

Noble Abel gas (l u a S t a t e ∗L)

: E q u a t i o n o f s t a t e ()

{
l u a g e t g l o b a l (L , ” s p e c i e s ”) ;

i f (! l u a i s t a b l e (L , −1)) {
os t r ing s t r eam ost ;

o s t << ” Noble Abel gas : : Noble Abel gas () :\n” ;

o s t << ” Error in the d e c l a r a t i o n o f s p e c i e s : a t ab l e i s expected .\n” ;

i n p u t e r r o r (o s t) ;

}

int nsp = l u a o b j l e n (L , −1) ;

for (int i s p = 0 ; i s p < nsp ; ++i s p) {
l u a r a w g e t i (L , −1, i s p +1) ; // A Lua l i s t i s o f f s e t one from the C++ vec tor index

const char∗ sp = lu aL c hec k s t r i n g (L , −1) ;

lua pop (L , 1) ;

// Now br ing the s p e c i f i c s p e c i e s t a b l e to TOS

l u a g e t g l o b a l (L , sp) ;

i f (! l u a i s t a b l e (L , −1)) {
os t r ing s t r eam ost ;

o s t << ” Noble Abel gas : : Noble Abel gas () \n” ;

o s t << ” Error l o c a t i n g in fo rmat ion t a b l e f o r s p e c i e s : ” << sp << endl ;

i n p u t e r r o r (o s t) ;

}

double M = g e t p o s i t i v e v a l u e (L , −1, ”M”) ;

M . push back (M) ;

R . push back (PC R u/M) ;

double T c = g e t v a l u e (L , −1, ”T c”) ;

double p c = g e t p o s i t i v e v a l u e (L , −1, ” p c ”) ;

double nu 0 = 0.125∗PC R u∗T c/ p c ;

nu 0 . push back (nu 0) ;

lua pop (L , 1) ; // pop ”sp” o f f s t ack

}

142 Gas model source code Appendix A

lua pop (L , 1) ; // pop ” sp e c i e s ” o f f s t ack

}

Noble Abel gas : :

˜ Noble Abel gas () {}

int

Noble Abel gas : :

s e v a l p r e s s u r e (gas data &Q)

{
int s t a t u s ;

double R = s g a s c o n s t a n t (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

double nu 0 = s covolume (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

// e l s e proceed

Q. p = nag pre s su re (Q. rho , Q.T[0] , R, nu 0) ;

return SUCCESS;

}

int

Noble Abel gas : :

s eva l t empe ra tu r e (gas data &Q)

{
int s t a t u s ;

double R = s g a s c o n s t a n t (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

double nu 0 = s covolume (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

// e l s e proceed

Q.T[0] = nag temperature (Q. rho , Q. p , R, nu 0) ;

return SUCCESS;

}

int

Noble Abel gas : :

s e v a l d e n s i t y (gas data &Q)

{
int s t a t u s ;

double R = s g a s c o n s t a n t (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

double nu 0 = s covolume (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

// e l s e proceed

Q. rho = nag dens i ty (Q.T[0] , Q. p , R, nu 0) ;

return SUCCESS;

}

double

Noble Abel gas : :

s g a s c o n s t a n t (const gas data &Q, int &s t a t u s)

Section A.1 Real equations of state 143

{
s t a t u s = SUCCESS;

return c a l c u l a t e g a s c o n s t a n t (Q. massf , M) ;

}

double

Noble Abel gas : :

s p r h o r a t i o (const gas data &Q, int i s p)

{
double M = c a l c u l a t e m o l e c u l a r w e i g h t (Q. massf , M) ;

return Q. p/Q. rho∗M/M [i s p] ;

}

double

Noble Abel gas : :

s dTdp const rho (const gas data &Q, int &s t a t u s)

{
double R = s g a s c o n s t a n t (Q, s t a t u s) ;

double nu 0 = s covolume (Q, s t a t u s) ;

double dTdp const nu = (1 . 0 /Q. rho − nu 0) /R;

return dTdp const nu ;

}

double

Noble Abel gas : :

s dTdrho const p (const gas data &Q, int &s t a t u s)

{
double R = s g a s c o n s t a n t (Q, s t a t u s) ;

double dTdnu const p = Q. p/R;

return −1.0/(Q. rho∗Q. rho) ∗dTdnu const p ;

}

double

Noble Abel gas : :

s dpdrho const T (const gas data &Q, int &s t a t u s)

{
double R = s g a s c o n s t a n t (Q, s t a t u s) ;

double nu 0 = s covolume (Q, s t a t u s) ;

double dpdnu const T = −R∗Q.T[0] ∗ pow((1/Q. rho − nu 0) , −2) ;

return −1.0/(Q. rho∗Q. rho) ∗dpdnu const T ;

}

double

Noble Abel gas : :

s dpdrho i con s t T (const gas data &Q, int i sp , int &s t a t u s)

{
double R i = PC R u / M [i s p] ;

double n u 0 i = nu 0 [i s p] ;

double r h o i = Q. rho ∗ Q. massf [i s p] ;

double dpdnu i const T = −R i ∗Q.T[0] ∗ pow((1/ r h o i − n u 0 i) , −2) ;

return −1.0/(r h o i ∗ r h o i) ∗ dpdnu i const T ;

}

double

Noble Abel gas : :

s dpdT i cons t rho (const gas data &Q, int itm , int &s t a t u s)

{

144 Gas model source code Appendix A

double R = s g a s c o n s t a n t (Q, s t a t u s) ;

double nu 0 = s covolume (Q, s t a t u s) ;

double dTdp const nu = (1 . 0 /Q. rho − nu 0) /R;

return 1 .0/ dTdp const nu ;

}

double

Noble Abel gas : :

s covolume (const gas data &Q, int &s t a t u s)

{
vector<double> molef ;

molef . r e s i z e (M . s i z e ()) ;

conver t mass f2mole f (Q. massf , M , molef) ;

double nu 0 = 0 . 0 ;

for (s i z e t i s p = 0 ; i s p < Q. massf . s i z e () ; ++i s p) {
nu 0 += molef [i s p]∗ nu 0 [i s p] ;

}

double M = c a l c u l a t e m o l e c u l a r w e i g h t (Q. massf , M) ;

s t a t u s = SUCCESS;

return nu 0/M;

}

double nag pre s su re (double rho , double T, double R, double nu 0)

{
double nu 1 = 1/ rho − nu 0 ;

i f (nu 1 <= 0) {
cout << ”A Noble−Abel gas cannot have a s p e c i f i c −volume sma l l e r than the co−

volume .\n” ;

cout << ” Ba i l i ng out !\n” ;

e x i t (BAD INPUT ERROR) ;

}
return R∗T/nu 1 ;

}

double nag temperature (double rho , double p , double R, double nu 0)

{
double nu 1 = 1/ rho − nu 0 ;

i f (nu 1 <= 0) {
cout << ”A Noble−Abel gas cannot have a s p e c i f i c −volume sma l l e r than the co−

volume .\n” ;

cout << ” Ba i l i ng out !\n” ;

e x i t (BAD INPUT ERROR) ;

}
return p∗nu 1/R;

}

double nag dens i ty (double T, double p , double R, double nu 0)

{
double nu = R∗T/p + nu 0 ;

return 1/nu ;

}

Listing A.2: Abel-Noble equation of state, source file.

Section A.1 Real equations of state 145

// \ author : Brendan T. O’ F laher ty

// \ b r i e f : van der Waals equat ion o f s t a t e

#ifndef VAN DER WAALS GAS EOS HH

#define VAN DER WAALS GAS EOS HH

extern ”C” {
#include <lua . h>

#include < l a u x l i b . h>

#include < l u a l i b . h>

}
#include ” gas data . hh”

#include ” equation−of−s t a t e . hh”

class van der Waals gas : public E q u a t i o n o f s t a t e {
public :

van der Waals gas (l u a S t a t e ∗L) ;

˜ van der Waals gas () ;

// python func t ion

double covolume (gas data Q) { int s t a t u s ; return s covolume (Q, s t a t u s) ; }
double a (gas data Q) { int s t a t u s ; return s a (Q, s t a t u s) ; }

private :

s td : : vector<double> R ;

std : : vector<double> nu 0 ;

std : : vector<double> a ;

int s e v a l p r e s s u r e (gas data &Q) ;

int s eva l t empe ra tu r e (gas data &Q) ;

int s e v a l d e n s i t y (gas data &Q) ;

double s g a s c o n s t a n t (const gas data &Q, int &s t a t u s) ;

double s p r h o r a t i o (const gas data &Q, int i s p) ;

double s dTdp const rho (const gas data &Q, int &s t a t u s) ;

double s dTdrho const p (const gas data &Q, int &s t a t u s) ;

double s dpdrho const T (const gas data &Q, int &s t a t u s) ;

double s dpdrho i con s t T (const gas data &Q, int i sp , int &s t a t u s) ;

double s dpdT i cons t rho (const gas data &Q, int itm , int &s t a t u s) ;

double s covolume (const gas data &Q, int &s t a t u s) ;

double s a (const gas data &Q, int &s t a t u s) ;

} ;

double vdwg pressure (double rho , double T, double R, double nu 0 , double a) ;

double vdwg temperature (double rho , double p , double R, double nu 0 , double a) ;

double vdwg density (double T, double p , double R, double nu 0 , double a) ;

#endif

Listing A.3: van der Waals equation of state, header file.

#include <iostream>

#include <sstream>

#include <cmath>

#include <c s t d l i b>

#include ” . . / . . / u t i l / source / u s e f u l . h”

#include ” . . / . . / u t i l / source / l u a s e r v i c e . hh”

#include ” p h y s i c a l c o n s t a n t s . hh”

146 Gas model source code Appendix A

#include ”van−der−waals−gas−EOS. hh”

using namespace std ;

van der Waals gas : :

van der Waals gas (l u a S t a t e ∗L)

: E q u a t i o n o f s t a t e ()

{
l u a g e t g l o b a l (L , ” s p e c i e s ”) ;

i f (! l u a i s t a b l e (L , −1)) {
os t r ing s t r eam ost ;

o s t << ” van der Waals gas : : van der Waals gas () :\n” ;

o s t << ” Error in the d e c l a r a t i o n o f s p e c i e s : a t a b l e i s expected .\n” ;

i n p u t e r r o r (o s t) ;

}

int nsp = l u a o b j l e n (L , −1) ;

for (int i s p = 0 ; i s p < nsp ; ++i s p) {
l u a r a w g e t i (L , −1, i s p +1) ; // A Lua l i s t i s o f f s e t one from the C++ vec tor index

const char∗ sp = lu aL ch ec k s t r i n g (L , −1) ;

lua pop (L , 1) ;

// Now br ing the s p e c i f i c s p e c i e s t a b l e to TOS

l u a g e t g l o b a l (L , sp) ;

i f (! l u a i s t a b l e (L , −1)) {
os t r ing s t r eam ost ;

o s t << ” van der Waals gas : : van der Waals gas () \n” ;

o s t << ” Error l o c a t i n g in fo rmat ion t a b l e f o r s p e c i e s : ” << sp << endl ;

i n p u t e r r o r (o s t) ;

}

double M = g e t p o s i t i v e v a l u e (L , −1, ”M”) ;

M . push back (M) ;

R . push back (PC R u/M) ;

double T c = g e t v a l u e (L , −1, ”T c”) ;

double p c = g e t p o s i t i v e v a l u e (L , −1, ” p c ”) ;

double nu 0 = 0.125∗PC R u∗T c/ p c ;

nu 0 . push back (nu 0) ;

double a = (2 7 . 0 / 6 4 . 0) ∗ ((PC R u∗T c) ∗(PC R u∗T c)) / p c ;

a . push back (a) ;

lua pop (L , 1) ; // pop ”sp” o f f s t ack

}
lua pop (L , 1) ; // pop ” sp e c i e s ” o f f s t ack

}

van der Waals gas : :

˜ van der Waals gas () {}

int

van der Waals gas : :

s e v a l p r e s s u r e (gas data &Q)

Section A.1 Real equations of state 147

{
int s t a t u s ;

double R = s g a s c o n s t a n t (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

double nu 0 = s covolume (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

double a = s a (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

// e l s e proceed

Q. p = vdwg pressure (Q. rho , Q.T[0] , R, nu 0 , a) ;

return SUCCESS;

}

int

van der Waals gas : :

s eva l t empe ra tu r e (gas data &Q)

{
int s t a t u s ;

double R = s g a s c o n s t a n t (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

double nu 0 = s covolume (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

double a = s a (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

// e l s e proceed

Q.T[0] = vdwg temperature (Q. rho , Q. p , R, nu 0 , a) ;

return SUCCESS;

}

int

van der Waals gas : :

s e v a l d e n s i t y (gas data &Q)

{
int s t a t u s ;

double R = s g a s c o n s t a n t (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

double nu 0 = s covolume (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

double a = s a (Q, s t a t u s) ;

i f (s t a t u s != SUCCESS)

return s t a t u s ;

// e l s e proceed

Q. rho = vdwg density (Q.T[0] , Q. p , R, nu 0 , a) ;

return SUCCESS;

}

double

van der Waals gas : :

s g a s c o n s t a n t (const gas data &Q, int &s t a t u s)

148 Gas model source code Appendix A

{
s t a t u s = SUCCESS;

return c a l c u l a t e g a s c o n s t a n t (Q. massf , M) ;

}

double

van der Waals gas : :

s p r h o r a t i o (const gas data &Q, int i s p)

{
double M = c a l c u l a t e m o l e c u l a r w e i g h t (Q. massf , M) ;

return Q. p/Q. rho∗M/M [i s p] ;

}

double

van der Waals gas : :

s dTdp const rho (const gas data &Q, int &s t a t u s)

{
double R = s g a s c o n s t a n t (Q, s t a t u s) ;

double nu = 1/Q. rho ;

double nu 0 = s covolume (Q, s t a t u s) ;

return (nu − nu 0) /R;

}

double

van der Waals gas : :

s dTdrho const p (const gas data &Q, int &s t a t u s)

{
double R = s g a s c o n s t a n t (Q, s t a t u s) ;

double a = s a (Q, s t a t u s) ;

double nu = 1/Q. rho ;

double nu 0 = s covolume (Q, s t a t u s) ;

double dTdnu const p = (1/R) ∗(Q. p − a /(nu∗nu∗nu) ∗(nu + 2∗nu 0)) ;

return −nu∗nu∗dTdnu const p ;

}

double

van der Waals gas : :

s dpdrho const T (const gas data &Q, int &s t a t u s)

{
double R = s g a s c o n s t a n t (Q, s t a t u s) ;

double a = s a (Q, s t a t u s) ;

double nu = 1/Q. rho ;

double nu 0 = s covolume (Q, s t a t u s) ;

double dpdnu const T = −R∗Q.T[0] / ((nu − nu 0) ∗(nu − nu 0)) − 2∗a/nu ;

return −nu∗nu∗dpdnu const T ;

}

double

van der Waals gas : :

s dpdrho i con s t T (const gas data &Q, int i sp , int &s t a t u s)

{
double R i = PC R u / M [i s p] ;

double a i = a [i s p] ;

double nu i = 1/(Q. rho∗Q. massf [i s p]) ;

double n u 0 i = nu 0 [i s p] ;

double dpdnu i const T = −R i ∗Q.T[0] / ((nu i − n u 0 i) ∗(nu i − n u 0 i)) − 2∗ a i / nu i ;

return −nu i ∗ nu i ∗ dpdnu i const T ;

Section A.1 Real equations of state 149

}

double

van der Waals gas : :

s dpdT i cons t rho (const gas data &Q, int itm , int &s t a t u s)

{
double R = s g a s c o n s t a n t (Q, s t a t u s) ;

double nu = 1/Q. rho ;

double nu 0 = s covolume (Q, s t a t u s) ;

return R/(nu − nu 0) ;

}

double

van der Waals gas : :

s covolume (const gas data &Q, int &s t a t u s)

{
vector<double> molef ;

molef . r e s i z e (M . s i z e ()) ;

conver t mass f2mole f (Q. massf , M , molef) ;

double nu 0 = 0 . 0 ;

for (s i z e t i s p = 0 ; i s p < Q. massf . s i z e () ; ++i s p) {
nu 0 += molef [i s p]∗ nu 0 [i s p] ;

}

double M = c a l c u l a t e m o l e c u l a r w e i g h t (Q. massf , M) ;

s t a t u s = SUCCESS;

return nu 0/M;

}

double

van der Waals gas : :

s a (const gas data &Q, int &s t a t u s)

{
vector<double> molef ;

molef . r e s i z e (M . s i z e ()) ;

conver t mass f2mole f (Q. massf , M , molef) ;

double a = 0 . 0 ;

for (s i z e t i s p = 0 ; i s p < Q. massf . s i z e () ; ++i s p) {
a += molef [i s p]∗ s q r t (a [i s p]) ;

}
double M = c a l c u l a t e m o l e c u l a r w e i g h t (Q. massf , M) ;

s t a t u s = SUCCESS;

return (a∗a) /M;

}

double vdwg pressure (double rho , double T, double R, double nu 0 , double a)

{
double nu 1 = 1/ rho − nu 0 ;

i f (nu 1 <= 0) {
cout << ” Error in vdwg pressure \n” ;

cout << ”nu = ” << 1/ rho << ” , nu 0 = ” << nu 0 << endl ; ;

cout << ”A van der Waals gas cannot have a s p e c i f i c −volume sma l l e r than the co−
volume .\n” ;

150 Gas model source code Appendix A

cout << ” Ba i l i ng out !\n” ;

e x i t (BAD INPUT ERROR) ;

}
return R∗T/nu 1 − a∗ rho∗ rho ;

}

double vdwg temperature (double rho , double p , double R, double nu 0 , double a)

{
double nu 1 = 1/ rho − nu 0 ;

i f (nu 1 <= 0) {
cout << ” Error in vdwg temperature\n” ;

cout << ”A van der Waals gas cannot have a s p e c i f i c −volume sma l l e r than the co−
volume .\n” ;

cout << ” Ba i l i ng out !\n” ;

e x i t (BAD INPUT ERROR) ;

}
return (p + a∗ rho∗ rho) ∗nu 1/R;

}

double vdwg density (double T, double p , double R, double nu 0 , double a)

{
double nu old , nu , t o l ;

nu = R∗T/p + nu 0 ;

t o l = 1e−8;

do {
nu old = nu ;

nu = R∗T/(p + a /(nu old ∗ nu old)) + nu 0 ;

} while (f abs (nu old − nu) > t o l) ;

return 1 .0/ nu ;

}

Listing A.4: van der Waals equation of state, source file.

Section A.2 Real thermal behaviour 151

A.2 Real thermal behaviour

// \ author : Brendan T. O’ F laher ty

// \ b r i e f : r e a l thermal behaviour

#ifndef REAL THERMAL BEHAVIOUR HH

#define REAL THERMAL BEHAVIOUR HH

#include <vector>

extern ”C” {
#include <lua . h>

#include < l a u x l i b . h>

#include < l u a l i b . h>

}
#include ” . . / . . / nm/ source /segmented−f unc to r . hh”

#include ” gas data . hh”

#include ” thermal−behaviour−model . hh”

class Real thermal behav iour : public Thermal behaviour model {
public :

Rea l thermal behav iour (l u a S t a t e ∗L) ;

˜ Rea l thermal behav iour () ;

private :

double T COLD ;

std : : vector<double> M ;

std : : vector<double> R ;

std : : vector<Segmented functor ∗> Cp ;

std : : vector<Segmented functor ∗> h ;

std : : vector<Segmented functor ∗> s ;

int s decode conse rved ene rgy (gas data &Q, const std : : vector<double> &rhoe) ;

int s encode conse rved ene rgy (const gas data &Q, std : : vector<double> &rhoe) ;

int s e v a l e n e r g y (gas data &Q, E q u a t i o n o f s t a t e ∗EOS) ;

int s eva l t empe ra tu r e (gas data &Q, E q u a t i o n o f s t a t e ∗EOS) ;

double s dhdT const p (const gas data &Q, int &s t a t u s) ;

double s dedT const v (const gas data &Q, E q u a t i o n o f s t a t e ∗EOS , int &s t a t u s) ;

double s e v a l e n e r g y i s p (const gas data &Q, E q u a t i o n o f s t a t e ∗EOS , int i s p) ;

double s e v a l e n t h a l p y i s p (const gas data &Q, E q u a t i o n o f s t a t e ∗EOS , int i s p) ;

double s e v a l e n t r o p y i s p (const gas data &Q, E q u a t i o n o f s t a t e ∗EOS , int i s p) ;

double z e r o f u n c t i o n (gas data &Q, E q u a t i o n o f s t a t e ∗EOS , double e g iven , double T) ;

double d e r i v f u n c t i o n (gas data &Q, E q u a t i o n o f s t a t e ∗EOS , double T) ;

bool t e s t T f o r p o l y n o m i a l b r e a k s (double T) ;

} ;

#endif

Listing A.5: Real thermal behaviour, header file.

#include <iostream>

#include <sstream>

#include <cmath>

#include <s t d l i b . h>

#include ” . . / . . / u t i l / source / u s e f u l . h”

#include ” . . / . . / u t i l / source / l u a s e r v i c e . hh”

#include ” . . / . . / nm/ source / func to r . hh”

#include ”CEA−Cp−f unc to r . hh”

152 Gas model source code Appendix A

#include ”CEA−h−f unc to r . hh”

#include ”CEA−s−f unc to r . hh”

#include ” rea l−thermal−behaviour . hh”

using namespace std ;

Rea l thermal behav iour : :

Rea l thermal behav iour (l u a S t a t e ∗L)

: Thermal behaviour model ()

{
T COLD = get pos i t i v e number (L , LUA GLOBALSINDEX, ”T COLD”) ;

l u a g e t g l o b a l (L , ” s p e c i e s ”) ;

i f (! l u a i s t a b l e (L , −1)) {
os t r ing s t r eam ost ;

o s t << ” Rea l thermal behav iour : : Rea l thermal behav iour () :\n” ;

o s t << ” Error in the d e c l a r a t i o n o f s p e c i e s : a t a b l e i s expected .\n” ;

i n p u t e r r o r (o s t) ;

}

int nsp = l u a o b j l e n (L , −1) ;

for (int i s p = 0 ; i s p < nsp ; ++i s p) {
vector<U n i v a r i a t e f u n c t o r∗> Cp;

vector<U n i v a r i a t e f u n c t o r∗> h ;

vector<U n i v a r i a t e f u n c t o r∗> s ;

vector<double> breaks ;

double T low , T high ;

l u a r a w g e t i (L , −1, i s p +1) ;

const char∗ sp = lu aL ch ec k s t r i n g (L , −1) ;

lua pop (L , 1) ;

// Now br ing s p e c i f i c s p e c i e s t a b l e to TOS

l u a g e t g l o b a l (L , sp) ;

i f (! l u a i s t a b l e (L , −1)) {
os t r ing s t r eam ost ;

o s t << ” Rea l thermal behav iour : : Rea l thermal behav iour () :\n” ;

o s t << ” Error l o c a t i n g in fo rmat ion t a b l e f o r s p e c i e s : ” << sp << endl ;

i n p u t e r r o r (o s t) ;

}

double M = g e t p o s i t i v e v a l u e (L , −1, ”M”) ;

M . push back (M) ;

R . push back (PC R u/M) ;

l u a g e t f i e l d (L , −1, ” CEA coeffs ”) ;

i f (! l u a i s t a b l e (L , −1)) {
os t r ing s t r eam ost ;

o s t << ” Rea l thermal behav iour : : Rea l thermal behav iour () :\n” ;

o s t << ” Error l o c a t i n g ’ CEA coeffs ’ t a b l e f o r s p e c i e s : ” << sp << endl ;

i n p u t e r r o r (o s t) ;

}
for (s i z e t i = 1 ; i <= l u a o b j l e n (L , −1) ; ++i) {

l u a r a w g e t i (L , −1, i) ;

T low = get pos i t i v e number (L , −1, ”T low”) ;

Section A.2 Real thermal behaviour 153

T high = get pos i t i v e number (L , −1, ” T high ”) ;

Cp . push back (new CEA Cp functor (L , R . back ())) ;

h . push back (new CEA h functor (L , (∗Cp. back ()) (T low) , (∗Cp. back ()) (T high) ,

R . back ())) ;

s . push back (new CEA s functor (L , (∗Cp. back ()) (T low) , (∗Cp. back ()) (T high) ,

R . back ())) ;

breaks . push back (T low) ;

lua pop (L , 1) ;

}
breaks . push back (T high) ;

lua pop (L , 2) ; // pop coe f f s , s p e c i e s

Cp . push back (new Segmented functor (Cp, breaks)) ;

h . push back (new Segmented functor (h , breaks)) ;

s . push back (new Segmented functor (s , breaks)) ;

for (s i z e t i = 0 ; i < Cp. s i z e () ; ++i) {
delete Cp[i] ;

delete h [i] ;

delete s [i] ;

}
}

}

Real thermal behav iour : :

˜ Rea l thermal behav iour ()

{
for (s i z e t i s p = 0 ; i s p < Cp . s i z e () ; ++i s p) {

delete Cp [i s p] ;

delete h [i s p] ;

delete s [i s p] ;

}
}

int

Real thermal behav iour : :

s decode conse rved ene rgy (gas data &Q, const vector<double> &rhoe)

{
return tbm decode conserved energy (Q. e , rhoe , Q. rho) ;

}

int

Real thermal behav iour : :

s encode conse rved ene rgy (const gas data &Q, vector<double> &rhoe)

{
return tbm encode conserved energy (rhoe , Q. e , Q. rho) ;

}

double

Real thermal behav iour : :

s dhdT const p (const gas data &Q, int &s t a t u s)

{
s t a t u s = SUCCESS;

return tbm dhdT const p (Cp , Q. massf , Q.T) ;

}

154 Gas model source code Appendix A

int

Real thermal behav iour : :

s eva l t empe ra tu r e (gas data &Q, E q u a t i o n o f s t a t e ∗EOS)

{
// g iven a cor r e c t va lue f o r e and rho

// eva lua t e a new va lue f o r T.

const int MAX ATTEMPTS = 20 ;

const int MAX OSCIL = 3 ;

const double TOL = 1.0 e−6; // Experience shows t h i s i s a good va lue

const bool use T guess = true ;

double e g i v en = Q. e [0] ;

double T 0 = 0 . 0 ;

double T 1 = 0 . 0 ;

double T prev = 0 . 0 ;

double alpha = 0 . 0 ;

// Because the CEA curve f i t s cut o f f a t 200.0 , the i t e r a t i o n

// doesn ’ t a lways work we l l when s t a r t i n g below t h i s va lue .

// So when tha t ’ s the case , we use our crude s t a r t i n g guess .

i f (use T guess && Q.T[0] > 200 .0)

T 0 = Q.T [0] ;

else

T 0 = Q. e [0] / 7 1 7 . 0 ; // C v fo r ”normal” a i r as a crude guess

// We use a Newton s o l v e r to i t e r a t e f o r temperature

// 1 . Eva lute f 0 based on guess

EOS −>e v a l p r e s s u r e (Q) ;

double f 0 = z e r o f u n c t i o n (Q, EOS , e g iven , T 0) ;

double dfdT = d e r i v f u n c t i o n (Q, EOS , T 0) ;

i f (f abs (f 0) < TOL)

return SUCCESS;

T prev = T 0 ;

int o s c i l c o u n t = 0 ;

int attempt ;

for (attempt = 0 ; attempt < MAX ATTEMPTS; ++attempt) {
i f (f abs (dfdT) < 1 .0 e−12) {

cout << ”WARNING − Real thermal behav iour : : s o l v e f o r T () \n” ;

cout << ” Nearly zero de r i va t i v e , dfdT= ” << dfdT << endl ;

return FAILURE;

}
T 1 = T 0 − f 0 /dfdT ;

Q.T[0] = T 1 ;

EOS −>e v a l p r e s s u r e (Q) ;

i f (T 1 < T COLD) {
Q.T[0] = T COLD ;

s e v a l e n e r g y (Q, EOS) ;

return SUCCESS;

}
i f (f abs (T 0 − T 1) < TOL) {

Q.T[0] = T 1 ;

Q. e [0] = e g iv en ;

return SUCCESS;

}

Section A.2 Real thermal behaviour 155

i f (f abs (T 1 − T prev) < 0 .01∗TOL) {
// This i s when we h i t a symmetric o s c i l l a t i o n

i f (++o s c i l c o u n t == MAX OSCIL) break ;

a lpha = fabs ((double) rand () / (double) RAND MAX) ;

T prev = T 0 ;

T 1 = T 0 − alpha ∗ f 0 /dfdT ;

T 0 = T 1 ;

f 0 = z e r o f u n c t i o n (Q, EOS , e g iven , T 0) ;

dfdT = d e r i v f u n c t i o n (Q, EOS , T 0) ;

}
else {

T prev = T 0 ;

T 0 = T 1 ;

f 0 = z e r o f u n c t i o n (Q, EOS , e g iven , T 0) ;

dfdT = d e r i v f u n c t i o n (Q, EOS , T 0) ;

}
}

i f (t e s t T f o r p o l y n o m i a l b r e a k s (T 1)) {
Q.T[0] = T 1 ;

Q. e [0] = e g iv en ;

}

// I f we ge t t h i s far , then the i t e r a t i o n s did not converge .

// We shou ld p r in t a warning and return −1.0 as temperature .

// DFP: Customised the error message f o r the case where

// suc c e s s i v e symmetric o s c i l l a t i o n s has been determined .

cout << ”WARNING − ThermallyRealGasMix : : s o l v e f o r T () \n” ;

i f (o s c i l c o u n t == MAX OSCIL) {
cout << o s c i l c o u n t << ” symmetric o s c i l l a t i o n s were encountered by the Newton

s o l v e r .\n” ;

cout << ” In addit ion , the temperature does not correspond to a CEA polynomial

break .\n” ;

}
else {

cout << ”The Newton s o l v e r did not converge a f t e r ” << attempt << ” i t e r a t i o n s .\n

” ;

}
cout << ”T 1= ” << T 1 << ” T 0= ” << T 0 << ” f 0= ” << f 0 << ” dfdT= ” << dfdT <<

endl ;

i f (use T guess) {
cout << ” T guess − from gas data = ” << Q.T[0] << endl ;

}
else {

cout << ” T guess − from e [0] , Cv = ” << Q. e [0] / 717 .0 << endl ; ;

}
cout << ”Gas s t a t e . . . \ n” ;

p r i n t g a s d a t a (Q) ;

cout << ” Ba i l i ng out !\n” ;

e x i t (ITERATION ERROR) ;

}

double

Real thermal behav iour : :

s dedT const v (const gas data &Q, E q u a t i o n o f s t a t e ∗EOS , int &s t a t u s)

{
// Reference :

156 Gas model source code Appendix A

// Cengel and Boles (2002)

// Thermodynamics : an Engineering Approach , 3rd ed i t i on

// 4 th Ed .

// McGraw H i l l

// Equation 11−46 on p . 617

double nu = 1.0/Q. rho ;

double dnudT = −(nu∗nu) /EOS −>dTdrho const p (Q, s t a t u s) ;

double dpdnu = −1.0/(nu∗nu) ∗EOS −>dpdrho const T (Q, s t a t u s) ;

double Cv = 0 . 0 ;

for (s i z e t i s p = 0 ; i s p < Cp . s i z e () ; ++i s p) {
Cv += Q. massf [i s p] ∗ ((∗ Cp [i s p]) (Q.T [0])) ;

}
Cv += Q.T[0] ∗ dnudT∗dnudT∗dpdnu ;

return Cv ;

}

int

Real thermal behav iour : :

s e v a l e n e r g y (gas data &Q, E q u a t i o n o f s t a t e ∗EOS)

{
double e = 0 . 0 ;

for (s i z e t i s p = 0 ; i s p < Cp . s i z e () ; ++i s p) {
e += Q. massf [i s p]∗ s e v a l e n e r g y i s p (Q, EOS , i s p) ;

}
Q. e [0] = e ;

return SUCCESS;

}

double

Real thermal behav iour : :

s e v a l e n e r g y i s p (const gas data &Q, E q u a t i o n o f s t a t e ∗EOS , int i s p)

{
// Reference :

// Cengel and Boles (2002)

// Thermodynamics : an Engineering Approach , 3rd ed i t i on

// 4 th Ed .

// McGraw H i l l

// Equation 11−29 on p . 614

double h = s e v a l e n t h a l p y i s p (Q, EOS , i s p) ;

double pv = EOS −>p r h o r a t i o (Q, i s p) ;

return h − pv ;

}

double

Real thermal behav iour : :

s e v a l e n t h a l p y i s p (const gas data &Q, E q u a t i o n o f s t a t e ∗EOS , int i s p)

{
// Reference :

// Cengel and Boles (2002)

// Thermodynamics : an Engineering Approach , 3rd ed i t i on

// 4 th Ed .

// McGraw H i l l

// Equation 11−35 on p . 615

int s t a t u s ;

Section A.2 Real thermal behaviour 157

double nu = 1.0/Q. rho ;

double dnudT = −(nu∗nu) /EOS −>dTdrho const p (Q, s t a t u s) ;

double M = c a l c u l a t e m o l e c u l a r w e i g h t (Q. massf , M) ;

return (∗ h [i s p]) (Q.T [0]) + (nu − Q.T[0] ∗ dnudT) ∗Q. p∗(M/M [i s p]) ;

}

double

Real thermal behav iour : :

s e v a l e n t r o p y i s p (const gas data &Q, E q u a t i o n o f s t a t e ∗EOS , int i s p)

{
// Reference :

// Cengel and Boles (2002)

// Thermodynamics : an Engineering Approach , 3rd ed i t i on

// 4 th Ed .

// McGraw H i l l

// Equation 11−40 on p . 615

int s t a t u s ;

double nu = 1.0/Q. rho ;

double dnudT = −(nu∗nu) /EOS −>dTdrho const p (Q, s t a t u s) ;

double M = c a l c u l a t e m o l e c u l a r w e i g h t (Q. massf , M) ;

return (∗ s [i s p]) (Q.T [0]) − dnudT∗Q. p∗(M/M [i s p]) ;

}

double

Real thermal behav iour : :

z e r o f u n c t i o n (gas data &Q, E q u a t i o n o f s t a t e ∗EOS , double e g iven , double T)

{
// g iven cor r ec t energy

// eva lua t e the zero func t i on us ing temperature

// f (T) = e g i v en − e (T) = 0

Q.T[0] = T;

s e v a l e n e r g y (Q, EOS) ;

return Q. e [0] − e g i v en ;

}

double

Real thermal behav iour : :

d e r i v f u n c t i o n (gas data &Q, E q u a t i o n o f s t a t e ∗EOS , double T)

{
// return dedT const v

Q.T[0] = T;

int s t a t u s ;

return dedT const v (Q, EOS , s t a t u s) ;

}

bool

Real thermal behav iour : :

t e s t T f o r p o l y n o m i a l b r e a k s (double T)

{
// Sometimes the i t e r a t i o n s run in to t r ou b l e because o f bad ly formed

// po lynomia ls near the breaks .

// I t turns out the the CEA polynomia ls are not t ha t cont inuous on the

// the f i n e r d e t a i l .

i f (T >= 999.99 && T <= 1000.01)

158 Gas model source code Appendix A

return true ;

i f (T >= 5999.99 && T <= 6000.01)

return true ;

return fa l se ;

}

Listing A.6: Real thermal behaviour, source file.

Section A.3 Pressure-dependent rate coefficient 159

A.3 Pressure-dependent rate coefficient

// Author : Rowan J . Gol lan

// Date : 16−Apr−2009
// Place : NIA, Hampton , Virginia , USA

//

// This a por t from Brendan O’ F laher ty ’ s implementation

// found in gas models2 .

//

#ifndef PRESSURE DEPENDENT RATE HH

#define PRESSURE DEPENDENT RATE HH

#include <vector>

extern ”C” {
#include <lua . h>

#include < l a u x l i b . h>

#include < l u a l i b . h>

}
#include ” reac t i on−rate−c o e f f . hh”

#include ” g e n e r a l i s e d−Arrhenius . hh”

#include ” . . / models / gas data . hh”

double compute th i rd body va lue (const gas data &Q, std : : map<int , double> e f f i c i e n c i e s ,

s td : : vector<double> M) ;

class Pressure dependent : public R e a c t i o n r a t e c o e f f i c i e n t {
public :

Pressure dependent (l u a S t a t e ∗L , Gas model &g) ;

˜ Pressure dependent () ;

double g e t t h i r d b o d y v a l u e (const gas data &Q) { return

compute th i rd body concent rat ion (Q) ; }

private :

int s e v a l (const gas data &Q) ;

double compute th i rd body concent rat ion (const gas data &Q) { return

compute th i rd body va lue (Q, e f f i c i e n c i e s , M) ; }

std : : vector<double> M ;

std : : map<int , double> e f f i c i e n c i e s ;

Genera l i s ed Arrhen ius ∗ k i n f ;

Genera l i s ed Arrhen ius ∗ k 0 ;

// Some (p o s s i b l e) Troe model parameters

bool Troe model ;

bool T2 supp l i ed ;

double a ;

double T1 ;

double T2 ;

double T3 ;

} ;

160 Gas model source code Appendix A

R e a c t i o n r a t e c o e f f i c i e n t ∗ c r e a t e p r e s s u r e d e p e n d e n t c o e f f i c i e n t (l u a S t a t e ∗L , Gas model

&g) ;

#endif

Listing A.7: Pressure-dependent rate coefficient, header file.

// Author : Rowan J . Gol lan

// Date : 16−Apr−2009
// Place : NIA, Hampton , Virginia , USA

//

// This i s a por t o f code wr i t t en by Brendan O’ F laher ty

// which i s found in gas models2 .

//

#include <cmath>

#include <sstream>

#include ” . . / . . / u t i l / source / u s e f u l . h”

#include ” . . / . . / u t i l / source / l u a s e r v i c e . hh”

#include ” pressure−dependent−r a t e . hh”

using namespace std ;

Pressure dependent : :

Pressure dependent (l u a S t a t e ∗L , Gas model &g)

: R e a c t i o n r a t e c o e f f i c i e n t ()

{
// I n i t i a l i s e k i n f

l u a g e t f i e l d (L , −1, ” k i n f ”) ;

k i n f = new Genera l i s ed Arrhen ius (L , g) ;

lua pop (L , 1) ;

// I n i t i a l i s e k 0

l u a g e t f i e l d (L , −1, ” k 0 ”) ;

k 0 = new Genera l i s ed Arrhen ius (L , g) ;

lua pop (L , 1) ;

// Pu l l out e f f i c i e n c i e s

r ead tab l e as map (L , −1, ” e f f i c i e n c i e s ” , e f f i c i e n c i e s) ;

// F i l l in Troe va lues , i f a v a i l a b l e . . .

Troe model = fa l se ;

l u a g e t f i e l d (L , −1, ”Troe”) ;

i f (l u a i s t a b l e (L , −1)) {
Troe model = true ;

l u a g e t f i e l d (L , −1, ”a”) ; a = luaL checknumber (L , −1) ; lua pop (L , 1) ;

l u a g e t f i e l d (L , −1, ”T1”) ; T1 = luaL checknumber (L , −1) ; lua pop (L , 1) ;

l u a g e t f i e l d (L , −1, ”T3”) ; T3 = luaL checknumber (L , −1) ; lua pop (L , 1) ;

l u a g e t f i e l d (L , −1, ”T2”) ;

i f (! lua i snumber (L , −1)) {
T2 supp l i ed = fa l se ;

T2 = 0 . 0 ;

}
else {

T2 supp l i ed = true ;

T2 = luaL checknumber (L , −1) ;

Section A.3 Pressure-dependent rate coefficient 161

}

lua pop (L , 1) ;

}
lua pop (L , 1) ;

// Setup array fo r s to rage o f molecular we igh t s

M . r e s i z e (g . g e t n u m b e r o f s p e c i e s ()) ;

// F i l l in molecular we igh t s . . .

for (int i s p = 0 ; i s p < g . g e t n u m b e r o f s p e c i e s () ; ++i s p) {
M [i s p] = g . molecu la r we ight (i s p) ;

}

}

Pressure dependent : :

˜ Pressure dependent ()

{
delete k i n f ;

delete k 0 ;

}

int

Pressure dependent : :

s e v a l (const gas data &Q)

{
// Find va lue o f t h i r d body concentra t ion

double M = compute th i rd body concent rat ion (Q) ;

// Evaluate the l im i t i n g reac t i on ra t e s (at h igh and low

// pressure l im i t s)

k i n f −>eva l (Q) ;

k 0 −>eva l (Q) ;

double k i n f = k i n f −>k () ;

double k 0 = k 0 −>k () ;

double p r = k 0 ∗M/ k i n f ;

double smal l = 1 .0 e−30;

double l o g p r = log10 (max(p r , smal l)) ;

// Lindemann−Hinshelwood model

double F = 1 . 0 ;

// Troe model

i f (Troe model) {

double F cent = (1 . 0 − a) ∗exp(−Q.T[0] / T3) + a ∗exp(−Q.T[0] / T1) ;

i f (T2 supp l i ed) {
F cent += exp(−T2 /Q.T[0]) ;

}

double l o g F cen t = log10 (max(F cent , smal l)) ;

double c = −0.4 − 0 .67∗ l o g F cen t ;

double n = 0.75 − 1 .27∗ l o g F cen t ;

162 Gas model source code Appendix A

double d = 0 . 1 4 ;

double numer = l o g p r + c ;

double denom = n − d∗numer ;

double f r a c = numer/denom ;

double l og F = log F cen t / (1 . 0 + f r a c ∗ f r a c) ;

F = pow(10 , log F) ;

}

k = F∗ k 0 ∗ k i n f ∗M/(k 0 ∗M + k i n f) ;

return SUCCESS;

}

// doub le

// Pressure dependent : :

// compute th i rd body concent ra t ion (const gas da ta &Q)

// {
// // F i r s t compute concentra t ion o f r e q u i s i t e s p e c i e s . . .

// doub le M = 0 . 0 ;

// map<in t , double > : : c o n s t i t e r a t o r i t ;

// f o r (i t = e f f i c i e n c i e s . beg in () ; i t != e f f i c i e n c i e s . end () ; ++i t) {
// in t i s p = i t−> f i r s t ;

// doub le e f f = i t−>second ;

// M += e f f ∗ (Q. massf [i s p]∗Q. rho / M [i s p]) ;

// }

// return M;

// }

double

compute th i rd body va lue (const gas data &Q, map<int , double> e f f i c i e n c i e s , vector<double>

M)

{
// F i r s t compute concentra t ion o f r e q u i s i t e s p e c i e s . . .

double tbv = 0 . 0 ;

map<int , double> : : c o n s t i t e r a t o r i t ;

for (i t = e f f i c i e n c i e s . begin () ; i t != e f f i c i e n c i e s . end () ; ++i t) {
int i s p = i t−> f i r s t ;

double e f f = i t−>second ;

tbv += e f f ∗ (Q. massf [i s p]∗Q. rho/M[i s p]) ;

}

return tbv ;

}

R e a c t i o n r a t e c o e f f i c i e n t ∗ c r e a t e p r e s s u r e d e p e n d e n t c o e f f i c i e n t (l u a S t a t e ∗L , Gas model

&g)

{
return new Pressure dependent (L , g) ;

}

Listing A.8: Pressure-dependent rate coefficient, source file.

Appendix B

Engine source code

B.1 Free-piston engine kernel

#ifndef FPE KERNEL HH

#define FPE KERNEL HH

// \ author Brendan T. O’ F laher ty

// \ b r i e f Free−p i s t on engine ke rne l

#include <s t r i ng>

#include <vector>

#include ” . . / . . / l i b / u t i l / source / u s e f u l . h”

#include ” . . / . . / l i b / gas /models /gas−model . hh”

#include ” . . / . . / l i b / gas / k i n e t i c s / r eac t i on−update . hh”

// free−p i s t on compressor

#define X 0

#define U 1

#define E 2

#define Q 3

#define A 4

// free−p i s t on engine

#define E L 2

#define E R 3

#define Q L 4

#define Q R 5

#define F 6

#define W 7

// exhaus t ing

#define M 0

#define ME 1

struct g l o b a l d a t a

{
std : : vector<double> u ; // i n i t i a l v e l o c i t y

std : : vector<double> m p ; // p i s t on mass

std : : vector<double> L c ; // cy l i nd e r l eng t h

std : : vector<double> D; // cy l i nd e r diameter

std : : vector<double> T ig ;

double dh ; // heat o f combustion

double t ; // current time

163

164 Engine source code Appendix B

double t l a s t ; // f i n a l time

double d t w r i t e ; // wr i t e i n t e r v a l

double d t s y s ; // system s t ep s i z e

double dt therm ; // thermodynamic s t ep s i z e

double t o l ; // to l e rance o f dynamics

} ;

Gas model∗ ge t ga s mode l p t r () ;

int s e t ga s mode l (std : : s t r i n g f i l e n a m e) ;

React ion update ∗ g e t r e a c t i o n u p d a t e p t r () ;

int s e t r e a c t i o n u p d a t e (std : : s t r i n g f i l e n a m e) ;

g l o b a l d a t a ∗ g e t g l o b a l d a t a p t r () ;

int s e t g l o b a l d a t a (std : : s t r i n g f i l e n a m e) ;

struct g l o b a l d a t a ∗ c r e a t e g l o b a l d a t a (std : : s t r i n g c f i l e) ;

#endif

Listing B.1: Free-piston engine kernel, header file.

#include ” f p e k e r n e l . hh”

#include ” . . / . . / l i b / u t i l / source / l u a s e r v i c e . hh”

using namespace std ;

Gas model∗ gmodel = 0 ;

Gas model∗ ge t ga s mode l p t r ()

{
return gmodel ;

}

int s e t ga s mode l (std : : s t r i n g f i l e n a m e)

{
gmodel = crea t e ga s mode l (f i l e n a m e) ;

return SUCCESS;

}

React ion update ∗ rupdate = 0 ;

React ion update ∗ g e t r e a c t i o n u p d a t e p t r ()

{
return rupdate ;

}

int s e t r e a c t i o n u p d a t e (std : : s t r i n g f i l e n a m e)

{
rupdate = crea t e Reac t i on update (f i l e name , ∗(g e t ga s mode l p t r ())) ;

i f (rupdate != 0)

return SUCCESS;

else

return FAILURE;

}

stat ic g l o b a l d a t a gd ;

Section B.1 Free-piston engine kernel 165

g l o b a l d a t a ∗ g e t g l o b a l d a t a p t r ()

{
return &gd ;

}

int s e t g l o b a l d a t a (std : : s t r i n g f i l e n a m e)

{
g l o b a l d a t a ∗ gdata = c r e a t e g l o b a l d a t a (f i l e n a m e) ;

i f (gdata != 0)

return SUCCESS;

else

return FAILURE;

}

g l o b a l d a t a ∗
c r e a t e g l o b a l d a t a (s t r i n g c f i l e)

{
l u a S t a t e ∗L = i n i t i a l i s e l u a S t a t e () ;

i f (l u a L d o f i l e (L , c f i l e . c s t r ()) != 0) {
p r i n t f (” Error in g l o b a l data input f i l e %s \n” , c f i l e . c s t r ()) ;

}

l u a g e t g l o b a l (L , ” data ”) ;

i f (! l u a i s t a b l e (L , −1)) {
p r i n t f (” Error in g l o b a l data d e c l a r a t i o n : a t ab l e i s expected .\n”) ;

}

g l o b a l d a t a ∗ gdata = g e t g l o b a l d a t a p t r () ;

gdata−>u = g e t v e c t o r (L , −1, ”u”) ;

gdata−>m p = g e t v e c t o r (L , −1, ”m p”) ;

gdata−>L c = g e t v e c t o r (L , −1, ” L c ”) ;

gdata−>D = g e t v e c t o r (L , −1, ”D”) ;

gdata−>T ig = g e t v e c t o r (L , −1, ” T ig ”) ;

gdata−>dh = get number (L , −1, ”dh”) ;

gdata−>t = get number (L , −1, ” t ”) ;

gdata−>t l a s t = get number (L , −1, ” t l a s t ”) ;

gdata−>d t w r i t e = get number (L , −1, ” d t w r i t e ”) ;

gdata−>d t s y s = get number (L , −1, ” d t s y s ”) ;

gdata−>dt therm = get number (L , −1, ” dt therm ”) ;

gdata−>t o l = get number (L , −1, ” t o l ”) ;

l u a c l o s e (L) ;

return gdata ;

}

Listing B.2: Free-piston engine kernel, source file.

166 Engine source code Appendix B

B.2 Free-piston engine tests

#ifndef FPE TEST HH

#define FPE TEST HH

// \ author Brendan T. O’ F laher ty

// \ b r i e f Test f unc t i ons

#include <vector>

#include <valarray>

#include <s t r i ng>

#include ” . . / . . / l i b / gas /models / gas data . hh”

int t e s t d i s c h a r g e c o e f f i c i e n t () ;

int t e s t g e t g eo m et r y () ;

int t e s t f r i c t i o n c o e f f i c i e n t (double b , std : : vector<double> u p) ;

int t e s t v a l v e o p e n i n g (std : : vector<double> t , double t0) ;

int t e s t i d e a l s o d s h o c k t u b e (std : : s t r i n g fname ,

double t l a s t ,

gas data Q1,

gas data Q4,

int NX = 1000) ;

int t e s t s o d s h o c k t u b e (std : : s t r i n g fname ,

double t l a s t ,

gas data Q1,

gas data Q4,

int NX = 1000) ;

int t e s t exhaus t sy s t em (std : : s t r i n g fname ,

std : : vector<double> y0v ,

gas data Q up ,

gas data Q,

gas data Q dn ,

double D,

double V,

bool d i sp l a c e ,

double t0 ,

double t l a s t ,

double dt ,

double t o l) ;

int p r i n t e n e r g y (std : : s t r i n g fname ,

double t ,

s td : : va larray<double> yout ,

gas data Q,

double m p ,

double m g) ;

int p r i n t s t a t e (std : : s t r i n g fname ,

double t ,

s td : : va larray<double> yout ,

gas data &Q) ;

int p r i n t s t a t e (std : : s t r i n g fname ,

double t ,

s td : : va larray<double> yout ,

std : : va larray<double> yout eL ,

Section B.2 Free-piston engine tests 167

std : : va larray<double> yout eR ,

gas data &Q1,

gas data &Q2,

double mgL,

double mgR) ;

int t e s t o t t o c y c l e (std : : s t r i n g fname ,

std : : vector<double> y0v ,

int event , gas data Q,

double x0 , double u0 ,

double m p ,

double L p ,

double x R ,

double D,

double dh ,

double t0 ,

double t l a s t ,

double dt wr i t e ,

double dt sys ,

double dt therm ,

double t o l) ;

s td : : vector<double>

t e s t f r e e p i s t o n c o m p r e s s o r (std : : s t r i n g fname ,

std : : vector<double> y0v ,

int event ,

gas data Q,

double x0 ,

double u0 ,

double m p ,

double L p ,

double L c ,

double D,

double p back ,

double dh ,

double t0 ,

double t l a s t ,

double dt wr i t e ,

double dt sys ,

double dt therm ,

double t o l) ;

s td : : vector<double>

t e s t f r e e p i s t o n e n g i n e (std : : s t r i n g fname ,

std : : vector<double> y0v fpe ,

std : : vector<double> y0v es ,

int event ,

int no cyc l e s ,

bool d i sp l a c e ,

gas data Q in ,

gas data Q ex ,

gas data Q L ,

gas data Q R,

double x0 ,

double u0 ,

double m p ,

double L p ,

168 Engine source code Appendix B

double L c ,

double D,

double dh ,

double t0 ,

double t l a s t ,

double dt wr i t e ,

double dt sys ,

double dt therm ,

double t o l) ;

#endif

Listing B.3: Test functions, header file.

#include <c s td io>

#include ” . . / . . / l i b / u t i l / source / u s e f u l . h”

#include ” . . / . . / l i b / gas /models /gas−model . hh”

#include ” . . / . . / l i b /nm/ source / o d e s o l v e r . hh”

#include ” . . / . . / l i b /nm/ source / l i n e a r i n t e r p o l a t i o n . hh”

#include ” f p e k e r n e l . hh”

#include ” sod . hh”

#include ” fpe system . hh”

#include ” fpe mode l s . hh”

#include ” f p e c o n t r o l . hh”

#include ” f p e t e s t s . hh”

using namespace std ;

FILE ∗ f out = 0 ; // output f i l e po in t e r

int

t e s t d i s c h a r g e c o e f f i c i e n t ()

{
double cdi , cde ;

vector<double> Lv ;

for (s i z e t i = 0 ; i <= 60 ; ++i) {
Lv . push back ((double) i ∗0 .005) ;

}
double Dv = 1 . 0 ;

s t r i n g in take (” in take ”) ;

s t r i n g exhaust (” exhaust ”) ;

for (s i z e t i = 0 ; i < Lv . s i z e () ; ++i) {
d i s c h a r g e c o e f f i c i e n t (cdi , Lv [i] , Dv, in take) ;

d i s c h a r g e c o e f f i c i e n t (cde , Lv [i] , Dv, exhaust) ;

p r i n t f (”%5.4 f %5.4 f %5.4 f \n” , Lv [i] /Dv, cdi , cde) ;

}
p r i n t f (”# done .\n”) ;

return SUCCESS;

}

int

Section B.2 Free-piston engine tests 169

t e s t g e t g eo m et r y ()

{
double x = 0 . 0 ;

double D = 0 . 2 ;

double L c = 0 . 8 ;

double x L = −1.0;

double x R = 1 . 0 ;

vector<double> geom (11) ;

get geometry (geom , x , D, L c , x L , x R) ;

p r i n t f (”A = %g\n” , geom [0]) ;

p r i n t f (”xp L = %g\n” , geom [1]) ;

p r i n t f (”xp R = %g\n” , geom [2]) ;

p r i n t f (” L i = %g\n” , geom [3]) ;

p r i n t f (”L p = %g\n” , geom [4]) ;

p r i n t f (”L L = %g\n” , geom [5]) ;

p r i n t f (”L R = %g\n” , geom [6]) ;

p r i n t f (”V L = %g\n” , geom [7]) ;

p r i n t f (”V R = %g\n” , geom [8]) ;

p r i n t f (”S L = %g\n” , geom [9]) ;

p r i n t f (”S R = %g\n” , geom [1 0]) ;

p r i n t f (”# done .\n”) ;

return SUCCESS;

}

int

t e s t f r i c t i o n c o e f f i c i e n t (double b ,

vector<double> u p)

{
double f ;

double eta = 0 . 2 2 2 ; // kinematic v i s c o s i t y o f SAE30 at 300K, cSt (approx)

double nu ;

p r i n t f (”#10ˆ4∗(eta ∗u/(p∗b)) ˆ0 . 5 , f h , f \n”) ;

for (s i z e t i = 0 ; i < u p . s i z e () ; ++i) {
m i x e d f r i c t i o n c o e f f i c i e n t (f , u p [i] , eta , P ATM, b) ;

nu = pow ((eta ∗ f abs (u p [i]) /(P ATM∗b)) , 0 . 5) ;

p r i n t f (”%5.4e %5.4e\n” , 1 e4∗nu , f) ;

}
p r i n t f (”# done .\n”) ;

return SUCCESS;

}

int

t e s t v a l v e o p e n i n g (vector<double> t , double t0)

{
// t e s t s both in take and exhaust v a l v e s

double D = s q r t (4 . 0/ PI) ;

double t1 = t0 + 0 . 2 ;

double A max = 0.25∗ PI∗D∗D;

Valve v in (” in take ” , 10 . 0 , D) ;

Valve v out (” exhaust ” , 10 . 0 , D) ;

170 Engine source code Appendix B

p r i n t f (”# t , A\n”) ;

p r i n t f (”%4.3 f %4.3 f %4.3 f %4.3 f %4.3 f %4.3 f \n” ,

t [0] , v in . g e t a r e a () , v in . e v a l d i s c h a r g e c o e f f i c i e n t () ,

v out . g e t a r e a () , v out . e v a l d i s c h a r g e c o e f f i c i e n t () , A max) ;

double dt ;

for (s i z e t i = 1 ; i < t . s i z e () ; ++i) {
// a simple c r i t e r i o n fo r the s t a r t o f va l v e open and c l o s e

dt = t [i] − t [i −1] ;

i f (t [i] > t0 && t [i] < t1) {
v in . open (dt) ;

v out . open (dt) ;

}
i f (t [i] > t1) {

v in . c l o s e (dt) ;

v out . c l o s e (dt) ;

}
p r i n t f (”%4.3 f %4.3 f %4.3 f %4.3 f %4.3 f %4.3 f \n” ,

t [i] , v i n . g e t a r e a () , v in . e v a l d i s c h a r g e c o e f f i c i e n t () ,

v out . g e t a r e a () , v out . e v a l d i s c h a r g e c o e f f i c i e n t () , A max) ;

}
p r i n t f (”# done .\n”) ;

return SUCCESS;

}

int

t e s t i d e a l s o d s h o c k t u b e (s t r i n g fname ,

double t l a s t ,

gas data Q1,

gas data Q4,

int NX)

{
// Enter in at what time you want the p r o f i l e .

double t = t l a s t ;

// Enter in diaphragm l o ca t i on

double x0 = 0 . 5 ;

// How long do you want the shock tube to be?

double L = 1 . 0 ;

double u4 = 0 . 0 ;

Gas model∗ g = ge t ga s mode l p t r () ;

gas data Q2, Q3 ;

g−> i n i t i a l i s e g a s d a t a (Q2) ;

g−> i n i t i a l i s e g a s d a t a (Q3) ;

copy gas data (Q1, Q2) ;

copy gas data (Q4, Q3) ;

i f (x0 − Q4. a∗ t < 0 . 0) {
p r i n t f (”Expansion wave reaches end o f tube .\n”) ;

p r i n t f (”Minimum diaphragm p o s i t i o n must be : %e\n” , (Q4 . a∗ t)) ;

return FAILURE;

}
i f (L − (x0 + Q1 . a∗ t) < 0 . 0) {

p r i n t f (”Shock wave reaches end o f tube .\n”) ;

p r i n t f (”Minimum length must be : %e\n” , (x0 + Q1 . a∗ t)) ;

Section B.2 Free-piston engine tests 171

return FAILURE;

}

double t o l = 1e−6;

p2p1 fun ∗ zfun = new p2p1 fun (Q1, Q2, Q3, Q4) ;

Muller p2p1 so lve r (zfun , t o l) ;

// the se bounds shou ld always be s u f f i c i e n t to guarantee a root

double p2p1 = p2p1 so lve r (0 . 0 , Q4 . p/Q1 . p) ;

double g1 = g−>gamma(Q1) ;

double r2r1 = (1 . 0 + ((g1 + 1 . 0) /(g1 − 1 . 0)) ∗p2p1) / ((g1 + 1 . 0) /(g1 − 1 . 0) + p2p1) ;

double W = Q1. a∗ s q r t (((g1 + 1 . 0) /(2∗ g1)) ∗(p2p1 − 1 . 0) + 1 . 0) ;

double u2 = g e t v e l o c i t y b e h i n d s h o c k (1 . 0 / r2r1 , W) ;

p r i n t f (”p2/p1 = %12.11 e\n” , p2p1) ;

p r i n t f (” r2 / r1 = %12.11e , W = %12.11e , up = %12.11 e\n” , r2r1 , W, u2) ;

Q2 . rho = Q1 . rho∗ r2r1 ;

Q2 . p = Q1 . p∗p2p1 ;

g−>eva l the rmo s ta t e rhop (Q2) ;

// s t a r t at Q3(=Q4) and s t ep across wave

double u3 = 0 . 0 ;

vector< vector<double> > s o l ;

double s o ln [] = {Q3. rho , Q3 . p , Q3 .T[0] , u3 } ;

vector<double> temp (soln , s o ln +4) ;

s o l . push back (temp) ;

double du = (u2 − u4) /NX;

for (int i = 0 ; i < NX; ++i) {
s t e p a c r o s s e x p a n s i o n d u (Q3, u3 , du) ;

// p r i n t f (” s t ep %i , p = %g : ” , i , Q3. p) ;

double s o ln [] = {Q3. rho , Q3 . p , Q3 .T[0] , u3 } ;

vector<double> temp (soln , s o ln +4) ;

s o l . push back (temp) ;

}

// because we s tepped across the shock us ing u , there i s an error in

// the pressure boundary condi t ion , re−eva lua t e . . .

Q2. p = Q3 . p ;

g−>eva l the rmo s ta t e rhop (Q2) ;

double xs = x0 + W∗ t ; // Location o f shock

double xc = x0 + u2∗ t ; // Location o f contac t d i s c on t i nu i t y

double dx = ((t ∗(u2 − Q3. a)) − (−Q4. a∗ t)) /NX;

// Now we can pr in t the s o l u t i on .

f out = fopen (fname . c s t r () , ”w”) ;

f p r i n t f (fout , ”# x , rho , p , T, u\n”) ;

// We go l e f t to r i g h t

// Region 4 to expansion fan

f p r i n t f (f out , ”# reg i on 4 s t a r t to expansion fan \n”) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , 0 . 0 , Q4 . rho , Q4 . p , Q4 .T[0] , u4) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , x0 − Q4. a∗ t , Q4 . rho , Q4 . p , Q4 .T[0] , u4) ;

vector<double> space (2 , 0 . 0) ;

172 Engine source code Appendix B

vector< vector<double> > rx , Tx , px , ux ;

for (int i = 0 ; i < NX; ++i) {
rx . push back (space) ;

Tx . push back (space) ;

px . push back (space) ;

ux . push back (space) ;

}
rx [0] [0] = x0 − Q4. a∗ t ;

px [0] [0] = rx [0] [0] ;

Tx [0] [0] = rx [0] [0] ;

ux [0] [0] = rx [0] [0] ;

for (int i = 1 ; i < NX; ++i) {
rx [i] [0] = rx [i −1] [0] + dx ;

px [i] [0] = rx [i] [0] ;

Tx [i] [0] = rx [i] [0] ;

ux [i] [0] = rx [i] [0] ;

}
for (int i = 0 ; i < NX; ++i) {

rx [i] [1] = s o l [i] [0] ;

px [i] [1] = s o l [i] [1] ;

Tx [i] [1] = s o l [i] [2] ;

ux [i] [1] = s o l [i] [3] ;

}
// Expansion fan

f p r i n t f (fout , ”# expansion fan \n”) ;

for (int i = 0 ; i < NX; ++i) {
f p r i n t f (fout , ”%e %e %e %e %e\n” , rx [i] [0] , rx [i] [1] , px [i] [1] , Tx [i] [1] , ux [i

] [1]) ;

}
// Fan to contac t sur face

f p r i n t f (fout , ”# fan to contact s u r f a c e \n”) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , t ∗(u2 − Q3. a)+x0 , Q3 . rho , Q3 . p , Q3 .T[0] , u2) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , xc , Q3 . rho , Q3 . p , Q3 .T[0] , u2) ;

// Contact sur face to shock

f p r i n t f (fout , ”# contact s u r f a c e to shock\n”) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , xc , Q2 . rho , Q2 . p , Q2 .T[0] , u2) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , xs , Q2 . rho , Q2 . p , Q2 .T[0] , u2) ;

// Shock to reg ion 1 ’ s end

f p r i n t f (fout , ”# shock to r eg i on 1 end\n”) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , xs , Q1 . rho , Q1 . p , Q1 .T[0] , 0 . 0) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , L , Q1 . rho , Q1 . p , Q1 .T[0] , 0 . 0) ;

f p r i n t f (fout , ”# done .\n”) ;

f c l o s e (f out) ;

delete zfun ;

return SUCCESS;

}

int

t e s t s o d s h o c k t u b e (s t r i n g fname ,

double t l a s t ,

gas data Q1,

gas data Q4,

int NX)

{
// Enter the t o l e rance

Section B.2 Free-piston engine tests 173

double t o l = 1e−6;

// Enter at what time you want the p r o f i l e .

double t = t l a s t ;

// Enter diaphragm l o ca t i on

double x0 = 0 . 5 ;

// How long do you want the shock tube to be?

double L = 1 . 0 ;

double u4 = 0 . 0 ;

Gas model∗ g = ge t ga s mode l p t r () ;

gas data Q2, Q3 ;

g−> i n i t i a l i s e g a s d a t a (Q2) ;

g−> i n i t i a l i s e g a s d a t a (Q3) ;

copy gas data (Q1, Q2) ;

copy gas data (Q4, Q3) ;

i f (x0 − Q4. a∗ t < 0 . 0) {
p r i n t f (”Expansion wave reaches end o f tube .\n”) ;

p r i n t f (”Minimum diaphragm p o s i t i o n must be : %e\n” , (Q4 . a∗ t)) ;

return FAILURE;

}
i f (L − (x0 + Q1 . a∗ t) < 0 . 0) {

p r i n t f (”Shock wave reaches end o f tube .\n”) ;

p r i n t f (”Minimum length must be : %e\n” , (x0 + Q1 . a∗ t)) ;

return FAILURE;

}

// f i r s t s o l v e the i d e a l d ens i t y ra t io , then account f o r r e a l gas e f f e c t s

p2p1 fun ∗ zfun = new p2p1 fun (Q1, Q2, Q3, Q4) ;

Muller p2p1 so lve r (zfun , t o l) ;

double p2p1 = p2p1 so lve r (0 . 0 , Q4 . p/Q1 . p) ;

double g1 = g−>gamma(Q1) ;

double r2r1 = (1 . 0 + ((g1 + 1 . 0) /(g1 − 1 . 0)) ∗p2p1) / ((g1 + 1 . 0) /(g1 − 1 . 0) + p2p1) ;

Q2 . p = p2p1∗Q1. p ;

r 1 r2 fun ∗ r fun = new r 1 r 2 fun (Q1, Q2, Q3, Q4, NX) ;

Muller r 1 r 2 s o l v e r (rfun , t o l) ;

// exper ience shows the se bounds shou ld work

double r1r2 = r 1 r 2 s o l v e r (0 . 3/ r2r1 , 1 .1/ r2r1) ;

// At t h i s point , we have so l v ed the dens i t y r a t i o

// across the shock and thereby almost eva lua t ed

// the en t i r e s o l u t i on . However , because t h i s s o l u t i on

// has been wrapped up in the zero f i nd in g method ,

// we must do i t again here to ge t the data .

//

// Choose p o r t a b i l i t y over e f f i c i e n c y (Rule 4 , Unix Phi losophy) .

double W;

g e t s t a t e b e h i n d s h o c k (Q2, Q1, r1r2) ;

g e t shock speed (W, r1r2 , Q1 , Q2) ;

double u2 = g e t v e l o c i t y b e h i n d s h o c k (r1r2 , W) ;

p r i n t f (”p2/p1 = %12.11 e\n” , Q2 . p/Q1 . p) ;

p r i n t f (” r2 / r1 = %12.11e , W = %12.11e , up = %12.11 e\n” , 1/ r1r2 , W, u2) ;

174 Engine source code Appendix B

// s t a r t at Q3(=Q4) and s t ep across wave

double u3 = 0 . 0 ;

vector< vector<double> > s o l ;

double s o ln [] = {Q3. rho , Q3 . p , Q3 .T[0] , u3 } ;

vector<double> temp (soln , s o ln +4) ;

s o l . push back (temp) ;

double du = (u2 − u4) /NX;

for (int i = 0 ; i < NX; ++i) {
s t e p a c r o s s e x p a n s i o n d u (Q3, u3 , du) ;

double s o ln [] = {Q3. rho , Q3 . p , Q3 .T[0] , u3 } ;

vector<double> temp (soln , s o ln +4) ;

s o l . push back (temp) ;

}

// because we s tepped across the shock us ing u , there i s an error in

// the pressure boundary condi t ion , re−eva lua t e . . .

Q2. p = Q3 . p ;

g−>eva l the rmo s ta t e rhop (Q2) ;

double xs = x0 + W∗ t ; // Location o f shock

double xc = x0 + u2∗ t ; // Location o f contac t d i s c on t i nu i t y

double dx = ((t ∗(u2 − Q3. a)) − (−Q4. a∗ t)) /NX;

// Now we can pr in t the s o l u t i on .

f out = fopen (fname . c s t r () , ”w”) ;

f p r i n t f (fout , ”# x , rho , p , T, u\n”) ;

// We go l e f t to r i g h t

// Region 4 to expansion fan

f p r i n t f (f out , ”# reg i on 4 s t a r t to expansion fan \n”) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , 0 . 0 , Q4 . rho , Q4 . p , Q4 .T[0] , u4) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , x0 − Q4. a∗ t , Q4 . rho , Q4 . p , Q4 .T[0] , u4) ;

vector<double> space (2 , 0 . 0) ;

vector< vector<double> > rx , Tx , px , ux ;

for (int i = 0 ; i < NX; ++i) {
rx . push back (space) ;

Tx . push back (space) ;

px . push back (space) ;

ux . push back (space) ;

}
rx [0] [0] = x0 − Q4. a∗ t ;

px [0] [0] = rx [0] [0] ;

Tx [0] [0] = rx [0] [0] ;

ux [0] [0] = rx [0] [0] ;

// p r i n t f (”% i %i %i %i \n” , rx . s i z e () , px . s i z e () , Tx . s i z e () , ux . s i z e ()) ;

for (int i = 1 ; i < NX; ++i) {
rx [i] [0] = rx [i −1] [0] + dx ;

px [i] [0] = rx [i] [0] ;

Tx [i] [0] = rx [i] [0] ;

ux [i] [0] = rx [i] [0] ;

}

Section B.2 Free-piston engine tests 175

for (int i = 0 ; i < NX; ++i) {
rx [i] [1] = s o l [i] [0] ;

px [i] [1] = s o l [i] [1] ;

Tx [i] [1] = s o l [i] [2] ;

ux [i] [1] = s o l [i] [3] ;

}
// Expansion fan

f p r i n t f (fout , ”# expansion fan \n”) ;

for (int i = 0 ; i < NX; ++i) {
f p r i n t f (fout , ”%e %e %e %e %e\n” , rx [i] [0] , rx [i] [1] , px [i] [1] , Tx [i] [1] , ux [i

] [1]) ;

}
// Fan to contac t sur face

f p r i n t f (fout , ”# fan to contact s u r f a c e \n”) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , t ∗(u2 − Q3. a)+x0 , Q3 . rho , Q3 . p , Q3 .T[0] , u2) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , xc , Q3 . rho , Q3 . p , Q3 .T[0] , u2) ;

// Contact sur face to shock

f p r i n t f (fout , ”# contact s u r f a c e to shock\n”) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , xc , Q2 . rho , Q2 . p , Q2 .T[0] , u2) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , xs , Q2 . rho , Q2 . p , Q2 .T[0] , u2) ;

// Shock to reg ion 1 ’ s end

f p r i n t f (fout , ”# shock to r eg i on 1 end\n”) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , xs , Q1 . rho , Q1 . p , Q1 .T[0] , 0 . 0) ;

f p r i n t f (fout , ”%e %e %e %e %e\n” , L , Q1 . rho , Q1 . p , Q1 .T[0] , 0 . 0) ;

f p r i n t f (fout , ”# done .\n”) ;

f c l o s e (f out) ;

delete zfun ;

delete r fun ;

return SUCCESS;

}

int

t e s t exhaus t sy s t em (s t r i n g fname ,

vector<double> y0v ,

gas data Q i ,

gas data Q,

gas data Q e ,

double D,

double V,

bool d i sp l a c e ,

double t0 ,

double t l a s t ,

double dt ,

double t o l)

{
int ndim = (int) y0v . s i z e () ;

va larray<double> y0 (ndim) ;

for (int i = 0 ; i < ndim ; ++i) y0 [i] = y0v [i] ;

Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

// make a l o c a l copy o f the gas data

gas data Q 0 , Q 1 , Q 2 ;

g−> i n i t i a l i s e g a s d a t a (Q 0) ;

g−> i n i t i a l i s e g a s d a t a (Q 1) ;

176 Engine source code Appendix B

g−> i n i t i a l i s e g a s d a t a (Q 2) ;

copy gas data (Q i , Q 0) ;

copy gas data (Q, Q 1) ;

copy gas data (Q e , Q 2) ;

bool t e s t f l a g = fa l se ;

Exhaust system ode ∗ e s ode = new Exhaust system ode(&Q 1 , &Q 0 , &Q 2 , D, to l , ndim ,

t e s t f l a g , d i s p l a c e) ;

Exhaust system es (es ode , y0 , dt , V, Q 1) ;

f out = fopen (fname . c s t r () , ”w”) ;

f p r i n t f (fout , ”# t , m, m∗e , ”) ;

for (int i = 0 ; i < nsp ; ++i) {
f p r i n t f (fout , ”m∗Y %s , ” , g−>spec ies name (i) . c s t r ()) ;

}
f p r i n t f (fout , ”mout , T, p , rho , ”) ;

for (int i = 0 ; i < nsp ; ++i) {
f p r i n t f (fout , ”X %s , ” , g−>spec ies name (i) . c s t r ()) ;

}
f p r i n t f (fout , ”\n”) ;

f c l o s e (f out) ;

va larray<double> yout , y in ;

yout . r e s i z e (ndim) ;

yin . r e s i z e (ndim) ;

// p r i n t f (”m0 = %g\n” , V∗Q 1 . rho) ;

es . ge t yout (yout) ;

p r i n t s t a t e (fname , t0 , yout , Q 1) ;

// pr in t ene rgy (fname , t0 , es . g e t you t () , Q, m p , m g) ;

while (t0 < t l a s t) {
es . advance f lu id dynamics (dt) ;

e s . g e t y i n (yin) ;

e s . ge t yout (yout) ;

// increment time

t0 += dt ;

// f i n a l i s e s t ep

es . f i n a l i s e s t e p (Q 1) ;

p r i n t s t a t e (fname , t0 , yout , Q 1) ;

// pr in t ene rgy (fname , t0 , fpc . g e t you t () , Q, m p , m g) ;

}
f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”# done .\n”) ;

f c l o s e (f out) ;

return SUCCESS;

}

int

p r i n t e n e r g y (s t r i n g fname , double t , va larray<double> yout , gas data Q, double m p ,

double m g)

{
// g l o b a l d a t a ∗ gd = g e t g l o b a l d a t a p t r () ;

Section B.2 Free-piston engine tests 177

double ke = 0.5∗m p∗yout [1] ∗ yout [1] ;

// doub le mg = Q. rho ∗0.25∗PI∗gd−>D∗gd−>D∗(gd−>x R − yout [0]) ;

double e = m g∗yout [2] ;

f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”%12.11e , %12.11e , %12.11 e\n” , t , ke , e) ;

f c l o s e (f out) ;

return SUCCESS;

}

int

p r i n t e n e r g y (s t r i n g fname , double t , va larray<double> yout , gas data QL, gas data QR,

double m p , double m gL , double m gR)

{
double ke = 0.5∗m p∗yout [1] ∗ yout [1] ;

double eL = m gL∗yout [2] ;

double eR = m gR∗yout [3] ;

f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”%12.11e , %12.11e , %12.11e , %12.11 e\n” , t , ke , eL , eR) ;

f c l o s e (f out) ;

return SUCCESS;

}

int

p r i n t s t a t e (s t r i n g fname , double t , va larray<double> yout , gas data &Q)

{
Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”%12.11e , ” , t) ;

for (s i z e t i = 0 ; i < yout . s i z e () ; ++i) {
f p r i n t f (fout , ”%12.11e , ” , yout [i]) ;

}
f p r i n t f (fout , ”%12.11e , %12.11e , %12.11e , ” , Q.T[0] , Q. p , Q. rho) ;

vector<double> molef (nsp , 0 . 0) ;

conver t mass f2mole f (Q. massf , g−>M() , molef) ;

for (int i s p = 0 ; i s p < nsp ; ++i s p) {
f p r i n t f (fout , ”%12.11e , ” , molef [i s p]) ;

}
f p r i n t f (fout , ”\n”) ;

f c l o s e (f out) ;

return SUCCESS;

}

int

p r i n t s t a t e (s t r i n g fname , double t , va larray<double> yout , va larray<double> yout L ,

va larray<double> yout R , gas data &Q1, gas data &Q2, double mgL, double mgR)

{
Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”%12.11e , ” , t) ;

178 Engine source code Appendix B

for (s i z e t i = 0 ; i < yout . s i z e () ; ++i) {
f p r i n t f (fout , ”%12.11e , ” , yout [i]) ;

}
for (s i z e t i = 0 ; i < 2 ; ++i) { // only mass and energy

f p r i n t f (fout , ”%12.11e , ” , yout L [i]) ;

}
for (s i z e t i = 0 ; i < 2 ; ++i) { // only mass and energy

f p r i n t f (fout , ”%12.11e , ” , yout R [i]) ;

}
// f p r i n t f (fout , ”%12.11e , %12.11e , %12.11e , %12.11e , %12.11e , ” , t , yout [X] , yout [

U] , yout [E L] , yout [E R]) ;

f p r i n t f (fout , ”%12.11e , %12.11e , %12.11e , %12.11e , %12.11e , %12.11e , %12.11e , %12.11e

, ” , Q1 .T[0] , Q1 . p , Q1 . rho , mgL, Q2 .T[0] , Q2 . p , Q2 . rho , mgR) ;

vector<double> molef (nsp , 0 . 0) ;

conver t mass f2mole f (Q1 . massf , g−>M() , molef) ;

for (int i s p = 0 ; i s p < nsp ; ++i s p) f p r i n t f (fout , ”%12.11e , ” , molef [i s p]) ;

conver t mass f2mole f (Q2 . massf , g−>M() , molef) ;

for (int i s p = 0 ; i s p < nsp ; ++i s p) f p r i n t f (fout , ”%12.11e , ” , molef [i s p]) ; f p r i n t f (

fout , ”\n”) ;

f c l o s e (f out) ;

return SUCCESS;

}

int

t e s t o t t o c y c l e (s t r i n g fname ,

vector<double> y0v ,

int event ,

gas data Q0,

double x0 ,

double u0 ,

double m p ,

double L p ,

double L c ,

double D,

double dh ,

double t0 ,

double t l a s t ,

double dt wr i t e ,

double dt sys ,

double dt therm ,

double t o l)

{
int ndim = (int) y0v . s i z e () ;

va larray<double> y0 (ndim) ;

for (int i = 0 ; i < ndim ; ++i) y0 [i] = y0v [i] ;

Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

// make a l o c a l copy o f the gas data

gas data Q;

g−> i n i t i a l i s e g a s d a t a (Q) ;

copy gas data (Q0, Q) ;

// determine the number o f counts between wr i t i n g the s o l u t i on

Section B.2 Free-piston engine tests 179

int i w r i t e = 0 ;

int nwrite = (int) (d t w r i t e / d t s y s) ;

// uncomment f ree−p i s t on or cranksha f t dr iven engine as requ i red

Free p i s ton compre s so r ode ∗ fpc ode = new Free p i s ton compre s so r ode (&Q, m p , x0 , u0 ,

L p , L c , D, to l , ndim , true) ;

Free p i s ton compre s so r fpc (fpc ode , y0 , dt sys , dt therm , Q. rho) ;

//Crankshaf t compressor ode ∗ cc ode = new Crankshaf t compressor ode(&Q, m p , x0 , u0 ,

L p , L c , D, t o l , ndim , t rue) ;

//Crankshaf t compressor fpc (cc ode , y0 , d t sy s , dt therm , Q. rho) ;

f out = fopen (fname . c s t r () , ”w”) ;

f p r i n t f (fout , ”# t , x , u , e , q , T, p , rho , ”) ;

for (int i = 0 ; i < nsp ; ++i) {
f p r i n t f (fout , ”%s , ” , g−>spec ies name (i) . c s t r ()) ;

}
f p r i n t f (fout , ”\n”) ;

// f p r i n t f (fout , ”# t , KE, E\n”) ;
f c l o s e (f out) ;

va larray<double> yout , y in ;

yout . r e s i z e (ndim) ;

yin . r e s i z e (ndim) ;

p r i n t s t a t e (fname , t0 , fpc . ge t yout () , Q) ;

// doub le m g = fpc ode−>get m0 () ;

// pr in t ene rgy (fname , t0 , fpc . g e t you t () , Q, m p , m g) ;

double L0 = L c ;

double L1 ;

bool heat added = fa l se ;

double tevent = 0 . 0 ;

// p r i n t f (”%g %g %g\n” , m p , m g , fpc ode−>get m0 ()) ;

while (t0 < t l a s t) {
fpc . advance dynamics (Q, d t s y s) ;

y in = fpc . g e t y i n () ;

yout = fpc . ge t yout () ;

i f (yout [event] < 0 && ! heat added) {
// i f the p i s t on r e v e r s e s d i r e c t i on

// and we are running an o t t o cy c l e

// take a c on t r o l l e d step , pr int , then cont inue .

double t f [] = { t0+dt sys , t0 } ;

double yf [] = {yout [event] , y in [event] } ;

vector<double> t f a (t f , t f +2) ;

vector<double> yfa (yf , y f +2) ;

l i n e a r e v a l (0 . 0 , tevent , yfa , t f a) ;

double dt f = tevent − t0 ;

f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”# tak ing a f i n a l s tep from %g to %g\n” , t0 , tevent) ;

f c l o s e (f out) ;

fpc . advance dynamics (Q, d t f) ;

180 Engine source code Appendix B

// increment time

t0 = tevent ;

// prepare f o r cont inua t ion

fpc . f i n a l i s e s t e p (Q) ;

p r i n t s t a t e (fname , t0 , fpc . ge t yout () , Q) ;

// pr in t ene rgy (fname , t0 , fpc . g e t you t () , Q, m p , m g) ;

// add heat

fpc . i n s t a n t a n e o u s h e a t a d d i t i o n (dh) ;

fpc . f i n a l i s e s t e p (Q) ;

p r i n t s t a t e (fname , t0 , fpc . ge t yout () , Q) ;

// pr in t ene rgy (fname , t0 , fpc . g e t you t () , Q, m p , m g) ;

heat added = true ;

L1 = L c − fpc . ge t yout () [0] ;

p r i n t f (” compress ion r a t i o = %g\n” , L0/L1) ;

continue ;

}
// i f (Q. p < P ATM) break ;

i f (yout [0] < 0 . 0) break ;

// i f (yout [4] > 3∗PI) break ;

// increment time

t0 += d t s y s ;

// prepare f o r next s t ep

fpc . f i n a l i s e s t e p (Q) ;

// increment iw r i t e

++i w r i t e ;

i f (i w r i t e >= nwrite) {
p r i n t s t a t e (fname , t0 , fpc . ge t yout () , Q) ;

// pr in t ene rgy (fname , t0 , fpc . g e t you t () , Q, m p , m g) ;

i w r i t e = 0 ;

}
}
f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”# done .\n”) ;

f c l o s e (f out) ;

return SUCCESS;

}

vector<double>

t e s t f r e e p i s t o n c o m p r e s s o r (s t r i n g fname ,

vector<double> y0v ,

int event ,

gas data Q0,

double x0 ,

double u0 ,

double m p ,

double L p ,

double L c ,

Section B.2 Free-piston engine tests 181

double D,

double p back ,

double dh ,

double t0 ,

double t l a s t ,

double dt wr i t e ,

double dt sys ,

double dt therm ,

double t o l)

{
int ndim = (int) y0v . s i z e () ;

va larray<double> y0 (ndim) ;

for (int i = 0 ; i < ndim ; ++i) y0 [i] = y0v [i] ;

Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

// make a l o c a l copy o f the gas data

gas data Q;

g−> i n i t i a l i s e g a s d a t a (Q) ;

copy gas data (Q0, Q) ;

// determine the number o f counts between wr i t i n g the s o l u t i on

int i w r i t e = 0 ;

int nwrite = (int) (d t w r i t e / d t s y s) ;

Free p i s ton compre s so r ode ∗ fpc ode = new Free p i s ton compre s so r ode (&Q, m p , x0 , u0 ,

L p , L c , D, to l , ndim , true , p back) ;

Free p i s ton compre s so r fpc (fpc ode , y0 , dt sys , dt therm , Q. rho) ;

f out = fopen (fname . c s t r () , ”w”) ;

f p r i n t f (fout , ”# t , x , u , e , q , T, p , rho , ”) ;

for (int i = 0 ; i < nsp ; ++i) {
f p r i n t f (fout , ”%s , ” , g−>spec ies name (i) . c s t r ()) ;

}
f p r i n t f (fout , ”\n”) ;

// f p r i n t f (fout , ”# t , KE, E\n”) ;
f c l o s e (f out) ;

va larray<double> yout , y in ;

yout . r e s i z e (ndim) ;

yin . r e s i z e (ndim) ;

p r i n t s t a t e (fname , t0 , fpc . ge t yout () , Q) ;

// doub le m g = fpc ode−>get m0 () ;

// pr in t ene rgy (fname , t0 , fpc . g e t you t () , Q, m p , m g) ;

double tevent = 0 . 0 ;

while (t0 < t l a s t) {
fpc . advance chemistry (Q, d t s y s) ;

fpc . advance dynamics (Q, d t s y s) ;

y in = fpc . g e t y i n () ;

yout = fpc . ge t yout () ;

i f (yout [event] < 0) {
// i f the p i s t on po s i t i on goes below zero

// take a c on t r o l l e d step , pr int , then e x i t .

182 Engine source code Appendix B

double t f [] = { t0+dt sys , t0 } ;

double yf [] = {yout [event] , y in [event] } ;

vector<double> t f a (t f , t f +2) ;

vector<double> yfa (yf , y f +2) ;

l i n e a r e v a l (0 . 0 , tevent , yfa , t f a) ;

double dt f = tevent − t0 ;

f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”# tak ing a f i n a l s tep from %g to %g\n” , t0 , tevent) ;

f c l o s e (f out) ;

fpc . advance chemistry (Q, d t f) ;

fpc . advance dynamics (Q, d t f) ;

// increment time

t0 = tevent ;

t l a s t = tevent ;

fpc . f i n a l i s e s t e p (Q) ;

p r i n t s t a t e (fname , t0 , fpc . ge t yout () , Q) ;

// pr in t ene rgy (fname , t0 , fpc . g e t you t () , Q, m p , m g) ;

// break

break ;

}

// increment time

t0 += d t s y s ;

// prepare f o r next s t ep

fpc . f i n a l i s e s t e p (Q) ;

// increment iw r i t e

++i w r i t e ;

i f (i w r i t e >= nwrite) {
p r i n t s t a t e (fname , t0 , fpc . ge t yout () , Q) ;

// pr in t ene rgy (fname , t0 , fpc . g e t you t () , Q, m p , m g) ;

i w r i t e = 0 ;

}
}
f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”# done .\n”) ;

f c l o s e (f out) ;

double temp [] = { fpc . ge t yout () [0] , fpc . ge t yout () [1] , fpc . ge t yout () [2] , Q.T [0] } ;

vector<double> rva lue (temp , temp+4) ;

return rva lue ;

}

vector<double>

t e s t f r e e p i s t o n e n g i n e (s t r i n g fname ,

vector<double> y0v fpe ,

vector<double> y0v es ,

int event ,

int no cyc l e s ,

Section B.2 Free-piston engine tests 183

bool d i sp l a c e ,

gas data Qin ,

gas data Qex ,

gas data QL,

gas data QR,

double x0 ,

double u0 ,

double m p ,

double L p ,

double L c ,

double D,

double dh ,

double t0 ,

double t l a s t ,

double dt wr i t e ,

double dt sys ,

double dt therm ,

double t o l)

{
int ndim fpe = (int) y0v fpe . s i z e () ;

va larray<double> y0 fpe (0 . 0 , ndim fpe) ;

for (int i = 0 ; i < ndim fpe ; ++i) y0 fpe [i] = y0v fpe [i] ;

double gap = 0.5∗ L c ; // shou ld be as b i g as ever needed

double port = D/2 ;

double x L = −L p − L c − port − gap ;

double x R = L c ;

int ndim es = (int) y0v es . s i z e () ;

va larray<double> y0 es (0 . 0 , ndim es) ;

for (int i = 0 ; i < ndim es ; ++i) {
y0 es [i] = y0v es [i] ;

}

valarray<double> yout L (0 . 0 , ndim es) ;

va larray<double> yout R (0 . 0 , ndim es) ;

Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

// make a l o c a l copy o f the gas data

gas data Q in , Q L , Q R, Q exL , Q exR ;

g−> i n i t i a l i s e g a s d a t a (Q in) ;

g−> i n i t i a l i s e g a s d a t a (Q L) ;

g−> i n i t i a l i s e g a s d a t a (Q R) ;

g−> i n i t i a l i s e g a s d a t a (Q exL) ;

g−> i n i t i a l i s e g a s d a t a (Q exR) ;

copy gas data (Qin , Q in) ; // in take a i r

copy gas data (QL, Q L) ; // l e f t c y l i n d e r

copy gas data (QR, Q R) ; // r i g h t c y l i nd e r

copy gas data (Qex , Q exL) ; // exhaust a i r

copy gas data (Qex , Q exR) ; // exhaust a i r

double A = 0.25∗ PI∗D∗D;

double L L = (x0 − L p /2 . 0) − x L ;

double L R = x R − (x0 + L p /2 . 0) ;

double V L = L L∗A;

184 Engine source code Appendix B

double V R = L R∗A;

double m gL = V L∗Q L . rho ;

double m gR = V R∗Q R . rho ;

// determine the number o f counts between wr i t i n g the s o l u t i on

int i w r i t e = 0 ;

int nwrite = (int) (d t w r i t e / d t s y s) ;

F r e e p i s t o n e n g i n e o d e ∗ fpe ode = new F r e e p i s t o n e n g i n e o d e (&Q L , &Q R, m p , x0 , u0 ,

L p , L c , x L , x R , D, m gL , m gR , to l , ndim fpe , true) ;

Exhaust system ode ∗ es ode L = new Exhaust system ode(&Q L , &Q in , &Q exL , D, to l ,

ndim es , d i s p l a c e) ;

Exhaust system ode ∗ es ode R = new Exhaust system ode(&Q R, &Q in , &Q exR , D, to l ,

ndim es , d i s p l a c e) ;

F r e e p i s t o n e n g i n e fpe (fpe ode , es ode L , es ode R , y0 fpe , y0 es , dt sys , dt therm ,

m gL , m gR) ;

f out = fopen (fname . c s t r () , ”w”) ;

f p r i n t f (fout , ”# t , x , u , e L , e R , Q L , Q R, w f , dm L , dme L , dm R, dme R , T L , p L

, rho L , m gL , T R , p R , rho R , m gR , ”) ;

for (int i = 0 ; i < nsp ; ++i) {
f p r i n t f (fout , ”%s L , ” , g−>spec ies name (i) . c s t r ()) ;

}
for (int i = 0 ; i < nsp ; ++i) {

f p r i n t f (fout , ”%s R , ” , g−>spec ies name (i) . c s t r ()) ;

}
f p r i n t f (fout , ”\n”) ;

f c l o s e (f out) ;

va larray<double> yout fpe , y i n f p e ;

yout fpe . r e s i z e (ndim fpe) ;

y i n f p e . r e s i z e (ndim fpe) ;

vector<double> Tig , rva lue ;

fpe . ge t yout (yout fpe) ;

fpe . get yout L (yout L) ;

fpe . get yout R (yout R) ;

p r i n t s t a t e (fname , t0 , yout fpe , yout L , yout R , Q L , Q R, m gL , m gR) ;

// pr in t ene rgy (fname , t0 , yout fpe , Q L , Q R, m p , m gL , m gR) ;

g l o b a l d a t a ∗ gd = g e t g l o b a l d a t a p t r () ;

double tevent = 0 . 0 ;

double dt sy s0 = d t s y s ;

// event s

// i n t event0 = 0; // x = 0

int event1 = 1 ; // u = 0

i f (f abs (x0) < 1e−6) {
p r i n t f (” expect ing an i n i t i a l p o s i t i o n o f ze ro .\n”) ;

e x i t (1) ;

}
i f (u0 < 0 . 0) {

p r i n t f (” expect ing a p o s i t i v e i n t i a l v e l o c i t y .\n”) ;

e x i t (1) ;

}

Section B.2 Free-piston engine tests 185

int x f l a g = −1;

int nc = 0 ; // number o f c y c l e s

double x p , x s ;

double u p ;

while (gd−>t < t l a s t) {
// advance chemistry

i f (es ode L−>get A e () == 0) { fpe . a d v a n c e c h e m i s t r y l e f t c y l i n d e r (Q L , d t s y s) ;

}
i f (es ode R−>get A e () == 0) { fpe . a d v a n c e c h e m i s t r y r i g h t c y l i n d e r (Q R, d t s y s)

; }
fpe . advance dynamics (Q L , Q R, d t s y s) ;

fpe . g e t y i n (y i n f p e) ;

fpe . ge t yout (yout fpe) ;

fpe . get yout L (yout L) ;

fpe . get yout R (yout R) ;

x p = yout fpe [X] ;

u p = yout fpe [U] ;

i f (y i n f p e [event1]∗ yout fpe [event1] < 0 . 0) {
// p i s t on j u s t changed d i r ec t i on , do a c on t r o l l e d s t ep and cont inue

double t f [] = { t0+dt sys , t0 } ;

double yf [] = { yout fpe [event] , y i n f p e [event] } ;

vector<double> t f a (t f , t f +2) ;

vector<double> yfa (yf , y f +2) ;

l i n e a r e v a l (x0 , tevent , yfa , t f a) ;

d t s y s = tevent − t0 ;

// advance chemistry

i f (es ode L−>get A e () == 0) {
fpe . a d v a n c e c h e m i s t r y l e f t c y l i n d e r (Q L , d t s y s) ;

}
i f (es ode R−>get A e () == 0) {

fpe . a d v a n c e c h e m i s t r y r i g h t c y l i n d e r (Q R, d t s y s) ;

}
fpe . advance dynamics (Q L , Q R, d t s y s) ;

// exhaust c y l i n d e r s

fpe . a d v a n c e f l u i d d y n a m i c s l e f t c y l i n d e r (u p , &Q L , d t s y s) ;

fpe . a d v a n c e f l u i d d y n a m i c s r i g h t c y l i n d e r (u p , &Q R, d t s y s) ;

// increment time

gd−>t += d t s y s ;

// f i n a l i s e s t ep

fpe . f i n a l i s e s t e p (Q L , Q R) ;

// s e t the v e l o c i t y to zero to prevent doing t h i s s t ep again

fpe . ge t yout (yout fpe) ;

fpe . get yout L (yout L) ;

fpe . get yout R (yout R) ;

yout fpe [U] = 0 ;

186 Engine source code Appendix B

p r i n t s t a t e (fname , gd−>t , yout fpe , yout L , yout R , Q L , Q R, fpe ode−>
get m gL () , fpe ode−>get m gR ()) ;

d t s y s = dt sy s0 ; // the t imes tep has changed . . .

Tig . push back (Q L .T [0]) ;

Tig . push back (Q R .T[0]) ;

x s = yout fpe [X] ;

continue ;

}

// exhaust c y l i n d e r s

fpe . a d v a n c e f l u i d d y n a m i c s l e f t c y l i n d e r (u p , &Q L , d t s y s) ;

fpe . a d v a n c e f l u i d d y n a m i c s r i g h t c y l i n d e r (u p , &Q R, d t s y s) ;

i f ((es ode L−>get A e () == 0) && (x p < (x0 − port − gap)) && (u p < 0 . 0)) {
i f (x f l a g < 0) {

// ass i gn mass o f l e f t c y l i n d e r

fpe . r e s e t i n t a k e m a s s l e f t c y l i n d e r (Q L) ;

// swi tch f l a g

x f l a g ∗= −1;

// fpe . s e t v e l o c i t y (−u0) ;
}
// i t doesn ’ t matter how many times we do t h i s .

Q exL . massf = Q L . massf ;

}
i f ((es ode R−>get A e () == 0) && (x p > x0) && (u p > 0 . 0)) {

i f (x f l a g > 0) {
// ass i gn mass o f r i g h t c y l i nd e r

fpe . r e s e t i n t a k e m a s s r i g h t c y l i n d e r (Q R) ;

// swi tch f l a g

x f l a g ∗= −1;

// fpe . s e t v e l o c i t y (u0) ;

++nc ; // increment c y c l e counter

i f (nc == n o c y c l e s − 1) {
s t r i n g s t r ;

s t r . append (fname . begin () , fname . end ()−4) ;

s t r . append (”− f i n a l−s t r oke . dat ”) ;

fname = s t r ;

f out = fopen (fname . c s t r () , ”w”) ;

f p r i n t f (fout , ”# t , x , u , e L , e R , Q L , Q R, w f , dm L , dme L , dm R,

dme R , T L , p L , rho L , m gL , T R , p R , rho R , m gR , ”) ;

for (int i = 0 ; i < nsp ; ++i) {
f p r i n t f (fout , ”%s L , ” , g−>spec ies name (i) . c s t r ()) ;

}
for (int i = 0 ; i < nsp ; ++i) {

f p r i n t f (fout , ”%s R , ” , g−>spec ies name (i) . c s t r ()) ;

}
f p r i n t f (fout , ”\n”) ;

f c l o s e (f out) ;

}
i f (nc == n o c y c l e s) {

rva lue . push back (x s) ;

rva lue . push back (fpe ode−>get m gL ()) ;

Section B.2 Free-piston engine tests 187

rva lue . push back (fpe . get mgLout ()) ;

rva lue . push back (Tig [2]) ;

rva lue . push back (Tig [3]) ;

rva lue . push back (yout fpe [Q L]) ;

rva lue . push back (yout fpe [Q R]) ;

rva lue . push back (yout fpe [F]) ;

return rva lue ;

}
}
// i t doesn ’ t matter how many times we do t h i s .

Q exR . massf = Q R . massf ;

}

// increment time

gd−>t += d t s y s ;

// f i n a l i s e s t ep

fpe . f i n a l i s e s t e p (Q L , Q R) ;

// increment iw r i t e

++i w r i t e ;

i f (i w r i t e >= nwrite) {
fpe . ge t yout (yout fpe) ;

fpe . get yout L (yout L) ;

fpe . get yout R (yout R) ;

p r i n t s t a t e (fname , gd−>t , yout fpe , yout L , yout R , Q L , Q R, fpe ode−>
get m gL () , fpe ode−>get m gR ()) ;

// pr in t ene rgy (fname , gd−>t , you t fpe , Q L , Q R, m p , m gL , m gR) ;

i w r i t e = 0 ;

}
}

f out = fopen (fname . c s t r () , ”a”) ;

f p r i n t f (fout , ”# done .\n”) ;

f c l o s e (f out) ;

return rva lue ;

}

Listing B.4: Test functions, source file.

188 Engine source code Appendix B

B.3 Free-piston engine system

#ifndef FPE SYSTEM HH

#define FPE SYSTEM HH

// \ author Brendan T. O’ F laher ty

// \ b r i e f Free−p i s t on engine systems

#include <vector>

#include <valarray>

#include ” . . / . . / l i b / u t i l / source / u s e f u l . h”

#include ” . . / . . / l i b /nm/ source / o d e s o l v e r . hh”

#include ” . . / . . / l i b / gas /models / p h y s i c a l c o n s t a n t s . hh”

#include ” . . / . . / l i b / gas /models / gas data . hh”

#include ” . . / . . / l i b / gas /models /gas−model . hh”

#include ” f p e k e r n e l . hh”

#include ” f p e c o n t r o l . hh”

int copy array (std : : va larray<double> &src , std : : va larray<double> &dst) ;

class Free p i s ton compre s so r ode : public OdeSystem {
public :

F r e e p i s ton compre s so r ode (int ndim , bool t e s t f l a g) ;

Free p i s ton compre s so r ode (gas data ∗Q,

double m p ,

double x ,

double u p ,

double L p ,

double L c ,

double D,

double e r r o r t o l ,

int ndim ,

bool t e s t f l a g ,

double p b=0) ;

Free p i s ton compre s so r ode (const Free p i s ton compre s so r ode &fpc) ;

˜ Free p i s ton compre s so r ode () ;

void set m0 (double m g) { m g = m g ; }
void set gamma (double gamma) { gamma = gamma; }
int ca l cu l a t e geomet ry (double x p) ;

int eva l (const std : : va larray<double> &y , std : : va larray<double> &ydot) ;

double get qdd () { return qdd ; }
double get m0 () { return m g ; }
double get V () { return V R ; }
double s t e p s i z e s e l e c t (const std : : va larray<double> &y) ;

double c a l c u l a t e s y s t e m e n e r g y (double u p , double V R) ;

bool p a s s e s s y s t e m t e s t (double i n i t i a l e n e r g y , double V R , std : : va larray<double> &y) ;

private :

gas data ∗Q ; // the gas s t a t e i s not changed in the eva l rou t ine

double F c , F f , q , qdd , d , a , gamma ; // contro l , f r i c t i o n and heat l o s s

double m p , u p0 , m g ; // p i s t on mass , i n i t i a l v e l o c i t y , gas mass

double L p , L c , x R , D , A ; // f i x e d geometry

double L R , V R , S R ; // v a r i a b l e geometry

double e r r t o l ; // to l e rance

double p b ; // back pressure

Section B.3 Free-piston engine system 189

std : : va larray<double> ydot ;

} ;

class Crankshaf t compressor ode : public OdeSystem {
public :

Crankshaf t compressor ode (int ndim , bool t e s t f l a g) ;

Crankshaf t compressor ode (gas data ∗Q,

double m p ,

double x p ,

double u p ,

double L p ,

double L c ,

double D,

double e r r o r t o l ,

int ndim ,

bool t e s t f l a g ,

double p b=0) ;

Crankshaf t compressor ode (const Crankshaf t compressor ode &fpc) ;

˜ Crankshaft compressor ode () ;

void set m0 (double m g) { m g = m g ; }
void set gamma (double gamma) { gamma = gamma; }
int eva l (const std : : va larray<double> &y , std : : va larray<double> &ydot) ;

int ca l cu l a t e geomet ry (double x p) ;

double get qdd () { return qdd ; }
double get m0 () { return m g ; }
double get V () { return V R ; }
double s t e p s i z e s e l e c t (const std : : va larray<double> &y) ;

double c a l c u l a t e s y s t e m e n e r g y (double u p , double V R) ;

bool p a s s e s s y s t e m t e s t (double i n i t i a l e n e r g y , double V R , std : : va larray<double> &y) ;

private :

gas data ∗Q ; // the gas s t a t e i s not changed in the eva l rou t ine

double F c , F f , q , qdd , d , a , gamma ; // contro l , f r i c t i o n and heat l o s s

double m p , u p0 , omega , m g ; // p i s t on mass , i n i t i a l v e l o c i t y , gas mass

double L p , L c , x R , D , A ; // f i x e d geometry

double L R , V R , S R ; // v a r i a b l e geometry

double e r r t o l ; // to l e rance

double p b ; // back pressure

std : : va larray<double> ydot ;

} ;

class Free p i s ton compre s so r {
public :

F r ee p i s ton compre s so r (int ndim , bool t e s t f l a g) ;

Free p i s ton compre s so r (Free p i s ton compre s so r ode ∗ fpc ode ,

std : : va larray<double> yin ,

double dt sys ,

double dt therm ,

double rho0) ;

Free p i s ton compre s so r (const Free p i s ton compre s so r &fpc) ;

˜ Free p i s ton compre s so r () ;

s td : : va larray<double> g e t y i n () { return y in ; }
std : : va larray<double> get yout () { return yout ; }
int f i n a l i s e s t e p (gas data &Q) ;

190 Engine source code Appendix B

int i n s t a n t a n e o u s h e a t a d d i t i o n (double dh) ;

int advance chemistry (gas data &Q, double &dt) ;

int advance dynamics (gas data &Q, double &dt) ;

private :

OdeSolver ∗ o d e s o l v e r ;

Free p i s ton compre s so r ode ∗ f p c o d e ;

double d t s y s ; // system s t ep

double dt therm ; // thermal s t ep

double dt chem ; // chemical s t ep

double m g0 ; // gas mass

double i n i t i a l e n e r g y ; // system energy

std : : va larray<double> y in ;

std : : va larray<double> yout ;

} ;

class Crankshaft compressor {
public :

Crankshaft compressor (int ndim , bool t e s t f l a g) ;

Crankshaft compressor (Crankshaft compressor ode ∗ fpc ode ,

std : : va larray<double> yin ,

double dt sys ,

double dt therm ,

double rho0) ;

Crankshaft compressor (const Crankshaft compressor &fpc) ;

˜ Crankshaft compressor () ;

s td : : va larray<double> g e t y i n () { return y in ; }
std : : va larray<double> get yout () { return yout ; }
int f i n a l i s e s t e p (gas data &Q) ;

int i n s t a n t a n e o u s h e a t a d d i t i o n (double dh) ;

int advance chemistry (gas data &Q, double &dt) ;

int advance dynamics (gas data &Q, double &dt) ;

private :

OdeSolver ∗ o d e s o l v e r ;

Crankshaf t compressor ode ∗ f p c o d e ;

double d t s y s ; // system s t ep

double dt therm ; // thermal s t ep

double dt chem ; // chemical s t ep

double m g0 ; // gas mass

double i n i t i a l e n e r g y ; // system energy

std : : va larray<double> y in ;

std : : va larray<double> yout ;

} ;

class Exhaust system ode : public OdeSystem {
public :

Exhaust system ode (int ndim , bool t e s t f l a g) ;

Exhaust system ode (gas data ∗ Q,

gas data ∗ Q i ,

gas data ∗ Q e ,

double D,

double e r r o r t o l ,

int ndim ,

bool d i sp l a c e ,

Section B.3 Free-piston engine system 191

bool t e s t f l a g=fa l se) ;

Exhaust system ode (const Exhaust system ode &fpe) ;

˜ Exhaust system ode () ;

void s e t d i s p l a c e (bool d i s p l a c e) { d i s p l a c e = d i s p l a c e ; }
void s e t Q e (gas data ∗Q e) { Q e = Q e ; }
int eva l (const std : : va larray<double> &y , std : : va larray<double> &ydot) ;

int f u l l y o p e n v a l v e s () ;

int m o v e v a l v e s l e f t c y l i n d e r (double m g ,

double u ,

double m g0 ,

double p ,

double &dt) ;

int m o v e v a l v e s r i g h t c y l i n d e r (double m g ,

double u ,

double m g0 ,

double p ,

double &dt) ;

bool p a s s e s s y s t e m t e s t (double i n i t i a l e n e r g y , std : : va larray<double> &y) ;

bool d i s p l a c e () { return d i s p l a c e ; }
double g e t A i () { return A i ; }
double get A e () { return A e ; }
double s t e p s i z e s e l e c t (const std : : va larray<double> &y) ;

std : : vector<double> g e t F i () { return F i ; }
std : : vector<double> ge t F e () { return F e ; }

private :

gas data ∗ Q i , ∗Q , ∗Q e ; // gas at in take va lve , exhaust va l v e and in cy l i nd e r

Valve ve , v i ; // exhaust and in take va l v e s

double A i , A e ; // area o f in take and e x i t v a l v e s

double e r r t o l ; // to l e rance

bool d i s p l a c e ;

std : : va larray<double> ydot ;

std : : vector<double> F i , F e ;

} ;

class Exhaust system {
public :

Exhaust system (int ndim , bool t e s t f l a g) ;

Exhaust system (Exhaust system ode ∗ es ode ,

std : : va larray<double> yin ,

double dt sys ,

double V,

gas data &Q) ;

Exhaust system (const Exhaust system &es) ;

˜ Exhaust system () ;

void set vo lume (double V) { V = V; }
void set m0 (double m0) { m0 = m0; }
int g e t y i n (std : : va larray<double> &dst) { return copy array (yin , dst) ; }
int get yout (std : : va larray<double> &dst) { return copy array (yout , dst) ; }
int f i n a l i s e s t e p (gas data &Q) ;

int advance f lu id dynamics (double &dt) ;

double get m0 () { return m0 ; }

private :

192 Engine source code Appendix B

OdeSolver ∗ o d e s o l v e r ;

Exhaust system ode ∗ e s o d e ;

double d t s y s ; // system s t ep

double V ; // volume

double m0 ; // i n i t i a l mass

std : : va larray<double> y in ;

std : : va larray<double> yout ;

} ;

class F r e e p i s t o n e n g i n e o d e : public OdeSystem {
public :

F r e e p i s t o n e n g i n e o d e (int ndim , bool t e s t f l a g) ;

F r e e p i s t o n e n g i n e o d e (gas data ∗ Q2,

gas data ∗ Q3,

double m p ,

double x p ,

double u p ,

double L p ,

double L c ,

double x L ,

double x R ,

double D,

double m gL ,

double m gR ,

double e r r o r t o l ,

int ndim ,

bool t e s t f l a g) ;

F r e e p i s t o n e n g i n e o d e (const F r e e p i s t o n e n g i n e o d e &fpe) ;

˜ F r e e p i s t o n e n g i n e o d e () ;

void set m gL (double m gL) { m gL = m gL ; }
void set m gR (double m gR) { m gR = m gR ; }
void set gamma L (double gamma L) { gamma L = gamma L ; }
void set gamma R (double gamma R) { gamma R = gamma R ; }
int eva l (const std : : va larray<double> &y , std : : va larray<double> &ydot) ;

int ca l cu l a t e geomet ry (double x p) ;

bool p a s s e s s y s t e m t e s t (double i n i t i a l e n e r g y ,

double V L ,

double V R ,

std : : va larray<double> &y) ;

double get m gL () { return m gL ; }
double get m gR () { return m gR ; }
double get F () { return F c ; }
double get V L () { return V L ; }
double get V R () { return V R ; }
double get u pL0 () { return u pL0 ; }
double get u pR0 () { return u pR0 ; }
double s t e p s i z e s e l e c t (const std : : va larray<double> &y) ;

double c a l c u l a t e s y s t e m e n e r g y (double u p , double V L , double V R) ;

private :

// the gas s t a t e i s not changed in the eva l rou t ine

gas data ∗ Q L ;

gas data ∗ Q R ;

double F c , F f ; // contro l , f r i c t i o n

Section B.3 Free-piston engine system 193

double q ddL , q ddR , q L , q R ; // heat l o s s

double d L , a L , d R , a R , gamma L , gamma R ; // boundary l a y e r v a r i a b l e s

double L p , L c , x L , x R , D , A ; // f i x e d geometry

double L R , V R , S R ; // v a r i a b l e geometry

double L L , V L , S L ; // v a r i a b l e geometry

double b ; // compression r ing t h i c kne s s

double m p , m gL , m gR ; // p i s t on mass , gas masses

double u pL0 , u pR0 ; // i n i t i a l v e l o c i t y

double e r r t o l ; // to l e rance

std : : va larray<double> ydot ;

} ;

class F r e e p i s t o n e n g i n e {
public :

F r e e p i s t o n e n g i n e (int ndim fpe ,

int ndim es ,

bool t e s t f l a g ,

double dt sys ,

double dt therm) ;

F r e e p i s t o n e n g i n e (F r e e p i s t o n e n g i n e o d e ∗ fpe ode ,

Exhaust system ode ∗ es ode L ,

Exhaust system ode ∗ es ode R ,

std : : va larray<double> y fpe ,

std : : va larray<double> y es ,

double dt sys ,

double dt therm ,

double m gL0 ,

double m gR0) ;

F r e e p i s t o n e n g i n e (const F r e e p i s t o n e n g i n e &fpe) ;

˜ F r e e p i s t o n e n g i n e () ;

void s e t v e l o c i t y (double u) { yout [U] = u ; }
int g e t y i n (std : : va larray<double> &dst) { return copy array (yin , dst) ; }
int get yout (std : : va larray<double> &dst) { return copy array (yout , dst) ; }
int ge t y in L (std : : va larray<double> &dst) { return copy array (yin L , dst) ; }
int get yout L (std : : va larray<double> &dst) { return copy array (yout L , dst) ; }
int get y in R (std : : va larray<double> &dst) { return copy array (yin R , dst) ; }
int get yout R (std : : va larray<double> &dst) { return copy array (yout R , dst) ; }
int f i n a l i s e s t e p (gas data &Q L , gas data &Q R) ;

int i n s t a n t a n e o u s h e a t a d d i t i o n l e f t c y l i n d e r (double dh) ;

int i n s t a n t a n e o u s h e a t a d d i t i o n r i g h t c y l i n d e r (double dh) ;

int r e s e t i n t a k e m a s s l e f t c y l i n d e r (gas data &Q) ;

int r e s e t i n t a k e m a s s r i g h t c y l i n d e r (gas data &Q) ;

int m o v e l e f t v a l v e s (double u p , double pL , double &dt) ;

int move r i gh t va lve s (double u p , double pR, double &dt) ;

int a d v a n c e c h e m i s t r y l e f t c y l i n d e r (gas data &Q, double &dt) ;

int a d v a n c e c h e m i s t r y r i g h t c y l i n d e r (gas data &Q, double &dt) ;

int advance dynamics (gas data &Q L , gas data &Q R, double &dt) ;

int a d v a n c e f l u i d d y n a m i c s l e f t c y l i n d e r (double u p , gas data ∗Q, double &dt) ;

int a d v a n c e f l u i d d y n a m i c s r i g h t c y l i n d e r (double u p , gas data ∗Q, double &dt) ;

double get mgLout () { return m gLout ; }
double get mgRout () { return m gRout ; }
double get sys tem energy () { return system energy ; }

private :

OdeSolver ∗ o d e s o l v e r f p e ;

F r e e p i s t o n e n g i n e o d e ∗ f p e o d e ;

194 Engine source code Appendix B

OdeSolver ∗ o d e s o l v e r e s ;

Exhaust system ode ∗ e s ode L ; // exhaust ode

Exhaust system ode ∗ es ode R ; // exhaust ode

double m g0 ; // i d e a l c y l i nd e r mass

double m gL0 ; // l e f t c y l i n d e r mass

double m gR0 ; // r i g h t c y l i nd e r mass

double m gRout ; // l e f t exhaust mass

double m gLout ; // r i g h t exhaust mass

double d t s y s ; // system s t ep

double dt therm ; // thermal s t ep

double dt chem ; // chemical s t ep

double i n i t i a l e n e r g y ; // system energy

double system energy ; // system energy

std : : va larray<double> y in ;

std : : va larray<double> yout ;

s td : : va larray<double> y in L ;

std : : va larray<double> yout L ;

std : : va larray<double> yin R ;

std : : va larray<double> yout R ;

} ;

int per fo rm chemica l increment (gas data &Q, double &dt , double &dt therm , double &dt chem

) ;

#endif

Listing B.5: Free-piston engine system, header file.

#include <c s td io>

#include ” f p e k e r n e l . hh”

#include ” fpe mode l s . hh”

#include ” fpe system . hh”

#include ” sod . hh”

using namespace std ;

const double v a l v e v e l o c i t y = 1 0 . 0 ;

const double eps1 = 0 . 0 0 1 ;

const double s t e p u p p e r l i m i t = 1 .0 e−5;

const double s t e p l o w e r l i m i t = 1 .0 e−10;

const double z e r o t o l = 1 .0 e−30;

const double DT THERM REDUCE = 0 . 2 ;

Free p i s ton compre s so r ode : :

Fr ee p i s ton compre s so r ode (int ndim , bool t e s t f l a g)

: OdeSystem (ndim , t e s t f l a g) {}

Free p i s ton compre s so r ode : :

Fr ee p i s ton compre s so r ode (gas data ∗Q,

double m p ,

double x ,

double u p ,

double L p ,

double L c ,

double D,

double e r r o r t o l ,

int ndim ,

Section B.3 Free-piston engine system 195

bool t e s t f l a g ,

double p b)

: OdeSystem (ndim , t e s t f l a g) ,

m p (m p) ,

u p0 (u p) ,

D (D) ,

e r r t o l (e r r o r t o l) ,

p b (p b)

{
Q = Q; // ass i gn po in t e r

F c = F f = q = qdd = d = a = 0 . 0 ; // no l o s s e s by d e f a u l t

gamma = 0 . 0 ;

m g = 0 . 0 ;

L p = L p ;

L c = L c ;

x R = L c ;

D = D;

A = 0.25∗ PI∗D∗D;

Gas model∗ g = ge t ga s mode l p t r () ;

gamma = g−>gamma(∗Q) ;

ydot . r e s i z e (ndim) ;

ca l cu l a t e geomet ry (x) ;

}

Free p i s ton compre s so r ode : :

F ree p i s ton compre s so r ode (const Free p i s ton compre s so r ode &fpc)

: OdeSystem (fpc . ndim , fpc . a p p l y s y s t e m t e s t)

{
// incomplete

}

Free p i s ton compre s so r ode : :

˜ Free p i s ton compre s so r ode () {}

int

Free p i s ton compre s so r ode : :

eva l (const valarray<double> &y , va larray<double> &ydot)

{
// unpack y

// doub le x = y [X] ;

double u = y [U] ;

// f r i c t i o n

// doub le b = 0.005 ; // 5mm ring t h i c kne s s

// c h e v r o n s e a l f r i c t i o n (F f , Q −>p , PC P atm , b , D , m p , u) ;

double a = (−Q −>p∗A + p b ∗A + F c − F f) /m p ;

double dedt = (Q −>p∗A ∗u) /m g ;

// heat t r an s f e r models , uncomment as needed

// annand hea t f l ux (qdd , Q −>k [0] , D , u p0 , Q −>mu, Q −>rho , Q −>T[0]) ;

// boundary l a y e r t h i c kne s s (d , a , x , u , u p0 , Q −>T[0] , PC T ref , L R , x R , D ,

gamma) ;

// l am ina r h ea t f l u x (qdd , Q −>k [0] , d , a , Q −>T[0] , PC T ref) ;

// l aw t on h e a t f l u x (qdd , Q −>k [0] , D , u , u p0 , Q −>mu, Q −>T[0] , Q −>rho ,

PC T ref , L R , gamma) ;

196 Engine source code Appendix B

// Gas model∗ g = ge t ga s mode l p t r () ;

// doub le dTdt = dedt /g−>Cv(∗Q) ;

// annand and p in f o l d hea t f l u x (qdd , Q −>k [0] , D , u , u p0 , Q −>mu, Q −>T[0] , Q −>
rho , PC T ref , dTdt) ;

q = qdd ∗S R /m g ;

i f (i snan (q)) { q = 0 . 0 ; }
dedt = dedt − q ;

double temp [] = {u , a , dedt , q } ; // , F f ∗u } ;
for (s i z e t i = 0 ; i < ydot . s i z e () ; ++i) {

ydot [i] = temp [i] ;

}

return SUCCESS;

}

double

Free p i s ton compre s so r ode : :

s t e p s i z e s e l e c t (const valarray<double> &y)

{
eva l (y , ydot) ;

double min dt = s t e p u p p e r l i m i t ; // to ge t us s t a r t e d

double o ld d t = 0 . 0 ;

for (int i = 0 ; i < ndim ; ++i) {
i f (f abs (ydot [i]) > z e r o t o l) {

o ld d t = fabs (y [i] / ydot [i]) ;

i f (o ld d t < min dt) {
min dt = o ld d t ;

}
}

}

double dt = eps1 ∗ min dt ;

// Impose upper and lower s t ep l im i t s

i f (dt > s t e p u p p e r l i m i t)

dt = s t e p u p p e r l i m i t ;

i f (dt < s t e p l o w e r l i m i t)

dt = s t e p l o w e r l i m i t ;

return dt ;

}

double

Free p i s ton compre s so r ode : :

c a l c u l a t e s y s t e m e n e r g y (double u p , double V R)

{
double ke = 0.5∗ m p ∗u p∗u p ;

Gas model∗ g = ge t ga s mode l p t r () ;

double e = g−>t o t a l i n t e r n a l e n e r g y (∗Q) ;

return ke + V R∗Q −>rho∗e ;

}

Section B.3 Free-piston engine system 197

bool

Free p i s ton compre s so r ode : :

p a s s e s s y s t e m t e s t (double i n i t i a l e n e r g y , double V R , va larray<double> &y)

{
double u = y [U] ;

double cu r r en t ene rgy = c a l c u l a t e s y s t e m e n e r g y (u , V R) ;

double e r r = (fabs (cu r r en t ene rgy) − f abs (i n i t i a l e n e r g y)) / fabs (i n i t i a l e n e r g y) ;

i f (e r r < e r r t o l)

return true ;

else

return fa l se ;

}

int

Free p i s ton compre s so r ode : :

c a l cu l a t e geomet ry (double x p)

{
// cy l i nd e r l eng th , volume , sur face area

L R = x R − (x p + L p / 2 . 0) ;

V R = L R ∗A ;

S R = 2∗A + PI∗D ∗L R ;

return SUCCESS;

}

Crankshaf t compressor ode : :

Crankshaf t compressor ode (int ndim , bool t e s t f l a g)

: OdeSystem (ndim , t e s t f l a g) {}

Crankshaf t compressor ode : :

Crankshaf t compressor ode (gas data ∗Q,

double m p ,

double x p ,

double u p ,

double L p ,

double L c ,

double D,

double e r r o r t o l ,

int ndim ,

bool t e s t f l a g ,

double p b)

: OdeSystem (ndim , t e s t f l a g) ,

m p (m p) ,

u p0 (u p) ,

D (D) ,

e r r t o l (e r r o r t o l) ,

p b (p b)

{
Q = Q; // ass i gn po in t e r

F c = F f = q = qdd = d = a = 0 . 0 ; // no l o s s e s by d e f a u l t

gamma = 0 . 0 ;

m g = 0 . 0 ;

omega = u p ;

L p = L p ;

L c = L c ;

198 Engine source code Appendix B

x R = L c ;

D = D;

A = 0.25∗ PI∗D∗D;

Gas model∗ g = ge t ga s mode l p t r () ;

gamma = g−>gamma(∗Q) ;

ydot . r e s i z e (ndim) ;

ca l cu l a t e geomet ry (x p) ;

}

Crankshaf t compressor ode : :

Crankshaf t compressor ode (const Crankshaf t compressor ode &cc)

: OdeSystem (cc . ndim , cc . a p p l y s y s t e m t e s t)

{
// incomplete

}

Crankshaf t compressor ode : :

˜ Crankshaft compressor ode () {}

int

Crankshaf t compressor ode : :

eva l (const valarray<double> &y , va larray<double> &ydot)

{
// unpack y

// doub le x = y [X] ;

double u = y [U] ;

double A = y [A] ;

double c = 1 5 . 6 ;

double r = L c ∗ (1 . 0 − 1 .0/ c) / 2 . 0 ;

double l = 2∗ r ;

double den = l ∗ l − r ∗ r ∗ s i n (A) ∗ s i n (A) ;

double a = (−r ∗ cos (A) − r ∗ r ∗(cos (A) ∗ cos (A) − s i n (A) ∗ s i n (A)) /pow(den , 0 . 5) −
pow(r , 4) ∗ s i n (A) ∗ s i n (A) ∗ cos (A) ∗ cos (A) /pow(den , 1 . 5)) ∗omega ∗omega ;

double dedt = (Q −>p∗A ∗u) /m g ;

u p0 = omega ∗ r ;

// heat t r an s f e r models , uncomment as needed

// annand hea t f l ux (qdd , Q −>k [0] , D , u p0 , Q −>mu, Q −>rho , Q −>T[0]) ;

// boundary l a y e r t h i c kne s s (d , a , x , u , u p0 , Q −>T[0] , PC T ref , L R , x R , D ,

gamma) ;

// l am ina r h ea t f l u x (qdd , Q −>k [0] , d , a , Q −>T[0] , PC T ref) ;

// l aw t on h e a t f l u x (qdd , Q −>k [0] , D , u , u p0 , Q −>mu, Q −>T[0] , Q −>rho , PC T ref

, L , gamma) ;

//Gas model∗ g = ge t ga s mode l p t r () ;

// doub le dTdt = dedt /g−>Cv(∗Q) ;

// annand and p in f o l d hea t f l u x (qdd , Q −>k [0] , D , u , u p0 , Q −>mu, Q −>T[0] , Q −>
rho , PC T ref , dTdt) ;

q = qdd ∗S R /m g ;

i f (i snan (q)) { q = 0 . 0 ; }
dedt = dedt − q ;

double temp [] = {u , a , dedt , q , omega } ;

for (s i z e t i = 0 ; i < ydot . s i z e () ; ++i) {
ydot [i] = temp [i] ;

Section B.3 Free-piston engine system 199

}

return SUCCESS;

}

double

Crankshaf t compressor ode : :

s t e p s i z e s e l e c t (const valarray<double> &y)

{
eva l (y , ydot) ;

double min dt = s t e p u p p e r l i m i t ; // to ge t us s t a r t e d

double o ld d t = 0 . 0 ;

for (int i = 0 ; i < ndim ; ++i) {
i f (f abs (ydot [i]) > z e r o t o l) {

o ld d t = fabs (y [i] / ydot [i]) ;

i f (o ld d t < min dt) {
min dt = o ld d t ;

}
}

}

double dt = eps1 ∗ min dt ;

// Impose upper and lower s t ep l im i t s

i f (dt > s t e p u p p e r l i m i t)

dt = s t e p u p p e r l i m i t ;

i f (dt < s t e p l o w e r l i m i t)

dt = s t e p l o w e r l i m i t ;

return dt ;

}

double

Crankshaf t compressor ode : :

c a l c u l a t e s y s t e m e n e r g y (double u p , double V R)

{
double ke = 0.5∗ m p ∗u p∗u p ;

Gas model∗ g = ge t ga s mode l p t r () ;

double e = g−>t o t a l i n t e r n a l e n e r g y (∗Q) ;

return ke + V R∗Q −>rho∗e ;

}

bool

Crankshaf t compressor ode : :

p a s s e s s y s t e m t e s t (double i n i t i a l e n e r g y , double V R , va larray<double> &y)

{
double u = y [U] ;

double cu r r en t ene rgy = c a l c u l a t e s y s t e m e n e r g y (u , V R) ;

double e r r = (fabs (cu r r en t ene rgy) − f abs (i n i t i a l e n e r g y)) / fabs (i n i t i a l e n e r g y) ;

i f (e r r < e r r t o l)

return true ;

else

200 Engine source code Appendix B

return fa l se ;

}

int

Crankshaf t compressor ode : :

c a l cu l a t e geomet ry (double x p)

{
// cy l i nd e r l eng th , volume , sur face area

L R = x R − (x p + L p / 2 . 0) ;

V R = L R ∗A ;

S R = 2∗A + PI∗D ∗L R ;

return SUCCESS;

}

Free p i s ton compre s so r : :

F ree p i s ton compre s so r (int ndim , bool t e s t f l a g)

{
y in . r e s i z e (ndim) ;

yout . r e s i z e (ndim) ;

}

Free p i s ton compre s so r : :

F ree p i s ton compre s so r (Free p i s ton compre s so r ode ∗ fpc ode ,

va larray<double> yin ,

double dt sys ,

double dt therm ,

double rho0)

{
std : : va larray<double> ydot ;

int ndim = yin . s i z e () ;

o d e s o l v e r = new OdeSolver (s t r i n g (” r k f s o l v e r ”) , ndim , s t r i n g (” r k f ”)) ;

f p c o d e = fpc ode ;

y in . r e s i z e (ndim) ;

yout . r e s i z e (ndim) ;

for (int i = 0 ; i < ndim ; ++i) {
y in [i] = yout [i] = yin [i] ;

}

m g0 = rho0∗ fpc ode −>get V () ;

fpc ode −>set m0 (m g0) ;

d t s y s = d t s y s ;

dt therm = dt therm ;

dt chem = −1.0;

double u0 = yin [U] ;

i n i t i a l e n e r g y = fpc ode −>c a l c u l a t e s y s t e m e n e r g y (u0 , fpc ode −>get V ()) ;

}

Free p i s ton compre s so r : :

F ree p i s ton compre s so r (const Free p i s ton compre s so r &fpc)

{
o d e s o l v e r = new OdeSolver (∗ (fpc . o d e s o l v e r)) ;

f p c o d e = new Free p i s ton compre s so r ode (∗ (fpc . f p c o d e)) ;

Section B.3 Free-piston engine system 201

y in = fpc . y in ;

yout = fpc . yout ;

d t s y s = fpc . d t s y s ;

dt therm = fpc . dt therm ;

dt chem = fpc . dt chem ;

}

Free p i s ton compre s so r : :

˜ Free p i s ton compre s so r ()

{
delete o d e s o l v e r ;

delete f p c o d e ;

}

int

Free p i s ton compre s so r : :

i n s t a n t a n e o u s h e a t a d d i t i o n (double dh)

{
yout [E] += dh ;

return SUCCESS;

}

int

Free p i s ton compre s so r : :

advance chemistry (gas data &Q, double &dt)

{
// as long as t h i s operat ion i s performed on a f i n a l i s e d s t a t e (i . e . a t the

// end or beg inning o f a t imes tep) there shou ld be no problem . I f i t i s

// performed be fo r e y in and yout have been synchronised , then the energy

// r e l e a s ed from combustion w i l l not be added to the s t a t e vec to r .

int s t a t u s = per form chemica l increment (Q, dt , dt therm , dt chem) ;

yout [E] = Q. e [0] ;

return s t a t u s ;

}

int

Free p i s ton compre s so r : :

advance dynamics (gas data &Q, double &dt)

{
g l o b a l d a t a ∗ gd = g e t g l o b a l d a t a p t r () ;

o d e s o l v e r −>s o l v e o v e r i n t e r v a l (∗ fpc ode , gd−>t , gd−>t+dt , &dt sy s , y in , yout) ;

return SUCCESS;

}

int

Free p i s ton compre s so r : :

f i n a l i s e s t e p (gas data &Q)

{
// unpack s t a t e

double x = yout [X] ;

double u = yout [U] ;

202 Engine source code Appendix B

double e = yout [E] ;

// update s t a t e

fpc ode −>ca l cu l a t e geomet ry (x) ;

Q. rho = m g0 / fpc ode −>get V () ;

Q. e [0] = e ;

Gas model∗ g = ge t ga s mode l p t r () ;

i f (g−>e v a l t h e r m o s t a t e r h o e (Q) != SUCCESS) {
p r i n t f (” e r r o r c a l c u l a t i n g e v a l t h e r m o s t a t e r h o e () \n”) ;

p r i n t f (”y = [%g , %g , %g]\n” , x , u , e) ;

p r i n t g a s d a t a (Q) ;

e x i t (1) ;

}
i f (g−>e v a l t r a n s p o r t c o e f f i c i e n t s (Q) != SUCCESS) {

p r i n t f (” e r r o r c a l c u l a t i n g e v a l t r a n s p o r t c o e f f i c i e n t s () \n”) ;

p r i n t g a s d a t a (Q) ;

e x i t (1) ;

}
fpc ode −>set gamma (g−>gamma(Q)) ;

// copy vec t o r s f o r next t imes tep

y in = yout ;

return SUCCESS;

}

Crankshaft compressor : :

Crankshaft compressor (int ndim , bool t e s t f l a g)

{
y in . r e s i z e (ndim) ;

yout . r e s i z e (ndim) ;

}

Crankshaft compressor : :

Crankshaft compressor (Crankshaft compressor ode ∗ fpc ode ,

va larray<double> yin ,

double dt sys ,

double dt therm ,

double rho0)

{
int ndim = yin . s i z e () ;

o d e s o l v e r = new OdeSolver (s t r i n g (” r k f s o l v e r ”) , ndim , s t r i n g (” r k f ”)) ;

f p c o d e = fpc ode ;

y in . r e s i z e (ndim) ;

yout . r e s i z e (ndim) ;

for (int i = 0 ; i < ndim ; ++i) {
y in [i] = yout [i] = yin [i] ;

}

m g0 = rho0∗ fpc ode −>get V () ;

fpc ode −>set m0 (m g0) ;

d t s y s = d t s y s ;

dt therm = dt therm ;

Section B.3 Free-piston engine system 203

dt chem = −1.0;

double u0 = yin [U] ;

i n i t i a l e n e r g y = fpc ode −>c a l c u l a t e s y s t e m e n e r g y (u0 , fpc ode −>get V ()) ;

}

Crankshaft compressor : :

Crankshaft compressor (const Crankshaft compressor &fpc)

{
o d e s o l v e r = new OdeSolver (∗ (fpc . o d e s o l v e r)) ;

f p c o d e = new Crankshaf t compressor ode (∗ (fpc . f p c o d e)) ;

y in = fpc . y in ;

yout = fpc . yout ;

d t s y s = fpc . d t s y s ;

dt therm = fpc . dt therm ;

dt chem = fpc . dt chem ;

}

Crankshaft compressor : :

˜ Crankshaft compressor ()

{
delete o d e s o l v e r ;

delete f p c o d e ;

}

int

Crankshaft compressor : :

i n s t a n t a n e o u s h e a t a d d i t i o n (double dh)

{
yout [E] += dh ;

return SUCCESS;

}

int

Crankshaft compressor : :

advance chemistry (gas data &Q, double &dt)

{
// as long as t h i s operat ion i s performed on a f i n a l i s e d s t a t e (i . e . a t the

// end or beg inning o f a t imes tep) there shou ld be no problem . I f i t i s

// performed be fo r e y in and yout have been synchronised , then the energy

// r e l e a s ed from combustion w i l l not be added to the s t a t e vec to r .

int s t a t u s = per form chemica l increment (Q, dt , dt therm , dt chem) ;

yout [E] = Q. e [0] ;

return s t a t u s ;

}

int

Crankshaft compressor : :

advance dynamics (gas data &Q, double &dt)

{
g l o b a l d a t a ∗ gd = g e t g l o b a l d a t a p t r () ;

o d e s o l v e r −>s o l v e o v e r i n t e r v a l (∗ fpc ode , gd−>t , gd−>t+dt , &dt sy s , y in , yout) ;

204 Engine source code Appendix B

return SUCCESS;

}

int

Crankshaft compressor : :

f i n a l i s e s t e p (gas data &Q)

{
// unpack s t a t e

double x = yout [X] ;

double u = yout [U] ;

double e = yout [E] ;

// update s t a t e

fpc ode −>ca l cu l a t e geomet ry (x) ;

Q. rho = m g0 / fpc ode −>get V () ;

Q. e [0] = e ;

Gas model∗ g = ge t ga s mode l p t r () ;

i f (g−>e v a l t h e r m o s t a t e r h o e (Q) != SUCCESS) {
p r i n t f (” e r r o r c a l c u l a t i n g e v a l t h e r m o s t a t e r h o e () \n”) ;

p r i n t f (”y = [%g , %g , %g]\n” , x , u , e) ;

p r i n t g a s d a t a (Q) ;

e x i t (1) ;

}
i f (g−>e v a l t r a n s p o r t c o e f f i c i e n t s (Q) != SUCCESS) {

p r i n t f (” e r r o r c a l c u l a t i n g e v a l t r a n s p o r t c o e f f i c i e n t s () \n”) ;

p r i n t g a s d a t a (Q) ;

e x i t (1) ;

}
fpc ode −>set gamma (g−>gamma(Q)) ;

// copy vec t o r s f o r next t imes tep

y in = yout ;

return SUCCESS;

}

Exhaust system ode : :

Exhaust system ode (int ndim , bool t e s t f l a g)

: OdeSystem (ndim , t e s t f l a g) {}

Exhaust system ode : :

Exhaust system ode (gas data ∗ Q,

gas data ∗ Q i ,

gas data ∗ Q e ,

double D,

double e r r o r t o l ,

int ndim ,

bool d i sp l a c e ,

bool t e s t f l a g)

: OdeSystem (ndim , t e s t f l a g) ,

e r r t o l (e r r o r t o l) ,

d i s p l a c e (d i s p l a c e)

{
Q i = Q i ;

Q = Q;

Q e = Q e ;

Section B.3 Free-piston engine system 205

v i = Valve (” in take ” , v a l v e v e l o c i t y , D/ s q r t (2)) ;

ve = Valve (” exhaust ” , v a l v e v e l o c i t y , D/ s q r t (2)) ;

ydot . r e s i z e (ndim , 0) ;

F i . r e s i z e (ndim , 0) ;

F e . r e s i z e (ndim , 0) ;

}

Exhaust system ode : :

Exhaust system ode (const Exhaust system ode &es)

: OdeSystem (es . ndim , es . a p p l y s y s t e m t e s t)

{
// incomplete

}

Exhaust system ode : :

˜ Exhaust system ode () {}

int

Exhaust system ode : :

eva l (const std : : va larray<double> &y , std : : va larray<double> &ydot)

{
// c a l c u l a t e va l v e in take and e x i t areas

A i = v i . e v a l d i s c h a r g e c o e f f i c i e n t () ∗ v i . g e t a r e a () ;

A e = ve . e v a l d i s c h a r g e c o e f f i c i e n t () ∗ ve . g e t a r e a () ;

i f ((A i == 0) && (A e == 0)) {
// both va l v e s c losed , s e t f l u x to zero and return

for (int i = 0 ; i < ndim ; ++i) {
ydot [i] = 0 . 0 ;

}
return SUCCESS;

}

i f (Q i −>p >= Q −>p) {
e v a l f l u x (F i , Q i , Q , e r r t o l) ;

} else {
e v a l f l u x (F i , Q , Q i , e r r t o l) ;

for (int i = 0 ; i < ndim −1; ++i) F i [i] = −F i [i] ;

}
i f (Q −>p >= Q e −>p) {

e v a l f l u x (F e , Q , Q e , e r r t o l) ;

for (int i = 0 ; i < ndim −1; ++i) F e [i] = −F e [i] ;

} else {
e v a l f l u x (F e , Q e , Q , e r r t o l) ;

}

Gas model ∗g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

int i ;

for (i = 0 ; i < 2 ; ++i) {
ydot [i] = A i ∗ F i [i] + A e ∗ F e [i] ;

}
i f (d i s p l a c e) {

// p e r f e c t d isp lacement

206 Engine source code Appendix B

for (i = 0 ; i < nsp ; ++i) {
ydot [i +2] = (A i ∗ F i [i +2] + A e ∗ F e [0] ∗ Q e −>massf [i]) ;

}
}
else {

// p e r f e c t mixing

for (i = 0 ; i < nsp ; ++i) {
ydot [i +2] = A i ∗ F i [i +2] + A e ∗ F e [i +2] ;

}
}
ydot [2+nsp] = −A e ∗ F e [0] ; // p o s i t i v e mass e x i t i n g c y l i nd e r

return SUCCESS;

}

double

Exhaust system ode : :

s t e p s i z e s e l e c t (const std : : va larray<double> &y)

{
eva l (y , ydot) ;

double min dt = s t e p u p p e r l i m i t ; // to ge t us s t a r t e d

double o ld d t = 0 . 0 ;

for (int i = 0 ; i < ndim ; ++i) {
i f (f abs (ydot [i]) > z e r o t o l) {

o ld d t = fabs (y [i] / ydot [i]) ;

i f (o ld d t < min dt) {
min dt = o ld d t ;

}
}

}

double dt = eps1 ∗ min dt ;

// Impose upper and lower s t ep l im i t s

i f (dt > s t e p u p p e r l i m i t)

dt = s t e p u p p e r l i m i t ;

i f (dt < s t e p l o w e r l i m i t)

dt = s t e p l o w e r l i m i t ;

return dt ;

}

bool

Exhaust system ode : :

p a s s e s s y s t e m t e s t (double i n i t i a l e n e r g y , std : : va larray<double> &y)

{
// incomplete

return true ;

}

int

Exhaust system ode : :

f u l l y o p e n v a l v e s ()

{
v i . f u l l y o p e n () ;

Section B.3 Free-piston engine system 207

ve . f u l l y o p e n () ;

return SUCCESS;

}

int

Exhaust system ode : :

m o v e v a l v e s l e f t c y l i n d e r (double m g , double u , double m g0 , double p , double &dt)

{
return m o v e l e f t v a l v e s (dt , m g , u , p , m g0 , v i , ve) ;

}

int

Exhaust system ode : :

m o v e v a l v e s r i g h t c y l i n d e r (double m g , double u , double m g0 , double p , double &dt)

{
return move r i gh t va lve s (dt , m g , u , p , m g0 , v i , ve) ;

}

Exhaust system : :

Exhaust system (int ndim , bool t e s t f l a g)

{
y in . r e s i z e (ndim) ;

yout . r e s i z e (ndim) ;

}

Exhaust system : :

Exhaust system (Exhaust system ode ∗ es ode ,

std : : va larray<double> yin ,

double dt sys ,

double V,

gas data &Q)

{
int ndim = yin . s i z e () ;

o d e s o l v e r = new OdeSolver (s t r i n g (” r k f s o l v e r ”) , ndim , s t r i n g (” r k f ”)) ;

e s o d e = es ode ;

e s ode −>f u l l y o p e n v a l v e s () ;

y in . r e s i z e (ndim) ;

yout . r e s i z e (ndim) ;

for (s i z e t i = 0 ; i < yin . s i z e () ; ++i) {
y in [i] = yout [i] = yin [i] ;

}

d t s y s = d t s y s ;

V = V;

m0 = Q. rho∗V;

}

Exhaust system : :

Exhaust system (const Exhaust system &es)

{
// incomplete

o d e s o l v e r = new OdeSolver (∗ (es . o d e s o l v e r)) ;

e s o d e = new Exhaust system ode (∗ (es . e s o d e)) ;

208 Engine source code Appendix B

y in = es . y in ;

yout = es . yout ;

d t s y s = es . d t s y s ;

}

Exhaust system : :

˜ Exhaust system ()

{
delete o d e s o l v e r ;

delete e s o d e ;

}

int

Exhaust system : :

advance f lu id dynamics (double &dt)

{
g l o b a l d a t a ∗ gd = g e t g l o b a l d a t a p t r () ;

int s t a t u s = o d e s o l v e r −>s o l v e o v e r i n t e r v a l (∗ e s ode , gd−>t , gd−>t+dt , &dt sy s ,

y in , yout) ;

return s t a t u s ;

}

int

Exhaust system : :

f i n a l i s e s t e p (gas data &Q)

{
Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

// unpack y

double m = yout [0] ;

double me = yout [1] ;

vector<double> my(nsp , 0 . 0) ;

for (int i = 0 ; i < nsp ; ++i) {
my[i] = yout [2+ i] ;

}

double m out = yout [2+nsp] ;

// as we approach f i l l i n g a c y l i nd e r volume , swi t ch to p e r f e c t mixing

i f (m out/m0 >= 0.999 && es ode −>d i s p l a c e ()) {
e s ode −>s e t d i s p l a c e (fa l se) ;

}

Q. rho = m/V ;

Q. e [0] = me/m;

for (int i = 0 ; i < nsp ; ++i) {
Q. massf [i] = my[i] /m;

}
i f (g−>e v a l t h e r m o s t a t e r h o e (Q) != SUCCESS) {

p r i n t f (” e r r o r c a l c u l a t i n g e v a l t h e r m o s t a t e r h o e () \n”) ;

p r i n t f (”y = [%g , %g]\n” , Q. rho , Q. e [0]) ;

p r i n t g a s d a t a (Q) ;

e x i t (1) ;

}
// copy vec tor f o r next t imes tep

Section B.3 Free-piston engine system 209

y in = yout ;

return SUCCESS;

}

F r e e p i s t o n e n g i n e o d e : :

F r e e p i s t o n e n g i n e o d e (int ndim , bool t e s t f l a g)

: OdeSystem (ndim , t e s t f l a g) {}

F r e e p i s t o n e n g i n e o d e : :

F r e e p i s t o n e n g i n e o d e (gas data ∗ Q L ,

gas data ∗ Q R,

double m p ,

double x p ,

double u p ,

double L p ,

double L c ,

double x L ,

double x R ,

double D,

double m gL ,

double m gR ,

double e r r o r t o l ,

int ndim ,

bool t e s t f l a g)

: OdeSystem (ndim , t e s t f l a g) ,

D (D) ,

m p (m p) ,

u pL0 (−u p) ,

u pR0 (u p) ,

e r r t o l (e r r o r t o l)

{
F c = F f = q L = q R = 0 . 0 ; // no l o s s e s by d e f a u l t

Q L = Q L ;

Q R = Q R ;

m gL = m gL ;

m gR = m gR ;

A = 0.25∗ PI∗D∗D;

L p = L p ;

L c = L c ;

x L = x L ;

x R = x R ;

Gas model∗ g = ge t ga s mode l p t r () ;

gamma L = g−>gamma(∗Q L) ;

gamma R = g−>gamma(∗Q R) ;

b = 0 . 0 0 5 ; // r ing t h i c kne s s per c y l i nd e r

ydot . r e s i z e (ndim) ;

ca l cu l a t e geomet ry (x p) ;

}

F r e e p i s t o n e n g i n e o d e : :

F r e e p i s t o n e n g i n e o d e (const F r e e p i s t o n e n g i n e o d e &fpe)

: OdeSystem (fpe . ndim , fpe . a p p l y s y s t e m t e s t)

{
// incomplete

}

210 Engine source code Appendix B

F r e e p i s t o n e n g i n e o d e : :

˜ F r e e p i s t o n e n g i n e o d e () {}

int

F r e e p i s t o n e n g i n e o d e : :

eva l (const valarray<double> &y , va larray<double> &ydot)

{
// unpack y

double x = y [X] ;

double u = y [U] ;

// f r i c t i o n

c h e v r o n s e a l f r i c t i o n (F f , Q L −>p , Q R −>p , b , D , m p , u) ;

double T ig = 1 4 0 0 . 0 ;

F c = cont ro l sy s t em (u , u pL0 , m p , A , L L , L R , L c , gamma L , gamma R , T ig

, Q L , Q R) ;

double a = ((Q L −>p − Q R −>p) ∗A + F c − F f) /m p ;

double de Ldt = −Q L −>p∗A ∗u/m gL ;

double de Rdt = Q R −>p∗A ∗u/m gR ;

// heat t r an s f e r

boundary l aye r th i ckne s s (d L , a L , x , u , u pL0 , Q L −>T[0] , PC T ref , L L , L c ,

D , gamma L) ;

boundary l aye r th i ckne s s (d R , a R , x , u , u pR0 , Q R −>T[0] , PC T ref , L R , L c ,

D , gamma R) ;

l a m i n a r h e a t f l u x (q ddL , Q L −>k [0] , d L , a L , Q L −>T[0] , PC T ref) ;

l a m i n a r h e a t f l u x (q ddR , Q R −>k [0] , d R , a R , Q R −>T[0] , PC T ref) ;

q L = q ddL ∗S L /m gL ;

q R = q ddR ∗S R /m gR ;

i f (i snan (q L)) { q L = 0 . 0 ; }
i f (i snan (q R)) { q R = 0 . 0 ; }

de Ldt = de Ldt − q L ;

de Rdt = de Rdt − q R ;

double temp [] = {u , a , de Ldt , de Rdt , q L ∗m gL , q R ∗m gR , F f ∗u , F c ∗u } ;

for (s i z e t i = 0 ; i < ydot . s i z e () ; ++i) {
ydot [i] = temp [i] ;

}

return SUCCESS;

}

double

F r e e p i s t o n e n g i n e o d e : :

s t e p s i z e s e l e c t (const valarray<double> &y)

{
eva l (y , ydot) ;

double min dt = s t e p u p p e r l i m i t ; // to ge t us s t a r t e d

double o ld d t = 0 . 0 ;

for (int i = 0 ; i < ndim ; ++i) {
i f (f abs (ydot [i]) > z e r o t o l) {

o ld d t = fabs (y [i] / ydot [i]) ;

Section B.3 Free-piston engine system 211

i f (o ld d t < min dt) {
min dt = o ld d t ;

}
}

}

double dt = eps1 ∗min dt ;

// Impose upper and lower s t ep l im i t s

i f (dt > s t e p u p p e r l i m i t)

dt = s t e p u p p e r l i m i t ;

i f (dt < s t e p l o w e r l i m i t)

dt = s t e p l o w e r l i m i t ;

return dt ;

}

double

F r e e p i s t o n e n g i n e o d e : :

c a l c u l a t e s y s t e m e n e r g y (double u p , double V L , double V R)

{
double ke = 0.5∗ m p ∗u p∗u p ;

Gas model∗ g = ge t ga s mode l p t r () ;

double e L = g−>t o t a l i n t e r n a l e n e r g y (∗ Q L) ;

double e R = g−>t o t a l i n t e r n a l e n e r g y (∗Q R) ;

return ke + V L∗Q L −>rho∗ e L + V R∗Q R −>rho∗e R ;

}

bool

F r e e p i s t o n e n g i n e o d e : :

p a s s e s s y s t e m t e s t (double i n i t i a l e n e r g y , double V L , double V R , va larray<double> &y)

{
double u = y [U] ;

double cu r r en t ene rgy = c a l c u l a t e s y s t e m e n e r g y (u , V L , V R) ;

double e r r = (fabs (cu r r en t ene rgy) − f abs (i n i t i a l e n e r g y)) / fabs (i n i t i a l e n e r g y) ;

i f (e r r < e r r t o l)

return true ;

else

return fa l se ;

}

int

F r e e p i s t o n e n g i n e o d e : :

c a l cu l a t e geomet ry (double x p)

{
// cy l i nd e r l eng th , volume , sur face area

L L = (x p − L p / 2 . 0) − x L ;

L R = x R − (x p + L p / 2 . 0) ;

V L = L L ∗A ;

V R = L R ∗A ;

S L = 2∗A + PI∗D ∗L L ;

S R = 2∗A + PI∗D ∗L R ;

212 Engine source code Appendix B

return SUCCESS;

}

F r e e p i s t o n e n g i n e : :

F r e e p i s t o n e n g i n e (int ndim fpe , int ndim es , bool t e s t f l a g , double dt sys , double

dt therm)

{
// incomplete

}

F r e e p i s t o n e n g i n e : :

F r e e p i s t o n e n g i n e (F r e e p i s t o n e n g i n e o d e ∗ fpe ode ,

Exhaust system ode ∗ es ode L ,

Exhaust system ode ∗ es ode R ,

va larray<double> y fpe ,

va larray<double> y es ,

double dt sys ,

double dt therm ,

double m gL0 ,

double m gR0)

{
int ndim fpe = y fpe . s i z e () ;

o d e s o l v e r f p e = new OdeSolver (s t r i n g (” r k f s o l v e r ”) , ndim fpe , s t r i n g (” r k f ”)) ;

int ndim es = y es . s i z e () ;

o d e s o l v e r e s = new OdeSolver (s t r i n g (” r k f s o l v e r ”) , ndim es , s t r i n g (” r k f ”)) ;

f p e o d e = fpe ode ;

e s ode L = es ode L ;

e s ode R = es ode R ;

y in . r e s i z e (ndim fpe) ;

yout . r e s i z e (ndim fpe) ;

for (int i = 0 ; i < ndim fpe ; ++i) {
y in [i] = yout [i] = y fpe [i] ;

}
m g0 = m gR0 ; // assume the r i g h t hand cy l i nd e r i s the co r r e c t mass

m gL0 = m gL0 ;

m gR0 = m gR0 ;

m gLout = 0 . 0 ;

m gRout = 0 . 0 ;

y in L . r e s i z e (ndim es) ;

yout L . r e s i z e (ndim es) ;

for (int i = 0 ; i < ndim es ; ++i) {
y in L [i] = yout L [i] = y e s [i]∗ fpe ode −>get V L () ; // e x t en s i v e p r op e r t i e s

}
yin R . r e s i z e (ndim es) ;

yout R . r e s i z e (ndim es) ;

for (int i = 0 ; i < ndim es ; ++i) {
yin R [i] = yout R [i] = y e s [i]∗ fpe ode −>get V R () ; // e x t en s i v e p r op e r t i e s

}
d t s y s = d t s y s ;

dt therm = dt therm ;

dt chem = −1.0;

i n i t i a l e n e r g y = fpe ode −>c a l c u l a t e s y s t e m e n e r g y (y fpe [U] , fpe ode −>get V L () ,

fpe ode −>get V R ()) ;

sys tem energy = i n i t i a l e n e r g y ;

}

Section B.3 Free-piston engine system 213

F r e e p i s t o n e n g i n e : :

F r e e p i s t o n e n g i n e (const F r e e p i s t o n e n g i n e &fpe)

{
o d e s o l v e r f p e = new OdeSolver (∗ (fpe . o d e s o l v e r f p e)) ;

o d e s o l v e r e s = new OdeSolver (∗ (fpe . o d e s o l v e r e s)) ;

f p e o d e = new F r e e p i s t o n e n g i n e o d e (∗ (fpe . f p e o d e)) ;

e s ode L = new Exhaust system ode (∗ (fpe . e s ode L)) ;

e s ode R = new Exhaust system ode (∗ (fpe . e s ode R)) ;

y in = fpe . y in ;

yout = fpe . yout ;

y in L = fpe . y in L ;

yout L = fpe . yout L ;

y in R = fpe . y in R ;

yout R = fpe . yout R ;

m gL0 = fpe . m gL0 ;

m gR0 = fpe . m gR0 ;

d t s y s = fpe . d t s y s ;

dt therm = fpe . dt therm ;

dt chem = fpe . dt chem ;

}

F r e e p i s t o n e n g i n e : :

˜ F r e e p i s t o n e n g i n e ()

{
delete o d e s o l v e r f p e ;

delete o d e s o l v e r e s ;

delete e s ode L ;

delete es ode R ;

delete f p e o d e ;

}

int

F r e e p i s t o n e n g i n e : :

i n s t a n t a n e o u s h e a t a d d i t i o n l e f t c y l i n d e r (double dh)

{
yout [E L] += dh ;

return SUCCESS;

}

int

F r e e p i s t o n e n g i n e : :

i n s t a n t a n e o u s h e a t a d d i t i o n r i g h t c y l i n d e r (double dh)

{
yout [E R] += dh ;

return SUCCESS;

}

int

F r e e p i s t o n e n g i n e : :

r e s e t i n t a k e m a s s l e f t c y l i n d e r (gas data &Q)

{
m gL0 = fpe ode −>get V L () ∗Q. rho ;

fpe ode −>set m gL (m gL0) ;

214 Engine source code Appendix B

es ode L −>s e t d i s p l a c e (true) ;

// r e s e t f r i c t i o n and heat l o s s

yout [Q L] = 0 . 0 ;

yout [Q R] = 0 . 0 ;

yout [F] = 0 . 0 ;

yout [W] = 0 . 0 ;

// r e s e t exhausted mass

Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

m gLout = yout L [2+nsp] ;

yout L [2+nsp] = 0 ;

return SUCCESS;

}

int

F r e e p i s t o n e n g i n e : :

r e s e t i n t a k e m a s s r i g h t c y l i n d e r (gas data &Q)

{
m gR0 = fpe ode −>get V R () ∗Q. rho ;

fpe ode −>set m gR (m gR0) ;

es ode R −>s e t d i s p l a c e (true) ;

// r e s e t f r i c t i o n and heat l o s s

yout [Q L] = 0 . 0 ;

yout [Q R] = 0 . 0 ;

yout [F] = 0 . 0 ;

yout [W] = 0 . 0 ;

// r e s e t exhausted mass

Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

m gRout = yout R [2+nsp] ;

yout R [2+nsp] = 0 ;

return SUCCESS;

}

int

F r e e p i s t o n e n g i n e : :

m o v e l e f t v a l v e s (double u p , double pL , double &dt)

{
return es ode L −>m o v e v a l v e s l e f t c y l i n d e r (fpe ode −>get m gL () , u p , 0 . 5∗ (m gL0 +

m g0) , pL , dt) ;

}

int

F r e e p i s t o n e n g i n e : :

move r i gh t va lve s (double u p , double pR, double &dt)

{
return es ode R −>m o v e v a l v e s r i g h t c y l i n d e r (fpe ode −>get m gR () , u p , 0 . 5∗ (m gR0 +

m g0) , pR, dt) ;

}

int

Section B.3 Free-piston engine system 215

F r e e p i s t o n e n g i n e : :

a d v a n c e c h e m i s t r y l e f t c y l i n d e r (gas data &Q, double &dt)

{
int s t a t u s = per form chemica l increment (Q, dt , dt therm , dt chem) ;

yout [E L] = Q. e [0] ;

// copy mass f r a c t i o n s back to s t a t e v e c t o r s

Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

double m gL = fpe ode −>get m gL () ;

for (int i = 0 ; i < nsp ; ++i) {
y in L [2+ i] = m gL∗Q. massf [i] ;

}

return s t a t u s ;

}

int

F r e e p i s t o n e n g i n e : :

a d v a n c e c h e m i s t r y r i g h t c y l i n d e r (gas data &Q, double &dt)

{
int s t a t u s = per form chemica l increment (Q, dt , dt therm , dt chem) ;

yout [E R] = Q. e [0] ;

// copy mass f r a c t i o n s back to s t a t e v e c t o r s

Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

double m gR = fpe ode −>get m gR () ;

for (int i = 0 ; i < nsp ; ++i) {
yin R [2+ i] = m gR∗Q. massf [i] ;

}

return s t a t u s ;

}

int

F r e e p i s t o n e n g i n e : :

advance dynamics (gas data &Q L , gas data &Q R, double &dt)

{
g l o b a l d a t a ∗ gd = g e t g l o b a l d a t a p t r () ;

o d e s o l v e r f p e −>s o l v e o v e r i n t e r v a l (∗ fpe ode , gd−>t , gd−>t+dt , &dt sy s , y in ,

yout) ;

return SUCCESS;

}

int

F r e e p i s t o n e n g i n e : :

f i n a l i s e s t e p (gas data &Q L , gas data &Q R)

{
Gas model∗ g = ge t ga s mode l p t r () ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

// unpack s t a t e

double x = yout [X] ;

double u = yout [U] ;

double e L = yout [E L] ;

216 Engine source code Appendix B

double e R = yout [E R] ;

double m gL = fpe ode −>get m gL () ;

double m gR = fpe ode −>get m gR () ;

vector<double> my L(nsp , 0 . 0) ;

for (int i = 0 ; i < nsp ; ++i) {
my L [i] = yout L [2+ i] ;

}
double m outL = yout L [2+nsp] ;

// as we approach f i l l i n g a c y l i nd e r volume , swi t ch to p e r f e c t mixing

i f (m outL/m gL0 >= 0.999 && es ode L −>d i s p l a c e ()) {
es ode L −>s e t d i s p l a c e (fa l se) ;

}

vector<double> my R(nsp , 0 . 0) ;

for (int i = 0 ; i < nsp ; ++i) {
my R [i] = yout R [2+ i] ;

}
double m outR = yout R [2+nsp] ;

// as we approach f i l l i n g a c y l i nd e r volume , swi t ch to p e r f e c t mixing

i f (m outR/m gR0 >= 0.999 && es ode R −>d i s p l a c e ()) {
es ode R −>s e t d i s p l a c e (fa l se) ;

}

double dm L = yout L [M] − y in L [M] ;

double dme L = yout L [ME] − y in L [ME] ;

double dm R = yout R [M] − yin R [M] ;

double dme R = yout R [ME] − yin R [ME] ;

fpe ode −>ca l cu l a t e geomet ry (x) ;

// t h i s i s where we c a l c u l a t e the ac tua l gas s t a t e s from the complete second law

Q L . rho = (m gL + dm L) / fpe ode −>get V L () ;

Q L . e [0] = (dme L + e L∗m gL) /(m gL + dm L) ;

for (int i = 0 ; i < nsp ; ++i) {
Q L . massf [i] = my L [i] / (m gL + dm L) ;

}
fpe ode −>set m gL (m gL + dm L) ;

i f (g−>e v a l t h e r m o s t a t e r h o e (Q L) != SUCCESS) {
p r i n t f (” e r r o r c a l c u l a t i n g e v a l t h e r m o s t a t e r h o e () \n”) ;

p r i n t f (”y = [%g , %g , %g , %g]\n” , x , u , e L , e R) ;

p r i n t g a s d a t a (Q L) ;

e x i t (1) ;

}
i f (g−>e v a l t r a n s p o r t c o e f f i c i e n t s (Q L) != SUCCESS) {

p r i n t f (” e r r o r c a l c u l a t i n g e v a l t r a n s p o r t c o e f f i c i e n t s () \n”) ;

p r i n t g a s d a t a (Q L) ;

e x i t (1) ;

}

Q R . rho = (m gR + dm R) / fpe ode −>get V R () ;

Q R . e [0] = (dme R + e R∗m gR) /(m gR + dm R) ;

for (int i = 0 ; i < nsp ; ++i) {

Section B.3 Free-piston engine system 217

Q R . massf [i] = my R [i] / (m gR + dm R) ;

}
fpe ode −>set m gR (m gR + dm R) ;

i f (g−>e v a l t h e r m o s t a t e r h o e (Q R) != SUCCESS) {
p r i n t f (” e r r o r c a l c u l a t i n g e v a l t h e r m o s t a t e r h o e () \n”) ;

p r i n t f (”y = [%g , %g , %g , %g]\n” , x , u , e L , e R) ;

p r i n t g a s d a t a (Q R) ;

e x i t (1) ;

}
i f (g−>e v a l t r a n s p o r t c o e f f i c i e n t s (Q R) != SUCCESS) {

p r i n t f (” e r r o r c a l c u l a t i n g e v a l t r a n s p o r t c o e f f i c i e n t s () \n”) ;

p r i n t g a s d a t a (Q R) ;

e x i t (1) ;

}

// copy energy and work back to s t a t e v e c t o r s

yout [E L] = Q L . e [0] ;

yout [E R] = Q R . e [0] ;

sys tem energy = fpe ode −>c a l c u l a t e s y s t e m e n e r g y (u , fpe ode −>get V L () , fpe ode −>
get V R ()) ;

fpe ode −>set gamma L (g−>gamma(Q L)) ;

fpe ode −>set gamma R (g−>gamma(Q R)) ;

// copy vec t o r s f o r next t imes tep

y in = yout ;

y in L = yout L ;

yin R = yout R ;

return SUCCESS;

}

int

F r e e p i s t o n e n g i n e : :

a d v a n c e f l u i d d y n a m i c s l e f t c y l i n d e r (double u p , gas data ∗Q, double &dt)

{
g l o b a l d a t a ∗ gd = g e t g l o b a l d a t a p t r () ;

m o v e l e f t v a l v e s (u p , Q−>p , dt) ;

o d e s o l v e r e s −>s o l v e o v e r i n t e r v a l (∗ es ode L , gd−>t , gd−>t+dt , &dt sy s , y in L ,

yout L) ;

return SUCCESS;

}

int

F r e e p i s t o n e n g i n e : :

a d v a n c e f l u i d d y n a m i c s r i g h t c y l i n d e r (double u p , gas data ∗Q, double &dt)

{
g l o b a l d a t a ∗ gd = g e t g l o b a l d a t a p t r () ;

move r i gh t va lve s (u p , Q−>p , dt) ;

o d e s o l v e r e s −>s o l v e o v e r i n t e r v a l (∗ es ode R , gd−>t , gd−>t+dt , &dt sy s , yin R ,

yout R) ;

return SUCCESS;

}

int

218 Engine source code Appendix B

per fo rm chemica l increment (gas data &Q, double &dt , double &dt therm , double &dt chem)

{
Gas model∗ g = ge t ga s mode l p t r () ;

React ion update ∗ r = g e t r e a c t i o n u p d a t e p t r () ;

// no chemisty f i l e has been s e t !

i f (r == 0) return SUCCESS;

i f (dt therm >= dt) {
i f (r−>update s ta t e (Q, dt , dt chem) != SUCCESS) {

p r i n t f (” e r r o r updating chemical s tep \n”) ;

e x i t (1) ;

}
i f (g−>e v a l t h e r m o s t a t e r h o e (Q) != SUCCESS) {

p r i n t f (” e r r o r c a l c u l a t i n g e v a l t h e r m o s t a t e r h o e () \n”) ;

p r i n t g a s d a t a (Q) ;

e x i t (1) ;

}
} else {

// s t ep through i n t e r v a l

double substep = 0 . 0 ;

for (; substep < (dt − dt therm) ; substep += dt therm) {
i f (r−>update s ta t e (Q, dt therm , dt chem) != SUCCESS) {

// the chemistry update has f a i l e d

// reduce dt therm and t ry again

dt therm = dt therm∗DT THERM REDUCE;

i f (r−>update s ta t e (Q, dt therm , dt chem) != SUCCESS) {
p r i n t f (” e r r o r updating chemical s tep \n”) ;

p r i n t f (” d t s y s = %g\n” , dt) ;

p r i n t f (” dt therm = %g\n” , dt therm) ;

p r i n t f (”dt chem = %g\n” , dt chem) ;

e x i t (1) ;

}
}
i f (g−>e v a l t h e r m o s t a t e r h o e (Q) != SUCCESS) {

p r i n t f (” e r r o r c a l c u l a t i n g e v a l t h e r m o s t a t e r h o e () \n”) ;

p r i n t g a s d a t a (Q) ;

e x i t (1) ;

}
}

// take f i n a l s t ep

double dt f = dt − substep ;

i f (r−>update s ta t e (Q, dtf , d t f) != SUCCESS) {
p r i n t f (” e r r o r updating chemical s tep during l a s t substep \n”) ;

p r i n t f (” d t s y s = %g\n” , dt) ;

p r i n t f (” dt therm = %g\n” , dt therm) ;

p r i n t f (”dt chem = %g\n” , dt chem) ;

e x i t (1) ;

}
i f (g−>e v a l t h e r m o s t a t e r h o e (Q) != SUCCESS) {

p r i n t f (” e r r o r c a l c u l a t i n g e v a l t h e r m o s t a t e r h o e () \n”) ;

p r i n t g a s d a t a (Q) ;

e x i t (1) ;

}
}
return SUCCESS;

Section B.3 Free-piston engine system 219

}

int copy array (va larray<double> &src , va larray<double> &dst) {
// fo r the sake o f speed , we are making NO error checks here

// and assuming the user knows what they ’ re doing .

for (s i z e t i = 0 ; i < dst . s i z e () ; ++i) {
dst [i] = s r c [i] ;

}
return SUCCESS;

}

Listing B.6: Free-piston engine system, source file.

220 Engine source code Appendix B

B.4 Free-piston engine models

#ifndef FPE MODELS HH

#define FPE MODELS HH

// \ author Brendan T. O’ F laher ty

// \ b r i e f C−s t y l e implementation o f some u s e f u l models

#include <vector>

#include <s t r i ng>

#include ” . . / . . / l i b / u t i l / source / u s e f u l . h”

#include ” . . / . . / l i b / gas /models / p h y s i c a l c o n s t a n t s . hh”

#include ” . . / . . / l i b / gas /models /gas−model . hh”

#define GRAVITY 0

#define PI 3.14159265359 // r e s t a t e my assumptions : mathematics i s the language o f nature

#define T ATM 298.15

#define P ATM 101325.0

// heat f l u x models

int a i c h l m a y r h e a t f l u x (double &q ,

double k ,

double D,

double L ,

double T,

double Tw=T ATM) ;

int annand heat f lux (double &q ,

double k ,

double D,

double u p ,

double mu,

double rho ,

double T,

double Tw=T ATM) ;

int annand and p in f o ld hea t f l ux (double &q ,

double k ,

double D,

double u p ,

double u p0 ,

double mu,

double T,

double rho ,

double Tw,

double dTdt) ;

int l a w t o n h e a t f l u x (double &q ,

double k ,

double D,

double u p ,

double u p0 ,

double mu,

double T,

double rho ,

double Tw,

double L ,

double gamma,

double alpha0 =2.2160e−5) ;

int woschn i hea t f l ux (double &q ,

Section B.4 Free-piston engine models 221

double k ,

double D, double u p ,

double p ,

double T,

double Tw=T ATM,

std : : s t r i n g name=” s t roke ”) ;

int boundary l aye r th i ckne s s (double &d ,

double &a ,

double x p ,

double u p ,

double u p0 ,

double T,

double Tw,

double L ,

double L c ,

double D,

double gamma,

double alpha0 =2.2160e−5) ;

int l a m i n a r h e a t f l u x (double &q ,

double k ,

double d ,

double u p ,

double T,

double Tw) ;

// f r i c t i o n c o e f f i c i e n t models

int c o n s t a n t f r i c t i o n c o e f f i c i e n t (double &f) ;

int m c g e e h a n f r i c t i o n c o e f f i c i e n t (double &f ,

double u p ,

double eta ,

double p r ,

double b) ;

int m i x e d f r i c t i o n c o e f f i c i e n t (double &f ,

double u p ,

double eta ,

double p r ,

double b) ;

int c h e v r o n s e a l f r i c t i o n (double &F,

double p0 ,

double p1 ,

double b ,

double D,

double m p ,

double u p) ;

// f l u i d dynamics

int d i s c h a r g e c o e f f i c i e n t (double &cd ,

double Lv ,

double Dv,

std : : s t r i n g name) ;

// con t ro l system

double cont ro l sy s t em (double u p ,

double u p0 ,

double m p ,

double A,

double L L ,

222 Engine source code Appendix B

double L R ,

double L c ,

double gamma L ,

double gamma R ,

double T ig ,

gas data ∗Q L ,

gas data ∗Q R) ;

// engine geometry

int get geometry (std : : vector<double> &geom ,

double x ,

double D,

double L c ,

double x L ,

double x R) ;

#endif

Listing B.7: Free-piston engine models, header file.

#include <c s td io>

#include <c s t d l i b>

#include <cmath>

#include <vector>

#include ” . . / . . / l i b /nm/ source / l i n e a r i n t e r p o l a t i o n . hh”

#include ” . . / . . / l i b / gas /models / gas data . hh”

#include ” fpe mode l s . hh”

#include ” f p e k e r n e l . hh”

using namespace std ;

// heat t r an s f e r

int

a i c h l m a y r h e a t f l u x (double &q ,

double k ,

double D,

double L ,

double T,

double Tw)

{
// quasi−s teady heat t r an s f e r o f Aichlmayr e t a l (2002)

// Besse l f unc t i on o f the second kind fo r a f i n i t e c y l i nd e r

double LoD = L/D;

double num = 0.440332∗ PI∗PI + 5.09296∗LoD∗LoD ;

double den = PI + 2∗PI∗LoD ;

q = (2 e3∗k∗(T − Tw)) /L∗(num/den) ;

return SUCCESS;

}

int

annand heat f lux (double &q ,

double k ,

double D,

double u p0 ,

double mu,

Section B.4 Free-piston engine models 223

double rho ,

double T,

double Tw)

{
// quasi−s teady heat t r an s f e r o f Annand (1963)

// Nu−Re r e l a t i o n fo r a 460 381mm two−s t r o k e engine at s teady s t a t e

// Nu = a∗Reˆ0.7

double u m = fabs (u p0/ s q r t (2)) ; // mean speed

double a = 0 . 0 3 6 3 ; // 0.12 Nu−Re c o e f f i c i e n t

double Re = rho∗u m∗D/mu;

double h = a ∗(k/D) ∗pow(Re , 0 . 7) ;

q = h∗(T − Tw) ;

return SUCCESS;

}

int

annand and p in f o ld hea t f l ux (double &q ,

double k ,

double D,

double u p ,

double u p0 ,

double mu,

double T,

double rho ,

double Tw,

double dTdt)

{
double u m = fabs (u p0/ s q r t (2)) ; // mean speed

double a = 0 . 3 ; // Nu−Re c o e f f i c i e n t

double Re = rho∗u m∗D/mu;

double h = a ∗(k/D) ∗pow(Re , 0 . 7) ;

q = h∗(T − Tw) ∗ (1 . 0 + 0.27∗D∗dTdt /((T−Tw) ∗u m)) ;

return SUCCESS;

}

int

l a w t o n h e a t f l u x (double &q ,

double k ,

double D,

double u p ,

double u p0 ,

double mu,

double T,

double rho ,

double Tw,

double L ,

double gamma,

double alpha0)

{
// unsteady heat t r an s f e r o f Lawton (1987)

// based on Annand ’ s quasi−s teady form

double u m = fabs (u p0/ s q r t (2)) ; // mean speed

224 Engine source code Appendix B

double Re = rho∗u m∗D/mu; // Reynolds

double t0 = s q r t (pow(D, 3 . 0) /(alpha0 ∗u m)) ; // time constant

double c = (gamma − 1 . 0) ∗ t0 ∗(u p/L) ; // c omp r e s s i b i l i t y number

double a = 0 . 2 8 ;

q = (k/D) ∗(a∗pow(Re , 0 . 7) ∗(T − Tw) + 2.75∗ c∗Tw) ;

return SUCCESS;

}

int

woschn i hea t f l ux (double &q ,

double k ,

double D,

double u p ,

double p ,

double T,

double Tw,

s t r i n g name)

{
// quasi−s teady heat t r an s f e r o f Woschni (1967)

// Nu−Re r e l a t i o n fo r a motored engine at s teady s t a t e

double c1 ;

i f (name == ” exhaust ”) {
c1 = 6 . 1 8 ;

} else i f (name == ” s t roke ”) {
c1 = 2 . 2 8 ;

} else {
p r i n t f (”unknown name : %s ” , name . c s t r ()) ;

p r i n t f (” opt ions are ’ exhaust ’ or ’ s t r oke ’\n”) ;

e x i t (BAD INPUT ERROR) ;

}
p = p/(P ATM∗1 .033) ; // conver t Pa to kp/cmˆ2

double u r e f = c1∗u p ;

double h = 110.0∗pow(p , 0 . 8) ∗pow(ure f , 0 . 8) /(pow(T, 0 . 5 3) ∗pow(D, 0 . 2)) ;

q = h∗(T − Tw) ;

return SUCCESS;

}

int

boundary l aye r th i ckne s s (double &d ,

double &a ,

double x p ,

double u p ,

double u p0 ,

double T,

double Tw,

double L ,

double L c ,

double D,

double gamma,

double alpha0)

{
a = −0.8∗(u p/u p0) ;

double dd = (alpha0 / fabs (u p)) ∗ (1 . 0 − Tw/T) ∗(1 − a) /(1 + a) ∗pow(L , (gamma + 1)) /(

gamma∗pow(L c ,gamma) − L c ∗ pow(L , (gamma − 1))) ;

Section B.4 Free-piston engine models 225

i f (T < Tw) d = s q r t (−dd) ; // grad i en t f l i p s

else d = s q r t (dd) ;

i f (d > D/2 . 0) { d = D/ 2 . 0 ; } // f u l l y deve loped

return SUCCESS;

}

int

l a m i n a r h e a t f l u x (double &q ,

double k ,

double d ,

double a ,

double T,

double Tw)

{
q = 0 . 0 ;

i f (d == 0 . 0) return SUCCESS;

q = (1 . 6∗ k/d) ∗ (0 . 5 − a) ∗(T − Tw) ;

return SUCCESS;

}

// f r i c t i o n

int

c o n s t a n t f r i c t i o n c o e f f i c i e n t (double &f)

{
f = 0 . 1 ;

return SUCCESS;

}

int

m c g e e h a n f r i c t i o n c o e f f i c i e n t (double &f ,

double u p ,

double eta ,

double p r ,

double b)

{
// f r i c t i o n c o e f f i c i e n t o f McGeehan (1979)

// pa rabo l i c r ing p r o f i l e

double c 1 = 4 . 8 ;

double c 2 = 0 . 5 ;

double f 0 = eta ∗ f abs (u p) /(p r ∗b) ;

f = c 1 ∗pow(f0 , c 2) ;

return SUCCESS;

}

int

m i x e d f r i c t i o n c o e f f i c i e n t (double &f ,

double u p ,

double eta ,

double p r ,

double b)

{
double f s , f h ;

double nu ;

226 Engine source code Appendix B

double alpha ;

c o n s t a n t f r i c t i o n c o e f f i c i e n t (f s) ;

m c g e e h a n f r i c t i o n c o e f f i c i e n t (f h , f abs (u p) , eta , P ATM, b) ;

nu = pow ((eta ∗ f abs (u p) /(P ATM∗b)) , 0 . 5) ;

alpha = exp(−300∗nu) ;

i f (alpha > 1 . 0) alpha = 1 . 0 ;

i f (alpha < 0 . 0) alpha = 0 . 0 ;

f = f s ∗ alpha + (1 . 0 − alpha) ∗ f h ;

return SUCCESS;

}

int

c h e v r o n s e a l f r i c t i o n (double &F,

double p0 ,

double p1 ,

double b ,

double D,

double m p ,

double u p)

{
// f r i c t i o n c a l c u l a t i o n

double f ;

double eta = 0 . 2 2 2 ; // kinematic v i s c o s i t y o f SAE30 at 300K = 200 cSt (approx) ,

d ens i t y = 900 kg/mˆ3

double sigma = 0 . 0 ; // r ing t e n s i l e s t r e s s

double p r0 = p0 + sigma ;

double p r1 = p1 + sigma ;

double A r = PI∗D∗b ;

F = 0 . 0 ;

i f (f abs (u p) < 1 .0 e−6) {
return SUCCESS;

} else {
m i x e d f r i c t i o n c o e f f i c i e n t (f , u p , eta , p r0 , b) ;

F += f ∗(m p∗GRAVITY/2 + p r0 ∗A r) ;

m i x e d f r i c t i o n c o e f f i c i e n t (f , u p , eta , p r1 , b) ;

F += f ∗(m p∗GRAVITY/2 + p r1 ∗A r) ;

}
F = F∗u p/ fabs (u p) ;

return SUCCESS;

}

int

d i s c h a r g e c o e f f i c i e n t (double &cd ,

double Lv ,

double Dv,

s t r i n g name)

{
int s t a t u s ;

double LoD = Lv/Dv ;

double xarray [] = {0 .025 , 0 . 050 , 0 . 075 , 0 . 100 , 0 . 150 , 0 . 200 , 0 . 2 4 0} ;

Section B.4 Free-piston engine models 227

vector<double> x (xarray , xarray +7) ;

s t r i n g in take (” in take ”) ;

s t r i n g exhaust (” exhaust ”) ;

i f (name == intake) {
// use in take c o e f f i c i e n t s

double yarray [] = {0 .949 , 0 . 887 , 0 . 769 , 0 . 699 , 0 . 648 , 0 . 619 , 0 . 6 3 8} ;

vector<double> y (yarray , yarray +7) ;

s t a t u s = l i n e a r e v a l (LoD, cd , x , y) ;

} else i f (name == exhaust) {
// use exhaust c o e f f i c i e n t s

double yarray [] = {0 .869 , 0 . 808 , 0 . 679 , 0 . 579 , 0 . 508 , 0 . 509 , 0 . 5 5 8} ;

vector<double> y (yarray , yarray +7) ;

s t a t u s = l i n e a r e v a l (LoD, cd , x , y) ;

} else {
p r i n t f (”unknown name : %s ” , name . c s t r ()) ;

e x i t (BAD INPUT ERROR) ;

}

i f (s t a t u s != SUCCESS) {
p r i n t f (” d i s c h a r g e c o e f f i c i e n t f a i l e d \n”) ;

p r i n t f (” t ry ing to get Cd f o r %s \n” , name . c s t r ()) ;

p r i n t f (” e x i t i n g to system . . . \ n”) ;

e x i t (VALUE ERROR) ;

}
return SUCCESS;

}

double

cont ro l sy s t em (double u p ,

double u p0 , // t a r g e t v e l o c i t y

double m p ,

double A,

double L L ,

double L R ,

double L c , // cy l i nd e r l eng t h

double gamma L , // LHS gamma

double gamma R , // RHS gamma

double T ig , // t a r g e t temperature

gas data ∗Q L ,

gas data ∗Q R)

{
double L ex , dx , a , b ;

double F = 0 . 0 ;

i f (u p >= 0) {
i f (L R > L c && L L > 0 .5∗ L c) {

i f (Q L−>p > P ATM) {
a = gamma L + 1 . 0 ;

L ex = L L∗pow ((P ATM/Q L−>p) , (1 . 0 / gamma L)) ;

b = P ATM∗A/(a∗pow(L ex , gamma L)) ;

dx = L L − L ex ;

F = (0 . 5∗m p∗(u p0∗u p0 − u p∗u p) + b∗(pow(L ex , a) − pow(L L , a))) /dx ;

}
}

228 Engine source code Appendix B

} else {
i f (L L > L c && L R > 0 .5∗ L c) {

i f (Q R−>p > P ATM) {
a = gamma R + 1 . 0 ;

L ex = L R∗pow ((P ATM/Q R−>p) , (1 . 0 /gamma R)) ;

b = P ATM∗A/(a∗pow(L ex , gamma R)) ;

dx = − L R + L ex ;

F = (0 . 5∗m p∗(u p0∗u p0 − u p∗u p) + b∗(pow(L ex , a) − pow(L R , a))) /dx ;

}
}

}

// what i s the f o r ce l im i t ?

i f (F > 1e4) { F = 1e4 ; }
i f (F < −1e4) { F = −1e4 ; }

return F;

}

// free−p i s t on engine geometry

int

get geometry (vector<double> &geom ,

double x ,

double D,

double L c ,

double x L ,

double x R)

{
i f (geom . s i z e () < 11) {

p r i n t f (”geom vecto r s i z e %i < 11\n” , (int)geom . s i z e ()) ;

p r i n t f (” e x i t i n g to system . . . \ n”) ;

e x i t (1) ;

}
double A, xp L , xp R , L i , L p , L L , L R , V L , V R , S L , S R ;

// l eng t h o f in take por t s

L i = 0.5∗D;

// requ i red p i s t on l eng t h

L p = L c + 2∗ L i ;

// bore area

A = PI∗D∗D/ 4 . 0 ;

// por t opening po in t

xp L = x L + L c + L p / 2 . 0 ;

xp R = x R − L c − L p / 2 . 0 ;

// ins tantaneous c y l i nd e r l eng t h

L L = (x − L p /2 . 0) − x L ;

L R = x R − (x + L p /2 . 0) ;

// cy l i nd e r volume

V L = L L∗A;

V R = L R∗A;

// cy l i nd e r sur face area

Section B.4 Free-piston engine models 229

S L = 2∗A + PI∗D∗L L ;

S R = 2∗A + PI∗D∗L R ;

double geom array [] = {A, xp L , xp R , L i , L p , L L , L R , V L , V R , S L , S R } ;

for (s i z e t i = 0 ; i < geom . s i z e () ; ++i) {
geom [i] = geom array [i] ;

}
return SUCCESS;

}

Listing B.8: Free-piston engine models, source file.

230 Engine source code Appendix B

B.5 Free-piston engine control

#ifndef FPE CONTROL HH

#define FPE CONTROL HH

// \ author Brendan T. O’ F laher ty

// \ b r i e f Free−p i s t on engine con t ro l

#include <s t r i ng>

#include <vector>

#include ” . . / . . / l i b / u t i l / source / u s e f u l . h”

#include ” . . / . . / l i b /nm/ source / l i n e a r i n t e r p o l a t i o n . hh”

#include ” fpe mode l s . hh”

class Valve

{
public :

Valve () ;

Valve (std : : s t r i n g type , double v , double D) ;

˜Valve () ;

double g e t a r e a () { return A ; }

void f u l l y o p e n () { l i f t = 0.25∗D ; A = 0.25∗ PI∗D ∗D ; }

int open (double dt) ;

int c l o s e (double dt) ;

double e v a l d i s c h a r g e c o e f f i c i e n t () ;

double g e t t () { return t l i f t ; }
double g e t v e l () { return v ; }
double g e t l i f t () { return l i f t ; }

private :

s td : : s t r i n g type ; // e i t h e r ” in take ” or ” exhaust ”

double l i f t ; // l i f t

double l max ; // max l i f t

double D ; // diamter

double cd ; // d i scharge c o e f f i c i e n t

double t l i f t ; // opening time

double v ; // speed

double A ; // current area

} ;

int move r i gh t va lve s (double dt ,

double m g ,

double u p ,

double p ,

double m g0 ,

Valve &vi ,

Valve &ve) ;

int m o v e l e f t v a l v e s (double dt ,

double m g ,

double u p ,

double p ,

Section B.5 Free-piston engine control 231

double m g0 ,

Valve &vi ,

Valve &ve) ;

#endif

Listing B.9: Free-piston engine controls, header file.

// \ author Brendan T. O’ F laher ty

// \ b r i e f Free−p i s t on engine con t ro l

#include <c s td io>

#include ” . . / . . / l i b / gas /models / p h y s i c a l c o n s t a n t s . hh”

#include ” f p e c o n t r o l . hh”

#include ” f p e k e r n e l . hh”

using namespace std ;

Valve : :

Valve () {}

Valve : :

Valve (s t r i n g type , double v , double D)

: type (type) , l i f t (0 . 0) , l max (0 . 25∗D) , D (D) , cd (0 . 0) , t l i f t (l max /v) , v (v) ,

A (0 . 0)

{}

Valve : :

˜Valve () {}

int

Valve : :

open (double dt)

{
l i f t += v ∗dt ;

i f (l i f t > l max) l i f t = l max ;

A = PI∗D ∗ l i f t ;

return SUCCESS;

}

int

Valve : :

c l o s e (double dt)

{
l i f t −= v ∗dt ;

i f (l i f t < 0 . 0) l i f t = 0 . 0 ;

A = PI∗D ∗ l i f t ;

return SUCCESS;

}

double

Valve : :

e v a l d i s c h a r g e c o e f f i c i e n t ()

{
d i s c h a r g e c o e f f i c i e n t (cd , l i f t , D , type) ;

232 Engine source code Appendix B

return cd ;

}

int

move r i gh t va lve s (double dt , double m g , double u p , double p , double m g0 , Valve &vi ,

Valve &ve)

{
// L R i s the current r i g h t c y l i nd e r l eng t h

// L cy l i s the geometric c y l i nd e r l eng t h

i f (u p < 0) {
i f (p < PC P atm) {

v i . open (dt) ;

}
} else {

i f (p > PC P atm) {
v i . c l o s e (dt) ;

i f (m g > m g0) {
ve . open (dt) ;

} else {
ve . c l o s e (dt) ;

}
}

}

return SUCCESS;

}

int

m o v e l e f t v a l v e s (double dt , double m g , double u p , double p , double m g0 , Valve &vi ,

Valve &ve)

{
// L L i s the current r i g h t c y l i nd e r l eng t h

// L cy l i s the geometric c y l i nd e r l eng t h

i f (u p > 0) {
i f (p < PC P atm) {

v i . open (dt) ;

}
} else {

i f (p > PC P atm) {
v i . c l o s e (dt) ;

i f (m g > m g0) {
ve . open (dt) ;

} else {
ve . c l o s e (dt) ;

}
}

}

return SUCCESS;

}

Listing B.10: Free-piston engine controls, source file.

Section B.6 Sod’s shock tube simulator 233

B.6 Sod’s shock tube simulator

#ifndef SOD HH

#define SOD HH

// \ author Brendan T. O’ F laher ty

// \ b r i e f Functions used to s o l v e Sod ’ s shock tube problem

#include <vector>

#include ” . . / . . / l i b / u t i l / source / u s e f u l . h”

#include ” . . / . . / l i b / u t i l / source / d b c a s s e r t . hh”

#include ” . . / . . / l i b / gas /models / gas data . hh”

#include ” . . / . . / l i b / gas /models /gas−model . hh”

#include ” . . / . . / l i b /nm/ source / zero system . hh”

#include ” . . / . . / l i b /nm/ source / z e r o f i n d e r s . hh”

class p2p1 fun : public ZeroFunction {
public :

p2p1 fun () ;

p2p1 fun (gas data Q1, gas data Q2, gas data Q3, gas data Q4) ;

p2p1 fun (const p2p1 fun& zfun) ;

˜ p2p1 fun () ;

int eva l (double p2p1 , double &y) ;

private :

double T2 ;

gas data Q 1 , Q 2 , Q 3 , Q 4 ;

} ;

class r 1 r2 fun : public ZeroFunction {
public :

r 1 r 2 fun () ;

r 1 r 2 fun (gas data Q1, gas data Q2, gas data Q3, gas data Q4, int nx) ;

r 1 r 2 fun (const r 1 r2 fun& zfun) ;

˜ r 1 r2 fun () ;

int eva l (double r1r2 , double &y) ;

private :

int nx ;

gas data Q 1 , Q 2 , Q 3 , Q 4 ;

} ;

int s t e p a c r o s s e x p a n s i o n d p (gas data &Q3, double &u3 , double dp) ;

int s t e p a c r o s s e x p a n s i o n d u (gas data &Q3, double &u3 , double du) ;

int g e t s t a t e b e h i n d s h o c k (gas data &Q2, gas data Q1, double r1r2) ;

int ge t shock speed (double &W, double r1r2 , gas data Q1, gas data Q2) ;

double g e t v e l o c i t y b e h i n d s h o c k (double r1r2 , double W) ;

int e v a l f l u x (std : : vector<double> &flux , gas data ∗Q4, gas data ∗Q1, double t o l=1e−6) ;

std : : vector<double>

p y t h o n e v a l f l u x (gas data ∗Q4, gas data ∗Q1, double t o l=1e−6) ;

#endif

Listing B.11: Sod’s shock tube simulator, header file.

234 Engine source code Appendix B

#include <c s td io>

#include <cmath>

#include <vector>

#include ” f p e k e r n e l . hh”

#include ” sod . hh”

using namespace std ;

// p2p1 s o l v e r

p2p1 fun : :

p2p1 fun ()

: ZeroFunction () {}

p2p1 fun : :

p2p1 fun (gas data Q1, gas data Q2, gas data Q3, gas data Q4)

: ZeroFunction ()

{
Gas model ∗g = ge t ga s mode l p t r () ;

g−> i n i t i a l i s e g a s d a t a (Q 1) ;

g−> i n i t i a l i s e g a s d a t a (Q 2) ;

g−> i n i t i a l i s e g a s d a t a (Q 3) ;

g−> i n i t i a l i s e g a s d a t a (Q 4) ;

copy gas data (Q1, Q 1) ;

copy gas data (Q2, Q 2) ;

copy gas data (Q3, Q 3) ;

copy gas data (Q4, Q 4) ;

}

p2p1 fun : :

p2p1 fun (const p2p1 fun& zfun)

: ZeroFunction ()

{
Gas model ∗g = ge t ga s mode l p t r () ;

g−> i n i t i a l i s e g a s d a t a (Q 1) ;

g−> i n i t i a l i s e g a s d a t a (Q 2) ;

g−> i n i t i a l i s e g a s d a t a (Q 3) ;

g−> i n i t i a l i s e g a s d a t a (Q 4) ;

copy gas data (zfun . Q 1 , Q 1) ;

copy gas data (zfun . Q 2 , Q 2) ;

copy gas data (zfun . Q 3 , Q 3) ;

copy gas data (zfun . Q 4 , Q 4) ;

}

p2p1 fun : : ˜ p2p1 fun () {}

int

p2p1 fun : :

eva l (double p2p1 ,

double &y)

{
Gas model ∗g = ge t ga s mode l p t r () ;

Section B.6 Sod’s shock tube simulator 235

// assumes i d e a l equat ion o f s t a t e

g−>eva l sound speed (Q 1) ;

g−>eva l sound speed (Q 4) ;

ASSERT(! i snan (Q 1 . a) && ! i s i n f (Q 1 . a)) ;

ASSERT(! i snan (Q 4 . a) && ! i s i n f (Q 4 . a)) ;

T2 = (g−>gamma(Q 4) − 1 . 0) ∗(Q 1 . a/Q 4 . a) ∗(p2p1 − 1 . 0) /

s q r t (2 . 0∗ g−>gamma(Q 1) ∗ (2 . 0∗ g−>gamma(Q 1) + (g−>gamma(Q 1) + 1 . 0) ∗(p2p1 − 1 . 0)

)) ;

i f (T2 > 1 . 0) { T2 = 1 . 0 ; } // prevent error f o r very smal l downstream pres sure s

y = ((Q 4 . p/Q 1 . p) − p2p1 ∗ pow ((1 . 0 − T2) , −2.0∗g−>gamma(Q 4) /(g−>gamma(Q 4) −
1 . 0))) ;

return SUCCESS;

}

// r1r2 s o l v e r

r 1 r2 fun : :

r 1 r 2 fun ()

: ZeroFunction () {}

r 1 r2 fun : :

r 1 r 2 fun (gas data Q1, gas data Q2, gas data Q3, gas data Q4, int nx)

: ZeroFunction ()

{
Gas model ∗g = ge t ga s mode l p t r () ;

g−> i n i t i a l i s e g a s d a t a (Q 1) ;

g−> i n i t i a l i s e g a s d a t a (Q 2) ;

g−> i n i t i a l i s e g a s d a t a (Q 3) ;

g−> i n i t i a l i s e g a s d a t a (Q 4) ;

copy gas data (Q1, Q 1) ;

copy gas data (Q2, Q 2) ;

copy gas data (Q3, Q 3) ;

copy gas data (Q4, Q 4) ;

nx = nx ;

}

r 1 r2 fun : :

r 1 r 2 fun (const r 1 r2 fun& zfun)

: ZeroFunction ()

{
Gas model ∗g = ge t ga s mode l p t r () ;

g−> i n i t i a l i s e g a s d a t a (Q 1) ;

g−> i n i t i a l i s e g a s d a t a (Q 2) ;

g−> i n i t i a l i s e g a s d a t a (Q 3) ;

g−> i n i t i a l i s e g a s d a t a (Q 4) ;

copy gas data (zfun . Q 1 , Q 1) ;

copy gas data (zfun . Q 2 , Q 2) ;

copy gas data (zfun . Q 3 , Q 3) ;

copy gas data (zfun . Q 4 , Q 4) ;

236 Engine source code Appendix B

nx = zfun . nx ;

}

r 1 r 2 fun : : ˜ r 1 r 2 fun () {}

int

r 1 r 2 fun : :

eva l (double r1r2 ,

double &y)

{
// accep t s a r1r2 , re turns v e l o c i t y d i f f e r e n c e across the contac t shock

double u2 , u3 , p2p1 , W, dp ;

// s t a t e 2

i f (g e t s t a t e b e h i n d s h o c k (Q 2 , Q 1 , r1r2) != SUCCESS) { return FAILURE; }
i f (ge t shock speed (W, r1r2 , Q 1 , Q 2) != SUCCESS) { return FAILURE; }
u2 = g e t v e l o c i t y b e h i n d s h o c k (r1r2 , W) ;

p2p1 = Q 2 . p/Q 1 . p ;

// beg in at r e s e r v o i r

copy gas data (Q 4 , Q 3) ;

u3 = 0 . 0 ;

dp = (Q 2 . p − Q 4 . p) / nx ; // assumption here t ha t Q 2 . p i s co r r ec t pressure

for (s i z e t i = 0 ; i < (s i z e t) nx ; ++i) {
s t e p a c r o s s e x p a n s i o n d p (Q 3 , u3 , dp) ;

}
y = (u3 − u2) ;

return SUCCESS;

}

int

s t e p a c r o s s e x p a n s i o n d p (gas data &Q3,

double &u3 ,

double dp)

{
Gas model ∗g = ge t ga s mode l p t r () ;

double du = −dp/(Q3 . rho∗Q3. a) ;

double dT = dp/(Q3 . rho∗g−>Cp(Q3)) ;

Q3 . p = Q3 . p + dp ;

Q3 .T[0] = Q3 .T[0] + dT;

g−>eva l thermo state pT (Q3) ;

u3 = u3 + du ;

return SUCCESS;

}

int

s t e p a c r o s s e x p a n s i o n d u (gas data &Q3,

double &u3 ,

double du)

{
Gas model ∗g = ge t ga s mode l p t r () ;

Section B.6 Sod’s shock tube simulator 237

double dp = −Q3. rho∗Q3. a∗du ;

double dT = dp/(Q3 . rho∗g−>Cp(Q3)) ;

Q3 . p = Q3 . p + dp ;

Q3 .T[0] = Q3 .T[0] + dT;

g−>eva l thermo state pT (Q3) ;

u3 = u3 + du ;

return SUCCESS;

}

int

g e t s t a t e b e h i n d s h o c k (gas data &Q2,

gas data Q1,

double r1r2)

{
Gas model∗ g = ge t ga s mode l p t r () ;

double t o l = 1e−6; // hard coded to l e rance

double p o ld ;

do {
Q2. e [0] = Q1 . e [0] + 0 .5∗ (1/Q1 . rho) ∗(Q1 . p + Q2 . p) ∗(1 − r1r2) ;

Q2 . rho = Q1 . rho/ r1r2 ;

p o ld = Q2 . p ;

i f (g−>e v a l t h e r m o s t a t e r h o e (Q2) != SUCCESS) {
p r i n t f (” g e t s t a t e b e h i n d s h o c k f a i l e d .\n”) ;

return FAILURE;

}
} while (f abs (p o ld − Q2. p) > t o l) ;

return SUCCESS;

}

int

ge t shock speed (double &W,

double r1r2 ,

gas data Q1,

gas data Q2)

{
double WW = (1/Q1 . rho) ∗(Q2 . p − Q1. p) / (1 . 0 − r1r2) ;

i f (WW< 0 . 0) {
p r i n t f (” ge t shock speed f a i l e d .\n”) ;

return FAILURE;

}
W = s q r t (WW) ;

return SUCCESS;

}

double

g e t v e l o c i t y b e h i n d s h o c k (double r1r2 ,

double W)

{
return W∗ (1 . 0 − r1r2) ;

}

int

e v a l f l u x (vector<double> &flux , gas data ∗Q4, gas data ∗Q1, double t o l)

238 Engine source code Appendix B

{
Gas model∗ g = ge t ga s mode l p t r () ;

gas data Q2, Q3 ;

g−> i n i t i a l i s e g a s d a t a (Q2) ;

g−> i n i t i a l i s e g a s d a t a (Q3) ;

copy gas data (∗Q1, Q2) ;

copy gas data (∗Q4, Q3) ;

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

i f (abs (Q4−>p − Q1−>p) < t o l) {
for (s i z e t i = 0 ; i < f l u x . s i z e () ; ++i) { f l u x [i] = 0 . 0 ; }
return SUCCESS;

}
p2p1 fun ∗pfun = new p2p1 fun (∗Q1, Q2, Q3, ∗Q4) ;

Muller p2p1 so lve r (pfun , t o l) ;

// the se bounds shou ld always be s u f f i c i e n t to guarantee a root

double p2p1 = p2p1 so lve r (0 . 0 , Q4−>p/Q1−>p) ;

double g1 = g−>gamma(∗Q1) ;

double r2r1 = (1 . 0 + ((g1 + 1 . 0) /(g1 − 1 . 0)) ∗p2p1) /((g1 + 1 . 0) /(g1 − 1 . 0) + p2p1) ;

double W = Q1−>a∗ s q r t (((g1 + 1 . 0) /(2∗ g1)) ∗(p2p1 − 1 . 0) + 1 . 0) ;

double u2 = g e t v e l o c i t y b e h i n d s h o c k (1 . 0 / r2r1 , W) ;

Q2 . rho = Q1−>rho∗ r2r1 ;

Q2 . p = Q1−>p∗p2p1 ;

g−>eva l the rmo s ta t e rhop (Q2) ;

double g4 = g−>gamma(∗Q4) ;

double p3p4 = p2p1 /(Q4−>p/Q1−>p) ;

double r3r4 = pow(p3p4 , 1 .0/ g4) ;

Q3 . rho = r3r4 ∗Q4−>rho ;

Q3 . p = p3p4∗Q4−>p ;

g−>eva l the rmo s ta t e rhop (Q3) ;

i f ((int) f l u x . s i z e () != 3+nsp) {
p r i n t f (” f l u x s i z e i n c o r r e c t , %i != %i \n” , (int) f l u x . s i z e () , 3+nsp) ;

delete pfun ;

e x i t (1) ;

}

// Return the f l u x (wi thout momentum)

f l u x [0] = (Q3 . rho∗u2) ;

f l u x [1] = (Q3 . rho∗u2∗Q3. e [0]) ;

for (int i = 0 ; i < nsp ; ++i) {
f l u x [2+ i] = (u2∗Q3. rho∗Q3. massf [i]) ;

}
f l u x [2+nsp] = Q3 . rho∗u2 ;

delete pfun ;

return SUCCESS;

}

vector<double>

p y t h o n e v a l f l u x (gas data ∗Q4, gas data ∗Q1, double t o l)

{
Gas model ∗g = ge t ga s mode l p t r () ;

Section B.6 Sod’s shock tube simulator 239

int nsp = g−>g e t n u m b e r o f s p e c i e s () ;

vector<double> F(nsp+2, 0 . 0) ;

e v a l f l u x (F , Q4, Q1, t o l) ;

return F;

}

Listing B.12: Sod’s shock tube simulator, source file.

