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Preface

This document is intended to serve as a reference for the high temperature gas radiation
module that is part of the University of Queensland’s Compressible Flow CFD group’s
current code collection, [1]. The radiation module began its life in 2004 as a means to
computer equilibrium air radiation with the gray gas approximation. In 2006 work began
to expand the radiation module to treat high temperature gases in a spectrally resolved
manner. Presently the radiation module can implement a number of spectral models,
including the original equilibrium air model and an in-house line-by-line model called
Photaura. If the user has access to Fluid Gravity’s Parade code [2] or KAIST’s Spradian07
code [3], an interfacing framework exists so that these programs can also be implemented
as the spectral model within code collection.

Acknowledgements

Many thanks to Peter Jacobs, Rowan Gollan and the other Compressible-Flow CFD
developers for constructing and maintaining the code collection; without the main CFD
codes and supporting libraries the radiation module would not exist!
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2

Introduction

The general differential form of the radiative transfer equation in a participating medium
can be written as [4]:

1

c

∂Iν
∂t︸ ︷︷ ︸

temporal var.

+
∂Iν
∂s︸︷︷︸

spatial var.

= jν︸︷︷︸
emission

− κνIν︸︷︷︸
absorption

−σs,νIν +
σs,ν
4π

∫
Iν(ŝi)φ(ŝi, ŝ)dΩi︸ ︷︷ ︸

scattering

(2.1)

This radiation module allows the spectral emission and absorption coefficients, jν and
κν , to be calculated for high temperatures gases. The radiation transport models within
the Eilmer3 and Poshax3 programs make use of this radiation module when solving for
the radiative divergence and radiative heat fluxes within a given computational domain.
A number of tools also are provided within the radiation module to solve the radiative
transfer equation along a line-of-sight for a non-scattering medium. The spectral models
and line-of-sight tools can be used via the provided Python programs, or in a user-created
Python script by loading the radpy module.

2.1 Structure of the report

Part 1 presents the theoretical formulation of the photaura spectral model for high
temperature gases. In § 3.1 the calculation method for the spectral coefficients is de-
scribed, while in § 3.2 the collisional-radiative model is described. Part 2 presents a user
guide for the radiation module software.
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The Photaura spectral model

Photaura is spectral model for high temperature gases that can presently treat bound-
bound transitions of monatomic and diatomic species in a line-by-line manner and monatomic
continuum processes via hydrogenic approximations or tabulated cross-sections. The
photaura model is described and implemented in the PhD thesis of Potter [5] where
good agreement with air and CO2–N2 shock tube spectroscopy measurements in the
NASA Ames EAST facility was found. The photaura model was also found by Sob-
bia et al [6] to accurately reproduce intensity spectra measured in an ICP facility with a
N2–CH4 test gas. This chapter is comprised on two sections; spectral modelling in § 3.1,
and collisional-radiative modelling in § 3.2.

3.1 Spectral radiation coefficients

The calculation of the spectral radiation coefficients, namely the emission jν and ab-
sorption κν coefficients, are required when solving the radiation transfer equation pre-
sented in Equation 2.1. For an ionised gas, there are three types of radiative mechanisms
that make contributions to the bulk spectral coefficients:

1. Bound-bound transitions,

2. Bound-free transitions, and

3. Free-free transitions.

Bound-bound radiative transitions occur between two bound electronic states, whilst
bound-free and free-free radiative transitions involve a free electron state. Figure 3.1
presents a sample vacuum ultraviolet absorption coefficient spectra with the contribu-
tions from bound-bound, bound-free and free-free transitions identified. As bound elec-
tronic states are quantised, the spectrum of a bound-bound transition is distributed about
a discrete wavelength characterised by the energy gap between the upper and lower
states. In contrast, the energy spectrum of bound-free and free-free radiative transitions
are distributed into a continuum due to the arbitrary free electron energy. The spectrum
of bound-free transitions are further characterised by a limiting wavelength correspond-
ing to the ionisation threshold.

At the most fundamental level, bound-bound transitions in both atoms and molecules
occur between two Zeeman states of a hyperfine line due to the change in nuclear spin.
In the present work bound-bound transitions are described by a line-by-line model that
considers the hyperfine structure where necessary. Continuum transitions are described
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Figure 3.1: Components of the equilibrium vacuum ultraviolet absorption coefficient spectra for
a 10 km/s shock through 0.1 Torr air.

by step models presented in the literature or hydrogenic approximations when unavail-
able. For an indepth discussion of the theory behind the models implemented here, see
the texts of Zel’dovich and Razier [7], Huber and Herzberg [8] and Kovács [9].

3.1.1 Monatomic bound-bound transitions

The spectral emission and absorption coefficients for an atomic or molecular bound-
bound transition with energy hνul are:

jν,ul =
NuhνulAul

4π
bul(ν) , (3.1)

and,

κν,lu = (NlBlu −NuBul)hνulbul(ν) , (3.2)

where l and u denote the lower and upper energy levels, N is the level number density,
Aul, Blu and Bul are the Einstein coefficients for spontaneous emission, absorption and
induced emission, and bul(ν) is the spectral distribution function. The absorption and
induced emission Bul Einstein coefficients Blu and Bul can be related to the spontaneous
emission Einstein coefficient Aul via the principal of detailed balancing [7]. Equation 3.2
is then expressed as:

κlu =

(
Nl
gu
gl
−Nu

)
c2

8πν2
ul

Aulbul(ν) (3.3)

Level populations

For monatomic species, the electronic level populations are bound by two limiting distri-
butions:

1. Boltzmann thermal equilibrium distribution, and

2. Saha-Boltzmann ionisation equilibrium distribution.

4



At thermal equilibrium conditions the electronic levels are populated according to the
Boltzmann distribution, where the number density of level i is expressed as:

Ni = Natom
Qel-i

Qint-atom
= Natom

gi exp
(
−Ei
kTel

)
∑jmax

j gj exp
(
−Ej

kTel

) , (3.4)

where Natom is the total number density of the atom, Ei is the electronic energy of level
i, Tel is the electronic temperature and Qint-atom is the total internal (electronic) partition
function1. Another constraint is imposed by considering chemical equilibrium between
the electronic level, ions and free electrons. The Saha equation relates the number densi-
ties of an atom, its ion and free electrons via the principle of detailed balancing:

Natom

NionNe
=

Qatom

QionQe
exp

(
Iatom

kBTe

)
, (3.5)

where Te is the free electron translation temperature, Q and N are respectively the total
partition function and total number density of the denoted species and Iatom is the ion-
isation potential of the atom. By substituting the Boltzmann equation for an electronic
level, Equation 3.4, into the Saha equation for an atomic species, Equation 3.6, the Saha-
Boltzmann equation is obtained:

Ni = NionNe
Qatom

QionQe
exp

(
Iatom

kBTe

) gi exp
(
−Ei
kTel

)
Qint-atom

(3.6)

In compression flows, the Saha-Boltzmann distribution forms the lower bound and
the Boltzmann distribution the upper bound, whilst in expanding flows they are re-
versed. As thermochemical equilibration occurs, the atom number density approaches
that predicted by the Saha equation and the Saha-Boltzmann and Boltzmann distribu-
tions converge to the same result.

To model the level populations in nonequilibrium, the rate of all transitions affect-
ing the level must be considered. As all transitions can be grouped into those occurring
due to particle collisions and those due to radiative transitions, the nonequilibrium mod-
elling of quantum levels is often referred to as ‘collisional-radiative modelling’. In the
present work we consider the electronic levels of neutral atoms to possess nonequilib-
rium populations, whilst the electronic levels of atomic ions are assumed to in Boltzmann
equilibrium. The collisional-radiative framework is described in Section 3.2.

Electronic level energies and degeneracies

The critical data for calculating monatomic partition functions are the energies and de-
generacies of the electronic levels. In the present work these parameters are obtained
from the NIST Atomic Spectra Database [10], with data for high lying states of neutral
atoms taken from Park [11]. Table 3.1 summarises the total, individual and grouped elec-
tronic levels and lines considered for monatomic species in the present work. Following
the recommendations of Johnston [12], the majority of levels are included as individual
multiplets for maximum precision in the collisional-radiative modelling. For the neutral
monatomic species C, N and O levels up to energies of 84,000 cm−1, 108,000 cm−1 and

1Whereas only the first few electronic levels were retained when calculating the partition function for
determining thermodynamic properties, all the electronic levels up to the ionisation limit are included for
the spectral coefficient calculations. This is necessary as transitions originating from near the ionisation limit
are often very strong, and their populations need to be determined to a high degree of accuracy.
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106,000 cm−1 respectively are treated individually, with the remaining levels included via
the groupings proposed by Park [11]. For neutral Ar levels with energy 120,000 cm−1 and
less are treated individually, with the remaining grouped according to energy proximity.
For the ionic monatomic species significantly less levels are required as only the first few
excited states can be excited at the conditions of present interest; the levels for Ar+, C+,
N+ and O+ are truncated at energies of 150,000 cm−1, 160,000 cm−1, 160,000 cm−1 and
200,000 cm−1 respectively. Figure 3.1 compares the electronic partition function for the
monatomic radiators using the electronic levels from NIST [10], Park [11] and the present
work. For the neutral monatomic species good agreement between all three level sets is
achieved at temperatures less than 14,000 K, with the Park and present work level sets
rising above the NIST results at higher temperatures. This is due to the Park level sets
including super-ionised levels, whereas the NIST level sets have been truncated at the
ionisation limit. For the ionic monatomic species the NIST and present work level sets
agree for the whole temperature range, indicating the chosen truncated energies are ad-
equate. While the C+ Park and NIST level sets show good agreement, those for N+ and
O+ do not. These discrepancies have been found to be due to anomalies in the tabulated
level data presented by Park [11] for N+ and O+.

Table 3.1: Summary of monatomic electronic levels from the NIST Atomic Spectra Database [10]
implemented in the present work.

Species Total number of levels Individual levels Grouped levels
Ar 29 1 - 17 17 - 29

Ar+ 10 1 - 10 -
C 43 1 - 34 35 - 43

C+ 11 1 - 11 -
N 37 1 - 27 28 - 37

N+ 17 1 - 10 -
O 32 1 - 27 28 - 32

O+ 8 1 - 8 -

Electronic transitions

Table 3.2 summarises the lines considered for monatomic species in the present work.
Following the recommendations of Johnston [12], when performing radiatively coupled
Navier–Stokes simulations transitions with energy less than 6 eV are modelled as mul-
tiplet lines whilst higher energy transitions are modelled as individual lines. This line
selection strategy was shown in Reference [12] to enable the radiant energy to be accu-
rately captured whilst optimising the efficiency of the calculation. It should be noted
that the multiplet treatment of spectral lines inevitably leads to some error in the trans-
port calculation, and future work should seek to treat all lines individually if sufficient
computational resources are available to make the calculations possible. Also, when per-
forming comparisons with experimental spectra in the present work, all lines are treated
individually to best represent the observed spectra. This is possible as the single line-of-
sight calculations required for spectra comparisons are not computationally intensive.

As the electronic level data for each atomic species used for partition function cal-
culations consists of multiplet and grouped levels, a mapping strategy is required for
calculating the upper and lower line state populations. This is achieved by assuming
Boltzmann equilibrium with the associated multiplet or grouped electronic level. For an
upper state of a line denoted by ∗with associated grouped electronic level i, for example,
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(d) Atomic carbon cation, C+
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(e) Atomic nitrogen, N
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Figure 3.2: Comparison of electronic partition function Qel for the monatomic radiators using
various levels sets.
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(g) Atomic oxygen, O
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Figure 3.1: (Continued) Comparison of electronic partition function Qel for the monatomic radia-
tors using various levels sets.

Table 3.2: Summary of atomic electronic levels and lines from the NIST Atomic Spectra
Database [10] implemented in the present work.

Species Number of individual lines Number of multiplet lines
∆E ≤ 6 eV ∆E > 6 eV ∆E ≤ 6 eV ∆E > 6 eV

Ar 422 6 204 6
Ar+ 297 10 98 3

C 1141 157 390 56
C+ 358 278 89 69
N 970 129 223 44

N+ 481 241 71 89
O 691 163 125 55

O+ 617 259 175 77

the upper state population is calculated as:

N∗ = Ni
g∗

gi
exp

[
−(E∗ − Ei)

kTel

]
(3.7)

where the associated grouped electronic levels for each line are determined from the NIST
tabulations upon initialisation.

Spectral distribution function

The spectral distribution function b(ν) in Equations 3.1 and 3.2 describes the spectral
distribution of the emission and absorption coefficients of a line transition. Although the
energy gap characterising a transition is discrete, the energy spectrum of the resulting
photon is smeared over a finite range due to various broadening mechanisms. These
broadening mechanisms can be classified into two types: those described by a Lorentzian
distribution, and those described by a Gaussian distribution. The Lorentzian broadening
mechanisms considered in the present work for monatomic radiators are:

• Resonant pressure broadening

• Van der Waals broadening
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• Stark broadening

• Natural broadening

The only Gaussian broadening mechanism considered is Doppler broadening. The re-
sultant spectral distribution function is therefore modelled as a Voigt profile which is a
convolution of a Lorentzian and a Gaussian distribution. A Gaussian and Lorentzian
profile with equal half-widths and the convolved Voigt profile are shown in Figure 3.2.
The Gaussian profile exhibits a rapid rise to the central peak, whilst the Lorentzian profile
is characterised by slowly decaying ‘wings’.
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Figure 3.2: Gaussian, Lorentzian and Voigt profiles as a function of the normalised frequency.
The Gaussian and Lorentzian profiles have the same half-widths.

In the present work the Voigt profile approximation proposed by Whiting [13] is im-
plemented:

b(ν) =
(1−RD) exp

(
−2.772R2

L

)
+ RD

1+4R2
L

+ 0.016(1−RD)RD exp
(
−0.4R2.25

L −10

10+R2.25
L

)
2γV

(
1.065 + 0.447RD + 0.058R2

D

) (3.8)

where RD and RL are defined as:

RD =
γL
γV

, and RL =
νul
2γV

, (3.9)

and γL, γD and γV are respectively the Lorentzian, Doppler and Voigt half-widths at
half-maximum (HWHM) in frequency units. The Voigt half-width is a function of the
Lorentzian and Doppler (Gaussian) half-widths, and is calculated by the following ap-
proximation of Olivero and Longbothum [14]:

γV =
(
1− 0.18121(1− d2)− [0.023665 exp (0.6d) + 0.0418 exp (−1.9d) sin(πd)]

)
(γL + γD)

(3.10)
where d is defined as:

d =
γL − γD
γL + γD

. (3.11)
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The Lorentzian half-width γL is the sum of the contributions from the Lorentzian
broadening mechanisms:

γL = γR + γVW + γS + γN (3.12)

where γR, γVW , γS and γN are the resonance, Van der Waals, Stark and natural broaden-
ing half-widths respectively. Resonant pressure broadening is modelled via the expres-
sion of Nicolet [15]:

γR = 3π

√
gl
gu

[
e2flu

2πmνul

]
Na (3.13)

where flu is the transition oscillator strength and Na is the number density of perturbing
atoms. In the present work Na is set to the number density of the lower state. Van der
Waals broadening accounts for pressure broadening due to non-resonant interactions,
and is modelled by the expression given by Traving [16]:

γVW = 1.95× 10−28

√
2T

Mav
Nhpν

2
ul (3.14)

where Mav is the average molecular weight of the mixture and Nhp is the heavy particle
number density. Although accurate Stark widths for some atomic species are tabulated
in the literature (e.g. Reference [17]), in the present work Stark broadening is modelled
via the following approximate expression observed by Page [18]:

γS = γ0
S

(
Te
T 0
e

)αS
(
Ne

N0
e

)
(3.15)

whereαS is a fitting constant and γ0
S is a reference Stark half-width per electron at electron

temperature T 0
e and electron number density N0

e . The reference half-widths are approxi-
mated by the following curve-fit proposed by Johnston [12]2:

γ0
S =

8.45× 109

(I − Eu)2.623 (3.16)

where the reference electron temperature T 0
e and number density N0

e are 10,000 K and
1×1016 cm−1 respectively, and the fitting constant αS is set to 0.33. This curve-fit is shown
in Reference [12] to be a good approximation of the accurate N and O Stark widths pre-
sented by Griem [17] and others. Natural line broadening is modelled using the following
classical expression [19]:

γN =
2πe2ν2

ul

3ε0mc3
(3.17)

and Doppler broadening is modelled by the half-width expression given by Nicolet [15]:

γD =
νul
c

√
2kBTtrln(2)

ms
(3.18)

where ms is the species mass per particle.

2Note that the original expression presented by Johnston [12] is for the full-width in wavelength units,
whereas that presented here is for the half-width in frequency units.
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Figures 3.3a and 3.3b compare the monatomic half-widths calculated at conditions
characteristic of typical lunar return peak heating gas states in the boundary and shock
layers respectively (Fire II t = 1642.66 s). The line widths in the boundary layer are domi-
nated by Doppler broadening with Van der Waals broadening becoming significant at the
higher wavelengths, whilst those in the shock layer are largely dominated by Stark broad-
ening. Furthermore the Stark widths in the shock layer are on average approximately 103

times greater than in the boundary layer. This is explained by the much higher free elec-
tron temperature and density in the shock layer, and that the Stark width is proportional
to T 1/3

e Ne. In both the boundary and shock layers the natural and resonance broadening
contributions are negligible for the spectral range considered.

Figures 3.4a and 3.4b compare the monatomic half-widths calculated at conditions
characteristic of a hypothetical high-speed Mars entry trajectory point with a freestream
pressure and velocity of 18 Pa and 8 km/s respectively. Here the line widths in the bound-
ary layer are also dominated by Doppler broadening, with both Stark and Van der Waals
broadening making minor contributions especially at the higher wavelengths. In con-
trast to the lunar return case, both Stark and Doppler broadening make approximately
equal contributions to the line widths for the Mars entry shock layer. This is due to the
signicantly lower free electron number density and temperature for the Mars entry case.
From these results it is evident that both natural and resonance broadening can be omit-
ted without significant loss of line width accuracy for the thermodynamic regimes of
present interest.

Finally, an appropriate cut-off limit for each line must be determined. Although the
wings of the Voigt profile are many orders of magnitude weaker than the central peak (see
Figure 3.2), the wings extend far beyond the line-centre and the rate of decay is low. Fig-
ures 3.5a and 3.5b compare the sensitivity of atomic bound-bound emissive power den-
sity and intensity for a 10 cm slab of atmospheric pressure equilibrium air to the atomic
line cut-off limit. The line cut-off limit ∆νlimit has been normalised by the voigt HWHM
γV , and the emissive power density and intensity are normalised by the respective val-
ues at ∆νlimit = 10, 000γV . While the emissive power density is reasonably well described
with ∆νlimit/γV ≥ 10, the intensity is much more sensitive, requiring ∆νlimit/γV ≥ 1000.
To optimise the efficiency of the calculation, it is desirable to use the minimum cut-off
limit; therefore in the present work the atomic line cut-off limit is set to ∆νlimit = 1000γV .

Comparison with SPRADIAN07

The Structured Package for Radiation Analysis 2007 (SPRADIAN07) program has been
recently developed by the Japanese Aerospace Exploration Agency (JAXA) and Korea
Advanced Institute of Science and Technology (KAIST). The theory and implementation
of SPRADIAN07 is described in the PhD thesis of Hyun [3]. Both SPRADIAN07 and
the model developed in the present work implement the spectroscopic data from the
NIST Atomic Spectra Database [10]. Comparisons with the SPRADIAN07 code [3] have
therefore been made in order to verify the calculation of atomic bound-bound spectral
coefficients. The test case consists of a 10 cm slab of gas with temperature T = 10, 000 K
and pressure p = 1 atm. The number density of each radiator is 1×1016 cm−3, the electron
number density is also 1 × 1016 cm−3 and total number density is 2.2 × 1017 cm−3. The
bound-bound transitions of Ar, Ar+, C+, N+, O+ are not included in the comparison as
the SPRADIAN07 code does not consider them. For each radiator, the emissive power
density J (W/cm3) and intensity I (W/cm2) is calculated in the spectral range 50 ≤ λ ≤
2, 000 nm with 1,950,000 equidistant frequency intervals.

Table 3.3 summarises the comparison between the SPRADIAN07 code [3] and the
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Figure 3.3: Monatomic line half-widths at half-maximum for typical Lunar return peak heating
conditions (Fire II t = 1642.66 s).

12



 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0  500  1000  1500  2000

H
W

H
M

, 
 (A

ng
st

ro
m

s)

Wavelength,  (nm)

Resonance
Van der Waals

Stark
Natural

Doppler

(a) Boundary layer conditions (Ttr = 2, 970 K, Tve = 2, 550 K, p = 29, 500 Pa and Ne = 2.3× 1013 cm−1)

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0  500  1000  1500  2000

H
W

H
M

, 
 (A

ng
st

ro
m

s)

Wavelength,  (nm)

Resonance
Van der Waals

Stark
Natural

Doppler

(b) Shock layer conditions (Ttr = 6, 930 K, Tve = 6, 930 K, p = 29, 500 Pa and Ne = 7.7× 1014 cm−1)
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Figure 3.5: Sensitivity of atomic bound-bound emissive power density and intensity for a 10 cm
slab of equilibrium air to the atomic line cut-off limit (p = 1 atm).

present work for atomic bound-bound transitions. While the agreement for emissive
power density is within 1% for all the key atomic radiators, the SPRADIAN07 predicts
between 16 and 28% lower intensity through the 10 cm slab. The difference in inten-
sity can be attributed to slight discrepancies in the line half-widths. Figures 3.6a, 3.6b
and 3.6c presents the intensity, absorption coefficient and emission coefficient spectra for
the atomic oxygen lines in the spectral range 128 ≤ λ ≤ 133 nm. The SPRADIAN07 emis-
sion and absorption spectra peaks higher and drops lower than that from the present
work, indicating the SPRADIAN07 line-widths for these transitions are slightly lower.
The resultant cumulative intensity is almost 25% lower, however, indicating the high
sensitivity of intensity to the line half-widths. While the SPRADIAN07 code uses exper-
imentally determined Stark broadening parameters, the present model uses an approxi-
mate curve-fit. Unfortunately the approximate method for calculating the Stark width is
a limitation of the spectral model developed for the present work.

Table 3.3: Comparison of atomic bound-bound model from the present work with the SPRA-
DIAN07 code [3].

Species Emissive power density, J (W/cm3) Intensity, I (W/cm2)
SPRADIAN07 Present work Difference (%) SPRADIAN07 Present work Difference (%)

C 1265 1269 0.34 20.58 25.76 20.12
N 179.8 181.0 0.65 3.77 4.54 16.92
O 59.85 60.28 0.72 1.55 2.13 27.35

3.1.2 Diatomic bound-bound transitions

Diatomic bound-bound transitions occur between individual rovibronic3 states of the
molecule. The resulting rotational lines are clustered into bands and systems correspond-
ing to individual vibrational and electronic transition groups. The spectral emission and
absorption coefficients for an individual diatomic bound-bound transition are the same
as for monatomic transitions:

3A rovibronic state is a molecular configuration with a complete set of rotational, vibrational and elec-
tronic quantum numbers.

14



 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 128  128.5  129  129.5  130  130.5  131  131.5  132  132.5  133
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Em
is

si
on

 c
oe

ffi
ci

en
t, 

j 
(W

/c
m

3 -s
r-µ

m
)

C
um

ul
at

iv
e 

em
is

si
on

, J
cu

m
. (

W
/c

m
3 -s

r)

Wavelength,  (nm)

j  - Spradian07
Jcum. - Spradian
j  - Present work

Jcum. - Present work

(a) Emission

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 128  128.5  129  129.5  130  130.5  131  131.5  132  132.5  133

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

, 
 (c

m
-1

)

Wavelength,  (nm)

Spradian07
Present work

(b) Absorption

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 128  128.5  129  129.5  130  130.5  131  131.5  132  132.5  133
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

In
te

ns
ity

, I
 (W

/c
m

2 -s
r-µ

m
)

C
um

ul
at

iv
e 

in
te

ns
ity

, I
cu

m
. (

W
/c

m
2 -s

r)

Wavelength,  (nm)

I  - Spradian07
Icum. - Spradian

I  - Present work
Icum. - Present work

(c) Spectral and cumulative intensity

Figure 3.6: Comparison between SPRADIAN07 and the present work for the spectra of atomic
oxygen lines in the range 128 ≤ λ ≤ 133 nm.
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jν,ul =
nuhνulAul

4π
bul(ν) (3.19)

κν,lu =

(
nl
gu
gl
− nu

)
c2

8πν2
ul

Aulbul(ν) (3.20)

where l and u denote the lower and upper energy levels, n is the level number density,Aul
is the Einstein coefficient for spontaneous emission and bul(ν) is the spectral distribution
function.

Rovibronic transitions

The determination of allowed transitions, their energies and probabilities is dependent
on the coupling between electronic orbital ~L, electron spin ~S and nuclear rotation ~N an-
gular momentum vectors for the upper and lower rovibronic states. The Hund’s coupling
cases4 (a), (b), (c) and (d) illustrated in Figure 3.7 define idealised limiting cases of angu-
lar momentum couplings [8]. In Hund’s case (a) nuclear rotation is completely decoupled
from electronic motion, whilst electronic motion is strongly coupled to the internuclear
axis. In Hund’s case (b) electron spin decouples from the internuclear axis due to strong
coupling with the rotational motion. When the interaction between the electronic orbital
and electron spin angular-momentum is very strong we have Hund’s case (c), and when
the electronic orbital is strongly coupled to the axis of rotation we have Hund’s case (d).

(a) Case (a) (b) Case (b) (c) Case (c) (d) Case
(d)

Figure 3.7: Diagrammatic representations of the (a), (b), (c) and (d) Hund’s coupling cases de-
scribing the limiting angular momentum interactions for rovibronic transitions.

In the present work we consider cases (a) and (b) and an intermediate (a)-(b) case.
This selection is a good compromise between speed and accuracy, as spin splitting is cap-
tured when important whilst Λ-type doubling which involves much finer perturbations
is neglected. Here we will present a brief overview of the selection rules for these three
transitions; for a complete discussion the reader is directed to the texts of Huber and
Herzberg [8] and Kovács [9]. The energy and transition probability expressions for each
case will be presented in the following sections.

For all coupling cases the selection rule for the total angular momentum quantum
number J is:

Ju − Jl = ∆J = 0, ± 1, and Ju = Jl 6= 0 (3.21)

4A fifth coupling case (e) theoretically exists where ~L and ~S are strongly coupled, however such be-
haviour has not been observed for any species [8].

16



For Hund’s case (a) the electronic angular momentum ~Ω and rotational angular mo-
mentum ~N couple to form the resultant angular momentum vector ~J . Therefore the total
angular momentum quantum number J cannot be smaller than the electronic component
Ω = |Λ + Σ|:

J = Ω, Ω + 1, Ω + 2, · · · (3.22)

An additional restriction for Σ − −Σ transitions belonging to Hund’s case (a) is that
∆J = 0 transitions are universally prohibited. Therefore Hund’s case (a) transitions have
three branches P , Q and R corresponding to ∆J = +1, 0 and−1 respectively, where only
P and R branches exist for Σ − −Σ transitions. In the present work all singlet (X1 −X1

whereX = Σ,Π,∆, · · · ) and multiplet parallel (Xn−Y n where n > 1 and |Lm − Ln| = 1)
transitions except from the CN Violet system are assumed to belong to Hund’s case (a).

For Hund’s case (b) a total angular momentum quantum number apart from spin K is
defined with one-to-one correspondence with J as defined for Hund’s case (a). Therefore
the selection rules pertaining to J outlined above are now applied to K. As ~Ω and ~N are
coupled in Hund’s case (b), the permitted range for K is:

K = Λ, Λ + 1, Λ + 2, · · · (3.23)

As total angular momentum ~J is the resultant of ~K and the spin angular momentum
~S, the possible values of J are:

J = (K + S), (K + S − 1), (K + S − 2), · · · , |K − S|. (3.24)

Therefore Hund’s case (b) considers three ∆J branches that each consist of 2S + 1
spin split components. In the present work only the CN Violet Σ2 – Σ2 transition is
described by Hund’s case (b) coupling; for this transition, we have a total of 6 branches
with designations R1, R2, RQ21, PQ12, P2 and P1. Figure 3.8 compares the absorption
coefficient for the CN Violet 0-0 band modelled via Hund’s case (a) and Hund’s case (b).
Although the two coupling cases produce similar results for branches close to the band
head at 388.45 nm, the effect of spin splitting becomes more pronounced with increasing
J .

The remaining transitions, which are the parallel doublets, are described by an inter-
mediate (a)-(b) coupling case, where ~S is strongly coupled to the internuclear axis for low
J and becomes coupled with rotation with increasing J – hence this case is referred to as
spin uncoupling. The quantum numbers K, S and J and their previous defined selection
rules are all applicable to the intermediate (a)-(b) case. Intermediate (a)-(b) coupling tran-
sitions have three ∆J branches each with (2S + 1)2 spin split components. A common
transition that is modelled via the intermediate (a)-(b) coupling case is a perpendicular
doublet such as 2Π–2Σ. These transitions have 12 branches with designations P1, P2, P12,
P21, Q1, Q2, Q12, Q21, R1, R2, R12 and R21.

Level populations

The electronic level populations of molecular species are bounded by two limiting distri-
butions:

1. Boltzmann thermal equilibrium distribution, and

2. Dissociation equilibrium distribution.
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Figure 3.8: Absorption coefficient for the CN Violet 0-0 band modelled via Hund’s case (a) and
Hund’s case (b).

Whereas the chemical equilibrium constraint for atomic species is via ionisation, the
chemical equilibrium constraint for molecular species is via dissociation. This is due to
the fact that the dissociation energy for a molecule is lower than the ionisation energy;
thus a molecule will more readily dissociate before it ionises.

Where sufficient collisions have occurred to achieve thermal equilibrium conditions,
the internal quantum states are populated according to the Boltzmann distribution. The
number density of electronic level i is then:

Ni = Ndiatom
Qel-i

Qint-diatom
= Ndiatom

Qel-i∑emax
e Qel-e

, (3.25)

where Ndiatom is the total species population, Qel-i is the electronic partition function of
level i and Qint-diatom is the total internal partition function. The electronic partition func-
tion for diatomic level i is:

Qel-i = gi exp
(
− Ti

kBTel

) vmax∑
v

exp
(
− Gv
kBTvib

)
1

σ

Jmax∑
J

(2J + 1) exp
(
− FJ
kBTrot

)
, (3.26)

where gi and Ti are the electronic degeneracy and energy, Gv is the energy of vibrational
state with quantum number v, FJ is the energy of rotational state with quantum number
J and 2J + 1 is the rotational state degeneracy5. The electronic degeneracy gi is the
product of the orbital and spin multiplicity of the state:

gi = (2− δ0,Λi) (2Si + 1) (3.27)

where δ0,Λ is the Kronecker Delta function which is unity when Λ = 0 and zero otherwise
and 2S+1 is the spin multiplicity. The homonuclear factor σ in Equation 3.26 accounts for
the symmetry of molecules with alike nuclei, and is equal to 2 for homonuclear molecules
and 1 for heteronuclear molecules. To good accuracy the summation over the rotational
states can be approximated by the following expression derived by Golden [20]:

5The degeneracy of vibrational levels does not appear as it is always unity.
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Qi,v−rot =
1

σ

Jmax∑
J

(2J + 1) exp
(
− FJ
kBTrot

)
≈ 1

σ

(
kBTrot

Be − (v + 1/2)αe

)
, (3.28)

where αe and Be are spectroscopic constants of the electronic level.
As the characteristic time for chemical reactions is typically much shorter than that

for thermal energy exchange, dissociation equilibrium provides another constraint on
the population distribution. For a diatomic species comprised of atoms X and Y the
dissociation equilibrium relation is found from the principal of detailed balancing:

Ndiatom

NXNY
=
Qdiatom

QXQY
exp

(
Ddiatom

kBTtr

)
, (3.29)

where N and Q denote the total population and total partition function of the indicated
species and Ddiatom is the average dissociation potential of the molecule6. The dissocia-
tion equilibrium population of electronic level i is found by substituting the Boltzmann
relation in Equation 3.25 into Equation 3.29:

Ni = NXNY
Qdiatom

QXQY
exp

(
Di

kBTtr

)
Qel-i

Qint-diatom
(3.30)

where Di is the dissociation potential taken from electronic level i.
To model the level populations in nonequilibrium, the rate of all transitions affecting

the level must be considered. In the present work only electronic nonequilibrium is con-
sidered, where the electronic levels populations are solved via the collisional-radiative
framework to be described in Section 3.2.

Irrespective of the electronic level population distribution, the rotational and vibra-
tional populations are modelled via Boltzmann distributions governed by the respective
modal temperatures, Trot and Tvib. For a rovibronic level with quantum numbers e, v and
J , the Boltzmann population in terms of an arbitrary electronic level population Nel−e is:

Ne,v,J = Nel−e
Qe,v,J
Qel−e

Le,J
σ

(3.31)

where Le,J is the line alternation factor due to nuclear spin and Qe,v,J is the rovibronic
partition function. Le,J is set to unity for heteronuclear molecules and is a function of the
wave function symmetry for homonuclear molecules. Laux [21] gives the line alternation
factor for integer nuclear spin (I) as:

Le,J =

{ I+1
2I+1 for Pef × Pgu × (−1)J

∗
= 1

I
2I+1 for Pef × Pgu × (−1)J

∗
= −1

(3.32)

and for half integer nuclear spin as:

Le,J =

{ I
2I+1 for Pef × Pgu × (−1)J

∗
= 1

I+1
2I+1 for Pef × Pgu × (−1)J

∗
= −1

(3.33)

where Pef is 1 for e parity and -1 for f parity, Pgu is 1 for gerade and -1 for ungerade and
J∗ = J for integer J and J∗ = J − 1

2 for half integer J . The rovibronic state is of e parity
if (−1)J

∗ × rotational level parity > 0 and -1 otherwise. The rotational level parity for Σ

6It is assumed dissociation is governed by the translational temperature Ttr, thus the term
exp(Ddiatom/kBTtr).
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states is inferred from Figure 114 in the text of Huber and Herzberg [8]. As Λ type dou-
bling is not considered in the present work, the line alternation factors for non-Σ states
do not need to be considered. Figure 3.9 compares the intensity spectra of the N+

2 First
Negative 0-0 band head calculated with and without Le,J . The spectra calculated via the
Specair code of Laux [21, 22] is also shown for reference. Apart from slight discrepencies
in the calculated line-widths, good agreement with Specair is observed. The alternation
of Le,J between 2/3 1/3 for adjacent lines is successfully achieved by the present model.

The rovibronic partition function is:

Qe,v,J = ge exp
(
− Te

kBTel

)
exp

(
− Gv
kBTvib

)
1

σ
(2J + 1) exp

(
− FJ
kBTrot

)
(3.34)

Substituting Equations 3.34, 3.26 and 3.28 into Equation 3.31 yields a simplified expres-
sion for Ne,v,J that is amenable to numerical implementation:

Ne,v,J = Nel−e
exp

(
− Gv
kBTvib

)
(2J + 1) exp

(
− FJ
kBTrot

)
vmax∑
v

exp
(
− Gv
kBTvib

)
kBTrot

Be − (v + 1/2)αe

Le,J
σ

(3.35)
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Figure 3.9: Comparison of intensity spectra for the N+
2 First Negative 0-0 band head calculated

with and without Le,J .

Maximum vibrational and rotational quantum numbers

When calculating the electronic partition functions in Equation 3.26, the summation over
the vibrational and rotational levels must be truncated at vmax and Jmax respectively. The
strategy for determining these parameters described by Babou et al. [23] is adopted. The
maximum vibrational quantum number vmax is the last that has energy within the disso-
ciation limit referenced from the minimum of the levels potential curve:

Gvmax ≤ D and Gvmax+1 > D (3.36)
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For some electronic states the vibrational energy begins to drop before the dissocia-
tion limit is reached7; the maximum vibrational quantum number in these cases are taken
as the last level within the turning point:

∂Gvmax

∂v
≥ 0 and

∂Gvmax+1

∂v
≤ 0 (3.37)

For each permitted vibrational level v ≤ vmax a maximum rotational quantum number
Jmax must be determined. This is achieved by considering the last rotational level that
remains within the potential energy curve:

Gv + FJmax ≤ VJmax(rmax) and Gv + FJmax+1 > VJmax+1(rmax) (3.38)

The potential energy curve is the sum of the Morse and centrifugal potentials:

VJ(r) = D

[
1− exp

(
−2β

r − re
re

)]2

+Be

(re
r

)2
J(J + 1) (3.39)

where re is the location of potential minimum and β is:

β =
ωe

4
√
BeD

. (3.40)

rmax is the location of the potential maximum after the potential minimum, and is there-
fore found when:

∂VJ(rmax)

∂r
= 0 and ∂2VJ(rmax)

∂r2
< 0 (3.41)

Rovibronic energies

The energy of a rovibronic level is comprised of electronic Te, vibrational Gv and rota-
tional FJ contributions. The unperturbed electronic term energies of diatomic species
are available directly from the literature (e.g. Reference [24]). In contrast, the vibrational
Gv and rotational FJ energies are calculated from expressions derived via quantum me-
chanics. The energy of vibrational level v is calculated by the Dunham expansion which
accounts for rigid rotation and anharmonic oscillations:

Gv = ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ωeye(v +

1

2
)3 + ωeze(v +

1

2
)4 + ... (3.42)

where ωe, ωexe, ωeye and ωeze are the Dunham coefficients8. The ωe(v+ 1
2) term represents

the contribution from purely harmonic vibration, whilst the higher order terms represent
anharmonic corrections. Whilst the anharmonic corrections are neglected for the ther-
modynamic model, they must be retained for the spectral radiation model in order to
produce a high fidelity spectra.

The appropriate expression for the rotational energy is dependent on the coupling
case the transition is being modelled by. For Hund’s case (a) the fine molecular structure
is not considered, and the rotational energy is only a function of the rotational quantum
number J = N only:

7It should be noted this is not a physical phenomena, but rather an error due to extrapolation of spectro-
scopic data by the Dunham expansion

8Although the Dunham expansion is an infinite series, typically only the first 3 or 4 coefficients are avail-
able in the literature [8].
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FJ = BvJ(J + 1)−DvJ
2(J + 1)2 , (3.43)

where,

Bv = Be(v +
1

2
)− αe(v +

1

2
)2 + .... , (3.44)

Dv = De(v +
1

2
) + βe(v +

1

2
)2 + .... , (3.45)

and Be and De are coupling constants for the electronic state which are also tabulated in
the literature.

For a doublet state belonging to Hund’s case (b) (Σ2 – Σ2 transition) separate expres-
sions are required for the two spin split states:

FK=J−1/2 = BvK(K + 1)−DvK
2(K + 1)2 +

1

2
γK , (3.46)

FK=J+1/2 = BvK(K + 1)−DvK
2(K + 1)2 − 1

2
γ (K + 1) , (3.47)

where γ is the spin splitting constant for the vibrational band. In the present work the γ
values for the CN Violet transition are those presented by Prasad and Bernath [25]. The
energies of the two spin split components for doublet states belonging to the intermediate
(a)-(b) are:

FK=J−1/2 = Bv

[
K(K + 1)− Λ2 +

Y (4− Y )

8(K + 1)
Λ2

]
−Dv(K +

1

2
)4 , (3.48)

FK=J+1/2 = Bv

[
K(K + 1)− Λ2 +

Y (4− Y )

8K
Λ2

]
−Dv(K +

1

2
)4 , (3.49)

where Y = A/Bv. For triplet states belonging to the intermediate (a)-(b) case, the energies
of the three spin split components are:

FJ=K+1 = Bv

[
J(J + 1)−

√
Z1 − 2Z2

]
−Dv

(
J − 1

2

)4

(3.50)

FJ=K = Bv [J(J + 1) + 4Z2]−Dv

(
J +

1

2

)4

(3.51)

FJ=K−1 = Bv

[
J(J + 1) +

√
Z1 − 4Z2

]
−Dv

(
J +

3

2

)4

(3.52)

where Z1 and Z2 are calculated as:

Z1 = Λ2Y (Y − 4) +
4

3
+ 4J (J + 1) (3.53)

Z2 =
1

3Z1

[
Λ2Y (Y − 1)− 4

9
− 2J (J + 1)

]
(3.54)
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Radiative transition probabilities

The radiative transition probability Aul given in Equations 3.19 and 3.20 is calculated as:

Aul =
64π4ν3

ul

3hc3

(a0e)
2 (Rvuvle )2

(2− δ0,Λu) (2S + 1)

SJuJl
2Ju + 1

(3.55)

where νul is the transition frequency in Hz, (a0e)
2 (Rvuvle )2 is the square of the electronic-

vibrational transition moment expressed in statcoulombs and SJuJl is the Hönl–London
factor for the rotational transition. The electronic-vibrational transition moments pro-
posed by Chauveau et al. [26] and Babou et al. [27] have been implemented in the present
work. These two datasets were selected as they represent the most recent set of transi-
tion moments calculated with up-to-date electronic transition moment functions and a
consistent treatment of the potential energy function (an RKR potential was used for all
species). These diatomic systems and the respective references are summarised in Ta-
ble 3.4. Note that the additional systems considered by Hyun [3] that are not covered in
References [26, 27] have also been included.

Table 3.4: Diatomic systems considered in the present work.

Diatomic Species System name Transition designation Included bands R
vuvl
e Reference

(0 : vu,max; 0 : vl,max )
CO Infrared X1Σ+ – X1Σ+ (0:50; 0:50) [27]

Fourth–Positive A1Π – X1Σ+ (0:23; 0:50) [27]
BX (Hopfield–Birge) B1Σ+ – X1Σ+ (0:2; 0:50) [27]

CX C1Σ+ – X1Σ+ (0:9; 0:9) [3]
EX E1Π – X1Σ+ (0:5; 0:5) [3]
FX F 1Σ+ – X1Σ+ (0:1; 0:0) [3]
GX G1Π – X1Σ+ (0:2; 0:0) [3]

Third–Positive b3Σ+ – a3Π (0:2; 0:18) [27]

CO+ Comet–tail A2Πi – X2Σ+ (0:33; 0:31) [27]
Baldet–Johnson B2Σ+ – A2Πi (0:33; 0:50) [27]
First Negative B2Σ+ – X2Σ+ (0:22; 0:35) [27]

CN Red A2Πi – X2Σ+ (0:38; 0:34) [27]
Violet B2Σ+ – X2Σ+ (0:25; 0:36) [27]

LeBlanc B2Σ+ – A2Πi (0:25; 0:38) [27]

C2 Phillips A1Πu – X1Σ+
g (0:35; 0:21) [27]

Mulliken D1Σ+
u – X1Σ+

g (0:22; 0:21) [27]
Delandres–D’Azambuja C1Πg – A1Πu (0:9; 0:32) [27]

Ballik–Ramsay b3Σ−g – a3Πu (0:41; 0:39) [27]
Swan d3Πg – a3Πu (0:18; 0:33) [27]

Fox–Herzberg e3Πg – a3Πu (0:15; 0:35) [27]
Freymark E1Σ+

g – A1Πu (0:6; 0:4) [3]

N2 First–Positive B3Πg – A3Σ+
u (0:21; 0:16) [26]

Second–Positive C3Πu – B3Πg (0:4; 0:21) [26]
Birge–Hopfield 1 b1Πu – X1Σ+

g (0:19; 0:15) [26]
table continued on next page...

23



table continued from previous page...
Diatomic Species System name Transition designation Included bands R

vuvl
e Reference

(0 : vu,max; 0 : vl,max )
Birge–Hopfield 2 b′1Σ+

u – X1Σ+
g (0:28; 0:15) [26]

Carroll–Yoshino c′14 Σ+
u – X1Σ+

g (0:8; 0:15) [26]
Worley–Jenkins c13Πu – X1Σ+

g (0:4; 0:15) [26]
Worley o13Πu – X1Σ+

g (0:4; 0:15) [26]

N+
2 Meinel A2Πu – X2Σ+

g (0:27; 0:21) [26]
First–Negative B2Σ+

u – X2Σ+
g (0:8; 0:21) [26]

Second–Negative C2Σ+
u – X2Σ+

g (0:6; 0:21) [26]

NO γ A2Σ+ – X2Πr (0:8; 0:22) [26]
β B2Πr – X2Πr (0:37; 0:22) [26]
δ C2Πr – X2Πr (0:9; 0:22) [26]
ε D2Σ+ – X2Πr (0:5; 0:22) [26]
γ′ E2Σ+ – X2Πr (0:4; 0:22) [26]
β′ B′2∆ – X2Πr (0:6; 0:22) [26]

11,000 Å D2Σ+ – A2Σ+ (0:5; 0:8) [26]
Infrared X2Πr – X2Πr (0:22; 0:22) [26]

O2 Schumann–Runge B3Σ−u – X3Σ−g (0:19; 0:21) [26]

The Hönl–London factor describes the strength of the rotational lines. The sum of all
Hönl–London factors ending in a given lower rotational state must equate to the total
degeneracy of the level:∑

Ju

SJuJl = (2− δ0,Λu+Λl
) (2Sl + 1) (2Jl + 1) (3.56)

The selection of the Hönl–London factors therefore depends on the transition type
under consideration. The Hönl–London factors for all transitions belonging to Hund’s
case (a) are shown in Table 3.5.

Table 3.5: Hönl–London factors for Hund’s case (a).

Branch SJuJl for Λu = Λl = 0 SJuJl for ∆Λ = 0 SJuJl for ∆Λ = ±1

P (∆J = +1) Ju + 1 (Ju+1+Λu)(Ju+1−Λu)
Ju+1

(Ju+1∓Λu)(Ju+2∓Λu)
2(Ju+1)

Q (∆J = 0) 0 (2Ju+1)Λ2
u

Ju(Ju+1)
(Ju±Λu)(Ju+1∓Λu)(2Ju+1)

2Ju(Ju+1)

R (∆J = −1) Ju
(Ju+Λu)(Ju−Λu)

Ju

(Ju±Λu)(Ju−1±Λu)
2Ju

For 2Σ–2Σ transitions belonging to Hund’s case (b), the Hönl–London factors pre-
sented by Mulliken [28] are implemented, Table 3.6.

Table 3.6: Hönl–London factors for 2Σ–2Σ transitions belonging to Hund’s case (b).

Branch SJuJl

R (∆J = +1) (Jl+1)2− 1
4

Jl+1

Q (∆J = 0) (2Jl+1)
4Jl(Jl+1)

P (∆J = −1) J2
l −

1
4

Jl

For the parallel doublet transitions modelled by the intermediate (a)-(b) case, the
Hönl–London factors used by Arnold et al. [29] in the RAD/EQUIL code are imple-
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mented, Table 3.7. In this table the upper sign corresponds with upper listed branch
and U is defined as:

U =
[
Y 2 − 4Y + (2J + 1)

]
, (3.57)

where Y = A/Bv.

Table 3.7: Hönl–London factors for 2Π–2Σ transitions belonging to Hund’s intermediate (a)-(b)
case.

Branch SJuJl
2Π⇒ 2Σ 2Σ⇒ 2Π

P2
OP12

R2
SR21

}
(2Ju+1)2±(2Ju+1)Uu(4J2

u+4Ju+1−2Yu)
16(Ju+1)

QP21

P1

QR12

R1

}
(2Ju+1)2∓(2Ju+1)Uu(4J2

u+4Ju−7+2Yu)
16(Ju+1)

Q2
PQ12

Q2
RQ21

}
(2Ju+1)[(4J2

u+4Ju−1)±Uu(8J3
u+12J2

u−2Ju+1−2Yu)]
16Ju(Ju+1)

RQ21

Q1

PQ12

Q1

}
(2Ju+1)[(4J2

u+4Ju−1)∓Uu(8J3
u+12J2

u−2Ju−7+2Yu)]
16Ju(Ju+1)

R2
QR12

P2
QP21

}
(2Ju+1)2±(2Ju+1)Uu(4J2

u+4Ju−7+2Yu)
16Ju

SR21

R1

OP12

P1

}
(2Ju+1)2∓(2Ju+1)Uu(4J2

u+4Ju+1−2Yu)
16Ju

Spectral distribution function

The spectral distribution function for diatomic lines is the same as that described for
monatomic lines in Section 3.1.1, however resonance broadening is not considered. The
trends observed for the monatomic linewidths in Figures 3.3 and 3.4 are therefore also
applicable to the diatomic linewidths.

Figures 3.5a and 3.5b compare the sensitivity of diatomic bound-bound emissive
power density and intensity for a 10 cm slab of atmospheric pressure equilibrium air
to the diatomic line cut-off limit. The line cut-off limit ∆νlimit has been normalised by the
voigt HWHM γV , and the emissive power density and intensity are normalised by the
respective values at ∆νlimit = 1, 000γV . Both the emissive power density and intensity
are reasonably well described with ∆νlimit/γV ≥ 10, although significant improvement is
achieved with ∆νlimit/γV ≥ 100. In the present work the diatomic line cut-off limit is set
to ∆νlimit = 10γV as a compromise between accuracy and efficiency.

Comparison with SPRADIAN07

As was done for monatomic bound-bound transitions, comparisons with the SPRADIAN07
code [3] have been made in order to verify the calculation of diatomic bound-bound
spectral coefficients. For this purpose, the electronic-vibrational transition moments pre-
sented by Hyun [3] are used so that both codes are using the same fundamental data.
Also, the line-alternation factor Le,j for homonuclear molecules is omitted and the CN
Violet system is modelled via Hund’s case (a) for consistency with SPRADIAN07. The
test case consists of a 10 cm slab of gas with temperature T = 10, 000 K and pressure
p = 1 atm. The number density of each radiator is 1 × 1016 cm−3, the electron number
density is also 1× 1016 cm−3 and total number density is 2.2× 1017 cm−3. For each radi-
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Figure 3.10: Sensitivity of diatomic bound-bound emissive power density and intensity for a
10 cm slab of equilibrium air to the diatomic line cut-off limit (p = 1 atm).

ator, the emissive power density J (W/cm3) and intensity I (W/cm2) is calculated in the
spectral range 50 ≤ λ ≤ 2, 000 nm with 1,950,000 equidistant frequency intervals.

Table 3.8 summarises the comparison between the SPRADIAN07 code [3] and the
present work for diatomic bound-bound transitions. The agreement for both emissive
power density and intensity is within 5% for all the diatomic radiators considered, with
key species such as C2, CN and N+

2 agreeing within 2%. Figures 3.11a, 3.11b and 3.11c
presents the emission coefficient, absorption coefficient and intensity spectra for the CN
Violet 0-0 band-head in the spectral range 387 ≤ λ ≤ 388.5 nm. Calculations using the
vibration-electronic transition moments of both Hyun [3] and Babou et al. [27] are pre-
sented. The SPRADIAN07 data exhibits lower troughs between lines, indicating the
line-widths are slightly smaller. While the cumulative emission for the Hyun Re case
shows only a 0.4% difference with SPRADIAN07, the differences in line shape between
the two coefficient spectrums result in a slightly higher difference in cumulative inten-
sity of 0.6%. Using the transition moments of Babou results in 10% higher intensity, and
additional lines appear as a consequence of Babou considering more bands than Hyun.
Overall, the agreement with SPRADIAN07 is very good and verifies the implementation
of the equations describing bound-bound transitions in the present work.

Table 3.8: Comparison of datomic bound-bound model from the present work with the SPRA-
DIAN07 code [3].

Species Emissive power density, J (W/cm3) Intensity, I (W/cm2)
SPRADIAN07 Present work Difference (%) SPRADIAN07 Present work Difference (%)

C2 1342 1328 -1.06 772.1 768.5 -0.46
CN 1079 1075 -0.42 470.6 473.6 0.62
CO 584.3 560.8 -4.03 181.2 177.1 -2.32
N2 8.85 8.48 -4.08 5.61 5.42 -3.60
N+

2 1235 1244 0.71 646.8 655.7 1.36
NO 112.0 109.0 -2.67 84.44 82.75 -2.04
O2 78.79 82.31 4.47 61.12 62.51 2.22
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Figure 3.11: Comparison between SPRADIAN07 and the present work for the spectra of the CN
Violet 0-0 band-head in the range 387 ≤ λ ≤ 388.5 nm.
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Comparison of transition moment data sets

As the transition moments of Chauveau et al. [26] and Babou et al. [27] and are being used
in preference to the Hyun [3] data set, it is appropriate to compare the two. Table 3.9
presents a comparison of the diatomic species integrated emission and intensities using
the Babou9 and Hyun transition moments. While C2, CN, CO, N+

2 and O2 show only
minor deviations of 20% or less, NO and N2 emission are increased by 74% and 787%
when using the Babou transition moments.

Table 3.9: Comparison of integrated emission and intensity using the transition moments of
Hyun [3] and of Babou et al. [27].

Species Emissive power density, J (W/cm3) Intensity, I (W/cm2)
Hyun Re Babou Re Difference (%) Hyun Re Babou Re Difference (%)

C2 1328 1479 11.37 768.5 698.6 -10.0
CN 1075 1181 9.91 473.6 569.7 16.9
CO 560.8 473.6 -15.54 177.1 198.8 10.93
N2 8.48 75.25 787 5.42 27.3 80.2
N+

2 1244 1204 -3.21 655.7 501.6 -30.7
NO 109.0 189.9 74.21 82.75 140.86 41.3
O2 82.31 99.66 21.08 62.51 76.12 17.9

The large difference for the N2 molecule warrants further investigation, especially
considering Hyun uses the well regarded data of Laux [30,31] for the N2 transitions10. Ta-
ble 3.10 presents a comparison of the integrated emission and intensities using the Chau-
veau et al. [26] and Hyun [3] transition moments for each system of the N2 molecule. The
well known First–Positive and Second–Positive systems, which radiate in the ultraviolet
spectral region, are in good agreement, whilst the remaining systems exhibit significant
differences. These systems with large differences — Birge–Hopfield 1, Birge–Hopfield
2, Carroll–Yoshino, Worley–Jenkins and Worley — are all vacuum ultraviolet systems.
Due to the difficulty of performing emission spectroscopy in the VUV spectral region,
there has been little experimental corroboration for theoretical calculation of the transi-
tion moments for these systems. Consequently there is a significant degree of uncertainty
associated with the intensity of the N2 VUV systems, and it is not uncommon for different
sets of theoretical calculations to show substantial discrepancies. For example, Liebhart
et al. calculated the electronic transition moments for N2 VUV systems via an RKR re-
construction of the potential energy surface. Calculations of equilibrium air absorption
spectra at 7,000 K deviated by up to an order of magnitude from the results obtained by
Chauveau et al. [26], most notably for the strong band peaks at 95 nm. As the transition
moments for the N2 VUV systems used by Hyun [3] are from a yet to be published source,
the Chauveau et al. [26] data is felt to be more appropriate for the present work.

3.1.3 Continuum transitions
In the present work the continuum transitions for atomic species and their ions are con-
sidered, whilst continuum transitions for molecular species are neglected. Furthermore,
the models for atomic continuum transitions are based on approximate curve-fits and hy-
drogenic assumptions. Such a simplified treatment of continuum transitions is justified
based on the:

9Here ‘Babou’ denotes the set of transition moments described in Table 3.4, which are mainly from Babou
et al. [27].

10The calculations for the VUV system transition moments, however, are stated by Hyun [3] to be from
Laux but are from a yet to be published source.
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Table 3.10: Comparison of integrated emission and intensity using the transition moments from
Hyun [3] and Chauveau et al. [26].

N2 systems Emissive power density, J (W/cm3) Intensity, I (W/cm2)
Hyun Re Chauveau Re Difference (%) Hyun Re Chauveau Re Difference (%)

First–Positive 0.75 0.83 -9.33 0.60 0.66 -9.30
Second–Positive 1.18 1.18 -0.02 0.94 0.94 -0.02
Birge–Hopfield 1 57.09 3.88 1372 29.09 2.77 950
Birge–Hopfield 2 6.68 0.40 1566 4.47 0.32 1319
Carroll–Yoshino 5.91 1.65 257 1.86 0.52 259
Worley–Jenkins 2.07 0.17 1094 0.71 0.11 554

Worley 1.58 0.37 329 0.74 0.23 217

1. Low concentration of molecules and their ions for high-speed Earth and Mars entry,

2. Small contribution of continuum mechanisms to optically thin emission in CO2–N2

plasmas at temperature less than 15,000 K [27], and

3. Demonstrated efficacy of photoionisation curve-fits for N and O in high tempera-
ture air plasmas [32].

This rationale, however, is not valid for the cool boundary layer surrounding an
aeroshell, as at low temperatures (T . 6000 K) the photoionisation and photodissociation
continua of diatomic species can be significant [27, 33]. As a consequence, the omission
of these mechanisms may lead to an underprediction of the radiative energy absorbed
or emitted by the boundary layer. In addition, photodetachment processes for negative
ions are estimated to be significant at temperatures up to temperatures of 12,000 K [33].
Nevertheless, the present approximate models capture the majority of the continuum
transitions to a reasonable degree of accuracy.

Bound-free mechanisms

For atomic species, bound-free mechanisms refers to photoionisation and the inverse re-
combination process:

Xi + hν � X+ + e− (3.58)

The spectral absorption coefficient due to photoionisation (PI) of electronic level i is:

κν,i = σν,iNi (3.59)

where σν,i and Ni are the spectral photoionisation cross section and number density for
level i. The spectral emission coefficient can then be derived by applying the microscopic
reversibility principle [7]:

jPIν,i = NionNe
2hν3

c2

gi
2Qion

(
h2

2πmkBTe

)3/2

σν,i exp
[
I − Ei − hν

kBTe

]
(3.60)

Although accurate tabulations of spectral photoionisation cross sections are available
via astrophysics databases such as TOPbase [34], the spectral resolution required to cor-
rectly implement them is excessive. Two approximate models for calculating the spectral
photoionisation cross section are therefore implemented in the present work:

1. A Gaunt-factor corrected hydrogenic model, and
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2. A step-model representation of the TOPbase tabulations [12]

Zeldovich and Raizer present the following expression for the hydrogenic spectral
photoionisation cross section:

σν,i =
64

3
√

3

π4mZ4e10

ν3ch6neff,i
Gi (3.61)

where Gi is the corrective Gaunt factor and neff,i is the effective shell number for level i:

neff,i =

√
IH

I − Ei
(3.62)

In the present work the following Gaunt factor proposed by Zeldovich and Raizer is
implemented:

Gi = 1− 0.173

(
hν

IZ2

)1/3 [ 2

neff,i

IZ2

hν
− 1

]
(3.63)

As discussed by Johnston [12], although Equation 3.61 includes the hydrogenic ap-
proximations for the level degeneracy and ion partition function, replacing these param-
eters with their exact values (e.g. Reference [35]) does not improve the accuracy of the
expression. Johnston postulates that this is because the Gaunt factor expressions may
have been calculated for use with the original hydrogenic approximation.

For the first three levels of atomic nitrogen and oxygen, step model representations of
the accurate TOPbase tabulations were constructed by Johnston [12]. The cross sections
for the remaining levels are approximated by simple power function. For details of the
step model the reader is refered to Reference [12] and [32]. In the present work the step
model is preferred over the hydrogenic model for N and O.

Free-free mechanisms

Free-free or bremsstrahlung (literally meaning ‘braking radiation’ in German) radiation
results from the acceleration of electrons due to the presence of an electric field. The
bremsstrahlung absorption coefficient is presented by Zel’dovich and Raizer [7] as:

κν =
4

3

√
2π

3mekBTe

(
Z2e6

hcmeν3

)
NionNe , (3.64)

The spectral emission coefficient can then be derived via the principle of detailed balanc-
ing:

jν =
8

3

√
2π

3kBTeme

(
Z2e6

mec3

)
nionNe exp

[
− hν

kBTe

]
. (3.65)

Generally speaking, bremsstrahlung radiation is most significant in the far–IR spec-
tral region due to the negative exponential dependence on frequency.

3.1.4 Uncertainty of the radiation calculation
Many of the parameters required for the calculation of plasma radiation are highly un-
certain. For example the transition probabilities proposed by Wiese [36], which the NIST
data implemented in the present work is based on, have uncertainties ranging from ±3%
to ±75%. Kleb and Johnston [37] performed an uncertainty analysis of air radiation for
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lunar return shock layers. Epistemic uncertainty was considered for atomic line oscil-
lator strengths, atomic line Stark broadening widths, atomic photoionisation cross sec-
tions, negative ion photodetachment cross sections, molecular bands oscillator strengths
and electron impact excitation rates. When direct numerical differentiation and Monte
Carlo based methods were applied to a hypothetical lunar return peak heating condition
at 10.3 km/s, the uncertainty in radiative heat-flux was found to be ±30 %. The largest
contributors to this total uncertainty level were the atomic nitrogen oscillator strengths
and Stark widths and the negative ion continuum. In the present work similar oscillator
strengths11 were considered, however a Stark widths are modelled via a less accurate
method and the negative ion continuum. Therefore the ±30 % uncertainty found in Ref-
erence [37] can be considered as a lower bound for the photaura radiation model.

3.2 Collisional-radiative modelling

Fundamental to the calculation of the spectral radiation coefficients is the determi-
nation of the electronic level populations. Under thermal equilibrium conditions, the
level populations assume a Boltzmann distribution. When insufficient collisions have
occurred for thermal equilibrium to be achieved, the rate equation for each level must
be considered. The net population rate of level i (also referred to in the literature as the
‘master-equation’ [11]) is the difference between the rate of transitions moving electrons
in and out of the level:

dNi

dt
=

(
dNi

dt

)
in
−
(
dNi

dt

)
out

(3.66)

Although multidimensional simulations with the collisional-radiative equations fully
coupled with the flowfield have recently been performed (e.g. Reference [38]), this is
computationally prohibitive for the time accurate Navier–Stokes calculations performed
in the present work. Rather, the quasi-steady-state (QSS) approximation proposed by
Park [11] is applied to decouple the solution from the temporal evolution of the flowfield.
The QSS approximation assumes the net population rate of level i to be much smaller
than the individual incoming and outgoing rates:

dNi

dt
�
(
dNi

dt

)
in

, and
dNi

dt
�
(
dNi

dt

)
out

.

The net population rate-of-change in Equation 3.66 can therefore be approximated as
zero, and the QSS solution is found when the incoming and outgoing rates are balanced:

0 =

(
dNi

dt

)
in
−
(
dNi

dt

)
out

(3.67)

As the population rates are functions of the immediate flow state only, the QSS so-
lution is decoupled from the temporal evolution of the flowfield. However the QSS ap-
proximation is known not to be valid for the ground state [11]. The QSS approximation
is therefore only applied to the excited levels, and the ground state population is solved
by considering the number density balance for the species:

Ni=1 = Ntotal −
Nlevels∑
i=2

Ni (3.68)

11Implemented as transition probabilities in the present work.
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3.2.1 Collisional-radiative mechanisms
The collisional-radiative mechanisms considered in the present work are:

1. Heavy particle impact excitation,

2. Electron impact excitation,

3. Heavy particle impact dissociation,

4. Electron impact dissociation,

5. Electron impact ionisation, and

6. Bound-bound radiative transitions.

Free-bound radiative transitions are omitted as the depopulation rates due to bound-
bound radiative transitions are considerably more significant for the conditions of inter-
est [12].

Heavy particle impact excitation

Heavy particle impact excitation reactions have the following form:

Xi + M� Xj + M (3.69)

where M denotes an arbitrary heavy particle species, X denotes an arbitrary atomic species
and i and j denote the lower (initial) and upper (final) electronic levels respectively. The
net population rate of level i due to heavy particle impact excitation (HPIE) reactions is:(

dNi

dt

)
HPIE

=
∑
j 6=i

KM (j, i)NjNM −
∑
j 6=i

KM (i, j)NiNM (3.70)

In the present work, heavy particle impact excitation processes are only considered
for diatomic species as the electron impact mechanisms dominate in the flow regime
where atomic nonequilibrium is significant [11, 12]. The forward rate coefficients for
heavy particle impact excitation are obtained from the literature in generalised Arrhe-
nius form:

KM (i, j) = CTnx exp
(
− Ea
kTx

)
(3.71)

where the rate controlling temperature for the excitation process is the geometric average
of the translational and vibrational temperatures:

Tx =
√
TtransTvib. (3.72)

The backward reaction rate coefficients are calculated via the principal of detailed
balancing:

KM (j, i) =

[
KM (i, j)

Qi
Qj

]
Ttrans

(3.73)

where Qi and Qj are the partition functions of the lower and upper electronic levels
respectively. The rate controlling temperature for the de-excitation process is the transla-
tional temperature, and therefore KM (i, j), Qi and Qj in Equation 3.73 are evaluated at
Ttrans.
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Electron impact excitation

Electron impact excitation reactions have the following form:

Xi + e− � Xj + e− + e− (3.74)

The net population rate of level i due to electron impact excitation (EIE) reactions is:(
dNi

dt

)
EIE

=
∑
j 6=i

Ke(j, i)NjNe −
∑
j 6=i

Ke(i, j)NiNe (3.75)

The forward rate coefficients are assumed to be governed by the free electron tem-
perature Te, and the backward reaction rate coefficient is calculated via the principal of
detailed balancing:

Ke(j, i) =

[
Ke(i, j)

Qi
Qj

]
Te

(3.76)

where the de-excitation process is assumed to be governed by the free electron tempera-
ture Te.

Electron impact excitation processes for both diatomic and atomic species are con-
sidered in the present work. The forward rate coefficients for diatomic electron impact
excitation are either obtained directly from the literature in generalised Arrhenius form,
or calculated by integrating cross sections. In the present work, the following method
proposed by Park [11] for calculating the diatomic electron impact excitation rate coeffi-
cient from the respective cross section is implemented:

Ke(i, j) =
S
∑

vi

∑
vj
q(vi, vj)exp

[
− Gvi
kTvib.

]
kTr
Be,i

Qvib.,i
(3.77)

where q(vi, vj) is the Frank-Condon factor for the vibronic transition between vi and vj ,
Gvi is the vibrational energy of vibrational state vi and Qvib.,i is the vibrational partition
function for electronic level i. The parameter S is defined as:

S = 5.47× 10−11
√
Teexp

(
−Tj +Gv,j − Ti −Gv,i

kBTe

)
(3.78)

where I is:

I =

(
Be,j −Be,i
kBTe

+
Be,i
kBTrot.

)−3/2

[CΓ(1.5)BDΓ(2.5)] (3.79)

with:

C =
Tj +Gv,j − Ti −Gv,i

kBTe
B +A , (3.80)

D =
Be,j −Be,i
kBTe

(
Be,j −Be,i
kBTe

+
Be,i
kBTe

)−1

. (3.81)

The parameters A and B are defined as:

33



A =

∫ ∞
0

[
σ(ξ)

πa2
0

]
exp(−ξ)ξdξ (3.82)

B =

∫ ∞
0

[
σ(ξ)

πa2
0

]
exp(−ξ)dξ (3.83)

where a0 is the first Bohr radius and σ is the electron impact excitation cross section with
ξ = x − 1 and x = E/E∗ where E is the electron energy and E∗ is the threshold energy
(∆Te).

Although experimental and theoretical electron impact excitation cross sections for
atomic species are available for some transitions from low lying states, for the majority
of transitions we must rely on semi-empirical models. Here we will briefly describe the
approximate electron impact excitation models considered for atoms, whilst a detailed
description of the rate coefficient models selected for each species will be presented later.

Numerous empirical electron impact excitation models for atomic species were in-
vestigated in the comprehensive studies of Johnston [12] and Panesi [38]. As a base-
line model, Panesi [38] implemented electron impact excitation reaction rate coefficients
obtained by analytical integration of the Drawin [39] cross sections over a Maxwell-
Boltzmann velocity distribution:

Ke(i, j) =


√

8kBTe
πme

4πa2
0α
(
IH
kTe

)2
I1(a) for an optically allowed transition√

8kBTe
πme

4πa2
0α
(
Ej−Ei

kBTe

)2
I2(a) for an optically forbidden transition

(3.84)

where me is the mass of an electron, a0 is the first Bohr radius, α = 0.05, IH is the ionisa-
tion energy of the hydrogen atom from the ground state and I1(a) and I2(a) are calculated
as:

I1(a) = 0.63255a−1.6454e−a, where a =
Ej − Ei
kBT

(3.85)

I2(a) = 0.23933a−1.4933e−a, where a =
Eionise,i − Ei

kBT
(3.86)

The hydrogenic model of Gryzinksi [40] was implemented by both Johnston [12] and
Panesi [38]. Similarly as for the Drawin model, the Gryzinksi model is semi-empirical
and universally applicable to all transition types. The electron impact excitation reac-
tion rate coefficients are calculated by integrating the Gryzinksi cross section σij over a
Maxwellian velocity distribution:

Ke(i, j) =
8π√
m

(
1

2πmkBTe

)1.5
[∫ ∞

∆Ei,j

σi,j(E)exp
(
− E

kBTe

)
EdE

+

∫ ∞
∆Ei,j+1

σi,j+1(E)exp
(
− E

kBTe

)
EdE

]
(3.87)

where σij(E) is given by Eq. 3.88 for ∆Eij + Eionise − Ei ≤ E and by Eq. 3.89 for ∆Eij +
Eionise − Ei ≥ E:
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σi,j(E) =
4.2484× 10−6

∆E2
ij

(
E

Eionise − Ei + E

)1.5

×

{
2

3

[
Eionise − Ei

E
+

∆Ei,j
E

(
1− Eionise − Ei

E

)
−
(

∆Ei,j
E

)2
]}

(3.88)

σi,j(E) =
4.2484× 10−6

∆E2
ij

(
E

Eionise − Ei + E

)1.5

×

{
2

3

[
Eionise − Ei

E
+

∆Ei,j
E

(
1− Eionise − Ei

E

)
−
(

∆Ei,j
E

)2
]

×
[(

1 +
∆Eij

Eionise − Ei

)(
1− ∆Ei,j

E

)]0.5
}

(3.89)

In the present implementation the cross section integration is performed by a change of
variables to shift the limits to [-1,1] and applying 10 point Gaussian quadrature.

Johnston [12] and Panesi [38] also considered the empirical models proposed by Allen [41],
Van Regmorter [42] and Park [11,43]. Both authors found the Park [11,43] models to give
substantially larger rates than other more accurate models for electron impact excitation
of N and O, and were therefore not implemented. Although Johnston [12] preferenced
the models of Allen [41] and Van Regmorter [42] over that of Gryzinski [40], Panesi [38]
found the Drawin model described in Equation 3.84 to be in good agreement with these
models. Therefore in the present work only the Gryzinski [40] and Drawin [39] empirical
models will be considered.

Heavy particle impact dissociation

Heavy particle impact dissociation reactions have the following form:

ABi + M� A + B + M (3.90)

where A and B are the constituent atoms of the diatomic molecule AB. The net population
rate of level i due to heavy particle impact dissociation (HPID) reactions is:(

dNi

dt

)
HPID

= KM (d, i)NANBNM −KM (i, d)NiNM (3.91)

where d denotes the dissociated state. The forward rate coefficients for diatomic heavy
particle impact dissociation are obtained from the literature in generalised Arrhenius
form, where the rate controlling temperature for the excitation process is the geometric
average of the translational and vibrational temperatures:

Tx =
√
TtransTvib. (3.92)

The heavy particle impact recombination rate coefficient is related to the heavy parti-
cle impact dissociation rate coefficient via the principal of detailed balancing:
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KM (d, i) =

[
KM (i, d)

Qi
QAQB

]
Ttrans

(3.93)

where the total partition functions Q must include the formation energy contribution
exp (−hf/kBTtrans) to account for the dissociation potential of the lower state, and the
rate controlling temperature for the de-excitation process is the translational temperature
Ttrans.

Electron impact dissociation

Similarly as for heavy particle impact dissociation, electron impact dissociation reactions
have the following form:

ABi + e− � A + B + e− (3.94)

where A and B are the constituent atoms of the molecule AB. The net population rate of
level i due to electron impact dissociation (EID) reactions is:(

dNi

dt

)
EID

= Ke(d, i)NANBNe −Ke(i, d)NiNe (3.95)

where c denotes the ionised state. The forward rate coefficients for diatomic electron im-
pact dissociation are obtained from the literature in generalised Arrhenius form, where
the rate controlling temperature for the dissociation process is the free electron tempera-
ture:

Tx = Te (3.96)

The electron impact recombination rate coefficient is calculated via the principal of
detailed balancing:

Ke(d, i) =

[
Ke(i, d)

Qi
QAQB

]
Te

(3.97)

where the total partition functions Q must include the formation energy contribution
exp (−hf/kBTtrans) to account for the dissociation potential of the lower state, and the rate
controlling temperature for the recombination process is assumed to be the free electron
temperature Te.

Electron impact ionisation

Electron impact ionisation reactions have the following form:

Xi + e− � X+ + e− + e− (3.98)

where X+ is the ionised species. The net population rate of level i due to electron impact
excitation (EII) reactions is:(

dNi

dt

)
EII

= Ke(c, i)NionNeNe −Ke(i, c)NiNe (3.99)

where c denotes the ionised states. The ionisation process is assumed to be governed by
the free electron temperature Te, and the electron impact recombination rate coefficient
is related to the electron impact ionisation rate coefficient via the principal of detailed
balancing:
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Ke(c, i) =

[
Ke(i, c)

Qi
QionQe

]
Te

(3.100)

where the total partition functions Q must include the formation energy contribution
exp (−hf/kBTtrans) to account for the ionisation potential of the lower state, and the rate
controlling temperature for the recombination process is assumed to be the free electron
temperature Te.

Electron impact ionisation processes are only considered for atomic species in the
present work, as the dissociation and excitation processes are much more significant for
diatomic species. Similarly as for electron impact excitation, electron impact ionisation
rate coefficients based on experimental measurements or theoretical calculations are pre-
ferred in the present work. The ionisation cross sections, however, are typically only
provided for low lying states and we must rely on empirical models for the remainder.
Two empirical models for electron impact ionisation are considered, both based on the
hydrogenic cross sections of Drawin [39]. The model implemented by Johnston [12] gives
the electron impact ionisation reaction rate coefficients as:

Ke(i, c) = 1.46× 10−10
√
Te

(
IH

I − Ei

)2

ζyψ1(y) (3.101)

where the number of equivalent electrons ζ is 3 for ground electronic states and 1 for
excited states and y is the reduced energy of the incoming electrons:

y =
I − Ei
kBTe

, (3.102)

and the function ψ1 is:

ψ1(y) =
exp(−y)

1 + y

{
1

20 + y
+ ln

[
1.25

(
1 +

1

y

)]}
(3.103)

Panesi [38, 44] implemented another model for electron impact ionisation that is also
based on the Drawin cross sections. For this model the ionisation rate coefficients are
calculated by the optically allowed expression presented in Equation 3.84 with α = 1 and
a = (I − Ei)/(kBTe).

Bound-bound radiative transitions

Bound-bound radiative transitions have the following form:

Xj � Xi + hν (3.104)

where the emitted photon energy is equivalent to the energy difference between the two
levels:

hν = Ej − Ei (3.105)

The net population rate of level i due to bound-bound radiative transitions (BBRT) is:(
dNi

dt

)
BBRT

=
∑
j>i

Λj,iA(j, i)Nj −
∑
j<i

Λi,jA(i, j)Ni (3.106)

where A(i, j) is the spontaneous transition probability from level i to level j and Λi,j is
the associated escape factor. For atomic radiators, the total transition probability between
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two nonequilibrium electronic levels is calculated by averaging the degeneracy weighted
transition probabilities for all transitions between the two levels:

A(i, j) =

∑
i′
∑

j′ g
′
iA(i′, j′)∑

i′
∑

j′ g
′
i

(3.107)

where i′ and j′ denote sub-levels belonging to grouped-levels i and j respectively. For di-
atomic radiators, the total transition probability between two nonequilibrium electronic
levels can be calculated either from radiative lifetimes γi,j where available:

A(i, j) =
1

γi,j
, (3.108)

or by averaging over the weighted vibrational transition probabilities [3]:

A(i, j) =

∑
vi
Qvib.,vi

∑
vj
Avib.(vi, vj)∑

vi
Qvib.,vi

(3.109)

where Qvib.,vi is the vibrational partition function for vibrational level vi and Avib.(vi, vj)
is the vibrational transition probability corresponding to the vi, vj band. The inverse
process of radiative absorption is accounted for by the escape factor Λ that is the ratio of
re-absorbed to emitted radiative energy12:

Λ =
Eabs.

Eem.
(3.110)

As radiative re-absorption is determined by solving the radiation transport equations,
the introduction of an escape factor here implies that the collisional-radiative and radia-
tive transport equations should be solved in a coupled manner. Unfortunately such a pro-
cedure is computationally prohibitive, and therefore the escape factor is approximated in
the present work — specifically, solutions with optically thick and optically thin tran-
sitions are presented, providing approximate lower and upper bounds for the solution
space.

3.2.2 Master equation formulation and solution
The implemented master equation for an electronic level i is:

∂Ni

∂t
=

electron impact excitation︷ ︸︸ ︷∑
j 6=i

Ke(j, i)NjNe −
∑
j 6=i

Ke(i, j)NiNe

+

heavy particle impact excitation︷ ︸︸ ︷∑
j 6=i

KM (j, i)NjNM −
∑
j 6=i

KM (i, j)NiNM

+

electron impact ionisation︷ ︸︸ ︷
Ke(c, i)N+N

2
e −Ke(i, c)NiNe +

electron impact dissociation︷ ︸︸ ︷
Ke(d, i)NXYNe −Ke(i, d)NiNe

+

radiative excitation︷ ︸︸ ︷∑
j>i

Λj,iA(j, i)Nj −
∑
j<i

Λi,jA(i, j)Ni, (3.111)

12An escape factor of one represents an optically thin transition where no re-absorption occurs, while an
escape factor of zero represents an optically thick transition where complete re-absorption occurs.
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As quenching or exchange reactions amongst different species are not considered
in the present work, a linear QSS system can be formulated independently for each
nonequilibrium radiator. For a radiator with N∗levels nonequilibrium electronic levels13,
the QSS system is formed by considering the master equations (see Equation 3.111) for
non-ground states in the QSS limit (see Equation 3.67) with closure provided by the total
population of the radiator (see Equation 3.68). The resulting system can be expressed in
matrix form as:

M~x = ~b (3.112)

where M is a square matrix of dimension N∗levels and ~x and ~b are vectors of dimension
N∗levels. The elements of M are:

M(i = 1, j) = 1 +

Neqs∑
j∗

feq.,j∗

M(i 6= 1, j = i) = −

∑
k 6=i

(KM (i, k)NM +Ke(i, k)Ne) +Ke(i, c)Ne

+KM (i, d)NM +Ke(i, d)Ne +
∑
k<i

(Λi,kA(i, k))

]

M(i 6= 1, j 6= i) =


Ke(j, i)Ne +KM (j, i)NM for j < i

Ke(j, i)Ne +KM (j, i)NM + Λj,iA(j, i) for j > i

(3.113)

and the elements of~b are:

~b(i = 1) = Ns

~b(i 6= 1) = −Ke(i, c)Ne −KM (i, d)NM −Ke(i, d)Ne − Λc,iA(c, i)N+Ne (3.114)

where Ns is the total species number density from the CFD solver. The elements of ~x are
the nonequilibrium level number densities:

~x(i) = Ni (3.115)

The matrix line corresponding to the ground state (i = 1) is the population summa-
tion from Equation 3.68, while the remaining matrix lines are each of the master equa-
tions from Equation 3.111 As mentioned previously, the nonequilibrium levels may be a
sub-set of the electronic levels for the species. A level not considered by the collisional-
radiative model with index j∗ can be equilibrated with a nonequilibrium level j by the
Boltzmann equation:

Nj∗ = Nj
Qint,j∗

Qint,j
= Njfeq.,j∗ (3.116)

13As will be discussed, the number of nonequilibrium electronic levels N∗levels is not necessarily the total
number of electronic levels Nlevels
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whereQint,j∗ andQint,j∗ are the internal partition functions of the equilibriated and nonequi-
librium levels respectively, and the ratio of these two partition functions is defined as the
Boltzmann equilibrium factor feq.,j∗ . To correctly account for the level equilibration in
the collisional-radiative model, the M(i = 1, j) matrix elements must include the sum of
all Boltzmann equilibrium factors for nonequilibrium level j:

Neqs∑
j∗

feq.,j∗ (3.117)

Equation 3.112 can then be easily solved via direct matrix inversion:

~x = M−1~b (3.118)

where M−1 is calculated via Gaussian elimination in the current implementation of the
model. At low temperatures, however, there are insufficient collisions for the QSS con-
dition (Equation 3.67) to remain valid, and the results of Equation 3.118 cannot be used.
Therefore in the present work the electronic levels of nonequilibrium radiators are as-
sumed to be in Boltzmann distributions for free electron temperatures of 2,000 K and
under.

3.2.3 Collisional-radiative model for N2–O2 mixtures
Before deciding upon an appropriate collisional-radiative model for N2–O2 mixtures, it
is instructive to consider a typical Earth re-entry shock layer. Figures 3.12a and 3.12b
present post-shock species number density and radiative emission profiles respectively
for the Fire II t = 1634 s condition. For this analysis, the electronic states of the radia-
tors are assumed to be populated by Boltzmann distributions. Immediately behind the
shock, O2 rapidly dissociates and quickly forms a large population of O atoms, while N2

dissociation proceeds at a slightly slower rate, leading to significant N2 and N+
2 radiation

up to 2 cm behind the shock. The radiative emission of N2 and N+
2 , however, is quickly

exceeded by the lines of N and O as the heavily dissociated and partially ionised equilib-
rium state is approached. As bound-bound transitions of NO, O2, N+ and O+ only make
minor contributions to the radiative emission, it is sufficient to consider the electronic
levels of these species as being populated by Boltzmann distributions. Conversely the ra-
diative emission from N2, N+

2 , N and O bound-bound transitions are significant, and the
electronic levels of these species should be calculated via collision-radiative modelling.
Furthermore, as the free electron number density is almost the same order of magnitude
as that of the heavy particles, reactions due to heavy particle impact can be omitted.

(a) Atomic species: N and O

The collisional processes considered for the atomic species N and O are electron impact
excitation and ionisation, and the radiative processes considered are bound-bound op-
tically allowed transitions. Table 3.11 summarises the implemented rate coefficients for
each of these mechanisms. Where more than one model are presented for a mechanism,
they are listed in order of preference (e.g. for the electron impact excitation of N, the rates
of Frost et al. [45] are preferred with the remaining transitions described by the semi-
empirical model of Gryzinski [40]).

For the radiative transitions, the transition probabilitiesA(i, j) for the nonequilibrium
levels are calculated using Equation 3.107 where the individual line transition probabil-
ities are obtained from the NIST Atomic Species Database [10] (see Table 3.2). For the
electron impact transitions, the rate coefficients Ke(i, j) and Ke(i, c) are either calculated
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Figure 3.12: Post-shock species number density and radiative emission profiles along the stag-
nation streamline of the Fire II t = 1634 s condition (p∞ = 2 Pa, T∞ = 195 K, u∞ = 11, 360 m/s).
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using semi-empirical models or obtained directly from the literature in the form of curve-
fits.

Although all electron impact excitation and ionisation rates for N and O are able to be
calculated by the previously-described semi-empirical models, the hydrogenic assump-
tions of these models are not appropriate for transition originating from the inner core
of electronic levels [11]. Rates derived from experimental measurements of theoretical
calculations are therefore preferred for transitions originating from the ground and low
lying metastable states. Fortunately, experimental measurements and quantum mechan-
ical calculations of these transitions are much simpler and more readily available than for
the high lying levels.

Table 3.11: Summary of the collisional-radiative mechanisms implemented for N and O.

Species Electronic levels CR mechanisms Models
N All Electron impact excitation (a) Frost et al. [45]

(b) Gryzinski [40]
Electron impact ionisation (a) Soon and Kunc [46]

(b) Drawin (Reference [38])
Radiative decay NIST Atomic Spectra Database [10]

O All Electron impact excitation (a) Zatsarinny and Tayal [47]
(b) Gryzinski [40]

Electron impact ionisation (a) Soon and Kunc [46]
(b) Drawin (Reference [38])

Radiative decay NIST Atomic Spectra Database [10]

(a) Electron impact excitation of N

Frost et al. [45] performed R-matrix calculations for N and N+ electron impact excitation
transitions from the first 3 energy levels to all levels with principle quantum number n
less than 3. Panesi [48] demonstrated improved agreement with the EAST shock tube
data when implementing this model for N. The rate coefficient is given as a function of
the effective collision strength γi,j :

Ke(i, j) = 2
√
παca2

0

√
EH
kTe

γi,j(Te)

gi
exp

(
−∆Ei,j

kTe

)
, (3.119)

where α is the fine structure constant and the effective collision strength γi,j has been
curve fitted against the tabulated values provided by Frost in the range 0.5 ≤ Te ≤
12.0 eV.

Bultel et al. [49] presented electron impact excitation and ionisation rates for the ground
and metastable states of N and O. These rates were presented as generalised Arrhenius
curve-fits in the temperature range 2,000 ≤ T ≤ 10,000 K and were implemented in the
collisional-radiative model of Panesi [38]. The excitation rates from the ground state of
nitrogen are based on the R-matrix calculations of Berrington [50].

Figure 3.12 compares the electron impact excitation rate coefficient for a selection of
optically allowed and optically forbidden transitions of atomic nitrogen for which Frost
et al. [45] present rate coefficients. The indices of the initial i and final j electronic lev-
els are given in the y-axis label in the form Ke(i, j). For the ground to first and sec-
ond excited level transitions, Figures 3.13a and 3.13b respectively, the R-matrix based
rates of Bultel and Frost are bounded by the semi-empirical Gryzinski and Drawin mod-
els. The Bultel rates are up to an order of magnitude lower than the Frost rates for the
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2s22p3 4S◦ ⇒ 2s22p3 2D◦ optically forbidden transition. For these transitions the theo-
retical calculations of Frost et al. [45] are preferred as they are more recent than those of
Berrington [50].

The Frost, Drawin and Gryzinski models exhibit qualitative agreement for the re-
maining transitions shown, Figures 3.13c to 3.13h. Quantitatively, it is encouraging to
observe that the data of Frost is bounded by the Gryzinski and Drawin models for almost
all transitions, although there is no trend as to which forms the upper or lower bound.
For the 1-5 and 3-15 transitions in Figures 3.13c and 3.13f, for example, the Gryzinski data
shows exceptional agreement with the calculations of Frost. In contrast, for the 1-20 and
3-20 transitions in Figures 3.13c and 3.13h, the Gryzinski model subtantially underesti-
mates the data of Frost while the Drawin model shows good agreement. Furthermore the
semi-empirical models differ by up to two orders of magnitude for some transitions. In
the present work the theoretical calculations of Frost et al. [45] are preferred where avail-
able, with the remaining transitions described by the Gryzinski [40] model. The decision
to implement the Gryzinski model in preference to the Drawin model is based on the
findings of Panesi [38, 48], where the Gryzinski model gave improved agreement with
the air shock tube spectroscopy experiments performed in the EAST facility.

(b) Electron impact ionisation of N

Johnston [12] implemented the ionisation rate coefficients proposed by Kunc and Soon [51]
for the ground and first two excited levels of atomic nitrogen. The rate coefficients are
calculated as:

Ke(i, c) = 1.0× 10−8

[
IH

I − Ei

]
Qi

2li + 1
exp (−β)Gi (β) (3.120)

where,

Gi(β) =

√
β

β + 1

A

β + χ
, (3.121)

and,

β =
I − Ei
kTe

. (3.122)

The parameter IH is the ionisation energy of the hydrogen energy (Rydberg energy), li is
the angular momentum quantum number of the level i, A and χ are fitting constants for
the species and Gi is level dependent angular factor. For atomic nitrogen A is equal to
27.71, χ is equal to 5.58 and Qi is equal to 3 for the ground state and 3/2 for the first and
second excited states. This expression is a curve-fit based on the rate coefficient derived
from experimentally measured electron impact ionisation cross sections for the ground
state of N.

Panesi [38] implemented the ionisation rate coefficients presented by Bultel et al. [49],
which were obtained from the compilation of Tawara and Kato [52] and the combined
binary-encounter Bethe (BEB) and scaled plane-wave Born (PWB) calculations of Kim
and Desclaux [53]. The rates for the ground and first two excited states of N were
presented as generalised Arrhenius curve-fits in the temperature range 2,000 ≤ Te ≤
10,000 K.

Figure 3.13 compares the electron impact ionisation rate coefficient for various tran-
sitions of N. The experimentally-fitted Kunc and Soon rates and the theoretically-fitted
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Figure 3.13: Comparison of electron impact excitation rate coefficients for atomic nitrogen.
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Figure 3.12: (Continued) Comparison of electron impact excitation rate coefficients for various
transitions of N.

Bultel rates are in good agreement for the ground and metastable states, Figures 3.13a
to 3.13c. The Drawin models implemented by Johnston [12] and Panesi [38] bound the
Kunc and Soon rates and Bultel rates, with Panesi’s implementation being in closer agree-
ment. Although the difference between the two Drawin models decreases as ionisation
from higher levels and low electron temperatures is considered (see Figure 3.13d), John-
ston’s implementation is between approximately 2 and 100 times smaller for all levels.
Therefore in the present work the experimentally-fitted electron impact ionisation coef-
ficients of Soon and Kunc [46] are preferred for the first three levels, while the Drawin
model implemented by Panesi [12] is used for the remaining levels.

(a) Electron impact excitation of O

Zatsarinny and Tayal [47] calculated electron impact excitation rates for the ground and
first two excited states of atomic oxygen using a B-spline R-matrix approach. The for-
ward rate coefficients for the Zatsarinny and Tayal model are calculated as:

Ke(i, j) =
8.629× 10−6

gi
√
Te

γij(Te)exp
(
−∆Eij
kTe

)
(3.123)

where the dimensionless effective collision strength γij is tabulated as a function of the
free electron temperature in Reference [47]. The Zatsarinny and Tayal [47] data was
the preferred source of accurate atomic oxygen electron impact excitation rates in the
collisional-radiative model proposed by Johnston [12].

Panesi [38] implemented the electron impact excitation rate coefficients presented by
Bultel et al. [49] which are based on the literature survey of Itikawa and Ichimura [54].
Electron impact excitation rate coefficients for transitions from the ground state to the
two metastable states of atomic oxygen were presented as generalised Arrhenius curve-
fits in the temperature range 2,000 ≤ Te ≤ 10,000 K.

Figure 3.18 compares the electron impact excitation rate coefficient for various transi-
tions of atomic oxygen for which Zatsarinny and Tayal [47] present data. For the transi-
tions to the metastable states, Figures 3.14a and 3.14b, the Drawin and Gryzinski models
substantially overestimated the theoretical calculations of Zatsarinny and Tayal. Such a
discrepency is to be expected for these inner core transitions due to the hydrogenic as-
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Figure 3.13: Comparison of electron impact ionisation rate coefficients for atomic nitrogen.

sumptions of the Drawin and Gryzinski models. For the transitions where Bultel rates are
available, good agreement is observed with the theoretical calculations of Zatsarinny and
Tayal. Although theB-splineR-matrix calculations of Zatsarinny and Tayal are bounded
by the semi-empirical models for most transitions, for some forbidden transitions such as
2−5 and 3−7, Figures 3.14d and 3.14f, the semi-empirical models underestimate the theo-
retical rates by at least an order of magnitude for the temperature range considered. Some
some transitions such as 1-16 and 1-17, Figures 3.14g and 3.14h, the Gryzinski model
closely matches the Zatsarinny and Tayal calculations, whilst for others such as 1-20, Fig-
ure 3.14i, the Drawin model shows exceptional agreement. The Drawin and Gryzinski
models show considerable variability in their relative magnitudes, being within a factor
of 2 of each other for some transitions and in excess of 104 for some transitions to high
lying states (e.g. Figures 3.14i and 3.14j). As for atomic nitrogen, we must again bear in
mind that Panesi [38, 48] found improved agreement with experiment when using the
Gryzinski model. Therefore in the present work the Zatsarinny and Tayal [47] rate co-
efficients are preferred where available, while the Gryzinski [40] model is applied to the
remaining transitions.
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Figure 3.14: Comparison of electron impact excitation rate coefficients for atomic oxygen.

47



 1e-21

 1e-20

 1e-19

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

1,
16

) (
cm

3 /s
)

Temperature, T (K)

Zatsarinny and Tayal
Drawin

Gryzinski

(g) 2s22p4 3P ⇒ 2s22p3(4S◦)5s 3S◦ (Allowed)

 1e-21

 1e-20

 1e-19

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

1,
17

) (
cm

3 /s
)

Temperature, T (K)

Zatsarinny and Tayal
Drawin

Gryzinski

(h) 2s22p4 3P ⇒ 2s22p3(2D◦)3s 1D◦ (Forbidden)

 1e-24

 1e-22

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

1,
20

) (
cm

3 /s
)

Temperature, T (K)

Zatsarinny and Tayal
Drawin

Gryzinski

(i) 2s22p4 3P ⇒ 2s22p3(4S◦)4f 5F (Forbidden)

 1e-23
 1e-22
 1e-21
 1e-20
 1e-19
 1e-18
 1e-17
 1e-16
 1e-15
 1e-14
 1e-13
 1e-12

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

2,
20

) (
cm

3 /s
)

Temperature, T (K)

Zatsarinny and Tayal
Drawin

Gryzinski

(j) 2s22p4 1D ⇒ 2s22p3(4S◦)4f 5F (Forbidden)

Figure 3.13: (Continued) Comparison of electron impact excitation rate coefficients for atomic
oxygen.
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Electron impact ionisation of O

Johnston [12] implemented the ionisation rate coefficients proposed by Soon and Kunc [46]
for the ground and first two excited levels of atomic oxygen. The rate coefficients are cal-
culated as described in Equations 3.120 to 3.122, where A = 30.52 and χ = 4.0 for levels
i=1, 2 and 3 of O. This expression is a curve-fit based on the rate coefficient derived from
experimentally measured electron impact ionisation cross sections for the ground state of
O.

Panesi [38] implemented the ionisation rate coefficients presented by Bultel et al. [49],
which were obtained from the compilation of Tawara and Kato [52] and the combined
binary-encounter Bethe (BEB) and scaled plane-wave Born (PWB) calculations of Kim
and Desclaux [53]. The rates for the ground and first two excited states of O were
presented as generalised Arrhenius curve-fits in the temperature range 2,000 ≤ Te ≤
10,000 K.

Figure 3.14 compares the electron impact ionisation rate coefficient for various tran-
sitions of O. The experimentally-fitted Soon and Kunc models and theoretically-fitted
Bultel models give excellent agreement for ionisation from the ground state, but exhibit
up to an order of magnitude deviation for the 2s22p4 1S multiplet (see Figure 3.14c).
The two Drawin models bound the experimentally fitted model of Kunc and Soon [51],
with Panesi’s implementation being in closer agreement, especially for ionisation of the
2s22p4 1S multiplet. Similarly as for atomic nitrogen, Johnston’s implementation of the
Drawin cross sections is between approximately 2 and 100 times smaller than Panesi’s
implementation for all levels. Therefore in the present work the electron impact ionisa-
tion coefficients of Kunc and Soon [51] are preferred for the first three levels, while the
Drawin model implemented by Panesi [12] is used for the remaining levels.

(b) Diatomic species: N2 and N2+

Johnston [12] presented collisional-radiative models for N2 and N+
2 compiled from both

theoretically calculated and experimentally measured rate-coefficients in the literature.
The majority of the collisional rate coefficients are based on the theoretical calculations
of Teulet et al. [55], however other more accurate data was preferenced where available.
Since Johnston formulated this model, a set of collisional rate coefficients for the diatomic
species CN, CO, N2, N+

2 , O2 and NO have been proposed by Park [56, 57]. The rate
coefficients are based on experimentally measured cross sections where available, and
theoretically estimated otherwise.

The most critical reactions for N2 and N+
2 at Earth re-entry conditions are those popu-

lating the upper states of radiative transitions via electron impact excitation. Figure 3.15
compares the electron impact excitation rates populating the B3Πg state of N2 (upper
state for the First Positive band system), and Figure 3.16 compares the electron impact
excitation rates populating the B2Σ+

u state of N+
2 (upper state for the First Negative band

system). While the two models agree to within a factor of 4 for the N2

(
X1Σ+

g

)
+ e− ⇐⇒

N2

(
B3Πg

)
+e− transition, Figure 3.15a, the Park rates are substantially higher than those

of Johnston for the other transitions. For the N2

(
A2Πu

)
+e− ⇐⇒ N2

(
B2Σ+

u

)
+e− transi-

tion in Figure 3.16b, for example, the Park rate is almost four orders of magnitude greater
than the Johnston rate. Although not shown here, the estimated rate of Teulet et al. [55]
for the N+

2

(
X2Σ+

g

)
+ e− ⇐⇒ N+

2

(
B2Σ+

u

)
+ e− transition is quite similar to the Park

rate. In Johnston’s [12] survey of the literature, this rate of Teulet was found to overes-
timate those from more accurate theoretical calculations. Furthermore, in Reference [58]
the rates of Teulet were required to be reduced by factors of 10 and 70 for N2 and N+

2 re-
spectively in order to achieve agreement with experiment. In the present work therefore

49



1e-20

1e-19

1e-18

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

1)
 (c

m
3 /s

)

Temperature, T (K)

Soon and Kunc
Drawin (Panesi)

Drawin (Johnston)
Bultel

(a) O 2s22p4 3P ⇒ O+

1e-19

1e-18

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

2)
 (c

m
3 /s

)

Temperature, T (K)

Soon and Kunc
Drawin (Panesi)

Drawin (Johnston)
Bultel

(b) O 2s22p4 1D ⇒ O+

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

3)
 (c

m
3 /s

)

Temperature, T (K)

Soon and Kunc
Drawin (Panesi)

Drawin (Johnston)
Bultel

(c) O 2s22p4 1S ⇒ O+

 1e-07

 1e-06

 1e-05

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

16
) (

cm
3 /s

)

Temperature, T (K)

Drawin (Panesi)
Drawin (Johnston)

(d) O 2s22p3(4S◦)5s 3S◦ ⇒ O+

Figure 3.14: Comparison of electron impact ionisation rate coefficients for atomic oxygen.

we choose to adopt the Johnston [12] model. The collisional-radiative models for N2 and
N+

2 are summarised in § A.4 and A.5 respectively. The nonequilibrium levels considered
for N2 areX1Σ+

g , A3Σ+
u , B3Πg and C3Πu, while those for N+

2 areX2Σ+
g , A2Πu, B2Σ+

u and
C2Σ+

u .
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Figure 3.15: Comparison of electron impact excitation rate coefficients for transitions to theB3Πg

state of N2.
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Figure 3.16: Comparison of electron impact excitation rate coefficients for transitions to theB2Σ+
u

state of N+
2 .

3.2.4 Collisional-radiative model for CO2–N2–Ar mixtures

Figures 3.17a and 3.17b present post-shock species number density and radiative emis-
sion profiles respectively for a hypothetical high-speed Mars aerocapture condition from
the trajectory study of Braun et al. [59]. The condition corresponds to that predicted for
an aerocapture vehicle with nose radius 10 m at 44.9 km altitude that entered the Martian
atmosphere at 9.79 km/s. This point is just prior to peak heating and is characterised by
very strong thermochemical nonequilibrium. Behind the shock CO2 and N2 quickly dis-
sociate, forming an initial pool of CO and N2 molecules and C, N and O atoms that allow
exchange reactions to begin. At 1 mm behind the shock reactions have only just begun to
occur and CN and C2 systems and continuum transitions dominate the radiative emis-
sion. By 3 mm behind the shock dissociation is essentially complete and peak emission
occurs, with atomic C lines, the VUV CO band systems and atomic O lines contribut-
ing 99% of the radiative emission. At peak emission the next strongest radiators are N,
CN, C2 and Ar, however their emission strength is on average two orders of magnitude
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Figure 3.17: Post-shock species number density and radiative emission profiles along the stag-
nation streamline for a hypothetical Mars aerocapture entry condition (p∞ = 6.2 Pa, T∞ = 161 K,
u∞ = 9, 440 m/s).
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less than CO and C. As equilibrium is approached the total radiation drops by an order
of magnitude, C, CO and O (in that order) continue to dominate the radiative emission
while the relative strength of the continuum transitions increases due to the growing free
electron population. The free electron mole-fraction between peak-emission and chemi-
cal equilibrium is in the order of 10−2.

Although C, CO and O are by far the strongest radiators when Boltzmann level pop-
ulations is assumed, the nonequilibrium emission is likely to be significantly less due to
radiative depletion of the high lying states. Therefore in the present work we chose to
apply the collisional-radiative model to all the significant radiators – C, CO, O, C2, N,
Ar and CN. Although the free electron number density is lower than for Earth re-entry,
electron impact collisional processes should still dominate over heavy particle collisions
due to their high efficiency. Thus in the present work only electron impact collisional
processes will be considered.

Atomic species: Ar, C, N and O

Table 3.12 summarises the implemented rate coefficients for the collisional-radiative mech-
anisms considered for atomic species in CO2–N2–Ar mixtures. Similarly as for N2–O2

mixtures, the collisional mechanisms considered for atoms are electron impact excita-
tion and ionisation, and the radiative processes considered are bound-bound optically
allowed transitions. As the Drawin [39] cross sections have been shown to be appropri-
ate for calculating non-Boltzmann emission from atomic argon [60,61], the Drawin model
proposed by Panesi [38] is applied to calculate electron impact excitation and ionisation
of Ar. For atomic carbon, accurate rate-coefficients are obtained from Suno and Kato [62]
for electron impact excitation and ionisation of the ground and metastable states. The
remaining transitions described by the semi-empirical model of Gryzinski [40]. The
collisional-radiative models selected for N and O in N2–O2 mixtures are retained here
for application to CO2–N2–Ar mixtures. All radiative transition probabilities A(i, j) are
calculated using Equation 3.107 where the individual line transition probabilities are ob-
tained from the NIST Atomic Species Database [10] (see Table 3.2).

(a) Electron impact excitation of C

Suno and Kato [62] compiled an extensive electron-impact ionisation, excitation and
charge exchange cross section database for carbon atoms and ions. Although the database
extends to electron temperatures of 1 keV as it is designed nuclear fusion applications, the
presented electron impact excitation data for C is shown to agree well with the experi-
mental data of Duneath et al. [63] and others obtained in the 1 eV electron temperature
range of present interest. The data are presented as curve fits for the collision strength
Ωij from which the rate coefficient can be calculated as:

Ke(i, j) =
8.010× 10−8

ωi
√
Te

y

∫ ∞
1

Ωije
−yXdX (3.124)

where Te is in eV, y = ∆Eij/Te and X = Ee/∆Eij .
Figure 3.17 compares the electron impact excitation rate coefficient for various tran-

sitions of C. For all transitions except excitation of the ground to first excited state (see
Figure 3.18a), the Suno and Kato rates are between 2 and 1000 times larger than the rates
predicted by the approximate models. This is in contrast to the electron impact excitation
rates of N and O, where the accurate rates for low lying levels was bounded by the ap-
proximate models. It is therefore possible that the rates of Suno and Kato are not suitable
for the temperature range considered. In the absence of better electron impact excitation
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Table 3.12: Summary of the collisional-radiative mechanisms implemented for Ar, C, N and O in
CO2–N2–Ar mixtures.

Species Electronic levels CR mechanisms Models
Ar All Electron impact excitation Drawin (Reference [38])

Electron impact ionisation Drawin (Reference [38])
Radiative decay NIST Atomic Spectra Database [10]

C All Electron impact excitation (a) Suno and Kato [62]
(b) Gryzinski [40]

Electron impact ionisation (a) Suno and Kato [62]
(b) Drawin (Reference [38])

Radiative decay NIST Atomic Spectra Database [10]
N All Electron impact excitation (a) Frost et al. [45]

(b) Gryzinski [40]
Electron impact ionisation (a) Soon and Kunc [46]

(b) Drawin (Reference [38])
Radiative decay NIST Atomic Spectra Database [10]

O All Electron impact excitation (a) Zatsarinny and Tayal [47]
(b) Gryzinski [40]

Electron impact ionisation (a) Soon and Kunc [46]
(b) Drawin (Reference [38])

Radiative decay NIST Atomic Spectra Database [10]

data, however, the Suno and Kato rates are preferenced for transitions from low lying
states while the Gryzinski model is applied to the remaining transitions.

(b) Electron impact ionisation of C

Suno and Kato [62] present the electron impact ionisation cross section for the ground
state of atomic carbon in the following form:

σ =
1× 10−13

IE

A1ln (E/I) +

NA∑
j=2

Aj

(
1− I

E

)j−1
 (3.125)

where I and E are the ionisation and electron energy in eV and Aj are fitting coefficients.
The fitting coefficients have been selected to match the experimental measurements of
Brook et al. [64]. Unfortunately Brook considered electron energies in the range 7 ≤ E ≤
1000 eV, which is outside theE ≈ 1 eV range of present interest. In the absence of electron
impact ionisation cross sections for the metastable state of atomic carbon, in the present
work Equation 3.125 is applied where I is taken as the level-specific ionisation potential.
The rate coefficient is then calculated as:

Ke(i, c) =
8.010× 10−8

gi
√
Te

y

∫ ∞
1

Ωie
−yXdX (3.126)

where Te is in eV, y = I/Te, X = Ee/I and collision strength Ωi for level i is obtained
from the cross section in Equation 3.125 via:

Ωi = σi
giE

1.1969× 10−15
(3.127)

54



 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

1,
2)

 (c
m

3 /s
)

Temperature, T (K)

Suno and Kato
Drawin

Gryzinski

(a) 2s22p 2P ◦ ⇒ 2s2p2 4P (Forbidden)

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

2,
3)

 (c
m

3 /s
)

Temperature, T (K)

Suno and Kato
Drawin

Gryzinski

(b) 2s2p2 4P ⇒ 2s2p2 2D (Forbidden)

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

1,
5)

 (c
m

3 /s
)

Temperature, T (K)

Suno and Kato
Drawin

Gryzinski

(c) 2s22p 2P ◦ ⇒ 2s2p2 2P (Allowed)

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

2,
5)

 (c
m

3 /s
)

Temperature, T (K)

Suno and Kato
Drawin

Gryzinski

(d) 2s2p2 4P ⇒ 2s2p2 2P (Forbidden)

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

1,
15

) (
cm

3 /s
)

Temperature, T (K)

Suno and Kato
Drawin

Gryzinski

(e) 2s22p 2P ◦ ⇒ 2p3 2P ◦ (Forbidden)

 1e-19

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 6000  7000  8000  9000  10000 11000 12000 13000 14000

R
at

e 
co

ef
fic

ie
nt

, K
e(

1,
18

) (
cm

3 /s
)

Temperature, T (K)

Suno and Kato
Drawin

Gryzinski

(f) 2s22p 2P ◦ ⇒ 2s25p 2P ◦ (Allowed)

Figure 3.18: Comparison of electron impact excitation rate coefficients for atomic carbon.
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Figure 3.17: (Continued) Comparison of electron impact excitation rate coefficients for atomic
carbon.

Figure 3.18 compares the electron impact ionisation rate coefficient for various tran-
sitions of C. The bulk atomic carbon ionisation rate proposed by Park [65] is overlaid in
Figure 3.18a for comparison with the ground state rates. The Suno and Kato rates are
approximately three orders of magnitude greater than the semi-empirical models, and is
similar to the Park rate for the ground state. Similarly as for atomic nitrogen and oxygen,
Johnston’s implementation of the Drawin cross sections is between approximately 2 and
100 times smaller than Panesi’s implementation for all levels. Therefore in the present
work the electron impact ionisation coefficients of Suno and Kato [62] are preferred for
the first three levels, while the Drawin model implemented by Panesi [12] is used for the
remaining levels.

Diatomic species: C2, CN and CO

Zalogin [66] proposed a simple collisional-radiative model for C2, CN and CO. This
model was ‘tuned’ to match the intensity profiles measured for a 3.45 km/s CO2–N2

shock tube condition, and was applied with limited success to the 8.5 km/s CO2–N2

EAST shock tube condition in Reference [67]. Since this model was formulated, how-
ever, a set of collisional-rate coefficients and cross sections for the diatomic species CN,
CO, N2, N+

2 , O2 and NO have been proposed by Park [56, 57]. Figure 3.19 compares the
rates that are given by both Zalogin [66] and Park [56, 57]. The Zalogin model predicts
faster collisional excitation of CN and slower collisional excitation of CO. As the Park
model is more comprehensive and based on experimental and theoretical cross sections
where possible, the Park collisional excitation rates for CO and CN are tentatively ac-
cepted for inclusion in the nominal collisional-radiative models for these species. Due to
numerical difficulties encountered when implementing the heavy particle impact rates
given in Reference [57], however, these were omitted for CO and CN. Considering just
the electron impact processes should be sufficient for the conditions of interest due to the
substantial levels of ionisation. It should be emphasised that the heavy particle impact
processes would need to be considered for the collisional-radiative model to be valid for
less energetic conditions where ionisation levels are low. The system radiative transition
probabilities are calculated from the electronic-vibration transition moments via Equa-
tion 3.109. For C2 we resort to the Zalogin [66] model as this species was not considered
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Figure 3.18: Comparison of electron impact ionisation rate coefficients for atomic carbon.

by Park in References [56, 57]. The nominal collisional-radiative models for C2, CN and
CO are summarised in § A.1 to A.3 respectively.

3.2.5 A note on the selection of data sources

In formulating the collisional-radiative model the sometimes contradictory issues of data
source consistency and model accuracy arise. On one hand, it is desirable to formulate
a model that is both internally consistent (uses the same data source for all processes)
and externally consistent (uses the same data sources as other models, such as the spec-
tral radiation model). On the other hand, it is desirable to formulate a model that best
reproduces the physical phenomena. The goal of the present work is to develop effec-
tive engineering tools, and therefore the latter approach has been preferenced to give
the calculations the best chance of reproducing experimental data. As an example, con-
sider the electron impact excitation for the nitrogen atom. An internally consistent model
would have to use an empirical model such as that of Drawin [39] for all transitions,
however this model has been shown to give inaccurate results when applied to the exci-
tation of low lying electronic states [38, 48]. Although it breaks the internal consistency
of the model, implementing the computational chemistry rates of Frost et al. [45] gives
much improved comparisons with experiment [38, 48]. This principal of selecting the
most effective data, rather than the most consistent data, has been applied throughout
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Figure 3.19: Comparison of excitation rate coefficients obtained from Park [56, 57] and Zalo-
gin [66].

the collisional-radiative model.
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4

The equilibrium air model

The equilibrium air spectral model makes the gray-gas approximation to define a mean
absorption coefficient. The empirical correlation of Olstad [68] is implemented:

κP = 7.94

(
ρ

ρ0

)1.10( T

104

)6.95

(4.1)

where the numerical factor at the front has been changed so that κP has units of m−1

instead of ft−1 and rho0 is sea-level density, taken to be 1.225 kg/m3. The total emissivity
is then calculated from the Stefan-Boltzmann equation:

j =
κPσT

4

π
(4.2)
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5

Other spectral models

Fluid Gravity’s Parade code and KAIST’s Spradian07 code can be used to compute the
spectral coefficients within the cfcfd3 framework if the user has access to these codes.
For documentation on the Parade and Spradian07 codes see References [2] and [3], re-
spectively.
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6

Installation

The core of the radiation module is written in C++, and there are a number of tools
written in Python. The input data is provided to the C++ binaries via Lua files. Assuming
the Compressible-Flow CFD repository is located in ˜/cfcfd3-hg, the radiation module
can be compiled and installed via:

$ cd ˜/cfcfd3-hg/lib/radiation/build
$ make install

The installation of the radiation library can then be tested via an automated script:

$ cd ˜/cfcfd3-hg/lib/radiation/build
$ make test

If the user has the SPRADIAN07 code available and wishes to use it as the spectral
model, this needs to be requested at compile time:

$ cd ˜/cfcfd3-hg/lib/radiation/build
$ make WITH_SPRADIAN=1 install

The SPRADIAN07 source code and input-data files need to be located in
˜/cfcfd3-hg/extern/spradian07:

$ ls ˜/cfcfd3-hg/extern/spradian07/
atom.dat diatom.dat radipac6.f90 triatom.dat

If the Parade code is availale to the user, no additional compilation arguments are
need to use it as the spectral model. The parade binary, however, needs to be in the
system path and the Parade template file needs to include the location of the Parade data
files (the Parade template file can be automatically generated from the python input script
- see lib/radiation/test/parade-air-EQ-radiators.py for an example).

To test all the spectral models the following make command can be run:

$ cd ˜/cfcfd3-hg/lib/radiation/build
$ make WITH_SPRADIAN=1 WITH_PARADE=1 test
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7

Creating Input Files

The input data to create a new spectral radiation model is provided in a Lua file. This
file contains all the parameters and spectroscopic data to perform a spectral radiation
calculation. To simplify the creation of this file for the user, the Lua file can be created
via the radmodel.py Python tool that interfaces with a library of spectroscopic data.
Instructions on how to use this tool can be obtained from the command line via:

$ radmodel.py --help
Usage: radmodel.py -i rad_desc.py|--input-script=rad_desc.py

-L LUA_output.lua|--LUA-file=LUA_output.lua

Options:
-h, --help show this help message and exit
-i INFILE, --input-script=INFILE

input Python script for radiation description
-L LUAFILE, --LUA-file=LUAFILE

output configuration file for ’librad’ C++ module in
LUA format

where rad-model.py is the name of the user created Python script describing the spec-
tral model and rad-model.lua is the desired name of the resulting Lua file. § 7.1 de-
scribes how to construct a basic radiation input file that allows spectra to be calculated
via the spectral model described in § 3, while the process of creating a more advanced
input file for modelling monatomic plasmas to a higher degree of accuracy is described
in § 7.2 . Examples of input files for interfacing with the PARADE and SPRADIAN07
codes via the cfcfd3/lib/radiation framework are provided in textsection 7.3 and
§ 7.4.

7.1 Creating an input file for the baseline modelling

A sample user-created Python script for creating a basic radiation model for 11 species,
2 temperature air is shown below:

Listing 7.1: Example spectral model input file, air-radiators.py
# Filename: air-radiators.py
# Author: Daniel F. Potter
# Date: 11th of March 2013
# Usage: radmodel.py -i air-radiators.py -L rad-model.lua
# Define a simple radiation model for two temperature, 11 species air

# 1. Select the spectral model
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gdata.spectral_model = "photaura"

# 2. Define the spectral grid
gdata.lambda_min = 70.0
gdata.lambda_max = 1200.0
gdata.spectral_points = 113000

# 3. Request and define the radiating species
species = [ "N2", "N2_plus", "NO", "NO_plus", "O2", "O2_plus",

"N", "N_plus", "O", "O_plus", "e_minus" ]
radiators = [ "N2", "N2_plus", "NO", "O2", "N", "N_plus",

"O", "O_plus", "e_minus" ]
for rad_name in radiators:

rad = gdata.request_radiator(rad_name)
rad.default_data()
rad.isp = species.index(rad_name)
rad.iTe = 1
if rad.type == "diatomic_radiator":

rad.iTv = 1

# radmodel.py does the rest!

In ‘1.’, the desired spectral model is selected:

# 1. Select the spectral model
gdata.spectral_model = "photaura"

Here the in-house photaura model has been selected; other available models are
spradian and parade. See § 7.3 and § 7.4 for examples of input files for these models.
The spectral grid is then defined in ’2.’:

# 2. Define the spectral grid
gdata.lambda_min = 70.0
gdata.lambda_max = 1200.0
gdata.spectral_points = 113000

Here the range 70 ≤ λ ≤ 1200 nm has been requested, discretised by 113000 equidistant
points in frequency space. Finally, in ’3.’ the desired radiating species are requested and
defined:

# 3. Request and define the radiating species
species = [ "N2", "N2_plus", "NO", "NO_plus", "O2", "O2_plus",

"N", "N_plus", "O", "O_plus", "e_minus" ]
radiators = [ "N2", "N2_plus", "NO", "O2", "N", "N_plus",

"O", "O_plus", "e_minus" ]
for rad_name in radiators:

rad = gdata.request_radiator(rad_name)
rad.default_data()
rad.isp = species.index(rad_name)
rad.iTe = 1
if rad.type == "diatomic_radiator":

rad.iTv = 1

A radiator is requested from the library with the gdata.request radiator()
function call. If the radiator is not present in the library, radmodel.py will fail here with
an error message indicating what species was not avaiable. The rad.default data()
function requests the nominal electronic level and transition probability set from the li-
brary – for most calculations this will be suitable. Other data that is set here is the species
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index in the rad.isp field, the electronic temperature index in the rad.iTe field and
the vibrational temperature index in the rad.iTv field.

7.2 Creating an input file for the advanced modelling of monatomic plasma

The baseline modelling makes a number of assumptions regarding atomic lines and
photoionisation that enable rapid calculations but reduces the accuracy of the result-
ing spectra. Specifically, these assumptions are the use of approximate Stark broaden-
ing widths and hydrogenic photoionisation cross-sections. The input file shown below
demonstrates how to create an input file that allows accurate Stark broadening [69] and
photoionisation cross-sections [34] to be used:

Listing 7.2: Example advanced spectral model input file, argon-radiators-NIST-TB.py
# Filename: argon-radiators-NIST-TB.py
# Author: Daniel F. Potter
# Date: 20th of October 2013
# Usage: radmodel.py -i argon-radiators-NIST-TB.py -L rad-model.lua
#
# This file demonstrates the creation of an advanced radiation model using individual
# lines and levels from NIST ASD, Griem Stark widths, OPBase photoionisation
# cross-sections and adaptive spectral gridding.

# 1. Select the spectral model
gdata.spectral_model = "photaura"

# 2. Define the spectral grid
gdata.lambda_min = 1.0e7 / 150000.0 # 150000 cm-1
gdata.lambda_max = 1.0e7 / 1000.0 # 1000 cm-1
gdata.spectral_points = 100
gdata.adaptive_spectral_grid = True

# 3. Request and define the radiating species
params = {
"species" : [ ’Ar’, ’Ar_plus’, ’e_minus’ ],
"radiators" : [ ’Ar’, ’Ar_plus’, ’e_minus’ ],
"QSS_radiators" : [ ’Ar’ ],
"no_emission_radiators" : [ ’Ar_plus’ ],
"iTe" : 1,
"atomic_level_source" : "NIST_ASD",
"atomic_line_source" : "NIST_ASD",
"atomic_PICS_source" : "TOPBase"
}
declare_radiators( params, gdata )

# 4. Customise some of the parameters
# line adaptation
gdata.radiators[params["radiators"].index(’Ar’)].line_set.npoints = 50
gdata.radiators[params["radiators"].index(’Ar_plus’)].line_set.npoints = 10
# QSS lower temperature limit
gdata.radiators[params["radiators"].index(’Ar’)].QSS_model.T_lower = 0.0

In ‘1.’, the desired spectral model is selected:

# 1. Select the spectral model
gdata.spectral_model = "photaura"
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Here the in-house photaura model has again been selected. The selection of this
model is required to enable the advanced modelling of monatomic plasmas. The spectral
grid is then defined in ’2.’:

# 2. Define the spectral grid
gdata.lambda_min = 1.0e7 / 150000.0 # 150000 cm-1
gdata.lambda_max = 1.0e7 / 1000.0 # 1000 cm-1
gdata.spectral_points = 100
gdata.adaptive_spectral_grid = True

Here the spectral range 1000 ≤ η ≤ 150000 cm−1 has been requested, with an adaptive
spectral grid. The photaura model will determine the appropriate spectral grid to accu-
rately capture the atomic lines and bound-free continuum, which is then superimposed
on top of a uniformly spaced grid with gdata.spectral_points. To ensure that the
free-free continuum is accurately captured, it is recommended gdata.spectral_points
be set to a small but non-zero value; 100 uniform points has been found to be appropri-
ate for cases where the free-free continuum contibutes less than 1% of the total emissive
power.

In ’3.’ the desired radiating species are requested and defined in a python dictionary
called params:

# 3. Request and define the radiating species
params = {
"species" : [ ’Ar’, ’Ar_plus’, ’e_minus’ ],
"radiators" : [ ’Ar’, ’Ar_plus’, ’e_minus’ ],
"QSS_radiators" : [ ’Ar’ ],
"no_emission_radiators" : [ ’Ar_plus’ ],
"iTe" : 1,
"atomic_level_source" : "NIST_ASD",
"atomic_line_source" : "NIST_ASD",
"atomic_PICS_source" : "TOPBase"
}
declare_radiators( params, gdata )

The "species" field is the list, in order, of the species present in the gas or CFD flow-
field under consideration. The "radiators" field is the list of radiating species to be
considered. Electrons need to be included if the bound-free and free-free continua wish to
be modelled. Species that are to have their electronic populations determined via the QSS
approach are listed in the "QSS_radiators" field. The "no_emission_radiators"
field can be used to ‘turn off’ the radiation of a radiator. This is useful when the bound-
bound radiation from an ion is very weak, but the radiator needs to be declared to enable
the photoionisation of its neutral counterpart to be modelled. The "iTe" field species
the index of the electron temperature used in the flowfield solution. The remaining three
fields all the user to control what datasources and models are used for the atomic lines,
levels and photoionisation (PICS) cross-section. The "atomic_level_source" and
"atomic_line_source" fields need to be the same, and selected from one of the fol-
lowing:

NIST ASD Line and level data from the NIST Atomic Species Database [10]

TOPBase Line and level data from the Opacity Project database [34]

The "atomic pics source" field defines the photoionisation modelling and can be
one of the following:
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hydrogenic Hydrogenic approximation of the photoionisation cross-sections (see § 3.1.3)

TOPBase Theoretical photoionisation cross-sections from the Opacity Project database [34]

The hydrogenic model can overpredict the bound-free emission, especially where
high (≥ 10%) levels of ionisation are present. In these cases it is recommended the
TOPbasemodel is used. Currently the input data required for this advanced treatment of
monatomic radiation has only been collected for Ar-I and Ar-II (see cfcfd3/lib/radiation/data).
If the user wishes to use the advanced modelling for other species, the existing files can
be used as a guide and the raw data can be downloaded from the following websites:

NIST ASD http://www.nist.gov/pml/data/asd.cfm

TOPBase http://cdsweb.u-strasbg.fr/topbase/topbase.html

Griem Stark broadening http://griem.obspm.fr/

Finally, the radiator parameters can be adjusted from the default values as has been
demonstrated in ‘4.’:

# 4. Customise some of the parameters
# line adaptation
gdata.radiators[params["radiators"].index(’Ar’)].line_set.npoints = 50
gdata.radiators[params["radiators"].index(’Ar_plus’)].line_set.npoints = 10
# QSS lower temperature limit
gdata.radiators[params["radiators"].index(’Ar’)].QSS_model.T_lower = 0.0

The interested user should consult the declarations of the python classes in
cfcfd3/lib/radiation/tools/rl defs.py.

7.3 Examples input file interfacing with PARADE

Below is an example python input file for modelling an argon plasma with the PA-
RADE code inside the cfcfd3/lib/radiation c++ framework:

Listing 7.3: Example PARADE spectral model input file, argon-radiators-parade.py
# Filename: argon-radiators-parade.py
# Author: Daniel F. Potter
# Date: 20th of October 2013
# Usage: radmodel.py -i argon-radiators-parade.py -L rad-model.lua
#
# This file demonstrates the creation of a radiation input file for modelling an argon
# plasma with the parade code from FluidGravity.

# 1. Select the spectral model
gdata.spectral_model = "parade"

# 2. Define the spectral grid
gdata.lambda_min = 1.0e7 / 150000.0
gdata.lambda_max = 1.0e7 / 1000.0
gdata.spectral_points = int ( ( 1.0e7 / gdata.lambda_min - 1.0e7 / gdata.lambda_max ) * 1.0 )

# 3. Request and define the radiating species
radiators = [ "Ar", "Ar_plus", "e_minus" ]
species = [ "Ar", "Ar_plus", "e_minus" ]
for rad_name in radiators:
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rad = gdata.request_radiator(rad_name)
rad.isp = species.index(rad_name)
rad.iTe = 0

# 3. Specify the location of the Parade input data files and create template files
parade_data_path = "/Users/dpotter/myproject/DLR/work/programs/parade31/Data"
gdata.create_parade_template_files(parade_data_path)

7.4 Examples input file interfacing with SPRADIAN07

Currently the user must manually create the .lua input file when using the ‘spradian’
spectral model. Below is an example Lua input file for modelling an argon plasma with
the SPRADIAN07 code inside the cfcfd3/lib/radiation c++ framework:

Listing 7.4: Example SPRADIAN07 spectral model input file,
argon-radiators-spradian.lua

-- Filename: argon-radiators-parade.py
-- Author: Daniel F. Potter
-- Date: 20th of October 2013
-- Usage: ready to use as the input file for creating the radiation model
-- e.g. in python:
-- import radpy
-- rsm = create_radiation_spectral_model( "argon-radiators-spradian.lua" )

spectral_data = {
spectral_model = ’spradian’,
iT = 0,
iTr = 0,
iTv = 0,
iTe = 0,
radiators = { ’Ar’, ’Ar_plus’, ’e_minus’ },
lambda_min = 66.666667,
lambda_max = 10000.000000,
spectral_points = 14900,
spectral_blocks = 1,
adaptive_spectral_grid = false,

}

Ar = {}
Ar.isp = 0
Ar.type = ’atomic radiator’
Ar.mol_weight = 3.994800e-02

Ar_plus = {}
Ar_plus.isp = 0
Ar_plus.type = ’atomic radiator’
Ar_plus.mol_weight = 3.994745e-02

e_minus = {}
e_minus.isp = 0
e_minus.type = ’atomic radiator’
e_minus.mol_weight = 5.485799e-07
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8

Examples

8.1 VKI minitorch

8.2 EAST CO2–N2 shock tube

8.3 Hayabusa

8.4 Rutowski hemisphere
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A

Diatomic collisional-radiative models

In this Appendix the collisional-radiative models for diatomic molecules implemented in
this work are presented. The collisional rates are expressed in generalised Arrhenius form
(see Equation 3.71), and the radiative transitions are expressed via the average radiative
transition probability for the system. If the radiative transition rates are not provided
in the literature, they are calculated from the electronic-vibration transition moments via
Equation 3.109. The collisional-radiative models for C2, CN, CO, N2 and N+

2 are pre-
sented in § A.1 to A.5 respectively.
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A.1 Collisional-radiative model for C2

The implemented collisional-radiative model for C2 is from Zalogin [66], and is pre-
sented in Table A.1.

Reaction A (cm3/s) n Ea (K) Source
Electron impact excitation

C2

(
X1Σ+

g

)
+ e− ⇐⇒ C2

(
d3Πg

)
+ e− 1.3× 10−8 0.00 28,807 Zalogin [66]

Heavy particle impact excitation
C2

(
X1Σ+

g

)
+ M⇐⇒ C2

(
d3Πg

)
+ M 8.6× 10−11 0.00 28,807 Zalogin [66]

Radiative transitions
Reaction A (s−1) Source
C2

(
X1Σ+

g

)
=⇒ C2

(
d3Πg

)
+ hν 9.3× 106 Zalogin [66]

Table A.1: Implemented collisional-radiative model for C2.
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A.2 Collisional-radiative model for CN

The implemented collisional-radiative model for CN uses the electron impact excita-
tion cross sections and electron impact dissociation coefficients compiled by Park [56],
and is presented in Table A.2. The electron impact excitation rate coefficients have been
calculated from the cross sections given in Reference [56] via Equations 3.77 to 3.83, and
then curve-fitted to the generalised Arrhenius expression. Heavy particle impact pro-
cesses are omitted and the radiative transition probabilities have been calculated via
Equation 3.109.

Reaction A (cm3/s) n Ea (K) Source
Electron impact excitation

CN
(
X2Σ+

)
+ e− ⇐⇒ CN

(
A2Π

)
+ e− 1.9× 10−9 0.24 13,302 Same as N2

CN
(
X2Σ+

)
+ e− ⇐⇒ CN

(
B2Σ+

)
+ e− 3.1× 10−7 -0.25 37,052 Same as N2

CN
(
X2Σ+

)
+ e− ⇐⇒ CN

(
a4Σ+

)
+ e− 1.6× 10−14 1.09 46,616 Same as N2

CN
(
X2Σ+

)
+ e− ⇐⇒ CN

(
D2Π

)
+ e− 3.0× 10−9 0.16 78,393 Same as N2

CN
(
A2Π

)
+ e− ⇐⇒ CN

(
B2Σ+

)
+ e− 1.0× 10−5 -0.22 23,750 Huo et al. [70]

CN
(
A2Π

)
+ e− ⇐⇒ CN

(
a4Σ+

)
+ e− 5.9× 10−8 0.18 33,314 Huo et al. [70]

CN
(
A2Π

)
+ e− ⇐⇒ CN

(
D2Π

)
+ e− 2.0× 10−5 -0.29 65,091 Huo et al. [70]

CN
(
B2Σ+

)
+ e− ⇐⇒ CN

(
a4Σ+

)
+ e− 5.2× 10−12 0.70 9,564 Huo et al. [70]

CN
(
B2Σ+

)
+ e− ⇐⇒ CN

(
D2Π

)
+ e− 4.6× 10−8 0.22 41,341 Huo et al. [70]

CN
(
a4Σ+

)
+ e− ⇐⇒ CN

(
D2Π

)
+ e− 6.9× 10−5 -0.40 31,777 Huo et al. [70]

Electron impact dissociation
CN

(
X2Σ+

)
+ e− ⇐⇒ C + N + e− 1.3× 1015 0.43 88,966 Park [56]

CN
(
A2Π

)
+ e− ⇐⇒ C + N + e− 5.9× 1015 0.46 75,564 Park [56]

CN
(
B2Σ+

)
+ e− ⇐⇒ C + N + e− 2.4× 1015 0.55 51,576 Park [56]

CN
(
a4Σ+

)
+ e− ⇐⇒ C + N + e− 1.6× 1015 0.60 41,890 Park [56]

CN
(
D2Π

)
+ e− ⇐⇒ C + N + e− 6.3× 1015 0.92 9,964 Park [56]

Radiative transitions
Reaction A (s−1) Source
CN

(
A2Π

)
=⇒ CN

(
B2Σ+

)
+ hν 9.3× 105 This work (Eq. 3.109)

CN
(
X2Σ+

)
=⇒ CN

(
A2Π

)
+ hν 1.7× 106 This work (Eq. 3.109)

CN
(
X2Σ+

)
=⇒ CN

(
B2Σ+

)
+ hν 2.0× 108 This work (Eq. 3.109)

Table A.2: Implemented collisional-radiative model for CN.
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A.3 Collisional-radiative model for CO

The implemented collisional-radiative model for CO uses the electron impact excita-
tion cross sections and electron impact dissociation coefficients compiled by Park [56],
and is presented in Table A.3. The electron impact excitation rate coefficients have been
calculated from the cross sections given in Reference [56] via Equations 3.77 to 3.83, and
then curve-fitted to the generalised Arrhenius expression. Heavy particle impact pro-
cesses are omitted and the radiative transition probabilities have been calculated via
Equation 3.109.

Reaction A (cm3/s) n Ea (K) Source
Electron impact excitation

CO
(
X1Σ+

)
+ e− ⇐⇒ CO

(
a2Π

)
+ e− 3.9× 10−6 -0.34 70,049 Zobel et al. [71]

CO
(
X1Σ+

)
+ e− ⇐⇒ CO

(
a′3Σ+

)
+ e− 1.2× 10−6 -0.28 80,320 Zobel et al. [71]

CO
(
X1Σ+

)
+ e− ⇐⇒ CO

(
d3∆

)
+ e− 3.5× 10−7 -0.27 87,938 Zobel et al. [71]

CO
(
X1Σ+

)
+ e− ⇐⇒ CO

(
e3Σ−

)
+ e− 5.3× 10−7 -0.22 92,412 Morgan et al. [72]

CO
(
X1Σ+

)
+ e− ⇐⇒ CO

(
A1Π

)
+ e− 1.3× 10−5 -0.43 93,629 Olszewski et al. [73]

CO
(
a2Π

)
+ e− ⇐⇒ CO

(
a′3Σ+

)
+ e− 5.6× 10−7 -0.07 10,271 Huo et al. [70]

CO
(
a2Π

)
+ e− ⇐⇒ CO

(
d3∆

)
+ e− 5.4× 10−6 -0.31 17,889 Huo et al. [70]

CO
(
a2Π

)
+ e− ⇐⇒ CO

(
e3Σ−

)
+ e− 9.4× 10−6 -0.36 22,364 Huo et al. [70]

CO
(
a2Π

)
+ e− ⇐⇒ CO

(
A1Π

)
+ e− 2.1× 10−6 -0.25 23,580 Huo et al. [70]

CO
(
a′3Σ+

)
+ e− ⇐⇒ CO

(
d3∆

)
+ e− 8.8× 10−7 -0.14 7,618 Huo et al. [70]

CO
(
a′3Σ+

)
+ e− ⇐⇒ CO

(
e3Σ−

)
+ e− 8.2× 10−6 -0.38 12,092 Huo et al. [70]

CO
(
a′3Σ+

)
+ e− ⇐⇒ CO

(
A1Π

)
+ e− 1.3× 10−6 -0.27 13,309 Huo et al. [70]

CO
(
d3∆

)
+ e− ⇐⇒ CO

(
e3Σ−

)
+ e− 1.0× 10−7 0.07 4,475 Huo et al. [70]

CO
(
d3∆

)
+ e− ⇐⇒ CO

(
A1Π

)
+ e− 4.6× 10−8 0.09 5,691 Huo et al. [70]

CO
(
e3Σ−

)
+ e− ⇐⇒ CO

(
A1Π

)
+ e− 1.8× 10−9 0.36 1,216 Huo et al. [70]

Electron impact dissociation
CO

(
X1Σ+

)
+ e− ⇐⇒ C + O + e− 2.1× 1014 0.37 129,271 Park [56]

CO
(
a2Π

)
+ e− ⇐⇒ C + O + e− 3.1× 1015 0.52 58,742 Park [56]

CO
(
a′3Σ+

)
+ e− ⇐⇒ C + O + e− 3.3× 1015 0.56 48,352 Park [56]

CO
(
d3∆

)
+ e− ⇐⇒ C + O + e− 4.2× 1015 0.61 40,635 Park [56]

CO
(
e3Σ−

)
+ e− ⇐⇒ C + O + e− 3.9× 1015 0.64 36,098 Park [56]

CO
(
A1Π

)
+ e− ⇐⇒ C + O + e− 4.8× 1015 0.64 34,864 Park [56]

Radiative transitions
Reaction A (s−1) Source
CO

(
X1Σ+

)
=⇒ CO

(
A1Π

)
+ hν 1.4× 109 This work (Eq. 3.109)

Table A.3: Implemented collisional-radiative model for CO.
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A.4 Collisional-radiative model for N2

The implemented collisional-radiative model for N2 is that compiled by Johnston [12],
and is presented in Table A.4.

Reaction A (cm3/s) n Ea (K) Source
Electron impact excitation

N2

(
X1Σ+

g

)
+ e− ⇐⇒ N2

(
A3Σ+

u

)
+ e− 4.0× 10−9 0.1 71,610 Chernyi [74]

N2

(
X1Σ+

g

)
+ e− ⇐⇒ N2

(
B3Πg

)
+ e− 4.6× 10−8 - 0.1 85,740 Chernyi [74]

N2

(
X1Σ+

g

)
+ e− ⇐⇒ N2

(
C3Πu

)
+ e− 3.8× 10−9 0.1 127,900 Capitelli [75]

N2

(
A3Σ+

u

)
+ e− ⇐⇒ N2

(
B3Πg

)
+ e− 5.0× 10−9 0.0 13,495 Chernyi [74]

N2

(
B3Πg

)
+ e− ⇐⇒ N2

(
C3Πu

)
+ e− 2.9× 10−9 0.28 46,655 Teulet [55]

Electron impact dissociation
N2

(
X1Σ+

g

)
+ e− ⇐⇒ N + N + e− 4.11× 10−33 6.16 113,263 Teulet [55]

N2

(
A3Σ+

u

)
+ e− ⇐⇒ N + N + e− 6.61× 10−20 2.98 41,669 Teulet [55]

N2

(
B3Πg

)
+ e− ⇐⇒ N + N + e− 4.50× 10−23 3.73 55,586 Teulet [55]

N2

(
C3Πu

)
+ e− ⇐⇒ N + N + e− 5.14× 10−21 3.27 12,892 Teulet [55]

Heavy particle impact excitation
N2

(
X1Σ+

g

)
+ N2 ⇐⇒ N2

(
A3Σ+

u

)
+ N2 1.83× 10−12 -0.5 71,600 Kurochkin [76]

N2

(
A3Σ+

u

)
+ N2 ⇐⇒ N2

(
B3Πg

)
+ N2 1.99× 10−11 0.0 13,495 Chernyi [74]

N2

(
B3Πg

)
+ N2 ⇐⇒ N2

(
C3Πu

)
+ N2 8.47× 10−11 0.0 42,476 Fresnet [77]

Reaction A (s−1) Source
N2

(
B3Πg

)
=⇒ N2

(
A3Σ+

u

)
+ hν 1.4× 105 Chernyi [74]

N2

(
C3Πu

)
=⇒ N2

(
B3Πg

)
+ hν 2.6× 107 Pancheshnyi [78]

Table A.4: Implemented collisional-radiative model for N2.
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A.5 Collisional-radiative model for N+
2

The implemented collisional-radiative model for N+
2 is that compiled by Johnston [12],

and is presented in Table A.5.

Reaction A (cm3/s) n Ea (K) Source
Electron impact excitation

N+
2

(
X2Σ+

g

)
+ e− ⇐⇒ N+

2

(
A2Πu

)
+ e− 7.1× 10−11 0.0 13,300 Gorelov [79]

N+
2

(
X2Σ+

g

)
+ e− ⇐⇒ N+

2

(
B2Σ+

u

)
+ e− 2.0× 10−11 0.73 36,649 Nagy [80]

N+
2

(
X2Σ+

g

)
+ e− ⇐⇒ N+

2

(
C2Σ+

u

)
+ e− 6.6× 10−9 0.41 85,038 Teulet [55]

N+
2

(
A2Πu

)
+ e− ⇐⇒ N+

2

(
B2Σ+

u

)
+ e− 1.0× 10−9 0.0 23,500 Gorelov [79]

N+
2

(
A2Πu

)
+ e− ⇐⇒ N+

2

(
C2Σ+

u

)
+ e− 1.3× 10−7 0.11 78,403 Teulet [55]

N+
2

(
B2Σ+

u

)
+ e− ⇐⇒ N+

2

(
C2Σ+

u

)
+ e− 3.9× 10−9 0.34 49,622 Teulet [55]

Electron impact dissociation
N+

2

(
X2Σ+

g

)
+ e− ⇐⇒ N+ + N + e− 8.02× 10−31 5.54 101,117 Teulet [55]

N+
2

(
A2Πu

)
+ e− ⇐⇒ N+ + N + e− 8.27× 10−26 4.38 88,142 Teulet [55]

N+
2

(
B2Σ+

u

)
+ e− ⇐⇒ N+ + N + e− 2.58× 10−32 5.81 64,328 Teulet [55]

N+
2

(
C2Σ+

u

)
+ e− ⇐⇒ N+ + N + e− 1.31× 10−28 4.93 35,906 Teulet [55]

Heavy particle impact excitation
N+

2

(
X2Σ+

g

)
+ N2 ⇐⇒ N+

2

(
A2Πu

)
+ N2 3.8× 10−2 -2.33 12,978 Nagy [80]

N+
2

(
X2Σ+

g

)
+ N2 ⇐⇒ N+

2

(
B2Σ+

u

)
+ N2 1.9× 10−2 -2.33 36,600 Flagan [81]

Reaction A (s−1) Source
N+

2

(
A2Πu

)
=⇒ N+

2

(
X2Σ+

g

)
+ hν 6.7× 104 Chernyi [74]

N+
2

(
B2Σ+

u

)
=⇒ N+

2

(
X2Σ+

g

)
+ hν 1.5× 107 Gorelov [79]

N+
2

(
C2Σ+

u

)
=⇒ N+

2

(
X2Σ+

g

)
+ hν 1.4× 107 Chernyi [74]

Table A.5: Implemented collisional-radiative model for N+
2 .
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