
User guide for shock and blast simulation with the
OctVCE code (version 3.5+)

Mechanical Engineering Report 2007/13
Joseph Tang

Department of Mechanical Engineering
The University of Queensland

Brisbane QLD 4072

August 9, 2007

Abstract

OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and
blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen
as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design
problems. This also makes the code much more ‘user-friendly’ than structured grid approaches
as the gridding process is done automatically. The CFD methodology relies on a finite-volume
formulation of the unsteady Euler equations and is solved using a standard explicit Godonov
(MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel
processing capability have also been incorporated. For further details on the theory behind the
code, see the companion report [20].

Contents

1 Introduction 4

1.1 Scope and formulation . 4

1.2 VCE method . 4

1.3 Octree domains . 5

1.4 Initializing explosions . 5

1.4.1 Initial conditions for JWL or JWLB equations of state 6

1.5 The JWL and JWLB equations of state . 7

2 Code compilation 8

3 Setting up a simulation 9

3.1 General simulation parameters input file . 9

3.2 Solid geometry definition . 14

3.2.1 A note on flushed surfaces . 15

3.3 IC input file . 15

3.4 Gas model input file . 17

3.5 Domain BC input file . 20

3.5.1 Non-reflecting BCs . 20

3.5.2 Inflow and outflow BCs . 21

3.6 ‘Detonation’ data input file . 21

3.7 Two-dimensional simulation . 22

3.7.1 Making gaps and axes . 22

3.7.2 Caution on axisymmetric computation 23

3.7.3 Appropriate area subcell number . 23

4 Running a simulation 24

4.1 Memory usage . 26

1

4.2 Grid convergence and/or error estimation . 26

5 Post-processing 27

5.1 Solution file format . 27

5.2 Visualizing solution files . 27

5.2.1 A note on displaying 2D solutions . 27

5.3 Pressure trace format . 28

A A useful 1D code 29

B Example simulations 31

B.1 Supersonic conical flow . 31

B.1.1 Cone geometry . 31

B.1.2 Input files for cone simulation . 31

B.1.3 Running the cone simulation . 33

B.1.4 Some results for cone simulation . 33

B.2 Shock diffraction over blast wall . 34

B.2.1 Blast barrier geometry . 34

B.2.2 Input files for blast barrier simulation . 34

B.2.3 Running the blast barrier simulation . 35

B.2.4 Some results for blast wall simulation . 36

B.3 Blast over 3D obstructions . 38

B.3.1 Obstruction geometries . 38

B.3.2 Input files for 3D obstruction simulation 38

B.3.3 Running the 3D obstruction simulation 39

B.3.4 Some results for 3D obstruction simulation 39

Bibliography 39

2

List of Figures

1.1 VCE method . 5

1.2 Octree illustration . 5

3.1 General parameters file . 13

3.2 Example VTP file of a cube . 14

3.3 Example PVTP environment definition . 15

3.4 Boundary-aligned wall . 15

3.5 Initial condition file (2 species) . 17

3.6 Gas model file . 19

3.7 Example domain boundary condition file . 20

3.8 Fields for inlet and outlet BCs . 21

3.9 Example detonation input file . 22

3.10 View from yz plane . 22

A.1 IC input file for 1D code . 29

A.2 General parameters file for 1D code . 30

B.1 Geometry for cone simulation . 32

B.2 Running the cone simulation . 33

B.3 Some screen output from cone simulation . 33

B.4 Density contours . 34

B.5 Geometry for blast barrier simulation . 35

B.6 Running the blast barrier simulation . 35

B.7 Energy counting results for blast wall simulation 36

B.8 Blast wall results . 37

B.9 Running the 3D obstruction simulation . 39

B.10 3D obstruction results . 40

3

Chapter 1

Introduction

This user guide to the OctVCE code is written with the intent of helping new users easily set
up and run simulations for shock and blast simulation. It therefore does not describe in detail
the source code files or the underlying theory. A more extensive coverage of the theory can be
found in the companion report [20]. But inevitably, some further discussion on the numerical
methodology is necessary (particularly for new users) to understand how simulations are set
up. This will be the subject of §1.1 to §1.5.

1.1 Scope and formulation

OctVCE is a cartesian cell code written in C designed especially for modelling shock and blast
effects (in particular from bomb explosions) in complex geomtries. It aims to reduce problem
set-up time and enable users to focus more on design aspects by providing an automatic mesh
generation capability. The gridding technique chosen is Virtual Cell Embedding (VCE) [9], a
particularly simple method. Very small cells are merged with larger neighbours to give accept-
able timesteps. OctVCE also implements an isotropic h-refinement (octree-based) procedure
for CPU and memory efficiency.

OctVCE adpots a finite-volume formulation of the unsteady Euler equations with a second
order explicit Runge-Kutta Godonov (MUSCL) scheme. The gradients are calculated with a
least-squares method [8] and the limiter chosen is of the min-mod variety [5]. Flux solvers used
are AUSM [11], AUSMDV [23] and EFM [13]. No fluid-structure coupling or chemical reactions
are assumed, although gas models can be perfect gas, JWL [10] or JWLB [3] for the explosive
products. The numerical methodology is consistent with OctVCE’s scope, which is limited to
problems of practical engineering design where very high resolution or realism is unnecessary
(e.g. for determining blast overpressures or impulse).

1.2 VCE method

The basic idea of the VCE method [9] is to subdivide a body-intersected cell into a lattice of
‘subcells’ (fig 1.1(a)). Each subcell is tested if it is obstructed by a body. Summation of the
obstructed subcells give the approximate obstructed volume and interface areas. The surface is

4

then approximated using this information, either with a staircased representation (fig 1.1(b))
or smooth planar representation (fig 1.1(c)). Normally more subcells are used on the face areas
than cell volume as the body representation really depends on the obstructed interface areas.

(a) ‘Subcells’ illustration (b) Staircased surface (c) Planar surface

Figure 1.1: VCE method

1.3 Octree domains

OctVCE implements isotropic subdivision of cubical cells as its h-refinement procedure. This
approach lends itself easily to an ‘octree’ structure where a parent cell is refined to give 8
children (and similarly for the coarsening process), as in fig 1.3. Thus OctVCE starts with
a root cell which corresponds to the numerical domain; this root cell is then refined a
certain number of levels (the root is level 0) to give the initial mesh.

Figure 1.2: Octree illustration

When the user enters the size and location of the root cell the numerical domain’s extent
is fully specified. The root cell’s dimensions are chosen to immerse the mesh appropriately
within an environment of solid objects (whose locations are usually known beforehand). Whilst
solid wall boundary conditions are implemented automatically by the cartesian cell method by
the presence of solid objects, the user is required to specify an appropriate domain boundary
condition for each of the 6 faces of the root cell as they represent the borders of the numerical
domain.

1.4 Initializing explosions

The initial explosion or ‘bomb’ is represented by a volume or region of high pressure and density
explosive gas (this approach is also adopted by Timofeev et al [22]). These explosive gases can

5

be modelled with the perfect gas, JWL [10] or JWLB [3] equation of state (described in further
detail in §1.5). It has been found that matching the required total explosive energy is much
more important than the initial shape or density of the explosion volume.

Usually cells at the explosion volume are refined to the highest permissible level to track the
developing blast wave accurately from the start. This method of mapping the bomb volume to
a cartesian cell representation ‘staircases’ the charge and thus will not produce very accurate
solutions in the near-field when the actual charge shape is similarly not staircased. See [16]
for a ‘remapping’ technique between 1D spherical, 2D axisymmetric and finally 3D solutions
is employed that gives higher accuracy; the approach here is simpler and should hopefully be
adequate in the mid- to far-field.

OctVCE also supports a ‘detonation-like’ finite-energy release scheme where the explosion vol-
ume is treated as a solid explosive i.e. all the cells within the explosion volume are not part of
the computational domain. Ignition points are specified at locations within the explosive with
a ‘detonation’ wave moving outward at constant velocity which ‘activates’ the cells, initializing
them to a specified high pressure and density. This not an actual detonation process, but
is useful for more detailed modelling of non-uniform blast in the near-field as the location of
charge initiation can sometimes have an effect on both peak overpressure and impulse [1].

1.4.1 Initial conditions for JWL or JWLB equations of state

As OctVCE cannot simulate an actual detonation process, one might ask to what pressures or
densities the initial bomb should be set. Typically the density of the bomb ρb chosen is the
undetonated density ρ0 (or loading density) of the explosive. This is to get the correct initial
mass and volume. The initial JWL or JWLB explosive or chemical energy E0 for the bomb
is also assumed (this value is reported for various explosives in [10, 4]). The pressure is then
calculated using the equation of state i.e. p = p (ρb, E0).

The mapping of a bomb shape to the cartesian grid means that it will be difficult to match
exactly the same volume occupied by the actual explosive. Depending on the grid resolution,
this can result in a considerable mismatch of initial explosive energy if the same explosive
density ρ0 and energy E0 are used as the initial condition. However, as will be seen in §B.2.3
OctVCE can also conveniently output the total volume of cells representing the bomb volume
Vb. This information can be used to alter the initial explosion condition so that the initial
explosive energy matches exactly the actual energy.

For example, suppose exact matching of the the blast energy density E0 (in J/kg) and bomb
mass m is desired. The total blast energy is then Eb = mE0. The match is ensured by simply
adjusting that ρb = m/Vb. It is also possible to assume that the undetonated density ρ0 in the
JWL equation of state (eqn 1.1) is equal to this value of ρb instead of the figure reported in the
literature.

6

1.5 The JWL and JWLB equations of state

It is useful to describe the actual JWL and JWLB equations of state here for later reference.
The JWLB equation of state is

p = p (ρ, e) =
n∑

i=1

Ai

(
1− λ (ṽ)

Riṽ

)
e−Riev +

λ (ṽ) e

v
+ C

(
1− λ (ṽ)

ω

)
ṽ−(ω+1) (1.1)

where the Grüneisen coefficient λ given by

λ (ṽ) =
n∑

i=1

(Aλi
ṽ + Bλi

) e−Rλi
ev + ω (1.2)

and ṽ = v/v0.

v = 1/ρ is the specific volume of explosion products whilst ρ0 = 1/v0 is the undetonated
(loading) density of the solid explosive. The constants Ai, Ri, Aλi

, Bλi
, Rλi

, C, ω and v0 can
be found for various explosives in [4]. At most n = 5. Note that Ai and C are dimensional
(in units of pressure), whilst Ri, Aλi

, Bλi
, Rλi

and ω are non-dimensional (thus λ (ṽ) is also
non-dimensional).

Note that the JWL equation of state is basically the JWLB equation with n = 2, C = 0 and
λ = ω (so with all Aλi

and Bλi
zero). Constants for the JWL equation are provided in [10].

It is also important for later purposes to note the temperature-dependent form of these equa-
tions of state i.e. p = p (ρ, T). The temperature dependent form for the JWLB equation is
quite lengthy but is reported in [3]. However the JWL form is much simpler and can be written
here as

p = A1e
−R1ev + A2e

−R2ev + ωρCvT (1.3)

where Cv is the specific heat at constant volume for the explosion products.

7

Chapter 2

Code compilation

OctVCE works best under a Unix or Linux system. To compile OctVCE, both the Octvce3.5.?/
(where ? is the subkernel version) and Geomio/ directories are required. The latest subkernel
version as of April 2007 is 4. These directories should be placed within the same level directory.

The code is compiled using the makefile in the Octvce3.5.?/unix/ directory. Near the top
of the makefile there are 3 variables which need to be set by the user. Their function will be
described below, along with some advice on how they can be set.

1. CC – the compiler name e.g. icc or pgcc (an OpenMP compiler [6] is necessary for parallel
processing)

2. CFLAGS – the compiling options (which are compiler dependent) e.g. -O3.

Note – at present a -static flag (especially under the Intel compiler) is not recommended
as it causes the code to consume exorbitant system memory. This author is still working
on the cause for this (though this flag is not really necessary anyway).

3. OUT_DIR – where the executable octvce.exe is placed.

By default this is in Octvce3.5.?/tests/

In the past the author has typically compiled with the Intel compiler with flags like -O3,
-openmp, -ipo and -ip. With the Portland compiler the flags were -O3, -mp, -fastsse and
-Mipa=fast.

The other variables OV_SRC_DIR and GM_SRC_DIR need not be altered, as they are already
set to where the source files are located. If it is absolutely necessary to move Geomio/ to
some other location, both the makefile variable GM_SRC_DIR and the header file locations in
Octvce3.5.?/source/ov_kernel.h need to be altered correspondingly. After setting these
variables appropriately just type make and the executable should be produced.

8

Chapter 3

Setting up a simulation

OctVCE requires several input files for running simulations (assumed to be in the same directory
that the executable octvce.exe is located). These files describe the solid geometry, gas models,
domain boundary conditions (see §1.3), initial conditions, and other important parameters like
domain size, maximum refinement level, output frequency etc. These input parameters will be
described below.

3.1 General simulation parameters input file

The general simulation parameters input file specifies to OctVCE such data as the root cell
size and location, run parameters, adaptation parameters, subcelling information and output
frequency information. It must be written in exactly the same format as the template in
fig 3.1 (a template can also be found in Octvce3.5.?/tests/ov.par). All words or spacings
between lines in the file must follow the template exactly. This lack of flexibility isn’t as bad
as it seems as templates can be reused and modified repeatedly.

A description of each input section (along with advice on what to input) will be described
below. Note that any dimensional parameters are assumed to be in SI units e.g.
metres, seconds, pascals, joules, kilograms etc.

1. Octree root spatial properties

Description :– Specifies location and size of the cubical root cell i.e. computational do-
main.

Parameters to input :–

(a) Centroid location: – enter where in physical space the root cell should be centered

(b) Edge length scale: – enter the edge length of the root cell

2. Run parameters

Description :– Some parameters on how the flow is solved numerically

Parameters to input :–

9

(a) Type of flux solver: – options include AUSM, AUSMDV, EFM, ADAPTIVE

The ADAPTIVE option uses a combined solver where EFM is used at shocks and
AUSMDV elsewhere, which is handy for eliminating odd-even decopuling issues [14].

(b) Use multiple limiters? – enter in y or n

Under the present methodology the extreme initial conditions at an explosion’s be-
ginning can sometimes cause the higher-order reconstruction scheme to fail (espe-
cially if the JWL or JWLB equation is used). Using a single global limiter can pre-
vent this instability, though multiple limiters give a more accurate solution. More
discussion on the failure of OctVCE’s flow solver is also found in §4.

(c) Global timestep (set to 0 if don’t want it fixed): – usually this is set to
0 to allow for varying timesteps.

(d) Max CFL (must be between 0 and 1): – enter in the maximum allowable CFL
number. Usually this is set to 0.5. Strong explosions may require such small
timesteps initially that the CFL may need to be quite low at the beginning of a
simulation. Eventually this CFL number ramps back up to the maximum allowable
value.

(e) Finish time (choose one and make the other ’0’) – simulation finishes either
when a set number of timesteps is exceeded or flow time exceeded. If finish time is
measured by timesteps/flow time, a 0 must be put in the other field.

3. Parallel processing

Parameter to input :–

Adapt in parallel? – enter in y or n

Usually this is y. If parallel processing isn’t employed, this line is ignored. OctVCE can
parallelize the adaptation procedure, which generally gives faster code for simulations
involving many cells. But sometimes the extra work in forking and joining threads might
be too time-intensive for small simulations.

4. Adaptation parameters

Description :– Specifies adaptation option, and thresholds for refinement and coarsening
around flow features like shocks or contact discontinuities

Parameters to input :–

(a) Adapt every how many time steps (enter ’0’ for no adaptation): – if adap-
tation is desired, ‘5’ is a recommended number, else ‘0’ for no adaptation

(b) Type of error indicator: – options are 1, 2, 3

Please consult [20] for further documentation regarding adaptation indicators. In-
dicator 1 corresponds to the shock-detection scheme based on velocity gradients.
Indicator 2 uses density differences (good for detecting contact discontinuities). In-
dicator 3 simply means indicators 1 and 2 being used together.

(c) If error indicator type is 1 or 3 - compression threshold: – a value from
0.05 to even 0.005 is acceptable. The smaller the number, the greater the chance
that weak compressions (not shocks) will also be refined about.

(d) If error indicator type is 2 or 3 ...

10

i. Refinement threshold: – the user must experiment with this, but 0.3 seems
like a good starting figure for many calculations. If flow features are quite weak,
this number may need to be reduced.

ii. Coarsening threshold: – the user must experiment with this, but it must be
smaller than the refinement threshold. 0.1 seems like a good starting figure,
though the author has used values as low as 0.01. The lower the value, the
better chance the weaker features will still be refined about.

iii. Noise filter value: – this can vary between 0.001 to 0.1. The larger the
value, the less chance for refinement around compressions. The user must ex-
periment with this.

5. Octree refinement parameters

Description :– Specifies subdivision of root cell to form initial grid, minimum and maxi-
mum refinement levels when adaptation is used.

Note – the root cell is at level 0; if it is refined n times the leaf cells will be at level n.

Parameters to input :–

(a) No. times to refine root initially: – this refines the root cell uniformly to
create the initial grid (which would also be the final grid if adaptation isn’t em-
ployed). However if any cells are known to be ‘solid’ i.e. completely immersed in a
body, it won’t be refined any further. Usually the initial grid can be fairly coarse,
so this number is typically smaller than 8.

(b) Max refinement level: – this obviously has to be a higher level than the initial
grid level. The highest level of refinement used thus far by the author has been 11.

(c) Min refinement level: – usually this is the same as the initial grid level.

(d) Min intersect refinement level: – specifies the minimum level that partially
obstructed cells should be at. All cells with objects cutting through their volumes
will be refined to this level. Sometimes handy when higher resolution is required at
surfaces, but generally this has been set to the initial grid level.

(e) Level of cell IC intersection: – specifies the level that cells intersecting the
initial bomb volume (see §1.4) should be at. Usually this is set to the maximum
refinement level.

6. Geometry engine parameters

Description :– Provides data for the geometry engine to complete its process of approxi-
mating surfaces with VCE in obstructed cells

Parameters to input :–

(a) Interrogate geometry engine only after what level: – specifies for what cell
levels the actual point-in-polyhedron queries will be performed. A higher figure
means more computation (but more accuracy). It’s generally set to the same level
as the initial grid level. But if the initial grid level is very high (say ≥ level 7), a
lower number will give substantially faster gridding time.

11

(b) No. area subcells along edge (must be even): – the number of subcells nsf

along a single cell face edge. The total number of subcells on one cell face is thus
nsf

2. The higher the number, the more accurate the surface representation. Usually
between 20 and 64 (but for 2D simulations, see §3.7).

(c) No. volume subcells along edge (must be even): – the number of subcells nsv

along a cell volume edge. The total number of volume subcells is thus nsf
3. A

number of about 10 to 16 should be sufficient.

(d) Wall representation (’0’ for staircased, ’1’ for smoothed): – as written,
only 0 or 1 can be entered. See §1.2 for explanation. Generally a smooth wall (option
1) is preferrable.

7. Visualization

Description :– Specifies what data to output and how often

Parameters to input :–

(a) Write flow soln of only intersected cells? – options are y or n.

Generally n is entered as the whole flowfield is desired. If y is used then only the
output from cells intersected or flush with solid surfaces will be given (which gives
a much smaller solution file).

(b) Write data frequency (choose one and make the other ’0’) – usage is the
same as with the finish time (see above). Either output every some number of
timesteps or at a specified time interval. If write data frequency measured by
timesteps/flow time, a 0 must be put in the other field.

The solution files will be in the VTK XML format and have a .vtu and/or .pvtu

extension. See §5 for further information.

(c) Base solution file name: – enter in a name for the solution files. Other infor-
mation e.g. the timestep where the file is output and finally the .vtu extension will
be appended to this.

8. History files

Description :– Specifies at which locations the pressure history should be recorded. See
§5.3 for further information on the output format of the pressure traces.

Parameters to input :–

(a) No. history locations: – how many pressure traces are desired? If this is 0, all
further lines will be ignored.

(b) Dump history locations every how many time steps: – how often should the
pressure at a point be recorded. Typically recording every 2 to 5 timesteps is enough.

(c) Base history file name: – enter in a name for the trace recording. Other infor-
mation e.g trace location is appended.

9. History locations

Parameters to input :– At each line enter in the gauge location where the pressure trace
is recorded. Must be a 3D point.

12

Figure 3.1: General parameters file

13

3.2 Solid geometry definition

Each solid object in the computational domain must be 3D object and defined with the VTK
XML version 4.2+ ASCII file format [2] definition1 (commonly with a .vtp extension). However
it is not necessary for VTK to be installed on the system as OctVCE contains its own VTK
file parser.

It is important all these objects are ‘watertight’ i.e. no ‘holes’ which may confound the geometry
engine, and that face definitions are defined in counterclockwise fashion (using the right hand
rule) so that the surface normal points outward from the surface.

For example, fig 3.2 is a VTK file describing a unit cube (centered at (0.5, 0.5, 0.5)). The
<Polys> dataset describes how the cube’s verticies are joined to make the individual faces.
Note that the connectivity data joins the verticies in the required counterclockwise order. Only
the Points, connectivity and offsets data arrays are required to fully define a solid body.

Figure 3.2: Example VTP file of a cube

With a each solid object described by its own VTK file, the collection of solid objects is then
placed in a ‘parallel’ VTK file (with a .pvtp extension) to describe the physical environment
of all objects. Even if there is only 1 body it must be still entered into this file. An example
parallel VTK file where 3 solid objects exist in the environment is provided in fig 3.3.

1Or see www.vtk.org/pdf/file-formats.pdf

14

Figure 3.3: Example PVTP environment definition

3.2.1 A note on flushed surfaces

In many situations there could exist solid bodies which are exactly flush with a grid line/plane
e.g. in creating a solid domain boundary (as in fig 3.4). This can sometimes present a problem
of geometric tolerance as OctVCE’s geometry engine may on occasion compute the cell faces
flush with the solid surfaces as unobstructed still.

Figure 3.4: Boundary-aligned wall

The easiest solution is to have a small overlap between cells and the solid surfaces. Two ways
to do this are –

1. Modify the body VTK file so that the solid surface overlaps very slightly with the cell
surface (increasing or decreasing a dimension by 10−10 is enough)

2. Very slightly increase/decrease the root cell’s edge (i.e. domain’s) length to cause this
overlap (again an increase of 10−10 should be sufficient)

3.3 IC input file

The initial condition input file specifies to OctVCE what the initial conditions in the compu-
tational domain should be. When modelling explosions, OctVCE requires 2 initial conditions –
(a) the initial flow state for the ambient (commonly atmospheric) gas, and (b) the conditions
for the initial explosion products (recall §1.4).

As with §3.1, this file must be written in exactly the same format as the template in fig 3.5 (a
template can also be found in Octvce3.5.?/tests/ov_IC.par). Note that any dimensional
parameters are assumed to be in SI units. A description of this file will be given below.

15

1. Ambient conditions – initial conditions for the ambient gas

Parameters to input :–

(a) Pressure: – enter the pressure (in Pa) for the ambient gas (typically atmospheric
conditions)

(b) Density: – enter the density (in kg/m3) for the ambient gas (typically atmospheric
conditions)

(c) U: – enter in the initial velocity (in m/s) along the x axis

(d) V: – enter in the initial velocity (in m/s) along the y axis

(e) W: – enter in the initial velocity (in m/s) along the z axis

2. Products conditions – initial conditions for the explosive products gas

Note – this whole section can be omitted if only ambient conditions are needed e.g. solving
steady state flow over a wedge where the initial conditions are the constant freestream
conditions.

Parameters to input :–

(a) Pressure: – enter the pressure (in Pa) for the initial explosion volume. If the
JWL/JWLB equation is used see §1.4.1 for an idea of what pressure to use.

(b) Density: – enter the density (in kg/m3) for the initial explosion volume (see §1.4.1
if the JWL/JWLB equation is used)

(c) U: – enter in the initial velocity along the x axis (for high explosive modelling, is
typically 0)

(d) V: – enter in the initial velocity along the y axis (for high explosive modelling, is
typically 0)

(e) W: – enter in the initial velocity along the z axis (for high explosive modelling, is
typically 0)

(f) File: – the name of the file describing the initial bomb geometry in the computa-
tional domain.

The file is assumed to be in the same directory as the executable octvce.exe. It is
exactly in the same format as those .vtp files describing individual solid objects as
discussed in §3.2.

16

Figure 3.5: Initial condition file (2 species)

3.4 Gas model input file

The gas model input file specifies to OctVCE what gas models to use for the ambient and
explosive products gases (see §3.3). The ambient gas is always modelled with ideal gas equation
of state p = ρe (γ − 1), but the explosive products can be modelled with the ideal gas, JWL or
JWLB equations of state (see §1.5).

As with §3.3, this file must be written in exactly the same format as the template in fig 3.6 (a
template can also be found in Octvce3.5.?/tests/ov_gas.par). Note that any dimensional
parameters are assumed to be in SI units. A description of this file (along with some
advice on what to input) will be given below.

1. No. species: – options are 1, 2

The number of gas species in the simulation. Typically for high explosive modelling it’s
2 (the ambient and explosive products gases).

2. Ambient gas Cv: – enter in the specific heat at constant volume for the ambient gas

3. Ambient gas gamma: – enter in the ratio of specific heats for the ambient gas

Note – if only 1 species (i.e. the ambient gas) is used all following lines are ignored as
this information is sufficient

4. EOS type for products: – options are Ideal, JWLB

Recall from §1.5 that the JWL equation of state is a simplified form of the JWLB one

5. Products gas Cv: – enter in the constant specific heat at constant volume for the ex-
plosive products

Usually Cv is calculated so as to match a known pressure and temperature condition. For
example, if the JWL equation of state is used, eqn 1.3 can be used to back-calculate Cv

if the initial temperature and pressure of the explosion is known (recall §1.4 and §3.3).
Mader [12] provides initial detonation temperatures for some explosives.

6. Products gas gamma: – enter in the ratio of specific heats of the explosion products (if
the ideal gas equation of state is used)

17

7. If EOS is JWLB - want to treat low products density as air? – options are y or
n

To save computation time, regions where density of the explosive products is very low
can be just regarded as air if y is selected. This is usually the preferred option.

8. If EOS is JWLB - EOS coefficients are – enter in all JWL/JWLB constants in the
following lines

Using eqn 1.1 as reference, A1 for example corresponds to A1, R1 to R1, AL1 to Aλ1 , BL1
to Bλ1 , RL1 to Rλ1 , OMEGA is ω and v0 is 1/ρ0. Recall from §1.5 that Ai and C are
dimensional and here are in units of pascals, and v0 is in units of m3/kg.

The example in fig 3.6 is the JWL equation of state where appropriately all Ai and Ri

(for i ≥ 3) and all Aλi
, Bλi

and Rλi
must be set to 0. In general the JWL should be

more than sufficient for most high explosive simulations since the focus is not really on
near-field modelling anyway.

18

Figure 3.6: Gas model file

19

3.5 Domain BC input file

The domain boundary condition file specifies to OctVCE the boundary conditions that need to
be applied to the 6 faces of the root cell (recall the discussion in §1.3). This file must follow the
format (with correct spelling, captials where necessary etc) of the template in fig 3.7 (a
template can also be found in Octvce3.5.?/tests/ov_BC.par). Note that any dimensional
parameters are assumed to be in SI units.

Recall that reflecting (or wall) boundary conditions are implemented by the presence of a
solid body, so this file is really for all other boundary conditions. The manner of input to this
file is somewhat different from other input files described so far, so it might be best to show
how this file is used with the examples in fig 3.7 and fig 3.8. These two examples are probably
the only ones that most users need to know.

3.5.1 Non-reflecting BCs

In fig 3.7 note that a Non-reflecting boundary condition in the “BC type:” field is applied to
all the faces of the root cell (east/west boundaries are perpendicular to the x axis, north/south
to the y axis and upper/lower to the z axis). For explosions modelling where boundaries remain
‘open’ to air, the non-reflecting option (based on Thompson’s formulation [21]) is probably the
most useful. The non-reflecting BCs nevertheless do cause weak reflections if post-shock flow
is subsonic, so a perhaps a better strategy would just be to extend the domain far enough for
the BCs to be a non-issue.

If a solid body obstructs a cell face on a domain boundary, then a solid wall boundary condition
is applied there instead of whatever is written in this file for that boundary.

Figure 3.7: Example domain boundary condition file

20

3.5.2 Inflow and outflow BCs

Fig 3.8 specifies a supersonic inflow coming from the west domain boundary with an extrap-
olated outflow at the east domain boundary (i.e. flow from left to right). The “BC type:” is
now Specific as flow variables need to be set to a numerical value or to an Extrapolated

value. The flow variables that need to be set are the pressure, density and velocity. A similar
input can be made on the north, south, upper and lower domain boundaries.

As noted in §3.5.2 if a solid body obstructs a cell face on a domain boundary, then a solid wall
boundary condition is applied there instead of whatever is written in this file.

Figure 3.8: Fields for inlet and outlet BCs

3.6 ‘Detonation’ data input file

As mentioned in §1.4 it is possible for ‘detonation-like’ modelling where ignition points are
specified within a solid explosive for detonation waves moving outward from these locations
to consume the whole explosive. The data for the ignition points and detonation velocities
is specified in the detonation data file. It must be follow exactly the same format as the
template in fig 3.9 (a template can also be found in Octvce3.5.?/tests/detonations.par).

Note that any dimensional parameters are assumed to be in SI units. The exam-
ple in fig 3.9 should not be difficult to understand. The user inputs the number of ignition
points in the mandatory “No. detonation points:” field. Then for each ignition point its
3D location and detonation wave radial velocity is written in the “Detonation point:” and
“Detonation velocity:” field.

21

Figure 3.9: Example detonation input file

3.7 Two-dimensional simulation

Although OctVCE is a 3D code, 2D planar and axisymmetric simulations in the xy plane can
be performed by immersing most of the root cell in an environment of solid bodies (larger than
the root cell) such that only one layer of cells in the z plane is not completely immersed. How
this is accomplished is discussed in §3.7.1 and §3.7.3.

3.7.1 Making gaps and axes

Referring to fig 3.10, a very thick wall (thicker than the root cell edge) is needed and placed at
z = t. The ‘lower’ z face of the root cell (see §3.5) must be at z = 0. Later on some command
line arguments to OctVCE will be given to let it know a 2D simulation is desired, so the user
need not worry about flow in the z direction. For axisymmetric calculations, OctVCE assumes
the x axis is the symmetric axis and the y axis is the radial axis.

t is set equal to half the length of the highest refined cell, making all other leaf cells except
those flush with the wall completely immersed, thus giving only one layer of computational
cells in the xy plane. t must be set to this value so that all cells including the smallest ones
can have at most two neighbours at a face (consistent with the 2D quadtree equivalent of 3D
octree adaptation).

Figure 3.10: View from yz plane

22

3.7.2 Caution on axisymmetric computation

The inherent nature of VCE means that in axisymmetric geometry there will be some source
of conserved quantities produced at intersected cells. This is because the approximate surface
representation gives a cell volume (per radian) and area (per radian) and surface normals
that are not completely correct. It might be good to run the simulation in quiescent flow
with the same geometry to assess the influence of these source terms. However, it has been
found in practice that these effects are typically quite minor compared to stronger flowfield
features, especially that resulting from blast. These effects have also been shown to be small
in simple conical supersonic flow [19] where derivation of key quantities of pressure and force
are concerned.

3.7.3 Appropriate area subcell number

It is also important to ensure that the number of area subcells along a cell edge (nsf in §3.1)
are high enough for t to be computed as non-zero (at least one area subcell for the coarsest cell
must exist in this gap). It is recommended that the nsf not be lower than 32 for 2D simulations.
If there are 5 levels of refinement (the difference between maximum and minimum refinement
levels), nsf must be 64, and if 6 levels of refinement, nsf must be 128 etc.

23

Chapter 4

Running a simulation

Remembering that all input files have to be in the same directory as the executable octvce.exe,
the code is then run using the arguments –

./octvce.exe -gas <gas model file> -bc <boundary condition file> -ic <initial condi-
tion file> -par <general parameters file> -geom <VTK file of all bodies> -ncpus <no.
cpus> [-deton <detonations file>] [-2D] [-2D=axisymmetric] [-switch-order <switch time>]
[-output-grid] [-output-grid=last] [-continue-soln <mesh file>] [-count=energy]

The arguments in square brackets are optional; others are mandatory. Their description
will be given below.

1. -gas <gas model file>

Enter in the filename of the gas model input file of §3.4

2. -bc <boundary condition file>

Enter in the filename of the domain BC input file of §3.5

3. -ic <initial condition file>

Enter in the filename of the IC input file of §3.3

4. -par <general parameters file>

Enter in the filename of the general simulation parameters input file of §3.1

5. -geom <VTK file of all bodies>

Enter in the filename of the .pvtp file describing the environment of all solid objects (see
§3.2 and the example in fig 3.3)

6. -ncpus <no. cpus>

Enter in the number of CPUs/threads for parallel processing (code must be compiled
with an OpenMP compiler). For no parallel processing enter in ‘1’ (obviously).

7. -deton <detonations file>

An optional argument. If ‘detonation-like’ modelling desired, enter in the filename of the
detonation data input file of §3.6.

24

8. -2D

An optional argument, but use if 2D planar flow is being modelled. Refer to §3.7 for
details on how to set up the simulation for general 2D simulations.

9. -2D=axisymmetric

An optional argument, but use if 2D axisymmetric flow is being modelled. Refer to §3.7
for details on how to set up the simulation for general 2D simulations.

10. -switch-order <switch time>

An optional argument. Sometimes even using a single limiter in a higher-order scheme
(as discussed in §3.1) is not enough to keep the solution stable (from experience, this
might happen if the bomb volume is resolved with only a few cells). As a last resort, this
option tells OctVCE to employ a first-order scheme until switch time, after which the
second-order scheme is resumed.

Rose [16, p.g. 61] recommends a scaled switching time of around 1.2 × 10-3 s/kg1/3 for
the explosive mass.

11. -output-grid

An optional argument. Will output the whole mesh (tree structure, flow state etc) at the
same frequency as solution files are being output. Mesh files have a .ov_out extension.
The simulation can be continued using these solution files using the -continue-soln

argument (see below).

12. -output-grid=last

An optional argument. Like -output-grid of above, but only outputs mesh file at the
end of the simulation.

13. -continue-soln <mesh file>

An optional argument. Continue the simulation from the mesh file with the .ov_out

extension generated using the -output-grid option. The initial condition data from
ov.par is ignored.

14. -count=energy

An optional argument. Used for high explosives modelling, where the total energy and
volume of all cells in the initial ‘bomb’ volume (see §1.4) is counted and output. The
program then exits.

This is handy as the cartesian cell ‘staircasing’ representation of the initial bomb volume
when the initial grid is generated may give total explosion energies that are slightly too
high or low. The information output can be used to ensure a better energy match by
adjusting bomb volume and/or gas condition.

As the simulation is run some data (like timestep, step number, CFL, no. cells refined/coarsened
etc) will also be output on the screen.

25

4.1 Memory usage

OctVCE is quite a memory-intensive code, with total memory used per cell during a simulation
estimated at around 4 kb. For this reason in large simulations it’s necessary to run this code
on shared-memory platforms, but this is recommended anyway for obtaining solutions in a
reasonable timeframe.

4.2 Grid convergence and/or error estimation

As with any CFD method where discretization errors exist, it is generally recommended to do
a grid convergence study involving a minimum of two different grids (three preferrably). In this
case, it can typically involve monitoring behaviour at a pressure trace or group of traces as the
grid is refined. A converging series of traces can be taken as indicative of a converging solution
in general.

This allows an estimation of error based on Richardson-extrapolation (see [15, 17]) and possibly
a more accurate estimate of the true numerical solution, provided the grids are fine enough for
convergence of the solution to be observed. How good the true numerical solution corresponds
to the actual, or real-world (experimental) solution is a separate validation exercise (several of
which are currently being undertaken by the author).

Generalized Richardson-extrapolation predicts the exact solution fexact to be a function of the
finer grid solution f1, coarser grid solution f2, grid refinement factor r, and order of the scheme
p as follows in eqn 4.1.

fexact = f1 +
f1 − f2

rp − 1
(4.1)

It can be also used to predict quantites derived from the solution e.g. surface force. The second
term in eqn 4.1 can be thought of as the ‘error’ as it represents an additive correction to f1,
and is a reasonable approximation to the true numerical error when it is much smaller than f1.

As OctVCE only allows integer halvings of cell sizes, r = 2 nominally. This inherently assumes
that the solution on an adapted mesh is just as good as the solution on a uniform mesh with
the same minimum cell size, which is not always true in general. p can be between 1 and 2
depending on what quantity is being measured e.g. peak overpressure would be best with p = 1
as it’s a shock-dependent quantity and the present scheme is first order at shocks. In smoother
flow regions, p can be nominally 2 as OctVCE is a nominally second-order method (though
a value between 1 and 2 might be more reasonable due to the presence of limiters and other
numerical effects that can hamper the solution order).

26

Chapter 5

Post-processing

5.1 Solution file format

Solution files are also in the VTK XML version 4.2+ ASCII file format (see §3.2) but will have
a name of basename.?.vtu and/or basename.?.pvtu, where basename is the base solution file
name (see §3.1) and ? the timestep at which the solution file was output.

If the code was run in serial the solution files will only have the .vtu extension. But if the code
was run in parallel on n CPUs, there will be n .vtu files corresponding to the mesh portions
allocated to each CPU. All these files are listed in the .pvtu file to comprise the entire mesh
domain (recall the discussion on parallel VTK files in §3.2). For later visualization it is thus
the .pvtu file that needs to be opened.

5.2 Visualizing solution files

The solution files can only be opened with a VTK file visualizer (obviously). Two currently
existing VTK visualizers are the Mayavi1 and Paraview2 applications. Paraview seems to be
more efficient for visualizing very large solution files. Both these applications can display the
solution on a 2D plane (which is usually desired).

5.2.1 A note on displaying 2D solutions

Recall the disussion on simulation set-up for 2D simulations in §3.7, where the rest of the root
cell is ‘trimmed’ so that only one layer of cells on the z plane are actually in the flow solution.
However these cells are nonetheless still three-dimensional.

To fully display the 2D simulation, a planar cut (in the visualizer) must be made such that the
plane passes through all cells in this layer (even the finest ones). If this does not happen there
will appear ‘gaps’ in the solution. So if the lower boundary of the root is at z = 0, a z-plane cut

1http://mayavi.sourceforge.net/
2www.paraview.org

27

at some very small number (say 10−10) should pass through all cells and the whole 2D solution
on this plane will be displayed.

5.3 Pressure trace format

When pressure traces/histories at a gauge location are recorded (see §3.1), the pressure trace file
for each location records 2 quantities – (i) the time and (ii) the overpressure (pressure minus
ambient pressure). It has the name of basename?.dat, where basename is the base history
filename and ? the trace number (starting at 0), corresponding to the order in which the gauge
locations were entered in general simulation parameteers input file (§3.1).

The file can be read and plotted by gnuplot3. The trace can yield impulse data by for example
placing the columns in an array and writing an Octave4 script to integrate the pressure trace∫

Pdt. However as trace files can get quite large, it might be better to write an integration
routine in a more efficient language like C or FORTRAN.

3http://www.gnuplot.info/
4http://www.gnu.org/software/octave/

28

Appendix A

A useful 1D code

This section describes a useful stand-alone 1D code that has been developed alongside OctVCE
for general blast modelling work. The 1D code blast_1D is much like OctVCE but much simpler
to use and faster to run. It can be run assuming planar, cylindrical or spherical symmetry.
The 1D assumption means that the bomb can be thought of as a driver gas (as in a shock
tube) which is initialized to the proper explosive conditions. Like OctVCE, it is a nominally
2nd-order code that uses much of the same underlying numerical methodology.

The code is located in the blast_1D directory. The code is compiled in the same way as
OctVCE is (see §2) using the makefile in the blast_1D/unix/ directory. The default directory
where the executable b1d.exe is placed is in blast_1D/tests/.

Like OctVCE, several input files are required for blast_1D to run. Templates for these in-
put files can be found in blast_1D/tests/. They are b1d_gas.par (gas model input file),
b1d_ic.par (IC input file) and b1d.par (general simulation parameters input file). Like
OctVCE’s input files, the formats of these files cannot be altered (only the parameters) and
they must be in the same directory that the executable b1d.exe is in.

The gas model input file is identical to OctVCE’s gas model input file (see §3.4). The initial
condition input file is very simple and simply requires one to specify the initial ambient and
driver gas conditions (fig A.1), like with OctVCE’s input file.

Figure A.1: IC input file for 1D code

The general simulation parameters input file format can be seen in fig A.2. A description of
each input line is given below.

29

Figure A.2: General parameters file for 1D code

1. Type of geometry = – enter 1 for planar geometry, 2 for cylindrical, and 3 for spherical
geometry.

2. Domain length = – enter in length of domain. Bomb is located at the left end; the right
end is set to nonreflecting outlet.

3. Contact surface at x = – enter in location of interface between driver and ambient
gas. For a 1D spherical bomb calculation, this is just the radius of the charge.

4. No. cells = – enter in the number of cells.

Note that it’s important to specify a domain length and number of cells so that there are
an integer number of cells within the charge, thus matching bomb energy exactly.

5. Run until time = – enter in time where simulation finishes

6. Max CFL = – enter in maximum CFL; usually 0.5 is a good number.

7. Write data frequency = – output frequency (with respect to solution time) of solution.

The solution files will have a s.?.dat name where ? is the timestep at which the solution
was output. The columns of this .dat file consist of cell location, density, pressure,
products mass fraction and flow velocity, and it can be easily plotted by gnuplot1.

8. No. history locations = – the number of pressure gauges desired

9. Dump history locations every how many time steps = – how often should the pres-
sure at a point be recorded. Typically recording every 2 to 5 timesteps is enough.

At each line below the History locations line, enter in the gauge location (along the
x-axis, as this is a 1D case) where the pressure trace is recorded. Each trace file has a
hist_?.dat name where ? is the trace number (starting at 0) corresponding to the order
in which the gauge locations were entered.

1http://www.gnuplot.info/

30

Appendix B

Example simulations

This section will cover some example simulations which are included with the source code in
Octvce3.5.?/tests/ (all geometry and input files are provided). Additional explanations are
provided where appropriate. It is hoped that these examples will help the user get started
easily and relatively quickly with the OctVCE code (though reading the material in §3 to §4 is
also recommended, of course). Some results will also be provided.

B.1 Supersonic conical flow

Here supersonic flow over a cone with a 20◦ half-angle is simulated (post-shock M∞ = 1.5,
whilst shock M = 3.66). This is a 2D axisymmetric simulation. The geometry and input files
are in Octvce3.5.?/tests/cone_eg/.

B.1.1 Cone geometry

As this is an axisymmetric simulation, the geometry must be constructed in the manner de-
scribed in §3.7. The x axis is the axis of symmetry and y the radial co-ordinate.

The geometry files for individual bodies are ceiling.vtp (to prevent flow out the top y bound-
ary), cone_20.vtp (the actual cone geometry) and floor.vtp (to prevent flow out the bottom
y boundary). Note how the ceiling and floor very slightly overlap the domain (recall the dis-
cussion in §3.2.1).

Finally the required ‘thick wall’ (to ensure only 1 layer of cells in the z-plane – see §3.7.1) is file
right_wall.vtp. All these bodies are listed in the parallel VTK file bodies.pvtp describing
the environment. The whole geometry is displayed in fig B.1.

B.1.2 Input files for cone simulation

All input files are located in Octvce3.5.?/tests/cone_eg/*.par.

31

Figure B.1: Geometry for cone simulation

General simulation parameters file

This file has been called ov.par.

IC input file

This file has been called ov_IC.par.

Note the IC input file has 2 initial conditions for the ambient and ‘explosive products’ gases.
However in this case it is better to think of the ‘explosive products’ gas as simply the gas at
post-shock conditions. Rather than staring the simulation with flow coming in from the left
boundary, some computation time can be saved if the initial conditions are setup so that the
shock has already entered the domain but not passed the cone.

This approach is also advantageous if mesh refinement at the shock is desired (though this isn’t
done here), as if the simulation starts by having the shock enter the domain, it isn’t possible
under the current input method for the mesh to be refined to the maximum level around the
shock if no post-shock initial condition already exists in the domain. As discussed in §3.3 it
is necessary to have a file describing the geometry of the bomb volume (or in this case, the
post-shock flow), and this is given in ic.vtp.

Gas model input file

This file has been called ov_gas.par. Note only 1 (ideal-gas) species is necessary (though there
are 2 regions where the initial pressures, densities and velocities are different – see above).

Domain BC input file

This file has been called ov_BC.par. As this simulation has supersonic inflow coming from the
west (or left) with extrapolated outflow at the east (or right) boundary, the domain BC input
file follows nearly exactly format as discussed in §3.5.2 (with only the values different). It is
necessary to enter in ‘boundary conditions’ for the other root cell faces, even though solid wall
boundary conditions are set for them.

32

B.1.3 Running the cone simulation

Now that all input files have been appropriately created, the code is run with the command
line arguments as shown below (recall the discussion in §4). As this code was run on a 2 CPU
SMP, 2 CPUs have been used.

Figure B.2: Running the cone simulation

Some screen output from the first 2 timesteps is shown below. Note that at present adaptation
in parallel for 2D simulations isn’t done as total numbers of cells aren’t very large, giving
relatively small benefit from the extra work (recall the discussion in §3.1). The number of
computational cells is 52555.

Figure B.3: Some screen output from cone simulation

B.1.4 Some results for cone simulation

The initial solution is shown in fig B.4(a) where the 2 different initial conditions (for ambient
and post-shock flow conditions) can be easily seen. Fig B.4(b) shows the density contours at
0.5 ms before the shock has exited the right boundary. It can be seen that the reflected shock,
Mach stem and contact discontinuity are captured quite well.

In the steady state limit (fig B.4(c)) one can see some ‘noise’ existing at the surface. This arises
from the inherent nature of VCE in approximating surfaces (a more detailed disucssion is given
in [19]). However the solution should be sufficient for practical engineering purposes, with the
shock angle agreeing very well with the theoretical result (the black line).

33

(a) Initial solution (b) Density contours at 0.5 ms (c) Steady-state result

Figure B.4: Density contours

B.2 Shock diffraction over blast wall

This test case attempts to duplicate Chapman’s [7] axisymmetric simulation of a blast wave
propagating over a blast wall or barrier. The charge of 60 g of TNT is detonated at a 0.15 m
height, 1.05 m from the the target structure (behind the blast wall) where the pressure trace at
0.15 m height will be recorded (see the initial grid in fig B.8(c)). In this simulation the domain
is identically 1.05 m in length. This size should be sufficient to produce the main rise and decay
of the overpressure before effects from the non-reflecting boundary affect the solution.

The geometry and input files are in Octvce3.5.?/tests/smith_barrier_eg/.

B.2.1 Blast barrier geometry

As this is an axisymmetric simulation, the geometry must be constructed in the manner de-
scribed in §3.7. As the x axis is the axis of symmetry (in this case the height) and y the radial
co-ordinate, the whole geometry must be constructed such that the west boundary at x = 0 is
the true ‘ground’.

A number of the geometry files have names corresponding to those of cone simulation (§B.1.1)
and their function is similar. The file back_wall.vtp corresponds to the true ‘ground’ (prevent-
ing flow out the west boundary). Note the slight overlap in geometry and domain as discussed
in §3.2.1 and §B.1.1. The whole geometry is displayed in fig B.5.

B.2.2 Input files for blast barrier simulation

All input files are located in Octvce3.5?/tests/smith_barrier_eg/*.par.

General simulation parameters file

This file has been called ov.par.

34

Figure B.5: Geometry for blast barrier simulation

IC input file

This file is called ov_IC.par.

As this is a high explosives simulation the initial condition for the explosive products has been
initalized in the manner described in §1.4, using Lee’s JWL values for TNT [10]. The geometry
file for the spherical charge is sphere.vtp (centered at x = 0.15 m, y = 0). Because of the
axisymmetry, the actual bomb volume is a semi-circle.

Gas model input file

This file is called ov_gas.par. 2 species are necessary for the ambient and explosive products
gases. The JWL values from Lee’s paper [10] for TNT have been entered (in SI units).

Domain BC input file

This file is called ov_BC.par. It is identical to the one in fig 3.7 as non-reflecting conditions
need to be placed on all boundaries (where they aren’t blocked by walls).

B.2.3 Running the blast barrier simulation

Before running the simulation it is important to count the total blast energy to ensure it
matches the theoretical value as close as possible (recall the discussion in §1.4). If the charge
consisted of solid TNT then using according to the JWL parameters it would have a radius of
2.0636 × 10−2 m and the energy for 60 g would be 4.1 × 104 J/rad (for a semi-circle). So the
code is run and the output shown in fig B.7.

Figure B.6: Running the blast barrier simulation

35

Figure B.7: Energy counting results for blast wall simulation

The energy count gives 4.114× 104 J/rad (there were 160 cells representing the bomb volume).
The sphere radius used in sphere.vtp was 2.018 × 10−2 m, which is slightly smaller than
theoretical whilst preserving the same shape. As discussed in §1.4.1 it is possible to use the
total volume of cells within the bomb (here it is 5.877×10−6 m3/rad) to adjust the initial bomb
condition for an exact energy match, but this strategy isn’t implemented here. When one is
satisfied with the energy match, the code can be run without the -count=energy argument.

B.2.4 Some results for blast wall simulation

The initial grid is seen in fig B.8(a) (the figure has been inverted so that the ground is at the
‘bottom’). The density contours and grid at 1 ms are shown in figs B.8(b) and B.8(c). Note
in fig B.8(d) that at 2 ms the primary shock has exited the domain, but no reflections exist
because of the non-reflecting boundary condition. The pressure trace at the gauge location is
shown in fig B.8(e) and compared to Chapman’s values.

36

(a) Initial grid (b) Density contours at 1 ms

(c) Grid and schlieren at 1 ms (d) Density contours at 2 ms

(e) Pressure trace

Figure B.8: Blast wall results

37

B.3 Blast over 3D obstructions

This 3D test case attempts to duplicate Sklavounos’ investigation [18] on blast wave effects
with concrete blocks. Sklavounos appears to model the blast using a finite energy release rate
which releases a total energy of 1.908 × 106 J, or 444 g TNT equivalent. This simulation
takes advantage of the symmetry plane through the center of the blocks. This simulation was
terminated before any waves passed out of the domain. A root cell length of 10 m was used
(this should be enough before any boundary effects to intefere the trace readings).

The geometry and input files are in Octvce3.5.?/tests/rigas_eg/.

B.3.1 Obstruction geometries

Explanation on the nature of some VTK files is necessary. As the explosion takes place at the
lower left corner of the domain, the file right_wall.vtp places a wall at y = 0 to give the
symmetry plane throught the center of the blocks. However the file back_wall.vtp also places
a symmetry plane at x = 0 to save computation time (the reflection from this boundary won’t
affect the initial gauge overpressure readings).

The ceiling.vtp and left_blocker.vtp files reduce the domain size along the y and z axes
as reflections from them will arrive far too late to affect initial gauge readings. However the
domain length along the x axis is kept at 10 m and a non-reflection boundary condition is
active at the east face of the root cell.

B.3.2 Input files for 3D obstruction simulation

The input files are in Octvce3.5?/tests/rigas_eg/*.par.

General simulation parameters file

This file is called ov.par.

Note that adaptation indicator type 3 is used (which is just indicators 1 and 2 used together).
From §3.1 it was recommended that indicator type 1 vary from 0.01 to 0.05, but here it is 0.005.
This value was chosen as the domain is relatively large compared to the initial explosive, and
particularly after the blast diffracts over the obstacles an indicator value greater 0.005 won’t
refine any cells around the shock.

IC input file

This file is called ov_IC.par. TNT has been used as the explosive, so this file is very similar
to the one in §B.2.2. Note that because there are 2 symmetry planes and the assumption
that the charge is at ground level, the bomb volume is actually a quarter hemi-sphere (i.e. a
sphere octant). The theoretical energy in this volume should be 4.77× 105 J, but at the given
resolution the best match is 5.215× 105 J (with a smaller sphere radius).

38

Gas model input file

This file is called ov_gas.par. It is also exactly identical to gas model input file in §B.2.2.

Domain BC input file

This file is called ov_BC.par. It is also exactly identical to gas model input file in §B.2.2.

B.3.3 Running the 3D obstruction simulation

Recall §B.2.3 where the total energy and bomb volume are first counted in an attempt to match
best the theoretical total energy. Once an appropriate energy match is achieved the simulation
is finally run (here it was using 8 threads) with the command line arguments

Figure B.9: Running the 3D obstruction simulation

B.3.4 Some results for 3D obstruction simulation

Fig B.10(a) shows the pressure trace at gauge 1 of Sklavounos’ simulation (this gauge is po-
sitioned between the first and second concrete blocks). His computational and experimental
results are also shown for comparison (they had to be estimated by eye). It can be seen that
agreement is quite good with the expectd first three peaks being the incident shock and the
reflected shocks from the ground and the second concrete block.

Fig B.10(b) is the pressure trace at gauge 2 (between the second and third concrete blocks).
As with the gauge 1 trace the agreement in peak overpressure and general waveform profile
is good, although here the waveform is more complex given the reflections that have occured
before the blast reached this gauge. Fig B.10(c) shows the mesh and density contours on planes
intersecting the blast centre.

39

(a) Trace at gauge 1

(b) Trace at gauge 2

(c) Density contours

Figure B.10: 3D obstruction results

40

Bibliography

[1] J G Anderson, G Katselis, and C Caputo. Analysis of a Generic Warhead Part I: Experi-
mental and Computational Assessment of Free Field Overpressure, 2002. DSTO Weapons
Systems Division, Australia, DSTO-TR-1313.

[2] L S Avila. The VTK user’s guide. Kitware, Inc., Clifton Park, NY, 2004.

[3] E L Baker and D L Littlefield. Implementation of a High Explosive Equation of State into
an Eulerian Hydrocode. In AIP Conference Proceedings, volume 706, pages 375–378, 2004.

[4] E L Baker and L I Stiel. Improved Quantitative Explosive Performance Prediction Using
Jaguar. In Insensitive Munitions and Energetic Materials Technology Symposium, Tampa,
FL, 1997.

[5] T J Barth. On Unstructured Grids and Solvers, 1990. von Karman Institute for Fluid
Dynamics, Lecture Series 1990–03.

[6] OpenMP Architecture Review Board. OpenMP C and C++ Application Program Inter-
face, 2002. Version 2.0.

[7] T C Chapman, T A Rose, and P D Smith. Blast wave simulation using AUTODYN2D: a
parametric study. International Journal of Impact Engineering, 16(5/6):777–787, 1995.

[8] E F Charlton. An Octree Solution to Conservation–laws over Arbitrary Regions (OSCAR)
with Applications to Aircraft Aerodynamics. PhD thesis, The University of Michigan, 1997.

[9] A M Landsberg and J P Boris. The Virtual Cell Embedding method: a simple approach
for gridding complex geometries, 1997. AIAA–97–1982.

[10] E L Lee, H C Horning, and J W Kury. Adiabatic Expansion of High Explosive Detonation
Products, 1968. University of California Report No. UCRL–50422.

[11] M S Liou and C J Steffen. A new flux splitting scheme. Journal of Computational Physics,
107:23–39, 1993.

[12] C L Mader. Numerical modeling of explosives and propellants. CRC Press, Boca Raton,
1998.

[13] D I Pullin. Direct Simulation Methods for Compressible Inviscid Ideal-Gas Flow. Journal
of Computational Physics, 34(2):231–244, 1980.

[14] J J Quirk. A Contribution to the Great Riemann Solver Debate. International Journal
for Numerical Methods in Fluids, 18(6):555–574, 1994.

41

[15] P J Roache. Verification and Validation in Computational Science and Engineering. Her-
mosa Publishers, Albuquerque, New Mexico, 1998.

[16] T A Rose. An Approach to the Evaluation of Blast Loads on Finite and Semi-Infinite
Structures. PhD thesis, Cranfield University, Engineering Systems Department, 2001.

[17] C J Roy. Review of code and solution verification procedures for computational simulation.
Journal of Computational Physics, 205:131–156, 2005.

[18] S Sklavounos and F Rigas. Computer simulation of shock waves transmission in obstructed
terrains. Journal of Loss Prevention in the Process Industries, 17:407–417, 2004.

[19] J Tang. A simple axisymmetric extension to Virtual Cell Embedding, 2007. Submitted to
the International Journal for Numerical Methods in Fluids.

[20] J Tang. Theory manual to OctVCE – a cartesian cell CFD code with special application
to blast wave problems, 2007. University of Queensland Mechanical Engineering Report
2007/12.

[21] K W Thompson. Time-Dependent Boundary Conditions for Hyperbolic Systems, II. Jour-
nal of Computational Physics, 89(2):439–461, 1990.

[22] E Timofeev, P Voinovich, and K Takayama. Adaptive Unstructured Simulation of Three–
Dimensional Blast waves with Ground Surface Effect. In 36th Aerospace Sciences Meeting
and Exhibit, 1998. AIAA 98–0544.

[23] Y Wada and M S Liou. A Flux Splitting Scheme with High-Resolution and Robustness
for Discontinuities, 1994. AIAA 94–0083.

42

