Shock Tube Modelling with L1d.

P. A. Jacobs
Research Report 13/98
Department of Mechanical Engineering
The University of Queensland.

November, 1998

Abstract

L1d is a computer program for the simulation of transient-flow facilities such as
light-gas launchers and free-piston driven shock tunnels. The numerical modelling
embodied within L1d is based on a quasi-one-dimensional Lagrangian description of
the gas dynamics coupled with engineering correlations for viscous effects and point-
mass dynamics for piston motion. This report describes the governing equations and
a set of four example simulations:

e Sod’s classic shock tube problem;
e an ideal gas gun;
e 3 fixed-driver shock tunnel; and

e a free-piston driven shock tunnel.
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Nomenclature, Units

A : duct area, m?
a : speed of sound, m/s
Cy : specific heat at constant volume, J/kg - K
Cp : specific heat at constant pressure, J/kg - K
D . (effective) duct diameter, m
E : total energy per unit mass e + %uQ, J/kg
e : specific internal energy, J/kg
F, : piston friction force, N
Fou : wall shear force due to viscous effects, N
Floss . effective force due to pipe fitting losses, N
f : Darcy-Weisbach friction factor
/ mass fraction

H : total enthalpy, J/kg
h : heat transfer coefficient, J/s/m?/K
i : cell index (in computer code)
J : cell index
K : viscous loss coefficient
L : length, m

: Mach number
MW : molecular weight
m : mass of fluid in a Lagrangian cell, kg
P,p : pressure, Pa
Pr : Prandtl number
Q : source vector in the gas-dynamic equations
q : heat transfer rate, J/s

: gas constant, J/kg - K
Ry : universal gas constant, 8314 J/kg — mole - K
Re : Reynolds number
r : tube or duct radius, m
St : Stanton number
T : temperature, K
t . time, s
U : state vector in the gas-dynamic equations
U.,Ur : Riemann invariants
u : local velocity, m/s
1% : piston velocity, m/s
v : volume, m?
w : work /unit time done by the wall shear stress, J/s
X : piston position, m
T : position, m
Z : intermediate varaible for the Riemann solver
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: weighting parameter

: stretching parameter

: ratio of specific heats

: intermediate variable for interpolation

: absolute size of pipe roughness elements
: compression ratio for the free-piston driver
: compressibility factor

: 3.14159...

: wall shear stress, Pa

: viscosity, Pa.s; friction coefficient

: recovery factor

Subscripts

wall

: adiabatic wall condition

: back of piston

: front of piston

. friction value

: Lagrangian cell index

: interface indices

: left and right states for the Riemann solver
: pipe fitting value

: piston

: nozzle supply (stagnation) condition

/ species index

: wall condition

Superscripts

%

: intermediate state for the Riemann solver

/ Eckert reference conditions

: cell average



1 Introduction

In order to estimate the performance of a free-piston driven impulse facility, one must con-
sider the both the dynamics of the piston and gases, the viscous effects (including heat
transfer) simultaneously. Models which omit these effects require a number of facility-specific
fudge factors which can be obtained accurately only after the construction and operation of
the facility. This report describes the numerical modelling behind the computer code “11d”.
L1d which is capable of simulating the (gas-dynamic) operation of a free-piston driven facil-
ity during the design process. It is closely related to other light-gas gun codes (see e.g. [1],

2], [3], [4], [5]) and borrows a number of ideas from some of them.

The principal features of 11d are:

e Quasi-one-dimensional formulation for the gas-dynamics. There is only one spatial
coordinate but gradual variation of duct area is allowed.

e The ability to simulate several independent (or interacting) slugs of gas. Also, several
pistons/projectiles and multiple diaphragms may be included. Coupling to the gas
dynamics is via the boundary conditions of the gas slugs.

e A Lagrangian discretization of the gas slugs. This is done by dividing each gas slug into

a set of control-masses (or gas particles) and following the positions of these particles.

e Nominal second-order accuracy in both space and time combined with a robust shock-
capturing scheme. The use of a shock capturing scheme means that the same set of
equations is used to compute the motion of the gas whether a shock is present or not.
This simplifies the code (as shocks do not need to be explicitly identified or tracked)
and is especially important in situations where shocks may form from the merger of
finite compression waves and where multiple shocks and contact surfaces interact in
a complicated manner. It also results in a smearing of the shocks over a couple of
computational cells. However, in practice, this is not a problem as any smeared shocks

can be sharpened by increasing the resolution of the discretization.

e Different gases may be simulated by including a suitable equation of state (which gives
the pressure as a function of density and internal energy) and viscosity expression for
each type of gas. Although only one type of gas may be included in any one gas slug,

it may be a homogeneous mixture of other gases.

e Viscous effects are included using the standard engineering correlations for friction and

heat transfer in pipe flow. Although these correlations are generally derived for steady



incompressible flow, they seem to perform adequately in the simulations where the

flows are predominantly unsteady and are very compressible.

e The code is written in the C programming language and uses C’s features of derived
data structures and dynamic memory allocation to package the data in a straight-
forward manner. Thus, although several slugs of (different) gas may be required to
simulate a particular facility, the basic code needs to know only how to simulate a
generic gas slug. For each new configuration, the user simply supplies data for the
number of gas slugs, pistons and diaphragms and then couples the components via

boundary conditions.

The following section describes the numerical modelling that is built into the program
and is essentially the same as in the original report [6]. However, example material presented
in this report now concentrates on the simulation of shock tunnels. The companion report
[7] is a hypertext document that describes the use of the program and provides links to the

source code.

2 Governing Equations

The general procedure for modelling a specific facility (or system) is to divide the facility
into its component parts such as the tube, pistons, diaphragms and volumes of gas (i.e. gas
slugs). The description of each component is formulated separately and components allowed
to interact through boundary conditions. The core of 11d is a time-stepping loop which first
applies the specified boundary conditions and then advances the state of the entire system
forward in time by a small increment (or time step). The generic components described in

the following sections include a slug of compressible gas, a piston and a diaphragm.

2.1 Gas Dynamics

Each slug of gas is treated in a Lagrangian framework in which the slug is divided into
a number of control-mass elements (or cells) moving in a variable-area duct. Flow in one
dimension only is considered and any area changes in the tube area are assumed to be
gradual. Although the boundary layer along the tube wall is not completely modelled in the
formulation of the gas-dynamic equations, some of its effects are modelled in the momentum
equation by the addition of a wall shear stress. These approximations are arguably the most
troublesome part of the modelling process as they cannot be fixed later by simply increasing

the resolution of the simulation.
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Figure 1: A typical control-mass or Lagrangian cell.

Figure 1 shows a typical control-mass cell (labelled j) with interfaces (labelled j — 1 and
J+ %) to adjacent cells. At each interface, the Lagrangian description equates the local fluid
velocity to the interface velocity as

&= sk 1

where z is the position of the interface and u is the local gas velocity computed with a

Riemann solver (to be described later).

The average density within the cell is given by

, (2)

P &

j = —

A (2704 —7,04)
where (- - -) represents a cell average, A is the area of the duct and m; is the (constant) mass

of gas in cell j.

The rate of change of momentum in the cell is due to the pressure forces acting on the

cell interfaces and viscous forces acting at the duct wall. It is given by

d
amjuj = [P];%Aji%

- Pj+%Aj+% + E (Aj+% - A];%) — Fyau — Floss] ) (3)

where F,q; is the shear friction force at the wall and Fj,, is an effective body-force due
to pipe-fitting losses, for example. Evaluation of these loss terms will be discussed in the

viscous effects section 2.1.2.



The rate of change of energy within the cell is due to the work done at the cell interfaces
plus the heat transferred through the duct wall. It is given by

d — _
7™ = [PrgAi gy = Padu +3) @

where £ = e + %UQ is the total specific energy of the gas and ¢ is the rate of heat transfer
into the cell. Evaluation of ¢ will appear later in section 2.1.2. Note that there is no shear
stress term in the total energy equation. This is because the energy removed from the kinetic
energy component by the wall shear stress is deposited into the internal energy component
of the gas near the wall and, since there is no transfer of mass from one cell to the next, the

total energy of the cell is unchanged (by this mechanism).

2.1.1 Equations of State

The governing differential equations for the gas dynamics (i.e. equations (1), (3) and (4) )
are completed by specifying the thermodynamic properties of the gas. For a perfect gas, the
equation of state is

P=pRT , (5)

where R is the gas constant. If the gas is considered to be calorically perfect, the specific

internal energy is proportional to the temperature and is given by
e=C, T , (6)

where C), is the specific heat capacity of the gas at constant volume. The equation of state

may then be written as
P:p(’y—l)e, (7)

and the speed of sound is given by
2 P
a:fyRTzq/;:q/(q/—l)e. (8)

The thermodynamic properties of a number of ideal gases are given in table 1 (see also table
A.8 in [8]). For the Helium-Argon mixture, we use the perfect gas relations together with

the effective thermodynamic properties

G=SA(C), C=Xf(C), R=Y LR, 7= (9)

Here, the summation is over the two species.

Also, we consider air in chemical equilibrium and use the curve fits given in [9] to obtain

P, T, a and 7 as functions of p and e for temperatures up to 25000 K.
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Gas MW R 0l Cp Cy

(kg/kg — mole) (J/kg/K) (J/kg/K) (J/kg/K)
Air 28.97 287.0 1.400 1004.5 717.5
Hydrogen 2.016 4124. 1.409 14207. 10083.
Helium 4.006 2077. 1.667 5191. 3114.
Argon 39.948 208.1 1.667 520.1 312.
Nitrogen 28.013 296.8 1.400 1038. 742.
Oxygen 32.0 259.8 1.393 920.9 661.1
He,Ar mix 7.595 1094. 1.667 2735. 1641.

Table 1: Thermodynamic properties for some ideal gases. The He, Ar mix is 90% He and
10% Ar by volume.

2.1.2 Viscous Effects

The viscous shear force on a gas cell is given by

Fwall =T T E (.’L’_H_% — xJ*%) y (10)

where 79 is the local shear stress at the wall and D is the (average) effective diameter of the

tube. Assuming a circular cross-section
D=2 (A/m)?* . (11)

The wall shear stress is obtained from the Darcy formula for for steady incompressible flow
(see e.g. [10, 11])
_ —p fulul

To g ) (12)
where f is the Darcy-Weisbach friction factor. With minor changes, we follow [4] and use
64
= 2
f Ao Re < 2000
0.032 [ Re 71%%%7
= | 2000 < Re < 4000
/ A [2000] ! == !
1 09, €\]7°
f= [1.14—2 logy, (21.25 Re 09 4 5)] . Re> 4000 |, (13)
where the Re is the local Reynolds number based on tube diameter
*D
Re= P Dl (14)
*

and € is the absolute wall roughness. The explicit expression for f for the turbulent regime is
taken from [12] and is within 1% of the well known Colebrook-White equation. For Reynolds

9



numbers up to 10° in shock-tube type flows, it is reasonable to assume a smooth wall and
use .
f =1 [1.8 logyg(Re) — 1.5147]7> | Re > 4000 . (15)

The properties u* and p* = pT'/T* are evaluated at the Eckert reference temperature (see
e.g. [13] section 5.12)

T"=T+05(T,—-T)+0.22(T,, - T) , (16)
where T is the cell-average temperature, T, is the specified wall temperature and
T =AT . (17)

is the adiabatic wall temperature. Since, we are interested in flows which may have very
high Mach numbers, a compressibility correction is applied via the the compressibility factor
[14]

A:1+(7;1)QM2 : (18)

where M is the local Mach number and €2 is the recovery factor. Although the compressibility
factor A in equations (13) and (15) was suggested for rough surfaces, we have used it to adjust
the friction factor for all values of Re. For laminar flow (i.e. Re < 2000), the recovery factor
is set to Q = (Pr)/? while, for turbulent flow, Q = (Pr)'/3.

Pressure losses due to sudden changes in tube cross-section are computed for each cell as

APloss —
Eoss = Lloss A ($j+% —.’L‘j_%) y (19)
where )
APloss = _KL 5 pu ‘U,‘ 3 (20)

and Ly is the length of tube over which the pressure loss is distributed. Values of K,/ L;yss
are stored along with the cross-sectional area for the tube. For a contraction and a diaphragm

station, we use K; = 0.25.

Heat transfer into a gas cell is given by ([13], section 5.12)

where the heat transfer coefficient is

h=pC, |ul St (22)

10



Gas Pr Ty St o
(K) (K) (nPas)
Air 0.72 273.1 1104 16.77
Hydrogen | 0.72 273.1  96.67 8.411
Helium 0.67 273.1 79.4 18.70
Argon 0.67 273.1 1444 21.25
Nitrogen | 0.72 273.1 106.67 16.63
Oxygen 0.72 273.1 138.89 19.19

Table 2: Viscous transport coefficients.

and the Stanton number is given by the modified Reynolds analogy for turbulent flow in

pipes ([13], section 6.2)
f

St =
8

Pr23 (23)

The dynamic viscosity of the gas is given by the Sutherland expression

T\*? To + 5S4
_ 24
= Ho (TO) (T+Sl> ’ (24)

where values of g, Ty and S; are given for a number of gases in table 2. The viscosities for

mixtures of gases is obtained from Wilke’s [15] expression

N
Is s
o _Js s 2
Hmic ;MMQ’ (25)
where )
N 1/2 1/4 —1/2
i () Gane) | [0 3

d, = 1 — 8(1 ) 26
2w, V) G T aw, (26)

Following [4], the Prandtl number is given approximately as

20y

Pr=_——
39y — 15

(27)

2.1.3 Data Structures

Data for each slug of gas is stored in a data structure (called “slug data”) which contains an
array of “L_cell” structures (one element for each Lagrangian cell) and other data such as
boundary flags and time step information. Each Lagrangian cell (L_cell) structure contains
the location of the cell midpoint, the location of the interface to the right, the mass contained
by the cell, a cell average of the local flow state, and time derivatives of the state variables.
Full details may be obtained from the header file “lid.h”.

11
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Figure 2: Data storage for a single slug of gas. The indexing for the cells is shown above the
array while the indexing scheme for the interfaces is shown below.

Figure 2 shows the indexing arrangement for the cells within each slug data structure.
The array consists of both internal cells (izmin < iz < izmaz) and ghost cells at each end
(izmin — 2, izmin — 1, izmaz + 1, ixmazx + 2). The ghost cells lie outside the physical gas

slug and contain data used in the application of the boundary conditions.

2.1.4 Internal-Interface Pressures and Velocities

The pressures and velocities used in equations (3) and (4) are obtained by first interpolating
the flow state (consisting of a set of values for p, u, v, e, P, a) from the cell centres to
either side of each interface at the start of the time step and then applying a Riemann solver

to estimate the flow states at the interfaces during the time step.

The state of the flow either side of each interface “L” and “R” is interpolated (or recon-
structed) from the set of cell averaged states by assuming a linear variation of the variables
within cells. This interpolation is performed separately for each primary variable. For ex-
ample, the density either side of interface (j + %) is obtained by a nonlinear interpolation

(or reconstruction) using the expressions

pr. = p; + (ij_i_% - -Tj) MINMOD((A_)]’ (A+)]) )
pr = pjr1+ (T2 — j41) MINMOD((A=) 11, (A+)j41) (28)

where



Pj+1 — Pj
A+), ) 29
( )] Tiy1 T ( )

represent two possible estimates of the slope of the density for cell j and z;_1, x;, z;41 are
the midpoints of the cells 7 — 1, j and j + 1 respectively. The MINMOD limiter function
selects the slope with the minimum magnitude if both slopes have the same sign and returns

zero otherwise (see e.g. [16]).

Interpolation for the other variables is done similarly. To make the code more robust,
the conditions pr, pr > pyrnv and er,er > epry are imposed after interpolation but before
the application of the Riemann solver. Details of the Riemann solver are already available
in [17], but for completeness and because the solver is related to the implementation of the

specified-velocity boundary condition, a complete description is included here.

The Riemann solver used here is a 2-stage approximate solver in which the first stage
computes the intermediate pressure and velocity assuming isentropic wave interaction. A
second stage, based on the strong-shock relations, may be invoked to improve the first-stage
estimate if the pressure jumps across either wave are sufficiently large. In practice, this
modification has been required only in extreme conditions [17]. If stage 2 (strong shock

modification) is not invoked, the solver is much like Osher’s approximate Riemann solver
[18].

STAGE 1: The first stage of the Riemann solver assumes that a spatially constant left state
(subscript L) and right state (subscript R) interact through a pair of finite-amplitude (and
isentropic) compression or rarefaction waves. Perfect gas relations ([19] cited in [20]) are
used to obtain the intermediate states (L*, R*) in the gas after the passage of left-moving

and right-moving waves, respectively. The expressions implemented in the code are

(7 _ 1)(UL _ UR) 2v/(v—-1)

Pr=pP:=pP*=P 30
L—="R r 2a(1+ Z) ’ (30)
and _ _
. . . ULZ+Ug
uL=uR=u :ﬁ, (31)
where the Riemann invariants are
— 2
UL = ur + L y and
v—1
— QU,R
Up = — 32
R UR v — 1 J ( )
and the intermediate variable Z is given by
ap [ Pp\0~D/)
7 =— (—) ; 33
o, \ Py (33)
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In the exceptional situation of (Uz — Ug) < 0, we assume that a (near) vacuum has formed

at the cell interface and set all of the interface quantities to minimum values.

STAGE 2: 1If the pressure jump across either wave is large (say, a factor of 10), then the

guess for the intermediate pressure is modified using the strong shock relations.

If P* > 10 Py, and P* > 10 Py then both waves are taken to be strong shock waves and

the intermediate pressure and velocity can be determined directly as

P* ,Y+ 1 vV PR
= PrL
2 VPR T +/PL

2

(ur —ugr)| (34)

and

o = VPL UL + /PR UR (35)
VPRt /PL '

If P* is greater than P, or Py (but not both), the stage-1 estimate for P* can be improved

with two Newton-Raphson steps of the form

* * an -
n+1_Pn_FTl (ﬁ) ) (36)

where
By =up(Py) —up(Py) (37)

and

Up -2 (& T p<10Pp,

R A >
. ) Un+22(L )”,P*§10PR,

(39)

up+ (20) Y prs10p,

During the update, we ensure that P* > Py;n where Py is some small value. After
updating P*, the intermediate velocity is evaluated using the relevant strong-shock relation
from (38) or (39).

The pressure and velocity at each interface may now be substituted back into equations
(1), (3) and (4) to give the motion of the cell interfaces and the rate of change of momentum
and energy within the cells.

2.1.5 Boundary Conditions

Before interpolation, the inviscid boundary conditions are applied by setting up two layers

of ghost cells along each of the boundaries. This is shown schematically in Fig. 3. For a

14
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Figure 3: Applying boundary conditions via ghost cells: (a) reflecting end condition; (b)
supersonic outflow; (c) gas-gas interface (or direct exchange of data).
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supersonic inflow boundary, all of the ghost-cell quantities are specified as fixed while, for a
supersonic outflow boundary, the ghost-cell quantities are extrapolated from active cells just
inside the boundary. Solid-wall (i.e. reflective) boundary conditions are applied by setting
all of the scalar quantities in the ghost cells equal to those in the active cells adjacent to the
boundary but setting the ghost-cell velocities to the negative of the velocities in the active
cells. Where two gas slugs interact, data between the two end-cells of the first slug and the

corresponding ghost-cells of the second slug are exchanged as shown in Fig. 3.

Where the gas interacts with a piston (or end wall), the boundary-interface velocity u*
is specified. The interface pressure may then be determined from the isentropic relations

which, for a right-end boundary, give

(T, — u*)w - 1) ( oL )1/2] 27/(v-1) | o)

1/2 1
2*}/ / PLM

Similarly, the interface pressure at a left-end boundary is given as

(w -T2 <P_R> 1/2] . (41)

1
2")/1/2 PR/’Y

2.2 Piston Dynamics

Each piston is assumed to have fixed mass (m,), length (L,) and frontal area (A,). The
piston state is given by a flag indicating whether the piston is constrained, its centroid

position (z,) and its velocity (V). The governing differential equations are

d

%xp = V;, )

d 1

%V}) = m [A,(Pg — Pp) + Ff] (42)

where Pg and Pr are the pressures on the “back” and “front” piston faces respectively and
FY is the total frictional force. Refer to Fig. 4 for the general arrangement. If the piston is
initially restrained, a specified value of back-face pressure (Ppg) must be exceeded before the

piston is released.

For the simulation of the T4 facility, the frictional force is assumed to be due to the
“chevron” seal near the front face of the piston. The maximum magnitude of the frictional

force is
‘Ff‘ma:c = ,U/fAsealPF ) (43)
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Figure 4: Schematic diagram showing the pressure forces on a piston.

where pif is the coefficient of friction of the seal material on the tube wall (taken to be 0.2)

and A,y is the effective frontal-area of the seal. The actual value of Fy used in equation
(42) is

—sign(Vp) ‘Ff|ma:c if (|V;0| > Vior o1 ‘AP(PB — Pp)| > ‘Ff‘maw)
Fr = (44)
_A;D(PB — Pr) if (|VZD| < Vior and |Ap(PB - Pr)| < |Ff|ma$)

where the velocity tolerance is V;,; = 107 m/s.

2.3 Diaphragms

Diaphragms are implemented as a flag for the status of the diaphragm (intact or burst) and
a burst pressure. Note that the burst pressure is a “dynamic” burst pressure which may
be significantly higher than the burst pressure obtained in hydrostatic rupture tests [21].
The effect of the diaphragm is coded directly into 11d.x as a change in boundary conditions
selected by the diaphragm’s status flag. For example, two gas slugs initially separated by a
diaphragm will have reflective boundary conditions applied at the diaphragm station. On

rupture, the applied boundary conditions will be changed to a data-exchange condition.

17



2.4 Time Stepping

The state quantities for both pistons and gas slugs are advanced from time level n to time

level n + 1 with the predictor-corrector scheme

(n)
Av® = A ,
dt
vl = ym 4 AU |
(1)
Av® = A :
dt
1
Ut — U(1)+§(AU(2)—AU(1)) , (45)

where the superscripts (1) and (2) indicate intermediate results and (47) includes the rate of
change of interface positions, cell momentum, cell energy, piston velocity and piston position.
If a first-order scheme is desired, only the first stage is used and U™t = UM, Although
first-order time-stepping requires fewer operations than second-order time-stepping, it is also

less robust.

To maintain stability, the time step is restricted to
At < Atallowed =CFL Atsignal ) (46)

where Atgoweq 1 the smallest value for all cells (and all gas slugs) and C'F'L is the specified
Courant-Friedrichs-Lewy number. It is normally restricted to CFL < 0.5 in the simulations

discussed later. For each cell, the inviscid signal time is approximated as

Az

Atsigna.l = m .

(47)
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3 Test Cases
3.1 Sod’s Shock Tube Problem

The first test case is the so-called one-dimensional shock tube problem used by Sod [22].
The duct has a constant diameter of D = 0.01 m and extends from z = 0 to z = 1.0 m. Two
slugs of calorically perfect air with v = 1.4 (labelled 0 and 1) are each discretized into 50
cells. Reflecting boundary conditions are applied at each end of the duct and an exchange
boundary condition is applied where the gas slugs meet in the middle of the duct. Viscous

effects are omitted. For slug[0], x < 0.5m, the initial state is
p=10kg/m?® P=10°Pa, u=0, T=23484K, e=25x10°J/kg-K,
while, for slug[l], z > 0.5m, it is
p=0125kg/m® P=10"Pa, u=0, T =2787K, e=2.0x10°J/kg-K.
The input parameter file is shown below. Boundary conditions are that the left-end of slug

[0] is fixed, the right-end of slug [0] exchanges data with the left-end of slug [1], and the
right-end of slug [1] is fixed.

Sod’s ideal shock tube, 19-Jan-99

0 test_case
200 nslug, npiston, ndiaphragm
0.6e-3 5000 max_time, max_steps
1.0e-6 0.50 dt_init, CFL
2 2 Xorder, Torder
10.0e-6 ©5.0e-6 dt_plot, dt_his
1 hnloc
0.70 hcell[0]: location is near upstream wall
tube definition follows:
100 1 n, nseg
0.00 0.010 1 xb[0], Diamb[0], linear[0]
1.00 0.010 1 [1]
0 nKL
296.0 O Tnominal, nT
slug 0: perfect air driver
10001 1.1 nnx, to_end_1, to_end_2, strength
00 viscous, adiabatic
vV 0.0 left boundary : velocity (fixed wall)
S 1 L right boundary: another slug
1 hn_cell
1 hx_cell: the left-most cell
0.0 0.5 0 1.0e5 0.0 348.4 Initial: x1, x2, gas, p, u, T

slug 1: perfect air driven gas
100 0 0 0.0 nnx, to_end_1, to_end_2, strength
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00 viscous, adiabatic

S 0 R left boundary : another slug

vV 0.0 right boundary: velocity (fixed wall)
1 hn_cell

1 hx_cell: the left-most cell

0.5 1.0 0 1.0e4 0.0 278.7 Initial: x1, x2, gas, p, u, T

At t = 0, the hypothetical diaphragm (initially separating the two slugs) is removed and
the inviscid equations are integrated in time to ¢t ~ 0.60 x 1073s with CFL ~ 0.5. The
resulting flow state is shown in Fig. 5. Comparison with the exact solution (see e.g. [23]) is
reasonably good. The shock is captured in three or four cells and has the correct speed. As
expected for a Lagrangian scheme, the contact discontinuity is sharp but has a small glitch
possibly due to the starting error ([24]). The edges of the expansion fan show some smearing

but can be sharpened by using a finer initial discretization.

Ideal Shock Tube Simulation: Density along tube

1.2 120000

Ideal Shock Tube Simulation: Pressure along tube

"sod.gen" ¢ "sod.gen" o
“"exact_rho.dat" - "exact_p.dat" -
9 100000  prossscosssesessc
%) 08 % A 80000 |
¥ %,
e %,
® %, s
- 06 | % & 60000 -
2 kY o
k) A
=4
S | S—
© 0.4 B 40000
3
02 13 9 20000
[E—
0 . . . . 0 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X, M X, m
Ideal Shock Tube Simulation: Temperature along tube Ideal Shock Tube Simulation: Velocity along tube
500 T T T T 400 T T T T
"sod.gen" © "sod.gen" ©
"exact_T.dat" - 350 - “exact_u.dat" - i
450 A
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400 £
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Figure 5: Flow state for the Sod shock tube problem, ¢t = 0.6 ms.

Figure 6 shows a space-time diagram consisting of contours of density superimposed on a
grid of the cell centres shown at at regular time intervals. Both the shock and the expansion
fan are identified by straight contours and the contact surface is identified as the gap between

the two slugs of gas. (Note that the contact appears as a gap because we are plotting the
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data at cell centres.) The evolving solution is therefore self-similar (except for some small
resolution-related wiggles).
sod_log_p.gen logP,Pa space—time—plot

x1 x2 dx 0.00e+00 1.00e+00 2.00e—-01 y1 y2 dy 0.00e+00 6.00e—04 1.00e—04
vl v2 dv 4.03e+00 4.97e+00 6.25e-02

time,s * 104
200 3.00 4.00 5.00 6.00

1.00

0.00

Figure 6: Space-time diagram for the Sod shock tube problem.

Of the test cases discussed here, this test case is simplest and requires the least memory

and processing time. It should require only a few seconds of CPU time.

3.2 Projectile-In-Tube

This case is used to demonstrate the coupling of the piston dynamics with the gas dynamics.
It simulates the motion of a light projectile being driven by a finite-length reservoir. The
parameter file is shown below.

Ideal piston and gas slug 11-Apr-98, 19-Jan-99

0 test_case

110 nslug, npiston, ndiaphragm
50.0e-3 5000 max_time, max_steps

1.0e-6 0.50 dt_init, CFL

2 2 Xorder, Torder
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0.2e-3 20.0e-6 dt_plot, dt_his

1 hnloc
-3.99 hcell[0]: location is near upstream wall
tube definition follows:
100 1 n, nseg
-6.00 0.010 1 xb[0], Diamb[0], linear[0]
6.00 0.010 1 [1]
0 nKL
296.0 O Tnominal, nT
piston [0] is ideal
0 type_of_piston
0.001 0.010 0.010 mass, diam, length
0.0e6 O p_restrain, is_restrain
20.00 0 x_buffer, hit_buffer
0 0 with_brakes, brakes_on
0 R left_slug_id, left_slug_end_id
-1 R right_slug_id, right_slug_end_id
0.005 0.0 x0, VO
slug 0: perfect air driver
10001 1.1 nnx, to_end_1, to_end_2, strength
00 viscous, adiabatic
vV 0.0 left boundary : velocity (fixed wall)
P O right boundary: piston
1 hn_cell
100 hx_cell: the cell pushing against the piston

-4.0 -0.005 0 1.0e5 0.0 348.4 Initial: x1, x2, gas, p, u, T

The duct has a constant diameter of 10 mm and extends from z = —6m to x = 6m. The
reservoir gas (slug[0]: —4.0 < z < —0.005 m; 100 nonuniformily spaced cells) is ideal air

(gas type 0) with
p=10kg/m?® P=10x10°Pa, u=0, T=3484K, e=2.5x10° J/kg.

There is no gas in front of the piston. The piston has the same area as the tube, a length
of 0.01 m and a mass, m, = 0.001 kg. Boundary conditions for the gas slug are that the
left-end has zero velocity and that the right-end is coupled to the left-end of the piston.

The simulation starts at ¢ = 0 with the release of the projectile. As shown in Figure 7,
the projectile accelerates along the tube and allows the driver gas to expand behind it. Note
that, in the plot, the piston is located on the right-hand end of the gas slug. An expansion
can be seen propagating to the left into the quiescent driver gas and (at ¢ ~ 10 ms) reflecting
off the end of the tube. At £ ~ 23 ms the reflected expansion has reached the piston and

further decreases the pressure of the gas driving the piston (see Figure 8).

Figures 10 and 9 compare the computed position and velocity with that obtained from

the theory in [25]. The theory assumes an infinitely long driver and a vacuum in front of the
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piston_log_p.gen logP,Pa space—time—plot
x1 x2 dx —4.00e+00 8.00e+00 2.00e+00 y1 y2 dy 0.00e+00 5.00e—02 1.00e—-02
vl v dv 4.37e+00 4.98e+00 4.07e—-02

time,s * 102
3.00 4.00  5.00

2.00

1.00

0.00

T T 1

T T T
-4.00 -2.00 0.00 2.00 4.00 6.00 8.00
X, m

Figure 7: Space-time diagram for the projectile-in-tube problem.

Ideal Piston Simulation: Pressure at End-Wall and Piston
120000 T T T T T T T T T

"piston_hx0.dat" —
"piston_hcO0.dat" ------

100000

T

80000

T

T

o]
A 60000
o

40000

T

20000

T
!

O 1 1 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
t,s

Figure 8: Pressure at the upstream end of the driver (solid line) and against the upstream-
face of the piston (dashed line).
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projectile. As expected, the comparison is fairly good up until the time that the expansion

reaches the projectile. In terms of a nondimensional time, the projectile velocity and position

2 _ 1\ _12/0+1)
—{l—i-t—[l-l-(i)t] } ,
v—1 2

V = 2 {1 — [1 + (%H) %](MWH)} : (48)

v—1

are given by [25]

8|
I

where the nondimensional quantities of time, position and velocity are

PrA Pedz -
Rt Drdr p Vo (49)

’ 2
mpapR mpap ar

=

Here ar = 374.17 m/s and Pg = 1.0 x 10° are the initial values for the speed of sound and

the pressure of the reservoir gas.

Ideal Piston Simulation: Position vs Time

0.06
0.05 [ o4
0.04
2 003t
0.02 |
0.01 + "piston_p0.dat"
“ideal.dat" ©
0 . . . . . .
0 1 2 3 4 5 6 7

X, m

Figure 9: Piston position for the projectile-in-tube problem: solid line denotes the computed
result; small circles denote the theoretical result for a long driver.

It has been found that the accuracy of expansion fan simulations is sensitive to grid res-
olution and better accuracy can be obtained by clustering cells in regions where expansion
fans will develop. The clustering is done prior to the simulation (i.e. in l_prep.c) by dis-
tributing the cells according to the grid-stretching functions of Roberts [26] (see also [27]).
For this simulation, the computational cells have been set up so that they are clustered close
to the projectile. In the parameter file, the value of to_end_2 is 1 and the strength is set to
1.1. Stronger clustering can be produced by allowing strength to approach a value a little
larger than 1.0.
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Ideal Piston Simulation: Speed vs Position
250 T T T T T T

°

200 ° b

150 - b

V, m/s

100 - 1

50 b

"piston_p0.dat"
“ideal.dat" ©

O 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Figure 10: Velocity as a function of displacement for the projectile-in-tube problem: solid
line denotes the computed result; small circles denote the theoretical result for a long driver.

3.3 Drummond Shock Tunnel
Hardware reports [28, 29].

Drummond tunnel M4 nozzle P4 = 3.265MPa N2, P1 = 30kPa N2. 20-Jan-99

test_case, Mach 4 nozzle attached

nslug, npiston, ndiaphragm

max_time, max_steps

dt_init, CFL

Xorder, Torder

dt_plot, dt_his

hnloc

hxloc[0], heat flux gauge

hxloc[1], pressure transducer

hxloc[2], joint at nozzle block
[3] mid-point of nozzle throat
[4], nozzle exit plane

n, nseg
0 xb[0], Diamb[0], linear[0]
0 [1]
0 [2]
0 [3]
0 [4]
0 [5]
1 [6] Parallel section of throat
1 [7]
nKL
xbeginK[0], xendK[0], Kvalue
[1] [1]

Tnominal, nT
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301

8.0e-3 250000
0.5e-6 0.25

2 2

30.0e-6 2.0e-6

5

-0.295

-0.078
0.000
0.090
0.265

tube definition follows:

4000 7

-3.785 0.0585
-3.035 0.0585
-3.015 0.0620
0.000 0.0620
0.043 0.0620
0.080 0.0220
0.100 0.0220
0.2653 0.0700

2

-3.050 -3.000 0.5
0.050 0.012 0.5
296.0 0

diaphragm 0
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0 150.0e3 is_burst, P_burst

1 R left_slug_id, left_slug_end_id

2 L right_slug_id, right_slug_end_id

slug O0: N2 driver

150 0 0 0.0 nnx, to_end_1, to_end_2, strength

10 viscous, adiabatic

vV 0.0 left boundary : velocity (fixed wall)
S 1L right boundary: neighbour_slug_id, end
1 hn_cell

1 hx_cell

-3.785 -3.015 11 3.25e6 0.0 296.0 Initial: x1, x2, gas, p, u, T
slug 1: N2 test gas

300 0 0 0.0 nnx, to_end_1, to_end_2, strength

10 viscous, adiabatic

S OR left boundary : neighbour_slug_id, end

SD2LO right boundary: neighbour_slug_id, end, diaphragm_id
1 hn_cell

1 hx_cell

-3.015 0.100 11 30.0e3 0.0 296.0 Initial: x1, x2, gas, p, u, T
slug 2: N2 test-section gas

60 0 0 0.0 nnx, to_end_1, to_end_2, strength

10 viscous, adiabatic

SD1RO left boundary : neighbour_slug_id, end, diaphragm_id
F right boundary: free boundary

1 hn_cell

1 hx_cell

0.100 0.2653 11 400.0 0.0 296.0 Initial: x1, x2, gas, p, u, T

3.4 T4 Shock Tunnel
ATAA-J paper [30].

T4 tunnel with M6 nozzle, shot 1098, stage 1.

0 test_case, dummy value

412 nslug, npiston, ndiaphragm

214 .0e-3 250000 max_time, max_steps

0.5e-6 0.4 dt_init, CFL

22 Xorder, Torder

5.0e-3 1.0e-3 dt_plot, dt_his

6 hnloc

25.0 hxloc[0], high-pressure end of compression tube
30.0 hxloc[1], shock station 1

32.0 hxloc[2], shock station 2

34.0 [3], shock station 3

35.9 [4], nozzle supply region

37.0 [6], nozzle exit plane
tube definition follows:
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0.1

0.05

-0.05

0.1
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Drummond Tunnel Profile

"upper.dat" —
"lower.dat" —

-4 -3.5 -3 -2.5 -2 -15 -1 -0.5 0 0.5
X, m
Drummond Tunnel Nozzle Profile
"upper.dat" —
"lower.dat" —
0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 11: Drummond tunnel cross-section.
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dn2_log p.gen logP,Pa space—time-plot
x1 x2 dx —4.00e+00 5.00e—01 1.00e+00 y1 y2 dy 0.00e+00 8.00e—03 1.00e-03
vl v2 dv 2.72e+00 6.39e+00 2.44e-01

time,s * 103

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

-4.00

FE

-3.00

T
—-2.00

T
-1.00

T

0.00

X,In

Figure 12: Xt-diagram for Drummond tunnel.
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Drummond Tunnel Simulation, Nozzle Supply Pressure
2.5e+06 T T T T T T

"dn2_hxl.dat' —

2e+06 b

1.5e+06

p, Pa

1e+06

T

500000

0 . . . .

0.002 0.003 0.004 0.005 0.006 0.007 0.008
t,s

Drummond Tunnel Simulation, Pitot Pressure

300000 T T T T T

"dn2_hx4.dat' ——

250000

200000

T

T

p, Pa

150000

100000

T

50000

T

0.002 0.003 0.004 0.005 0.006 0.007 0.008
t,s

Figure 13: Nozzle-supply pressure and Pitot pressure for Drummond tunnel.

Drummond Tunnel Simulation, Heat Transfer
200000 T T T T T

"dn2_hx2.dat" —

-200000 1

-400000 b

W/m#**2

T

o -600000
-800000 b

-1e+06 b

-1.2e+06 . . . . . .
0.002 0.003 0.004 0.005 0.006 0.007 0.008
ts

Figure 14: Heat transfer at £ = —0.295 m for Drummond tunnel.
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10000 10 n, nseg

-12.30 0.173 0 xb[0], Diamb[0], linear[0]

-1.0 0.173 0 [1] start contraction to manifold
-0.9 0.168 0 [2] manifold (equivalent pipe)

-0.1 0.168 0 [3] start expansion to compression tube
0.0 0.229 0 [4] start compression tube

25.9 0.229 0 [6] start contraction to shock tube
26.0 0.076 0 [6] start of shock tube

35.9 0.076 0 [7] start contraction to nozzle throat

36.0 0.025 0 [8] start parallel nozzle throat

36.05 0.025 0 [9] start nozzle expansion

37.0 0.262 0 [10] exit plane of nozzle

3 nKL

-1.0 0.0 0.25 xbeginK[0], xendK[0], Kvalue

26.0 26.1 0.25 [1] [1]

35.95 36.05 0.25 [2] [2]

296.0 O Tnominal, nT

piston [0] is T4 piston with chevron seal
1 type_of_piston

92.0 0.229 0.470 mass, diam, length

0.0e6 O p_restrain, is_restrain

25.70 0 x_buffer, hit_buffer

1 0 with_brakes, brakes_on

0 R left_slug_id, left_slug_end_id
1 L right_slug_id, right_slug_end_id
0.235 0.0 x0, VO

diaphragm 0

0 b57.0e6 is_burst, P_burst

1 R left_slug_id, left_slug_end_id

2 L right_slug_id, right_slug_end_id
diaphragm 1

0 600.0e3 is_burst, P_burst

2 R left_slug_id, left_slug_end_id

3 L right_slug_id, right_slug_end_id
slug 0: Compressed air to push piston

100 01 1.2 nnx, to_end_1, to_end_2, strength
10 viscous, adiabatic

vV 0.0 left boundary : velocity (fixed wall)
P 0 right boundary: piston_id

1 hn_cell

1 hx_cell

-12.3 0.0 0 4.9e¢6 0.0 296.0 Initial: x1, x2, gas, p, u, T
slug 1: Helium driver

200 000
10

P O
SD2LO

.0

nnx, to_end_1, to_end_2, strength
viscous, adiabatic
left boundary : piston

right boundary: neighbour_slug_id, end, diaphragm_id
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1 hn_cell

1 hx_cell

0.470 26.0 3 61.6e3 0.0 296.0 Initial: x1, x2, gas, p,
slug 2: Air test gas, in chemical equilibrium

100 0 0 0.0 nnx, to_end_1, to_end_2, strength
10 viscous, adiabatic

SD1RO left boundary : neighbour_slug_id,
SD 3 L1 right boundary: neighbour_slug_id,
1 hn_cell

1 hx_cell

26.0 36.0 2 450.0e3 0.0 296.0 Initial: x1, x2, gas, p,
slug 3: Air test-section gas

2500 0.0 nnx, to_end_1, to_end_2, strength
10 viscous, adiabatic

SD 2R 1 left boundary : neighbour_slug_id,
F right boundary: free boundary

1 hn_cell

1 hx_cell

end
end, diaphragm_id

end, diaphragm_id

36.0 37.0 2 400.0 0.0 296.0 Initial: x1, x2, gas, p, u, T
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T4 Tunnel Profile
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Figure 15: T4 shock tunnel cross-section.
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t4_2 log_p.gen logP,Pa space—time—plot
x1 x2 dx 2.40e+01 3.70e+01 2.00e+00 y1 y2 dy 2.14e—01 2.24e—01 2.00e—-03
vl v2 dv 2.77e+00 7.88e+00 3.41e-01

time,s * 10!
220 222 224

2.18

2.16

2.14

I T T T T
24.00 26.00 28.00 30.00 32.00 34.00 36.00
X, m

Figure 16: Xt-diagram for T4 shot 1098.
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T4 1098 Simulation, Shock Tube Pressure

3e+07 T
"t4_2_hxl.dat" —
2.5e+07 R

2e+07

1.5e+07 |

p, Pa

1e+07

5e+06

e . . . .
0.216 0.218 0.22 0.222 0.224
t, s
T4 1098 Simulation, Nozzle Supply Pressure

8e+07 T T T T T

"t4_2_hx4.dat" —
7e+07

6e+07

5e+07

p, Pa

4e+07

3e+07

2e+07

1e+07

0 . . . .
0.219 0.22 0.221 0.222 0.223 0.224 0.225
t,s

Figure 17: Shock tube and Nozzle-supply pressure for T4 shot 1098.
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4 Concluding Remarks

To improve the simulation of contact surface propagation Con Doolan [31] has extended the
viscous modelling to include a mass loss from the core folw into the wall boundary layers.
This essentially implemented Mirels’ analysis [32] on a cell-by-cell basis. It seems to work
well for a turbulent boundary layer in that it correctly estimates the test flow duration,

however, it doesn’t seem to be all that good for laminar flows.
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