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Abstract

Eilmer3 is an integrated collection of programs for the simulation of transient com-
pressible flow in two and three spatial dimensions. It is based on a finite-volume formu-
lation of the mass, momentum, energy and species conservation equations and is imple-
mented on block-structured grids. Starting from an initial flow state with boundary condi-
tions, state quantities in each finite-volume cell are updated in time to provide a simulation
of the evolving flow field.
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Nomenclature, Units

A : cell area, m2

a : speed of sound, m/s
Cv : specific heat at constant volume, J/kg ·K
Cp : specific heat at constant pressure, J/kg ·K
E : total energy per unit mass e+ 1

2
u2, J/kg

e : specific internal energy, J/kg
F : array of flux terms
f : species mass fraction
H : total enthalpy, J/kg
h : specific enthalpy, J/kg
î, ĵ, k̂ : unit vectors for the cartesian coordinates
i, j, k : cell index
k : coefficient of thermal conductivity
M : Mach number
MW : molecular weight
n : direction cosine
n̂, p̂, q̂ : unit vectors for the cell interface
P, p : pressure, Pa
Pr : Prandtl number
Q : source vector in the gas-dynamic equations
q : heat flux, W/m2

R : gas constant, J/kg ·K
R0 : universal gas constant, 8.314 J/mole ·K
Re : Reynolds number
r : radial coordinate, m
S : control surface of the cell
T : temperature, K
t : time, s
U : state vector in the gas-dynamic equations
u : velocity, m/s
V : cell volume, m3

x, y, z : cartesian coordinates, m

α : weighting parameter
∆± : intermediate variable for interpolation
λ : second coefficients of viscosity, Pa.s
µ : viscosity, Pa.s; friction coefficient
ρ : density, kg/m3

γ : ratio of specific heats
τ : wall shear stress, Pa
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Subscripts
i : cell index, inviscid
j, k : cell indices
L, R : left and right states for the Riemann solver or flux calculator
max : maximum value
n : normal to the cell interface
p, q : tangent to the cell interface
s / species index
v : viscous
x, y, z : coordinate directions

Superscripts
(· · ·) : cell average
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1 Introduction

Eilmer3 is a derivative of the code mbcns2, an acronym for Multiple-Block Compress-
ible Navier-Stokes solver, second version. The code solves the compressible Navier–Stokes
equations in order to provide simulations of transient compressible flow in two- and three-
dimensions. The governing equations are expressed in integral form over cell-centred, finite-
volume cells, with the time rate of change of conserved quantities in each cell specified as a
summation of the mass, momentum and energy flux through the cell interfaces.

The mbcns2 code was an experiment in writing the mb cns code in C++. mb cns (writ-
ten in C) was derived from cns4u, a code written at ICASE in 1990-91 to simulate high-
performance shock tunnels and expansion tubes. The finite-difference codes of the 1980s did
not do a good job of capturing the strong shocks that processed the gas in these machines so
we started work on a new code, using (what was at the time) the recently-proven upwinding
approach.

From the beginning, the code was intended to run on a parallel computer with blocks of
finite-volume cells being allocated to the compute nodes of the Intel Hypercube computer that
had been acquired by ICASE in 1990. However, in 1991, the code remained as a single-block
code and was run on the Cray vector supercomputers at Langley to compute ideal gas flows in
expansion tubes. The code was used and further developed at UQ through the 1990s and into
the 2000s. Enhancements included:

• more general thermochemistry, including look-up tables for gas in chemical equilibrium;

• multiple-block capability with an MPI parallel implementation;

• a parametric and programmable front-end for specifying geometry and grids;

• three-dimensional geometry;

• programmable boundary conditions; and

• finite-rate chemistry.

Once it was determined that there were clear benefits in using C++ mb cns2, our three-
dimensional flow code Elmer was then reworked in C++ as Elmer2. Of course, these codes
being experiments in C++, we soon decided that it could all be done much more cleanly be
made much more versatile if we just reworked some of the basic modules. Thus, the thermo-
chemistry was reworked and the separate 2- and 3-dimensional codes merged into Eilmer3. The
name change from Elmer to Eilmer is to a void a naming clash with the Elmer finite-element
code from Finland.1

1http://www.csc.fi/elmer
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Eilmer3 is actually an integrated collection of programs that includes a preparation pro-
gram that can be used to set up a database of simulation parameters, a block-structured grid
defining the flow domain and an initial flow field. These items are then used as a starting point
for the main simulation program which computes a series of snapshots of the evolving flow.

The following sections describe the formulation of the code in terms of the basic gas dy-
namic model and the thermochemical model for a multiple-species gas with finite-rate chemical
kinetics. There is a companion report [1] that desctibes the use of the code and provides a num-
ber of case studies.

2 Gas Dynamics

The code is formulated around the integral form of the Navier-Stokes equations, which can be
expressed as

∂

∂t

∫
V

UdV = −
∮
S

(
F i − F v

)
· n̂ dA+

∫
V

QdV , (1)

where S is the bounding surface and n̂ is the outward-facing unit normal of the control surface.
Two-dimensional and three-dimensional formulations are implemented somewhat separately in
Eilmer3, however, there is much of the formulation and code that is the same for both cases.

2.1 Governing Equations for Axisymmetric, Two-Dimensional Flow

For axisymmetric flow, the symbol V in Eq.(1) is the volume andA the area of the cell boundary
per unit radian in the circumferential direction. The array of conserved quantities is dependent
on the thermal model under consideration, and for the thermal nonequilibrium models is

U =



ρ
ρux
ρuy
ρE
ρevm
ρee
ρfs


. (2)

Here, the conserved quantities are respectively density, x-momentum per volume, y-momentum
per volume, total energy per volume, vibrational energy for mode m, electronic-electron energy
and mass density of species s. Note that ρee includes both bound and free electron energy.
We choose to solve both total and all individual species continuity equations to add rigour to
our solver: the redundant information gives us a good idea when the numerics are running into
trouble. Conversely, when only solving n− 1 species equations, it is easier for undetected error
in mass fractions to accumulate. Thus for 11 species air with 6 vibrating molecules and the
inclusion of electrons, for example, there are 22 conserved quantities.
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The flux vectors are divided into inviscid and viscous contributions. The inviscid component
in thermal nonequilibrium is

F i =



ρux
ρu2

x + p
ρuyux

ρEux + pux
ρevmux

ρeeux + peux
ρfsux


î+



ρuy
ρuxuy
ρu2

y + p
ρEuy + puy
ρevmuy

ρeeuy + peuy
ρfsuy


ĵ , (3)

and the viscous component is

F v =



0
τxx
τyx

τxxux + τyxuy + qx
qx,vm
qx,e
Jx,s


î+



0
τxy
τyy

τxyux + τyyuy + qy
qy,vm
qy,e
Jy,s


ĵ . (4)

where the axisymmetric viscous stresses are

τxx = 2µ
∂ux
∂x

+ λ

(
∂ux
∂x

+
∂uy
∂y

+
uy
y

)
,

τyy = 2µ
∂uy
∂y

+ λ

(
∂ux
∂x

+
∂uy
∂y

+
uy
y

)
,

τxy = τyx = µ

(
∂ux
dy

+
∂uy
dx

)
, (5)

and where the secondary viscosity coefficient λ is expressed in terms of the primary coefficient
µ via Stokes hypothesis, λ = −2

3
µ. The viscous heat fluxes are

qx = ktr
∂T

∂x
+
∑
s=mol.

kvs
∂Tvs
∂x

+ ke
∂Te
∂x

+
∑
s=all

Jx,shs ,

qy = ktr
∂T

∂y
+
∑
s=mol.

kvs
∂Tvs
∂y

+ ke
∂Te
∂y

+
∑
s=all

Jy,shs ,

qx,vm = kvm
∂Tvm
∂x

+ Jx,mhvm ,

qy,vm = kvm
∂Tvm
∂y

+ Jy,mhvm ,

qx,e = ke
∂Te
∂x

+
∑
s=all

Jx,shes ,

qy,e = ke
∂Te
∂y

+
∑
s=all

Jy,shes . (6)

The vector of source terms is separated into geometric, chemistry, thermal energy exchange
and radiation contributions in order to apply the operator-splitting integration approach, Eq. 7.

Q = Qgeom. +Qchem. +Qtherm. +Qrad. (7)
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The geometric source term vector for axisymmetric geometries is

Qgeom. =


0
0

(p− τθθ)Axy/V
0
0
0

 , (8)

where Axy is the projected area of the cell in the (x,y)-plane and

τθθ = 2µ
uy
y

+ λ

(
∂ux
∂x

+
∂uy
∂y

+
uy
y

)
. (9)

For planar geometries Qgeom. is a zero vector. See the original ICASE report [2] for a derivation
of these terms.

The chemistry source term vector is

Qchem. =



0
0
0
0

ΩV C
m∑

s=ion. Ω
EC
s

ω̇s


, (10)

and the thermal energy-exchange source term vector is

Qtherm. =



0
0
0
0

ΩV T
m + ΩV V

m + ΩV E
m∑

s=mol. Ω
EV
s +

∑
s=all. Ω

ET
s

0


, (11)

The radiation source term vector is

Qrad. =



0
0
0

−∇ · qrad
0

−∇ · qrad
0


(12)

where any purely vibrational component of radiative heat loss (or gain) has been neglected. The
transport, thermodynamic and chemical kinetic source term models will be discussed in detail
in Section 3.
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2.2 Conserved Quantities and Fluxes for Three-Dimensional Flow

In three dimensions, we include the z-momentum so that the vector of conserved quantities
becomes

U =



ρ
ρux
ρuy
ρuz
ρE
ρevm
ρee
ρfs


, (13)

and the inviscid component of the fluxes becomes

F i =



ρux
ρu2

x + p
ρuyux
ρuzux

ρEux + pux
ρevmux

ρeeux + peux
ρfsux


î+



ρuy
ρuxuy
ρu2

y + p
ρuzuy

ρEuy + puy
ρevmuy

ρeeuy + peuy
ρfsuy


ĵ +



ρuz
ρuzux
ρuzuy
ρu2

z + p
ρEuz + puz
ρevmuz

ρeeuz + peuz
ρfsuz


k̂ . (14)

The viscous component is

F v =



0
τxx
τyx
τzx

τxxux + τyxuy + τzxuz + qx
qx,vm
qx,e
Jx,s


î+



0
τxy
τyy
τzy

τxyux + τyyuy + τzyuz + qy
qy,vm
qy,e
Jy,s


ĵ +



0
τxz
τyz
τzz

τxzux + τyzuy + τzzuz + qz
qz,vm
qz,e
Jz,s


k̂ , (15)
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and the viscous stresses are

τxx = 2µ
∂ux
∂x

+ λ

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
,

τyy = 2µ
∂uy
∂y

+ λ

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
,

τzz = 2µ
∂uz
∂z

+ λ

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
,

τxy = τyx = µ

(
∂ux
dy

+
∂uy
dx

)
,

τxz = τzx = µ

(
∂ux
dz

+
∂uz
dx

)
,

τyz = τzy = µ

(
∂uy
dz

+
∂uz
dy

)
. (16)

2.3 Discretised Equations and Time-Stepping Procedure

The finite-volume core of Eilmer3 is implemented for 3D flows with some of the components
omitted when running a 2D simulation.

In 2D, the conservation equations are applied to straight-edged quadrilateral cells for which
the boundary, projected onto the (x,y)-plane, consists of four straight lines (or cell interfaces)
labelled North, East, South and West. In 3D, finite-volume cells are hexahedral with 6 (possibly-
nonplanar) quadrilateral surfaces interfacing the neighbouring cells. Flux values are estimated
at midpoints of the cell interfaces and the integral conservation equation (1) is approximated as
the algebraic expression

dU

dt
= − 1

V

∑
cell−surface

(
F i − F v

)
· n̂ dA+Q , (17)

where U and Q now represent cell-average values.

An operator-splitting approach as advocated by Oran and Boris [3] (see Chapter 11 of their
text) is applied whereby the physical mechanisms are applied in a decoupled fashion. The time
integration of the ODE system shown in Eq. 17 is then approximated by

∫
∆t

dU

dt
dt =

∫
∆t

(
dU

dt

)
inv.
dt+

∫
∆t

(
dU

dt

)
visc.

dt

+
∑
Nc

[∫
∆tc

(
dU

dt

)
chem.

dt

]
+
∑
Nt

[∫
∆tt

(
dU

dt

)
therm.

dt

]
, (18)
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where, (
dU

dt

)
inv.

= − 1

V

∑
cell−surface

(
F i

)
· n̂ dA+Qgeom. +Qrad. , (19)(

dU

dt

)
visc.

= − 1

V

∑
cell−surface

(
−F v

)
· n̂ dA , (20)(

dU

dt

)
chem.

= Qchem. , (21)(
dU

dt

)
therm.

= Qtherm. . (22)

Integration, in time, of the discretised equations proceeds in a loosely coupled fashion. The
order of operations for a single time-step for a radiating gas in thermochemical nonequilibrium
is shown in Figure 1. Some of the chemical kinetic and thermal energy-exchange ODE systems
are “stiff” and so “subcycling” is used over the global integration time step via smaller steps if
the system fails to solve. The number of chemical and thermal subcycles are,

Nc = ∆t/∆tc ,

Nt = ∆t/∆tt .

Currently the radiative source term vector, Qrad, is applied closely coupled with the inviscid
fluxes. This seems to be adequate for the work done thus far, but may need to be revised for
strongly radiatively coupled flows.

The advantage of the operator-splitting approach is that the optimal integration scheme for
each component of the physics can be implemented. This is especially useful for solving large
chemical kinetic systems. The resultant set of ODE systems are integrated in a time via a
simple predictor-corrector scheme for the inviscid and viscous increments, one of a selection of
methods (including a method for stiff systems) for the chemistry increment (see Section 3) and
the 4th order Runge-Kutta-Fehlberg method for the thermal energy-exchange increment.

2.4 Multiple-Block Grids and Parallelisation

As shown in Figure 2, the data arrays for each block are dimensioned such that there is a buffer
region, two cells deep, around the active cells, which completely defines the flow domain cov-
ered by the block. The buffer region contains ghost cells which are used to hold a copy of the
flow information from adjacent blocks or to implement the boundary conditions.

For a boundary common to two blocks, the ghost cells in the buffer region of each block
overlap the active cells of the adjacent block. The only interaction that occurs between blocks
is the exchange of boundary data, prior to the reconstruction phase of each time step. For the
shared memory version of the code, the exchange of cell-average data along the block bound-
aries takes place as a direct copy from the active-cell of one block to the ghost-cell of the other
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1. compute gas transport due to inviscid flux:

(a) apply inviscid boundary conditions or exchange data
at boundaries for each block as appropriate

(b) reconstruct the flow field sate on both sides of each interface

(c) compute the inviscid fluxes Fi · n̂

(d) compute the radiative source term −∇ · qrad for each cell

(e) integrate Eq. 19 over the timestep

(f) decode the conserved quantities via an equation-of-state call

(g) repeat for corrector update

2. compute gas transport due to viscous flux:

(a) apply viscous boundary conditions at solid walls

(b) compute the viscous fluxes as Fv · n̂

(c) integrate Eq. 20 over the timestep

(d) decode the conserved quantities via an equation-of-state call

(e) repeat for corrector update

3. compute change of gas state due to chemical reactions:

(a) compute all chemical source terms

(b) integrate Eq. 21 over the timestep

(c) decode the conserved quantities via an equation-of-state call

(d) redo via smaller subcycles if failed and apply call to equation-of-state more frequently

4. compute change of gas state due to thermal energy-exchange:

(a) compute all chemical source terms

(b) integrate Eq. 22 over the timestep

(c) decode the conserved quantities via an equation-of-state call

(d) redo via smaller subcycles if failed and apply call to equation-of-state more frequently

Figure 1: Sequence of operations for a time-step update in Eilmer3.
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Figure 2: Active and ghost cells for a single 2D block grid for Eilmer3.

block. Thus, the cells along the common boundary of each block must match in both number
and position. Some logic is used within the exchange routines to set the appropriate indexing
direction for each boundary. The information on the connections between block boundaries is
stored in a (global) connectivity array. For each boundary on each block, this array stores the
identity of the adjacent block and the name of the connecting boundary on the adjacent block.

Except for this block-to-block communication (and the occasional checking of time step
magnitudes), the rest of the calculation can be done independently for all blocks. Thus, the
algorithm is fairly easy to implement on a multiple-instruction, multiple-data (MIMD) par-
allel computer and we have a single-program-multiple-data (SPMD) version of the code for
computationally-intensive facility calculations. When running such simulations, there are many
copies of the program running independently on separate processors, with each copy of the pro-
gram handling the computation for a single block. To exchange block-boundary data, each
program instance must communicate with the other programs for adjacent blocks. The commu-
nication and synchronisation tasks are handled via a standard message passing library, MPI [4].

2.5 Boundary Conditions

The inviscid-component of applied boundary conditions is implemented by also filling in the
ghost-cell data and then applying the normal reconstruction and flux calculation without further
discrimination of the boundary cells. This approach covers solid/slip walls, inflow and outflow
boundaries.

For viscous simulations, boundaries may also be assigned as fixed temperature, no-slip or
catalytic (chemical equilibrium at wall gas state) boundary conditions. Such viscous boundary
conditions also use data specified at the cell interfaces that lie along the boundary surface. These
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data are used in the derivative calculations that subsequently feed into the viscous fluxes.

There are also boundary conditions that allow the user to specify the ghost-cell data and
boundary interface data via user-written functions (via an embedded Lua interpreter). These
functions may also be used to bypass the internal flux calculators and specify the boundary
fluxes directly. When exploring specialized boundary conditions, such as the mixing-plane
interface for turbomachinery calculations, the user can first implement them as Lua functions.

2.6 Inviscid Flux Calculation

The flow-states at the cell interfaces are calculated using a piecewise-parabolic scheme. Before
computing the inviscid fluxes at each interface, the velocity field is rotated into a local (n, p, q)-
coordinate system with unit vectors

n̂ = nx î+ ny ĵ + nz k̂ ,

p̂ = px î+ py ĵ + pz k̂ ,

q̂ = qx î+ qy ĵ + qz k̂ , (23)

where n̂ is normal and p̂, q̂ are tangental to the cell interface. The normal and tangential velocity
components

un = nx ux + ny uy + nz uz ,

up = px ux + py uy + pz uz ,

uq = qx ux + qy uy + qz uz , (24)

are then used, together with the other flow properties either side of the interface, to compute the
inviscid fluxes 

Fmass
Fn−momentum
Fp−momentum
Fq−momentum
Fenergy
Fspecies−s

 =


ρun
ρunun + p
ρunup
ρunuq
ρunE + pun
ρunfs

 , (25)

in the local reference frame. These are then transformed back to the (x, y, z) coordinate system
as

F · n̂ =


Fmass
Fx−momentum
Fy−momentum
Fz−momentum
Fenergy
Fspecies−s

 =


Fmass
Fn−momentumnx + Fp−momentumpx + Fq−momentumqx
Fn−momentumny + Fp−momentumpy + Fq−momentumqy
Fn−momentumnz + Fp−momentumpz + Fq−momentumqz
Fenergy
Fspecies−s

 .

(26)

For the simulation of shock and expansion tubes, the shock waves can be extremely strong so
we use the default adaptive scheme in which the equilibrium flux method (EFM) [5] is applied
near shocks and a modified AUSMDV calculator [6] is applied elsewhere.
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Figure 3: Cell, interface and vertex indexing in 2D for Eilmer3. The upper half of the figure
shows the primary cells defining the finite-volumes for the conservation equations. The lower
part of the figure shows the secondary cells, used for computing spatial derivatives.
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2.6.1 Reconstruction

The primary data held by the code are cell-average data, associated with cell centres. To get
the fluxes at cell interfaces, a variable-by-variable reconstruction is made of the flow field. This
is done in a one-dimensional fashion, working along one-index direction at a time. Left and
Right values (wL and wR respectively) of a flow variable at a cell interface are evaluated as
the corresponding cell average value plus a limited higher-order interpolated increment. Given
an array of cell-centres [L1, L0, R0, R1] with an interface located between L0 and R0, the
interpolated values are

wL = wL0 + αL0 [∆L+ × (2hL0 + hL1) + ∆L− × hR0] sL ,

wR = wR0 − αR0 [∆R+ × hL0 + ∆R− × (2hR0 + hR1)] sR ,

∆L− =
wL0 − wL1

1
2

(hL0 + hL1)
,

∆L+ =
wR0 − wL0

1
2

(hR0 + hL0)
= ∆R− ,

∆R+ =
wR1 − wR0

1
2

(hR0 + hR1)
,

αL0 =
hL0/2

hL1 + 2hL0 + hL0

,

αR0 =
hR0/2

hL0 + 2hR0 + hR1

, (27)

where the h represents the width of a cell and the van Albada limiter [7] is implemented as

sL =
∆L−∆L+ + |∆L−∆L+|

∆2
L− + ∆2

L+ + ε
,

sR =
∆R−∆R+ + |∆R−∆R+|

∆2
R− + ∆2

R+ + ε
,

ε = 1.0× 10−12 .

Finally, minimum and maximum limits are applied so that the newly interpolated values lie
within the range of the original cell-centred values. Unlimited, this reconstruction scheme has
third-order truncation errors and, with the limiter active, a sine function is reconstructed with
an effective truncation error order of 2.7.

Typically, reconstruction is done for density, internal energy, velocity components, and
species mass fractions. Other flow quantities that are needed at the interfaces for the inviscid
flux calculation are then obtained from the thermochemical model.

2.6.2 EFM Calculation

The equilibrium flux method (EFM) [5] is used for its dissipative nature in the vicinity of very
strong compressions. The method assumes that the gas is in equilibrium and the molecular
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velocities of the gas either side of the interface can be described with the Boltzmann distribution.
As implemented in Reference [8], the flux of mass from the left state, moving to the right is

FmassL = W+
L ρL unL +D+

L ρL
√

2RTL , (28)

where

W+
L =

1

2

(
1 + erf

(
unL√
2RTL

))
,

D+
L =

1

2
√
π

exp

(
−
(

unL√
2RTL

)2
)

,

erf(s) =
2√
π

∫ s

0

exp(−t2) dt. (29)

Similarly, the flux of mass from the right state, moving to the left is

FmassR = W−
R ρR unR +D−R ρR

√
2RTR , (30)

where

W−
R =

1

2

(
1− erf

(
unR√
2RTR

))
,

D−R =
1

2
√
π

exp

(
−
(

unR√
2RTR

)2
)

. (31)

The flux vector components are then

Fmass = FmassL + FmassR ,

Fn−momentum = FmassL unL + FmassR unR +W+
L pL +W−

R pR ,

Fp−momentum = FmassL upL + FmassR upR ,

Fenergy =
(
W+
L ρL unL

)(
eL +

pL
ρL

+
1

2

(
u2
nL + u2

pL

))
+
(
W−
R ρR unR

)(
eR +

pR
ρR

+
1

2

(
u2
nR + u2

pR

))
+
(
D+
L

√
2RTL ρL

)(1

2

(
u2
nL + u2

pL

)
+

1

2

γ + 1

γ − 1
RTL

)
+
(
D−R

√
2RTR ρR

)(1

2

(
u2
nR + u2

pR

)
+

1

2

γ + 1

γ − 1
RTR

)
. (32)

Species mass fractions are just transported by the net mass flux as scalar quantities. Note that
the gas constants, R and γ, are not really constant; they are density-weighted averages derived
from the local values for left and right gas states.

2.6.3 AUSMDV calculation

Most of the flow field fluxes are computed with the AUSMDV [6] because of its reasonably
low dissipation. The calculation procedure starts by computing the weighting parameters for
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the velocity splitting

αL =
2 pL/ρL

pL/ρL + pR/ρR
,

αR =
2 pR/ρR

pL/ρL + pR/ρR
, (33)

and the sound speed and Mach numbers in the normal direction to the interface

am = max(aL, aR) ,

ML =
unL
am

,

MR =
unR
am

. (34)

The components from pressure splitting are then

p+
L =

pL
4

(ML + 1)2 (2−ML) , |ML| ≤ 1.0 ,

=
pL duL
unL

, otherwise ,

p−R =
pR
4

(MR − 1)2 (2 +MR) , |MR| ≤ 1.0 ,

=
pR duR
unR

, otherwise , (35)

where duL = (unL+|unL|)
2

and duR = (unR−|unR|)
2

. The components from the velocity splitting
are

u+
L = αL

(
(unL + am)2

4 am
− duL

)
+ duL , |ML| ≤ 1.0 ,

= duL , otherwise ,

u−R = −αR
(

(unR − am)2

4 am
+ duR

)
+ duR , |MR| ≤ 1.0 ,

= duR , otherwise , (36)

These components are then combined into a mass flux

(ρu) 1
2

= u+
L ρL + u−R ρR (37)

and a pressure flux
p 1

2
= p+

L + p−R (38)

and a normal-momentum flux (ρu2) 1
2

as a blend of AUSMV and AUSMD fluxes

(ρu2)AUSMV = u+
L ρL unL + u−R ρR unR ,

(ρu2)AUSMD =
1

2

(
(ρu) 1

2
(unL + unR)− |(ρu) 1

2
|(unR − unL)

)
,

(ρu2) 1
2

= (
1

2
+ s)(ρu2)AUSMV + (

1

2
− s)(ρu2)AUSMD , (39)
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with the switching function, s, based on the pressure gradient

s =
1

2
min

(
1, K

|pR − pL|
min(pL, pR)

)
, (40)

with K = 10.

The flux vector components can be assembled from these pieces as

Fmass = (ρu) 1
2
,

Fn−momentum = (ρu2) 1
2

+ p 1
2
, (41)

and depending on which way the wind is blowing, the remaining flux vector components are
assembled from either the right or left flow properties. For (ρu) 1

2
≥ 0,

Fp−momentum = (ρu) 1
2
upL ,

Fenergy = (ρu) 1
2
HL . (42)

(43)

otherwise

Fp−momentum = (ρu) 1
2
upR ,

Fenergy = (ρu) 1
2
HR . (44)

(45)

where H = e + p
ρ

+ 1
2

(
u2
n + u2

p

)
is the total enthalpy of the gas. Again, species mass fractions

are just transported by the mass flux as scalar quantities.

Finally, an entropy fix is applied, as per Section 3.5 in Reference [6]. This first determines
if the interface includes an expansion sonic point

Case A: unL − aL < 0 and unR − aR > 0

Case B: unL + aL < 0 and unR + aR > 0

and increments the flux if only a single expansion wave is detected

Fmass − = ∆ua (ρR − ρL) ,

Fn−momentum − = ∆ua (ρRunR − ρLunL) ,

Fp−momentum − = ∆ua (ρRupR − ρLupL) ,

Fenergy − = ∆ua (ρRHR − ρLHL) , (46)

where

∆ua = 0.125((unR − aR)− (unL − aL)) , for A and not B,

= 0.125((unR + aR)− (unL + aL)) , for B and not A,

= 0 , otherwise. (47)
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2.6.4 Shock Detector

The switching between the two flux calculators is governed by a shock (or compression) detec-
tor. This is simply a measure of the relative change in normal velocity at interfaces. Specifically,
we indicate a strong compression at cell-interface i+ 1

2
when

un,i+1 − un,i
min(ai+1, ai)

< Tol , (48)

where Tol is the compression tolerance and is typically set at -0.05. This measure is applied to
all interfaces in a block and then a second pass propagates the information to near-by interfaces.
If a first cell-interface is identified as having a strong compression, the EFM flux calculator is
used for all interfaces attached to the cell containing that first cell-interface.

2.7 Viscous Fluxes

The viscous flux calculation is then performed based on the the updated cell-centre flow state.
The spatial derivatives required in the viscous stress and heat flux terms, Eq. 5 and 6, are eval-
uated as

∇φ =
1

V

∮
S

φ n̂ dA, (49)

where φ a scalar quantity and the surface S defines the secondary cell surrounding a primary-cell
vertex, as shown in Figure 3. When used in the viscous fluxes, the vertex values are averaged to
obtain a midface value. All evaluations are done within a block and secondary cells of half size
are used along the boundary faces of the block. Viscous boundary conditions for velocity (e.g.

no slip) and temperature are applied by using data that was specified at cell interfaces along the
boundary. In 3D, further special cases for the derivatives are encountered for the edges of the
block, which are evaluated with a least squares fit of the function φ = a x + b y + c z + d, and
for corners where there is just enough data to fit the same linear function. In 2D, a line integral
corresponding to Eq.(49) is done, just within the (x,y)-plane. Also in 2D, only the corners need
to be treated by fitting a bilinear function.

3 Thermochemistry

The gas-dynamic equations of the previous section are closed by a set of relations between the
various thermodynamic properties of the gas mixture. This section describes a gas library which
provides various models of gas behaviour for use in the simulation codes.

There are a number of gas models available as part of the gas library. They are desribed
here:

ideal gas mix
The ideal gas mix is used to model one or more components, all of which have ideal
(perfectly elastic collisions and calorically perfect) behaviour.
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equilibrium gas mix
The equilibrium gas mix models a fixed-composition gas mix which is assumed to be in
thermal and chemical equilibrium at the local thermodynamic conditions.

thermally perfect gas mix
The thermally perfect gas mix models a gas with one or more components, all of which
have perfect (collisional) behaviour but each have all internal energy modes excited to an
equilibrium described by a single temperature

multi-temperature gas mix
This model represents a mixture of gases with perfect collisional behaviour but the the
internal energy modes are ascribed different Boltzmann temperatures in order to model
the effect of thermal nonequilibrium.

Noble-Abel gas mix
The Nobel-Abel gas mix model is used in interior ballistics work where high pressures
mean that real gas effects cannot be neglected. It models the effect of the finite volume
occupied by gas particles when computing the equation of state. Collisions between gas
particles are still considered to be perfectly elastic.

van der Waals gas mix
The van der Waals gas mix models real gas effects at high pressures/densities. The finite
volume occupied by the gas particles and the non-ideal particle collisions due to van der
Waals’ forces are considered in the model.

In simulating impulse facilities, we typically only use the equilibrium gas and thermally
perfect gas models. Therefore, these two models are discussed in the remainder of this section.
The thermally perfect gas mix is used when we also wish to simulate the effect of finite-rate
chemistry between the gases. The multi-temperature gas mix has also been used recently to
model the X2 facilities [9], however, we consider the validation of this model a work in progress.

3.1 An equilibrium gas mixture

At higher temperatures, the gases in impulse facilities will undergo chemical reactions. For
example in air, by 2 000 K oxygen molecules will begin to dissociate, and by 4 000 K nitrogen
molecules will begin to dissociate. When the chemical reactions are rapid compared to the
flow transit times, we use a model of the gas which assumes chemical equilibrium. Along
with the assumption of chemical equilibrium, thermal equilibrium is also assumed; the internal
energy modes of the gas rapidly equilibriate with the translational temperature when compared
to the characteristic flow time. This assumption is most appropriate in the high pressure, high
temperature gas that is driven by the piston against an unruptured diaphgram: the high pressures
and temperatures give rise to rapid changes in chemical composition.
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The equilibrium gas mix is implemented as a look-up table where the thermodynamic prop-
erties are interpolated (or extrapolated) from a table with indexing based on density and internal
energy. The look-up table is built for a fixed gas composition over a range of densities and ener-
gies prior to the gas dynamics simulation and is read into memory at the start of the simulation.
A tool provided in the gas library builds the look-up table by running the CEA2 program [10]
numerous times.

3.2 A mixture of thermally perfect gases

As mentioned above, the gas model for a mixture of thermally perfect gases is often used in
conjunction with a finite-rate chemistry simulation. The thermodynamic relations for the gas
mixture are presented here. The implementation of finite-rate chemical effects is discussed in
Section 3.3.

3.2.1 A single thermally perfect gas

The assumed behaviour of a thermally perfect gas is that all internal energy modes are in equi-
librium at a single temperature. For atoms this means that the Boltzmann distributions for trans-
lational and electronic energy are governed by one temperature value. Similarly for molecules,
the Boltzmann distributions for translational, rotational, vibrational and electronic energy are
described by a single temperature value.

To model a thermally perfect gas requires a knowledge of how the gas stores energy as a
function of temperature. It is convenient to have available the specific heat at constant pressure
as a function of temperature, Cp(T ). From this, specific enthalpy of the gas can be computed as

h =

∫ T

Tref

Cp(T )dT + h(Tref ) (50)

and entropy is given as

s =

∫ T

Tref

CP (T )

T
dT + s(Tref ). (51)

The transport properties, viscosity and thermal conductivity, can be calculated as a function
of temperature for a single component of the gas mix. The transport properties for a single
component can be combined by an appropriate mixing rule to give a mixture viscosity and
thermal conductivity.

In the implementation, a thermally perfect gas is characterised by five curve fits all of which
are functions of temperature:

1. specific heat at constant pressure, Cp(T ),

2. enthalpy, h(T ),
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3. entropy, s(T ),

4. viscosity, µ(T ), and

5. thermal conductivity, k(T ).

The form of these curve fits follows that used by McBride and Gordon [10]. The curve fits for
thermodynamic properties in non-dimensional form are as follows:

Cp(T )

R
= a0T

−2 + a1T
−1 + a2 + a3T + a4T

2 + a5T
3 + a6T

4 (52)

H(T )

RT
= −a0T

−2 + a1T
−1 log T + a2 + a3

T

2
+ a4

T 2

3
+ a5

T 3

4
+ a6

T 4

5
+
a7

T
(53)

S(T )

R
= −a0

T−2

2
− a1T

−1 + a2 log T + a3T + a4
T 2

2
+ a5

T 3

3
+ a6

T 4

4
+ a8 (54)

The coefficients for these curve fits are available for a large number of gaseous species in the
CEA program [10] (and associated database files). Each of these curve fits are only valid
over a limited temperature range. For example, the thermodynamic curve fits for molecular
nitrogen (N2) are comprised of three segments: 200.0–1000.0 K, 1000.0–6000.0 K and 6000.0–
20000.0 K. Beyond this range the values are extrapolated in this work. The extrapolations are
based on a crude assumption of constant Cp outside of the range. Thus the extrapolations are as
follows:

Cp(T < Tlow)

R
=

Cp(Tlow)

R
Cp(T > Thigh)

R
=

Cp(Thigh)

R
H(T < Tlow)

RT
=

1

T
{H(Tlow)Tlow − Cp(Tlow)(Tlow − T )}

H(T > Thigh)

RT
=

1

T
{H(Thigh)Thigh + Cp(Thigh)(T − Thigh)}

S(T < Tlow)

R
= S(Tlow)− Cp(Tlow) log

(
Tlow
T

)
S(T > Thigh)

R
= S(Thigh) + Cp(Thigh) log

(
T

Thigh

)

The curve fits for viscosity and thermal conductivity are also in the same form as that used
by the CEA program [10]. The curves are as follows.

log µ(T ) = a0 log T +
a1

T
+
a2

T 2
+ a3

log k(T ) = b0 log T +
b1

T
+
b2

T 2
+ b3

23



3.2.2 Mixing rules for a collection of thermally perfect gases

The thermodynamic state for a mixture of thermally perfect gases is uniquely defined by two
state variables and the mixture composition. The internal energy is computed as a mass fraction
weighted sum of individual internal energies,

e =
N∑
i=1

fiei =
N∑
i=1

fi (hi −RiT ) . (55)

Pressure is computed from Dalton’s law of partial pressures,

p =
N∑
i=1

ρiRiT. (56)

The specific gas constant for the mixture is defined as

R =
N∑
i=1

fiRi. (57)

The calculation of Cp is based on a mass fraction weighted sum of component specific heats,

Cp =
N∑
i=1

fiCpi. (58)

The specific heat at constant volume is then computed as

Cv = Cp −R. (59)

The ratio of specific heats, γ, is given by its definition,

γ =
Cp
Cv
. (60)

The frozen sound speed for the mixture, a, is calculated as

a =
√
γRT . (61)

During a compressible flow simulation, the values of ρ and e are most readily available
from the conserved quantities that are solved for during each time increment. This leads to
the specific problem of solving for the thermodynamic state of the gas mixture given ρ, e, and
the mixture composition,

−→
f . However, the formulae previously presented are all explicit in

temperature. We solve for temperature using the Newton iteration technique for zero solving,

Tn+1 = Tn −
f0(Tn)

f ′0(Tn)
, (62)

where the zero function, f0(T ), is based on the given internal energy, e, and a guess for internal
energy based on temperature,

f0(T ) = eguess − e =
N∑
i=1

fi (hi −RiTguess)− e. (63)
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Using the fact that Cvi = dei
dt

, we can conveniently find the derivative function for the Newton
technique by computing the mixture Cv,

df0(T )

dT
=

N∑
i=1

fi
dei
dT

=
N∑
i=1

fiCvi = Cv. (64)

The Newton iteration is set to converge when the accuracy of the temperature value is within
±1.0 × 10−6 K. Personal experience has shown that this kind of error tolerance is required
when temperature is used in a finite-rate chemistry calculation to compute rates of composition
change.

The calculation of mixture transport properties is not as straight forward as the thermody-
namic properties. A mixing rule is required to compute the mixture viscosity and thermal con-
ductivity. Wilke’s mixing rule [11] has been implemented in the work presented here. Specif-
ically, the mixing rules used by Gordon and McBride [12] in the CEA program are used for
calculating mixture transport properties in this work; these rules are a variant of Wilke’s origi-
nal formulation [11].

µmix =
N∑
i=1

xiµi

xi +
∑N

j=1
j 6=i

xjφij
(65)

and

kmix =
N∑
i=1

xiki

xi +
∑N

j=1
j 6=i

xjψij
(66)

where xi is the mole fraction of species i.

The interaction potentials, φij and ψij , can be calculated a number of ways. Again, the
formulae suggested by Gordon and McBride [12] have been used,

φij =
1

4

[
1 +

(
µi
µj

)1/2(
Mj

Mi

)1/4
]2(

2Mj

Mi +Mj

)1/2

(67)

and

ψij = φij

[
1 +

2.41(Mi −Mj)(Mi − 0.142Mj)

(Mi +Mj)2

]
(68)

where Mi and Mj refer to the molecular weights of species i and j respectively.

Once the mixture viscosity and thermal conductivity have been computed, it is possible to
compute the mixture Prandtl number from its definition

Pr =
µCp
k
. (69)
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3.3 Finite-rate chemistry implementation
3.3.1 Rates of species change due to chemical reaction

By assuming a collection of simple reversible reactions, the chemically reacting system can be
represented as,

N∑
i=1

αiXi 

N∑
i=1

βiXi, (70)

where αi and βi represent the stoichiometric coefficients for the reactants and products respec-
tively. The case of an irreversible reaction is represented by setting the backward rate to zero.
For a given reaction j, the rate of concentration change of species i is given as,(

d[Xi]

dt

)
j

= νi

{
kf
∏
i

[Xi]
αi − kb

∏
i

[Xi]
βi

}
, (71)

where νi = βi−αi. By summation over all reactions, Nr, the total rate of concentration change
is,

d[Xi]

dt
=

Nr∑
j=1

(
d[Xi]

dt

)
j

. (72)

For certain integration schemes it is convenient to have the production and loss rates available
as separate quantities. In this case,

d[Xi]

dt
= qi − Li =

Nr∑
j=1

ω̇appi,j −
Nr∑
j=1

ω̇vai,j (73)

The calculation of ω̇appi,j and ω̇vai,j depends on the value of νi in reach reaction j as shown in
Table 1.

Table 1: The form of the chemical production and loss terms based on the value of νi

νi > 0 νi < 0
ω̇appi νikf

∏
i[Xi]

αi −νikb
∏

i[Xi]
βi

ω̇vai −νikb
∏

i[Xi]
βi νikf

∏
i[Xi]

αi

The calculation of the reaction rate coefficients, kf and kb, and the solution methods for
the ordinary differential equation system of species concentration changes are discussed in the
subsequent sections.

3.3.2 Reaction rate coefficients

The reaction rate coefficients for a reaction can be determined by experiment (often shock tube
studies are used) or from theory. In a great number of cases, estimates of the reaction rate from
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theory can vary by orders of magnitude from experimentally determined values. For this reason,
fits to experimental values are most commonly used.

For the single-temperature gas model discussed in this chapter, the forward reaction rate
coefficients are calculated using the generalised Arrhenius form,

kf = AT n exp

(
−Ea
kT

)
(74)

where k is the Boltzmann constant and A, n and Ea are constants of the model.

The backward rate coefficient can also be calculated using a modified Arrhenius form,

kb = AT n exp

(
−Ea
kT

)
(75)

or it can be calculated by first calculating the equilibrium constant for the reaction,

kb =
kf
Kc

. (76)

If the backward rate coefficient is calculated from the equilibrium constant, then a method of
calculation of the equilibrium constant is required. The equilibrium constant for a specific
reaction can be calculated from curve fits or, as is done in this work, using the principles of
thermodynamics. The equilibrium constant based on concentration is related to the equilibrium
constant based on pressure by,

Kc = Kp

(patm
RT

)ν
(77)

where patm is atmospheric pressure in Pascals,R is the universal gas constant, ν =
∑NS

i νi and

Kp = exp

(
−∆G

RT

)
. (78)

The derivation of the formula forKp, the equilibrium constant based on partial pressures, can be
found in any introductory text on classical thermodynamics which covers chemical equilibrium.
The differential Gibbs function for the reaction, ∆G, is calculated using

∆G =
Ns∑
i

νiGi (79)

where each Gi is computed from the definition of Gibbs free energy,

Gi(T ) = Hi(T )− T × Si(T ) (80)

and Gi is in units of J/mol. Hi and Si can be computed in the appropriate units by using the
CEA polynomials and multiplying byRT andR respectively.

Some caution should be exercised in the selection and use of reaction rates for a specific
flow problem. In many cases, a set of reaction rates may only be “tuned” for a specific problem
domain. This problem of “tuned” sets of reaction rates and an explanation for why it arises is
described by Oran and Boris (p. 38 of Ref. [13]):
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A problem that often arises in chemical reactions is that there are fundamental in-
consistencies in a measured reaction rate. For example, there may be experimental
measurements of both the forward and reverse rate constants, kf and kr. Nonethe-
less, when either is combined with the equilibrium coefficient for that reaction, the
other is not produced. This appears to represent a violation of equilibrium thermo-
dynamics. The explanation is usually that kf and kr have been measured at rather
different temperatures or pressures, and so there are inconsistencies when they are
extrapolated outside the regime of validity of the experiments.

3.3.3 Solving the chemical kinetic ordinary differential equation

The system represented in Equation 72 is a system of ordinary differential equations (ODEs)
which can be solved by an appropriate method. For certain chemical systems, the governing
ODEs form a stiff system due to rates of change varying by orders of magnitude for certain
species. For these systems, special methods for stiff ODEs are required. In this work, four
methods for the numerical solution of the ODE system have been implemented.

1. Euler method

2. modified Euler method

3. alpha-QSS method, and

4. Runge-Kutta-Fehlberg method

The Euler method and modified Euler method are standard techniques for solving ODEs and
the details can be found in any text dealing with numerical methods and numerical analysis. The
fourth-order Runge-Kutta method uses a fifth-order error estimate as a means for controlling
the timestep used for integration as proposed by Fehlberg [14]. This is particularly efficient for
non-stiff systems.

alpha-QSS method The alpha-QSS (quasi-steady-state) method was proposed in Mott’s the-
sis [15]. It is an ODE solver aimed specifically at the problem of stiffness in chemical systems.
This ODE solver makes use of the forward and backwards rates of concentration change as
calculated by Equation 73. This is a predictor-corrector type scheme in which the corrector is
iterated upon until a desired convergence is achieved. The predictor and corrector are,

[Xi]
1 = [Xi]

0 +
∆tq0

i

1 + α0
i∆tL

0
i

(81)

[Xi]
n+1 = [Xi]

0 +
∆t
(
q̄i − [Xi]

0 L̄i
)

1 + ᾱi∆tL̄i
. (82)

In the above equations,

L̄i =
1

2

(
L0
i + Lni

)
(83)
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and
q̄i = ᾱiq

n
i + (1− ᾱi)Q0

i . (84)

The key to the scheme is calculating α correctly. This α parameter controls how the update
works on a given species integration. Note that α is defined as

α(L∆t) ≡
1−

(
1− e−L∆t

)
/(L∆t)

1− e−L∆t
. (85)

Using Pade’s approximation,

ex ≈ 360 + 120x+ 12x2

360− 240x+ 72x2 − 12x3 + x4
(86)

it is possible to write a form of the expression for α which is more amenable to computation as
the expensive exponential function evaluation is avoided. The approximation for α becomes,

α(L∆t) ≈ 180r3 + 60r2 + 11r + 1

360r3 + 60r2 + 12r + 1
(87)

where r ≡ 1/(L∆t).

3.3.4 Coupling chemistry effects to the flow solver

Some details about the coupling of the chemistry effects to the gas dynamics simulation are
provided here. In an unsteady, time-accurate flow simulation, the allowable timestep is con-
strained by the Courant-Friedrichs-Lewy (CFL) criterion. In a viscous compressible flow, the
CFL criterion allows one to select an appropriate timestep and limit the propagation of flow in-
formation to distances less than one cell-width. The speed at which flow information propagates
is a function of inviscid wave speeds and viscous effects.

When the effects of finite-rate chemistry are ‘split’ from the flow simulation, the chemical
update is solved in a separate step in which the flow is held frozen. (In fact, in true timestep-
splitting, all other contributing physics is frozen during the chemistry update.) Thus the chem-
istry problem is to find the updated species composition at the end of the flow timestep.

It may be, and is quite likely, that the flow timestep is not an appropriate timestep to solve the
chemical kinetic ODE problem. When the timestep for the chemistry problem is smaller than
the flow timestep, the chemistry problem is subcycled a number of times until the total elapsed
time equals that of the flow timestep. It is common to have simulations where the chemistry
timestep is 100–1000 times smaller than the flow timestep, that is, 100-1000 subcycles are
required to solve the chemistry problem. When the timstep for the chemistry problem is larger
than the flow timestep, it is simply set to the value of the flow timestep.

During the simulation process, the chemistry timestep is tracked for each finite-volume cell
in the simulation. Although the flow ‘moves on’ in subsequent timesteps, if the change of flow
conditions is not large, then the previous chemistry timestep will be a good estimate to begin
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the new chemistry problem in the subsequent timestep. An exceptional case is when a shock
passes through the cell: the change of flow conditions does become large. In this instance, the
old chemistry step is disregarded and a new step is selected. The selection procedure for a new
step is discussed in the next paragraph. When using either the Runge-Kutta-Fehlberg or the
alpha-QSS methods, an estimate of the new chemistry timestep is provided as part of the ODE
update routine.

So, during a simulation, the old chemistry step at one iteration is used to begin the new
chemistry problem in the next iteration. What is needed is a means to select the chemistry
step on the initial iteration, or whenever the old suggestion is not reasonable (as in the case of
a shock passing through the cell). In this work, the initial step for the chemistry problem is
selected based on the suggestion by Young and Boris [16],

dtchem = ε1 min

(
[Xi](0)

[Ẋi](0)

)
(88)

where ε1 is taken as 1.0 × 10−3 in this work, and the expression is evaulated at the initial
values for the chemistry subproblem. Young and Boris [16] suggest that ε1 be scaled from the
convergence criteria. We have found that the fixed value is adequate for the problems of interest
to our research group.
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