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Abstract

This report describes a program for the time-integration of the Navier-Stokes equa-
tions on a two-dimensional structured mesh. The flow geometry may be either planar
or axisymmetric. The unusual features of this program are that it is written in C and
makes extensive use of sophisticated data structures to encapsulate the data. The idea
of writing the code this way is to make it easier (than traditional FORTRAN codes)
to “parallelize” for the Multiple-Instruction-Multiple-Data style of parallel computer.

The integral form of the governing equations are given for cartesian coordinates and
then the particular discretization used in the code is described. A derivation of the
axisymmetric equations is given in an appendix. The full version of the code describes
a flow domain as a set of abutting blocks, each consisting of a tensor-product mesh
of quadrilateral cells. However, this report considers only the single-block version of
the code. The flow field is recorded as cell-average values at cell centres and explicit
time stepping is used to update conserved quantities. MUSCL-type interpolation and
a three-stage Riemann solver are used to calculate inviscid fluxes across cell faces while
central differences (via the divergence theorem) are used to calculate the viscous fluxes.
The Riemann solver is suitable for flows with very strong shocks and does not require
the entropy fix as applied to the Roe-type solvers. Because the code is intended to be
a test-bed for implementation on parallel computers, the coding details are described
in some detail.

A set of test problems is also included. These exercise various parts of the code
and should be useful for both validation and performance measurements of the (future)
parallel implementations.
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Nomenclature, Units

: (z,y)-plane cell area

: data structure name

: local speed of sound, m/s

: coefficient of heat capacity (constant P), J/kg-K

: coefficient of heat capacity (constant volume), J/kg - K
: molecular diffusion coefficient
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: total energy (internal 4 kinetic), .J/kg
: specific internal energy, J/kg

: unit vector

: algebraic vector of z-component fluxes
: species mass fraction

: algebraic vector of y-component fluxes
: specific enthalpy, J/kg

. coefficient of thermal conductivity

: length of interface in the (x,y)-plane

: direction cosine

: unit normal vector

. pressure, Pa

: Prandtl number, (C,u/k)

: algebraic vector of source terms

: heat flux

: gas constant, J/kg/K

: Reynolds number

: radial coordinate, m

~
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: control surface of the cell

: temperature, K

: time, s

: time step, s

: algebraic vector of conserved quantities

o~

: Riemann invariant

: z-component of velocity, m/s

: y-component of velocity, m/s

. diffusion velocity

: wave speed used in the Riemann solver
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g
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: x-coordinate, m
: y-coordinate, m
: z-coordinate, m
: intermediate variable used in the Riemann solver
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. cell volume, m

: weighting function

: compression parameter in the MUSCL interpolation
. density, kg/m?

: ratio of specific heats

: MUSCL interpolation parameter

: second coefficient of viscosity

: shear stress, Pa

: coefficient of viscosity, Pa.s

: half-angle for the axisymmetric cells, radians

: angular coordinate, radians

3

: volume per radian for the axisymmetric cell

: cell-averaged value
e 40pftecept+epectepe,

Superscripts
n : time level or iteration level
* : intermediate states for the Riemann solver

!/

: secondary cell identifier

Subscripts

A, B,C,D : primary-cell vertices

i, ] . cell-centre indices

18 : species index

1+ % : “vertical” interface

Ji== % : “horizontal” interface
MIN : minimum allowable value
N, S, E,;W : North, South, East, West interface or boundary
n : normal to interface

t : tangent to interface

v : viscous contribution

.,y : cartesian components

0 : z=0or § =0 plane

L, R . left state, right state



1 Introduction

In recent years the proliferation of relatively fast computers has popularized the direct cal-
culation of viscous, compressible flows in a time-accurate manner. In some situations, such
as the transient hypersonic flow over a model in a shock-tunnel, numerical simulation is
the only way to extract detailed information about the flow field. Such computations are
very demanding and require computational resources that far exceed those available on a
single-processor computer. Hence, flow solvers running on parallel computers are of great

interest.

This report describes a code (and set of routines) that integrate the Navier-Stokes equa-
tions in a two-dimensional flow domain. Only a single block version of the code using a
“tensor product” (or structured) grid is considered here. The multiblock and parallel exten-

sions will be the subjects of future work.

The code is based on the standard cell-centred time-dependent finite-volume formulation
as described in [1] - [6]. The governing equations are expressed in integral form over arbitrary
quadrilateral cells with the time rate of change of conserved quantities in each cell specified
as a summation of the fluxes through the cell interfaces. The fluxes are composed of separate
inviscid and viscous components. The inviscid components are computed with a Riemann

solver while the viscous fluxes are calculated by application of the divergence theorem.

Section 2 describes the governing equations and programming details for two-dimensional
geometries while the governing equations for axisymmetric geometries are given in Appendix
A. A set of test cases, designed to exercise various features of the code, is then described in
Section 3. These test cases may be used to validate changes made to the code when porting

it to different computer architectures.



2 Governing Equations

The integral form of the two-dimensional Navier-Stokes equations in cartesian coordinates

can be expressed as

S [vaay+ [ (F-rydy — [ (GGl = [[ Qardy ()

p
pu

U = pu , (2)
pl
pfis

is the algebraic vector of conserved quantities,

where

pu pU
pu+ P puv
F = poU , G = pv?+ P ) (3)
pEu + Pu pEv 4+ Pv
plfisu pfisv
are the inviscid flux vectors,
0 0
Tre Try
F, = Ty , G, = Tyy , (4)
Teztl + Tyz¥ + Qo ToyU + TyyU + Gy
pJisVi.is pfisVyis

are the viscous flux vectors and @) is an algebraic vector of source terms. S is the control
surface bounding the control volume (). These equations specify the conservation of mass,
momentum, energy and the conservation of mass for the individual species in the control
volume. They are supplemented by the equation of state which relates the pressure to the

density and internal energy as

P = Plpe) . (5)
For a calorically perfect gas, we use
P = P(7 - 1)6 ’ (6)

while, for air in chemical equilibrium, we use the curve-fits in [7]. The viscous stresses are
given by

du Ju OJv
T 21— A = a_ 5
K K ow + (6:1: + 3y)
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= 2 @4_)\ a_u_|_a_v
Tw = H'u@y Joxr  Ody)

Ju 0Ov
Tey = Tyz = N(a_y‘l'a_x) 3 (7)

where p and X are the first and second coefficients of viscosity. The viscous heat flux is

Gz = k aT/all? + PE hisfis%,is 5

Currently, the code convects the species without considering their diffusion (i.e. V.., =

V,.is = 0). For air, viscosity is evaluated using Sutherland’s law

T

= 1.458 x 1076 ————— 9
a T 04 (9)

where T'is in degrees Kelvin and  is in Pa.s. Also, Stokes’ hypothesis (of zero bulk viscosity)

is invoked to give A = —%,u and a constant Prandt] number (Pr = 0.72) is used to evaluate
the coefficient c

=2t 10

Py (10)

For two-dimensional flow without heat sources or chemistry, the source terms in () are set
to zero. For axisymmetric flow, equations (1) - (4) and (7) are replaced by their axisymmetric

counterparts discussed in Appendix A.

2.1 Spatial Discretization and Data Storage

The governing equations (1) - (4) are applied to straight-edged quadrilateral cells as shown
in Fig. 1. Note that the bounding contour S consists of 4 line segments in the (z,y)-plane
and (for 2D geometry) the cell extends 1 unit in the z-direction. A cell-centred discretization
is used in which cell-averaged values < U > are associated with the “primary” cell centres.
The vertices are labelled A — D and the line integrals in equation (1) (which are taken in
the usual counter-clockwise direction) are approximated using the midpoint rule. Thus, the

semi-discrete equations can be expressed as

d<U> 1 1
sy, - F—F, ) — =
—*t3q ABXO:D( ) (v —ya) = g

Z (G—Gu)(l’B—ZL'A) = <Q> , (11)

ABCD

where the summations are over the 4 sides of the cell. Given the current flow state and a
procedure for computing the average fluxes at the midpoints of the interfaces, equation (11)

may the integrated in time as an initial value problem.
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The flow domain is divided into a number of blocks with the data for each block stored
in a single data structure as defined in Appendix C. Currently, the flow domain consists of
a single block. The data structure (labelled A, say) includes both geometry and flow data

and flags for boundary conditions.

The structured grid is specified as a two-dimensional array of primary cells with ¢, 7 indices
ranging from ,,;, t0 24z and Jin 0 Jpmas respectively. These cells are also called “active”
cells (as opposed to “ghost” cells which are used to implement boundary conditions). Using
the C language syntax, the density in cell ¢, is accessed as A.Ctr[i][j].rho. Here A.Ctr
is a pointer to an array of pointers, each of which points to a one-dimensional array. See
Fig. 2 for a schematic of the data storage. Nonzero values of 1,,;, and j,,;, allow storage of
ghost cells without the use negative indices or index translation. For convenience, the cell
interfaces are labelled “North”, “South”, “East” and “West”. The domain boundaries are
labelled “North”, “South”, “East” and “West” also, and are adjacent to cells with j = 7,44,

7 = Jmins t = lmar and 1 = 1,,,;, respectively.

Referring to Fig. 1, the geometry of the cell 7,7 is defined by its vertices which are
specified as (z,y) coordinate pairs. The vertices A, B,C, D are indexed as A.Vitx[i][j — 1],
A Vix[il[j], AViz[i — 1][j], and A.Viz[i — 1][7 — 1] respectively. The North and South
(“horizontal”) interfaces are indexed as A.H F[i][j] and A.H F[i][j — 1] while the West and
East (“vertical”) interfaces are indexed as A.V F[i — 1][j] and A.V F[i][y] respectively.

The cell volume is computed (via an application of the divergence theorem) as

9] :/ x dy, (12)

]

where S; ; is the bounding contour for the cell in the (z,y)-plane. This expression is dis-

cretized as

1
Bij = 5 . (zB+za)(ys —ya) - (13)
ABCD

Note that unit depth has been assumed for the z-direction and the area of the cell in the
(z,y)-plane A;; = Q; ;. Cell averages of both the primary variables (p,u,v,e,p,T") and the
conserved variables (p, pu, pv, pF) are associated with the cell “centre” or “centroid”. The

coordinates of the cell centre given by

1
Totr = A //demdy 3

i
1

L= dedy 14

Yo y /Ayxy (14)

0]




which are approximated as
Toyr =

> (wB+z4)(ys —ya) [Aij |
ABCD

Yotr =

| — ool —

ABXO:D(ZUB +ya)(zs+xa)ys —ya) JAij (15)

after application of the divergence theorem.

An array of “secondary” cells is also defined (see Fig. 3) using the primary cell centres as
the new vertices. These secondary cells are used in the calculation of the spatial derivatives

required by the viscous stresses (7).

2.2 Inviscid Flux Calculation

The purpose of the inviscid flux routine is to provide estimates for the components of F
and (7 in equation (3) at each cell interface for each time step. This is achieved by first
interpolating the flow state (consisting of a set of values for p, u, v, e, P, a) to either side
of each interface at the start of the time step and then applying a Riemann solver to estimate

the flow state at the interface during the time step.

2.2.1 Inviscid Boundary Conditions

Before interpolation, the inviscid boundary conditions are applied by setting up two layers
of ghost cells along each of the boundaries. For a supersonic inflow boundary, all of the
ghost-cell quantities are specified as fixed while, for a supersonic outflow boundary, the
ghost-cell quantities are extrapolated from active cells just inside the boundary. Solid-wall
(i.e. tangency) boundary conditions are applied by setting all of the scalar quantities in
the ghost cells equal to those in the active cells adjacent to the boundary but setting the
ghost-cell velocities to the mirror image of those in the active cells. Note that, for no-slip

walls, we apply just the tangency condition at this stage of the calculation.

2.2.2 Interpolation of the Interface State

The state of the flow either side of each interface is interpolated (or reconstructed) from
the set of cell averaged states by assuming a variation of the variables within cells. This

interpolation is performed independently in each index direction and separately for each



primary variable. For example, the density either side of the vertical interface (i,7) is

obtained by a generalized MUSCL interpolation/reconstruction [8] using the expressions

pL = pi; +l“i—ﬁﬂﬁ_%f+“+ﬁﬂ31}}’

:
pn = piens = 3 [0+ A B Ty + (1= KB, (16)
where
@m = MINMOD(A;;, BAi1;) ,
(At);,; = MINMOD(BA;;, A1) (17)
and

Aij=pij—pi-1j - (18)
Interpolation for the other variables and for the horizontal interfaces is done similarly.

Setting the parameter k = 1/3 gives an upwind-biased third-order interpolation scheme
while setting k = 1/2 gives second-order upwind interpolation. The “compression” parame-

ter [9] is restricted to

33—k
1—k&
We have used 3 = 2 for the test cases reported in Section 3. The MINMOD limiter function

returns the argument with the minimum magnitude if both arguments have the same sign

1<8<

(19)

and returns zero otherwise (see e.g. [10]). To make the code more robust, we impose the
conditions pr, pr > pumin and er, er > eppn after interpolation, but before the application

of the Riemann solver.

After the interpolation process, a Riemann solver is applied to compute the inviscid flux
vectors (3). Note that the solver is applied in a locally rotated frame of reference in which
the u-velocity is normal to the interface and the increasing 7 or 7 index being on the right

side of the interface. The transformation is

Unormal = U Nz + U ny

Vtangent — U Ny + v ng 5 (20)

where n, and n, are the z- and y-direction cosines of the interface normal.
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2.2.3 Riemann Solver

There are a number of Riemann solvers that can be used including “exact” iterative schemes
[11] and approximate (noniterative) schemes [12] [13] [14]. The approximate schemes are
generally less computationally expensive that the iterative schemes and, because the Rie-
mann solver comsumes a large fraction of the total computational effort, an approximate
scheme 1s favoured. Although the Roe-type solver is popular because it is relatively fast,
there are situations (such as the double-Mach-reflection case discussed in Section 3.3) where
it occasionally produces spurious results (see [15, 16, 17]). On the other hand, the Osher-type

solver [13] is considered to be fairly robust and free of adjustable parameters [18].

We have opted to use a 3-stage approximate solver in which the first stage computes the
intermediate pressure and velocity assuming isentropic wave interaction. A second stage,
based on the strong-shock relations, may be invoked to improve the first-stage estimate if
the pressure jumps across either wave are sufficiently large. In practice, this modification
has been required only in extreme conditions such as those found in the bluff-body test case
(Section 3.7). The final stage is to select/interpolate the interface state (p, u, v, e, P, etc)
from the set of left, right and intermediate states. If stage 2 (strong shock modification) is

not invoked, the solver is much like Osher’s approximate Riemann solver [13].

STAGE 1: The first stage of the Riemann solver assumes that a spatially constant left state
(subscript L) and right state (subscript R) interact through a pair of finite-amplitude (and
isentropic) compression or rarefaction waves. Perfect gas relations ([19] cited in [11]) are
used to obtain the intermediate states (L*, R*) in the gas after the passage of left-moving

and right-moving waves, respectively. The expressions implemented in the code are

(’7 . 1)(UL . UR) 2v/(v=1)

Pf =P, =P =P 21
and o o
. . UZ+Ug
UL:uR:u :71_|_Z , (22)
where the Riemann invariants are
— 2
Urp = up+ ar , and
~v—1
— QaR
Up = - 23
R UR N — 1 ) ( )
and the intermediate variable Z is given by
ap pL)(w—l)/(Qw)
J=—|—= . 24
ar, <PR (24)

11



Note that these expressions involve the power operator which is computationally expensive.
For a limited range of base and exponent, the standard power function is replaced by the
approximate expansion given in Appendix B. In the exceptional situation of (U, —Ug) < 0,
we assume that a (near) vacuum has formed at the cell interface and set all of the interface

quantities to minimum values.

STAGE 2: 1If the pressure jump across either wave is large (say, a factor of 10), then the

guess for the intermediate pressure is modified using the strong shock relations.
If P* > 10 P, and P* > 10 Pr then both waves are taken to be strong shock waves and
the intermediate pressure and velocity can be determined directly as

2

. +1 V
pr=1 L PR (up —ur)| (25)
2 VPRt /PL

and

o \/PL UL + /PR UR (26)
VPRt \/PL .

If P*is greater than Pr, or Pr (but not both), the stage-1 estimate for P* can be improved

with two Newton-Raphson steps of the form

) ) dr,\ ™
Pn—l—l_Pn_Fn(ﬁ) 3 (27)

where

By =i (P) —up(Py) (28)

and

M(ﬁ—)“ , Pr<10 P

uy = Y - (29)
2P *
N (PL (v+1) ) , PT>10 0
Up+ 228 e P* <10 P,
U*R _ Rt F—1 ( ) ) = R (30)

uR+(L"))” P10 Py .

pr(v+1

During the update, we ensure that P* > Pyrn where Pyry is some small value. After

updating P*, the intermediate velocity is evaluated using the relevant strong-shock relation

from (29) or (30).

STAGE 3: Now that we have computed the pressure and velocity in the intermediate
regions behind the waves, the other intermediate flow properties may be evaluated. Then,

the interface conditions used in the inviscid flux vector (3) may be selected or interpolated

12



from the 4 flow states using the logic shown in Fig. 4. Note that, although only the left-
moving wave is discussed below, a similar procedure is used to obtain the flow state behind

the right-moving wave.

If the pressure rises across the left-moving wave (i.e. P* > Pp), the left wave is assumed

to be a shock and density is obtained from the Rankine-Hugoniot relation as

Y+ )P +(y-1)Pr

7= 31
G )R )P o
The specific internal energy is obtained from the equation of state as
P*
€ =———, 32
G 32)

and estimates for the local speed of sound (for later use in the interpolation of the interface

properties) are

ag, = \v(y =g, - (33)
The velocity of the wave (relative to the initial left state) is given by
1/2
y+1P (P y—1
Uy, —wsy, = |————— | — + ) 34
L L [ 2 PL (PL Y + 1 ( )

where wsy, 1s the velocity of the wave relative to the cell boundaries.

If the pressure falls across the left-moving wave (i.e. P* < Pp), the isentropic-wave
relations are used to obtain the intermediate properties. The local speed of sound is obtained

from the Riemann invariant as

aj, = (U —up)(y = 1)/2 (35)

while the specific internal energy is obtained from the sound-speed relation as

. (ap)?
€7, = =17 (36)

The density is obtained from the equation of state as

* P*
L= e (37)

The velocity of the leading-edge of the wave (relative to the initial left state) is given by

Uy, — w8y, = ay, . (38)

13



In the preceding perfect-gas equations an effective v may used to include variable gas
properties in an approximate manner. We evaluate this effective v as a density weighted
function [20] using

v=oay+ (1 —-a), (39)
where
a = R/ , (40)
VPL /PR

and

YL = +1,

YR = +1. (41)

2.3 Viscous Flux Calculation

After computing the inviscid flux vectors (3), we save the values of u, v and T at the
midpoints of the primary-cell interfaces for use in the calculation of the molecular transport
of momentum and energy across the interfaces. These values may be either those computed

by the Riemann solver or averages of the interpolated left- and right-states.

The spatial derivatives required in the viscous stress terms (7) are obtained by applying
the divergence theorem to each of the secondary cells. This gives an average value of the
derivative which is then assigned to the primary-cell vertex at the “centre” of the secondary

cell. Thus, for the spatial derivatives of temperature at vertex 7, 7, we compute

dT 1
(%) = 3 S (Ta+Ts)yp —ya) | Awscp
,]

A'B!'C'D!
dr —1
(d—) = 7 Z (TA’ —|— TB/)(,’EB/ — {EA/) / AA’B’C’D’ 5 (42)
Y7, A'B'C'D!
where |
AA’B’C'D’ = — Z (;CAl —|— [EB/)(yB/ — yA’) 5 (43)
A'B!IC'D!

and A, B, C" and D’ are the primary-cell centres surrounding the vertex. Spatial derivatives
of the u- and v-velocity components are calculated similarly. The viscous fluxes (4) at the
interface midpoints are then computed using averages of the viscous stresses at the nearby

cell vertices.

14



2.3.1 Viscous Boundary Conditions

For the velocity field, application of the “no-slip” boundary condition is simply a matter of
setting both of the components to zero at the boundary interfaces. The temperature can be
set to a specified value for a fixed-T wall or it can be set equal to the value at the adjacent
cell centre for an adiabatic wall. For supersonic inflow, supersonic outflow, or a tangency

boundary, we leave the values as computed by the inviscid flux routine.

Note that, along the boundaries, the secondary cells are constructed using the two ad-
jacent primary-cell centres and two interface points. The arrangement for each boundary is

shown in Fig. 5.

2.4 Time Stepping

The conserved quantities are advanced from time level n to time level n+1 with the predictor-

corrector scheme

(n)
Aar = oW ,
dt
vl = gt 4 AU
(1)
AU® = At v ,
dt
1
et U(1)+§(AU(2)_AU(1)) : (44)

where the superscripts (1) and (2) indicate intermediate results and the temporal derivative

(%) is obtained from equation (11). If a first-order scheme is desired, only the first stage is

used and U+ = 7D Although first-order time-stepping requires fewer operations than

second-order time-stepping, it is also less robust.

To maintain stability, the time step is restricted to

1 1 1 -1
AL < Alyiowed = CFL ( ) , 45
B : ! AtN + AtE + AtViscous ( )
where At jowed 15 the smallest value for all cells and
4
CFL < ) 46
T 5—r+8(1+ k) (46)

is the specified Courant-Friedrichs-Lewy number. Note that restriction (46) is applicable
to the schemes developed by Chakravarthy [9] whereas the present procedure seems to be
stable for slightly higher values of C'F'L in some situations. For each cell, the inviscid signal

frequencies along the North and East interfaces are approximated as

1 _ |UN,tangent| +a and 1 _ |UE,tangent| +a

4
Aty Ly ’ Alg Lg ’ (47)
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while the viscous limit [21] is approximated as

1 4 1 1
ol b I (48)
AtViscous Pr P LN LE

2.5 Computational Effort

Currently, the code has not been optimized (although the flux calculation routines do vec-
torize with the default optimization offered by the Cray Standard-C Compiler). On a single
processor of a Cray Y-MP, the calculation takes approximately 30 — 35 us/cell/predictor-
corrector step for an inviscid calculation and approximately 40 us/cell/predictor-corrector
step for a viscous calculation. On a SUN Sparc-2 workstation, the calculation takes approx-
imately 1 ms/cell/predictor-corrector step for a viscous calculation. If only the forward time

step is used, these times are halved.
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3 Test Cases

3.1 One-dimensional Shock Tube

The first test case is the so-called one-dimensional shock tube problem used by Sod [22].
The domain consists of a mesh of 100 x 2 cells over the rectangular domain 0 < =z < 1.0m,
0 < y < 0.1m. Reflecting (i.e. tangency) conditions are applied along all domain boundaries
and viscous effects are omitted. The gas is calorically perfect with v = 1.4. For = < 0.5m,

the initial state is
p=10kg/m® P=10°Pa, u=v=0, e=25x10° J/kg,
while, for > 0.5m, it is

p=0.125 kg/m®, P=10* Pa, u=v=0, e=2.0x10° J/kg.

At t = 0, the hypothetical diaphragm (separating the two initial states) is removed and
the inviscid equations are integrated in time to ¢ ~ 0.603 x 10™%s with C F'L. ~ 0.5. MUSCL
interpolation with k = 1/3 is used. The resulting flow state for a single row of cells in
the z-direction is shown in Fig. 6. Comparison with the exact solution (see e.g. [4]) is
reasonably good. The shock is captured in three cells and has the correct speed. However,
the contact discontinuity is fairly diffuse and the extreme edge of the expansion fan shows
some smearing. There is also a small glitch at the base of the rarefaction (z ~ 0.5m) as
seen in [9] (Secion 2.6) and [18]. Setting C'F'L. = 0.01 produced no discernible change in the
plotted solution. The contact discontinuity and shock were spread over the same number of

cells and the small glitch was still evident at the base of the rarefaction.

Of the test cases discussed here, this test case is simplest and requires the least memory
and processing time. On a Sparc-2 workstation, the total processing time is approximately
27 seconds for 99 time steps (1.4 ms/cell/predictor-corrector time step). Note that this is

an overall time and includes file I/O and initialization of the geometry data.

3.2 High-Temperature Shock Tube

This case is similar to Sod’s shock tube problem but is more demanding as it has pressure
and temperature jumps that are large enough for thermodynamic and chemical effects to be

significant.
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The flow domain covers 0 < z < 1.0m, 0 < y < 0.1m and is divided into a mesh of
200 x 2 rectangular cells. The initial flow state is the same as that used by Grossman and

Walters [23]. For x < 0.5m, we set
p = 2.641 kg/m> P =10.09 x 10° Pa, u=v =0, e=21.82 x 10° J/kg,
while, for x > 0.5m, we set
p=1.174 kg/m®, P =0.1006 x 10° Pa, u=v=0, e=0.2148 x 10° J/kg.
The gas is now assumed to be air in chemical equilibrium with the pressure, temperature

and local sound speed specified as curve fits on density and internal energy [7].

Again, the hypothetical diaphragm is removed at ¢ = 0 and the governing equations
are integrated forward in time with CFL = 0.5 and « = 1/3. Figure 7 shows the flow
state at ¢ = 0.125 x 107®s. Although an exact solution was not included in this figure, the
finite-volume solution appears to be in reasonable agreement with the results published in
[23]. This agreement indicates that the use of an effective v to approximate variable gas

properties in the Riemann solver is a reasonable approach for this type of problem.

On a Sparc-2 workstation, this case requires approximately 250 seconds of cpu time for

194 time steps (3.2 ms/cell/predictor-corrector time step).

3.3 Double Mach Reflection

To test the code’s ability to capture multidimensional dicontinuities, we examine the double
Mach reflection case 10 from Glaz, et al [24].

Figure 8 shows the flow domain which is divided into 200 x 100 cells. These cells are
equally spaced in the z-direction and their vertical interfaces are aligned with the y-axis.

For each z-station, the cells are equally spaced in the y-direction.

The gas is a calorically perfect gas with v = 1.4 and has initial conditions of
p=6.82x10"% kg/m>®, P =6.0x10° Pa, u=v=0,

e =2.183 x 10° J/kg,

throughout the domain. At ¢ = 0, a constant supersonic inflow with
p=0.3028 kg/m®, P =95.88 x 10° Pa, u = 1006m/s, v =0,
e="7.913 x10° J/kg, M =1.51,
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is applied to the West (z = 0) boundary. Tangency conditions are applied along the North
(y = 1.0m) and South boundaries and zero-order extrapolation is used at the East (z = 1.0m)

boundary. The governing equations for inviscid flow are integrated forward in time with

CFL=0.5and x =1/3.

Initially a planar shock is established and propagated into the flow domain with a shock
Mach number of 3.72. On encountering the ramp, this “primary” shock is reflected and a
(nearly) self-similar flow is established. Figure 9 shows the density contours at two times after
the shock has encountered the ramp. The main features of the flow are the (1) primary shock
(still travelling from left to right), (2) a detached (curved) shock forming over the leading
edge of the ramp, (3) a Mach stem from the primary shock to the ramp, (4) another Mach
stem from the primary shock to the detached shock, and (5) a pair shear layers propagating
from the the intersections of the shocks. At later times, the detached shock continues to
propagate upstream and the flow field becomes subsonic. Figure 10 shows a comparison of
the present solution at ¢ = 0.7ms and an interferogram from [24]. Agreement is reasonable
given the uncertainty in the physical gas properties and the grid resolution used in the
calculation. Note that there is no evidence of a distorted Mach stem near the wall as seen

in some calculations made with the Roe-type approximate Riemann solver [15, 16, 17].

3.4 Flat Plate Boundary Layer

The implementation of the two-dimensional viscous terms was validated by computing 2

cases of a supersonic, laminar boundary layer over a flat plate.

The flow geometry (for both cases) consists of a flat plate, 1.0m long, aligned with a
uniform Mach 2 flow. The gas is considered calorically perfect with v = 1.4, R = 287.J/kg/ K
and a constant Prandtl number of 0.72. The computational domain, as shown in Fig. 11,
is shaped to include the leading-edge interaction shock (LEIS). The domain is divided into
N x N cells which are clustered toward the plate surface and toward the inflow boundary

using one of Robert’s stretching transformations [25] (see also Section 5-6.1 in [26]).

For case 1, we set N = 100 and apply supersonic free-stream conditions of
p =0.0404 kg/m®, u=5973m/s, v=0, e=1.592x 10° J/kg,
to the West and North boundaries. These conditions correspond to
M =20, Rer,=165x10° T =222 K,

as used in [27]. The South boundary is set to be a no-slip wall with a fixed temperature

Twan = 222K while the East boundary conditions are obtained by zero-order (or constant)
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extrapolation. Initially, the flow throughout the domain is set at free-stream conditions and
the governing equations are integrated forward in time using first-order (Euler) time-stepping
with CFL = 0.8 and k = 1/3. Figure 12 shows the pressure field at ¢ = 7.0ms. The only
apparent feature is the weak shock propagating into the flow from the leading edge of the
plate. However, a boundary layer develops along the plate and attains a total thickness of
approximately 0.005m by the end of the plate. Figure 13 compares the temperature and
z-velocity profiles at x = 0.941m with profiles computed by a spectrally-accurate boundary
layer code [28]. The shear stress estimates agree to within 3% at this time and the flow is

still approaching steady state (slowly). For this a-station, the first cell-centre off the wall

n YPwr/ Tw//)w . (49)

y pund
P

has y* ~ 5 where

Case 2 has the same flow geometry but has
N =50, p=0.00404 kg/m>, Rer = 1.65 x 10°.

All other parameters are the same as case 1. Figure 14 shows the cell-centre mesh and
the pressure field at ¢ = 8.0ms. The LEIS is now much stronger and the boundary layer,
which scales with v/Re, is approximately 3 times thicker. Fig. 15 shows the boundary
layer profiles at * = 0.916m where the displacement thickness is 5.10mm. Again, there is
reasonable agreement with the spectrally accurate boundary layer solution. This indicates
that the weak leading-edge shock influences the boundary layer very little. The processing
time required for this case is approximately 1.6 hours on a single processor of a Cray Y-MP

for approximately 116000 time steps (20 us/cell/Euler time step).

3.5 Inviscid Flow over a Cone

Inviscid flow over a cone is used to test the axisymmetric formulation of Appendix A. In the
steady-state limit, the shock (and other constant property lines) are straight and there is an
“exact” solution [29] (see also Ch. 10, [30]). Figure 16 shows the flow geometry for a 20°
half-angle cone whose axis of symmetry is along the z-axis. The flow domain is divided into
a mesh of 100 x 100 cells. The cells are equally spaced in the z-direction and their vertical
interfaces are aligned with the y-axis. For each z-station, the cells are equally spaced in the

y-direction.

Although we are interested in the quality of the steady-state solution for this test, we

simulate the flow using the same initial and inflow conditions as the double Mach reflection
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case (Section 3.3). The gas is a calorically perfect with v = 1.4 and initial conditions

throughout the domain are
p=6.82x10"% kg/m>®, P =6.0x10° Pa, u=v=0,

e=2.183 x 10° J/kg/K .

At t = 0, a constant supersonic inflow with
p=0.3028 kg/m®, P =95.88 x 10° Pa, u = 1006m/s, v =0,

e="7913 x 10° J/kg/K, M =1.51,

is applied to the West boundary. Tangency conditions are applied along the North and
South boundaries and zero-order extrapolation is used at the East boundary. The governing
equations for inviscid flow are integrated forward in time with C'F'L = 0.5 and high-order

MUSCL interpolation.

Figure 17 shows the density field at two instants after t = 0. By ¢t = 1.0ms, the primary
(normal) shock has left the flow domain and conical flow is being established over the nose of
the cone. Figure 18 shows both the pressure and density fields (at ¢ = 5.0ms) when the flow
has nearly reached steady state. Except for small deviations, the contours are straight lines
aligned with the (conical) generators propagating from the cone vertex. The shock angle
closely matches the value of 49° taken from Chart 5 in [31]. Note that, for an equivalent

two-dimensional situation, there is no “attached-shock” solution.

On a Sparc-2 workstation, this case requires 5.36 hours cpu time to take 2410 time steps

(0.8 ms/cell/predictor-corrector time step).

3.6 Viscous Flow along a Cylinder

The implementation of the axisymmetric viscous terms is examined by computing the su-
personic, laminar boundary layer along a hollow cylinder. Except for the axisymmetric

geometry, this case is similar to case 2 of the flat-plate boundary layer in Section 3.4.

The flow geometry consists of a hollow cylinder aligned with the z-axis. The cylinder
is 1.0m long and has a 0.005m radius. The free stream is a uniform supersonic flow with
M = 2. The gas is considered calorically perfect with v = 1.4, R = 287.J/kg/K and
a constant Prandtl number of 0.72. The computational domain, as shown in Fig. 19, is
shaped to include the leading-edge interaction shock (LEIS) and is divided into 50 x 50 cells
(as done for the flat-plate boundary layer).
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We apply supersonic free-stream conditions of
p = 0.00404 kg/m>, w=>5973m/s, v=0, e= 1592 x 10° J/kg,

M =2.0, Rey=165x10°, T =222 K,

to the West and North boundaries. The South boundary is set to be a no-slip wall with
a fixed temperature T,y = 222K while the East boundary conditions are obtained by
zero-order (or constant) extrapolation. Initially, the flow throughout the domain is set at
free-stream conditions and the governing equations are integrated forward in time using first-
order (Euler) time-stepping with C'F'L, = 0.8 and high-order MUSCL interpolation. Figure
20 shows the pressure field at ¢ = 8.0ms. Compared to the two-dimensional situation, the
LEIS is much weaker and the boundary layer at the end of the cylinder is thinner. Figure
21 compares the temperature and z-velocity profiles at * = 0.916m for both a 50 x 50 grid
and a 70 x 70 grid with profiles computed by a spectrally-accurate boundary layer code
[28]. Here, the displacement thickness is 4.22mm which is approximately 20% less than the
corresponding value on the flat plate. Although agreement is generally good for both grids,

there is noticeable improvement in the temperature profile for the finer grid.

3.7 High Mach Number Flow around a Sphere.

The robustness of the code is demonstrated by computing a Mach 12 flow over a sphere.
This case is difficult because the shock in front of the sphere is very strong and because there

is a geometric singularity along the stagnation line.

Figure 22 shows the flow geometry and the 60 x 60 mesh of cell centres. The South
boundary is the y = 0 symmetry line (and stagnation line) while the East boundary is the
surface of the sphere. A tangency condition is applied at this surface. For case 1, free-stream

conditions of
p = 0.5097 kg/m®, P = 42717 Pa, e=2.095 x 10° J/kg,

u = 4120.6(1 —exp (=5 x 107%)) m/s, v =10, Mpomina = 12,

are applied to the West boundary. Flow conditions at the North boundary are obtained by
zero-order (constant) extrapolation. The shape of the West boundary is derived from the

shock-position correlations in [32]. Initial conditions throughout the domain are set to

p = 0.5097 kg/m®, P =42717 Pa, e=2.095x10° J/kg, u=0, v =0,
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The inviscid equations are then integrated forward in time using first-order interpolation,
Euler time-stepping and CFL = 0.5. Figure 23 shows the flow field (density contours)
at an early time and again after the flow has approached steady state. The shock wave
moves off the body and approaches its steady-state position in a well behaved manner. For
this case, a finite-difference scheme using Roe-type flux-difference splitting required a rather
large value for its entropy-fix parameter in order to obtain a physically reasonable solution
(J. White, NASA Langley Research Centre, private communication). Although the shock
shape is well behaved for the present code, there are significant small-scale disturbances just
behind the shock, in the subsonic region. These disturbances appear to caused by small
perturbations to the shock position and have the scale of the local mesh spacing. Discrete
points from experimentally derived correlations [32] are plotted on the later-time solution.
On the whole, agreement is good. The largest deviations are near the outflow boundary

where the flow field may be still developing.

Two other calculations are included to show the effect of viscosity on the small-scale
disturbances in the subsonic region. To make the viscous effects larger, the free-stream

density and pressure are lowered to
p=0.5097 x 107 kg/m>, P =427.1Pa .

The governing equations are integrated in time with the viscous terms included but the East
boundary condition is still a tangency condition. For case 2, the first-order interpolation
is used and the result is shown in Fig. 24(a). The extra dissipation has damped the dis-
turbances in the subsonic region. High-order MUSCL interpolation is used for case 3 and
as shown in Fig. 24(b), the result is essentially the same except for some slightly noisier
contours away from the axis. Profiles of density and pressure along the line of cells adjacent
to the xz-axis are shown in Fig. 25. The shock appears to be captured in 2 or 3 cells with
no oscillation and the density jump is close to the ideal strong-shock value of 6 (see e.g. [33]
Section 2.2). The pressure ratio from free-stream to the stagnation point is 185.8 which is

very close to the ideal value of 185.9 for M = 12 (see e.g. [30] Table A.2).
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4 Concluding Remarks

This report has described a program for the time-integration of the Navier-Stokes equations
on a two-dimensional structured mesh. The program is based on a cell-centred, finite-volume
formulation and uses a three-stage Riemann solver to compute the inviscid fluxes. Viscous
fluxes are computed by applying the divergence theorem to the flow data on a set of secondary
cells. Grid metrics are not required. Time stepping is performed with either an Euler or a

predictor-corrector scheme.

Currently, the program is restricted to a single-block, structured grid. However, the code
modules are written so that they may be applied to any number of such blocks. All that
is required is the addition of a set of routines to exchange boundary data and a modified
time-stepping procedure. This extension and the addition of chemical source terms will be

the subject of future work.
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A Axisymmetric Flow Geometry

We now consider an axisymmetric flow with velocity

U = ué+veé,+wée,

u = uplz,r) ,

v = wo(x,r) cosb

w = wv(x,r) sinf . (50)

Here r = yo and 6 are the polar coordinates in the (y, z)-plane as shown in Fig. 26. The
subscript 0 refers to the # = 0 (or the z = 0) plane. All other primary variables (i.e. P, T,

e, fis) are functions of z and r only. Derivatives are related by

o _ 9

dxr Oz’

g B _sinﬁg_l_ 93

dy - 06 Vo

0 cos@ O .0

@ = —|— ., %—FSIHHE . (51)

Following the approach of Vinokur [6], we introduce an axisymmetric cell of extent 2¢
radians in the (y, z)-plane. Figure 27 which shows an segment of an axi-symmetric volume

element with the axis of symmetry aligned with the z-axis. Note the “Front” and “Back”

interfaces at angles § = 4+ and § = —1 respectively. These interfaces have unit normals
given by

Ng=yy = —sINY €, +costh €,

Ng=—y = —SsiNY €, —cosy €, . (52)

Due to the axial-symmetry of the flow field, there is zero normal velocity at these planes.
The cell volume is now
0 =2 [ yrdy (53)
So
where Sp is the contour of the cell in the (x,y)-plane. Also, we define the modified cell

volume (or volume per radian) to be

In the code, equation (54) is approximated by

0~ 5 sty ) . (59
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Governing Equations in Cartesian Coordinates

We now consider the cartesian form of the Navier-Stokes equations in three dimensions and

then substitute the axisymmetric expressions into each of the terms.

The z-momentum

equation will then be dropped from the set and replaced with the approximation that the

pressure at the Front and Back interfaces is the same as that at the cell centre. The goal is

to reduce the full three-dimensional system to a system of quasi-two-dimensional equations

which can be used in place of equations (1) - (4), (7) in Section 2.

The governing equations can be expressed as

9 A )
a/Qdedydz+ /S (F—F) éy+(G—Gy) &+ (H —

H,) &) hdS =

where i i
p
pu
v= |,
pw
pE
L pfis |
I pu ] [ pv i [ pw ]
pu+ P puv puw
VU v24 P VW
r= ppwu » G = ’ pWV » H = pwp2 + P
pEu + Pu pEv 4+ Pv pEw + Pw
L pfisu L pfisv L pfisw
_ 0 - _ 0 -
Tex Try
F’U = TyI bl G'U - Tyy
Tzz Tzy
Tozth + TyzU + TozW + ¢z ToyU + TyyU + Toyw + gy
L pfis‘/r,is L ,Ofis‘/y,is J
_ 0 }
T.TZ
H, = Tvz
TZZ
TozU + TyU + T W + @
L pfisx/z,is
The individual viscous stress terms are
Tew = 2/,La—u—|-)\(a—u—l-@—l-a—w)
o oz dxr Oy 0z)
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and the heat-flux terms are

ov ou
- Qﬁ‘a—y“(a—x
ow ou
My i
"a (ax

oT
, =~k
4 ox
oT

= —k—
Qy ay 9
oT

q. = —k‘g

Currently, we set the diffusion velocities Vi to zero.

A.2 Application to the Axisymmetric Cell

(61)

(62)

We now substitute the axisymmetric expressions into the cartesian equations (56) - (62).

The algebraic vectors U, F', G and H are now

Polto

poud + Po
Povo cos 8 ug
Povo sin 8 ug
poFoug + Poyug
L pOfiso Ug

Po
Polo
Povo cos b
Povo sin f
Po Fy

L Pofis,o

Povo sin
PotioVo sin
Povo cos B vy sin §
povE sind + P,

poFovgsinf 4+ Pyvgsin 6

po fisovo sin 0
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Taking # << 1 and dropping some of the high-order terms in the viscous-stress expressions

gives
_ Jdug OJug Ovg o
Tow = 2M%“<%+W+7) :
_ Jdvg Jug Jdvg g
T = 2”E+A(%+W+7) :
Vo auo 81}0 Vo
zz 2p— A — - - )
k po (@:L‘ + aor + r)
. . 8u0 avo
Toy = Tyz = ILLCOSH(E—I-E) ,
Tps = T = sin 0 % %
rz — 2z — M a 8:1: )
. a’UO Vo
Ty» = Toy = 2psinfcosf il (66)
and
dTy
. = k20
7 Oz
qQ = —kcos&% ,
T
q. = —ksin&% . (67)

Assuming small ¢, we can integrate in  and drop the z-momentum equation to obtain

6<U0>

Y Q + 20 s r (F— F,)p=o dr

— 2¢ | r(G—Gy)e=o dx
So

# [ Tmsing (G = Goamey + cost (H = HJomsy] - =iy dS

Front

+ /S [_ Sin?j} (G - Gv)é’z—w - COSL/) (H - Hv)é’z—lli] ' ﬁ9:_¢ ds
=0, (68)

where the line integrals over Sy are analogous to the contributions from the North, South,
East and West interfaces in the two-dimensional case while the integrals over Sg,.,: and Sp,ck

are the contributions from the § = +¢ (Front) and § = —¢ (Back) interfaces respectively.

A.3 Treatment of the interfaces at 6 = +¢

Now, we move the Front and Back interface contributions to the right-hand-side and approx-

imate the integrals by an average times the interface area, A. The result may be considered
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an effective source term

Q' Q = —Al-sing(G — G)o=ty + cosp(H — H,)o=ry]
—A [_ Sln¢(G - Gv)ﬁz—d) — COS ¢(H - Hv)ﬁz—d)] ’ (69)
where
A= 5 xdy . (70)

Substituting the expressions for GG, G,, H and H,, and taking the limit of small ), we obtain

0
0
Q Q=20A| Po—1p | , (71)
0
0
where we define 5 5
r oz or r

Note that the quantities in )’ are evaluated at the cell centre.

A.4 Summary of the Axisymmetric Equations

Reverting to (z,y) notation without the zero subscripts, and dividing through by equation

(54) gives the governing equations for axisymmetric flow as

d<U> 1

1 I
7 +@/S(yF—yFu) dy—@/s(yG—yGu) dr =Q (73)

where the U, F' and G vectors are

p pu pv
pu pu+ P puv

U = pU , yF =y poU , yG = y| pv?*+ P . (74)
pE pEu + Pu pEv 4+ Pv
plfis pfisu pfisv

Note that, except for the “y” premultiplying factor, they are the same as those in the planar

two-dimensional situation defined in (3). The viscous terms are

0 0
YT yTyr
yb, = YTry ) yG, = YTyy ) (75)
YTozUl + YToy¥ + Y4 YTyzU + YTyy U + Y Gy
YypVaisYis ypVy,isYis
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where

dz — dy y
= = M(g_y+§—) | (76)
and
@ = —kg—z :
0w = ko (77)

Treating the viscous contributions in the form y7 avoids any difficulties with the geometry
singularity at y = 0. The effective source term (containing the Front- and Back- interface

contributions) is

Q/ = (P - Tg@)A/Q/ . (78)

where

du v v) (79)

v
= 2u—+ | —+—+ -
Too My—l— (8:z:+8y+y

These equations are equivalent to those used by Eklund [34].
Finally, we note that the treatment described here (including discretization) preserves
free-stream properties. This was checked by running the cylinder test case in Section 3.6 with

tangency conditions along the cylinder. A 30 x 30 grid was used and the viscous equations

were integrated to ¢ = 2.0 x 107s. No variation was seen in the flow field.
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Yy Tmin Tmaz

0.2 | 0.12 8.4
4.0 | 0.75 1.55
-3.0 1 0.55 1.48

Table 1: Argument ranges for 1% error.

B Approximate Power Routine

When computing z = zY, we can break the calculation into stages and compute z =

exply In(z)]. For x reasonably close to 1, we may approximate the logarithm with

1 1 1
In(z) ~ 2|r+ gr?’ + 57“5 + ?r7 \ (80)
where |
;E J—
= ) 81
r= (81)
The exponential is then approximated by the usual expansion
; t2 3 t4 t5
e > 1+l+ =44+ . (82)

20 31 4l 5l

This procedure produces results with less than 1% error for the arguments shown in Table 1.
The floating-point operation count is 30. Note that the exponent in equation (24) is fairly
small over the range of effective specific heats expected for most gasdynamic situations
and the approximation is used if the base (z = Pr/Pg) is within the first range shown in
Table 1. However, the exponent in equation (21) is usually large (5 < y < 12) and so, the

approximation is applied to equation (21) as z = a® z¥7%.
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C Header File

This file is no longer included. Refer to the new version mb_cns.h in the source code directory.
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Figure 1: Finite-volume cell and indexing convention: “o” denotes a cell centre; “+” denotes

a vertex; “*” denotes an interface midpoint.
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Figure 3: Secondary-cell geometry.
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if (u* > 0) then

The contact-discontinuity has moved to the right
and the interface state is determined from the
L and L* states.

if (P* > Pp,) then
The left-moving wave is a shock.
if (wsg, > 0) then
All waves have moved to the right.
Interface state is equal to L.
else
Interface state is equal to L*.
endif
else
The left-moving wave is a rarefaction.
if (ug, —az, > 0) then
All waves have moved to the right.
Interface state is equal to L.
elseif (uj, — a3, > 0) then
The rarefaction straddles the interface.
Interpolate the interface state from
states L and L*.
else
The entire rarefaction moved to the
left of the interface.
Interface state is equal to L*.
endif
endif

else
The contact discontinuity has moved to the left
and the interface state is determined from the

R and R* states in a similar manner...

endif

Figure 4: Interpolation logic for the Riemann solver.
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Figure 5: Definition of the secondary (half-)cells along the boundaries. The ,; vertex is
identified in each case.
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Figure 6: Flow state in the one-dimensional shock tube at ¢ = 6.03 x 10~*s. Symbols denote
the finite-volume solution, solid lines denote the exact solution.
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Figure 7: Flow state in the high temperature shock tube at ¢ = 1.25 x 107*s.
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Figure 8: Flow over a wedge with a double Mach reflection: (a) flow domain; (b) 200 x 100
mesh connecting the cell centres.
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Figure 9: Density contours at two time instants for the double Mach reflection case.
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Figure 10: Comparison of (a) the density contours for the present solution at ¢ = 0.7ms and
(b) an interferogram from figure (13a) in Glaz et al (1986).
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Figure 12: Pressure contours at ¢ = 7.0 x 107?s.
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Figure 13: Comparison of the present solution (symbols) with a spectral solution (solid line):
(a) z-velocity profile at @ = 0.9415m (i=97); (b) temperature profile at the same station.
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Figure 15: Comparison of the present solution (symbols) with a spectral solution (solid line):
(a) z-velocity profile at = 0.916m (i=48); (b) temperature profile at the same station.
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Figure 22: Sphere in a Mach 12 flow:
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Figure 23: Evolution of the density field around the sphere for an inviscid simulation: (a)

Case 1, t = 8.66 x 107%; (b) Case 1, t = 5.47 x 10™°s. “4” denotes the experimental
correlation.
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Figure 24: Density field around the sphere for two viscous simulations with tangency
boundary conditions: (a) Case 2, t = 3.76 x 107%s, first-order interpolation; (b) Case 3,
{ = 4.01 x 107%s, high-order MUSCL interpolation.
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(a) density; (b) pressure.
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Figure 27: Axisymmetric finite-volume cell.
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